ÉNONCÉS EXERCICES CORRIGÉS 3 **INTÉGRALES**

3.1 Intégrales sur un segment et développements limités

- (3.1) Soit $f:[a;b] \to \mathbb{R}$ continue telle que : $\forall x \in [a;b], f(a+b-x) = f(x)$. $\text{Calculer } \int_{a}^{b} x f(x) dx \text{ en fonction de } \int_{a}^{b} f(x) dx. \text{ Application : calculer } \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx.$
- 3.2 Calculer $\lim_{n \to +\infty} \prod_{\nu=1}^{n} \left(1 + \frac{k^2}{n^2}\right)^{1/n}$
- 3.3 Calculer $\int_0^{\pi/2} \frac{1}{\cos \alpha \cos x + 1} dx$ pour $\alpha \in [0; \pi[$.
- **a.** Pour $(p,q) \in \mathbb{N}^2$, trouver une relation entre J(p,q) et J(q,p), puis entre J(p+1,q) et J(p,q+1). **b.** Calculer J(p,0) pour $p \in \mathbb{N}$; en déduire, pour $(p,q) \in \mathbb{N}^2$, J(p,q).
- Soit $f: \mathbb{R}_+ \to \mathbb{R}$ continue et positive telle que : $\exists k \geqslant 0, \ \forall t > 0, \ f(t) \leqslant k \int_0^t f(u) du$. On pose, pour $t \geqslant 0$, $F(t) = \int_0^t f(u) du \; ; \; \text{montrer que} \; t \to e^{-kt} \\ F(t) \; \text{est décroissante.} \; \text{Que peut-on en déduire sur} \; F \; ? \; \text{Et sur} \; f \; ?$
- (3.7) Mines PSI 2011 d'après RMS Soit $(\mathfrak{p},\mathfrak{n}) \in \mathbb{N}^2$ avec $1 \leqslant \mathfrak{p} \leqslant \mathfrak{n}$. En écrivant de deux façons le $DL_n(0)$ $x \mapsto (e^x - 1)^n$ en 0, montrer $\sum_{k=1}^n (-1)^{n-k} \binom{n}{k} k^p = \delta_{p,n} n!$
- (3.8) ENSIIE PSI 2008 d'après RMS Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ dérivable, strictement croissante et telle que f(0) = 0.
 - **a.** Montrer: $\forall x \in \mathbb{R}^+$, $x f(x) = \int_0^x f(t)dt + \int_0^{f(x)} f^{-1}(t)dt$.
 - **b.** En déduire : $\forall (x,y) \in (\mathbb{R}^+)^2$, $xy \leq \int_0^x f(t)dt + \int_0^y f^{-1}(t)dt$. Cas d'égalité ?
- CCP PSI 2008 d'après RMS

 - **a.** Justifier la convergence de $\int_0^{+\infty} \frac{dx}{\sqrt{x^3 + x^2 + x + 1}}$. **b.** Donner un équivalent en $+\infty$ de $\int_n^{n+1} \frac{dx}{\sqrt{x^3 + x^2 + x + 1}}$ puis de $\int_n^{2n} \frac{dx}{\sqrt{x^3 + x^2 + x + 1}}$.
- (3.11) Compléments OdlT 2016/2017 Centrale PSI planche 208

Montrer que si $\alpha > 1$, la suite de terme général $u_n = \sum_{k=0}^n \frac{1}{(n+k)^{\alpha}}$, définie pour $n \in \mathbb{N}^*$, converge vers 0. Discuter de la limite de la suite suivant α quelconque

(3.12) Compléments OdlT 2016/2017 EIVP PSI planche 528I abordable dès la 1^{re} année

On pose $\forall n \in \mathbb{N}, \ \forall x \in [n; +\infty[, \ g_n(x) = \int_n^x e^{t^2} dt. \ \text{Montrer que} \ \forall n \geqslant 1, \ \exists ! x_n > n, \ g_n(x_n) = 1.$

Montrer que $n \le x_n \le n+1$ puis que $0 \le x_n - n \le e^{-n^2}$; qu'en déduit-on ?

(3.13) Compléments OdlT 2016/2017 EIVP PSI planche 533II

Pour n>0, on pose $I_n=\int_1^eln^n(t)dt$ et $\alpha_n=(-1)^n(n!)\sum_{k=0}^n\frac{(-1)^k}{k!}.$

Trouver une relation entre I_n et I_{n+1} . Déterminer b_n tel que $I_n = ea_n + b_n$ et en déduire que $\lim_{n \to +\infty} I_n = 0$.

3.2 Fonctions intégrables

- $\underbrace{\textbf{3.17}} \underline{\textit{Mines PSI 2008 d'après RMS}} \, \text{Donner le domaine de définition, puis calculer} : \, \mathfrak{p} \in \mathbb{R} \mapsto \int_{1}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{x^2\mathfrak{p}+1}+1} .$
- (3.18) Étudier l'existence de $I_{\alpha,\beta} = \int_0^1 |1 t^{\alpha}|^{\beta} dt$ selon les valeurs de α et β .

- 3.24 <u>Centrale PSI 2012</u> Existence et calcul de $I = \int_0^{\frac{\pi}{2}} \cos(\theta) \ln(\tan(\theta)) d\theta$
- $\boxed{\textbf{3.25}} \ \, \text{Soit} \, \, f: \, \mathbb{R} \rightarrow \, \mathbb{C} \, \, \text{int\'egrable. On pose, pour} \, \, x \in \, \mathbb{R}, \, \widehat{f}(x) = \int_{\mathbb{R}} f(t) e^{-ixt} dt.$
 - a. Justifier que \hat{f} est bien définie sur $\mathbb{R}.$ Calculer \widehat{h} si $h:t\to e^{-|t|}.$
 - **b.** Si f, g : $\mathbb{R} \to \mathbb{C}$ sont intégrables et bornées, justifier l'existence, pour $x \in \mathbb{R}$ de $(f*g)(x) = \int_{\mathbb{R}} f(x-t)g(t)dt$ (produit de convolution). Calculer (h*h)(x) pour $x \in \mathbb{R}$.
 - $\textbf{c.} \ \ \text{On admet pouvoir intervertir à loisir les 2 variables d'intégration..., "établir" : \widehat{(f*g)}(x) = \widehat{f}(x) \times \widehat{g}(x).$
- $\boxed{\textbf{3.27}} \text{ Existence et calcul de } \int_{]0;1]} \left(\frac{1}{t} \left\lfloor \frac{1}{t} \right\rfloor \right) dt.$

(3.28) Compléments OdlT 2016/2017 Mines PSI planche 101II

Existence de $I_{\alpha} = \int_{0}^{\pi/2} \frac{dt}{1 + \tan^{\alpha}(t)}$ pour $\alpha \in \mathbb{R}_{+}^{*}$ (on pourra faire deux changements de variable). Commenter le choix de α .

(3.29) Compléments OdlT 2016/2017 Mines PSI planche 102I

Soit f de classe C^{∞} de [a;b] dans \mathbb{R} . Montrer que $f\geqslant 0 \Longleftrightarrow \forall g\in C^{\infty}([a;b]\,,\,\mathbb{R}_+),\,\int_a^b fg\geqslant 0$. En déduire que $f>0 \Longleftrightarrow \exists m\in\mathbb{R}_+^*,\,\forall g\in C^{\infty}([a;b]\,,\,\mathbb{R}_+^*),\,\int_a^b fg>m\int_a^b g.$

- (3.31) <u>Compléments OdlT 2016/2017 Mines-Télécom PSI planche 566II abordable dès la 1^{re} année incomplet Montrer que I = $\int_0^{\pi} \frac{dx}{1 + \sin^2 x} = 2 \int_0^{\pi/2} \frac{dx}{1 + \sin^2 x}$ puis la calculer.</u>

b. Montrer que $I = \int_0^{+\infty} \frac{e^{-x} - e^{-2x}}{x} dx$. Séparez cette intégrale en deux pour trouver I.

3.3 Intégrales impropres convergentes

- - ${\bf a.}$ Déterminer les réels b tels que $\mathfrak{u}_{\mathfrak{n}}$ existe pour tout entier $\mathfrak{n}\geqslant 1.$
 - **b.** Dans les cas précédents, déterminer la nature de la série numérique $\sum_{n\geqslant 1}u_n.$
- - $\mathbf{a.}$ Montrer que ϕ est de classe C^1 sur $[0;\pi].$
 - **b.** Justifier que $\int_0^{+\infty} f(t)dt$ converge. On note I sa valeur.
 - c. Montrer que la suite $(I_n)_{n\geqslant 0}$ est constante si $I_n = \int_0^\pi \frac{\sin\left((n+\frac{1}{2})x\right)}{2\sin\left(\frac{x}{2}\right)} dx$.
 - $\mathbf{d.}$ Trouver une relation entre $F\big((n+\frac{1}{2})\pi\big),$ ϕ et $I_n.$
 - e. En se rappelant le lemme de LEBESGUE, déterminer la valeur exacte de I.

 $\boxed{\textbf{3.38}} \ \, \mathrm{Soit} \, \, f: \, \mathbb{R}_+^* \to \, \mathbb{R} \, \, \mathrm{d\acute{e}finie} \, \, \mathrm{par} \, \, f(t) = \frac{\sin^3 t}{t^2}. \, \, \mathrm{On} \, \, \mathrm{pose} \, \, I(x) = \int_x^{+\infty} f(t) dt.$

- a. Justifier l'existence $\int_0^{+\infty} f(t)dt$. On note I sa valeur.
- b. Exprimer $\sin^3 t$ en fonction de $\sin t$ et $\sin(3t)$.
- **c.** Montrer que $I(x) = \frac{3}{4} \int_{x}^{3x} \frac{\sin t}{t^2} dt$.
- $\mathbf{d.}\ \mathrm{Justifier}\ \mathrm{que}\ \psi:t\mapsto \frac{\sin t}{t^2}-\frac{1}{t}\ \mathrm{est}\ \mathrm{born\acute{e}e}\ \mathrm{au}\ \mathrm{voisinage}\ \mathrm{de}\ 0.\ \mathrm{En}\ \mathrm{d\acute{e}duire}\ \mathrm{la}\ \mathrm{valeur}\ \mathrm{exacte}\ \mathrm{de}\ \mathrm{I}.$

- a. Justifier que f est bien définie, de classe C^{∞} , strictement croissante sur \mathbb{R}_+ et qu'elle admet une limite finie en $+\infty$ qu'on note I et qu'on appelle intégrale de Gauss.
- finie en $+\infty$ qu'on note I et qu'on appene integrate de GAOSS. **b.** Établir que $\forall x > -1$, $\ln(1+x) \leqslant x$. Puis que $\forall n \in \mathbb{N}^*$, $\forall t \in [0; \sqrt{n}]$, : $\left(1 - \frac{t^2}{n}\right)^n \leqslant e^{-t^2} \leqslant \frac{1}{\left(1 + \frac{t^2}{n}\right)^n}$.
- c. Prouver : $\int_0^{\sqrt{n}} \left(1 \frac{t^2}{n}\right)^n dt = \sqrt{n} \, I_{2n+1} \text{ à l'aide du changement de variable à justifier } t = \sqrt{n} \, \cos(\theta).$
- $\mathbf{d.}$ À l'aide d'un changement de variable à trouver et à justifier, prouver que :

$$\int_0^{\sqrt{n}} \frac{1}{\left(1+\frac{t^2}{n}\right)^n} dt = \int_{\pi/2}^{\pi/4} \sin^{2n}(\theta) \times \left(\frac{-\sqrt{n}}{\sin^2(\theta)}\right) d\theta \leqslant \sqrt{n} \, I_{2n-2} \,.$$

e. Déduire de ce qui précède et de l'équivalent classique des intégrales de Wallis la valeur exacte de I.

(3.40) <u>Centrale PSI 2013</u>

Soit $f:[1;+\infty[\to\mathbb{R}_+$ continue, décroissante et telle que $\int_1^{+\infty}f(t)dt$ converge.

- a. Montrer que $\lim_{x \to +\infty} xf(x) = 0$. En déduire l'existence de $\int_{1}^{+\infty} x(f(x) f(x+1)) dx$ et calculer sa valeur.
- **b.** Déterminer, pour $\alpha > 1$, la valeur de $\int_{1}^{+\infty} x \left(\frac{1}{x^{\alpha}} \frac{1}{(x+1)^{\alpha}}\right) dx$.
- (3.41) Montrer l'existence de $I = \int_0^1 \frac{\ln(x)}{(1+x)\sqrt{1-x^2}} dx$ et déterminer sa valeur exacte par les changements de variable $x = \sin(\theta)$ puis $t = \tan\left(\frac{\theta}{2}\right)$ et enfin par IPP.

3.4 Exercices aux oraux des étudiants de PSI1

(3.42) <u>Mines PSI 2013</u> Jordan Diby I

Soit $x\in\mathbb{R},$ montrer qu'il existe un unique réel y tel que $\int_x^y e^{t^2}dt=1.$

On pose alors y = f(x) ce qui définit f. Étudier f.

(3.43) <u>Centrale PSI 2013</u> Mathieu Brandy

Soit $F: \mathbb{R}_+^* \to \mathbb{R}$ définie par : $F(x) = \int_0^{1/x} \frac{dt}{x + \sin^2(t)}$.

- a. Montrer que F est bien définie, étudier sa monotonie.
- **b.** Déterminer $\lim_{x\to 0^+} F(x)$. Puis $\lim_{x\to +\infty} F(x)$.
- c. Donner un équivalent simple de F(x) lorsque x tend vers 0.

Indication : on pourra utiliser le changement de variable u = tan(t) sur des intervalles convenables.

(3.44) Centrale PSI 2014 et CCP PSI 2014 Tanguy Cazalets et Nicolas Bourbon

Pour $f: \mathbb{R}_+ \to \mathbb{R}$ continue, de carré intégrable, on définit $g: \mathbb{R}_+^* \to \mathbb{R}$ par $g(x) = \frac{1}{x} \int_0^x f(t) dt$.

 $\textbf{a. g est-elle prolongeable en 0 ? Soit 0 < \alpha < b, \text{ \'etablir une relation entre } \int_{\alpha}^{b} g(t)^2 dt \text{ et } \int_{\alpha}^{b} f(t)g(t)dt.$

 $\textbf{b. \'Etablir dans un premier temps que } \int_a^b g(t)^2 dt \leqslant \alpha g(\alpha)^2 + 2 \sqrt{\int_a^b g(t)^2 dt} \int_0^{+\infty} f(t)^2 dt } \text{ puis en d\'eduire ensuite la nouvelle majoration : } \sqrt{\int_a^b g(t)^2 dt} \leqslant \sqrt{\int_0^{+\infty} f(t)^2 dt} + \sqrt{\alpha g(\alpha)^2 + \int_0^{+\infty} f(t)^2 dt}.$

c. Montrer que g^2 et fg sont intégrables. Trouver une inégalité entre $\int_0^{+\infty} g(t)^2 dt$ et $\int_0^{+\infty} f(t)^2 dt$. Déterminer aussi une relation simple entre $\int_0^{+\infty} g(t)^2 dt$ et $\int_0^{+\infty} f(t)g(t)dt$.

(3.45) <u>Centrale PSI 2015</u> Agatha Courtenay

Soit $a \in C^0(\mathbb{R}_+, \mathbb{R})$ intégrable sur \mathbb{R}_+ . Soit f une solution sur \mathbb{R}_+ de l'équation (E) : y'' + (1+a)y = 0. Posons $g: x \mapsto f(x) + \int_0^x \sin(x-t)a(t)f(t)dt$.

a. Est-ce que $\lim_{x\to +\infty} a(x) = 0$?

b. Montrer que g'' + g = 0.

c. Montrer qu'il existe $C \in \mathbb{R}$ tel que $|f(x)| \leq C + \int_0^x |a(t)f(t)|dt$.

d. Conclure quant aux solutions de (E) sur \mathbb{R}_+ .

(3.46) <u>Centrale PSI 2015</u> Marie Trarieux

On rappelle que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$. Soit $\alpha \in \mathbb{R}$, on définit $I(\alpha) = \int_1^{+\infty} \frac{e^{-\alpha t}}{\sqrt{t}} dt$ et $J(\alpha) = \int_0^{+\infty} \frac{e^{-\alpha t}}{\sqrt{t}} dt$.

a. Quelles sont les valeurs de α telles que $I(\alpha)$ converge? Et pour $J(\alpha)$?

b. Calculer $J(\alpha)$. Donner un équivalent en l'infini pour $I(\alpha)$.

(3.47) <u>CCP PSI 2015</u> Marin de Bonnières

Soit $E = C^0(\mathbb{R}, \mathbb{R})$. Si $f \in E$, soit $\mathfrak{u}(f) : \mathbb{R} \to \mathbb{R}$ définie par : $\forall x \in \mathbb{R}, \ \mathfrak{u}(f)(x) = \int_0^x \cos(x-t)f(t)dt$.

a. Montrer que u est un endomorphisme de E.

b. u est-elle surjective ?

c. Étudier le noyau de u.

(3.48) CCP PSI 2015 Arthur Lacombe

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ continue telle qu'il existe C>0 et $\mathfrak{a} \in \mathbb{R}$ qui vérifient : $\forall t \geqslant 0, \ |f(t)| \leqslant Ce^{\mathfrak{a}t}$.

a. Montrer que : $\forall x > a$, $F(x) = \int_0^{+\infty} f(t)e^{-xt}dt$ converge.

b. On suppose ici que $a \le 0$ et que $\lim_{x \to +\infty} f(x) = 1$, montrer que $\lim_{x \to 0^+} xF(x) = 1$.

(3.49) E3A PSI 2015 Charlotte Sapaly

Existence et calcul de $I = \int_0^{\pi/2} \sqrt{\tan(x)} dx$. Indication : poser $\tan(x) = u^2$.

(3.50) ENS Cachan PSI 2016 Charly Castes

Soit $h: \mathbb{R}_+ \to \mathbb{R}$ une fonction décroissante continue par morceaux telle que $\int_0^{+\infty} h(t)dt$ converge.

- ${\bf a.}$ Montrer que h est à valeurs positives.
- **b.** Montrer que $\sum_{n\geqslant 0} h(nt)$ converge pour tout réel t>0.

(3.51) <u>Centrale PSI 2016</u> Émilien Ouzeri

Étudier la convergence simple et absolue de $\int_1^{+\infty} \frac{\sin(t)}{t \ln(1+t)} dt$.

(3.52) Centrale PSI 2016 Marine Saint-Mézard

Soit a et b des réels tels que a < b et f une fonction de classe C^1 sur [a;b].

On considère la suite $(I_{\mathfrak{n}})_{\mathfrak{n}\in\mathbb{N}}$ définie par $I_{\mathfrak{n}}=\int_{\mathfrak{a}}^{\mathfrak{b}}f(t)\sin(\mathfrak{n}t)dt.$

- a. Montrer que cette suite tend vers 0.
- **b.** Montrer l'existence de $A = \int_0^{+\infty} \frac{\sin(t)}{t} dt$. On admettra que cette intégrale vaut $\frac{\pi}{2}$.
- c. On définit, pour $n \in \mathbb{N}^*$, $J_n = \frac{1}{n} \int_0^{\pi/2} \frac{\sin(nt)^2}{\sin(t)^2} dt$.

Montrer que la suite $(J_n)_{n\in\mathbb{N}^*}$ est bien définie. Calcul de son éventuelle limite.

(3.53) Mines PSI 2016 Owain Biddulph III

Soit $f: x \mapsto Arctan\left(\frac{1-\sin(x)}{1+\sin(x)}\right)$.

- a. Domaine de définition de f.
- b. Donner une expression simplifiée de f.

(3.54) Mines PSI 2016 Pauline Bourda, Marie Rebière et Sébastien Sequeira I

Pour x > 0, on pose $f(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt$.

- a. Montrer que f est bien définie et dérivable sur $I = \mathbb{R}_{+}^{*}$. Donner l'expression de f'(x).
- **b.** Donner des équivalents simples de f(x) quand x tend vers 0 et quand x tend vers $+\infty$.
- c. Montrer que f est intégrable sur I et calculer $\int_0^{+\infty} f(x) dx.$

(3.55) Mines PSI 2016 Matthieu Cadiot I

Montrer que l'équation (E) : $y' - y = \frac{1}{x}$ admet une unique solution bornée sur $[1; +\infty[$.

(3.56) Mines PSI 2016 Arthur Robbe I

Soit $p \in \mathbb{R}_+$, montrer que : $(\forall (x,y) \in \mathbb{R}^2_+, |x^p - y^p| \le |x - y|^p) \iff p \le 1$.

(3.57) <u>CCP PSI 2016</u> Rogelio Escalona I

Soit $f:[0;1]\to\mathbb{R}$ de classe C^1 telle que f(1)=0. Montrer que $\int_0^1 f(t)^2 dt \leqslant 4 \int_0^1 t^2 f'(t)^2 dt$.

3.58 Centrale PSI 2017 Élio Garnaoui

 $\text{Soit } h>0, \text{ on definit l'ensemble } W_h=\bigg\{f\in C^0(\mathbb{R},\mathbb{R})\mid \forall x\in\mathbb{R},\ \int_{x+h}^{x+2h}f(t)dt=2\int_x^{x+h}f(t)dt\bigg\}.$

- a. Montrer que W_h est un espace vectoriel non réduit à $\{0\}$.
- a. W_h est-il de dimension finie?
- **c.** Montrer que $\bigcap_{h>0} W_h = \{0\}.$

Question de cours : inégalité de CAUCHY-SCHWARZ, preuve et cas d'égalité.

3.59 Mines PSI 2017 Manon Bové I

Résoudre l'équation (E) : Arctan $\left(\frac{1}{1-x}\right)$ + Arctan $\left(x\right)$ + Arctan $\left(\frac{1}{1+x}\right)$ = $\frac{\pi}{2}$.

(3.60) <u>Mines PSI 2017</u> Adrien Cassagne I

Existence et calcul de $\int_0^{+\infty} \frac{\operatorname{th}(3x) - \operatorname{th}(2x)}{x} dx$.

(3.61) <u>Mines PSI 2017</u> Alexandre Chamley II

On définit f par $f(x) = \int_{x}^{x^2} \frac{dt}{\ln(t)}$. Justifier que f se prolonge par continuité en 0 et en 1.

Tracer le graphe de f. Montrer l'existence et trouver la valeur de $\int_0^1 \frac{x-1}{\ln(x)} dx$.

(3.62) <u>Mines PSI 2017</u> Bastien Lamagnère II

Soit $\alpha>1$ et $f:\,\mathbb{R}_+^*\to\,\mathbb{C}$ définie par $f(x)=\frac{\left(\ln(x)\right)^\alpha}{x}e^{i\,\ln(x)}.$

- a. Que dire de la convergence de $\int_1^{+\infty} f(t)dt$?
- **b.** Que dire de la nature de $\sum\limits_{\mathfrak{n}\geqslant 1}f(\mathfrak{n})$?

ig(3.63ig) <u>Mines PSI 2017</u> Clément Maurel II

Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ continue telle que $\int_0^{+\infty} f(t)dt$ converge. Montrer que $\int_0^x tf(t)dt \underset{+\infty}{=} o(x)$.

(3.64) <u>Mines PSI 2017</u> Grégoire Verdès II

Soit
$$f(x) = \int_0^1 \frac{dt}{x^3 + t^3}$$
.

- a. Déterminer le domaine de définition de f.
- **b.** Trouver la limite, puis un équivalent de f en $+\infty$.
- c. Trouver la limite, puis un équivalent de f en -1.

(3.65) CCP PSI 2017 Maxime Lacourcelle II

Soit E l'espace des fonctions $f: \mathbb{R} \to \mathbb{R}$ continues et 2π -périodiques.

On pose $c(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t)dt$ et $g: t \mapsto f(t) - c(f)$ si $f \in E$.

- $\textbf{a. } \text{ \'Etudier la convergence, pour } \alpha > 1 \text{ et } f \in E, \text{ de l'intégrale } \int_1^{+\infty} \frac{f(t)}{t^{\alpha}} dt.$
- **b.** Si $f \in E$, montrer que f a ses primitives 2π -périodiques si et seulement si c(f) = 0.
- $\mathbf{c}.$ Si $f\in E,$ est-ce que $g\in E$? Calculer c(g).
- $\mathbf{d.}$ Montrer la convergence de $\int_1^{+\infty} \frac{g(t)}{t} dt.$
- e. Trouver, si $c(f) \neq 0$, un équivalent en $+\infty$ de $\int_1^x \frac{f(t)}{t} dt$.
- f. Déduire des questions précédentes la nature de $\int_1^{+\infty} \frac{|\sin t|}{t} dt.$

(3.66) *E3A PSI 2017* Élio Garnaoui

Pour tout entier $\mathfrak n,$ on note $\mathfrak u_\mathfrak n=\int_0^1 (l\mathfrak n(1+t))^\mathfrak n dt.$

- a. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est monotone.
- **b.** Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.
- c. Trouver une relation entre u_n et u_{n+1} .
- **d.** Montrer que $(n+1)u_n \le 2 \ln^{n+1}(2) \le (n+2)u_n$.
- e. Trouver un équivalent de u_n quand n tend vers $+\infty$.
- f. Déterminer la nature de la série $\sum_{n\geqslant 0} \frac{u_n}{\ln^n(2)}$.

(3.67) ENS Ulm/Cachan PSI 2018 Cassandra Dailledouze

Soit $f:\,\mathbb{R}\to\,\mathbb{R}$ dérivable telle que $\forall t\in\,\mathbb{R},\ tf'(t)=f(t)-f(t-1).$

 $\textbf{a.} \ \text{Montrer que } f \ \text{est} \ C^{\infty} \ \text{sur} \ \mathbb{R}^* \ \text{et que} \ \forall t \geqslant 1, \ f(t) = t \Big[f(1) - \int_1^t s^{-2} f(s-1) ds \Big].$

On suppose dorénavant que $\int_1^{+\infty} u^{-2} f(u-1) du$ converge.

- **b.** Montrer que $f(t) = t \int_t^{+\infty} s^{-2} f(s-1) ds$.
- c. Calculer $\lim_{t\to +\infty} f'(t)$. Montrer que $\forall k\in\mathbb{N},\ \lim_{t\to +\infty} t^k f'(t)=0$.
- $\textbf{d.} \ \text{Montrer que } f \ \text{poss\`ede une limite} \ \ell \ \text{en} \ +\infty \ \text{et que} \ \forall k \in \ \mathbb{N}, \ \lim_{t \to +\infty} t^k(f(t) \ell) = 0.$

(3.68) Mines PSI 2018 Colin Baumgard et Marion Lebrun I

Pour x > 0, on pose $f(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt$.

- a. Montrer que f est bien définie et dérivable sur $I=\mathbb{R}_+^*$. Donner l'expression de f'(x).
- b. Donner des équivalents simples de f(x) quand x tend vers 0 et quand x tend vers $+\infty$.

8

c. Montrer que f est intégrable sur I et calculer $\int_0^{+\infty} f(x) dx$.

(3.69) Mines PSI 2018 Victor Bourdeaud'hui II

Déterminer $\lim_{n\to+\infty} \frac{n}{(n!)^{1/n}}$.

(3.70) Mines PSI 2018 Maëlle Casas I

Soit $f:[0;1] \to \mathbb{R}$ continue telle que $\forall x \in [0;1], f(x) > 0$.

 $\textbf{a.} \ \text{Montrer que, pour tout entier } n \in \mathbb{N}^*, \text{il existe une subdivision } \sigma_n = (x_0 = 0 < x_1 < \dots < x_{n-1} < x_n = 1) \\ \text{telle que } \forall k \in [\![1;n]\!], \ \int_{x_{k-1}}^{x_k} f(t) dt = \frac{A}{n} \text{ avec } A = \int_0^1 f.$

 $\mathbf{b.} \ \mathrm{Soit} \ g:[0;1] \to \mathbb{R} \ \mathrm{continue} \ \mathrm{par} \ \mathrm{morceaux} \ \mathrm{et} \ u_n = \frac{1}{n} \sum_{k=1}^n g(x_k). \ \mathrm{Montrer} \ \mathrm{que} \ \lim_{n \to +\infty} u_n = \frac{\int_0^1 fg}{\int_0^1 f}.$

3.71 Mines PSI 2018 Mathilde Dutreuilh I

Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, on pose $D_n(x) = \frac{1}{2} + \sum_{k=1}^n \cos(kx)$.

a. Montrer que $\forall x \in \mathbb{R} \setminus 2\pi \mathbb{Z}$, $D_n(x) = \frac{\sin\left(\left(n + \frac{1}{2}\right)x\right)}{2\sin\left(\frac{x}{2}\right)}$.

b. Montrer que $\forall \phi \in C^1([0;\pi], \mathbb{R})$, $\lim_{\lambda \to +\infty} \int_0^{\pi} \phi(t) \sin(\lambda t) dt = 0$.

c. Écrire $\int_0^\pi x D_{2n}(x) dx$ sous la forme d'une somme et en déduire la valeur de $\sum_{k=1}^{+\infty} \frac{1}{k^2}$.

(3.72) <u>Mines PSI 2018</u> Adrien Sarrade I

Pour tout entier $n\geqslant 1,$ on pose $u_n=\frac{1}{n}\Big(\prod\limits_{k=1}^n(k+n)\Big)^{\frac{1}{n}}.$

a. Montrer que $(u_n)_{n\geqslant 1}$ converge et déterminer sa limite ℓ .

b. Trouver un équivalent de $\mathfrak{u}_{\mathfrak{n}} - \ell$ quand \mathfrak{n} tend vers $+\infty$.

(3.73) Mines PSI 2018 Nicolas Ziegler II

On définit, pour tout x>0, le réel $F(x)=\int_x^{+\infty} \frac{\sin(t)}{t}dt$.

a. Montrer que F est bien définie et de classe C^1 sur \mathbb{R}_+^* .

b. Montrer que $\int_0^{+\infty} F(x) dx$ converge et déterminer sa valeur.

(3.74) CCP PSI 2018 Mathilde Dutreuilh I

Soit $n \in \mathbb{N}^*$ et $S_n = \sum_{k=n+1}^{2n} \frac{1}{\sqrt{k}}$.

a. Déterminer un équivalent simple de S_n quand n tend vers $+\infty$.

b. Proposer une autre méthode pour trouver cet équivalent.

(3.75) <u>CCP PSI 2018</u> Adrien Sarrade II

On définit le réel $\alpha = \ln(1+\sqrt{2})$ et, pour tout $n \in \mathbb{N}$, le réel $I_n = \int_0^\alpha (\operatorname{sh} t)^n dt$.

- a. Résoudre dans \mathbb{R} l'équation sh (x) = 1.
- **b.** Trouver la limite de la suite $(I_n)_{n\geq 0}$.
- c. Montrer que $\forall x \in \mathbb{R}$, $\operatorname{ch}^{2}(x) \operatorname{sh}^{2}(x) = 1$.
- **d.** Montrer que $\forall n \ge 2$, $nI_n + (n-1)I_{n-2} = \sqrt{2}$.
- e. En déduire un équivalent de I_n quand n tend vers $+\infty$.

(3.76) <u>E3A PSI 2018</u> Peio Betbeder

Pour tout entier $n \in \mathbb{N}$, on pose $I_n = \int_0^1 x^n \sqrt{1-x^2} dx$.

- a. Calculer I_0 et $I_1.$ Étudier le sens de variation de $(I_n)_{n\in\mathbb{N}}.$
- $\mathbf{b.} \text{ Montrer que } \forall n \in \mathbb{N}, \ I_{n+1} = \frac{n}{3} \int_0^1 x^{n-1} (1-x^2)^{3/2} dx. \ \text{En d\'eduire une relation entre } \ I_{n+1} \ \text{et } \ I_{n-1}.$
- $\textbf{c.} \ \mathrm{Montrer} \ \mathrm{que} \ \forall n \geqslant 1, \ 0 < \frac{n}{n+3} I_{n-1} < I_n < I_{n-1}. \ \mathrm{En} \ \mathrm{d\'eduire} \ \mathrm{que} \ I_n \underset{+\infty}{\sim} I_{n-1}.$

On pose, pour tout entier $n \in \mathbb{N}^*$, le réel $u_n = n(n+1)(n+2)I_nI_{n-1}$.

 $\textbf{d.} \ \text{Montrer que la suite} \ (u_n)_{n \in \mathbb{N}} \ \text{est constante. En déduire que } \ I_n \underset{+\infty}{\sim} \frac{1}{n} \sqrt{\frac{\pi}{2n}}.$

(3.77) E3A PSI 2018 Julien Langlais

 $\mathrm{Soit}\ (k,n)\in\,\mathbb{N}^*\ \mathrm{avec}\ k\leqslant n,\,\mathrm{on}\ \mathrm{definit}\ f[0;1]\to\,\mathbb{R}\ \mathrm{par}\ f(x)=\binom{n}{k}x^k(1-x)^{n-k}.$

- a. Justifier que f est un polynôme. Donner son coefficient dominant et son degré.
- **b.** Étudier f sur [0;1]. Trouver une symétrie de son graphe pour n=2k.
- c. Déterminer un équivalent de f(x) quand $x \in]0;1[$ et n tend vers $+\infty$. Et si k tend vers $+\infty$?
- **d.** Calculer $I_{n,k} = \int_0^1 f(x) dx$.

(3.78) <u>Petites Mines PSI 2018</u> Baptiste Egreteau I

Existence et signe de $\int_{\pi}^{+\infty} \frac{\sin(t)}{t^2 - \pi t} dt$.

(3.79) <u>ICNA PSI 2018</u> Quentin Meynieu I

Soit F définie par $F(x) = \int_0^{+\infty} \frac{\ln(t)}{x^2 + t^2} dt$.

- a. Déterminer l'ensemble de définition \mathcal{D}_F de F.
- **b.** Calculer F(1). Indication : on pourra poser $u = \frac{1}{t}$.
- c. En déduire la valeur de F(x) pour $x \in \mathcal{D}_F$.

(3.80) <u>Centrale Maths1 PSI 2019</u> Carla Chevillard

Pour $n \in \mathbb{N}$, on pose $J_n = \int_0^{\pi/2} \frac{\sin(nt)}{\sin(t)} dt$.

- $\mathbf{a}.$ Montrer que $J_{\mathfrak{n}}$ est définie pour tout $\mathfrak{n}\in\,\mathbb{N}.$ Calculer $J_0,\,J_1,\,J_2,\,J_3.$
- **b.** Pour $n \in \mathbb{N}$, calculer $J_{n+2} J_n$ en fonction de n. En déduire une expression de J_n .
- $\textbf{c.} \ \mathrm{Soit} \ f \in C^1([\alpha;b], \, \mathbb{R}). \ \mathrm{Montrer} \ \mathrm{que} \ \lim_{x \to +\infty} \int_{\alpha}^b f(t) \, cos(xt) dt = 0.$
- **d.** Déterminer $\lim_{n\to+\infty} (J_{n+1}-J_n)$. En déduire la nature de la suite $(J_n)_{n\geqslant 0}$.

3.81 Centrale Maths1 PSI 2019 Pierre Fabre

Pour tout entier $n \in \mathbb{N}^*$, on pose $u_n = \int_0^{+\infty} \frac{dt}{(1+t^3)^n}$.

- $\textbf{a.} \ \ \text{Déterminer des équivalents de} \ \sum_{k=1}^n \frac{1}{k} \ \text{et de} \ \sum_{k=n}^{+\infty} \frac{1}{k^2} \ \text{en} \ +\infty. \ \ \text{Montrer que} \ \sum_{k=n}^{+\infty} \frac{1}{k^3} \underset{+\infty}{=} O\Big(\frac{1}{n^2}\Big).$
- **b.** Montrer que u_n existe pour tout entier $n \ge 1$.
- c. Pour $n \in \mathbb{N}^*$, déterminer une relation entre u_n et u_{n+1} .
- **d.** Soit $\alpha \in \mathbb{R}$, on pose $\nu_n = \alpha \ln(n) + \ln(u_n)$ pour $n \ge 1$. Déterminer la valeur de α pour que $(\nu_n)_{n \in \mathbb{N}}$ converge vers un réel ℓ . Donner un équivalent de u_n quand n tend vers $+\infty$.

3.82 Mines PSI 2019 Axel Brulavoine I

Soit
$$(a,b) \in \mathbb{R}^2$$
. Pour $n \in \mathbb{N}^*$, on pose $I_n = \frac{1}{n^\alpha} \int_0^n \frac{Arctan(t)}{t^b} dt$.

- **a.** Si b>0 et $b\neq 1$, à quelles conditions sur a et b est-ce que la série $\sum_{n\geqslant 1}u_n$ converge ?
- **b.** Si $b \le 0$, à quelles conditions sur a et b est-ce que la série $\sum_{n\geqslant 1} u_n$ converge ?
- c. Si b = 1, à quelle condition sur a est-ce que la série $\sum_{n>1} u_n$ converge?

(3.83) Mines PSI 2019 Tanguy Sommet II

Soit $y \in \mathbb{C}^2(\mathbb{R}_+, \mathbb{R})$. On suppose que y^2 et y''^2 sont intégrables sur \mathbb{R}_+ .

- **a.** Trouver une primitive de $y^2 y''^2 + y'''^2 (y + y' + y'')^2$.
- **b.** Montrer que $\int_0^{+\infty} yy''$ converge. En déduire que $\int_0^{+\infty} y'^2$ converge.
- c. Établir que $\int_0^{+\infty} yy'$ converge. En déduire que $\lim_{x\to +\infty} y(x)=0$.
- **d.** Montrer que $\lim_{x \to +\infty} y'(x) = 0$.
- e. Montrer que $\int_0^{+\infty} y'^2 \leqslant \int_0^{+\infty} y^2 + \int_0^{+\infty} y''^2$.
- **f.** Quelles sont les fonctions pour lesquelles $\int_0^{+\infty} y'^2 = \int_0^{+\infty} y^2 + \int_0^{+\infty} y''^2$.

Questions de cours :

- démonstration de l'inégalité de CAUCHY-SCHWARZ pour les intégrales.
- exemple de fonction continue, intégrable et positive sur \mathbb{R}_+ qui ne tend pas vers 0 en $+\infty$.

(**3.84**) <u>CCP PSI 2019</u> Elaia Mugica I

 $\mathrm{Soit}\; (\mathfrak{a},\mathfrak{b}) \in \, \mathbb{R}^2 \; \mathrm{tel} \; \mathrm{que} \; \mathfrak{a} < \mathfrak{b}, \; \mathrm{une} \; \mathrm{fonction} \; \mathrm{continue} \; f: [\mathfrak{a};\mathfrak{b}] \to \, \mathbb{C} \; \mathrm{telle} \; \mathrm{que} \; \forall x \in [\mathfrak{a};\mathfrak{b}], \; f(x) = f(\mathfrak{a} + \mathfrak{b} - x).$

- **a.** Montrer que $\int_a^b tf(t)dt = \frac{a+b}{2} \int_a^b f(t)dt$.
- **b.** En déduire la valeur exacte de $\int_0^{\pi} \frac{t \sin(t)}{1 + \cos^2(t)} dt$.

(3.85) Petites Mines PSI 2019 Thibault Maury I

- a. Justifier l'existence de $I = \int_0^1 \frac{dx}{(x^2 x^3)^{1/3}}$.
- **b.** On admet que $I = \int_0^1 \frac{du}{u^2 u + 1}$. Calculer une valeur exacte de I.

3.86 ICNA PSI 2019 Léa Deveyneix I

a. Pour quels réels a et b l'intégrale $\int_0^{+\infty} (\sqrt{t} + a\sqrt{t+1} + b\sqrt{t+2}) dt$ converge ?

 $\mathbf{b.} \text{ Si cette condition est réalisée, calculer } I = \int_0^{+\infty} (\sqrt{t} + a\sqrt{t+1} + b\sqrt{t+2}) dt.$

(3.87) X PSI 2020 Victor Barberteguy I

Déterminer toutes les fonctions $f:\mathbb{R}_+\to\mathbb{R}$ de classe C^1 qui vérifient les conditions suivantes :

• f(0) = 0,

• f' croissante et strictement positive sur \mathbb{R}_+ ,

• $\forall x \ge 0$, $\int_0^x f'(t)^2 dt \ge f(x + f(x)) - f(x)$.

(3.88) <u>X PSI 2021</u> Antoine Greil I

Soit une fonction $f: \mathbb{R}_+ \to \mathbb{R}_+$, de classe C^1 et intégrable sur \mathbb{R}_+ telle que f' est bornée sur \mathbb{R}_+ . Montrer que f tend vers 0 en $+\infty$.

(3.89) ENS Cachan PSI 2021 Baptiste Pozzobon I

Déterminer la convergence de l'intégrale $\int_0^{+\infty} \frac{t^{\alpha}dt}{1+t}$ selon les valeurs de $\alpha \in \mathbb{R}$.

(3.90) <u>Centrale Maths1 PSI 2021</u> Clotilde Cantini

On admet la convergence de l'intégrale $\int_0^{+\infty} \frac{\sin(t)}{t} dt$. On note I sa valeur.

On définit, en cas de convergence, $f(x) = \int_0^{+\infty} \frac{t \sin(xt)}{1 + t^2} dt$.

a. Montrer que f est définie sur \mathbb{R} .

b. Montrer que $\lim_{x\to 0^+} f(x) = I$ et calculer la limite de f en $+\infty$.

c. Montrer que $I=\sum\limits_{k=0}^{+\infty}(-1)^k\int_0^\pi\frac{\sin(u)}{u+k\pi}du.$

d. En déduire que f n'est pas continue en 0.

(3.91) Mines PSI 2021 Aloïs Doucet II

a. Montrer qu'il existe un unique $\lambda \in \mathbb{R}$ tel que $\int_1^{+\infty} \frac{\lambda - \sin(t)}{t} dt$ converge.

Soit T > 0 et $f : \mathbb{R} \to \mathbb{R}$ une fonction continue et T-périodique.

b. Montrer qu'il existe un unique $\lambda \in \mathbb{R}$ tel que $\int_1^{+\infty} \frac{\lambda - f(t)}{t} dt$ converge.

(3.92) <u>Mines PSI 2021</u> Esteban Poupinet I

a. Montrer que la fonction cos admet un unique point fixe sur \mathbb{R} .

b. Montrer qu'il n'existe aucune fonction $f: \mathbb{R} \to \mathbb{R}$ dérivable telle que $f \circ f = \cos$.

c. Montrer qu'il n'existe aucune fonction $f: \mathbb{R} \to \mathbb{R}$ continue telle que $f \circ f = \cos$.

12

3.93 Mines PSI 2021 Adèle Robert I

On pose $\omega=-\frac{1}{2}-\frac{i\sqrt{3}}{2}$ et, pour $n\in\mathbb{N}^*,$ $I_n=\int_0^{+\infty}x^ne^{\omega x}dx.$

 $\textbf{a.} \ \text{Calculer} \ I_{\mathfrak{n}}. \ \text{En d\'eduire une fonction} \ g: \ \mathbb{R}_{+} \to \ \mathbb{C} \ \text{non nulle telle que} \ \forall \mathfrak{n} \in \ \mathbb{N}, \ \int_{0}^{+\infty} g(t) t^{\mathfrak{n}} dt = 0.$

 $\mathbf{b.} \text{ Soit } f: [\mathfrak{a};\mathfrak{b}] \to \mathbb{C} \text{ continue (avec } \mathfrak{a} < \mathfrak{b} \text{ réels) telle que } \forall \mathfrak{n} \in \mathbb{N}, \ \int_{\mathfrak{a}}^{\mathfrak{b}} f(t) t^{\mathfrak{n}} dt = 0.$

 $\text{Montrer que } f=0. \text{ Indication}: \text{ on admet que } \forall \epsilon>0, \ \exists P\in \mathbb{C}[X], \ \forall t\in [\mathfrak{a};\mathfrak{b}], \ |f(t)-P(t)|\leqslant \epsilon.$

(3.94) Mines PSI 2021 Arthur Sureau II

Soit $m \in \mathbb{R}_+$, calculer $\int_0^{\pi/2} \frac{dt}{1 + m \sin^2(t)}$ en posant $\mathfrak{u} = tan(t)$.

(3.95) <u>Centrale Maths1 PSI 2022</u> Jade Mirassou

Pour $x \in \mathbb{R}$, en cas de convergence, on pose $f(x) = \int_0^{+\infty} \frac{dt}{t^x \sqrt{t}(1+t)}$.

a. Montrer que le domaine de définition de f est $I = \left[-\frac{1}{2}; \frac{1}{2} \right]$.

b. Montrer que f est paire.

On admet que f est de classe C^2 sur I et que f''(x) s'obtient par la formule de LEIBNIZ.

c. Montrer que $\forall x \in I, f(x) \ge \pi$.

 $\mathbf{d.} \ \mathrm{Montrer} \ \mathrm{que} \ \forall x \in I \cap \mathbb{R}_+, \ \left| \ \int_0^1 \frac{dt}{t^x \sqrt{t}(1+t)} - \frac{1}{(1/2)-x} \right| \leqslant 1.$

e. En déduire que $f(x) \sim \frac{1}{\frac{1}{2}} (1/2) - x$.

(3.96) <u>Mines PSI 2022</u> Tony Géreaud II

Soit une fonction continue $f:]0; +\infty[\rightarrow \mathbb{R} \text{ telle que } \forall (x,y) \in]0; +\infty[^2, \ f(xy)=f(x)+f(y) \ (1).$

a. Calculer f(1). Pour $x \in]0; +\infty[$, comparer f(x) et $f\left(\frac{1}{x}\right)$.

b. Montrer que $\forall x \in]0; +\infty[, \ f(x) = \frac{1}{x} \int_{x}^{2x} f(t) dt - \int_{1}^{2} f(t) dt.$

c. Montrer que f est dérivable sur $]0; +\infty[$ et en déduire f.

(3.97) Mines PSI 2022 Colin Herviou-Laborde I

a. Montrer que la fonction cos admet un unique point fixe sur \mathbb{R} .

b. Montrer qu'il n'existe aucune fonction $f: \mathbb{R} \to \mathbb{R}$ dérivable telle que $f \circ f = \cos$.

c. Montrer qu'il n'existe aucune fonction $f: \mathbb{R} \to \mathbb{R}$ continue telle que $f \circ f = \cos$.

(3.98) Mines PSI 2022 Thomas Lanne II

Étudier les convergences des intégrales $\int_{2/\pi}^{+\infty} \ln\left(\sin\left(\frac{1}{x}\right)\right) dx$ et $\int_{2/\pi}^{+\infty} \ln\left(\cos\left(\frac{1}{x}\right)\right) dx$.

(3.99) Mines PSI 2022 Anatole Rousset I

Soit $\theta \in \mathbb{R} \setminus \pi \mathbb{Z}$.

- a. Montrer que $\sum_{k=1}^{n} \frac{e^{ik\theta}}{k} = \int_{0}^{1} e^{i\theta} \times \frac{1 e^{in\theta}t^{n}}{1 e^{i\theta}t} dt.$
- **b.** En déduire que la série $\sum_{k \ge 1} \frac{e^{ik\theta}}{k}$ converge et montrer que $\sum_{k=1}^{+\infty} \frac{e^{ik\theta}}{k} = \int_0^1 \frac{e^{i\theta}}{1 e^{i\theta}} dt$.
- **d.** En déduire que si $\theta \in]0; \pi[, \sum_{k=1}^{+\infty} \frac{\cos(k\theta)}{k} = -\ln\left(2\sin\left(\frac{\theta}{2}\right)\right) \text{ et } \sum_{k=1}^{+\infty} \frac{\sin(k\theta)}{k} = \frac{\pi}{2} \frac{\theta}{2}.$

(3.100) Mines PSI 2022 Guillaume Tran-Ruesche II

Soit $n \in \mathbb{N}$.

- a. Montrer l'existence et donner la valeur de $\int_0^{+\infty} e^{-(1-i)t} t^n dt$.
- b. Trouver la valeur de $\int_0^{+\infty} e^{-t^{1/4}} \sin(t^{1/4}) t^n dt.$

(3.101) *X PSI 2023* Raphaël Déniel II

Soit une fonction $f: \mathbb{R} \to \mathbb{R}$ paire et de classe C^4 .

Montrer qu'il existe une fonction $g: \mathbb{R}_+ \to \mathbb{R}$ de classe C^2 telle que $\forall x \in \mathbb{R}, \ g(x^2) = f(x)$.

(3.102) ENS Cachan PSI 2023 Mathys Bureau

On se donne un réel $p\geqslant 1$. Si p>1, on lui associe $q\in\mathbb{R}$ tel que $\frac{1}{p}+\frac{1}{q}=1$.

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction strictement positive et continue telle que $\int_0^{+\infty} (f(t))^p e^t dt$ converge.

En cas de convergence, pour tout entier $\mathfrak{n}\in\,\mathbb{N}^*,$ on pose $\mathfrak{u}_\mathfrak{n}=\int_0^{+\infty}t^\mathfrak{n}f(t)dt.$

- $\begin{array}{l} \textbf{a.} \ \, \mathrm{Soit} \ t \in]0;1[,\ (u,\nu) \in (\mathbb{R}_+)^2, \ \mathrm{montrer} \ \mathrm{que} \ u^t \nu^{1-t} \leqslant t u + (1-t)\nu. \ \mathrm{Indication}: \ \mathrm{on} \ \mathrm{pourra} \ \mathrm{utiliser} \ \mathrm{une} \ \mathrm{convexit\acute{e}} \ \mathrm{ou} \ \mathrm{montrer} \ \mathrm{que} \ \forall u \in \mathbb{R}_+, \ \forall t \in]0;1[,\ u^t \leqslant t u + (1-t). \\ \mathbf{b.} \ \mathrm{Soit} \ A \in \mathbb{R}_+, \ g,h:[0;A] \to \mathbb{R} \ \mathrm{continues}. \ \mathrm{Montrer} \ \mathrm{que} \ \int_0^A |g(t)h(t)| dt \leqslant \frac{1}{p} \int_0^A |g(t)|^p dt + \frac{1}{q} \int_0^A |h(t)|^q dt \\ \end{array}$

- si p > 1. En déduire que $\int_0^A |g(t)h(t)|dt \le \left(\int_0^A |g(t)|^p dt\right)^{1/p} \times \left(\int_0^A |h(t)|^q\right)^{1/q}$. **c.** Si p > 1, montrer que u_n est bien défini pour tout $n \in \mathbb{N}^*$ et qu'il existe une constante $K \in \mathbb{R}_+$ telle que $\forall n \in \mathbb{N}, \ u_n \leqslant K\left(\frac{p}{q}\right)^n ((nq)!)^{1/q}$. En déduire que la série $\sum_{n \geq 1} |u_n|^{-1/n}$ diverge.
- **d.** Si p = 1, montrer que $\sum_{n \ge 1} |u_n|^{-1/n}$ diverge.

(**3.103**) <u>ENS Cachan PSI 2023</u> Alban Dujardin II

Soit a>0 et, en cas de convergence, $I(a)=\int_0^{+\infty} exp\left(-t^2-\frac{a^2}{t^2}\right)dt$ et $J(a)=\int_0^{+\infty} \frac{a}{t^2} exp\left(-t^2-\frac{a^2}{t^2}\right)dt$.

On rappelle la valeur de l'intégrale de Gauss : $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

- a. Montrer l'existence de I(a) et J(a).
- **b.** Montrer que I(a) = J(a)
- c. Montrer que $I(a) = \frac{e^{-2a}}{2} \int_0^{+\infty} \left(1 + \frac{a}{t^2}\right) \exp\left(-\left(t \frac{a}{t}\right)^2\right) dt$.
- **d.** En déduire que $I(a) = \frac{\sqrt{\pi}}{2}e^{-2a}$

(3.104) Centrale Maths1 PSI 2023 Elae Terrien

a. Pour tout réel $x \in]-1; +\infty[$, montrer la convergence de $\int_0^1 \frac{t^x \ln(t) dt}{t-1}$.

On définit $H:]-1; +\infty[\rightarrow \mathbb{R} \text{ par } H(x) = \int_0^1 \frac{t^x \ln(t) dt}{t-1}.$

- **b.** Montrer que H est décroissante sur $]-1;+\infty[$.
- **c.** Montrer que $\lim_{x \to +\infty} H(x) = 0$.
- **d.** Donner un équivalent simple de H(x) quand x tend vers -1^+ . Indication : considérer H(x) H(x+1).
- e. Donner un équivalent simple de H(x) quand x tend vers $+\infty$. Indication : considérer H(x) H(x+1).

(3.105) Mines PSI 2023 Maddie Bisch I

- a. Montrer que $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ converge.
- $\mathbf{b.} \ \mathrm{Montrer} \ \mathrm{que} \ t \mapsto \frac{\sin(t)}{t} \ \mathrm{n'est} \ \mathrm{pas} \ \mathrm{int\acute{e}grable} \ \mathrm{sur} \ \mathbb{R}_+^*.$
- c. Montrer que $\int_0^{+\infty} \frac{\sin(t)}{t} dt = \int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt.$

(3.106) <u>Mines PSI 2023</u> Marius Desvalois II

- **a.** Soit $f:[0;1]\to\mathbb{R}_+$ continue. Montrer que $\left(\int_0^1f^3\right)^2\leqslant\int_0^1f^5\times\int_0^1f$. Cas d'égalité?
- **b.** Soit $f:[0;1] \to \mathbb{R}$ de classe C^1 telle que f(0)=0 et $\forall x \in [0;1], f'(x) \in [0;1]$. Montrer $\int_0^1 f^3 \leqslant \left(\int_0^1 f\right)^2$.
- c. Quel est le cas d'égalité dans l'inégalité de la question précédente ?

(3.107) Mines PSI 2023 Jonathan Filocco II

a. Montrer qu'il existe un unique $\lambda\in\mathbb{R}$ tel que $\int_1^{+\infty}\frac{\lambda-\sin(t)}{t}dt$ converge.

Soit T>0 et $f:\,\mathbb{R}\to\,\mathbb{R}$ une fonction continue et T-périodique.

b. Montrer qu'il existe un unique $\lambda \in \mathbb{R}$ tel que $\int_1^{+\infty} \frac{\lambda - f(t)}{t} dt$ converge.

(3.108) <u>Mines PSI 2023</u> Clément Gallice I et Chloé Vagner I

Soit $f:[\mathfrak{a};\mathfrak{b}]\to\mathbb{R}$ continue et strictement positive.

- $\textbf{a.} \ \text{Pour} \ n \in \mathbb{N}^*, \ \text{montrer qu'il existe une unique subdivision} \ (x_0, \cdots, x_n) \ \text{du segment} \ [a;b] \ \text{qui vérifient les conditions} \ \forall k \in [\![1;n]\!], \ \int_{x_{k-1}}^{x_k} f(t) dt = \frac{1}{n} \int_a^b f(t) dt.$
- **b.** Montrer la convergence de $\left(\frac{1}{n}\sum_{k=0}^n f(x_k)\right)_{n\geqslant 1}$ et calculer sa limite.

(3.109) <u>Mines PSI 2023</u> Gabriel Hofman I

On pose $\omega=-\frac{1}{2}-\frac{i\sqrt{3}}{2}$ et, pour $n\in\mathbb{N},$ $I_n=\int_0^{+\infty}x^ne^{\omega x}dx.$

- $\textbf{a.} \ \text{Calculer} \ I_n. \ \text{En d\'eduire une fonction} \ g: \mathbb{R}_+ \to \mathbb{C} \ \text{non nulle telle que} \ \forall n \in \mathbb{N}, \ \int_0^{+\infty} g(t) t^n dt = 0.$
- $\mathbf{b.} \text{ Soit } f: [\mathfrak{a};\mathfrak{b}] \to \mathbb{C} \text{ continue (avec } \mathfrak{a} < \mathfrak{b} \text{ réels) telle que } \forall \mathfrak{n} \in \mathbb{N}, \ \int_{\mathfrak{a}}^{\mathfrak{b}} f(t) t^{\mathfrak{n}} dt = 0.$

 $\text{Montrer que } f=0. \text{ Indication : on admet que } \forall \epsilon>0, \ \exists P\in \mathbb{C}[X], \ \forall t\in [\mathfrak{a};\mathfrak{b}], \ |f(t)-P(t)|\leqslant \epsilon.$

Question subsidiaire : montrer que si $f:[a;b] \to \mathbb{R}$ est continue et positive et que $\int_a^b f(t)dt = 0$, alors f = 0.

(3.110) Mines PSI 2023 Marie-Lys Ruzic I

On pose, pour tout $x \ge 0$, $f(x) = \int_0^x \frac{|\sin(t)|}{t} dt$.

Trouver un équivalent simple de f(x) quand x tend vers $+\infty$.

(3.111) <u>CCINP PSI 2023</u> Paul Bats II

En cas de convergence, on pose $I = \int_0^{\pi/2} \ln \left(\sin(x) \right) dx$ et $J = \int_0^{\pi/2} \ln \left(\sin(x) \cos(x) \right) dx$.

- a. Montrer que I existe.
- **b.** Montrer que J=2I.
- c. Calculer I.

(3.112) CCINP PSI 2023 Pierre Dobeli I

Pour $n \in \mathbb{N}$, en cas de convergence, on pose $I_n = \int_0^{+\infty} \frac{e^{nt}}{(1+e^t)^{n+1}} dt$.

- a. Montrer l'existence de I_n pour tout entier $n \in \mathbb{N}$.
- **b.** Montrer que, pour tout $n \ge 1$, on a $I_n = \frac{1}{n2^n} + \frac{n-1}{n}I_{n-1}$.

Pour tout entier $n \in \mathbb{N}$, on pose $J_n = nI_n$.

- **c.** Trouver une relation entre J_n et J_{n-1} .
- $\mathbf{d.} \ \mathrm{Calculer} \ J_1. \ \mathrm{En} \ \mathrm{d\'eduire} \ \mathrm{que} \ \forall n \geqslant 1, \ I_n = \frac{1}{n} \Big(1 \frac{1}{2^n} \Big).$
- e. Déterminer un équivalent de I_n en $+\infty$.

(3.113) X PSI 2024 Jules Campistron II

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^1 telle que f(0) = 0 et f'(0) = q > 0.

- **a.** Montrer qu'il existe $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$ et $\psi:]-\alpha; \beta[\to]-\alpha; \beta[$ tels que $\forall x \in]-\alpha; \beta[$, $f(x)=-f(\psi(x))$.
- **b.** Montrer que ψ est de classe C^1 .

(3.114) Centrale Maths1 PSI 2024 Jules Campistron

 $\mathrm{Soit}\ E = \{ f \in C^0(\mathbb{\,R}_+,\,\mathbb{\,R}) \mid \exists \alpha \in \,\mathbb{\,R}_+^*,\ x^\alpha f(x) \underset{x \to +\infty}{\longrightarrow} 0 \}. \ \mathrm{Pour}\ f \in E, \ \mathrm{on}\ \mathrm{definit}\ (E_f) \ : \ y' - y + f(x) = 0.$

- a. Montrer que E est un espace vectoriel.
- $\mathbf{b.} \ \text{Montrer que la fonction} \ g: x \mapsto e^x \int_x^{+\infty} e^{-t} f(t) dt \ \text{est l'unique solution de } (E_f) \ \text{appartenant à E}.$

(3.115) Centrale Maths1 PSI 2024 Mathis Laruelle

On définit la fonction f par $f(x)=\int_0^{\pi/2} \sin^x(t) dt.$

a. Déterminer le domaine de définition de f.

On pose maintenant $\Phi(x) = xf(x)f(x-1)$.

- **b.** Montrer que $\forall x \in \mathbb{R}_+^*$, $\Phi(x+1) = \Phi(x)$.
- **c.** Montrer que $x \mapsto \frac{\Phi(x)}{x}$ est décroissante.
- **d.** Montrer que Φ est constante sur \mathbb{R}_+^* .
- e. En déduire un équivalent de f(x) en $+\infty$.

(3.116) Centrale Maths1 PSI 2024 Arya Tabrizi

- **a.** Soit $z \in \mathbb{C}$, montrer que $t \mapsto e^{-zt}$ admet une limite finie en $+\infty$ si et seulement si $\operatorname{Re}(z) > 0$ ou z = 0.
- **b.** Soit $z\in\mathbb{C}$, montrer que $t\mapsto e^{-zt}$ est intégrable sur \mathbb{R}_+ si et seulement si $\mathrm{Re}\,(z)>0$.
- c. Soit $z \in \mathbb{C}$, montrer que $\int_0^{+\infty} e^{-zt} dt$ converge si et seulement si $\operatorname{Re}(z) > 0$.

Soit $(z, z_0) \in \mathbb{C}^2$ tel que $\operatorname{Re}(z) > \operatorname{Re}(z_0)$, une fonction $f : \mathbb{R}_+ \to \mathbb{C}$ continue telle que $\int_0^{+\infty} e^{-z_0 t} f(t) dt$ converge. On définit $F : \mathbb{R}_+ \to \mathbb{C}$ par $F(x) = \int_0^x e^{-z_0 t} f(t) dt$.

- **d.** Montrer que F est de classe C^1 sur \mathbb{R}_+ et qu'elle y est bornée.
- e. Montrer que $t \mapsto e^{-(z-z_0)t} F(t)$ est intégrable sur \mathbb{R}_+ .
- $\textbf{f.} \ \, \text{Montrer que} \ \, \int_0^{+\infty} e^{-zt} f(t) dt \ \, \text{converge et qu'on a} \ \, \int_0^{+\infty} e^{-zt} f(t) dt = (z-z_0) \int_0^{+\infty} e^{-(z-z_0)t} F(t) dt.$

Questions supplémentaires :

- rappeler la formule de Taylor reste intégral.
- rappeler l'inégalité de Taylor-Lagrange.

${f (3.117)}$ <u>Mines PSI 2024</u> Armand Dépée II

Montrer la convergence de $\int_1^{+\infty} \left(Arcsin\left(\frac{1}{x}\right) - \frac{1}{x} \right) dx$ et calculer sa valeur.

(3.118) <u>Mines PSI 2024</u> Jonathan Filocco I

- $\textbf{a.} \ \text{Montrer que } f: x \mapsto \int_x^{+\infty} \frac{\sin(t)}{t^2} dt \ \text{est bien définie et de classe } C^1 \ \text{sur } \mathbb{R}_+^*. \ \text{Calculer } f'(x).$
- **b.** Montrer que $\int_0^{+\infty} \frac{\sin(u)}{u} du$ converge. On pose $J = \int_0^{+\infty} \frac{\sin(u)}{u} du$.
- c. Trouver un équivalent de f(x) lorsque x tend vers 0^+ .
- **d.** Montrer que $f(x) = O\left(\frac{1}{x}\right)$.
- e. Effectuer une intégration par parties pour améliorer la majoration de la question précédente.
- **f.** Est-ce que f est intégrable sur $]0; +\infty[$?
- **g.** Calculer $\int_0^{+\infty} f(x) dx$ en fonction de J.

$ig({f 3.119} ig) {f extit{Mines PSI 2024}} \,\,\, { m Nathan Jung I}$

- **a.** Montrer que la fonction $I: x \mapsto \int_0^{2\pi} \ln(x^2 2x\cos(\theta) + 1)d\theta$ est bien définie sur $D = \mathbb{R} \setminus \{-1, 1\}$.
- **b.** Donner une expression simplifiée de $P_n = \prod_{k=0}^{n-1} \left(X^2 2X\cos\left(\frac{2k\pi}{n}\right) + 1\right)$ pour $n \in \mathbb{N}^*$.
- c. En déduire la valeur de I(x) pour $x \in D$.

${f (3.120)}$ <u>Mines PSI 2024</u> Antoine Métayer II

Soit $s \in \mathbb{C} \setminus \{1\}$. Pour $N \in \mathbb{N}^*$, on pose $S_N(s) = \Big(\sum\limits_{k=1}^N \frac{1}{k^s}\Big) - \frac{N^{1-s}}{1-s}$ et, en cas d'existence, $\zeta(s) = \lim_{N \to +\infty} S_N(s)$.

- a. Montrer que $\zeta(s)$ est bien définie si Re(s) > 1.
- b. Montrer que $\sum\limits_{k=1}^{N}\frac{1}{k^{s}}=\int_{1}^{N+1}\frac{1}{\left \lfloor t \right \rfloor^{s}}dt.$
- c. Si Re(s) > 0, après avoir justifié l'existence de l'intégrale $\int_1^{+\infty} \left(\frac{1}{t^s} \frac{1}{\lfloor t \rfloor^s}\right) dt$, montrer que $\zeta(s)$ existe et qu'on a $\zeta(s) = \int_1^{+\infty} \left(\frac{1}{|t|^s} \frac{1}{t^s}\right) dt + \frac{1}{s-1}$.

(3.121) CCINP PSI 2024 Yasmine Azzaoui I

a. Montrer que f définie par $f(x)=\int_x^{+\infty}\frac{e^{-t}}{t}dt$ est de classe C^1 sur \mathbb{R}_+^* . Calculer f'(x).

 $\mathbf{b.} \ \mathrm{Montrer} \ \mathrm{que} \ \forall x>0, \ f(x)\leqslant \frac{e^{-x}}{x}.$

c. Montrer que $\forall x>0,\ f(x)=-e^{-x}\ln(x)+\int_{x}^{+\infty}e^{-t}\ln(t)dt.$

d. Calculer $\int_0^{+\infty} f(x) dx$.

3.5 Officiel de la Taupe

(3.122) OdlT 2012/2013 X-Cachan PSI planche 73

Soit f et g de classe C^{∞} sur $\mathbb{R},$ g étant 1-périodique.

Montrer que
$$\int_0^1 f(x)g(nx)dx = \frac{1}{n}\sum_{k=0}^{n-1}\int_0^1 f\left(\frac{s+k}{n}\right)g(s)ds$$
.

 $\text{Montrer que si f est lipschitzienne sur } [0;1], \text{ en d\'eduire que } \int_0^1 f(x)g(nx)dx - \frac{1}{n}\sum_{k=0}^{n-1}\int_0^1 f\Big(\frac{k}{n}\Big)g(s)ds \underset{+\infty}{=} O\Big(\frac{1}{n}\Big).$

 $\mathrm{Montrer\ alors\ que}\ \lim_{n\to +\infty}\frac{1}{n}\sum_{k=0}^{n-1}f\Big(\frac{k}{n}\Big) = \int_0^1f(x)dx.\ \mathrm{Puis\ que}\ \lim_{n\to +\infty}\left(n\int_0^1f(x)dx - \sum_{k=0}^{n-1}f\Big(\frac{k}{n}\Big)\right) = \frac{f(1)-f(0)}{2}.$

(3.123) OdlT 2012/2013 Centrale PSI planche 122 I

À quelle condition sur a > 0, l'intégrale $\int_0^\infty \frac{x}{1 + x^\alpha (\sin(x^2))^2} dx$ est-elle convergente ?

ig(3.124ig) OdlT 2012/2013 CCP PSI planche 219 I

Intégrabilité sur]0; $+\infty$ [de f: $x \mapsto \frac{(x+1)^{\frac{1}{4}} - x^{\frac{1}{4}}}{x^{\frac{1}{3}}} \ln(x)$?

(3.125) OdlT 2013/2014 X-Cachan PSI planche 76

a. Donner l'ensemble de définition de $f(x)=\int_0^1 \frac{dt}{\sqrt{(x^2+t^2)(1+t^2)}}.$

b. Montrer que f y est de classe C^1 . Calculer $\int_0^1 \frac{dt}{\sqrt{x^2 + t^2}}$.

c. Donner les limites et un équivalent de f en 0^+ et en $+\infty$.

(3.126) OdlT 2013/2014 Centrale PSI planche 123 II

On note F l'ensemble des fonctions continues de [a;b] dans \mathbb{R} et G celui des fonctions g de classe C^2 de [a;b] dans \mathbb{R} telles que g(a) = g(b) = g'(a) = g'(b) = 0.

Soit $f \in F$, montrer qu'il existe $g \in G$ telle que f = g'' si et seulement si $\int_a^b f(x) dx = \int_a^b x f(x) dx = 0$.

Soit h affine, montrer que : $\forall g \in G$, $\int_a^b h(x)g''(x)dx = 0$.

Soit $h \in F$ telle que $\forall g \in G$, $\int_a^b h(x)g''(x)dx = 0$. Montrer que : $\exists (u,v) \in \mathbb{R}^2$, $\int_a^b (h(x)-u-vx)dx = 0$ et $\int_a^b x(h(x)-u-vx)dx = 0$. En déduire que h est affine.

(3.127) OdlT 2013/2014 Mines PSI planche 199 II

Montrer que (E): y'-y=f, où f est une fonction continue et intégrable sur \mathbb{R} , admet une unique solution F bornée sur \mathbb{R} . Montrer que F est intégrable sur \mathbb{R} et trouver une relation entre $\int_{-\infty}^{+\infty} f$ et $\int_{-\infty}^{+\infty} F$.

(3.128) OdlT 2013/2014 CCP PSI planche 261 II

Pour $t \in \mathbb{R}_+$, on pose $d(t) = t + \cos(t)$ et $f(t) = \frac{1}{d(t)}$. Pour x > 0, on pose aussi $g(x) = \frac{1}{x} \int_0^x f(t) dt$.

- **a.** Montrer que g admet une limite finie en 0^+ . On prolonge alors g par continuité en 0. **b.** Montrer que pour $x \in]0; +\infty[$, on a $\int_0^x g(t)^2 dt = 2 \int_0^x f(t)g(t)dt xg(x)^2$.
- c. En déduire que g^2 est intégrable sur \mathbb{R}_+ .

(3.129) OdlT 2014/2015 X-Cachan PSI planche 59

- a. Montrer que $f: x \mapsto \sin(2\pi x\sqrt{2}) + \sin(2\pi x)$ n'est pas périodique.
- **b.** Pour q>0, construire $p\in\mathbb{N}$ tel que que $0\leqslant p-q\sqrt{2}<1$, puis, avec le principe des tiroirs, montrer que $\forall n\in\mathbb{N}^*,\ \exists (p,q)\in(\mathbb{N}^*)^2,\ \left|p-q\sqrt{2}\right|<\frac{1}{n}.$
- c. Montrer que pout tout $\varepsilon > 0$, il existe une infinité de couples $(\mathfrak{p},\mathfrak{q}) \in (\mathbb{N}^*)^2$ tels que $|\mathfrak{p} \mathfrak{q}\sqrt{2}| < \varepsilon$.
- **d.** Soit $\varepsilon > 0$ et $N_{\varepsilon} = \{q \in \mathbb{N}^* \mid \exists p \in \mathbb{N}^*, \ |p q\sqrt{2}| < \varepsilon\}.$

Montrer l'existence d'un réel ℓ strictement positif tel que $\forall n \in \mathbb{N}^*, \ N_{\varepsilon} \cap [n; n + \ell]$ soit non vide.

e. On note $R_{\varepsilon} = \{ r \in \mathbb{R}_+^* \mid \forall x \in \mathbb{R}, |f(x+r) - f(x)| < \varepsilon \}.$

Soit a > 0, montrer l'existence d'un réel ℓ strictement positif tel que $R_{\varepsilon} \cap [a; a + \ell]$ soit non vide.

3.130 OdlT 2014/2015 Mines PSI planche 155 I

Soient M l'ensemble des parties minorées non vides de \mathbb{R} , et Φ une application de \mathbb{R} dans \mathbb{R} .

- **a.** Montrer que : Φ est croissante $\iff \forall P \in M, \ \Phi(Inf(P)) \leqslant Inf(\Phi(P)).$
- **b.** Montrer que : Φ croit et est continue à droite $\iff \forall P \in M, \ \Phi(Inf(P)) = Inf(\Phi(P)).$

(3.131) <u>OdlT 2014/2015 Mines PSI planche 162 I</u>

- **a.** Justifier l'existence de $A = \int_0^{+\infty} \frac{\sin(t)}{\sqrt{t}} dt$.
- **b.** En écrivant $A = \sum_{n=0}^{+\infty} (-1)^n u_n$ où la suite $(u_n)_{n\geqslant 0}$ est à termes strictement positifs, montrer que A>0.

${f (3.132)}$ ${f OdlT}$ 2014/2015 Mines PSI planche 165 II

- a. Existence et domaine de définition de $f(x) = \int_0^{+\infty} e^{-t^2} e^{-tx} dt$.
- **b.** Calculer $\lim_{x \to +\infty} f(x)$.

3.133) OdlT 2014/2015 Mines PSI planche 173 II

- a. Existence et domaine de définition de $f(x) = \int_0^{+\infty} \frac{t^x}{e^t 1} dt$.
- **b.** Calculer $\lim_{x \to +\infty} f(x)$.

3.134 OdlT 2014/2015 Centrale PSI planche 228 I

Soit $\alpha > -1$ et $f: \mathbb{R}_+ \to \mathbb{R}$ de classe C^1 , décroissante, telle que $t \mapsto t^{\alpha} f(t)$ soit intégrable sur $[1; +\infty[$.

- **a.** Montrer que $t \mapsto t^{\alpha} f(t)$ et $t \mapsto t^{\alpha+1} f'(t)$ sont intégrables sur \mathbb{R}_{+}^{*} .
- **b.** Montrer que $\int_0^{+\infty} t^{\alpha+1} f'(t) dt = -(\alpha+1) \int_0^{+\infty} t^{\alpha} f(t) dt$.

(3.135) OdlT 2014/2015 Centrale PSI planche 229 I

Soit $f:[0;1] \to \mathbb{R}$ continue.

a. Montrer que si $\int_0^1 f(t)dt = 0$, f s'annule au moins une fois sur]0;1[.

b. Montrer que si $\int_0^1 f(t)dt = \frac{1}{2}$, f admet au moins un point fixe sur]0;1[.

3.136 OdlT 2014/2015 CCP PSI planche 283 II

Soit $f:[0;1] \to \mathbb{R}$ dérivable en 0.

Étudier la suite de terme général $u_n = \sum\limits_{k=0}^n f \bigg(\frac{k}{n^2} \bigg).$

(3.137) OdlT 2014/2015 CCP PSI planche 288 I

Trouver $\lim_{x \to +\infty} \frac{1}{x} \int_0^x \sin^2(t) dt$ et $\lim_{x \to +\infty} \frac{1}{x} \int_0^x |\sin(t)| dt$.

(3.138) OdlT 2014/2015 ENTPE-EIVP PSI planche 325 I

 $\mathrm{Montrer\ que}:\ \exists (\alpha,\beta)\in\ \mathbb{R}^2,\ \forall x\in\ \mathbb{R},\ \left|\ \mathrm{Arctan}\left(\mathrm{sh}\left(x\right)\right)\right|=\alpha+\beta\ \mathrm{Arccos}\left(\frac{1}{\mathrm{ch}\left(x\right)}\right).$

(3.139) OdlT 2014/2015 Télécom Sud Paris PSI planche 331 II

 $\text{V\'erifier que } \int_0^{+\infty} \frac{\ln(x) - \ln(1 - e^{-x})}{x} e^{-\alpha x} dx \text{ existe pour } \alpha \in \mathbb{R}_+^*.$

(3.140) OdlT 2015/2016 Mines PSI planche 118I

 $\text{Montrer que } I_n = \int_0^\pi \ln \left(2 \sin \frac{x}{2} \right) \cos (nx) dx \text{ et } J_n = \int_0^\pi \sin (nx) \frac{\cos \frac{x}{2}}{\sin \frac{x}{2}} dx \text{ existent pour } n \in \mathbb{N}.$

Pour $n \in \mathbb{N}^*$, trouver une relation entre I_n et J_n . Pour $n \in \mathbb{N}$, trouver une relation entre J_n et J_{n+1} .

 ${\rm Calculer}\ I_0.\ {\rm Indication}:\ {\rm on\ montrera}\ {\rm que}\ \int_0^{\pi/2} ln(\cos x) dx = \int_0^{\pi/2} ln(\sin x) dx.\ {\rm Calculer}\ I_n.$

(3.141) OdlT 2015/2016 Mines PSI planche 119II

Pour f continue de [0;1] dans \mathbb{R}_+^* , étudier la suite de terme général $\mathfrak{u}_n=\Big(\int_0^1 f(t)^n dt\Big)^{\frac{1}{n}}.$

(3.142) OdlT 2015/2016 Mines PSI planche 120II

Domaine de définition de $f(x) = \int_0^{\pi} \ln(1 - 2x \cos t + x^2) dt$. Expliciter f.

3.143) OdlT 2015/2016 Mines PSI planche 122II

Montrer que (E): y'-y=f où f est continue et intégrable sur \mathbb{R} , admet une unique solution h bornée. Montrer que h est intégrable sur \mathbb{R} et exprimer cette intégrable en fonction de celle de f.

20

$oxed{3.145}$ OdlT 2015/2016 Mines PSI planche 130I

Montrer que tan(x) = x admet une solution unique sur $I_n = \left[-\frac{\pi}{2} + n\pi; \frac{\pi}{2} + n\pi \right]$. Trouver un équivalent de x_n en $+\infty$ puis en calculer le développement asymptotique avec une précision o $\left(\frac{1}{n^2}\right)$.

3.146 OdlT 2015/2016 Mines PSI planche 133I

Justifier l'existence et l'unicité d'une suite réelle vérifiant $u_n^5 + nu_n - 1 = 0$. Étudier cette suite et en donner un développement asymptotique à deux termes.

(3.147) OdlT 2015/2016 CCP PSI planche 249I Montrer que $\Phi(x) = \int_{1/x}^{x} e^{-t^2} dt$ est définie sur \mathbb{R}^* .

Montrer que Φ est C^1 , étudier sa parité et calculer sa limite en $+\infty$

Justifier que Φ n'est pas prolongeable par continuité en 0 puis donner son signe sur [0;1] et $[1;+\infty[$.

(3.148) OdlT 2015/2016 ENSAM PSI planche 276II

Soit f de classe C^2 sur [0; a] telle que f'(0) = f(0) = 0.

Montrer que $\int_0^\alpha |f(t)f''(t)|dt \leqslant \frac{\alpha^2}{2} \int_0^\alpha f''^2(t)dt$.

Peut-on obtenir une meilleure majoration?

(3.149) OdlT 2015/2016 ENTPE-EIVP planche 277II

Soit $g:[0;1] \to \mathbb{R}$ continue.

- a. Montrer que $G: x \to \frac{1}{2} \int_0^1 |x t| g(t) dt$ est de classe C^2 sur [0; 1] et calculer G''.
- **b.** Montrer qu'il existe deux réels a et b tels que f(x) = G(x) + ax + b vérifie f'' = g et f(0) = f(1) = 0.
- c. Existe-t-il d'autres fonctions f vérifiant ces conditions ?

Montrer la convergence de $\int_{-\infty}^{+\infty} P_n(x) P_m(x) e^{-x^2} dx$ et la calculer.

(3.152) OdlT 2016/2017 Mines PSI planche 105I abordable dès la 1^{ère} année

Résoudre dans \mathbb{R} , Arctan(x-1) + Arctanx + Arctan $(x+1) = \frac{\pi}{2}$.

$({\bf 3.153})~OdlT~2016/2017~Mines~PSI~planche~1091$

Existence et valeur de $I = \int_0^{+\infty} \frac{\operatorname{th}(3x) - \operatorname{th} x}{x} dx$.

3.154 OdlT 2016/2017 Mines PSI planche 111I abordable dès la 1ère année

Montrer que $f(x) = \int_{x}^{x^2} \frac{1}{\ln t} dt$ peut être prolongée en une fonction continue sur \mathbb{R}_{+} .

Montrer qu'elle est alors de classe C^{∞} sur \mathbb{R}_{+}^{*} mais pas sur \mathbb{R}_{+} .

(3.155) OdlT 2016/2017 Mines PSI planche 112I

Déterminer la nature puis la valeur de $I_{\alpha,n} = \int_a^b (b-t)^{\alpha} (t-a)^n dt$ où a, b et α sont réels et $n \in \mathbb{N}$.

(3.156) OdlT 2016/2017 Mines PSI planche 116I

Nature et calcul de $I = \int_0^{+\infty} \left(\int_x^{+\infty} \frac{\sin t}{t} dt \right) dx$.

3.157 OdlT 2016/2017 Mines PSI planche 120I abordable dès la 1ère année

Montrer que si une fonction f est de classe C^n sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} et s'annule n fois, $\forall k \in [0, n]$, $f^{(n-k)}$ s'annule au moins k fois.

Qu'en déduit-on, au mieux, en fonction du degré de $P \in \mathbb{R}[X]$, sur le nombre de fois où $P(x) = e^x$?

3.158 OdlT 2016/2017 Centrale PSI planche 161 abordable dès la 1ère année

Montrer que pour, $n \geqslant 3$, $P_n(X) = X^n - nX + 1$ admet une unique racine $x_n \in]0;1[$. Trouver un équivalent a_n de x_n de la forme $\frac{1}{n^{\alpha}}$, $\alpha \in \mathbb{R}$; puis un équivalent simple de $x_n - a_n$.

3.159 OdlT 2016/2017 Centrale PSI planche 164

Montrer que (E) : $y'' = (x^4 + 1)y$ admet une unique fonction f solution telle que f(0) = f'(0) = 1. On admet que $\frac{1}{f^2}$ est intégrable sur \mathbb{R}_+ ; montrer que $g(x) = f(x) \int_x^{+\infty} \frac{dt}{f(t)^2}$ est solution de (E).

Montrer que $\frac{1}{\mathfrak{f}^2}$ est intégrable sur \mathbb{R}_+ .

(3.160) OdlT 2016/2017 CCP PSI planche 205I abordable dès la 1^{ère} année

Montrer que, pour $n \ge 3$, l'équation $e^x = nx$ admet deux solutions $0 \le x_n < y_n$. Étudier la monotonie de $(x_n)_{n \ge 3}$ et $(y_n)_{n \ge 3}$. En déduire qu'elles convergent vers une limite à déterminer. Montrer que $x_n \sim \frac{1}{n}$. Trouver un équivalent de $x_n - \frac{1}{n}$ et en déduire un développement asymptotique à deux termes de x_n . Soit $\varepsilon > 0$ fixé ; montrer qu'à partir d'un certain rang, $y_n \le (1+\varepsilon) \ln(n)$.

(3.161) OdlT 2016/2017 CCP PSI planche 2091

Nature de $I = \int_1^{+\infty} \frac{e^{\sin t}}{t} dt$ et $J = \int_0^{+\infty} \sin t \sin \frac{1}{t} dt$.

${f (3.162)}$ ${f OdlT}$ 2016/2017 CCP PSI planche 218 ${f I}$

Trouver a, b et c tels que $\frac{2x+1}{x(x+1)^2} = \frac{a}{x} + \frac{b}{x+1} + \frac{c}{(x+1)^2}$.

On admet que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$; montrer que $I = \int_0^1 t \left[\frac{1}{t} \right] dt$ existe et la calculer.

3.163 OdlT 2016/2017 EIVP PSI planche 245III abordable dès la 1ère année

Calculer $\lim_{x\to 0} \int_{x}^{3x} \frac{\cos t}{t} dt$.

(3.164) OdlT 2017/2018 Mines PSI planche 124III, abordable dès la première année

Calculer $I = \int_0^{\ln 2} \frac{\sinh^2(x)}{\cosh^3(x)} dx$.

(3.165) OdlT 2017/2018 Centrale PSI planche 163, abordable dès la première année

Soit $\alpha \in \mathbb{R}$ et $u_n = \prod_{k=1}^n \left(1 + \frac{k^\alpha}{n^2}\right)$. Si $\alpha = 2$, convergence et limite de $(u_n^{1/n})_{n \in \mathbb{N}}$. Limite de $(u_n)_{n \in \mathbb{N}}$.

Soit $\alpha \in [0;1]$, convergence et limite de $(\alpha_n)_{n \in \mathbb{N}}$ si $\alpha_n = \sum_{k=1}^n \frac{k^\alpha}{n^2}$. Et $(u_n)_{n \in \mathbb{N}}$? Et si $\alpha > 1$?

3.166 OdlT 2017/2018 CCP PSI planche 209II, abordable dès la première année

Montrer que $\forall n \geq 3$, $e^x = nx$ admet deux solutions $0 \leq x_n < y_n$.

Étudier la monotonie des suites $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ et en déduire qu'elles admettent une limite à déterminer.

Montrer que $x_n \underset{+\infty}{\sim} \frac{1}{n}$, trouver un équivalent de $x_n - \frac{1}{n}$ en $+\infty$ et donner un développement asymptotique de x_n à deux termes. Soit $\epsilon > 0$; montrer qu'à partir d'un certain rang, $y_n \leqslant (1+\epsilon) \ln n$.

(3.167) OdlT 2017/2018 EIVP PSI planche 250I, abordable dès la première année

Montrer que la suite de terme général $I_n = \int_0^1 (1-x)^n e^{-2x} dx$ converge et donner sa limite.

Trouver une relation entre I_n et I_{n+1} et en déduire un équivalent de $\mathfrak{n} I_n$ en $+\infty$.

Trouver $(a,b,c) \in \mathbb{R}^3$ tels que $I_n = a + \frac{b}{n} + \frac{c}{n^2} + o(\frac{1}{n^2})$.

3.168 OdlT 2017/2018 Mines-Télécom PSI planche 252II

Montrer que les suites de terme général $\sum_{k=1}^{n-1} \frac{1}{k} - \frac{1}{n} - \ln n$ et $\sum_{k=1}^{n-1} \frac{1}{k} + \frac{1}{n} - \ln n$ (pour $n \ge 2$) sont adjacentes.

3.169 Compléments OdlT 2017/2018 Mines PSI planche 181II

Domaine de définition de $F(x)=\int_0^{+\infty}\frac{e^{-t}}{x+t}dt.$

Donner un équivalent de F(x) en 0.

(3.170) Compléments OdlT 2017/2018 CCP PSI planche 447I

Montrer que $I = \int_0^{\pi/2} \ln(\sin t) dt$ converge et en déduire que $J = \int_0^{\pi/2} \ln(\cos t) dt$ converge aussi ; montrer que I = J. Calculer I + J, en déduire la valeur de I et J.

(3.171) Compléments OdlT 2017/2018 ENSAM PSI planche 544II

Convergence de $I = \int_0^{+\infty} \frac{x - \operatorname{Arctan} x}{x(1 + x^2) \operatorname{Arctan} x} dx$.

Décomposition en éléments simples de $\frac{1}{(x^2+1)x}$ sous la forme $\frac{\alpha}{x} + \frac{bx+c}{1+x^2}$ et calcul de I.

(3.172) Compléments OdlT 2017/2018 Mines-Télécom PSI planche 562I

Domaine de définition de $f(x) = x^2 + \lfloor \frac{1}{1 - \lfloor x \rfloor} \rfloor$. Étudier la continuité de f en ± 2 et ± 1 .

Expliciter f sur les intervalles où elle est définie.

(3.173) Compléments OdlT 2017/2018 Mines-Télécom PSI planche 563I

Déterminer les fonctions continues sur [0;1], à valeurs dans \mathbb{R} , telles que $\int_0^1 f(x)dx = \frac{1}{3} + \int_0^1 \left(f(x^2)\right)^2 dx$ (on pourra écrire $\frac{1}{3}$ de manière naturelle).

(3.174) Compléments OdlT 2017/2018 Mines-Télécom PSI planche 565II

Soit f de classe C^1 sur [a;b], à valeurs dans \mathbb{R} , telle que f(a) = 0.

Montrer que $\int_a^b f^2(x)dx \le \frac{(b-a)^2}{2} \int_a^b f'^2(x)dx$.

(3.175) Compléments OdlT 2017/2018 Mines-Télécom PSI planche 575I

Convergence et calcul de $f(x) = \int_0^{+\infty} \min(x, \frac{1}{\sqrt{t}}, \frac{1}{t^2}) dt$.

Montrer la continuité et la dérivabilité de f.

3.176) OdlT 2018/2019 Mines PSI <u>planches 108I et 114I</u>

Étudier, en fonction de $\alpha > 0$, l'existence de $\int_{0}^{+\infty} \left(e^{\frac{\sin^{2}(t)}{t^{\alpha}}} - 1\right) dt$.

3.177 OdlT 2018/2019 Centrale PSI planche 167

On note $E=\{f\in C^2([0;1],\,\mathbb{C})\mid f(0)=f(1)=0\},\,F=C^0([0;1],\,\mathbb{C}) \text{ et }\varphi:f\mapsto f''.$ a. Montrer que φ est un isomorphisme de E dans F.

- $\mathbf{b.} \text{ Si } g \in F, \text{ montrer que } G: [0;1] \to \mathbb{C} \text{ définie par } G(x) = \int_0^1 \frac{|x-t|}{2} g(t) dt \text{ est } C^2 \text{ et calculer } G''.$
- $\textbf{c.} \ \text{Montrer qu'il existe une fonction } \texttt{k}:[0;1]^2 \to \mathbb{R} \ \text{telle que}: \ \forall g \in F, \ \varphi^{-1}(g)(x) = \int_0^1 \texttt{k}(x,t)g(t)dt.$
- d. Calculer $Sup_{|k|}$. En déduire la continuité de φ^{-1} si on munit E et F de la norme infinie.

(3.178) <u>OdlT 2018/2019 Centrale PSI planche 168</u>

- a. Étudier la convergence de $\int_1^{+\infty} \frac{\cos u}{u} du.$
- **b.** Soit $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$. Étudier l'existence de $I(\alpha, \beta) = \int_0^{+\infty} \frac{\cos(\alpha u) \cos(\beta u)}{u} du$. En donner la valeur.

(3.179) Compléments OdlT 2018/2019 Mines PSI planche 107I

Existence et calcul de $\int_0^{+\infty} \frac{\operatorname{th}(3x) - \operatorname{th}(x)}{x} dx$.

(3.180) Compléments OdlT 2018/2019 CCP PSI planche 348I

- $\textbf{a.} \ \text{Montrer que } f:]-1; +\infty[\to \ \mathbb{R} \ \text{telle que } f(x)=x+\ln(1+x) \ \text{est une bijection et que } g=f^{-1} \ \text{est } C^{\infty}.$
- **b.** Calculer g(0) et g'(0).
- ${\bf c.}$ Justifier que g admet un développement limité à l'ordre 3 en 0 et le calculer.

(3.181) Compléments OdlT 2018/2019 CCP PSI planche 350II

- a. Montrer que $I = \int_0^{\pi/2} \ln(\sin t) dt$ est convergente. Montrer que $J = \int_0^{\pi/2} \ln(\cos t) dt$ aussi et que I = J.
- b. Déterminer la valeur de I.

(3.182) Compléments OdlT 2018/2019 E3A PSI planche 402II

- a. Pour $\mathfrak{n}\in\,\mathbb{N},$ justifier l'existence de $I_\mathfrak{n}=\int_{\pi/4}^{\pi/2}\frac{dx}{\tan^n x}$
- **b.** Réécrire I_n à l'aide d'un changement de variable "logique". **c.** Trouver des réels a,b,c,d tels que $\frac{1}{t^2(1+t^2)} = \frac{a}{t^2} + \frac{b}{t} + \frac{ct+d}{1+t^2}$.
- d. En déduire le calcul de I2 puis celui de I3 et celui de I4

(3.183) Compléments OdlT 2018/2019 ENTPE PSI planche 431I

- a. Montrer que $I_1=\int_0^1 \frac{dt}{\sqrt{1-t^2}}$ et $I_2=\int_0^1 \frac{tdt}{\sqrt{1-t^2}}$ existent et les calculer.
- b. Montrer que $I_3 = \int_0^1 \frac{t^2}{\sqrt{1-t^2}} dt$ existe puis la calculer en effectuant le changement de variable $t = \sin u$.