CHAPITRE 3 INTÉGRATION

O Avec le calcul différentiel, l'intégration forme le calcul infinitésimal. Les opérations de mesure de grandeurs physiques (longueur d'une courbe, aire, volume, flux, champ, ...) et de calcul de probabilités étant souvent soumises à des calculs d'intégrales, ce qui fait de l'intégration un outil scientifique fondamental.

Les différents domaines dans lesquels peuvent se rencontrer des intégrales ont conduit à donner plusieurs définitions pour des fonctions de moins en moins régulières. Entre autres théories, on trouve les intégrales de RIEMANN (vers 1850), de STIELTJES (vers 1880), de LEBESGUE (vers 1900), de DENJOY (vers 1910), de PERRON (vers 1910), de DANIELL (vers 1920), de BOCHNER (vers 1910), de KURZWEIL-HENSTOCK (vers 1950).... Mais toutes ces définitions coïncident dans le cas des fonctions continues.

Nous utilisons l'intégrale de RIEMANN mais beaucoup plus puissante est celle de LEBESGUE qu'il a luimême comparée à l'intégrale de RIEMANN : "Imaginez que je doive payer une certaine somme ; je peux sortir les pièces de mon porte-monnaie comme elles viennent pour arriver à la somme indiquée, ou sortir toutes les pièces et les choisir selon leur valeur. La première méthode est l'intégrale de RIEMANN, la deuxième correspond à mon intégrale." Il faut préciser que l'intégration de RIEMANN "parcourt" le segment et exploite au fur et à mesure la "hauteur" y de la fonction f, alors que l'intégration de LEBESGUE exploite la "taille" des ensembles de niveau f(x) = y pour toutes les valeurs de y.

Le symbole mathématique \int représentant l'intégration a été introduit par LEIBNIZ.

I désigne dans tout le chapitre un intervalle de \mathbb{R} .

TABLE DES MATIÈRES

Programme officiel	4
Partie 1 : continuité par morceaux	
 - 1 : fonctions continues par morceaux sur un segment	7
Partie 2 : étude locale des fonctions	
- 1 : notations de Landau	
Partie 3 : intégrales convergentes	
 - 1 : définitions, propriétés et exemples	7
Partie 4 : fonctions intégrables	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1 3 3

PROGRAMME

Cette section vise les objectifs suivants :

- étendre la notion d'intégrale étudiée en première année à des fonctions continues par morceaux sur un intervalle quelconque par le biais des intégrales généralisées ;
- définir, dans le cadre des fonctions continues par morceaux, la notion de fonction intégrable ;
- compléter la section dédiée aux suites et aux séries de fonctions par les théorèmes de convergence dominée et d'intégration terme à terme ;
- étudier les fonctions définies par des intégrales dépendant d'un paramètre.

On évite tout excès de rigueur dans la rédaction. Ainsi, dans les calculs concrets mettant en jeu l'intégration par parties ou le changement de variable, on n'impose pas de rappeler les hypothèses de régularité des résultats utilisés.

Les fonctions considérées sont définies sur un intervalle de $\mathbb R$ et à valeurs dans $\mathbb K$ valant $\mathbb R$ ou $\mathbb C$.

1: Fonctions continues par morceaux

Contenus

Capacités & Commentaires

Fonctions continues par morceaux sur un segment,

sur un intervalle de \mathbb{R} .

Intégrale sur un segment d'une fonction continue par morceaux.

Brève extension des propriétés de l'intégrale d'une fonction continue sur un segment étudiées en première année. Aucune construction n'est exigible.

2 : Intégrales généralisées sur un intervalle de la forme $[a; +\infty]$

Contenus

Capacités & Commentaires

Pour f continue par morceaux sur $[a; +\infty[$, l'intégrale Notations $\int_{a}^{+\infty} f$, $\int_{a}^{+\infty} f(t)dt$.

Notations
$$\int_{0}^{+\infty} f$$
, $\int_{0}^{+\infty} f(t) dt$.

 $\int_0^{+\infty} f(t)dt$ est dite convergente si $\int_0^{\infty} f(t)dt$ a une limite Intégrale convergente (resp. divergente) en $+\infty$. finie lorsque x tend vers $+\infty$.

Si f est continue par morceaux sur $[a; +\infty]$ et à valeurs positives, alors $\int_a^{+\infty} f(t)dt$ converge si et seulement

si $x \mapsto \int_{a}^{x} f(t)dt$ est majorée.

Si f et q sont deux fonctions continues par morceaux sur $[a; +\infty[$ telles que $0 \le f \le g$, la convergence de $\int_{-\infty}^{+\infty} g$

implique celle de $\int_{a}^{+\infty} f$.

3 : Intégrales généralisées sur un intervalle quelconque

Contenus

Capacités & Commentaires

Adaptation du paragraphe précédent aux fonctions

Notations
$$\int_a^b f$$
, $\int_a^b f(t)dt$.

continues par morceaux définies sur un intervalle semi-ouvert ou ouvert de \mathbb{R} .

Intégrale convergente (resp. divergente) en b, en a.

Propriétés des intégrales généralisées :

linéarité, positivité, croissance, relation de Chasles.

Intégration par parties sur un intervalle quelconque :

$$\int_{\alpha}^{b} f(t)g'(t)dt = \left[fg\right]_{\alpha}^{b} - \int_{\alpha}^{b} f'(t)g(t)dt$$

La démonstration n'est pas exigible.

L'existence des limites finies du produit fg aux bornes de l'intervalle assure que les intégrales de fg' et f'g sont de même nature.

Pour les applications pratiques, on ne demande pas de rappeler les hypothèses de régularité.

La démonstration n'est pas exigible.

 $t \mapsto f(a+t)$ (resp. $t \mapsto f(b-t)$) l'est en 0^+ .

Adaptation au cas où φ est strictement décroissante.

On applique ce résultat sans justification dans les cas de alors $\int_{\alpha}^{b}f(t)dt$ et $\int_{\alpha}^{\beta}(f\circ\phi)(u)\phi'(u)du$ sont de même changements de variable usuels.

nature, et égales en cas de convergence.

si $\varphi:]\alpha;\beta[\rightarrow]\alpha;b[$ est une bijection strictement

croissante de classe C^1 , et si f est continue sur]a;b[,

Changement de variable :

4 : Intégrales absolument convergentes et fonctions intégrables		
Contenus	Capacités & Commentaires	
Intégrale absolument convergente.		
La convergence absolue implique la convergence.	L'étude des intégrales semi-convergentes n'est pas un	
Inégalité triangulaire.	objectif du programme.	
Une fonction est dite intégrable sur un intervalle I	Notations $\int_{I} f$, $\int_{I} f(t) dt$.	
si elle est continue par morceaux sur I et son	Pour $I = [\mathfrak{a}; \mathfrak{b}[, (\mathrm{respectivement}]\mathfrak{a}, \mathfrak{b}]), \mathrm{fonction}$	
intégrale sur I est absolument convergente.	intégrable en $\mathfrak b$ (resp. en $\mathfrak a$).	
Espace vectoriel $L^1(I,\mathbb{K})$ des fonctions intégrables		
sur I à valeurs dans \mathbb{K} .		
Si f est continue, intégrable et positive sur I, et si		
$\int_{I} f(t)dt = 0$, alors f est identiquement nulle.		
Théorème de comparaison :	Adaptation au cas d'un intervalle quelconque.	
pour f et $\mathfrak g$ deux fonctions continues par morceaux		
$\mathrm{sur}\ [\alpha;+\infty[\ :$		
- si $f(t) \mathop{=}_{t \to +\infty} O\bigl(g(t)\bigr),$ alors l'intégrabilité de g en	Le résultat s'applique en particulier si $f(t) \underset{t \to +\infty}{=} o \big(g(t) \big).$	
$+\infty$ implique celle de f.		
- si $f(t) \mathop{\sim}_{t \to +\infty} g(t),$ alors l'intégrabilité de f en		
$+\infty$ est équivalente à celle de g.		
Fonctions de référence : pour $\alpha \in \mathbb{R}$,	L'intégrabilité de $t\mapsto \operatorname{\tt ln} t$ en 0 peut être directement	
- intégrales de RIEMANN : étude de l'intégrabilité	utilisée. Les résultats relatifs à l'intégrabilité de	
$de t \mapsto \frac{1}{t^{\alpha}} en +\infty, en 0^+.$	$x \mapsto \frac{1}{ x-\alpha ^{\alpha}}$ en a peuvent être directement utilisés.	
- étude de l'intégrabilité de $t\mapsto e^{-\alpha t}$ en $+\infty.$	Plus généralement, les étudiants doivent savoir que la	
	fonction $x\mapsto f(x)$ est intégrable en \mathfrak{a}^+ (resp. en $\mathfrak{b}^-)$ si	

66 ______INTÉGRATION

PARTIE 3.1 : CONTINUITÉ PAR MORCEAUX

3.1.1: Fonctions continues par morceaux sur un segment

 \bigcirc Soit ici $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et a et b deux réels tels que a < b.

DÉFINITION 3.1:

Soit $n \in \mathbb{N}^*$, on dit que $\sigma = (a_0, a_1, \cdots, a_n)$ est une subdivision de [a; b] si on a les inégalités strictes $a_0 = a < a_1 < \cdots < a_n = b$. σ est dite une subdivision régulière $si : \forall k \in [0; n], \ a_k = a + k \left(\frac{b-a}{n}\right)$.

Le pas de la subdivision σ est le réel strictement positif $\mathfrak{p} = \underset{0 \le k \le n-1}{\mathsf{Max}} (\mathfrak{a}_{k+1} - \mathfrak{a}_k).$

<u>REMARQUE HP 3.1</u>: Soit σ et σ' deux subdivisions de [a;b], on dit que σ' est **plus fine** que σ si tous les termes de σ se trouvent dans σ' ; on le note $\sigma \leq \sigma'$. On définit (une fois dans le bon ordre):

- $\sigma \vee \sigma'$: c'est la subdivision contenant tous les termes de σ et σ' (sorte de réunion);
- $\sigma \wedge \sigma'$: c'est la subdivision contenant seulement les termes communs à σ et σ' (sorte d'intersection). La relation de finesse est une relation d'ordre partiel sur les subdivisions de [a;b].

DÉFINITION 3.2:

Soit $f:[a;b] \to \mathbb{K}$, on dit que f est une fonction en escalier s'il existe une subdivision $\sigma=(\alpha_0,\alpha_1,\cdots,\alpha_n)$ de [a;b] telle que : $\forall k \in [\![0;n-1]\!]$, f est constante sur $]\alpha_k;\alpha_{k+1}[$.

On dit alors que σ est une subdivision adaptée à f.

EXEMPLE 3.1: La fonction $x \mapsto \lfloor x \rfloor$ est en escalier sur [0;3] et $\sigma_1 = (0,1,1.2,2,2.4,3)$ est adaptée à f; et la subdivision la moins fine adaptée à cette fonction est $\sigma = (0,1,2,3)$.

DÉFINITION 3.3:

Soit $f:[a;b] \to \mathbb{K}$, on dit que f est une fonction continue par morceaux s'il existe une subdivision $\sigma=(a_0,a_1,\cdots,a_n)$ de [a;b] telle que : $\forall k\in [0;n-1]$, f est continue sur $]a_k;a_{k+1}[$ et f admet une limite finie à droite en a_k et à gauche en a_{k+1} de sorte qu'il existe, pour tout $k\in [0;n-1]$, une fonction continue $g_k:[a_k;a_{k+1}]\to \mathbb{K}$ telle que $\forall x\in]a_k;a_{k+1}[,\ g_k(x)=f(x).$ On dit que σ est une subdivision adaptée à f. On note $C_m^0([a;b],\mathbb{K})$ l'ensemble des fonctions continues par morceaux de [a;b] dans \mathbb{K} .

EXEMPLE 3.2: $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \operatorname{Arctan}(\tan x)$ si $x \not\equiv \frac{\pi}{2}$ $[\pi]$ et f(x) = 0 sinon est continue par morceaux sur $[-\pi; \pi]$ et $\sigma = \left(-\pi, -\frac{\pi}{2}, \frac{\pi}{2}, \pi\right)$ est la subdivision la moins fine adaptée à f.

<u>REMARQUE HP 3.2</u>: • Les fonctions en escaliers (constantes par morceaux) font partie de $C_{m}^{0}([a;b], \mathbb{K})$.

- \bullet De plus, si f continue par morceaux sur $[\mathfrak{a};\mathfrak{b}],$ alors $|\mathfrak{f}|$ l'est aussi.
- $\bullet \ Si \ \mathbb{K} = \mathbb{R} \ \mathrm{et} \ (f,g) \in C^0_{\mathfrak{m}}([a;b],\mathbb{R})^2, \ f^+ = \frac{|f|+f}{2}, \ f^- = \frac{|f|-f}{2}, \ |f|, \ \mathrm{Sup}(f,g), \ \mathrm{Inf}(f,g) \ \mathit{le \ sont \ aussi.}$
- Toute fonction $f:[a;b] \to \mathbb{K}$ continue par morceaux sur un segment est bornée ce qui nous permet de définir $||f||_{\infty,[a;b]} = \sup_{t \in [a;b]} |f(t)|$; mais f n'atteint pas forcément ses bornes.
- $C_m^0([a;b], \mathbb{K})$ est une sous-algèbre (c'est pas faux !) de $\mathfrak{F}([a;b], \mathbb{K})$.
- $\bullet \text{ L'ensemble des fonctions en escaliers sur } [a;b] \text{ est une sous-algèbre de } C^0_{\mathfrak{m}}([a;b],\,\mathbb{K}).$

DÉFINITION 3.4:

Soit I un intervalle réel et une fonction $f: I \to \mathbb{K}$. On dit que f est continue par morceaux sur I si elle l'est sur chaque segment inclus dans I. On note $C^0_{\mathfrak{m}}(I,\mathbb{K})$ l'ensemble des fonctions de ce type.

<u>REMARQUE 3.3</u>: • $C_m^0(I, \mathbb{K})$ est une sous-algèbre de $\mathfrak{F}(I, \mathbb{K})$.

• Une fonction continue par morceaux sur un intervalle (contrairement à ce qui se passe sur un segment) peut posséder une infinité de points de discontinuité et peut ne pas être bornée.

 $\underline{EXEMPLE~3.3}: \bullet$ La fonction partie entière est continue par morceaux sur \mathbb{R} .

• La fonction $f:]0;1] \to \mathbb{R}$ définie par $f(x) = x \left\lfloor \frac{1}{x} \right\rfloor$ est continue par morceaux sur]0;1].

3.1.2 : Intégrale des fonctions continues par morceaux sur un segment

On suppose connue l'intégrale des fonctions continues à valeurs réelles ou complexes sur un segment. Sa construction a été admise en PCSI et montrée en MPSI avec la notion d'uniforme continuité.

DÉFINITION 3.5:

Soit $f:[a;b] \to \mathbb{K}$ continue par morceaux, avec les notations de la définition précédente, on définit l'intégrale de f sur [a;b], notée $\int_{[a;b]}^{b} f$ ou $\int_{a}^{b} f$ ou $\int_{a}^{b} f(t)dt$, la quantité $\int_{a}^{b} f = \sum_{k=0}^{n-1} \int_{a_k}^{a_{k+1}} g_k$.

REMARQUE 3.4 : • La valeur de cette intégrale ne dépend pas de la subdivision adaptée à f.

- Elle ne dépend pas non plus de la valeur de f en les points de la subdivision adaptée.
- Cette définition généralise l'intégrale des fonctions continues ($\sigma = (a, b)$ adaptée).
- Elle représente encore une aire au sens algébrique si la fonction est réelle.
- Si $f:[a;b] \to \mathbb{C}$ est continue par morceaux, on a encore $\int_a^b f = \int_a^b Re(f) + i \int_a^b Im(f)$.
- On généralise dans ce nouveau cadre les propriétés vues pour les fonctions continues.

PROPOSITION SUR LA LINÉARITÉ DE L'INTÉGRALE, LA RELATION DE CHASLES ET LA CONDITION DE NULLITÉ D'UNE FONCTION CONTINUE POSITIVE 3.1 :

$$\mathbf{Soit} \ (f,g) \in C^0_{\mathfrak{m}}([\alpha;b],\, \mathbb{C})^2, \ (\lambda,\mu) \in \, \mathbb{C}^2 \, : \, \int_{\alpha}^b (\lambda f + \mu g) = \lambda \int_{\alpha}^b f + \mu \int_{\alpha}^b g.$$

Soit
$$f \in C_{\mathfrak{m}}^{0}([\mathfrak{a};\mathfrak{b}],\mathbb{C})$$
 et $c \in]\mathfrak{a};\mathfrak{b}[$, alors $\int_{\mathfrak{a}}^{\mathfrak{b}} f = \int_{\mathfrak{a}}^{\mathfrak{c}} f + \int_{\mathfrak{c}}^{\mathfrak{b}} f$ (Chasles).

Soit $f \in C^0([a;b], \mathbb{R})$ telle que $f \geqslant 0$, alors : $f = 0 \iff \int_a^b f = 0$ (f est ici continue tout court).

Soit $f \in C^0([a;b], \mathbb{C})$, alors : $f = 0 \iff \int_a^b |f| = 0$ (f est à nouveau continue).

PROPOSITION SUR LA POSITIVITÉ ET LA CROISSANCE DE L'INTÉGRALE, SUR LES INÉGALITÉS TRIANGULAIRE ET DE CAUCHY-SCHWARZ 3.2 :

Soit $(f,g)\in C^0_{\mathfrak{m}}([\mathfrak{a};b],\,\mathbb{R})^2,$ on a en matière d'inégalités :

- $f \geqslant 0 \Longrightarrow \int_0^b f \geqslant 0$ et $f \leqslant g \Longrightarrow \int_0^b f \leqslant \int_0^b g$.
- $\bullet \ \mathbf{Si} \ ||f||_{\infty,[\alpha;b]} = \sup_{t \in [\alpha;b]} |f(t)|, \ \mathbf{on} \ \mathbf{a} \ \Big| \ \int_{\alpha}^{b} f \Big| \leqslant \int_{\alpha}^{b} |f| \leqslant (b-\alpha)||f||_{\infty,[\alpha;b]} \ \mathbf{et} \ \Big| \int_{\alpha}^{b} fg \Big| \leqslant ||f||_{\infty,[\alpha;b]} \int_{\alpha}^{b} |g|.$
- Soit $(f,g) \in C_{\mathfrak{m}}^{0}([a;b],\mathbb{R})^{2}$, alors : $\left|\int_{a}^{b}fg\right| \leqslant \sqrt{\int_{a}^{b}f^{2}}\sqrt{\int_{a}^{b}g^{2}}$ (inégalité de Cauchy-Schwarz) avec égalité (si f, g continues) si et seulement si f et g sont colinéaires.

INTÉGRATION

DÉFINITION 3.6:

① On réécrit les résultats précédents dans ce cadre où les bornes ne sont plus forcément dans l'ordre croissant.

THÉORÈME SUR LA POSITIVITÉ ET LA CROISSANCE DE L'INTÉGRALE, SUR LA RELATION DE CHASLES, LES INÉGALITÉS TRIANGULAIRE ET DE CAUCHY-SCHWARZ (ÉNORME) 3.3:

- $\int_a^b f = -\int_b^a f$ et $\int_a^b f = \int_a^c f + \int_c^b f$.
- $\bullet \ \left| \int_a^b f \right| \leqslant \left| \int_a^b |f| \right| \leqslant |b-a| ||f||_{\infty, [\widetilde{a}; b]} \ \text{avec} \ ||f||_{\infty, [\widetilde{a}; b]} = \sup_{t \in [\widetilde{a}; b]} |f(t)|.$
- $\bullet \ \mathbf{Plus} \ \mathbf{g\acute{e}n\acute{e}ralement} : \ \Big| \int_{\mathfrak{a}}^{\mathfrak{b}} f \mathfrak{g} \Big| \leqslant ||f||_{\infty, \widetilde{[\mathfrak{a};\mathfrak{b}]}} \Big| \int_{\mathfrak{a}}^{\mathfrak{b}} |\mathfrak{g}| \Big|.$
- Si $a \neq b$ et f continue, on a : $f = 0 \iff \int_a^b |f| = 0$.
- $\left| \int_a^b fg \right| \leq \sqrt{\left| \int_a^b |f|^2 \right|} \sqrt{\left| \int_a^b |g|^2 \right|}$.

- Pour des fonctions réelles, on a toujours : • Si a < b, $f \geqslant 0 \Longrightarrow \int_a^b f \geqslant 0$ et $f \leqslant g \Longrightarrow \int_a^b f \leqslant \int_a^b g$.
 - Si a > b, $f \geqslant 0 \Longrightarrow \int_a^b f \leqslant 0$ et $f \leqslant g \Longrightarrow \int_a^b f \geqslant \int_a^b g$.

EXERCICE CONCOURS 3.4 : Centrale PSI 2014

Soit $f:[0;1] \to \mathbb{R}$ continue.

- a. Montrer que si $\int_0^1 f(t)dt = 0$, f s'annule au moins une fois sur]0;1[.
- **b.** Montrer que si $\int_0^1 f(t)dt = \frac{1}{2}$, f admet au moins un point fixe sur]0;1[.

<u>REMARQUE HP 3.5</u>: • On rappelle la valeur moyenne de $f \in C_{\mathfrak{m}}^{0}([\mathfrak{a};\mathfrak{b}],\mathbb{K})$, c'est $\mathfrak{m} = \frac{1}{\mathfrak{b}-\mathfrak{a}}\int_{\mathfrak{a}}^{\mathfrak{b}}f$.

- $\bullet \ \mathit{Si} \ (f,g) \in C^0_\mathfrak{m}([\alpha;b],\,\mathbb{R})^2 \ \mathit{et} \ g \geqslant 0 \ \colon \underset{[\alpha;b]}{Inf}(f) \times \int_{\mathfrak{a}}^b g \leqslant \int_{\mathfrak{a}}^b fg \leqslant \underset{[\alpha;b]}{Sup}(f) \times \int_{\mathfrak{a}}^b g.$
- Si g garde un signe constant sur [a;b] et si f est continue sur [a;b]: $\exists c \in [a;b], \int_a^b fg = f(c) \int_a^b g$.
- On en déduit que si f est continue : $\exists c \in [a;b], \ m=f(c).$
- Si $a \neq b$, la valeur moyenne de f sur (a;b) vaut toujours $m = \frac{1}{b-a} \int_a^b f \, si \, a > b$.

 $\underline{\textit{EXERCICE 3.5}} : \text{D\'eterminer } \lim_{x \to +\infty} \int_{x}^{2x} \frac{\text{th(t)}}{t} dt \text{ (vous avez plusieurs m\'ethodes \`a disposition)}.$

3.1.3 : Théorème fondamental de l'intégration et conséquences

PROPOSITION 3.4:

Soit $a \in I$ et $f : I \to \mathbb{K}$ continue par morceaux, alors la fonction $F : I \to \mathbb{K}$ définie par $\forall x \in I$, $F(x) = \int_a^x f$ est localement lipschitzienne sur I (donc continue) et dérivable en tout $x_0 \in I$ en lequel f est continue avec $F'(x_0) = f(x_0)$.

 $\underline{\textit{EXERCICE 3.6}}$: Tracer la fonction $F:\mathbb{R}\to\mathbb{R}$ définie par $F(x)=\int_0^x \lfloor t\rfloor\,dt$.

THÉORÈME FONDAMENTAL DE L'INTÉGRATION (PREMIÈRE FORME) 3.5:

Soit $\alpha \in I$ et $f: I \to \mathbb{K}$ continue, alors la fonction $F: I \to \mathbb{K}$ définie par : $\forall x \in I$, $F(x) = \int_{\alpha}^{x} f$ est de classe C^{1} et c'est la primitive de f s'annulant en α : F' = f et $F(\alpha) = 0$.

<u>REMARQUE 3.6</u>: On a deux expressions des primitives de $f: I \to \mathbb{K}$ continues (avec $a \in I$ fixé):

- Les fonctions $F: I \to \mathbb{K}$ définies par : $\forall x \in I$, $F(x) = \int_0^x f(t)dt + k$ où $k \in \mathbb{K}$ sont **les** primitives de f.
- Les fonctions $G:I\to \mathbb{K}$ définies par : $\forall x\in I,\ G(x)=\int_{\alpha}^{x}f(t)dt$ où $\alpha\in I$ sont **des** primitives de f.

THÉORÈME FONDAMENTAL DE L'INTÉGRATION (SECONDE FORME) 3.6:

Soit $f: [a;b] \to \mathbb{K}$ continue et F une des primitives de f sur [a;b]: $\int_a^b f(t)dt = [F(t)]_a^b = F(b) - F(a)$.

$$\begin{split} & \underline{\mathit{REMARQUE 3.7}} : \mathit{Si} \ \alpha = \alpha_1 + i\alpha_2 \notin \mathbb{R} : \int_{\alpha}^{\beta} \frac{1}{x-\alpha} dx = \left[\frac{1}{2} \ln \left((x-\alpha_1)^2 + \alpha_2^2\right) + i \, Arctan \left(\frac{x-\alpha_1}{\alpha_2}\right)\right]_{\alpha}^{\beta}. \\ & \mathit{On admet} \ (\alpha \in \mathbb{C} \setminus \mathbb{R} \ \mathit{et} \ n \geqslant 2) \ \mathit{que} \left(-\frac{1}{(n-1)(x-\alpha)^{n-1}}\right)' = \frac{1}{(x-\alpha)^n} \ \mathit{sur} \ \mathbb{R}. \end{split}$$

PROPOSITION 3.7:

Si $f:I\to\mathbb{K}$ continue et $u,v:J\to I$ dérivables, alors l'application $G:J\to\mathbb{K}$ est dérivable si elle est définie par : $\forall x\in J,\ G(x)=\int_{\mathfrak{u}(x)}^{\nu(x)}f(t)dt$ et on a : $\forall x\in J,\ G'(x)=\nu'(x)f\big(\nu(x)\big)-\mathfrak{u}'(x)f\big(\mathfrak{u}(x)\big).$

EXERCICE 3.7: Pour
$$x > 0$$
, on pose $G(x) = \int_{1/x}^{x} \frac{\ln(t)dt}{(1+t)^2}$. Calculer $G(x)$.

EN PRATIQUE : Soit $f: I \to \mathbb{K}$ une fonction continue (I est un <u>intervalle</u> réel), pour étudier une fonction définie à l'aide de f et d'intégrale avec des bornes variables, on se souviendra que :

- La dérivée de $x \mapsto \int_{a}^{x} f(t)dt$ est $x \mapsto f(x)$ sur I si $a \in I$.
- La dérivée de $x\mapsto \int_x^\alpha f(t)dt$ est $x\mapsto -f(x)$ sur I si $\alpha\in I.$
- $\bullet \text{ La d\'eriv\'ee de } x \mapsto \int_{\mathfrak{u}(x)}^{\mathfrak{v}(x)} f(t) dt \text{ est } x \mapsto \mathfrak{v}'(x) f\big(\mathfrak{v}(x)\big) \mathfrak{u}'(x) f\big(\mathfrak{u}(x)\big) \underbrace{\quad \text{sur J si u}, \mathfrak{v} : J \to I \text{ d\'eriv}...}_{}$

70 INTÉGRATION

THÉORÈME 3.8:

Soit $f: I \to \mathbb{K}$ une fonction de classe C^1 , alors si $(a, x) \in I^2$, $f(x) = f(a) + \int_a^x f'(t) dt$.

ORAL BLANC 3.8 : Égalité et inégalité de Young.

Soit $\alpha \in \mathbb{R}_+^*$ et $f:[0;\alpha] \to \mathbb{R}$ dérivable strictement croissante avec f(0)=0.

On pose alors $F:[0;a] \to \mathbb{R}$ telle que $\forall x \in [0;a], \ F(x) = \int_0^x f(t)dt + \int_0^{f(x)} f^{-1}(t)dt - xf(x)dt$

- **a.** Montrer que F est dérivable et calculer sa dérivée. En déduire alors F. **b.** En déduire encore que : $\forall x \in [0; \alpha], \ \forall y \in [0; f(\alpha)], \ \int_0^x f(t) dt + \int_0^y f^{-1}(t) dt \geqslant xy$.
- c. Donner une interprétation géométrique du résultat obtenu.

THÉORÈME SUR L'INTÉGRATION PAR PARTIES ET LE CHANGEMENT DE VARIABLE (ÉNORME) 3.9:

 $\mathbf{Soit}\ \mathfrak{u}, \mathfrak{v}: [\widetilde{\mathfrak{a};\mathfrak{b}}] \to \mathbb{K}\ \mathbf{de}\ \mathbf{classe}\ C^1,\ \mathbf{alors}:\ \int_{\mathfrak{a}}^{\mathfrak{b}} \mathfrak{u}'(t) \mathfrak{v}(t) dt = \left[\mathfrak{u}(t) \mathfrak{v}(t)\right]_{\mathfrak{a}}^{\mathfrak{b}} - \int_{\mathfrak{a}}^{\mathfrak{b}} \mathfrak{u}(t) \mathfrak{v}'(t) dt.$

 $\begin{aligned} &\textbf{Soit}\ (\alpha;b) \in \, \mathbb{R}^2\ \textbf{et}\ \phi: \widetilde{[\alpha;b]} \to \, \mathbb{R}\ \textbf{de classe}\ C^1\ \textbf{et}\ f: I \to \, \mathbb{K}\ \textbf{continue}\ \textbf{(avec}\ \phi\big(\widetilde{[\alpha;b]}\big) \subset I\textbf{), alors par} \\ &\textbf{le changement}\ \textbf{de variable}\ t = \phi(u),\ \textbf{on}\ \textbf{a}: \ \int_{\phi(\alpha)}^{\phi(b)} f(t) dt = \int_{\alpha}^{b} f\big(\phi(u)\big) \phi'(u) du. \end{aligned}$

 $\underline{\text{D\'{E}MONSTRATION}}: \bullet \int_{a}^{b} u'(t)v(t)dt + \int_{a}^{b} u(t)v'(t)dt = \int_{a}^{b} \left(u'(t)v(t)dt + u(t)v'(t)\right)dt = \left[u(t)v(t)\right]_{a}^{b}$ $\operatorname{car} uv'$ et u'v sont continues $\operatorname{sur} [a;b]$, par linéarité de l'intégrale, et par le théorème fondamental de l'intégration.

• f est continue sur I, elle y admet une primitive qu'on note F. f est continue sur $[\phi(a); \phi(b)] \subset \phi([a;b]) \subset I$ et $(f \circ \phi) \times \phi'$ est continue sur [a;b] et admet pour primitive $F \circ \phi$. Toujours par le théorème fondamental de l'intégration, on a : $\int_{\phi(a)}^{\phi(b)} f(t) dt = \left[F(t) \right]_{\phi(a)}^{\phi(b)} = \left[F \circ \phi(u) \right]_{a}^{b} = \int_{a}^{b} f(\phi(u)) \phi'(u) du.$

THÉORÈME SUR LES FORMULE ET INEGALITÉ DE TAYLOR (ÉNORME) 3.10:

 $\mathbf{Soit}\ f: [\widetilde{a;b}] \to \ \mathbb{K}\ \mathbf{de}\ \mathbf{classe}\ C^{n+1},\ \mathbf{on}\ \mathbf{note}\ M_{n+1} = \underbrace{Max}_{x \in [\widetilde{a;b}]} |f^{(n+1)}(t)|\ \mathbf{(qui\ existe\ car}\ f^{(n+1)}\ \mathbf{est}$

continue sur le segment [a; b]), alors la formule de TAYLOR avec reste intégral donne

$$f(b) = f(a) + \dots + \frac{(b-a)^n}{n!} f^{(n)}(a) + \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt.$$

et l'inégalité de Taylor-Lagrange qui en découle est
$$\left|f(b) - \sum_{k=0}^n \frac{f^{(k)}(a)(b-a)^k}{k!}\right| \leqslant \frac{M_{n+1}|b-a|^{n+1}}{(n+1)!}.$$

EXERCICE 3.9: Soit $\alpha \in]0; \pi[$, calcular $\int_0^{\frac{\pi}{2}} \frac{1}{\cos \alpha \cos x + 1} dx$.

THÉORÈME SUR LES SOMMES DE RIEMANN 3.11 :

Si $f: [\widetilde{a;b}] \to \mathbb{K}$ est continue par morceaux, alors avec les subdivisions régulières :

$$\lim_{n\to +\infty} \frac{(b-a)}{n} \sum_{k=0}^{n-1} f\Big(a+k\big(\frac{b-a}{n}\big)\Big) = \lim_{n\to +\infty} \frac{(b-a)}{n} \sum_{k=1}^n f\Big(a+k\big(\frac{b-a}{n}\big)\Big) = \int_a^b f(t)dt.$$

EXEMPLE 3.10: Calcul de $\lim_{n\to+\infty} \sum_{k=1}^{n} \frac{n}{n^2+k^2}$.

<u>REMARQUE HP 3.8</u>: <u>Méthode des rectangles</u>: si f est de classe C¹ sur [a; b], on a la majoration de $\text{l'erreur} \left| \frac{(b-\alpha)}{n} \sum_{k=0}^{n-1} f(\alpha_k) - \int_{\alpha}^{b} f(t) dt \right| \leqslant \frac{M_1(b-\alpha)^2}{2n} \text{ en notant } M_1 = \sup_{x \in [\alpha;b]} |f'(x)| \text{ et } \alpha_k = \alpha + k \Big(\frac{b-\alpha}{n} \Big).$

 $\underline{\text{M\'ethode des trap\`ezes}}: \text{ en notant } T_n = \frac{(b-a)}{n} \sum_{k=0}^{n-1} \frac{1}{2} \Big(f\big(\alpha_k\big) + f\big(\alpha_{k+1}\big) \Big) \text{ si f est de classe } C^2 \text{ sur } \widetilde{[\alpha;b]},$

 $\text{on a la majoration } \left| T_n - \int_a^b f(t) dt \right| \leqslant \frac{M_2 |b-a|^3}{12n^2} \text{ en notant } M_2 = \underset{x \in [a,b]}{\text{Sup}} |f''(x)|.$

 $\underline{\text{M\'ethode de Simpson}}: \text{si f est de classe } C^4 \text{ sur } \widetilde{[a;b]}, \text{ on a la majoration } \left|S_n - \int_a^b f(t)dt\right| \leqslant \frac{M_4 |b-a|^5}{2880n^4}$

 $\text{si on pose } S_n = \frac{(b-\alpha)}{n} \sum_{k=0}^{n-1} \frac{1}{6} \Big(f\big(\alpha_k\big) + 4f\Big(\frac{\alpha_k + \alpha_{k+1}}{2}\Big) + f\big(\alpha_{k+1}\big) \Big) \text{ et en notant } M_4 = \underbrace{Sup}_{x \in \widetilde{[\alpha;b]}} |f^{(4)}(x)|.$

 $\frac{ORAL\ BLANC\ 3.11}{\operatorname{Calculer}\ \lim_{n\to +\infty}\frac{1}{n}\Big(\prod\limits_{k=n+1}^{2n}k\Big)^{\frac{1}{n}}}.$ Centrale PSI 2014 Valentine Joseph

EN PRATIQUE : Calcul de $I=\int_a^b f(x)dx$, on vérifie en premier lieu que la fonction f est continue par morceaux sur le segment [a; b] et :

- I = F(b) F(a) si on connaît une primitive F de f.
- Si f contient des ln et/ou des Arctan.... on peut tenter une intégration par parties.
- Si f est une fraction rationnelle, on la décompose en éléments simples.
- Si f est une fraction rationnelle en e^x , on pose le changement de variable $u = e^x$.
- Si f est une fraction rationnelle en $\sqrt{a+x}$, on pose $u=\sqrt{a+x}$.
- Si f est une fraction rationnelle en $\sqrt{\frac{a\pm x}{b\pm x}}$, on pose $u=\sqrt{\frac{a\pm x}{b\pm x}}$.
- Si f est une fraction rationnelle en $\sqrt{1-x^2}$, on pose $x = \sin(u)$ ou $x = \cos(u)$.
- Si f est une fraction rationnelle en $\sqrt{1+x^2}$ (resp. $\sqrt{x^2-1}$), on pose $x=\mathrm{sh}(u)$ (resp. $x=\mathrm{ch}(u)$).
- Si f est une fraction rationnelle en cos(x) et sin(x), on pose le changement de variable u = sin(x) ou u = cos(x) ou u = tan(x) ou u = tan(x/2).
- On peut en dernier ressort essayer $I = \lim_{n \to +\infty} \frac{(b-a)}{n} \sum_{k=0}^{n-1} f(a+k(\frac{b-a}{n})).$

PARTIE 3.2 : ÉTUDE LOCALE DES FONCTIONS

3.2.1 : Notations de Landau

DÉFINITION 3.7:

Soit $A \subset \mathbb{R}$ et $f,g:A \to \mathbb{K} = \mathbb{R}$ ou \mathbb{C} deux fonctions avec g qui ne s'annule pas sur A. On se donne $a \in \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ qui est un point "adhérent" à A. Tout ce qui suit est au voisinage de a.

- f est négligeable devant g, noté f = o(g) ou f(x) = o(g(x)), si $\lim_{\substack{x \to a \\ x \neq a}} \frac{f(x)}{g(x)} = 0$ (f est un "petit O" de g).
- f est dominée par g, noté f = O(g) ou f(x) = O(g(x)), si $\frac{f}{a}$ bornée au voisinage de a ("grand O").
- f est équivalente à g, noté $f \underset{x \neq a}{\sim} g$ ou $f(x) \underset{x \neq a}{\sim} g(x)$, $si \lim_{\substack{x \rightarrow a \\ x \neq a}} \frac{f(x)}{g(x)} = 1$.

72INTÉGRATION

<u>REMARQUE 3.9</u>: Ceci se traduit avec des quantificateurs par exemple si $\mathfrak{a} \in \mathbb{R}$ (adapter si $\mathfrak{a} = \pm \infty$):

$$\bullet \ \Big(f(x) = o \big(g(x) \big) \Big) \iff \Big(\forall \epsilon > 0, \ \exists \alpha > 0, \ \forall x \in A, \ |x - a| \leqslant \alpha \Longrightarrow |f(x)| \leqslant \epsilon |g(x)| \Big).$$

$$\bullet \ \left(f(x) \mathop{=}\limits_{\alpha} O \big(g(x) \big) \right) \iff \left(\exists m \geqslant 0, \ \exists \alpha > 0, \ \forall x \in A, \ |x - \alpha| \leqslant \alpha \Longrightarrow |f(x)| \leqslant m |g(x)| \right).$$

$$\bullet \left(f(x) \underset{\alpha}{\sim} g(x)\right) \iff \left(\forall \epsilon > 0, \ \exists \alpha > 0, \ \forall x \in A, \ |x - \alpha| \leqslant \alpha \Longrightarrow |f(x) - g(x)| \leqslant \epsilon |g(x)|\right).$$

Les définitions de droite ci-dessus permettent de définir ces notions même si g s'annule sur A.

REMARQUE 3.10 : Traductions simples :

- f(x) = O(1) est équivalent à (f est bornée au voisinage de a).
- f(x) = o(1) est équivalent à $\lim_{x \to a} f(x) = 0$.
- De plus, si $f(x) \sim g(x)$ et que $\lim_{x \to a} g(x) = \ell$ alors on a aussi $\lim_{x \to a} f(x) = \ell$.

THÉORÈME 3.12:

Soit $A \subset \mathbb{R}$ et un point $a \in \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ "adhérent" à A, les fonctions qui suivent seront définies sur A et à valeurs dans $\mathbb{K}=\mathbb{R}$ ou \mathbb{C} certaines ne devront pas s'annuler sur A ; soit $(\lambda_1, \lambda_2) \in \mathbb{K}^2$ et $\varphi : B \to A$ où B est une partie de \mathbb{R} et b est adhérent à B:

(i)
$$f = O(f)$$
, $f \sim f$ et $f \sim g \iff f - g = o(f) \iff g - f = o(g)$

(i)
$$f = O(f)$$
, $f \sim f$ et $f \sim g \iff f - g = o(f) \iff g - f = o(g)$
(ii) $f = o(g) \implies f = O(g)$, $f \sim g \implies f = O(g)$ et $f \sim g \iff g \sim f$.

(iii)
$$(f = O(g) \text{ et } g = O(h)) \Longrightarrow f = O(h) \text{ et } (f \sim g \text{ et } g \sim h) \Longrightarrow f \sim h.$$

(iv)
$$(f = o(g) \text{ et } g = O(h)) \Longrightarrow f = o(h) \text{ et } (f = O(g) \text{ et } g = o(h)) \Longrightarrow f = o(h)$$

(iii)
$$(f = O(g) \text{ et } g = O(h)) \Longrightarrow f = O(h) \text{ et } (f \sim g \text{ et } g \sim h) \Longrightarrow f \sim h.$$

(iv) $(f = o(g) \text{ et } g = O(h)) \Longrightarrow f = o(h) \text{ et } (f = O(g) \text{ et } g = o(h)) \Longrightarrow f = o(h).$
(v) $(f_1 = O(g) \text{ et } f_2 = O(g)) \Longrightarrow \lambda_1 f_1 + \lambda_2 f_2 = O(g) \text{ et } (f_1 = o(g) \text{ et } f_2 = o(g)) \Longrightarrow \lambda_1 f_1 + \lambda_2 f_2 = o(g).$
(vi) $(f_1 = O(g_1) \text{ et } f_2 = O(g_2)) \Longrightarrow f_1 f_2 = O(g_1 g_2) \text{ et } (f_1 \sim g_1 \text{ et } f_2 \sim g_2) \Longrightarrow f_1 f_2 \sim g_1 g_2.$

(vi)
$$(f_1 = O(g_1) \text{ et } f_2 = O(g_2)) \Longrightarrow f_1 f_2 = O(g_1 g_2) \text{ et } (f_1 \sim g_1 \text{ et } f_2 \sim g_2) \Longrightarrow f_1 f_2 \sim g_1 g_2.$$

(vi)
$$(f_1 = O(g_1) \text{ et } f_2 = O(g_2)) \Longrightarrow f_1 f_2 = O(g_1 g_2) \text{ et } (f_1 \underset{\alpha}{\sim} g_1 \text{ et } f_2 \underset{\alpha}{\sim} g_2) \Longrightarrow f_1 f_2 \underset{\alpha}{\sim} g_1 g_2.$$

(vii) $(f_1 = o(g_1) \text{ et } f_2 = O(g_2)) \Longrightarrow f_1 f_2 = o(g_1 g_2) \text{ et } (f_1 = O(g_1) \text{ et } f_2 = o(g_2)) \Longrightarrow f_1 f_2 = o(g_1 g_2).$

(viii)
$$f \sim g \iff \frac{1}{f} \sim \frac{1}{g}$$
 et $(f_1 \sim g_1)$ et $f_2 \sim g_2) \implies \frac{f_1}{f_2} \sim \frac{g_1}{g_2}$.

$$\begin{array}{ll} \textbf{(viii)} & f \sim g \iff \frac{1}{f} \sim \frac{1}{g} \text{ et } \left(f_1 \sim g_1 \text{ et } f_2 \sim g_2\right) \Longrightarrow \frac{f_1}{f_2} \sim \frac{g_1}{g_2}. \\ \textbf{(ix)} & \left(f = o(g) \text{ et } \lim_b \phi = a\right) \Longrightarrow f \circ \phi = o(g \circ \phi) \text{ et } \left(f = O(g) \text{ et } \lim_b \phi = a\right) \Longrightarrow f \circ \phi = O(g \circ \phi). \\ \end{array}$$

(x)
$$(f \underset{a}{\sim} g \text{ et } \lim_{b} \phi = a) \Longrightarrow f \circ \phi \underset{b}{\sim} g \circ \phi.$$

(xi)
$$(f = o(g) \text{ et } g \sim h) \Longrightarrow f = o(h) \text{ et } (f = O(g) \text{ et } g \sim h) \Longrightarrow f = O(h).$$

(xi)
$$(f = o(g) \text{ et } g \sim h) \Longrightarrow f = o(h) \text{ et } (f = O(g) \text{ et } g \sim h) \Longrightarrow f = O(h).$$

(xii) $(f \sim g \text{ et } g = o(h)) \Longrightarrow f = o(h) \text{ et } (f \sim g \text{ et } g = O(h)) \Longrightarrow f = O(h).$
Si f et g sont des fonctions strictement positives et $\alpha \in \mathbb{R}$:

(xiii) Si
$$\alpha > 0$$
, $f \sim g \iff f^{\alpha} \sim g^{\alpha}$, $f = O(g) \iff f^{\alpha} = O(g^{\alpha})$ et $f = o(g) \iff f^{\alpha} = o(g^{\alpha})$.

(xiii) Si
$$\alpha > 0$$
, $f \sim g \iff f^{\alpha} \sim g^{\alpha}$, $f = O(g) \iff f^{\alpha} = O(g^{\alpha})$ et $f = o(g) \iff f^{\alpha} = o(g^{\alpha})$.
(xiv) Si $\alpha < 0$, $f \sim g \iff f^{\alpha} \sim g^{\alpha}$, $f = O(g) \iff g^{\alpha} = O(f^{\alpha})$ et $f = o(g) \iff g^{\alpha} = o(f^{\alpha})$.
(xv) $(f \sim g \text{ et } \lim_{\alpha} f = \ell \in \mathbb{R}_{+} \setminus \{1\}) \implies \ln(f) \sim \ln(g)$.

(xv)
$$(f \sim g \text{ et } \lim_{g \to g} f = \ell \in \overline{\mathbb{R}_+} \setminus \{1\}) \Longrightarrow \ln(f) \sim \ln(g).$$

(xvi) Si f et g sont des fonctions réelles :
$$\lim_{\alpha} (f - g) = 0 \iff e^f \underset{\alpha}{\sim} e^g$$
.

EXERCICE CONCOURS 3.12: Mines PSI 2015 Agatha Courtenay

Soit $f(x) = \frac{\cos x}{\cos x}$ et Γ le graphe de f.

- a. Donner une suite $(x_n)_{n\in\mathbb{N}}$ croissante positive telle que la tangente à Γ en $(x_n, f(x_n))$ passe par O.
- **b.** Donner un développement asymptotique à deux termes de x_n .

3.2.2 : Développements limités

DÉFINITION 3.8:

Soit $f: A \to \mathbb{K} = \mathbb{R}$ ou \mathbb{C} une fonction définie au voisinage de 0 et un entier $n \in \mathbb{N}$. On dit que f possède un **développement limité à l'ordre** n **en** 0 (noté $DL_n(0)$) s'il existe un polynôme P à coefficients dans \mathbb{K} et de degré inférieur ou égal à n tel que $f(x) - P(x) = o(x^n)$ noté $f(x) = P(x) + o(x^n)$.

Ce polynôme P est alors unique et on l'appelle la partie régulière $\mathit{du}\ \mathsf{DL}_n(0).$

 $\underline{\mathit{REMARQUE\ 3.11}}:\ \mathit{Plus\ g\'en\'eralement},\ f\ \mathit{admet\ un\ DL}_n(a)\ \mathit{si}\ f(x) = P(x-a) + o\big((x-a)^n\big).$

PROPOSITION 3.13:

Si f admet un $DL_n(0)$ de partie régulière $P(X) = a_0 + a_1X + \cdots + a_nX^n$ et que $p \in [0;n]$, alors f admet un $DL_p(0)$ de partie régulière $a_0 + a_1X + \cdots + a_pX^p$ (troncature).

Soit $f:A\to \mathbb{K}=\mathbb{R}$ ou \mathbb{C} une fonction définie au voisinage de 0 alors :

 $f \text{ admet un } DL_1(0) \iff f \text{ est d\'erivable en 0. Dans ce cas : } f(h) \mathop{=}\limits_0 f(0) + f'(0)h + o(h).$

<u>REMARQUE 3.12</u>: C'est faux pour les rangs supérieurs, c'est-à-dire que si $p \ge 2$, on n'a pas équivalence, pour f définie au voisinage de 0, entre "f admet un $DL_p(0)$ " et "f admet une dérivée p-ième en 0". La fonction $f: \mathbb{R} \to \mathbb{R}$ telle que $f(x) = x^3 \sin(1/x^2)$ si $x \ne 0$, f(0) = 0 admet un $DL_2(0)$ mais n'est pourtant pas dérivable deux fois dérivables en 0.

PROPOSITION 3.14:

Soit $f: A \to \mathbb{C}$ avec $A \in \mathbb{R}$ symétrique par rapport à 0 et qui possède un développement limité d'ordre $n \in \mathbb{N}$ de partie régulière P, alors :

• f est paire \implies P est pair. • f est impaire \implies P est impair.

THÉORÈME 3.15:

Soit $n \in \mathbb{N}$ et $f: A \to \mathbb{C}$ continue avec $A \subset \mathbb{R}$ et 0 adhérent à A, on suppose que f possède un $DL_n(0)$ donné par : $f(x) = a_0 + a_1x + \cdots + a_nx^n + o(x^n)$ alors en notant $F: A \to \mathbb{C}$ une primitive de f, celle-ci possède un $DL_{n+1}(0)$: $F(x) = F(0) + a_0x + \frac{a_1}{2}x^2 + \cdots + \frac{a_n}{n+1}x^{n+1} + o(x^{n+1})$.

PROPOSITION 3.16:

Soit $n \in \mathbb{N}$, $\lambda \in \mathbb{C}$ et $f,g: A \to \mathbb{C}$ deux fonctions avec $A \subset \mathbb{R}$ et 0 adhérent à A, on suppose que f et g admettent des $DL_n(0)$. Alors λf , f+g, $f \times g$ admettent des $DL_n(0)$ donnés par, si $f(x) = a_0 + a_1x + \cdots + a_nx^n + o(x^n)$ et $g(x) = b_0 + b_1x + \cdots + b_nx^n + o(x^n)$, par:

$$\lambda f(x) = \lambda a_0 + \dots + \lambda a_n x^n + o(x^n)$$

$$f(x) + g(x) = a_0 + b_0 + \dots + (a_n + b_n) x^n + o(x^n)$$

$$f(x) \times g(x) = a_0 b_0 + (a_0 b_1 + a_1 b_0) x + (a_0 b_2 + a_1 b_1 + a_2 b_0) x^2 + \dots + (a_0 b_n + \dots + a_n b_0) x^n + o(x^n)$$

74 _______INTÉGRATION

REMARQUE 3.14:

• La partie principale d'un $DL_n(0)$ d'une fonction f est le premier terme a_rx^r non nul dans sa partie régulière, si $f(x) = a_rx^r + \cdots + a_nx^n + o(x^n)$ avec $a_r \neq 0$ alors : $f(x) \sim a_rx^r \Longrightarrow f(x) = O(x^r)$.

- Soit $n \in \mathbb{N}^*$, $f: A \to \mathbb{R}$ et $g: B \to \mathbb{C}$ telles f et g admettent un $DL_n(0)$ de partie régulière P et Q, alors $g \circ f$ a un $DL_n(0)$ de partie régulière obtenue en ne gardant dans $Q \circ P$ que les termes de degré inférieurs ou égaux à n.
- $\bullet \ \text{Soit} \ n \in \mathbb{N} \ \text{et} \ f : A \to \mathbb{C} \ \text{admettant un } DL_n(0) \ \text{qui commence par } \alpha_0 \neq 0, \ \text{alors en utilisant le } DL_n(0) \ \text{de } u \mapsto \frac{1}{1+u}, \ \frac{1}{f} \ \text{possède un } DL_n(0) \ \text{obtenu en \'ecrivant} \ \frac{1}{f(x)} = \frac{1}{\alpha_0} \times \left(1 + \frac{f(x) \alpha_0}{\alpha_0}\right)^{-1}.$

THÉORÈME DONNANT LA FORMULE DE TAYLOR-YOUNG 3.17:

Soit $n \in \mathbb{N}^*$ et $f: A \to \mathbb{R}$ ou \mathbb{C} définie sur A qui contient 0, si $f^{(n)}(0)$ existe, alors f admet un $DL_n(0)$ donné par $f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$.

PROPOSITION 3.18:

EXEMPLE 3.13: Calculer le DL₄(0) de f(x) définie par $(1 - e^x \sin x) f(x) = \ln(1 + x)$.

PARTIE 3.3: INTÉGRALES CONVERGENTES

3.3.1 : Définitions, propriétés et exemples

DÉFINITION 3.9 :

Soit $a \in \mathbb{R}$, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et $f \in C^0_{\mathfrak{m}}([a; +\infty[, \mathbb{K}), \ si \ x \mapsto \int_a^x f(t)dt \ admet \ une \ limite \ finie \ en \ +\infty, \ on \ dit \ que \ l'intégrale \int_a^{+\infty} f(t)dt \ converge \ en \ +\infty \ et \ on \ définit \int_a^{+\infty} f(t)dt = \lim_{x \to +\infty} \int_a^x f(t)dt \ (notée \ aussi \int_a^{+\infty} f).$ Dans le cas contraire, on dit que l'intégrale $\int_a^{+\infty} f(t)dt$ est divergente $en \ +\infty$.

EXEMPLE 3.15: Calcul de
$$\int_0^{+\infty} \frac{dx}{(x+1)^2(x^2+1)}$$
.

O Plus généralement sur n'importe quel type d'intervalle :

DÉFINITION 3.10:

• Soit $a \in \mathbb{R}$, a < b, $b \in \mathbb{R} \cup \{+\infty\}$ et $f \in C_m^0([a;b[,\mathbb{K}), si \times \mapsto \int_a^x f(t)dt \ admet \ une \ limite \ finie \ en \ b^-, on \ dit \ que \ l'intégrale \int_a^b f(t)dt \ converge \ en b \ (diverge \ en b \ sinon) \ et on \ définit \int_a^b f(t)dt = \lim_{x \to b^-} \int_a^x f(t)dt.$ • Soit $a \in \mathbb{R} \cup \{-\infty\}$, a < b, $b \in \mathbb{R}$ et $f \in C_m^0(]a;b]$, \mathbb{K}), $si \times \mapsto \int_x^b f(t)dt \ admet \ une \ limite \ finie \ en \ a^+$, on \ dit \ que \ l'intégrale \int_a^b f(t)dt \ converge \ en a \ (diverge \ en a \ sinon) \ et on \ définit \int_a^b f(t)dt = \lim_{x \to a^+} \int_x^b f(t)dt.
• Soit $a \in \mathbb{R} \cup \{-\infty\}$, a < b et $b \in \mathbb{R} \cup \{+\infty\}$ et $f \in C_m^0(]a;b[,\mathbb{K})$, on \ dit \ que \ \ l'intégrale \int_a^b f(t)dt \ converge \ (diverge \ sinon) \ s'il \ existe \ c \ e]a;b[\ \ tel \ que \ \ \ les \ \ deux \ intégrales \int_a^c f(t)dt \ et \int_c^b f(t)dt.

Dans \ ce \ cas, \ on \ définit \ l'intégrale \ de \ f \ sur \]a;b[\ \ par \int_a^b f(t)dt \ = \int_a^c f(t)dt \ + \int_c^b f(t)dt.

REMARQUE FONDAMENTALE 3.15:

- $\bullet \; \mathit{Si} \; f \in C^0_\mathfrak{m}([\mathfrak{a};\mathfrak{b}[,\,\mathbb{K}) \; \mathit{et} \; \mathfrak{a}' \in]\mathfrak{a};\mathfrak{b}[\; : \; \int_\mathfrak{a}^\mathfrak{b} \; f \; \mathit{converge} \iff \int_{\mathfrak{a}'}^\mathfrak{b} \; f \; \mathit{converge}. \; \; \mathit{Alors} \; : \; \int_\mathfrak{a}^\mathfrak{b} \; f = \int_\mathfrak{a}^{\mathfrak{a}'} f + \int_{\mathfrak{a}'}^\mathfrak{b} f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}^\mathfrak{b} f = \int_\mathfrak{a}^\mathfrak{a}' f + \int_\mathfrak{a}'^\mathfrak{b} f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}^\mathfrak{b} f = \int_\mathfrak{a}^\mathfrak{a}' f + \int_\mathfrak{a}'^\mathfrak{b} f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}^\mathfrak{b} f = \int_\mathfrak{a}^\mathfrak{a}' f + \int_\mathfrak{a}'^\mathfrak{b} f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}^\mathfrak{b} f = \int_\mathfrak{a}'^\mathfrak{b} f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}^\mathfrak{b} f = \int_\mathfrak{a}'^\mathfrak{b} f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}^\mathfrak{b} f = \int_\mathfrak{a}'^\mathfrak{b} f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}^\mathfrak{b} f = \int_\mathfrak{a}'^\mathfrak{b} f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'^\mathfrak{b} f = \int_\mathfrak{a}'' f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'^\mathfrak{b} f = \int_\mathfrak{a}'' f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathit{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathsf{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathsf{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathsf{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathsf{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathsf{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathsf{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathsf{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathsf{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathsf{converge}. \; \; \mathsf{Alors} \; : \; \int_\mathfrak{a}'' f \; \mathsf{converge}. \; \; \mathsf{Alors} \; : \; \mathsf{Alors$
- $\bullet \; \mathit{Si} \; f \in C^0_{\mathfrak{m}}(]\mathfrak{a};\mathfrak{b}], \; \mathbb{K}) \; \mathit{et} \; \mathfrak{b}' \in]\mathfrak{a};\mathfrak{b}[\; : \; \int_{\mathfrak{a}}^{\mathfrak{b}} f \; \mathit{converge} \iff \int_{\mathfrak{a}}^{\mathfrak{b}'} f \; \mathit{converge}. \; \mathit{Alors} \; : \; \int_{\mathfrak{a}}^{\mathfrak{b}} f = \int_{\mathfrak{a}}^{\mathfrak{b}'} f + \int_{\mathfrak{b}'}^{\mathfrak{b}} f.$
- Dans le cas de l'intervalle ouvert]a;b[, la nature de $\int_a^c f(t)dt$ et de $\int_c^b f(t)dt$ et la valeur de $\int_a^c f(t)dt + \int_c^b f(t)dt$ sont indépendantes de $c \in]a;b[$ ce qui légitime la définition ci-dessus.
- La convergence de l'intégrale de f sur I équivaut à l'existence de limites finies d'une (donc de toute) "primitive" F de f aux bornes de I. Exemple : si f : $[a; +\infty[\to \mathbb{K} \text{ continue}, \int_a^{+\infty} f \text{ converge si et} \text{ seulement si F admet une limite finie en } +\infty \text{ et } \int_a^{+\infty} f = \lim_{x \to +\infty} \left(F(x) F(a)\right) = \left[F(x)\right]_a^{+\infty}.$
- $\bullet \text{ L'ensemble des } f \in C_{\mathfrak{m}}^{0}(]\mathfrak{a};\mathfrak{b}[,\,\mathbb{K}) \text{ telles que } \int_{\mathfrak{a}}^{\mathfrak{b}} f \text{ converge est un sous-espace de } C_{\mathfrak{m}}^{0}(]\mathfrak{a};\mathfrak{b}[,\,\mathbb{K}).$
- Sur ce sous-espace, l'application $f \mapsto \int_a^b f$ est une forme linéaire (même chose sur $[a;b[\ ou\]a;b]$).

76 ______ INTÉGRATION

DÉFINITION 3.11:

 $\mathit{Si} \ \mathfrak{a} < \mathfrak{b} \ \mathit{et} \ \mathit{si} \ \int_{\mathfrak{a}}^{\mathfrak{b}} \mathsf{f}(\mathsf{t}) \mathsf{dt} \ \mathit{converge}, \ \mathit{on} \ \mathit{pose} \ \int_{\mathfrak{b}}^{\mathfrak{a}} \mathsf{f}(\mathsf{t}) \mathsf{dt} = - \int_{\mathfrak{a}}^{\mathfrak{b}} \mathsf{f}(\mathsf{t}) \mathsf{dt}. \ \mathit{Et} \ \int_{\mathfrak{a}}^{\mathfrak{a}} \mathsf{f} = \mathsf{0}.$

 $\underline{REMARQUE~3.16}$: On peut réécrire avec cette notation les résultats précédents :

- D'abord Chasles, si les trois intégrales suivantes de f convergent : $\int_a^b f(t)dt = \int_a^c f(t)dt + \int_c^b f(t)dt$.
- Soit $f \in C^0([a;b[,\mathbb{K}) \text{ et } F \text{ une primitive de } f. \text{ Alors } \int_a^b f(t)dt \text{ converge si et seulement si } F \text{ admet une limite finie en } b^- \text{ (ou } b^+). \text{ Si c'est le cas } \int_a^b f(t)dt = \lim_{x \to b} F(x) F(a) = \big[F(x)\big]_a^b \text{ (abus de notation)}.$
- Soit $f \in C^0(]a;b[,\mathbb{K})$ et F une primitive de f. Alors $\int_a^b f$ converge si et seulement si F admet des limites finies en a^+ et b^- (ou a^- et b^+). Alors : $\int_a^b f = \lim_{x \to b} F(x) \lim_{x \to a} F(x) = \left[F(x)\right]_a^b$.

EXEMPLE 3.16: On a donc $\int_{-\infty}^{+\infty} \frac{dx}{ch(x)} = \pi$.

PROPOSITION 3.19:

Si f est continue par morceaux sur $\widetilde{[a;b[}$ et si $\int_a^b f(t)dt$ converge, alors $\lim_{x\to b}\int_x^b f(t)dt=0$.

REMARQUE 3.17: Ceci s'apparente au reste R_n d'une série convergente qui tend vers 0.

EXERCICE 3.17: Existence et calcul de $\int_0^1 \frac{\ln(t)}{\sqrt{t}} dt$.

 $\underline{\textit{REMARQUE 3.18}}: \bullet \ Si \ \int_{-\infty}^{+\infty} f(t) dt \ \textit{converge alors} \ \underset{x \to +\infty}{\text{lim}} \int_{-x}^{x} f(t) dt = \int_{-\infty}^{+\infty} f(t) dt.$

• $Si \int_0^{+\infty} f(t) dt$ converge alors $\lim_{n \to +\infty} \int_0^n f(t) dt = \int_0^{+\infty} f(t) dt$.

EXEMPLE 3.18: Les réciproques sont fausses : $\forall x > 0$, $\int_{-x}^{x} t dt = 0$ même si $\int_{-\infty}^{+\infty} t dt$ est divergente. De même, $\lim_{n \to +\infty} \int_{0}^{n} \sin(2\pi t) dt = 0$ alors que $\int_{0}^{+\infty} \sin(2\pi t) dt$ est divergente.

DÉFINITION 3.12:

On dit que deux intégrales sont de même nature si elles sont soit simultanément convergentes soit simultanément divergentes.

REMARQUE FONDAMENTALE 3.19 : On peut changer d'intervalle d'intégration :

- $Si f : [a;b] \to \mathbb{K}$ continue par morceaux, soit f_d (resp. f_g et f_{gd}) sa restriction à [a;b[(resp. à]a;b] et à]a;b[), alors les intégrales $\int_a^b f_d$, $\int_a^b f_g$ et $\int_a^b f_{gd}$ convergent et $\int_a^b f = \int_a^b f_d = \int_a^b f_g = \int_a^b f_{gd}$.
- Si $f: [\alpha; +\infty[\to \mathbb{K} \text{ continue par morceaux et si l'intégrale } \int_{\alpha}^{+\infty} f \text{ converge, soit } f_g \text{ la restriction de } f$ à $]\alpha; +\infty[$, alors l'intégrale $\int_{\alpha}^{+\infty} f_g \text{ converge (elles sont de même nature) et } \int_{\alpha}^{+\infty} f = \int_{\alpha}^{+\infty} f_g.$
- Vous pouvez bien sûr adapter les autres types de restrictions qui ne changent ni la convergence ni la valeur de l'intégrale : de] $-\infty$; b[ou de]a; b[par exemple.

<u>ORAL BLANC 3.19</u>: Existence et calcul de $\int_0^{+\infty} \frac{\operatorname{Arctan}(2x) - \operatorname{Arctan}(x)}{x} dx$.

3.3.2 : Fonctions positives et intégrales de référence

PROPOSITION 3.20:

Soit $f:I\to\mathbb{R}_+$ une fonction réelle positive continue par morceaux définie sur un intervalle I. Si $c\in I$, en notant $F_c:I\to\mathbb{R}$ définie par $F_c(x)=\int_c^x f(t)dt$ l'une quelconque de ses "primitives":

- Si I = [a; b[, alors $\int_a^b f(t)dt$ converge si et seulement si F_c est majorée.
- \bullet Si $I=]\alpha;b],$ alors $\int_{\alpha}^{b}f(t)dt$ converge si et seulement si F_{c} est minorée.
- Si I =]a; b[, alors $\int_a^b f(t)dt$ converge si et seulement si F_c est bornée.

EXEMPLE 3.20 : Justifier la convergence de l'intégrale $\int_0^{+\infty} \frac{dx}{\sqrt{x^4+1}}$.

PROPOSITION SUR LA POSITIVITÉ ET LA CROISSANCE DE L'INTÉGRALE 3.21 :

Si f, g: $I \to \mathbb{R}$ sont continues par morceaux telles que $\int_I f$ et $\int_I g$ convergent, $\alpha = Inf(I) \in \mathbb{R} \cup \{-\infty\}$ et $b = Sup(I) \in \mathbb{R} \cup \{+\infty\}$:

- Si f positive, alors $\int_a^b f \ge 0$ (positivité de l'intégrale).
- Si $f \leq g$, alors $\int_a^b f \leq \int_a^b g$ (croissance de l'intégrale).

PROPOSITION DE COMPARAISON (CAS DES FONCTIONS POSITIVES) 3.22:

 $\mathbf{Soit}\ (f,g)\in C^0_{\mathfrak{m}}(I,\,\mathbb{R}_+)^2,\ \mathfrak{a}=Inf(I)\in\,\mathbb{R}\cup\{-\infty\}\ \mathbf{et}\ \mathfrak{b}=Sup(I)\in\,\mathbb{R}\cup\{+\infty\}.\ \mathbf{On\ suppose\ que}\ f\leqslant g:$

- (i) si $\int_a^b g$ converge alors $\int_a^b f$ converge aussi;
- (ii) si $\int_a^b f$ diverge, alors $\int_a^b g$ diverge aussi.

<u>EXEMPLE FONDAMENTAL 3.21</u>: Justifier que $\int_0^1 \ln$ est convergente et déterminer sa valeur.

• Quelques intégrales de référence :

THÉORÈME SUR LES INTÉGRALES DE RIEMANN ET DES EXPONENTIELLES 3.23 :

Soit $\alpha \in \mathbb{R}$ et $f_\alpha: \mathbb{R}^*_+ \to \mathbb{R}_+$ définie par $\forall x>0, \, f_\alpha(x)=\frac{1}{x^\alpha}$:

- $\int_{1}^{+\infty} f_{\alpha}$ converge si et seulement si $\alpha > 1$ (critère de RIEMANN).
- $\int_0^1 f_{\alpha}$ converge si et seulement si $\alpha < 1$ (critère de RIEMANN).

Soit $\lambda \in \mathbb{R}$ et $g_{\lambda}: \mathbb{R}_+ \to \mathbb{R}_+$ par $\forall x \geqslant 0, \ g_{\lambda}(x) = e^{-\lambda x}$:

• $\int_0^{+\infty} g_{\lambda}$ converge si et seulement si $\lambda > 0$.

<u>REMARQUE 3.20</u>: • Seul $\alpha = 1$ est tel que $\int_0^1 f_{\alpha}$ et $\int_1^{+\infty} f_{\alpha}$ divergent: $\int_0^1 \frac{dt}{t}$ et $\int_1^{+\infty} \frac{dt}{t}$ divergent.

$$\bullet \ \text{Si} \ \alpha > 1, \ \int_1^{+\infty} \frac{dx}{x^{\alpha}} = \frac{1}{\alpha - 1}. \ \text{Si} \ \alpha < 1, \ \int_0^1 \frac{dx}{x^{\alpha}} = \frac{1}{1 - \alpha}. \ \text{Si} \ \lambda > 0, \ \int_0^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}.$$

78 ______ INTÉGRATION

3.3.3 : Opérations sur les intégrales convergentes

PROPOSITION 3.24:

Si f est continue sur $[\widetilde{a;b}[$ et si $\int_a^b f(t)dt$ converge : $F:x\mapsto \int_x^b f(t)dt$ est de classe C^1 et F'=-f.

THÉORÈME SUR LA LINÉARITE ET LA RELATION DE CHASLES 3.25:

Soit $f,g:I\to \mathbb{K}$ continues par morceaux et a=Inf(I) ou $-\infty$ et b=Sup(I) ou $+\infty$:

- Si $\int_a^b f$ converge et $\lambda \in \mathbb{K}$, alors $\int_a^b (\lambda f)$ converge et on a $\int_a^b \lambda f = \lambda \int_a^b f$.
- Si $\int_a^b f$ et $\int_a^b g$ convergent, alors $\int_a^b (f+g)$ converge et on a $\int_a^b (f+g) = \int_a^b f + \int_a^b g$.
- Si $\int_a^b f$ converge et $\int_a^b g$ diverge, alors $\int_a^b (f+g)$ diverge.
- Si $\int_a^b f$ converge et $c \in I$: $\int_a^b f = \int_a^c f + \int_c^b f$ (relation de Chasles).

 $\underline{REMARQUE~3.21}:~On~a~\int_a^b(f+g)=\int_a^bf+\int_a^bg,~si~\text{deux~des~trois~int\'egrales~convergent}.$

EXEMPLE 3.22: On ne peut pas écrire
$$\int_0^{+\infty} \frac{1 - \cos(x)}{x^2} dx = \int_0^{+\infty} \frac{1}{x^2} dx - \int_0^{+\infty} \frac{\cos(x)}{x^2} dx.$$

 $\underline{\textit{EXEMPLE FONDAMENTAL 3.23}} : \text{ Calcul de } \int_0^{+\infty} e^{-t} \sin(\alpha t) dt \text{ pour } \alpha \in \mathbb{R}.$

THÉORÈME DE CHANGEMENT DE VARIABLE 3.26:

Soit $f \in C^0(]a; b[, \mathbb{K})$ et $\varphi :]\alpha; \beta[\to]a; b[$ une bijection strictement croissante de classe C^1 :

- Les intégrales $\int_a^b f(x)dx$ et $\int_a^\beta f \circ \phi(t)\phi'(t)dt$ sont de même nature.
- \bullet Dans le cas de la convergence : $\int_{\alpha}^{b}f(x)dx=\int_{\alpha}^{\beta}f\circ\phi(t)\phi'(t)dt.$

EXERCICE CLASSIQUE 3.24: Existence et valeur de
$$I = \int_1^{+\infty} \frac{dt}{t^2 \sqrt{1+t^2}}$$
.

<u>REMARQUE 3.24</u>: On peut proposer plusieurs adaptations du théorème de changement de variable :

- On a le même résultat si $f \in C^0([a;b], \mathbb{K})$ et $\varphi :]\alpha; \beta] \to]a; b]$ est bijective, C^1 et strictement croissante.
- Même chose si $f \in C^0([\mathfrak{a};\mathfrak{b}[,\mathbb{K}) \text{ et } \phi: [\alpha;\beta[\to [\mathfrak{a};\mathfrak{b}[\text{ est bijective, } C^1 \text{ et strictement croissante.}$
- La remarque 3.23 s'applique aussi $\varphi:]a;b] \to [\alpha;\beta[\ ou\ \varphi:]a;b] \to [\alpha;\beta[\ strictement\ décroissante.$

THÉORÈME D'INTÉGRATION PAR PARTIES 3.27 :

Soit $f,g:]\widetilde{a;b}[\to \mathbb{K}$ deux fonctions de classe C^1 , si les deux limites $\lim_{x\to a} f(x)g(x)$ et $\lim_{x\to b} f(x)g(x)$ existent et sont finies, on note $[f(x)g(x)]_a^b = \lim_{x\to b} f(x)g(x) - \lim_{x\to a} f(x)g(x)$:

- existent et sont finies, on note $[f(x)g(x)]_a^b = \lim_{x \to b} f(x)g(x) \lim_{x \to a} f(x)g(x)$:

 Les deux intégrales $\int_a^b f'(x)g(x)dx$ et $\int_a^b f(x)g'(x)dx$ sont de même nature.
 - Si elles convergent : $\int_a^b f'(x)g(x)dx = [f(x)g(x)]_a^b \int_a^b f(x)g'(x)dx$.

EXEMPLE 3.25: Convergence et calcul de
$$\int_0^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) dt$$
.

<u>REMARQUE 3.25</u>: On admet provisoirement (pour le point méthode qui suit) que si $\int_a^b |f|$ converge (on dit que f est intégrable sur]a; b[ou]a; b] ou [a; b[) alors $\int_a^b f$ aussi.

$$\label{eq:entropy} \begin{split} &EN\ PRATIQUE: Soit\ f: I \to \mathbb{K},\ pour\ montrer\ la\ convergence\ de\ l'intégrale\ \int_{\mathfrak{a}}^{\mathfrak{b}} f(t)dt\ où\ \mathfrak{a} = Inf(I)\ ou\ -\infty \\ &et\ \mathfrak{b} = Sup(I)\ ou\ +\infty,\ on\ commence\ par\ vérifier\ que\ f\ est\ bien\ continue\ par\ morceaux\ sur\ I\ : \end{split}$$

- On vérifie si des arguments de comparaison (avec critère de RIEMANN la plupart du temps) peuvent montrer directement l'intégrabilité de f sur I.
- On montre l'existence des limites de la "primitive" $x\mapsto \int_c^x f$ aux bornes de I $(c\in I)$.
- Si f est positive, on montre qu'une telle "primitive" est majorée, minorée, ou bornée.
- On effectue un changement de variable licite sans changer la nature de l'intégrale.
- On fait une intégration par parties en vérifiant l'existence des limites du "crochet" aux bornes pour se ramener à une fonction intégrable.
- On peut effectuer un développement limité (en a=0 souvent) ou asymptotique (en $\pm\infty$) pour exprimer f comme la somme d'une fonction dont la convergence de l'intégrale est plus classique et d'une fonction intégrable.
- $\bullet \ \text{Si I} = [a;b[, \ \text{on peut trouver une suite strictement croissante} \ (x_n)_{n \in \mathbb{N}} \ \text{telle que l'on ait} \ x_0 = a \ \text{et} \\ \lim_{n \to +\infty} x_n = b \ \text{et qui v\'erifie} \sum_{n \geqslant 0} \int_{x_n}^{x_{n+1}} f \ \text{converge avec en plus} \lim_{n \to +\infty} \int_{x_n}^{x_{n+1}} |f| = 0.$

<u>REMARQUE 3.26</u>: Le dernier point n'est pas au programme : soit $\varepsilon > 0$, posons $S = \sum_{n=0}^{+\infty} \int_{x_n}^{x_{n+1}} f$.

•
$$\exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ \left| \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} f - S \right| \leqslant \frac{\varepsilon}{2}$$

•
$$\exists n_1 \in \mathbb{N}, \ \forall n \geqslant n_1, \ 0 \leqslant \int_{x_n}^{x_{n+1}} |f| \leqslant \frac{\varepsilon}{2}.$$

$$\bullet \ n_2 = Max(n_0,n_1), \ \forall x \in \left[x_{n_2}; b\right[, \ \exists ! n \geqslant n_2, \ x_n \leqslant x < x_{n+1}, \ \left|\int\limits_{\alpha}^{x} f - S\right| \leqslant \left|\sum\limits_{k=0}^{n-1} \int\limits_{x_k}^{x_{k+1}} f - S\right| + \left|\int\limits_{x_n}^{x} f\right| \leqslant \epsilon.$$

EXERCICE CONCOURS 3.26: Centrale PSI 2018

- a. Étudier la convergence de $\int_1^{+\infty} \frac{\cos u}{u} du.$
- $\mathbf{b.} \ \mathrm{Soit} \ (\alpha,\beta) \in (\,\mathbb{R}_+^*)^2. \ \mathrm{\acute{E}tudier} \ l'existence \ \mathrm{de} \ I(\alpha,\beta) = \int_0^{+\infty} \frac{\cos(\alpha u) \cos(\beta u)}{u} du. \ \mathrm{En \ donner \ la \ valeur}.$

EN PRATIQUE: Soit $f: I \to \mathbb{K}$, pour calculer $\int_{\mathfrak{a}}^{\mathfrak{b}} f(t)dt$ où $\mathfrak{a} = Inf(I)$ ou $-\infty$ et $\mathfrak{b} = Sup(I)$ ou $+\infty$, on commence par vérifier que f est bien continue par morceaux sur I:

- On détermine une de ses "primitives" F et on calcule $\int_{\alpha}^{b} f(t)dt = \lim_{x \to b^{-}} F(x) \lim_{x \to a^{+}} F(x)$.
- On utilise la linéarité en vérifiant la convergence de chacune des intégrales écrites.
- On effectue un changement de variable licite, les mêmes que pour sur un segment.
- On effectue une intégration par parties pour se débarrasser des ln, Arctan....
- On passe par les complexes s'il y a des cos et des sin dans l'intégrale.

PARTIE 3.4 : FONCTIONS INTÉGRABLES

3.4.1 : Définitions, propriétés et exemples

DÉFINITION 3.13:

Soit I un intervalle, $f: I \to \mathbb{K}$ continue par morceaux, $a = Inf(I) \in \mathbb{R} \cup \{-\infty\}$ et $b = Sup(I) \in \mathbb{R} \cup \{+\infty\}$; on dit que l'intégrale $\int_a^b f(t)dt$ est absolument convergente $si \int_a^b |f(t)|dt$ converge.

THÉORÈME 3.28:

Soit f continue par morceaux sur I, $\alpha = Inf(I) \in \mathbb{R} \cup \{-\infty\}$ et $b = Sup(I) \in \mathbb{R} \cup \{+\infty\}$. Si $\int_{\alpha}^{b} f$ converge absolument, alors $\int_{\alpha}^{b} f$ converge et $\left|\int_{\alpha}^{b} f\right| \leqslant \int_{\alpha}^{b} |f|$ (inégalité triangulaire).

DÉFINITION 3.14:

Une fonction continue par morceaux f sur un intervalle I est dite **intégrable** sur I si son intégrale sur I est absolument convergente. On note $\int_I f = \int_a^b f$ où $a = Inf(I) \in \mathbb{R} \cup \{-\infty\}$ et $b = Sup(I) \in \mathbb{R} \cup \{+\infty\}$.

<u>REMARQUE FONDAMENTALE 3.27</u>: Si f est continue par morceaux sur [a; b[et $a' \in]a; b[$, alors f est intégrable sur [a; b[si et seulement si elle l'est sur [a'; b[. Dans ce cas, on a $\int_{[a; b[} f = \int_{[a; a']} f + \int_{[a'; b[} f .$ On adapte ce résultat aux intervalles du type]a; b[et]a; b[.

<u>REMARQUE 3.28</u> : • Si f : I $\rightarrow \mathbb{R}_+$, l'intégrabilité de f équivaut à la convergence de \int_a^b f.

- C'est aussi le cas par exemple si $f: \mathbb{R}_+ \to \mathbb{R}$ et si f reste positive au voisinage de $+\infty$.
- Si f est à valeurs complexes sur I, f est intégrable sur I si et seulement si ses parties réelle et imaginaire sont intégrables sur I et on a alors $\int_I f = \int_I \operatorname{Re}(f) + i \int_I \operatorname{Im}(f)$.

PROPOSITION 3.29:

 $\textbf{Soit} \ f:I \to \mathbb{K} \ \underline{\textbf{continue}} \ \textbf{et intégrable sur} \ I \ \textbf{non réduit à un point.} \ \textbf{Alors}: \ \int_I |f| = 0 \Longleftrightarrow f = \textbf{0.}$

EXEMPLE 3.27: Montrer, si $\int_0^1 f^4 = \int_0^1 f^3 = \int_0^1 f^2$, que $f:[0;1] \to \mathbb{R}$ continue est constante.

<u>REMARQUE 3.29</u>: <u>Relation entre intégrabilité et limite</u>: f continue par morceaux sur I

- Si I = [a; b[est un intervalle borné et si f est bornée sur I (en particulier si f admet une limite finie en b) alors f est intégrable sur I. Mais on peut avoir f intégrable sur I sans que f ne soit bornée sur I.
- Si $I = [\alpha; +\infty[$ n'est pas bornée, il n'y a aucun lien entre l'intégrabilité de f sur I et le fait que f tende vers 0 en $+\infty$; $t \mapsto \frac{1}{t}$ tend vers 0 en $+\infty$ mais n'est pas intégrable sur $[1; +\infty[$ et exemple suivant.
- Une implication : si f est intégrable sur $I = [a; +\infty[$ et si f admet une limite ℓ en $+\infty$ alors $\ell = 0$.

EXEMPLE FONDAMENTAL 3.28: Soit la fonction $f: \mathbb{R}_+ \to \mathbb{R}_+$ telle que $f(x) = 2^n$ si $n \in \mathbb{N}^*$ et $x \in \left[n - \frac{1}{2^{2n}}; n + \frac{1}{2^{2n}}\right]$ et 0 sinon, alors f est intégrable sur \mathbb{R}_+ et on trouve $\int_{\mathbb{R}_+} f = 2$ bien que la fonction f ne tende pas vers 0 en $+\infty$.

3.4.2 : Comparaison

THÉORÈME DE COMPARAISON (ÉNORME) 3.30:

- Soit $(f,g) \in C^0_{\mathfrak{m}}(I,\, \mathbb{K})^2$ telles que $|f| \leqslant |g|$:
 - (i) si g est intégrable sur I alors f l'est aussi ;
 - (ii) si f n'est pas intégrable sur I alors g non plus.
- Soit $(f,g) \in C_m^0(I, \mathbb{K})^2$ avec I = [a;b[avec $b \in \mathbb{R} \cup \{\pm \infty\}$ (et $a \in I$ donc $a \in \mathbb{R}$)
 - (iii) Si f = O(g) (ou f = o(g)) alors : $(g \text{ intégrable sur } I) \Longrightarrow (f \text{ intégrable sur } I)$.
 - (iv) Si $f \underset{b}{\sim} g$ alors : (f intégrable sur $I) \Longleftrightarrow (g$ est intégrable sur I).

EXEMPLE 3.29: Nature de
$$\int_0^{+\infty} (t+2-\sqrt{t^2+4t+1})dt$$
.

<u>REMARQUE 3.30</u>: Il suffit que ces renseignements soient établis au voisinage des bornes de I pour que le résultat d'intégrabilité demeure. Par exemple, si f, g : $[0; +\infty[$ sont continues par morceaux et qu'il existe c>0 tel que : $\forall x\geqslant c, \ |f(x)|\leqslant |g(x)|, \ alors: g intégrable sur <math>\mathbb{R}_+$ implique f intégrable sur \mathbb{R}_+ .

EXEMPLE FONDAMENTAL 3.30 : $\int_0^{+\infty} e^{-x^2} dx$ (appelée intégrale de GAUSS) converge.

PROPOSITION 3.31:

Soit $a \in \mathbb{R}$, $f \in C_m^0([a; +\infty[$, $\mathbb{C})$ et $\alpha \in \mathbb{R}$, alors on a les résultats suivants :

- si $\exists k \neq 0$, $f(t) \underset{+\infty}{\sim} \frac{k}{t^{\alpha}}$: (f intégrable sur $[a; +\infty[$) \iff $(\alpha > 1)$.
- $\bullet \ \mathbf{si} \ \alpha > 1, \ f(t) \underset{+\infty}{=} O\left(\frac{1}{t^{\alpha}}\right) \ \textbf{(en particulier si} \ \underset{t \to +\infty}{\lim} t^{\alpha} |f(t)| = 0 \textbf{) :} \ f \ \textbf{intégrable sur} \ [\alpha; +\infty[...]$
- si $\alpha \leqslant 1$, $\exists k > 0$, $|f(t)| \geqslant \frac{k}{t^{\alpha}}$ au voisinage de $+\infty$ (en particulier si $\lim_{t \to +\infty} t^{\alpha} f(t) = +\infty$): n'est pas intégrable sur $[\alpha; +\infty[$.

Soit a > 0, $f \in C_m^0(]0; a]$, \mathbb{C}) et $\alpha \in \mathbb{R}$, alors:

- si $\exists k \neq 0$, $f(t) \underset{0+}{\sim} \frac{k}{t^{\alpha}}$: (f intégrable sur $]0; \alpha]$) \iff $(\alpha < 1)$.
- si $\alpha < 1$ et $f(t) = O\left(\frac{1}{t^{\alpha}}\right)$ (en particulier si $\lim_{t \to 0^+} t^{\alpha} f(t) = 0$) : f intégrable sur $]0; \alpha]$.
- si $\alpha\geqslant 1$, $\exists k>0$, $|f(t)|\geqslant \frac{k}{t^{\alpha}}$ au voisinage de 0 (en particulier si $\lim_{t\to 0^+}t^{\alpha}|f(t)|=+\infty$): f n'est pas intégrable sur $]0;\alpha]$.

82 ______ INTÉGRATION

EXERCICE CONCOURS 3.31: CCP PSI 2013 Mathieu Brandy

Montrer que la fonction $f: t \mapsto \ln\left(1 - \frac{1}{t^2}\right)$ est intégrable sur]1; $+\infty$ [. Calculer $\int_1^{+\infty} f$.

REMARQUE 3.31:

- Si $\alpha \in \mathbb{R}$ et $\alpha \in \mathbb{R}$, la fonction $x \mapsto \frac{1}{|x \alpha|^{\alpha}}$ est intégrable en α (resp. en $+\infty$) si et seulement si $\alpha < 1$ (resp. si $\alpha > 1$) (on peut utiliser ce résultat directement).
- Plus généralement, la fonction $x \mapsto f(x)$ est intégrable en a^+ si et seulement si $t \mapsto f(a+t)$ l'est en 0^+ et elle l'est en b^- si et seulement si $t \mapsto f(b-t)$ l'est en 0^+ .

<u>ORAL BLANC 3.32</u>: À quelle condition sur $\alpha \in \mathbb{R}$ a-t-on convergence de $\int_0^{+\infty} \frac{t - \ln(1+t)}{t^{\alpha}} dt$?

PROPOSITION SUR LES INTÉGRALES DE BERTRAND 3.32:

- $\bullet \ \mathbf{Soit} \ (\alpha,\beta) \in \mathbb{R}^2, \ \int_2^{+\infty} \frac{dt}{t^{\alpha} (\ln t)^{\beta}} \ \mathbf{est \ convergente \ si \ et \ seulement \ si} \ \alpha > 1 \ \mathbf{ou} \ (\alpha = 1 \ \mathbf{et} \ \beta > 1).$
- Soit $(\alpha, \beta) \in \mathbb{R}^2$, $\int_0^{\frac{1}{2}} \frac{dt}{t^{\alpha} |\ln t|^{\beta}}$ est convergente si et seulement si $\alpha < 1$ ou $(\alpha = 1$ et $\beta > 1)$.

<u>REMARQUE 3.32</u>: C'est tellement classique qu'il faut connaître ces résultats par cœur mais c'est néanmoins hors-programme donc il faut savoir le démontrer.

EXERCICE CONCOURS 3.33: Nature selon \mathfrak{a} et \mathfrak{b} réels de $\int_{\mathfrak{0}}^{+\infty} \frac{\mathfrak{t}^{\mathfrak{a}}}{1+\mathfrak{t}^{\mathfrak{b}}} d\mathfrak{t}$.

ORAL BLANC 3.34:

Soit a > 0, avec le changement de variable $u = \frac{a}{t}$, calculer $I(a) = \int_0^{+\infty} \frac{\ln t}{a^2 + t^2} dt$.

On choisira $(u_n)_{n\in\mathbb{N}}$ en fonction de $f:u_n=n\pi$ par exemple si f contient sin et/ou cos et si $I=\mathbb{R}_+$.

 $\underline{EXERCICE\ CLASSIQUE\ 3.35}$: L'intégrale de Fresnel $\int_0^{+\infty} \cos(\mathsf{t}^2) d\mathsf{t}$ est semi-convergente.

EN PRATIQUE : Soit $f: I = [a; b] \to \mathbb{K}$ continue par morceaux, pour montrer que f est intégrable sur I :

- Si f est positive, on utilise les techniques sur la convergence des intégrales.
- On utilise le théorème de comparaison en trouvant g de référence intégrable sur I telle que $|f| \le |g|$ ou f = O(g) ou f =
- Dans la plupart des cas, on calcule $\lim_{x\to 0^+} x^\alpha f(x)$ ou $\lim_{x\to +\infty} x^\alpha f(x)$ en fonction de α et on utilise le critère de RIEMANN et la position de α par rapport à 1.
- $\bullet \ \ \text{On montre la convergence de} \ \sum_{n\geqslant 0} \int_{\mathfrak{u}_n}^{\mathfrak{u}_{n+1}} |f| \ \ o\grave{u} \ \mathfrak{u}_0 \in I \ \ \text{et} \ \lim_{n\to +\infty} \mathfrak{u}_n = \mathfrak{b}.$

3.4.3 : Intégrales semi-convergentes

DÉFINITION 3.15:

Soit $f: I \to \mathbb{K}$ continue par morceaux, $a = Inf(I) \in \mathbb{R} \cup \{-\infty\}$ et $b = Sup(I) \in \mathbb{R} \cup \{+\infty\}$, si l'intégrale $\int_a^b f$ est convergente mais que f n'est pas intégrable sur I, on dit que l'intégrale $\int_a^b f$ est semi-convergente.

<u>REMARQUE FONDAMENTALE 3.34</u> : Si f n'est pas réelle positive (ou négative), on ne peut pas utiliser l'équivalent dans le théorème de comparaison.

EXEMPLE FONDAMENTAL 3.36: Soit $\alpha \in \mathbb{R}^*_+$ et $\alpha \in \mathbb{R}^*$, alors:

- $\bullet \ \int_1^{+\infty} \frac{e^{i\alpha t}}{t^{\alpha}} dt \ {\rm converge \ absolument \ si \ et \ seulement \ si} \ \alpha > 1.$
- $\bullet \ \int_1^{+\infty} \frac{e^{i\,\alpha t}}{t^{\,\alpha}} dt \ \mathrm{est \ seulement \ semi-convergente \ si} \ \alpha \in]0;1].$

3.4.4 : Comparaison série-intégrale

<u>REMARQUE 3.35</u>: Le théorème suivant, pourtant essentiel, est hors programme en l'état. C'est l'idée dont il faut s'imprégner : étudier la monotonie de f, faire des dessins, encadrer, sommer et conclure à une convergence, une divergence ou un équivalent.

PROPOSITION DE COMPARAISON SÉRIE-INTÉGRALE 3.33:

Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ une fonction continue par morceaux, positive et décroissante. La série $\sum\limits_{n\geqslant 0}f(n)$ converge si et seulement si f est intégrable sur \mathbb{R}_+ .

EXERCICE CONCOURS 3.38 : Centrale PSI 2013

Pour $n \geqslant 2$, soit $u_n = \sum\limits_{k=2}^n \frac{1}{k \ln(k) + \cos^2(n)}$. Déterminer un équivalent de u_n quand $n \to +\infty$.

3.4.5 : Espaces de fonctions intégrables

DÉFINITION 3.16:

On note $L^1(I, \mathbb{K})$ l'ensemble des fonctions continues par morceaux et intégrables sur I à valeurs dans \mathbb{K} .

<u>REMARQUE 3.36</u>: Même si la définition est hors programme, on peut aussi définir $L^2(I, \mathbb{K})$ l'ensemble des fonctions $f \in C^0_{\mathfrak{m}}(I, \mathbb{K})$ de carré intégrable sur I ($|f|^2$ est intégrable).

84 _______INTÉGRATION

PROPOSITION SUR LA LINÉARITÉ DE L'INTÉGRALE, LA RELATION DE CHASLES ET L'INÉGALITE DE CAUCHY-SCHWARZ 3.34 :

- $\bullet \ L^1(I,\,\mathbb{K}) \ \text{est un sous-espace de} \ C^0_{\mathfrak{m}}(I,\,\mathbb{K}) \ \text{où} \ f \mapsto \int_I f \ \text{est une forme linéaire} \ ; \ \mathbf{c'est-\grave{a}-dire} \ \mathbf{que} \ \mathbf{si} \\ (\alpha,\beta) \in \mathbb{K}^2 \ \mathbf{et} \ (f,g) \in L^1(I,\,\mathbb{K})^2 \ \mathbf{alors} \ \alpha f + \beta g \in L^1(I,\,\mathbb{K}) \ \mathbf{et} \ \int_I (\alpha f + \beta g) = \alpha \int_I f + \beta \int_I g.$
- Soit $f \in C^0_\mathfrak{m}(I, \mathbb{K})$ et $c \in I$. Alors f est intégrable sur I si et seulement si f est intégrable sur $I \cap]-\infty;c]$ et sur $I \cap [c\,;+\infty[$. Dans ce cas, on a $\int_I f = \int_{I \cap]-\infty;c]} f + \int_{I \cap [c\,;+\infty[} f$.
- Si $(f,g) \in L^2(I, \mathbb{K})^2$ alors $f \times g \in L^1(I, \mathbb{K})$.
- \bullet $L^2(I,\,\mathbb{K})$ est un sous-espace vectoriel de $C^0_{\mathfrak{m}}(I,\,\mathbb{K}).$
- $\bullet \ \mathbf{In\'egalit\'e} \ \mathbf{de} \ \mathrm{Cauchy-Schwarz} : \ (f,g) \in L^2(I,\, \mathbb{K}) \Longrightarrow \Big| \int_I fg \Big| \leqslant \sqrt{\int_I |f|^2} \, \sqrt{\int_I |g|^2}.$

<u>REMARQUE 3.37</u> : Il n'y a pas d'inclusion en général entre $L^1(I,\,\mathbb{K})$ et $L^2(I,\,\mathbb{K})$:

- $t \mapsto \frac{1}{t}$ est de carré intégrable sur $[1; +\infty[$ mais n'y est pas intégrable.
- $t\mapsto \frac{1}{\sqrt{t}}$ est intégrable sur]0;1] mais n'y est pas de carré intégrable.

REMARQUE 3.38:

- Si I contient au moins deux valeurs distinctes et si $\mathbb{K} = \mathbb{R}$, $(f,g) \mapsto \int_I fg$ définit un produit scalaire sur $L^2(I,\mathbb{R}) \cap C^0(I,\mathbb{R})$ (fonctions continues de carré intégrable sur I).
- Si l'intervalle I est borné et si f de carré intégrable sur I, alors f est intégrable par l'inégalité de Cauchy-Schwarz. Alors par exemple : $\int_{[\mathfrak{a};\mathfrak{b}[}|f|\leqslant \sqrt{\mathfrak{b}-\mathfrak{a}}\,\sqrt{\int_{[\mathfrak{a};\mathfrak{b}[}|f|^2}.$

<u>EXERCICE CLASSIQUE 3.39</u>: Soit $f: \mathbb{R}_+ \to \mathbb{R}$ de classe C^2 . On suppose f et f'' intégrables sur \mathbb{R}_+ . Montrer que $\lim_{x \to +\infty} f'(x) = 0$. Montrer que ff' est intégrable sur \mathbb{R}_+ . En déduire $\lim_{x \to +\infty} f(x)$.

COMPÉTENCES

- dire qu'une fonction est continue (ou continue par morceaux) pour parler de son intégrale.
- montrer la convergence d'une intégrale par l'intégrabilité si c'est possible.
- manipuler les équivalents, dominations, majorations pour établir l'intégrabilité.
- retenir toutes les primitives et fonctions usuelles et les intégrales de référence.
- montrer la semi-convergence d'une intégrale par une intégration par parties avec bon choix de la constante d'intégration pour assurer la limite du "crochet".
- étudier une fonction dont la variable est dans les bornes d'une intégrale.
- calculer efficacement lors des intégrations par parties, changement de variables, formule de TAYLOR.
- penser lors des calculs d'équivalents ou de limites d'intégrales à :
 - minorer et/ou majorer par des intégrales plus simples à calculer.
 - la comparaison série-intégrale dans le cas d'une fonction monotone.
 - une intégration par parties pour faire "sortir" le terme prépondérant.
- utiliser les inégalités triangulaire et de Cauchy-Schwarz pour majorer.