CHAPITRE 5 RÉDUCTION

 \bigcirc L'objectif dans ce chapitre, pour un endomorphisme u sur un espace vectoriel de dimension finie E, est de trouver des bases $\mathcal B$ telles que les matrices de u dans $\mathcal B$ soient les plus simples possibles : diagonales, triangulaires, diagonales par blocs, triangulaires par blocs....

En d'autres termes, par la formule de changement de bases, il s'agit de trouver, parmi toutes les matrices semblables à une matrice carrée, la matrice la plus simple.

Cette théorie de la "réduction" est connue depuis la deuxième moitié du XIX^e siècle, elle a été développée par Karl WEIERSTRASS (allemand 1815-1897), Léopold KRONECKER (allemand 1823-1891) et Camille JORDAN (français 1838-1922) ; KRONECKER et JORDAN se sont d'ailleurs écharpés épistolairement quant à la paternité de sa découverte.

En 1878, Georg Frobenius (allemand 1849-1917) élargit la théorie pour englober les résultats de ses prédécesseurs et donne une réduction universelle de tout endomorphisme sur tout corps, il établit la preuve du théorème de Cayley-Hamilton de Arthur Cayley (anglais 1838-1922) et William Rowan Hamilton (irlandais 1805-1865) qui aurait du porter son nom. Il signe avec Oscar Perron (allemand 1880-1975) un théorème sur les valeurs et vecteurs propres de certaines matrices qui trouvera son application principale en probabilités pour préciser l'évolution des chaînes de Markov (Andreï Markov, russe 1856-1922).

Il y a différents types de réduction des matrices carrées (ou des endomorphismes en dimension finie bien sûr) : celles de Jordan ou Frobenius, celles de Dunford (dûe à Chevalley!), les décompositions LU, QR, de Cholesky... chacune répondant à une exigence particulière de calcul numérique.

On trouve des applications importantes de la réduction en mécanique quantique où les observables (position, vitesse, énergie,...) sont des opérateurs sur l'espace vectoriel des fonctions d'onde, et les valeurs propres de ces opérateurs jouent un rôle fondamental dans cette théorie.

TABLE DES MATIÈRES

Programme officiel		page 104
Partie 1 : éléments propres		
2 : valeurs pro3 : polynôme o4 : théorème d	pres et vecteurs propres d'un endomorphisme pres et vecteurs propres d'une matrice carrée caractéristique e Cayley-Hamilton nultiplicité des valeurs propres	page 107 page 107 page 107 page 109
Partie 2 : réduction en dime	ension finie	
- 2 : polynômes - 3 : commutation	tion	

 \bigcirc Dans tout ce chapitre, $\mathbb K$ désignera le corps commutatif $\mathbb R$ ou $\mathbb C$.

PROGRAMME

La réduction des endomorphismes et des matrices carrées permet d'approfondir les notions étudiées en première année. Il est attendu des étudiants qu'ils maîtrisent les deux points de vue suivants :

- l'aspect géométrique (sous-espaces stables, éléments propres) ;
- l'aspect algébrique (utilisation de polynômes annulateurs).

L'étude des classes de similitude est hors programme ainsi que la notion de polynôme minimal.

1 : Éléments propres

Contenus	Capacités & Commentaires	
Droite stable par un endomorphisme.		
Valeur propre, vecteur propre (non nul),	Équation aux éléments propres $\mathfrak{u}(x)=\lambda x.$ Si \mathfrak{u} et ν	
sous-espace propre d'un endomorphisme.	commutent, les sous-espaces propres de $\mathfrak u$ sont stables par $\nu.$	
Spectre d'un endomorphisme en dimension	Notation $Sp(u)$.	
finie.	La notion de valeur spectrale est hors programme.	
La somme d'une famille finie de sous-espaces	Toute famille finie de vecteurs propres associés à	
propres d'un endomorphisme est directe.	des valeurs propres distinctes est libre.	
Si un polynôme P annule $\mathfrak u,$ toute valeur	Si $u(x) = \lambda x$, alors $P(u)(x) = P(\lambda)x$.	
propre de u est racine de P.		
Valeur propre, vecteur propre, sous-espace	Équation aux éléments propres $AX = \lambda X$.	
propre et spectre d'une matrice carrée.		

2 : Polynôme caractéristique

Contenus	Capacités & Commentaires
Polynôme caractéristique d'une matrice carrée, d'un	Par convention le polynôme caractéristique est unitaire.
endomorphisme d'un espace de dimension finie.	Notations $\chi_A,\chi_u.$ Coefficients de degrés 0 et $n-1.$
Les valeurs propres d'un endomorphisme sont	Spectre complexe d'une matrice carrée réelle.
les racines de son polynôme caractéristique.	
Multiplicité d'une valeur propre. Majoration	Deux matrices semblables ont le même polynôme
de la dimension d'un sous-espace propre par	caractéristique, donc les mêmes valeurs propres
la multiplicité.	avec mêmes multiplicités.
Théorème de Cayley-Hamilton.	La démonstration n'est pas exigible.

3 : Diagonalisation en dimension finie

Contenus	Capacités & Commentaires
Un endomorphisme d'un espace vectoriel de	Une telle base est constituée de vecteurs propres.
dimension finie est dit diagonalisable s'il existe	
une base dans laquelle sa matrice est diagonale.	
Une matrice carrée est dite diagonalisable si elle est	Interprétation en termes d'endomorphisme.
semblable à une matrice diagonale.	Application au calcul des puissances d'une matrice
	diagonalisable, à des exemples de systèmes diffé-

PROGRAMME 105

Un endomorphisme d'un espace vectoriel E est diagonalisable si et seulement si la somme de ses sous-espaces propres est égale à E.

Un endomorphisme est diagonalisable si et seulement Traduction matricielle.

si la somme des dimensions de ses sous-espaces

propres est égale à la dimension de l'espace.

Un endomorphisme est diagonalisable si et seulement si son polynôme caractéristique est scindé sur K et si,

pour toute valeur propre, la dimension du sous-espace

propre associé est égale à sa multiplicité. Un endomorphisme d'un espace vectoriel de

dimension n admettant n valeurs propres distinctes est diagonalisable.

Traduction matricielle.

Polynôme caractéristique scindé à racines simples.

-rentiels à coefficients constants. Dans la pratique des cas numériques, on se limite à n = 2 ou n = 3.

Exemple des projecteurs et des symétries.

Traduction matricielle.

4 : Diagonalisabilité et polynômes annulateurs

Contenus

CAPACITÉS & COMMENTAIRES

Un endomorphisme est diagonalisable si et seulement s'il La démonstration n'est pas exigible. admet un polynôme annulateur scindé à racines simples. Traduction matricielle. Le lemme de

décomposition des noyaux est hors programme.

L'endomorphisme induit par un endomorphisme diago--nalisable sur un sous-espace stable est diagonalisable. Un endomorphisme u est diagonalisable si et seulement $\prod_{\lambda \in Sp(\mathfrak{u})} (X - \lambda) \text{ pour polynôme annulateur.}$ s'il admet

5: Trigonalisation en dimension finie

Contenus

CAPACITÉS & COMMENTAIRES

Un endomorphisme d'un espace vectoriel de dimension Expression de la trace et du déterminant d'un finie est dit trigonalisable s'il existe une base dans laquelle sa matrice est triangulaire.

Une matrice carrée est dite trigonalisable si elle est semblable à une matrice triangulaire.

Un endomorphisme est trigonalisable si et seulement si son polynôme caractéristique est scindé sur K. Toute matrice de $\mathcal{M}_{n}(\mathbb{C})$ est trigonalisable.

endomorphisme trigonalisable, d'une matrice trigonalisable à l'aide des valeurs propres. Interprétation en termes d'endomorphisme.

La démonstration n'est pas exigible.

Traduction matricielle.

La technique générale de trigonalisation est hors programme. On se limite dans la pratique à des exemples simples en petite dimension et tout exercice de trigonalisation effective doit comporter une indication.

PARTIE 5.1: ÉLÉMENTS PROPRES

5.1.1: Valeurs propres et vecteurs propres d'un endomorphisme

DÉFINITION 5.1:

Soit E un \mathbb{K} -espace vectoriel, $\mathfrak{u} \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$:

- On dit que λ est une valeur propre de u s'il existe un vecteur x de E non nul tel que $u(x) = \lambda x$. Cette dernière équation est appelée équation aux éléments propres.
- Le spectre de u, noté Sp(u), est l'ensemble des valeurs propres de u.
- $Si \lambda \in \mathbb{K}$, on note $E_{\lambda}(u) = Ker(u \lambda id_{E})$ (appelé sous-espace propre de u associé à λ $si \lambda \in Sp(u)$).
- Un vecteur <u>non nul</u> de $E_{\lambda}(u)$ est appelé vecteur propre de u associé à la valeur propre λ .
- Un vecteur propre de u est un vecteur non nul $x \in E$ tel qu'il existe $\lambda \in K$ qui vérifie $u(x) = \lambda x$.

 $\underline{REMARQUE\ 5.1}: \bullet\ Soit\ e \in E\ non\ nul\ et\ D = Vect(e): (D\ stable\ par\ u) \iff (e\ vecteur\ propre\ de\ u).$

• Si p est la projection $p_{F,G}$ (avec F et G différents de $\{0_E\}$), $Sp(p) = \{0,1\}$, $E_0(p) = G$ et $E_1(p) = F$.

PROPOSITION : LES SOUS-ESPACES PROPRES ASSOCIÉS À DES VALEURS PROPRES NON NULLES SONT INCLUS DANS L'IMAGE 5.1 :

Soit E un K-espace vectoriel, $u \in \mathcal{L}(E)$ et $\lambda \in K$. Si $\lambda = 0$, $E_0(u) = Ker(u)$. Si $\lambda \neq 0$, $E_{\lambda}(u) \subset Im(u)$.

 $\underline{\textit{EXEMPLE 5.1}} : \bullet \ \mathrm{Si} \ \phi : P \in \ \mathbb{K}[X] \mapsto XP \in \ \mathbb{K}[X], \ \mathrm{alors} \ \mathsf{Sp}(\phi) = \emptyset.$

 $\bullet \text{ Si } D \in \mathcal{L}\big(C^{\infty}(\mathbb{R},\mathbb{R})\big) \text{ est défini par } D(f) = f', \text{ alors } Sp(D) = \mathbb{R} \text{ et } E_{\lambda}(D) = Vect\big(t \mapsto e^{\lambda t}\big).$

PROPOSITION SUR LA LIBERTÉ D'UNE FAMILLE DE VECTEURS PROPRES ASSOCIÉS À DES VALEURS PROPRES DIFFÉRENTES 5.2 :

Soit E un espace vectoriel et $u \in \mathcal{L}(E)$:

- Si $\lambda_1, \dots, \lambda_p$ sont p valeurs propres 2 à 2 distinctes de u alors les sous-espaces propres $E_{\lambda_1}(u), \dots, E_{\lambda_p}(u)$ sont en somme directe.
- Si x_1, \dots, x_p sont des vecteurs propres de u associés à des valeurs propres 2 à 2 distinctes alors (x_1, \dots, x_p) est une famille libre.

REMARQUE 5.2 : Si E est de dimension n, il y a donc au maximum n valeurs propres distinctes de u.

 $\underline{\textit{EXEMPLE 5.3}} : \bullet \text{ Les fonctions } \left(t \mapsto e^{\lambda t} \right)_{\lambda \in \mathbb{R}} \text{ forment une famille libre dans } C^{\infty}(\mathbb{R}, \mathbb{R}).$

- Les suites géométriques $\left((\lambda_1^n)_{n\in\mathbb{N}},\cdots,(\lambda_p^n)_{n\in\mathbb{N}}\right)$ forment une famille libre dans l'espace des suites complexes $\mathbb{C}^{\mathbb{N}}$ si $\lambda_1,\cdots,\lambda_p$ sont p complexes distincts 2 à 2. Donc $\left((\lambda^n)_{n\in\mathbb{N}}\right)_{\lambda\in\mathbb{C}}$ est libre.
- Les fonctions $(p_{\alpha_1}, \dots, p_{\alpha_p})$ forment une famille libre dans $C^{\infty}(\mathbb{R}_+^*, \mathbb{R})$ si $p_{\alpha}(t) = t^{\alpha}$ avec $\alpha_1, \dots, \alpha_p$ distincts 2 à 2. D'où $(p_{\alpha})_{\alpha \in \mathbb{R}}$ est libre.

ÉLÉMENTS PROPRES _______107

PROPOSITION : STABILITÉ DES SOUS-ESPACES PROPRES SI COMMUTATION 5.3 : Si u et ν sont deux endomorphismes de E qui commutent (c'est-à-dire que $u \circ \nu = \nu \circ u$) alors les espaces propres de u sont stables par ν (et réciproquement).

5.1.2 : Valeurs propres et vecteurs propres d'une matrice carrée

DÉFINITION 5.2:

Soit $A \in \mathfrak{M}_n(\mathbb{K})$. Les valeurs propres, le spectre de A (noté $Sp_{\mathbb{K}}(A)$) et les vecteurs propres et les sous-espaces propres de A (notés $E_{\lambda}(A)$) sont ceux de l'endomorphisme de \mathbb{K}^n canon. associé à A.

<u>REMARQUE 5.3</u>: En d'autres termes :

- $\lambda \in Sp(A) \iff (\exists X \in \mathcal{M}_{n,1}(\mathbb{K}), X \neq 0 \text{ et } AX = \lambda X).$
- $x = (x_1, \dots, x_n) \in \mathbb{K}^n$ est vecteur propre de A si $X^T = (x_1 \dots x_n)$ vérifie $AX = \lambda X$ et $X \neq 0$.
- Dans ce cas, on dit que X est une colonne propre de A associée à la valeur propre λ .
- Si $A = (a_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathfrak{M}_n(\mathbb{C})$, on pose $\overline{A} = (\overline{a_{i,j}})_{1 \leqslant i,j \leqslant n}$ est la matrice **conjuguée** de A.

EXEMPLE 5.4: Cherchons les valeurs propres réelles ou complexes de la matrice $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

PROPOSITION SUR LA RELATION ENTRE SPECTRES RÉELS ET COMPLEXES ET SOUS-ESPACE PROPRE DU CONJUGUÉ POUR UNE MATRICE RÉELLE 5.4 :

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$, alors $A \in \mathcal{M}_n(\mathbb{C})$ et on a $Sp_{\mathbb{R}}(A) \subset Sp_{\mathbb{C}}(A)$.

De plus, si $\lambda \in Sp_{\mathbb{C}}(A)$ alors $\overline{\lambda} \in Sp_{\mathbb{C}}(A)$ et dim $E_{\lambda}(A) = \dim E_{\overline{\lambda}}(A)$.

EXEMPLE 5.5: Dans l'exemple précédent, $E_i(A)$ et $E_{-i}(A)$ sont deux droites de \mathbb{C}^2 .

PROPOSITION SUR LES SPECTRES DE DEUX MATRICES SEMBLABLES 5.5:

Soit A et B deux matrices de $\mathfrak{M}_n(\mathbb{K})$ semblables (c'est-à-dire qu'il existe $P \in GL_n(\mathbb{K})$ telle que $B = P^{-1}AP$), alors $Sp_{\mathbb{K}}(A) = Sp_{\mathbb{K}}(B)$ et pour $\lambda \in Sp_{\mathbb{K}}(A)$, on a $dim \, E_{\lambda}(A) = dim \, E_{\lambda}(B)$.

<u>REMARQUE 5.4</u> : Si deux matrices A et B sont semblables, elles ont donc même rang, même trace, même déterminant, même spectre, mêmes dimensions de leurs sous-espaces propres.

PROPOSITION 5.6:

Soit E un K-espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$.

Pour toute base \mathcal{B} de E, on a $Sp(u) = Sp_{\mathbb{K}}(Mat_{\mathcal{B}}(u))$.

5.1.3 : Polynôme caractéristique

DÉFINITION 5.3:

Soit E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Le **polynôme caractéristique** de u est le polynôme $\chi_u \in \mathbb{K}[X]$ associé à la fonction polynomiale définie par $\lambda \in \mathbb{K} \mapsto \det(\lambda id_E - u)$.

Si $A \in \mathcal{M}_n(\mathbb{K})$, le **polynôme caractéristique** de A est le polynôme $\chi_A \in \mathbb{K}[X]$ associé à la fonction polynomiale définie par : $\forall \lambda \in \mathbb{K}, \ \chi_A(\lambda) = \det(\lambda I_n - A)$.

<u>REMARQUE 5.5</u>: • Si B est une base de E, $u \in \mathcal{L}(E)$ et $A = Mat_{\mathbb{B}}(u)$ alors $\chi_u = \chi_A$.

- Inversement χ_A est le polynôme caractéristique de $\mathfrak u$ canoniquement associé à A.
- Si p est un projecteur de E de dimension n, alors $\chi_p = X^{n-\operatorname{tr}(p)}(X-1)^{\operatorname{tr}(p)}.$
- Avant, la définition était $\chi_A = det(A XI_n)$ (abus de notation usuel). Attention !

 $\underline{\textbf{EXEMPLE 5.6}} : \text{Soit } A = (\mathfrak{a}_{i,j})_{1 \leqslant i,j \leqslant n} \text{ avec } \mathfrak{a}_{i,j} = 1 \text{ si } i = 1 \text{ ou } n \text{ et } \mathfrak{a}_{i,j} = 0 \text{ sinon. Calculons } \chi_A.$

<u>REMARQUE 5.6</u>: Soit un entier $n \in \mathbb{N}^*$ et $(A,B) \in \mathfrak{M}_n(\mathbb{K})^2$, alors $x \mapsto det(A+xB)$ est une fonction polynomiale de degré inférieur ou égal à n telle que $det(A+xB) = det(B)x^n + \cdots + det(A)$.

THÉORÈME SUR LA CONNAISSANCE DE CERTAINS COEFFICIENTS DU POLYNÔME CARACTÉRISTIQUE (ÉNORME) 5.7 :

Soit E un espace vectoriel de dimension finie n et u un endomorphisme de E, alors nous avons $deg(\chi_{\mathfrak{u}})=n$ et $\chi_{\mathfrak{u}}=X^n-tr(\mathfrak{u})X^{n-1}+\cdots+(-1)^ndet(\mathfrak{u})$.

 $\textbf{Si } A \in \mathfrak{M}_{\mathfrak{n}}(\,\mathbb{K}) \,\, \textbf{alors} \,\, \text{deg}(\chi_A) = \underline{\mathfrak{n}} \,\, \textbf{et} \,\, \chi_A = X^{\mathfrak{n}} - \text{tr}(A) X^{\mathfrak{n}-1} + \dots + (-1)^{\mathfrak{n}} \text{det}(A).$

THÉORÈME SUR LA CARACTÉRISATION DES VALEURS PROPRES PAR LE POLYNÔME CARACTÉRISTIQUE 5.8 :

Soit E un \mathbb{K} -espace vectoriel de dimension finie \mathfrak{n} , \mathfrak{u} un endomorphisme de E et $\lambda \in \mathbb{K}$, on a les équivalences suivantes : $\lambda \in Sp(\mathfrak{u}) \Longleftrightarrow (\mathfrak{u} - \lambda id_E) \notin GL(E) \Longleftrightarrow \chi_{\mathfrak{u}}(\lambda) = 0$.

Les valeurs propres de u sont exactement les racines de χ_u (dans \mathbb{K}).

Si $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$ alors : $\lambda \in Sp_{\mathbb{K}}(A) \iff (A - \lambda I_n) \notin GL_n(\mathbb{K}) \iff \chi_A(\lambda) = 0$.

Le spectre de A (sur \mathbb{K}) est l'ensemble des racines de χ_A (dans \mathbb{K}).

REMARQUE FONDAMENTALE 5.7 : On en déduit :

- Si $u \in \mathcal{L}(E)$ où E est de dimension n, alors u admet au plus n valeurs propres distinctes.
- Si $A \in \mathcal{M}_n(\mathbb{K})$ alors A admet au plus n valeurs propres complexes distinctes.
- Si $\mathbb{K} = \mathbb{C}$, u (ou A) possède au moins une valeur propre complexe.
- Si $\mathbb{K} = \mathbb{R}$ et si n est impair, u (ou A) possède au moins une valeur propre réelle.

PROPOSITION 5.9:

Soit E un K-espace de dimension finie n et $u \in \mathcal{L}(E)$, alors $u \in GL(E) \iff 0 \notin Sp(u)$.

ORAL BLANC 5.7: Soit E de dimension n, $(f,g) \in \mathcal{L}(E)^2$ et $f \circ g - g \circ f = f$.

- a. Calculer $f^k \circ g g \circ f^k$. Prouver que f est nilpotent. Indication : utiliser $\phi : h \mapsto h \circ g g \circ h$. On suppose dorénavant que $f^{n-1} \neq 0$.
- **b.** Montrer que : $\exists x \in E$, $\mathcal{B} = (f^{n-1}(x), \dots, f(x), x)$ est une base de E. Déterminer $Mat_{\mathcal{B}}(f)$.
- c. En écrivant $g(x) = a_0x + a_1f(x) + \cdots + a_{n-1}f^{n-1}(x)$ et en utilisant plusieurs fois la relation $f \circ g(y) g \circ f(y) = f(y)$, déterminer la matrice de g dans \mathcal{B} . En déduire les valeurs propres de g.

PROPOSITION SUR L'ÉGALITÉ DES POLYNÔMES CARACTÉRISTIQUES DE DEUX MATRICES SEMBLABLES 5.10 :

Si A et B semblables, alors $\chi_A = \chi_B$.

De même, $\chi_A = \chi_{A^T}$ donc A et A^T ont les mêmes valeurs propres de mêmes multiplicités.

<u>REMARQUE 5.8</u>: Si A et B sont semblables, elles ont donc même rang, même trace, même déterminant, même spectre, mêmes dimensions de leurs sous-espaces propres et même polynôme caractéristique.

ÉLÉMENTS PROPRES _______ 109

REMARQUE HP 5.9: (mais fondamentale)

Soit E un espace vectoriel de dimension finie, u un endomorphisme de E et F un sous-espace de E stable par u. On note u_F l'endomorphisme de F induit par u: χ_{u_F} divise χ_u .

 $\textit{Plus g\'en\'eralement, si } \textit{Mat}_{\mathfrak{B}}(u) = \textit{diag}(A_1, \cdots, A_r) \textit{ (par blocs), alors } \chi_u = \prod_{k=1}^r \chi_{A_k}.$

5.1.4 : Théorème de Cayley-Hamilton

PROPOSITION SUR LA MATRICE COMPAGNON D'UN POLYNÔME 5.11:

$$\mathbf{Soit}\ P = X^p - \sum_{k=0}^{p-1} \alpha_k X^k\ \mathbf{avec}\ (\alpha_0, \cdots, \alpha_{p-1}) \in \mathbb{K}^p\ \mathbf{et}\ A = \begin{pmatrix} 0 & \cdots & \cdots & 0 & \alpha_0 \\ 1 & \ddots & & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \alpha_{p-2} \\ 0 & \cdots & 0 & 1 & \alpha_{p-1} \end{pmatrix} \ \mathbf{qui}\ \mathbf{est}\ \mathbf{appel\acute{e}e}$$

la matrice compagnon du polynôme P, alors $\chi_A = P$.

THÉORÈME DE CAYLEY-HAMILTON (ÉNORME) 5.12:

Soit E de dimension n et u un endomorphisme de E, alors $\chi_{u}(u) = 0$.

Soit $A \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{K})$, alors $\chi_A(A) = 0$.

 $\underline{\text{D\'{E}MONSTRATION}}$: non exigible.

EXERCICE CONCOURS 5.8: Cachan PSI 2015 Jean-Raphaël Biehler

Soit
$$A = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix}$$
 avec $(a, b, c) \in \mathbb{R}^3$.

- a. Montrer sans calcul qu'il existe un réel K tel que $A^3 = -KA$. Calculer K.
- **b.** Montrer que : $\forall n \in \mathbb{N}^*, \ A^{2n} = (-K)^{n-1}A^2$.
- c. On pose $S_N = \sum_{n=0}^N \frac{A^n}{n!}$. Montrer que $(S_N)_{N\in\mathbb{N}}$ converge vers une matrice S et que S peut s'écrire sous la forme $S = I_3 + xA + yA^2$. On explicitera les valeurs de x et y. Questions subsidiaires :
- \bullet Montrer que toute matrice inversible A a un inverse qui s'exprime comme un polynôme en A.
- Existe-il une matrice qui élevée au carré donne $A = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$.

5.1.5 : Ordres de multiplicité des valeurs propres

DÉFINITION 5.4:

Soit E un espace vectoriel de dimension finie, $u \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$. On appelle ordre de multiplicité algébrique de la valeur propre λ l'ordre de multiplicité de la racine λ de χ_u ; on la note $m_{\lambda}(u)$.

On dit que λ est une valeur propre simple de u si $m_{\lambda}(u) = 1$, double si $m_{\lambda}(u) = 2$, etc...

Soit $A \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{K})$ et $\lambda \in Sp_{\mathbb{K}}(A)$. On appelle ordre de multiplicité algébrique de la valeur propre λ l'ordre de multiplicité de la racine λ de χ_A ; on la note $\mathfrak{m}_{\lambda}(A)$.

On dit que λ est une valeur propre simple de A si $m_{\lambda}(u)=1,$ double si $m_{\lambda}(A)=2,$ etc...

<u>REMARQUE 5.10</u>: • Ainsi, $\lambda \notin Sp(u)$ si et seulement si $m_{\lambda}(u) = 0$.

• Soit A et B deux matrices semblables, pour tout $\lambda \in \mathbb{K}$, $\mathfrak{m}_{\lambda}(A) = \mathfrak{m}_{\lambda}(B) = \mathfrak{m}_{\lambda}(A^{\mathsf{T}})$.

110 _ RÉDUCTION

 $\underline{\textit{EXEMPLE 5.9}} \text{ : Soit } A = (\mathfrak{a}_{i,j})_{1\leqslant i,j\leqslant n} \in \mathfrak{M}_{2n}(\mathbb{R}) \text{ avec } \mathfrak{a}_{i,j} = 1 \text{ si } i+j \text{ est pair et } \mathfrak{a}_{i,j} = 0 \text{ sinon.}$ Calculer ses valeurs propres.

THÉORÈME SUR LES RELATIONS ENTRE LA TRACE, LE DÉTERMINANT ET LES ORDRES DE MULTIPLICITÉS DES VALEURS PROPRES 5.13 :

Soit E de dimension n et $u \in \mathcal{L}(E)$, si χ_u est scindé sur \mathbb{K} (donc en particulier si $\mathbb{K} = \mathbb{C}$):

$$n = \sum_{\lambda \in Sp(\mathfrak{u})} \mathfrak{m}_{\lambda}(\mathfrak{u}), \quad \operatorname{tr}(\mathfrak{u}) = \sum_{\lambda \in Sp(\mathfrak{u})} \lambda \, \mathfrak{m}_{\lambda}(\mathfrak{u}) \ \, \text{et} \ \, \operatorname{det}(\mathfrak{u}) = \prod_{\lambda \in Sp(\mathfrak{u})} \lambda^{\mathfrak{m}_{\lambda}(\mathfrak{u})}.$$

$$\begin{split} n &= \sum_{\lambda \in Sp(u)} m_{\lambda}(u), \quad tr(u) = \sum_{\lambda \in Sp(u)} \lambda \, m_{\lambda}(u) \ \, \text{et det}(u) = \prod_{\lambda \in Sp(u)} \lambda^{m_{\lambda}(u)}. \\ \mathbf{Si} \ \, A &\in \mathfrak{M}_{\mathfrak{n}}(\,\mathbb{K}) \, \colon \, n = \sum_{\lambda \in Sp_{\,\mathbb{C}}(A)} m_{\lambda}(A), \quad tr(A) = \sum_{\lambda \in Sp_{\,\mathbb{C}}(A)} \lambda \, m_{\lambda}(A) \, \, \text{et det}(A) = \prod_{\lambda \in Sp_{\,\mathbb{C}}(A)} \lambda^{m_{\lambda}(A)}. \end{split}$$

EXERCICE CONCOURS 5.10: Centrale Maths 1 PSI 2015 Paul Mondou

Soit $A \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{R}), A \neq 0$ et $f : \mathfrak{M}_{\mathfrak{n}}(\mathbb{R}) \to \mathfrak{M}_{\mathfrak{n}}(\mathbb{R})$ définie par $f(M) = M + \operatorname{tr}(AM)A$.

Déterminer tr(f) et det(f) en fonction de A.

REMARQUE 5.11 : Si l'on connaît toutes les valeurs propres de A sauf une, on peut se servir de la trace.

EXERCICE 5.11: Si $(a,b) \in \mathbb{C}^2$ vérifie $a \neq b$ et $b \neq 0$, quelles sont les valeurs propres de la matrice $A = (a_{i,j})_{1 \le i,j \le n}$ telle que $a_{k,k} = a$ et $a_{i,j} = b$ si $i \ne j$?

<u>REMARQUE 5.12</u>: Si $A \in \mathcal{M}_n(\mathbb{R})$ et si $\lambda \in \mathbb{C} \setminus \mathbb{R}$ est valeur propre de A, alors on sait que $\overline{\lambda}$ l'est aussi et que $E_{\lambda}(A)$ et $E_{\overline{\lambda}}(A)$ ont même dimension mais λ et $\overline{\lambda}$ ont aussi même ordre de multiplicité algébrique.

EXERCICE 5.12: Soit $A \in \mathcal{M}_{2n+1}(\mathbb{R})$ telle qu'il existe un entier $\mathfrak{p} \in \mathbb{N}$ tel que $A^{2\mathfrak{p}+1} = I_{2n+1}$. Il s'agit de montrer que 1 est une valeur propre de A.

DÉFINITION 5.5:

Soit E de dimension finie, u un endomorphisme de E et λ une valeur propre de u, l'entier dim $E_{\lambda}(u)$ est appelé l'ordre de multiplicité géométrique de la valeur propre λ.

THÉORÈME SUR UNE INÉGALITÉ ENTRE LES ORDRES DE MULTIPLICITÉ ALGÉBRIQUE ET GÉOMÉTRIQUE D'UNE VALEUR PROPRE 5.14 :

Soit E de dimension finie, $u \in \mathcal{L}(E)$ et $\lambda \in Sp(u)$, on a $1 \leq \dim E_{\lambda}(u) \leq m_{\lambda}(u)$.

Si $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in Sp_{\mathbb{K}}(A)$, on a $1 \leq \dim E_{\lambda}(A) \leq m_{\lambda}(A)$.

<u>REMARQUE 5.13</u>: L'ordre de multiplicité géométrique est donc inférieur à l'ordre de multiplicité algébrique pour toute valeur propre. Ces inégalités peuvent bien sûr être strictes.

REMARQUE FONDAMENTALE 5.14 : Soit $u \in \mathcal{L}(E)$ avec E un espace de dimension n. Alors : $u \ {\it est \ nilpotent} \Longleftrightarrow \ \chi_u = X^n \Longleftrightarrow u^n = 0.$

Pour u nilpotent, 0 est valeur propre de multiplicité algébrique n donc $1 \le \dim (Ker(u)) \le n$.

EXEMPLE 5.13: Soit $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$. Calculer les différentes multiplicités des valeurs propres.

PARTIE 5.2 : RÉDUCTION EN DIMENSION FINIE

5.2.1 : Diagonalisation

DÉFINITION 5.6:

Soit E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$, on dit que u est diagonalisable s'il existe une base B de E telle que $Mat_{\mathcal{B}}(u)$ est diagonale.

PROPOSITION: ORDRE GÉOMÉTRIQUE D'UNE VALEUR PROPRE SIMPLE 5.15:

Soit E un espace vectoriel de dimension finie et u un endomorphisme de E. Si λ est une valeur propre simple de u (ou de A) alors $E_{\lambda}(u)$ (ou $E_{\lambda}(A)$) est une droite.

DÉFINITION 5.7:

On dit qu'un polynôme $P \in \mathbb{K}[X]$ est scindé à racines simples ou simplement scindé (noté souvent SARS) s'il est de degré $n \ge 1$ et s'il possède n racines distinctes deux à deux.

PROPOSITION SUR UNE CONDITION SUFFISANTE DE DIAGONALISABILITÉ 5.16:

Soit E de dimension n et $u \in \mathcal{L}(E)$. Si u possède n valeurs propres distinctes (si χ_u est scindé à racines simples) alors u est diagonalisable et $\forall \lambda \in Sp(u)$, dim $E_{\lambda}(u) = 1$.

THÉORÈME SUR DES CARACTÉRISATIONS DE LA DIAGONALISABILITÉ 5.17:

Soit E un espace de dimension finie et $u \in \mathcal{L}(E)$, les propriétés suivantes sont équivalentes :

- (i) Il existe une base de E dans laquelle la matrice de u est diagonale.
- (ii) $\dim(E) = \sum_{\lambda \in Sp(u)} \dim(E_{\lambda}(u))$.
- (iii) $E = \bigoplus_{\lambda \in Sp(\mathfrak{u})} E_{\lambda}(\mathfrak{u}).$
- (iv) Il existe F_1, \cdots, F_p stables par u tels que $E = \sum\limits_{k=1}^p F_k$ et u_{F_1}, \cdots, u_{F_p} sont des homothéties.
- (v) Il existe une base de E formée de vecteurs propres de u.

REMARQUE FONDAMENTALE 5.15: Soit E un espace de dimension finie et $u \in \mathcal{L}(E)$.

- \mathfrak{u} est diagonalisable $\Longrightarrow E = Ker(\mathfrak{u}) \oplus Im(\mathfrak{u})$.
- Si u est nilpotent, u est diagonalisable \iff u = 0.

EXERCICE CONCOURS 5.14 : CCP PSI 2016

 $\text{Pour } n=2p\geqslant 2, \, \text{déterminer le rang de } A_n=\begin{pmatrix} 1 & n & 1 & \dots & n \\ 2 & n-1 & 2 & \dots & n-1 \\ \vdots & \vdots & \vdots & & \vdots \\ n & 1 & n & \dots & 1 \end{pmatrix}. \, \, \text{Montrer qu'une matrice}$

et sa transposée ont même spectre. Montrer que A_n est diagonalisable, donner ses éléments propres.

REMARQUE FONDAMENTALE 5.16: Soit E un espace vectoriel de dimension n et u endomorphisme de E. Il suffit de trouver des valeurs propres distinctes $\lambda_1, \cdots, \lambda_r$ de u telles que $\sum_{k=1}^r \text{dim}\left(E_{\lambda_k}(u)\right) \geqslant n$ pour que u soit diagonalisable et qu'on puisse conclure que $Sp(u) = \{\lambda_1, \cdots, \lambda_r\}$.

$ORAL\ BLANC\ 5.15$: CCP PSI 2015 Arthur Lacombe

On considère pour $n \ge 3$ la matrice $N \in \mathcal{M}_n(\mathbb{R})$ qui forme un $N : a_{i,1} = a_{i,n} = a_{i,i} = 1$ et $a_{i,j} = 0$ sinon. Montrer que N est diagonalisable et déterminer ses éléments propres. En déduire $\det(N + I_n)$.

PROPOSITION SUR LES PROPRIÉTÉS DES PROJECTEURS SPECTRAUX 5.18 :

Soit E un espace de dimension finie et $u \in \mathcal{L}(E)$ diagonalisable tel que $Sp(u) = \{\lambda_1, \cdots, \lambda_r\}$. Si p_1, \cdots, p_r est la famille des projecteurs associée à la décomposition $E = \bigoplus_{k=1}^r E_{\lambda_k}(u)$ alors :

- $p_1 + \cdots + p_r = id_E$.
- $\forall (i,j) \in [1;r]^2, i \neq j \Longrightarrow p_i \circ p_j = 0.$
- $\bullet \ \forall n \in \ \mathbb{N}, \ u^n = \lambda_1^n p_1 + \dots + \lambda_r^n p_r.$

<u>REMARQUE 5.17</u>: S'il existe des endomorphismes p_1, \dots, p_r de E de dimension finie qui vérifient $p_1 + \dots + p_r = id_E$, et $\forall (i,j) \in [1;n]^2$, $i \neq j \Longrightarrow p_i \circ p_j = 0$ et $u = \lambda_1 p_1 + \dots + \lambda_r p_r$: u est diagonalisable.

THÉORÈME SUR UNE CONDITION NÉCESSAIRE ET SUFFISANTE DE DIAGONA-LISABILITÉ AVEC LES ORDRES DE MULTIPLICITÉ (ÉNORME) 5.19 :

Soit E un K-espace de dimension finie et $u \in \mathcal{L}(E)$. On a l'équivalence :

 $(\mathfrak{u} \text{ est diagonalisable}) \Longleftrightarrow (\chi_{\mathfrak{u}} \text{ est scind\'e sur } \mathbb{K} \text{ et } \forall \lambda \in Sp(\mathfrak{u}), \text{ dim } (E_{\lambda}(\mathfrak{u})) = \mathfrak{m}_{\lambda}(\mathfrak{u})).$

 $\underline{\textit{REMARQUE FONDAMENTALE 5.18}}: \ On \ retient \ que \ si \ u \ est \ diagonalisable, \ alors \ \chi_u \ est \ scind\'e.$

EXERCICE 5.16: Trouver les réels a tels que
$$A = \begin{pmatrix} 2 & 1 & -2 \\ 1 & a & -1 \\ 1 & 1 & -1 \end{pmatrix}$$
 est diagonalisable.

<u>REMARQUE 5.19</u>: On se rappelle avoir déjà vu que si u est un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie n tel que $\chi_{\mathfrak{u}}$ possède n racines distinctes dans \mathbb{K} alors u est diagonalisable.

Attention : ce n'est qu'une condition suffisante de diagonalisabilité ; il est clair que id_E est diagonalisable mais que son polynôme caractéristique $(X-1)^n$ n'est pas à racines simples.

EXEMPLE 5.17: Un endomorphisme u de matrice
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$
 est-il diagonalisable?

DÉFINITION 5.8:

Soit $A \in \mathfrak{M}_n(\mathbb{K})$, on dit que A est diagonalisable (dans \mathbb{K}) si A est semblable (dans $\mathfrak{M}_n(\mathbb{K})$) à une matrice diagonale, c'est-à-dire s'il existe $P \in GL_n(\mathbb{K})$ telle que $P^{-1}AP$ est une matrice diagonale.

PROPOSITION SUR LA RELATION MATRICE/ENDOMORPHISME 5.20:

Soit $A\in \mathfrak{M}_n(\,\mathbb{K})$ et u l'endomorphisme de $\,\mathbb{K}^n$ canoniquement associé à A :

- ullet A est diagonalisable \Longleftrightarrow $\mathfrak u$ est diagonalisable.
- Si A est diagonalisable et $P \in GL_n(\mathbb{K})$ telle que $A = PDP^{-1}$ avec $D = Diag(\lambda_1, \dots, \lambda_n)$ alors $Sp_{\mathbb{K}}(A) = \{\lambda_1, \dots, \lambda_n\}$ et $P = P_{\mathcal{B}_{can}, \mathcal{B}}$ où \mathcal{B} est une base de vecteurs propres de u.

<u>REMARQUE 5.20</u>: Plus généralement, soit $A \in \mathfrak{M}_n(\mathbb{K})$, E de dimension n, \mathfrak{B} une base de E, $u \in \mathcal{L}(E)$ tel que $A = Mat_{\mathfrak{B}}(u)$, alors : (A est diagonalisable) \iff (u est diagonalisable).

5.2.2 : Polynômes annulateurs et diagonalisation

EXERCICE CONCOURS 5.18: Centrale PSI 2013

Soit $n \in \mathbb{N}^*$ et $r \in [0, n]$ et une matrice $M \in \mathcal{M}_n(\mathbb{C})$ de rang r.

- a. Montrer que M est semblable à une matrice du type $\begin{pmatrix} A & 0 \\ B & 0 \end{pmatrix}$ où $A \in \mathfrak{M}_r(\mathbb{C}).$
- **b.** En déduire qu'il existe un polynôme P de degré inférieur ou égal à r+1 tel que P(M)=0.
- c. Montrer par un exemple qu'il n'existe pas toujours de polynôme Q de degré inférieur ou égal à r (à choisir) tel que Q(M) = 0.

THÉORÈME : LES VALEURS PROPRES SONT DES RACINES DE TOUT POLYNÔME ANNULATEUR D'UN ENDOMORPHISME (D'UNE MATRICE) 5.21 :

Soit E un espace vectoriel, $u \in \mathcal{L}(E)$, $n \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{K})$, $P \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}$.

- Si P(u)=0 alors $\forall \lambda \in Sp(u), \ P(\lambda)=0.$ Donc $\prod_{\lambda \in Sp(u)} (X-\lambda)$ divise P.
- Si P(A) = 0 alors $\forall \lambda \in Sp(A)$, $P(\lambda) = 0$. Donc $\prod_{\lambda \in Sp(A)} (X \lambda)$ divise P.

<u>REMARQUE 5.21</u>: Plus généralement, avec les mêmes notations, si $\lambda \in Sp(u)$ alors $P(\lambda) \in Sp(P(u))$. Et si $\lambda \in Sp(A)$, alors $P(\lambda) \in Sp(P(A))$.

THÉORÈME : CARACTÉRISATION DE DIAGONALISABILITÉ AVEC UN POLYNÔME ANNULATEUR SCINDÉ À RACINES SIMPLES (ÉNORME) 5.22 :

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $\mathfrak{u} \in \mathcal{L}(E)$, ou $A \in \mathcal{M}_n(\mathbb{K})$:

(u diagonalisable) \iff ($\exists P \in \mathbb{K}[X]$, P(u) = 0 et P scindé à racines simples (dans \mathbb{K})).

(A diagonalisable) \iff ($\exists P \in \mathbb{K}[X], P(A) = \emptyset$ et P scindé à racines simples (dans \mathbb{K})).

EXERCICE CLASSIQUE 5.19: Soit deux matrices carrées $A \in \mathcal{M}_n(\mathbb{K})$ et $B \in \mathcal{M}_m(\mathbb{K})$; on pose $C = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \in \mathcal{M}_{n+m}(\mathbb{K})$. Montrer que C est diagonalisable si et seulement si A et B le sont.

ORAL BLANC 5.20 : E3A PSI 2015 Alexandre Janot

Soit $E = \mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$ et $A \in E$ et on suppose que A^2 est diagonalisable.

Montrer que A est diagonalisable si et seulement si $Ker(A) = Ker(A^2)$.

EXERCICE 5.21: Soit $P \in \mathcal{M}_n(\mathbb{R})$ une matrice de projection et f l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par f(M) = PM + MP. Montrer que l'endomorphisme f est diagonalisable.

THÉORÈME : CARACTÉRISATION DE DIAGONALISABILITÉ PAR LE POLYNÔME ANNULATEUR MINIMAL SCINDÉ À RACINES SIMPLES (ÉNORME) 5.23 :

Soit E de dimension finie, $u \in \mathcal{L}(E)$: $(u \text{ diagonalisable}) \Longleftrightarrow (P = \prod_{\lambda \in Sp(u)} (X - \lambda) \text{ vérifie } P(u) = 0).$

 $\mathbf{De}\ \mathbf{m\^{e}me},\ \mathbf{soit}\ \mathfrak{n}\in\,\mathbb{N}^{*}\ \mathbf{et}\ A\in\mathcal{M}_{\mathfrak{n}}(\,\mathbb{K}):\ \big(A\ \mathbf{diagonalisable}\big)\Longleftrightarrow \big(P=\prod_{\lambda\in Sp(A)}(X-\lambda)\ \mathbf{v\'{e}rifie}\ P(A)=0\big).$

<u>REMARQUE HP 5.22</u>: (mais fondamentale) Dans toute cette remarque, on suppose que E est un espace vectoriel de dimension finie et que $u \in \mathcal{L}(E)$ est diagonalisable. On pose $Sp(u) = \{\lambda_1, \dots, \lambda_p\}$.

- \bullet Le polynôme $\pi_u = \prod\limits_{k=1}^p (X-\lambda_k)$ est donc le polynôme minimal de u.
- Si $(L_j)_{1\leqslant j\leqslant p}$ sont les polynômes d'interpolation de Lagrange associés aux valeurs propres de u, c'est-à-dire $L_j(X)=\prod\limits_{k=1\atop k\neq j}^p\left(\frac{X-\lambda_k}{\lambda_j-\lambda_k}\right)$, alors $\left(L_j(u)\right)_{1\leqslant j\leqslant p}$ est la famille des projecteurs spectraux

associés à la décomposition $E = \bigoplus_{j=1}^p E_{\lambda_j}(u)$. D'abord $\forall (i,j) \in [1;p]^2$, $i \neq j \Longrightarrow L_i(u) \circ L_j(u) = 0$, $et : \sum_{j=1}^p L_j(u) = id_E$, $\sum_{i=1}^p \lambda_j L_j(u) = u$ $et \ \forall m \in \mathbb{N}$, $u^m = \sum_{j=1}^p \lambda_j^m L_j(u)$.

• $\mathbb{K}[u] = \text{Vect}(id_F, \dots, u^{p-1}) = \text{Vect}(L_1(u), \dots, L_p(u)).$

EXERCICE 5.22: Calculer les puissances de $A = \begin{pmatrix} -2 & 8 & 6 \\ -4 & 10 & 6 \\ 4 & -8 & -4 \end{pmatrix}$.

PROPOSITION DE DIAGONALISABILITÉ D'UN ENDOMORPHISME INDUIT 5.24 : Si u est un endomorphisme diagonalisable de E, espace vectoriel de dimension finie, et F un sous-espace de E stable par u, alors l'endomorphisme induit par u sur F est diagonalisable.

<u>REMARQUE HP 5.23</u>: Par Cayley-Hamilton, le polynôme minimal est un diviseur du polynôme caractéristique. Ainsi, si $\mathbb{K}=\mathbb{C},\,\pi_u=\prod_{\lambda\in Sp(u)}(X-\lambda)^{\mathfrak{n}_\lambda(u)}$ où $1\leqslant \mathfrak{n}_\lambda(u)\leqslant \mathfrak{m}_\lambda(u).$ Les valeurs propres

de u sont exactement les racines du polynôme minimal et du polynôme caractéristique.

5.2.3: Commutation et codiagonalisation (HP)

PROPOSITION DE CODIAGONALISATION SI LES ENDOMORPHISMES SONT DIAGONALISABLES ET COMMUTENT (HP) 5.25 :

Soit E de dimension finie et $(u, v) \in \mathcal{L}(E)^2$; on suppose u diagonalisable :

- $(\nu \text{ commute avec } u) \iff (\text{ tous les sous-espaces propres de } u \text{ sont stables par } \nu)$.
- Si $v \circ u = u \circ v$ et v diagonalisable, alors il existe une base de E composée de vecteurs propres communs à u et v (on dit que u et v codiagonalisent dans \mathcal{B}).

<u>ORAL BLANC 5.23</u>: Soit $A = \begin{pmatrix} 5 & 3 \\ 1 & 3 \end{pmatrix}$. Diagonaliser A en précisant la matrice de passage P. Résoudre $M^2 + M = A$ d'inconnue $M \in \mathcal{M}_2(\mathbb{R})$.

5.2.4 : Polynômes annulateurs et trigonalisation

DÉFINITION 5.9:

Soit u un endomorphisme d'un espace E de dimension finie, on dit que u est trigonalisable s'il existe une base de E dans laquelle la matrice de u est triangulaire (supérieure).

Si $A \in \mathfrak{M}_n(\mathbb{K})$, on dit que A est **trigonalisable** (dans \mathbb{K}) s'il existe une matrice $P \in GL_n(\mathbb{K})$ telle que $P^{-1}AP$ est triangulaire (supérieure).

<u>REMARQUE 5.25</u>: On se rappelle avoir vu sur les matrices, si E de dimension finie et $u \in \mathcal{L}(E)$: $(u \text{ est trigonalisable}) \iff (\exists \mathcal{B} = (e_1, \dots, e_n) \text{ base de } E, \forall k \in [1; n], \text{ Vect}(e_1, \dots, e_k) \text{ est stable par } u).$

THÉORÈME: CARACTÉRISATION DE TRIGONALISABILITÉ (ÉNORME) 5.26:

Soit E de dimension finie et $u \in \mathcal{L}(E)$: (u est trigonalisable) \iff (χ_u est scindé (sur \mathbb{K})).

De même, si $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{K})$: (A est trigonalisable) \iff (χ_A est scindé (sur \mathbb{K})).

REMARQUE FONDAMENTALE 5.26: \bullet Toute matrice est donc trigonalisable sur \mathbb{C} .

• Si $A \in \mathcal{M}_n(\mathbb{K})$ et si $\lambda_1, \dots, \lambda_n$ sont les valeurs propres complexes de A (comptées avec multiplicité), alors pour tout $k \in \mathbb{N}^*$, les valeurs propres complexes de A^k sont $\lambda_1^k, \dots, \lambda_n^k$ ce qui permet d'affirmer par exemple que : $\forall k \in \mathbb{N}^*$, $\operatorname{tr}(A^k) = \sum_{i=1}^n \lambda_i^k$.

REMARQUE 5.27 : Suites récurrentes linéaires d'ordre 2 homogène et à coefficients constants : pour étudier la suite définie par $(u_0,u_1)\in\mathbb{C}^2$ et $\forall n\in\mathbb{N},\ u_{n+2}=\alpha u_{n+1}+bu_n$ avec $(\mathfrak{a},\mathfrak{b})\in\mathbb{C}^2$, on étudie $(X_n)_{n\in\mathbb{N}}$ définie par $X_n=\begin{pmatrix} u_{n+1}\\ u_n \end{pmatrix}$ car $\forall n\in\mathbb{N},\ X_{n+1}=AX_n$ avec $A=\begin{pmatrix} \mathfrak{a} & \mathfrak{b}\\ 1 & \mathfrak{0} \end{pmatrix}$; on note $\Delta=\mathfrak{a}^2+4\mathfrak{b},$ $\lambda_1=\frac{\mathfrak{a}+\delta}{2},\ \lambda_2=\frac{\mathfrak{a}-\delta}{2}$ où \mathfrak{b} est une racine carrée de Δ $(\lambda=\lambda_1=\lambda_2=\frac{\mathfrak{a}}{2}$ si $\Delta=0)$:

- si $\Delta \neq 0$, on $a : \exists (\alpha_1, \alpha_2) \in \mathbb{C}^2$ tel que $\forall n \in \mathbb{N}$, $u_n = \alpha_1 \lambda_1^n + \alpha_2 \lambda_2^n$.
- $si \Delta = 0$, on $a : \exists (\alpha, \beta) \in \mathbb{C}^2$, $\forall n \in \mathbb{N}$, $u_n = (\alpha n + \beta)\lambda^n$.

<u>EXEMPLE 5.24</u>: Déterminer l'ensemble Ω des réels α tels que $A = \begin{pmatrix} 2 & 1 & -2 \\ 1 & \alpha & -1 \\ 1 & 1 & -1 \end{pmatrix}$ ne soit pas diagonalisable. Trigonaliser A pour $\alpha \in \Omega$.

COMPÉTENCES

- trouver des valeurs propres et des vecteurs propres des endomorphismes en résolvant l'équation vectorielle $u(x) = \lambda x$ (dimension infinie) ou le système linéaire $AX = \lambda X$ (dimension finie).
- déterminer l'ordre géométrique d'une valeur propre λ de A en étudiant le rang de $A-\lambda I_n$.
- calculer efficacement le polynôme caractéristique d'une matrice.
- ullet se servir de χ_A pour connaître le spectre de A : trace, déterminant, racines, multiplicités.
- statuer sur la diagonalisabilité d'une matrice en comparant les différents ordres de ses valeurs propres.
- établir la diagonalisabilité d'un endomorphisme en trouvant des polynômes annulateurs adéquats.
- maîtriser les techniques de la trigonalisation de matrices non diagonalisables.