DM 03: DIRICHLET ET COMPAGNIE

PSI1 2025/2026

pour samedi 18 octobre 2025

PARTIE 1 : ÉTUDE DE φ

Par opérations, d est de classe C^1 sur \mathbb{R}_+ et, si $t \geqslant 0$, $d'(t) = 1 - \sin t \geqslant 0$ donc d est croissante sur l'intervalle \mathbb{R}_+ . Comme d(0) = 0, la fonction d est positive sur \mathbb{R}_+ ce qui donne $1 - \cos t \leqslant t$ et comme $\cos \leqslant 1$, on a l'inégalité attendue avec $\alpha = 1$: $\forall t > 0$, $0 \leqslant \frac{1 - \cos t}{t} \leqslant 1$. De même, δ est clairement C^2 sur \mathbb{R}_+ et, si $t \geqslant 0$, $\delta'(t) = t - \sin t$ puis $\delta''(t) = 1 - \cos t \geqslant 0$. Comme $\delta'(0) = 0$, on a $\delta' \geqslant 0$ car δ' est croissante sur \mathbb{R}_+ . À nouveau, $\delta \geqslant 0$ car $\delta(0) = 0$ et que δ est croissante sur \mathbb{R}_+ . On a donc : $\forall t > 0$, $0 \leqslant \frac{1 - \cos t}{t^2} \leqslant \frac{1}{2}$.

Pour ces deux fonctions, on pouvait aussi dire qu'elles étaient prolongeables par continuité en 0 (par DL) et de limite nulle en $+\infty$ donc classiquement bornées. On conclut en remarquant qu'elles sont évidemment positives. Mais ceci ne donnait pas les valeurs exactes de α et β .

- 1.2 h: $t \mapsto \frac{1-\cos t}{t^2}$ est continue sur \mathbb{R}_+^* , bornée sur]0;1] d'après 1.1.2 (et même prolongeable par continuité en 0) donc intégrable sur]0;1]. Pour t > 0, on a $0 \le \frac{1-\cos t}{t^2} \le \frac{2}{t^2}$ et $t \mapsto \frac{1}{t^2}$ est intégrable sur [1; $+\infty$ [donc $t \mapsto \frac{1-\cos t}{t^2}$ est intégrable sur [1; $+\infty$ [par comparaison. Ainsi $t \mapsto \frac{1-\cos t}{t^2}$ est intégrable sur $t \mapsto \frac{1-\cos t}{t^2}$ est intégrable sur $t \mapsto \frac{1-\cos t}{t^2}$ est continue sur $t \mapsto \frac{1-\cos t}{t^2}$ est intégrable sur $t \mapsto \frac{1-\cos t}{t^2}$ en $t \mapsto \frac{1-\cos t}{t^2}$ est intégrable sur $t \mapsto \frac{1-\cos t}{t^2}$ en $t \mapsto \frac{1-\cos t}{t^2}$ en

D'après **1.1.2**, on a $\forall t>0$, $0\leqslant \frac{1-\cos t}{t^2}e^{-xt}\leqslant \frac{1}{2}e^{-xt}$ donc comme, pour x>0, $t\mapsto e^{-xt}$ est intégrable sur \mathbb{R}^+ , pour x>0, $0\leqslant \phi(x)\leqslant \frac{1}{2}\int_0^{+\infty}e^{-xt}dt=\frac{1}{2x}$. On en déduit par encadrement que $\lim_{x\to +\infty}\phi(x)=0$.

- $\begin{array}{|l|l|} \hline \textbf{1.4.1} & \text{La fonction } f_t \text{ est de classe } C^2 \text{ sur } [\alpha/2; +\infty[\text{ et } |f_t''(x)| = t^2 e^{-xt} \leqslant t^2 e^{-\alpha t/2} \text{ donc l'inégalité de Taylor-Lagrange (ou Taylor avec reste intégral) donne } |f_t(x) f_t(\alpha) (x-\alpha)f_t'(\alpha)| \leqslant \frac{|x-\alpha|^2}{2} \times t^2 e^{-\alpha t/2}, \text{ d'où l'inégalité voulue}: \\ & |e^{-tx} e^{-\alpha t} + (x-\alpha)te^{-\alpha t}| \leqslant \frac{(x-\alpha)^2}{2} t^2 e^{-\alpha t/2}. \\ \hline \end{array}$
- $\boxed{ \textbf{1.4.2} } \hspace{0.1cm} \phi(x) \phi(\alpha) + (x-\alpha) \int_{0}^{+\infty} \frac{1-\cos t}{t} e^{-\alpha t} dt = \int_{0}^{+\infty} \frac{1-\cos t}{t^2} \left(e^{-xt} e^{-\alpha t} + (x-\alpha)te^{-\alpha t} \right) dt \hspace{0.1cm} \text{donc, aveclastic precedente et l'inégalité de la moyenne (en vérifiant que } t \mapsto (1-\cos t)e^{-\alpha t/2} \hspace{0.1cm} \text{est intégrable sur } \mathbb{R}^+ \hspace{0.1cm} \text{car} \hspace{0.1cm} \alpha > 0), \hspace{0.1cm} \text{on a bien} \hspace{0.1cm} \left| \phi(x) \phi(\alpha) + (x-\alpha) \int_{0}^{+\infty} \frac{1-\cos t}{t} e^{-\alpha t} dt \right| \leqslant \frac{(x-\alpha)^2}{2} \int_{0}^{+\infty} (1-\cos t)e^{-\alpha t/2} dt.$

Ainsi, si $x \neq a$, on a l'inégalité $\left| \frac{\phi(x) - \phi(a)}{x - a} + \int_0^{+\infty} \frac{1 - \cos t}{t} e^{-at} dt \right| \leqslant \frac{|x - a|}{2} \int_0^{+\infty} (1 - \cos t) e^{-at/2} dt$. Or $\lim_{x \to a} \frac{|x - a|}{2} \int_0^{+\infty} (1 - \cos t) e^{-at/2} dt = 0$ car $\int_0^{+\infty} (1 - \cos t) e^{-at/2} dt$ est une constante vis-à-vis de x. On en déduit que ϕ est dérivable en a et que $\left| \phi'(a) = - \int_0^{+\infty} \frac{1 - \cos t}{t} e^{-at} dt \right|$

 $\boxed{\textbf{1.4.3}} \text{ Pour } x>0, \text{ les fonctions } t\mapsto e^{-xt} \text{ et } t\mapsto e^{-(x-i)t} \text{ sont intégrables sur } \mathbb{R}_+^* \text{ donc on a}:$

$$\phi''(x) = \int_0^{+\infty} e^{-xt} dt - \operatorname{Re} \left(\int_0^{+\infty} e^{-(x-\mathfrak{i})t} dt \right) = \frac{1}{x} - \operatorname{Re} \left(\frac{1}{x-\mathfrak{i}} \right) \operatorname{donc} \quad \boxed{\phi''(x) = \frac{1}{x} - \frac{x}{1+x^2}.}$$

On en déduit en primitivant sur l'intervalle \mathbb{R}_+^* que $\forall x > 0$, $\varphi'(x) = \ln(x) - \frac{1}{2}\ln(1+x^2) + C$, avec $C \in \mathbb{R}$. On a $\varphi'(x) = \frac{1}{2}\ln\left(\frac{x^2}{1+x^2}\right) + C$ donc $\lim_{t \to \infty} \varphi' = C$. Par la majoration de **1.1**, on a $|\varphi'(x)| \le \int_0^{+\infty} e^{-xt} dt = \frac{1}{x}$ ce qui donne $C = \lim_{t \to \infty} \varphi' = 0$ puis $\left[\varphi'(x) = \frac{1}{2}\ln\left(\frac{x^2}{1+x^2}\right)\right]$ car $\ln\left(\frac{x^2}{1+x^2}\right) = -\ln\left(1+\frac{1}{x^2}\right) \to 0$ en $+\infty$.

$$\boxed{ \underline{\textbf{1.5.1}}} \ x \ln \left(\frac{x^2}{1+x^2} \right) = -x \ln \left(1 + \frac{1}{x^2} \right) \underset{+\infty}{\sim} -\frac{1}{x} \ \mathrm{donc} \quad \boxed{ \lim_{x \to +\infty} x \ln \left(\frac{x^2}{1+x^2} \right) = 0. }$$

La fonction $x \mapsto \ln\left(1+x^2\right)$ est continue sur \mathbb{R}^+ donc admet des primitives (calculons la primitive nulle en 0): les fonctions $t \mapsto t$ et $t \mapsto \ln(1+t^2)$ sont de classe C^1 sur [0;x] donc, par intégration par parties: $\int_0^x \ln\left(1+t^2\right) dt = \left[t\ln\left(1+t^2\right)\right]_0^x - \int_0^x t \times \frac{2t}{1+t^2} dt = x\ln\left(1+x^2\right) - 2\int_0^x \left(1-\frac{1}{1+t^2}\right) dt \ donc = x \mapsto \ln\left(1+x^2\right) \sin\left(1+x^2\right) \sin\left(1+x^2\right) \sin\left(1+x^2\right) + 2x \mapsto \ln\left(1+x^2\right) \sin\left(1+x^2\right) \sin\left(1+x^2\right) + 2x \mapsto \ln\left(1+x^2\right) + 2x \mapsto \ln\left(1+x^2$

 $\boxed{\textbf{1.5.2}} \text{ Comme } \forall x>0, \ \phi'(x)=\ln(x)-\frac{1}{2}\ln\left(1+x^2\right), \text{ en primitivant sur l'intervalle } \mathbb{R}_+^*, \text{ il existe une constante } C' \\ \text{telle que } \forall x>0, \ \phi(x)=x\ln(x)-x-\frac{x}{2}\ln\left(1+x^2\right)+x-\text{Arctan}(x)+C'=\frac{x}{2}\ln\left(\frac{x^2}{1+x^2}\right)-\text{Arctan}(x)+C'.$

 $\operatorname{Comme\ lim}_{+\infty}\phi=0\ \operatorname{et\ gr\^{a}ce\ \grave{a}}\ \textbf{1.5.1},\ \operatorname{on\ a}\ \boxed{\phi(x)=\frac{x}{2}\ln\left(\frac{x^2}{1+x^2}\right)-\operatorname{Arctan}(x)+\frac{\pi}{2}\ \operatorname{si}\ x>0.}$

Si x>0, $\varphi(x)=x\ln(x)-\frac{x}{2}\ln\left(1+x^2\right)-Arctan(x)+\frac{\pi}{2}$, on en déduit $\lim_0\varphi=\frac{\pi}{2}$. Reste à prouver que φ est continue en 0: on a $0\leqslant 1-e^{xt}\leqslant xt$ si $x\geqslant 0$ et t>0 mais la fonction $t\mapsto \frac{1-\cos t}{t}$ n'est pas intégrable sur $]0;+\infty[$. Si A>0, on a, en majorant $1-e^{-xt}$ par xt sur [0;A] et par 1 sur $[A;+\infty[$: $|\varphi(x)-\varphi(0)|\leqslant x\int_0^A\frac{1-\cos t}{t}dt+\int_A^{+\infty}\frac{1-\cos t}{t^2}dt$. Soit $\varepsilon>0$ fixé, il existe A tel que $\int_A^{+\infty}\frac{1-\cos t}{t^2}dt\leqslant\frac{\varepsilon}{2}$. Pour un tel A, on a $|\varphi(x)-\varphi(0)|\leqslant \varepsilon+x\int_0^A\frac{1-\cos t}{t}dt$ donc il existe r>0 tel que si $0\leqslant x< r$, on ait $0\leqslant x\int_0^A\frac{1-\cos t}{t}dt\leqslant\frac{\varepsilon}{2}$, ce qui donne, pour $0\leqslant x< r$, $|\varphi(x)-\varphi(0)|\leqslant \varepsilon$ donc $\lim_0\varphi=\varphi(0)$.

Par continuité de φ en 0, on a $\boxed{\varphi(0) = \lim_0 \varphi = \frac{\pi}{2}.}$

On remarque que $\lim_{x\to 0^+} \varphi'(x) = -\infty$. Comme φ est continue sur \mathbb{R}^+ , un corollaire des accroissements finis indique que φ n'est pas dérivable en 0 mais que sa courbe présente en 0 une demi-tangente verticale.

PARTIE 2 : ÉTUDE DE L'EXISTENCE DE J_m

- $\boxed{ \textbf{2.2} \text{ Les fonctions } t \mapsto (1-\cos t) \text{ et } t \mapsto \frac{1}{t} \text{ sont } C^1 \text{ sur }]0; +\infty[, \lim_{t \to 0} \frac{1-\cos t}{t} = \lim_{t \to +\infty} \frac{1-\cos t}{t} = 0 \text{ donc, par intégration par parties, } \boxed{ J_1 = \int_0^{+\infty} \frac{\sin t}{t} dt \text{ converge et } J_1 = \phi(0) = \frac{\pi}{2}. }$
- Pour k = 0, les fonctions $t \mapsto \frac{1}{t}$ et $t \mapsto \frac{e^{ikt}}{ik}$ sont C^1 sur $\left[\frac{\pi}{2}; +\infty\right[$ et $\lim_{t \to +\infty} \frac{e^{ikt}}{ikt} = 0$ donc, par intégration par parties, on a l'équivalence I_k converge $\iff \int_{\pi/2}^{+\infty} \frac{e^{ikt}}{ikt^2} dt$ converge. De plus, $t \mapsto \frac{e^{ikt}}{t^2}$ est continue sur $\left[\frac{\pi}{2}; +\infty\right[$, $\left|\frac{e^{ikt}}{t^2}\right| \leqslant \frac{1}{t^2}$ donc $t \mapsto \frac{e^{ikt}}{t^2}$ est intégrable sur $\left[\frac{\pi}{2}; +\infty\right[$ par comparaison : I_k converge. Pour k = 0, $t \mapsto \frac{1}{t}$ est positive et non intégrable sur $\left[\frac{\pi}{2}; +\infty\right[$ donc I_0 diverge. I_k converge $k \neq 0$.

- $\boxed{ \textbf{2.4.4} } \text{ Soit } \mathfrak{p} \in \mathbb{N}, \ \frac{|\sin t|^{2\mathfrak{p}+1}}{t} \geqslant \frac{|\sin t|^{2\mathfrak{p}+2}}{t} = \frac{(\sin t)^{2\mathfrak{p}+2}}{t} \geqslant 0 \text{ et } \int_{0}^{+\infty} \frac{\sin^{2\mathfrak{p}+2} t}{t} dt \text{ est divergente avec } \textbf{2.4.3}$ $\operatorname{donc} \int_{0}^{+\infty} \frac{|\sin t|^{2\mathfrak{p}+1}}{t} dt \text{ est divergente par minoration et } \int_{0}^{+\infty} \frac{(\sin t)^{2\mathfrak{p}+1}}{t} dt \text{ est semi-convergente.}$

PARTIE 3 : CALCUL DE J_{2p+1}

 $\begin{array}{c} \overline{\textbf{3.1.1}} \text{ f \'etant continue sur le segment } [-1;1], \text{ elle y est born\'ee et en notant } ||f||_{\infty} = \underset{[-1;1]}{\text{Max}} |f|, \text{ on a par in\'egalit\'e} \\ \text{ de la moyenne et majoration de } |f| \text{ par } ||f||_{\infty} : |\gamma_n| \leqslant ||f||_{\infty} \int_{\frac{\pi}{2}+n\pi}^{\frac{\pi}{2}+n\pi} \frac{dt}{t} = ||f||_{\infty} \ln \left(\frac{n\pi+\pi/2}{(n-1)\pi+\pi/2}\right). \\ \text{ Comme } \lim_{n\to +\infty} \ln \left(\frac{n\pi+\pi/2}{(n-1)\pi+\pi/2}\right) = 0, \text{ on trouve par encadrement } \lim_{n\to +\infty} \gamma_n = 0. \\ \end{array}$

Le changement de variable $u=t-n\pi$ donne $\gamma_n=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{f((-1)^n\sin(u))}{u+n\pi}du=(-1)^n\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{f(\sin(u))}{u+n\pi}du$ par imparité de f. Par ailleurs, en posant $\nu=-u$, $\int_{-\frac{\pi}{2}}^0\frac{f(\sin(u))}{u+n\pi}du=-\int_0^{\frac{\pi}{2}}\frac{f(\sin(v))}{-v+n\pi}du$. On en déduit que

$$\boxed{\gamma_n = (-1)^n \int_0^{\frac{\pi}{2}} \left(\frac{f(sin(u))}{u + n\pi} - \frac{f(sin(u))}{-u + n\pi} \right) du = \int_0^{\frac{\pi}{2}} \frac{-2(-1)^n u f(sin(u))}{(u + n\pi)(-u + n\pi)} du = \mu_n.}$$

3.1.2 Soit $x \ge \frac{\pi}{2}$ et n_x l'unique entier tel que $x \in \left[\frac{\pi}{2} + (n_x - 1)\pi, \frac{\pi}{2} + n_x\pi\right]$ (ce qui revient à $n_x = \left\lfloor \frac{x}{\pi} + \frac{1}{2} \right\rfloor$).

On a alors, par relation de Chasles, $\int_{\pi/2}^{x} \frac{f(\sin(t))}{t} dt = \sum_{k=1}^{n_x} \gamma_k + \int_{\frac{\pi}{2} + (n_x - 1)\pi}^{x} \frac{f(\sin(t))}{t} dt.$ Quand $x \to +\infty$, $n_x \to +\infty$ et $\sum_{k=1}^{n_x} \gamma_k \to \int_{0}^{\pi/2} S(t) dt \text{ d'après } \textbf{3.1.1} \text{ et ce qu'on a admis. Par ailleurs,}$

 $\left| \int_{\frac{\pi}{2} + (n_x - 1)\pi}^{x} \frac{f(\sin(t))}{t} dt \right| \leqslant ||f||_{\infty} \int_{\frac{\pi}{2} + (n_x - 1)\pi}^{\frac{\pi}{2} + n_x \pi} \frac{dt}{t} = ||f||_{\infty} \ln \left(\frac{(\pi/2) + n_x \pi}{(\pi/2) + (n_x - 1)\pi} \right) \underset{x \to +\infty}{\longrightarrow} 0.$

On en déduit par encadrement et somme que $\int_{\pi/2}^{+\infty} \frac{f(\sin(t))}{t} dt = \lim_{x \to +\infty} \int_{\pi/2}^{x} \frac{f(\sin(t))}{t} dt = \int_{0}^{\pi/2} S(t) dt.$

- $\boxed{ \textbf{3.1.4} \text{ Si } \left[g: t \mapsto S(t) + \frac{f(\sin(t))}{t} \frac{f(\sin(t))}{\sin(t)} \right], \text{ avec ce qui précède, } g \text{ est continue sur } [0; \pi/2] \text{ avec } g(0) = S(0) }$ $\int_0^{+\infty} \frac{f(\sin(t))}{t} dt \int_0^{\pi/2} \frac{f(\sin(t))}{\sin(t)} dt = \int_0^{\pi/2} \frac{f(\sin(t))}{t} dt + \int_{\pi/2}^{+\infty} \frac{f(\sin(t))}{t} dt \int_0^{\pi/2} \frac{f(\sin(t))}{\sin(t)} dt = \int_0^{\pi/2} g = 0.$
- $\begin{array}{l} \boxed{\textbf{3.2.1}} \ \ \text{Pour} \ f = \ \text{Id}_{[-1,1]} \ \left(\text{qui v\'erifie les hypoth\`eses de } \textbf{3.1} \right), \ S(t) = \sum_{n=1}^{+\infty} (-1)^n \frac{2t \sin(t)}{t^2 n^2 \pi^2} = 1 \frac{\sin(t)}{t} \ \text{pour} \\ t \in]0; \pi/2]. \ \ \text{Avec} \ \textbf{3.1.4}, \ J_1 \int_0^{\pi/2} \frac{\sin(t)}{\sin(t)} \ dt = \int_0^{\pi/2} \left(1 \frac{\sin(t)}{t} + \frac{\sin(t)}{t} \frac{\sin(t)}{\sin(t)} \right) dt = 0, \ \text{donc} \end{array}$
- $\begin{array}{l} \overline{\textbf{3.2.3}} \text{ Plus généralement } S(t) = \sin^{2p}(t) \sum_{n=1}^{+\infty} (-1)^n \frac{2t \sin(t)}{t^2 n^2 \pi^2} = \sin^{2p}(t) \frac{\sin^{2p+1}(t)}{t} \text{ avec } f: t \mapsto t^{2p+1} \text{ qui est continue, impaire, dérivable en 0 puis, avec la question } \textbf{3.1.4} \text{ (comme en } \textbf{3.2.1}, \text{ les termes se simplifient)} : J_{2p+1} = \int_0^{\pi/2} \sin^{2p}(t) dt. \text{ Une dernière intégration par parties (assez facile à justifier) donne alors } J_{2p+1} = (2p-1) \int_0^{\pi/2} \cos^2(t) \sin^{2p-2}(t) dt = (2p-1)(J_{2p-1} J_{2p+1}) \text{ ou encore } J_{2p+1} = \frac{2p-1}{2p} J_{2p-1}. \end{array}$

Une récurrence simple montre enfin que $\boxed{\forall p \in \mathbb{N}, \ J_{2p+1} = \frac{(2p)!}{4^p (p!)^2} \frac{\pi}{2}}.$