DM 04: POTION MAGIQUE

PSI 1 2025/2026

pour le vendredi 07/11/2025

OBÉLIX voudrait bien pouvoir goûter la potion magique. PANORAMIX lui propose alors un petit jeu. Il place dans un panier $N \ge 1$ haricots blancs et N haricots noirs. OBÉLIX tire alors au hasard un haricot.

- S'il tire un haricot blanc : PANORAMIX accepte de lui donner un peu de potion et le jeu s'arrête.
- S'il tire un haricot noir, PANORAMIX replace ce haricot noir dans le panier et y ajoute des haricots noirs supplémentaires. On note alors u_1 le nombre de haricots noirs contenus dans le panier.

Et ainsi de suite... Pour $k \ge 1$:

- Si au ke tirage, le haricot est blanc, PANORAMIX fait goûter la potion à OBÉLIX et le jeu s'arrête.
- Sinon, il replace le haricot noir dans le panier en y ajoutant des haricots noirs. On note alors uk haricots noirs contenus dans le panier et on repart pour un tour...

On définit, pour $k \in \mathbb{N}^*$, les évènements suivants :

- N_k = "OBÉLIX obtient un haricot noir au k^e tirage".
- A_k = "OBÉLIX gagne le droit de goûter la potion à l'issue du k^e tirage".
- R_k = "OBÉLIX n'obtient que des haricots noirs au cours des k premières tentatives".

On pose $G = "OBÉLIX goûte la potion magique". On pose enfin <math>\forall k \in \mathbb{N}^*, \ q_k = \mathbb{P}(R_k)$.

PARTIE 1 : PANORAMIX EST RÉGULIER

Dans cette partie, on suppose que PANORAMIX rajoute à chaque étape N haricots noirs dans le panier. Pour tout $k \in \mathbb{N}$, on note u_k le nombre de haricots noirs contenus dans le panier avant le $(k+1)^e$ tirage.

- 1.1 Calculer u_k pour $k \ge 0$. Pour $k \ge 1$, exprimer R_k en fonction de N_1, \ldots, N_k . En déduire que $\mathbb{P}(R_k) = \frac{1}{k+1}$.
- **1.2** Calculer $\mathbb{P}(A_1)$ puis $\mathbb{P}(A_k)$ pour tout entier $k \ge 2$.
- 1.3 On suppose que la potion magique gagne en puissance à force de rester dans la marmite.

Si OBÉLIX goûte la potion après k tentatives, la probabilité qu'il en ressente les effets vaut $\frac{k}{k+2}$.

Calculer la probabilité de l'évènement E="OBÉLIX ressent les effets de la potion magique". On pourra utiliser le fait que $\forall j \in \mathbb{N}, \ \frac{1}{(j+1)(j+2)} = \frac{1}{j+1} - \frac{1}{j+2}.$

1.4 Exprimer \overline{G} en fonction des R_k . En déduire la probabilité qu'OBÉLIX goûte la potion magique.

PARTIE 2 : PANORAMIX SE LÂCHE

On suppose dans cette partie que Panoramix rajoute à chaque étape un nombre quelconque de haricots. Pour tout $k \in \mathbb{N}$, on note u_k le nombre de haricots noirs contenus dans le panier avant le $(k+1)^e$ tirage. On a $u_0 = N$ et la suite $(u_k)_{k \geqslant 0}$ est croissante. On suppose que $\lim_{n \to +\infty} u_n = +\infty$.

- **2.1** Montrer que $\forall k \in \mathbb{N}^*$, $\mathbb{P}(R_k) = \prod_{i=0}^{k-1} \frac{u_i}{N+u_i}$.
- **2.2** Prouver que la suite $(q_k)_{k\geqslant 1}$ est monotone et que $\forall k\in \mathbb{N}^*,\ 0< q_k\leqslant \frac{1}{2}$.

En déduire que la suite $(q_k)_{k\geqslant 1}$ est convergente. On pose $L=\lim_{k\to +\infty}q_k.$ Encadrer L.

Montrer que l'évènement G= "OBÉLIX goûte la potion" est quasi-certain si et seulement si L=0.

2.3 Prouver que la suite $\left(\ln\left(\frac{1}{q_k}\right)\right)_{k\geqslant 1}$ converge si et seulement si la série $\sum_{k\geqslant 0}\frac{1}{u_k}$ converge.

En déduire que G est un évènement quasi-certain si et seulement si la série $\sum_{k \geq 0} \frac{1}{u_k}$ diverge.

DM 04: POTION MAGIQUE

PSI 1 2025/2026

pour le vendredi 07/11/2025

On suppose choisie un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ pour modéliser cette expérience de telle sorte que les ensembles élémentaires N_k (tirage d'un haricot à l'étape k) soit un évènement : $\forall k \in \mathbb{N}^*$, $N_k \in \mathcal{A}$.

Il faut bien imposer quelque chose pour pouvoir travailler sur les probabilités de certains évènements.

PARTIE 1 : PANORAMIX EST RÉGULIER

 $\boxed{ \textbf{1.1} } \text{ La suite } (\mathfrak{u}_k)_{k\geqslant 0} \text{ est arithm\'etique de raison } N \text{ et } \mathfrak{u}_0 = N \text{ donc } \boxed{ \forall k\geqslant 0, \; \mathfrak{u}_k = N(k+1). }$

Par définition, on a $\forall k \geqslant 1$, $R_k = N_1 \cap \dots \cap N_k$. Ceci prouve (par réunion d'événements) que les R_k font aussi partie de la tribu $\mathcal A$ donc sont aussi des évènements. On en déduit par la formule des probabilités composées que $\mathbb P(R_k) = \mathbb P(N_1) \mathbb P_{N_1}(N_2) \cdots \mathbb P_{N_1 \cap \dots \cap N_{k-1}}(N_k)$. Si $\mathfrak i \in [\![1;k]\!]$ et $\omega \in N_1 \cap \dots \cap N_{i-1}$, le panier contient après le $(\mathfrak i-1)^e$ tirage $\mathfrak u_{\mathfrak i-1}$ haricots noirs et N haricots blancs. Ainsi $\mathbb P_{N_1 \cap \dots \cap N_{\mathfrak i-1}}(N_{\mathfrak i}) = \frac{\mathfrak u_{\mathfrak i-1}}{\mathfrak u_{\mathfrak i-1} + N}$. On ob-

 $\text{tient donc} \quad \boxed{\forall k \geqslant 1, \ \mathbb{P}(R_k) = \prod\limits_{i=1}^k \, \mathbb{P}(N_i) = \prod\limits_{i=1}^k \frac{u_{i-1}}{u_{i-1} + N} = \prod\limits_{i=1}^k \frac{i}{i+1} = \frac{1}{k+1}} \quad \text{par t\'elescopage multiplicatif.}$

 $\boxed{ \textbf{1.2} \ \text{Comme } A_1 = \overline{N_1} = \overline{R_1} \in \mathcal{A}, \, \text{on a} \quad \boxed{ \mathbb{P}(A_1) = 1 - \mathbb{P}(R_1) = 1 - \mathbb{P}(N_1) = \frac{1}{2}. }$

De plus, pour $k \geqslant 2$, $A_k = R_{k-1} \cap \overline{N_k} \in \mathcal{A}$ donc $\boxed{\mathbb{P}(A_k) = \mathbb{P}(R_{k-1}) \mathbb{P}_{R_{k-1}}(\overline{N_k}) = \frac{1}{k} \times \frac{N}{kN+N} = \frac{1}{k(k+1)}}$ puisque pour le k^e tirage il y a $\mathfrak{u}_{k-1} = kN$ haricots noirs et N haricots blancs dans le panier.

1.3 On note $E_k = \text{"OB\'elix}$ ressent les effets de la potion s'il la goûte après le k^e tirage".

D'après l'énoncé $E = \bigcup_{k=1}^{+\infty} (A_k \cap E_k)$ (réunion dénombrable) donc $E \in \mathcal{A}$. Ces évènements sont incompatibles et $\mathbb{P}(A_k \cap E_k) = \mathbb{P}(A_k) \mathbb{P}_{A_k}(E_k) = \frac{1}{k(k+1)} \times \frac{k}{k+2} = \frac{1}{(k+1)(k+2)}$ par hypothèse. Par σ -additivité, on trouve $\mathbb{P}(E) = \sum_{k=1}^{+\infty} \mathbb{P}(A_k \cap E_k) = \sum_{k=1}^{+\infty} \frac{1}{(k+1)(k+2)} = \sum_{k=1}^{+\infty} \left(\frac{1}{k+1} - \frac{1}{k+2}\right) = \frac{1}{2}$ par télescopage additif.

 $\boxed{\textbf{1.4}} \ \text{Par d\'efinition de } G, \ \boxed{\overline{G} = \bigcap_{k=1}^{+\infty} R_k} \ \text{(OB\'elix ne go\^ute jamais la potion si on ne tire que des haricots noirs)}$

 $\mathrm{donc}\ G\in\mathcal{A}.\ \mathrm{Comme}\ (R_k)_{k\geqslant 1}\ \mathrm{est}\ \mathrm{décroissante}\ \mathrm{pour}\ l'inclusion,\ \mathrm{par}\ \mathrm{th\acute{e}or\grave{e}me}\ \mathrm{de}\ \mathrm{continuit\acute{e}}\ \mathrm{d\acute{e}croissante}:$

 $\overline{\mathbb{P}(\overline{G}) = \lim_{k \to +\infty} \mathbb{P}(R_k) = \lim_{k \to +\infty} \frac{1}{k+1} = 0.} \quad \text{Ainsi} \quad \overline{\mathbb{P}(G) = 1} \quad \text{et Obélix goûte presque sûrement la potion.}$

PARTIE 2 : PANORAMIX SE LÂCHE

$$\text{on a} \quad \boxed{q_k = \mathbb{P}(R_k) = \mathbb{P}(N_1) \mathbb{P}_{N_1}(N_2) \cdots \mathbb{P}_{N_1 \cap \cdots \cap N_{k-1}}(N_k) = \prod_{j=0}^{k-1} \frac{u_j}{N + u_j}} \quad \text{car il y a dans le panier après le parties}$$

 $j^{\mathfrak e}$ tirage (donc pour décider du $(j+1)^{\mathfrak e})$ $\mathfrak u_j$ haricots noirs et N haricots blancs.

 $\boxed{\textbf{2.2}} \text{ Pour } k \geqslant 1, \text{ on a clairement } q_k > 0. \text{ De plus, } \frac{q_{k+1}}{q_k} = \frac{u_k}{N + u_k} < 1 \text{ (car } N > 0) \text{ d'après la question précédente}$

 $\mathrm{donc} \quad \boxed{\mathrm{la \ suite} \ (q_k)_{k\geqslant 1} \ \mathrm{est \ strictement \ d\'{e}croissante}.} \quad \mathrm{Ainsi} \quad \boxed{\forall k\geqslant 1, \ 0 < q_k\leqslant q_1 = \frac{N}{N+N} = \frac{1}{2}.}$

Comme $(q_k)_{k\geqslant 1}$ est décroissante et minorée par 0, elle converge vers un réel $L=\lim_{k\to +\infty}q_k$ qui vérifie $L\in \left[0;\frac{1}{2}\right]$ en passant à la limite dans l'encadrement $0< q_k\leqslant \frac{1}{2}.$

Par définition, $G = \bigcup_{k=1}^{+\infty} A_k$ (réunion dénombrable d'évènements incompatibles donc à nouveau $G \in \mathcal{A}$) ainsi, par σ -additivité, on a $\mathbb{P}(G) = \sum_{n=1}^{+\infty} \mathbb{P}(A_k)$. Mais on a mieux, comme à la question $\mathbf{1.4} : \overline{G} = \bigcap_{n=1}^{+\infty} R_k$. Et comme $(R_k)_{k\geqslant 1}$ est décroissante pour l'inclusion, par continuité décroissante : $\mathbb{P}(\overline{G}) = \lim_{n\to +\infty} \mathbb{P}(R_k) = \lim_{n\to +\infty} q_k = L$.

Ainsi : $\boxed{G \text{ est presque } \hat{\text{sur}} \iff \mathbb{P}(G) = 1 \iff \mathbb{P}(\overline{G}) = 0 \iff L = 0.}$

 $\begin{array}{c} {\color{red} {\bf 2.3}} \ \ {\rm La\ suite} \left(\, \ln \left(\frac{1}{q_k} \right) \right)_{k\geqslant 1} \ {\rm est} \ {\rm \grave{a}\ termes\ strictement\ positifs\ car} \ q_k \in]0;1[.\ {\rm On\ sait\ que} \left(\, \ln \left(\frac{1}{q_k} \right) \right)_{k\geqslant 1} \ {\rm converge} \\ {\rm si\ et\ seulement\ si\ } \sum_{n\geqslant 1} \left(\, \ln \left(\frac{1}{q_{k+1}} \right) - \ln \left(\frac{1}{q_k} \right) \right) \ {\rm converge}. \end{array} \ {\rm Mais\ puisque\ } \lim_{n\to +\infty} u_k = +\infty \ {\rm par\ hypoth\grave{e}se}, \\ {\rm ln} \left(\frac{1}{q_{k+1}} \right) - {\rm ln} \left(\frac{1}{q_k} \right) = {\rm ln} \left(\frac{u_k + N}{u_k} \right) = {\rm ln} \left(1 + \frac{N}{u_k} \right) \underset{\infty}{\sim} \frac{N}{u_k} \ {\rm et\ N\ est\ une\ constante}. \\ \end{array}$

Par théorème de comparaison, on a donc $\boxed{\left(\ln\left(\frac{1}{q_k}\right)\right)_{k\geqslant 1} \text{ converge} \Longleftrightarrow \sum_{k\geqslant 0} \frac{1}{u_k} \text{ converge.}}$

D'après la question précédente, G est presque sûr $\iff \lim_{k \to +\infty} q_k = 0 \iff \lim_{k \to +\infty} \ln\left(\frac{1}{q_k}\right) = +\infty$. De plus, si L > 0, la suite $\left(\ln\left(\frac{1}{q_k}\right)\right)_{k\geqslant 1}$ converge vers $-\ln(L)$.

Ainsi, d'après ce qui précède, G est un évènement quasi-certain si et seulement si la série $\sum_{k\geqslant 0}\frac{1}{u_k}$ diverge

(ses sommes partielles tendant alors vers $+\infty$).