DEVOIR 08 : INTÉGRALES DÉNOMBRÉES

PSI 1 2025-2026

mardi 04 novembre 2025

 \mathbf{QCM}

1 Convergence d'intégrale et intégrabilité : soit f, g : $\mathbb{R}_+ \to \mathbb{R}$ continues par morceaux

$$\boxed{\textbf{1.1}} \hspace{0.2cm} f \underset{+\infty}{\sim} g \Longrightarrow \big(\int_{0}^{+\infty} f \hspace{0.1cm} ACV \Longleftrightarrow \int_{0}^{+\infty} g \hspace{0.1cm} ACV \big) \hspace{0.2cm} \boxed{\textbf{1.3}} \hspace{0.2cm} \big(0 \leqslant f \leqslant g \hspace{0.1cm} \text{et} \hspace{0.1cm} \int_{0}^{+\infty} f \hspace{0.1cm} \text{diverge} \hspace{0.1cm} \big) \Longrightarrow \int_{0}^{+\infty} g \hspace{0.1cm} \text{diverge} \hspace{0.1cm} \big(0 \leqslant f \leqslant g \hspace{0.1cm} \text{et} \hspace{0.1cm} \int_{0}^{+\infty} f \hspace{0.1cm} \text{diverge} \hspace{0.1cm} \big) \Longrightarrow \int_{0}^{+\infty} g \hspace{0.1cm} \text{diverge} \hspace{0.1cm} \big(0 \leqslant f \leqslant g \hspace{0.1cm} \text{et} \hspace{0.1cm} \int_{0}^{+\infty} f \hspace{0.1cm} \text{diverge} \hspace{0.1cm} \big(0 \leqslant f \leqslant g \hspace{0.1cm} \text{et} \hspace{0.1cm} \int_{0}^{+\infty} f \hspace{0.1cm} \text{diverge} \hspace{0.1cm} \big(0 \leqslant f \leqslant g \hspace{0.1cm} \text{et} \hspace{0.1cm} \int_{0}^{+\infty} f \hspace{0.1cm} \text{diverge} \hspace{0.1cm} \big(0 \leqslant f \leqslant g \hspace{0.1cm} \text{et} \hspace{0.1cm} \int_{0}^{+\infty} f \hspace{0.1cm} \text{diverge} \hspace{0.1cm} \big(0 \leqslant f \leqslant g \hspace{0.1cm} \text{et} \hspace{0.1cm} \int_{0}^{+\infty} f \hspace{0.1cm} \text{diverge} \hspace{0.1cm} \big(0 \leqslant f \leqslant g \hspace{0.1cm} \text{et} \hspace{0.1cm} \int_{0}^{+\infty} f \hspace{0.1cm} \text{diverge} \hspace{0.1cm} \big(0 \leqslant f \leqslant g \hspace{0.1cm} \text{et} \hspace{0.1cm} \int_{0}^{+\infty} f \hspace{0.1cm} \text{diverge} \hspace{0.1cm} \big(0 \leqslant f \leqslant g \hspace{0.1cm} \text{et} \hspace{0.1cm} \int_{0}^{+\infty} f \hspace{0.1cm} \text{diverge} \hspace{0.1cm} \big(0 \leqslant f \leqslant g \hspace{0.1cm} \text{et} \hspace{0.1cm} \int_{0}^{+\infty} f \hspace{0.1cm} \text{diverge} \hspace{0.1cm} \big(0 \leqslant f \leqslant g \hspace{0.1cm} \text{et} \hspace{0.1cm} \int_{0}^{+\infty} f \hspace{0.1cm} \text{diverge} \hspace{0.1cm} \big(0 \leqslant f \leqslant g \hspace{0.1cm} \text{et} \hspace{0.1cm} \int_{0}^{+\infty} f \hspace{0.1cm} \text{diverge} \hspace{0.1cm} \big(0 \leqslant f \leqslant g \hspace{0.1cm} \text{et} \hspace{0.1cm} \big(0 \leqslant f \leqslant g \hspace{0.1cm} \text{et} \hspace{0.1cm} \big(0 \leqslant f \leqslant g \hspace{0.1cm} \big(0 \leqslant f \leqslant g \hspace{0.1cm} \text{et} \hspace{0.1cm} \big(0 \leqslant f \leqslant g \hspace{0.1cm} \big(0 \leqslant f$$

$$\boxed{\textbf{1.3}} \ \, \big(0\leqslant f\leqslant g \text{ et } \int_0^{+\infty} f \text{ diverge } \big) \Longrightarrow \int_0^{+\infty} g \text{ diverge}$$

$$\boxed{1.2}$$
 f intégrable sur $\mathbb{R}_+ \Longrightarrow$ f bornée sur \mathbb{R}_+

$$\boxed{\textbf{1.2}} \text{ f intégrable sur } \mathbb{R}_+ \Longrightarrow \text{f bornée sur } \mathbb{R}_+ \qquad \boxed{\textbf{1.4}} \text{ } \left(\text{f} \underset{+\infty}{=} \text{O(g) et } \int_0^{+\infty} \text{g CV} \right) \Longrightarrow \text{f intégr.}$$

2 Dans la classe, il y a 6 filles (ensemble F) et 33 garçons (ensemble G). Tous les élèves de la classe participent à un jeu et on met les trois premiers sur un podium

$$\boxed{\textbf{2.1}}$$
 Il y a $\frac{33!}{6!}$ applic. inject. de F dans G $\boxed{\textbf{2.3}}$ Il y a $\binom{39}{3}$ trinômes possibles

2.2 Il y a
$$33^6$$
 applications de G dans F **2.4** Il y a $39 \times 38 \times 37$ podiums possibles (3 premiers ordonnés)

3 | Fonctions entre ensembles finis: soit f: $E \to F$ où E est de cardinal n et F de cardinal p

$$\boxed{\textbf{3.1}} \hspace{0.1in} \text{f injective} \Longrightarrow \hspace{0.1in} \mathfrak{n} \leqslant \mathfrak{p} \hspace{0.1in} \boxed{\textbf{3.3}} \hspace{0.1in} \text{f injective} \Longleftrightarrow \hspace{0.1in} \text{f surjective} \Longleftrightarrow \hspace{0.1in} \text{f bijective}$$

$$\boxed{\textbf{3.2}} \text{ f surjective} \Longrightarrow \mathfrak{n} \geqslant \mathfrak{p} \qquad \boxed{\textbf{3.4}} \text{ Si } \mathfrak{n} \geqslant \mathfrak{p}, \text{ il y a } \binom{\mathfrak{n}}{\mathfrak{p}} \times (\mathfrak{n} - \mathfrak{p})^{\mathfrak{p}} \text{ appl. surj. de E dans F}$$

4 Trigonométrie

$$\boxed{\textbf{4.1}} \ \text{Pour } \theta \in \left] - \frac{\pi}{2}; \frac{\pi}{2} \right[, \ \tan \left(\frac{\pi}{2} + \theta \right) = -\frac{1}{\tan(\theta)} \ \boxed{\textbf{4.3}} \ \forall x \in \mathbb{R}, \ \operatorname{Arctan'}(\operatorname{sh}(x)) = \frac{1}{\operatorname{ch}(x)}$$

$$\boxed{\textbf{4.2}} \ \text{Pour } \theta \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \left[, \ \tan(\pi - \theta) = -\tan(\theta) \right] \quad \boxed{\textbf{4.4}} \ \forall x \in \mathbb{R}, \ \left(\operatorname{Arctan}(\operatorname{sh}(x)) \right)' = \frac{1}{\operatorname{ch}(x)}$$

Énoncé | Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ une fonction continue par morceaux. Soit un réel α . Donner dans chacun des cas suivants la conclusion quant à l'intégrabilité ou non de f sur]0;1] ou $[1;+\infty[$.

• Si
$$\lim_{t \to +\infty} t^{\alpha} f(t) = k \neq 0$$
 avec $\alpha > 1$, alors

• Si
$$\lim_{t \to +\infty} t^{\alpha} f(t) = +\infty$$
 avec $\alpha \leq 1$, alors

• Si
$$\lim_{t\to 0^+} t^{\alpha} f(t) = k \neq 0$$
 avec $\alpha \geqslant 1$, alors

$$\boxed{ \textbf{Preuve} } \ \, \text{Soit} \,\, \alpha \in \, \mathbb{R} \,\, \text{et} \,\, f_{\alpha} : \, \mathbb{R}_{+}^{*} \rightarrow \, \mathbb{R} \,\, \text{definie par} \,\, \forall x > 0, \,\, f_{\alpha}(x) = \frac{1}{x^{\alpha}}.$$

Montrer que $\int_{1}^{+\infty} f_{\alpha}$ converge si et seulement si $\alpha > 1$.

Exercice 1 | Par intégration par parties, montrer la convergence et calculer la valeur exacte de l'intégrale $\int_0^1 \frac{\ln(1-x^2)}{x^2} dx$. Indication : on choisira judicieusement la constante d'intégration lors de l'opération.

Exercice 2 **a.** Pour $a \in \mathbb{R}$ donner la valeur de $\lim_{x\to 0^+} (1+x^a)$ selon la valeur de a.

b. Soit
$$a \in \mathbb{R}$$
, justifier que $\int_0^{+\infty} \frac{dx}{(1+x^2)(1+x^a)}$ converge. On note $I(a)$ sa valeur.

c. Par le changement de variable
$$x = \frac{1}{t}$$
 à justifier, montrer que $I(a) = \frac{\pi}{4}$.

DEVOIR 08	NOM:	PRÉNOM :
	1.01.1	11021,0111

QCM Répondre dans le tableau ci-dessous au QCM : mettre une croix dans la case de la ligne i colonne j revient à déclarer la question i.j vraie. Ne rien mettre revient à la déclarer fausse.

i · j	1	2	3	4	Fautes
1					
2					
3					
4					

Énoncé

Preuve

Exercice 1

Exercice 2

DEVOIR 08 PRÉNOM: SINUS NOM: COCO

i · j	1	2	3	4	Fautes
1	X		X		
2			X	X	
3	Х	Х			
4		Х		Х	

1.1 Vrai : comparaison (iv) **1.2** : Faux : cours **1.3** Vrai : cours **1.4** Faux : f = g avec $\int_0^{+\infty} f$ semi-CV.

2.1 Faux : c'est $\frac{33!}{(33-6)!}$ **2.2** Faux : c'est 6^{33} **2.3** Vrai : 3-parties de la classe **2.4** Vrai : $A_{39}^3 = 39 \times 38 \times 37$.

3.1 Vrai : f injective implique card $(f(E)) = \operatorname{card}(E) = n$ alors que $f(E) \subset F$ **3.2** Vrai : f surjective implique f(E) = F et card $(f(E)) \leqslant \operatorname{card}(E)$ 3.3 Faux : on n'a pas dit que n = p 3.4 Faux : le protocole que cette formule sous-entend n'est pas bijectif.

4.1: Faux : si $\theta = 0$ **4.2** Vrai : calcul **4.3** Faux : c'est $\frac{1}{\cosh^2(x)}$ **4.4** Vrai : $\left(\operatorname{Arctan}(\operatorname{sh}(x))\right)' = \frac{\operatorname{ch}(x)}{1 + \operatorname{sh}^2(x)}$

Énoncé Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ une fonction continue par morceaux.

S'il existe α > 1 tel que lim t^αf(t) = k ≠ 0, alors f est intégrable sur [1; +∞[.
S'il existe α ≤ 1 tel que lim t^αf(t) = +∞, alors f n'est pas intégrable sur [1; +∞[.
S'il existe α ≥ 1 tel que lim t^αf(t) = k ≠ 0, alors f n'est pas intégrable sur [0; 1].

• S'il existe si $\alpha < 1$ et $f(t) = O\left(\frac{1}{t^{\alpha}}\right)$, alors f est intégrable sur]0;1].

• Preuve Pour tout α réels, la fonction f_{α} est continue sur $[1;+\infty[$.

Si
$$\alpha = 1$$
, $x \ge 1$: $\int_1^x \frac{dt}{t^{\alpha}} = \left[\ln(t) \right]_1^x$ et $\lim_{x \to +\infty} \ln(x) = +\infty$: $\int_1^{+\infty} f_1$ diverge.

$$\mathrm{Si}\ \alpha<1,\ \lim_{x\to+\infty}\int_1^x\frac{dt}{t^\alpha}=\lim_{x\to+\infty}\Big[-\frac{1}{(\alpha-1)t^{\alpha-1}}\Big]_1^x=+\infty:\ \int_1^{+\infty}f_\alpha\ \mathrm{diverge}.$$

Si
$$\alpha > 1$$
, $\lim_{x \to +\infty} \int_1^x \frac{dt}{t^{\alpha}} = \lim_{x \to +\infty} \left[-\frac{1}{(\alpha - 1)t^{\alpha - 1}} \right]_1^x = \frac{1}{\alpha - 1} : \int_1^{+\infty} f_{\alpha} \text{ converge et } \int_1^{+\infty} f_{\alpha} = \frac{1}{\alpha - 1}.$

Exercise 1 $u: x \mapsto \ln(1-x^2) \text{ et } v: x \mapsto 1-\frac{1}{x} \text{ sont } C^1 \text{ sur }]0;1[. \text{ Or } \ln(1-x^2) \sim -x^2 \text{ et } \lim_{x \to 1^-} (1-x) \ln(1-x) = 0$

 $\mathrm{donc}\, \lim_{x\to 0^+} u(x) \nu(x) \,=\, 0 \,=\, \lim_{x\to 1^-} u(x) \nu(x). \ \mathrm{Par} \ \mathrm{le} \ \mathrm{th\acute{e}or\grave{e}me} \ \mathrm{d}'\mathrm{IPP}, \ \int_0^1 u(x) \nu'(x) dx \,=\, \int_0^1 \frac{\mathrm{ln}(1-x^2)}{x^2} dx \ \mathrm{et} \ \mathrm{ln}(x) \nu'(x) dx \,=\, \int_0^1 \frac{\mathrm{ln}(1-x^2)}{x^2} dx \, \mathrm{ln}(x) \nu'(x) \, \mathrm{ln}(x) \, \mathrm{ln}(x) \nu'(x) \, \mathrm{ln}(x) \, \mathrm{ln}(x) \nu'(x) \, \mathrm{ln}(x) \, \mathrm{ln}(x)$

 $\int_0^1 u'(x)v(x)dx$ ont même nature. Or $u'(x)v(x) = \frac{2}{1+x}$ donc $\int_0^1 u'v$ converge car u'v se prolonge par continuité sur le segment [0;1]. L'intégrale converge donc et $\int_0^1 \frac{\ln(1-x^2)}{x^2} dx = -\int_0^1 \frac{2dx}{1+x} = -2\ln(2)$.

Exercice 2 a. Si $\alpha = 0$, $\lim_{x \to 0^+} (1 + x^{\alpha}) = 2$. Pour $\alpha < 0$, $\lim_{x \to 0^+} (1 + x^{\alpha}) = +\infty$. Quand $\alpha > 0$, $\lim_{x \to 0^+} (1 + x^{\alpha}) = 1$. b. $f_{\alpha} : x \to \frac{1}{(1 + x^2)(1 + x^{\alpha})}$ est continue sur $]0; +\infty[$, se prolonge par continuité en 0 en posant $f_0(0) = 1/2$,

 $f_{\mathfrak{a}}(0)=1 \text{ si } \mathfrak{a}>0 \text{ et } f_{\mathfrak{a}}(0)=0 \text{ si } \mathfrak{a}<0 \text{ d'après } \mathbf{a}.. \text{ De plus, } \forall \mathfrak{a} \in \mathbb{R}, \ \forall x\geqslant 0, \ 0\leqslant f_{\mathfrak{a}}(x)\leqslant \frac{1}{1+x^2}=g(x) \text{ et } g(x) \leqslant g(x)$

est continue et intégrable sur \mathbb{R}_+ car $g(x) \sim \frac{1}{x^2}$. Par comparaison, f_a est aussi intégrable sur \mathbb{R}_+ .

c. $\varphi: t \mapsto \frac{1}{t}$ est C^1 , bijective et strictement décroissante de \mathbb{R}_+^* dans \mathbb{R}_+^* donc, par le changement de

 $\text{variable } x = \frac{1}{t} = \phi(t), \text{ on a } I(a) = \int_{+\infty}^{0} \frac{-t^{\alpha}}{(1+t^{2})(1+t^{\alpha})} dt = \int_{0}^{+\infty} \frac{x^{\alpha}}{(1+x^{2})(1+x^{\alpha})} dx. \text{ En sommant, par linéarité, } 2I(a) = \int_{0}^{+\infty} \frac{1+x^{\alpha}}{(1+x^{2})(1+x^{\alpha})} dx = \int_{0}^{+\infty} \frac{1}{1+x^{2}} dx = \left[\text{Arctan}(x) \right]_{0}^{+\infty} = \frac{\pi}{2} \text{ donc } I(a) = \frac{\pi}{4}.$