DS 02 : INSPIRÉ DE CENTRALE PSI 2019 M2

PSI1/2 2025/2026

samedi 27 septembre 2025

NOTATIONS ET RAPPELS:

Dans tout le sujet, n désigne un entier naturel non nul et E un C-espace vectoriel de dimension n.

Une matrice M est dite <u>nilpotente</u> s'il existe un entier naturel $k \ge 1$ tel que $M^k = 0$. Dans ce cas, le plus petit entier naturel $k \ge 1$ tel que $M^k = 0$ s'appelle l'<u>indice de nilpotence</u> de M. On a donc par définition $M^p = 0$ et $M^{p-1} \ne 0$ si M est nilpotente d'indice p.

 $Soit \ {\tt B} \ une \ base \ de \ {\tt E}, \ un \ endomorphisme \ de \ {\tt E} \ est \ nilpotent \ d'indice \ {\tt p} \ si \ sa \ matrice \ dans \ {\tt B} \ est \ nilpotente$

d'indice p. On pose
$$J_1=(0)\in \mathcal{M}_1(\mathbb{C})$$
 et, pour un entier $\alpha\geqslant 2$, $J_{\alpha}=\begin{pmatrix} 0&\cdots&\cdots&0\\1&\ddots&&\vdots\\0&\ddots&\ddots&\ddots&\vdots\\0&\cdots&0&1&0 \end{pmatrix}\in \mathcal{M}_{\alpha}(\mathbb{C}).$

On a donc en particulier $J_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

 $\label{eq:sigma} \begin{array}{l} \textit{Si } A \in \mathfrak{M}_{\mathfrak{m}}(\mathbb{C}) \textit{ et } B \in \mathfrak{M}_{\mathfrak{m}}(\mathbb{C}), \textit{ on note } diag(A,B) = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \in \mathfrak{M}_{\mathfrak{n}+\mathfrak{m}}(\mathbb{C}) \textit{ la matrice diagonale par blocs } \\ \textit{et, plus généralement, si } A_1 \in \mathfrak{M}_{\mathfrak{n}_1}(\mathbb{C}), A_2 \in \mathfrak{M}_{\mathfrak{n}_2}(\mathbb{C}), \cdots, A_k \in \mathfrak{M}_{\mathfrak{n}_k}(\mathbb{C}), \textit{ on note} \end{array}$

$$\operatorname{diag}(A_1,A_2,\cdots,A_k) = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & A_k \end{pmatrix} \in \mathfrak{M}_{n_1+n_2+\cdots+n_k}(\mathbb{C}).$$

PARTIE 1 : DEUX EXEMPLES

- 1.1 Le premier : on considère ici la matrice $A = \begin{pmatrix} 2 & 4 \\ -1 & -2 \end{pmatrix} \in \mathfrak{M}_2(\mathbb{C}).$
 - [1.1.1] Vérifier que A est nilpotente et déterminer son indice de nilpotence.
 - [1.1.2] Que valent Tr (A) et det(A)?
 - $\boxed{\textbf{1.1.3}} \text{ Soit } \mathfrak{u} \text{ l'endomorphisme de } \mathbb{C}^2 \text{ canoniquement associ\'e à la matrice } A. \text{ On pose } \epsilon_1 = (1,0) \text{ et } \epsilon_2 = \mathfrak{u}(\epsilon_1).$ Vérifier que $\mathfrak{B} = (\epsilon_1,\epsilon_2)$ est une base de \mathbb{C}^2 .
 - $\boxed{\textbf{1.1.4}} \text{ En déduire que } A \text{ est semblable à } J_2 \text{ et donner une matrice } P \in \mathcal{M}_2(\mathbb{C}) \text{ inversible telle que } A = PJ_2P^{-1}.$
- 1.2 Le second : $ici B = \begin{pmatrix} 1 & 3 & -7 \\ 2 & 6 & -14 \\ 1 & 3 & -7 \end{pmatrix}$. Soit u l'endomorphisme de \mathbb{C}^3 canoniquement associé à B.
 - **1.2.1** On pose $\varepsilon_1 = (1,0,0)$ et $\varepsilon_2 = \mathfrak{u}(\varepsilon_1)$. Vérifier que $\varepsilon_2 \in Ker(\mathfrak{u})$.
 - $\boxed{\textbf{1.2.2}}$ Déterminer un vecteur ε_3 de \mathbb{C}^3 tel que $(\varepsilon_2, \varepsilon_3)$ soit une base de $Ker(\mathfrak{u})$.
 - **1.2.3** Démontrer que B est semblable à la matrice $diag(J_2, J_1)$. Justifier que B est nilpotente et donner son indice. Donner la valeur d'une matrice P inversible telle que $B = P diag(J_2, J_1) P^{-1}$.

PARTIE 2 : PREMIERS RÉSULTATS

- **2.1** Que peut-on dire d'un endomorphisme nilpotent d'indice 1 ?
- **Réduction d'une matrice nilpotente de** $M_2(\mathbb{C})$ **d'indice** 2 : on suppose dans cette question que n = 2. Soit u un endomorphisme de E nilpotent d'indice $p \ge 2$.
 - **2.2.1** On suppose que $p \ge 3$. Justifier qu'il existe un vecteur $x \in E$ tel que $u^{p-1}(x) \ne 0_E$. Montrer que la famille $(x, u(x), u^2(x))$ est libre. Conclure que p = 2.
 - **[2.2.2]** Montrer que $Ker(\mathfrak{u}) = Im(\mathfrak{u})$.
 - 2.2.3 Construire une base de E dans laquelle la matrice de u est égale à J_2 .
 - [2.2.4] Prouver que les matrices nilpotentes de $\mathcal{M}_2(\mathbb{C})$ sont les matrices de trace et déterminant nuls.
- **2.3** Réduction d'une matrice nilpotente de $\mathfrak{M}_n(\mathbb{C})$ d'indice 2 : on suppose dans cette question que $n \geqslant 3$. Soit u un endomorphisme de E nilpotent d'indice 2 et de rang \mathfrak{r} .
 - **2.3.1** Montrer que $\operatorname{Im}(\mathfrak{u}) \subset \operatorname{Ker}(\mathfrak{u})$ et que $2r \leq \mathfrak{n}$.
 - **2.3.2** On suppose dans cette question que Im (u) = Ker(u). Montrer qu'il existe des vecteurs e_1, e_2, \dots, e_r de E tels que la famille $\mathcal{B} = (e_1, u(e_1), e_2, u(e_2), \dots, e_r, u(e_r))$ soit une base de E. Donner Mat $\mathcal{B}(u)$.
 - **2.3.3** On suppose dans cette question que $\operatorname{Im}(\mathfrak{u}) \neq \operatorname{Ker}(\mathfrak{u})$. Montrer qu'il existe des vecteurs e_1, e_2, \cdots, e_r de E et des vecteurs $v_1, v_2, \cdots, v_{n-2r}$ de $\operatorname{Ker}(\mathfrak{u})$ tels que $\mathfrak{B} = (e_1, \mathfrak{u}(e_1), e_2, \mathfrak{u}(e_2), \cdots, e_r, \mathfrak{u}(e_r), v_1, v_2, \cdots, v_{n-2r})$ soit une base de E. Quelle est la matrice de \mathfrak{u} dans cette base \mathfrak{B} ?
- Polynômes annulateurs d'une matrice nilpotente : dans cette question, A désigne une matrice nilpotente d'indice $p \ge 2$ de $\mathfrak{M}_n(\mathbb{C})$ et u l'endomorphisme de $E = \mathbb{C}^n$ canoniquement associé à A.
 - **2.4.1** Justifier que A n'est pas inversible.
 - **2.4.2** Justifier qu'il existe $x \in \mathbb{C}^n$ tel que $\mathfrak{u}^{p-1}(x) \neq \mathfrak{0}_E$ et montrer que $(x,\mathfrak{u}(x),\cdots,\mathfrak{u}^{p-1}(x))$ est libre.
 - [2.4.3] En déduire $p \leq n$ puis que X^n annule u.
 - [2.4.4] Démontrer que tout polynôme de $\mathbb{C}[X]$ multiple de X^p est un polynôme annulateur de A.

On suppose pour la suite de cette question que P est un polynôme annulateur de A.

[2.4.5] Démontrer que 0 est racine de P.

On note m la multiplicité de la racine 0 dans le polynôme P, ce qui permet d'écrire $P = X^mQ$ où Q est un polynôme de $\mathbb{C}[X]$ tel que $Q(0) \neq 0$. Soit x un vecteur de \mathbb{C}^n appartenant au noyau de $Q(u): Q(u)(x) = 0_E$.

- **2.4.6** Calculer $u^{p-1} \circ Q(u)(x)$ et en déduire $u^{p-1}(x) = 0_E$.
- **2.4.7** Montrer par récurrence sur $k \in [1; p]$ que $u^{p-k}(x) = 0_E$. Indication : on pourra considérer $u^h \circ Q(u)(x)$ pour des entiers h bien choisis.
- [2.4.8] En déduire que Q(A) est inversible.
- [2.4.9] Montrer que P est un multiple de X^p .

PARTIE 3 : RACINES CARRÉES DE NILPOTENTES

Pour $V \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$ donnée, on dit qu'une matrice $R \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$ est une racine carrée de V si $R^2 = V$. On se propose d'étudier l'existence et les valeurs de racines carrées éventuelles de matrices nilpotentes.

3.1 Premier exemple: comme en question 1.2, soit ici la matrice $B = \begin{pmatrix} 1 & 3 & -7 \\ 2 & 6 & -14 \\ 1 & 3 & -7 \end{pmatrix}$ et u l'endomorphisme de \mathbb{C}^3 canoniquement associé à B.

Soit $R \in M_3(\mathbb{C})$ telle que $R^2 = B$, on note ρ l'endomorphisme de \mathbb{C}^3 canoniquement associé à R.

- [3.1.1] Démontrer que Im (u) et Ker(u) sont stables par ρ et que ρ est nilpotent.
- [3.1.2] Soit P la matrice introduite à la question 1.2.3 (la valeur exacte de cette matrice n'est pas nécessaire)

et $R' = P^{-1}RP$. Montrer d'abord qu'il existe des complexes $a, b, c, \alpha, \beta, \gamma$ tels que $R' = \begin{pmatrix} a & 0 & 0 \\ b & \alpha & \beta \\ c & 0 & \gamma \end{pmatrix}$.

- 3.1.3 En déduire l'ensemble des racines carrées de B. On pourra présenter les matrices R qui conviennent sous la forme $PR'P^{-1}$ en donnant la forme des matrices R'.
- **3.2** Second exemple : soit ici une matrice $R \in M_3(\mathbb{C})$ telle que $R^2 = J_3$.
 - 3.2.1 Donner les valeurs de R⁴ et R⁶
 - [3.2.2] En déduire l'ensemble des racines carrées de J₃.
- **3.3** Cas général: soit $V \in \mathcal{M}_n(\mathbb{C})$ une matrice nilpotente d'indice p.
 - **3.3.1** Montrer que si 2p 1 > n, il n'existe aucune racine carrée de V.
 - **3.3.2** Pour toute valeur de l'entier $n \ge 3$, exhiber une matrice $V \in \mathcal{M}_n(\mathbb{C})$, nilpotente d'indice $p \ge 2$ et admettant au moins une racine carrée.

PARTIE 4 : RÉDUCTION DES MATRICES NILPOTENTES

On suppose que $n \ge 2$. Soit u un endomorphisme de E nilpotent d'indice $p \ge 2$.

- 4.1 Démontrer que Im (u) est stable par u et que l'endomorphisme v induit par u sur Im (u) est nilpotent. Préciser son indice de nilpotence.
- **4.2** Pour tout vecteur x non nul de E, on note $C_{\mathfrak{u}}(x)$ l'espace vectoriel engendré par les $(\mathfrak{u}^k(x))_{k\in\mathbb{N}}$. Démontrer que $C_{\mathfrak{u}}(x)$ est stable par \mathfrak{u} et qu'il existe un plus petit entier $s(x)\geqslant 1$ tel que $\mathfrak{u}^{s(x)}(x)=0$.
- **4.3** Démontrer que $(x, u(x), \dots, u^{s(x)-1}(x))$ est une base de $C_u(x)$ et donner la matrice, dans cette base, de l'endomorphisme w_x induit par u sur $C_u(x)$.
- Indication : on pourra appliquer l'hypothèse de récurrence à l'endomorphisme ν induit par $\mathfrak u$ sur Im $(\mathfrak u)$.

DS 02 : LA BELLE ÉQUIPE

PSI1 2025/2026

samedi 27 septembre 2025

Soit E un \mathbb{K} -espace vectoriel E avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et deux sous-espaces vectoriels de E notés F et G tels que $E = F \oplus G$ (F et G sont supplémentaires dans E).

On pose alors $A = \{ f \in \mathcal{L}(E) \mid Im(f) = F \text{ et } Ker(f) = G \}.$

On notera p la projection sur F parallèlement à G.

- Soit u et v deux endomorphismes quelconques de E, énoncer des inclusions entre $Im(u \circ v)$ et Im(u) d'une part, puis entre $Ker(u \circ v)$ et Ker(v) d'autre part, et les démontrer.
- **1** Interne: soit dans cette question deux éléments f et g de A. On a donc déjà $f \circ g \in \mathcal{L}(E)$.
 - **2.1** Soit $z \in \text{Ker}(f \circ g)$. Montrer que $g(z) \in F \cap G$. Qu'en conclut-on sur z?
 - **2.2** Soit $z \in F$, justifier qu'il existe un vecteur $x \in F$ tel que z = f(x). Montrer alors que $z \in \text{Im}(f \circ g)$.
 - **2.3** Justifier que $f \circ g \in A$.
- **3** Neutre: montrer que si $f \in A$, alors $f \circ p = p \circ f = f$.
- **4** Inversibilité: soit dans cette question une application $f \in A$.
 - 4.1 Justifier qu'on peut définir l'endomorphisme $\widetilde{f}: F \to F$ induit par f dans F défini par $\forall x \in F, \widetilde{f}(x) = f(x)$.
 - $\boxed{4.2}$ Montrer que \widetilde{f} est un automorphisme de F.

On définit alors l'application $g: E \to E$ de la manière suivante : pour $x \in E = F \oplus G$ qu'on décompose de manière unique x = y + z avec $y \in F$ et $z \in G$, on pose $g(x) = \left(\widetilde{f}\right)^{-1}(y)$.

- **[4.3]** Montrer que g est un endomorphisme de E.
- $\boxed{\textbf{4.4}}$ Établir que $g \in A$ et que $g \circ f = f \circ g = p$.
- [5] Que vient-on de prouver quant à la structure de A?