Introduction a la
programmation
dynamique

I Principes généraux de la programmation dynamique

Afin de résoudre certains problémes complexes, il existe différentes stratégies déja rencontrée en premiére année :

e une stratégie diviser pour mieux régner, qui consiste a diviser un problémes en plusieurs sous-problémes indépen-
dants : la recherche dichotomique dans une liste triée par exemple.

e une stratégie gloutonne, qui consiste a faire un choix localement optimal : le probléme du rendu de monnaie dans
lequel on choisit de commencer par utiliser la plus grosse piece possible par exemple.

Chacune de ces deux stratégies possede des avantages et des défauts : les deux stratégies possedent une complexité
intéressante et sont simples & mettre en ceuvre; la stratégie diviser pour mieux régner demande de réussir a diviser le
probléme en sous problémes indépendants et la stratégie gloutonne ne fournit pas toujours une solution optimale.

La programmation dynamique est une autre stratégie qui demande de diviser la résolution d’un probléme en passant par
des sous probléemes, mais, a la différence de la stratégie diviser pour mieux régner, ces sous problemes peuvent ne pas étre
indépendants entre eux.

On a par exemple vu lors du calcul du n®™¢ terme de la suite de Fibonacci (définie par Vn € N, f10 = foi1 + fn)
qu’il suffisait de calculer f,,_1 et f,_o (deux sous problémes) pour déterminer la valeur de f,,. Comme le calcul de f,_;
nécessitait lui aussi de connaitre la valeur de f,,_2, ces deux sous problemes ne sont pas indépendants, ce qui pouvait
rendre un calcul récursif naif particulierement inefficace (complexité exponentielle).

La programmation dynamique est une stratégie efficace lorsque ’on recherche a maximiser ou minimiser une certaine
quantité. Plus particulierement, on peut résoudre des problémes qui présentent la propriété de sous structure optimale
et qui nécessitent la gestion de chevauchements :

e on parle de sous structure optimale si la recherche de la solution optimale & un probleme donné passe par la
recherche (souvent récursive) de solutions optimales de sous problémes (et la fagon de reconstruire la solution au
probléme initial & partir des solutions de ces sous problémes).

e on parle de chevauchement des sous problémes si ces sous problemes ne sont pas indépendants et que leurs
résolutions demandent de refaire plusieurs fois les mémes calculs.

II Un cas concret de sous structure optimale

On dispose d’une matrice de M = (m; ;) € My, ,(N) dont les coefficients sont des entiers naturels et on cherche a rejoindre
la case en haut & gauche (indices 0,0) & celle en bas & droite (indice n — 1,p — 1) en respectant les régles suivantes :

— seuls les déplacements d’une case vers la droite ou vers le bas sont possibles,

— on cherche le chemin pour lequel la somme des coefficients rencontrés sera la plus grande possible (on parlera de
chemin de récolte maximale).

La résolution du probléme repose sur la propriété suivante : si le chemin de récolte maximale de mg o & my_1,—1 passe
par la case d’indice %, j alors les chemins empruntés pour aller de mg ¢ a m; ; puis de m; ; & m,_1 -1 sont de récoltes
maximales. Cette propriété se justifie facilement par 'absurde.

PSI1 - Lycée Montaigne Page 1

On peut donc déterminer la valeur de la récolte maximale de la facon suivante : si on note 7; ; la récolte maximale dans
un chemin allant de mg,9 & m; ; alors on a

0 sii=35=0
e = e r0,j—1 sit=0 on suit obligatoirement le bord supérieur de M
By T Ti—1,0 sij=0 on suit obligatoirement le bord gauche de M
max{r;_1;,rij-1} sii,j=>1 selon que le dernier déplacement se fait vers la droite ou vers le bas

Les sous problémes a résoudre pour déterminer r, ;, sont donc : déterminer r,,_1 , et r,, ,—1, qui sont donc deux solutions
optimales & des sous problémes mais qui ne sont pas indépendants.

Ces dernieres formules peuvent amener a considérer une programmation récursive mais I'interdépendance des calculs
de 71, €t r,p—1 rendrait la complexité exponentielle (au final trés proche d’un calcul récursif naif des coefficients
binomiaux par la formule de Pascal).

III Résolution par programmation dynamique

Comme dans le probleme du calcul des coefficients binomiaux, pour éviter les calculs répétitifs, on peut mémoriser au fur
et & mesure les valeurs de 7; ; successifs dans une autre matrice R = (r;;) € My, p(N) : 'avantage de cette méthode est
de pouvoir faire le calcul de bas en haut (programmation itérative).

def R(M)
= len(M) ,len (M[0])

[[0 for _ in range(p)] for _ in range(n))]
[0] =MJ[O0][0]

emiére ligne

i in range(l,n) :

B[i](0] = B[i—1][0] +M[i][0]

premiére colonne

p
B:
BlO]
pr

r

fo

for j in range(D)
B[0][§] = B0](j—1] + M[0][j]
for i in range(l,n) : # le reste
for j in range(l p)
Bli][j] =M[i][j] + max([B[i—-1][j],B[i][j—1]])
return B
2 1 7 2 2 3 10 12
M=[3 1 3 3 donne R=| 5 6 13 16
5 1 2 4 10 11 15 20

La récolte maximale cherchée est la valeur r, , = 20 dans cet exemple.
On peut alors utiliser la matrice R pour déterminer aussi le chemin permettant cette récolte maximale : en partant de la
case finale, on remonte & la case initiale en retrouvant les choix qui avaient été faits.

def chemin(M)
] = len(M) 1,len (M[0])—1 # case finale
L2 TG0))
B = R(M)
while i>0 and j>0
if B[i—1][j] > B[i][j—1] : # on venait de la gauche

i—=1
else
j =1
L.append ((i,j))
L =L[::—=1] # on remet L dans le bon ordre
si on a atteint le bord supérieur
if i =20

L = [(0,k) for k in range(j)]+L
ou le bord gauche
else

L = [(k,0) for k in range(i)] + L
return L

Ce qui donne [(0, 0), (0, 1), (0, 2), (1, 2), (1, 3), (2, 3)] et qui correspond au chemin suivant :

M =

ot W N
— =

7
3
2

=W N

PSI1 - Lycée Montaigne Page 2

Pour une approche récursive (dont le code sera plus proche de la définition des coefficients de la matrice R donnée
précédemment), on peut utiliser la mémoisation

def r (M)
n,p = len(M),len (M[0])
dico = {}
def r1(i,j M) :
if (i,j) not in dico
if i = j = :
s =M[0][0]
elif i =0
s =r11(0,j—1M) +M[0][]]
elif j = 0
s =rl1(i—1,0M) + M[i][0]
else
s =M[i][j] + max([r1(i—1,j,M),r1(i,j—1M)])
dico[(i,]j)] = s
return dico[(i,j)]
return rl(n—1,p—1M)

Ici le choix a été fait de définir le dictionnaire et la fonction r1 comme variables locales de la fonction r qui permet d’obtenir
la récolte maximale directement avec r (M) mais qui rend le dictionnaire inaccessible une fois la fonction exécutée.
Exemple(s) :

II1.1) Comment modifier le code précédent de fagon a ce qu’il renvoie le chemin & emprunter et non la
valeur de la récolte maximale ?

IV Comparaison des différentes stratégies

1. Force brute

Une méthode non évoquée jusqu’ici serait de tester tous les chemins possibles : comme un chemin est constitué de n — 1
n+p—2
p—1
une complexité exponentielle (la détermination du maximum apres le calcul de toutes les récoltes possibles est linéaire en

n+p).

déplacements vers la droite et p — 1 vers le bas, le nombre de chemins a étudier est , ce qui conduirait a

2. Stratégie gloutonne

Le code de la stratégie gloutonne est le suivant :

def glouton (M)
n,p = len(M) ,len(M[0])
i,j =20,0
s = M[0][0]
while i+j < n4p—2
if i = n—1
j+=1
elif j = p—1
i4=1
elif M[i+1][j] > M[i][j+1]
i4+=1
else
j+=1
print (i,j)
s 4= M[i][j]
return s

La complexité devient linéaire mais la recette trouvée (17) n’est pas optimale; elle correspond au chemin suivant :

M =

Ot W N
e
N W~ =
INGNJUI)

PSI1 - Lycée Montaigne Page 3

3. Programmation dynamique

La complexité du code de bas en haut est O(np) (boucles imbriquées) donc moins bonne que l'approche gloutonne mais
fournit bien une solution optimale. La programmation dynamique possede aussi une complexité spatiale plus importante
a cause de 'utilisation de la matrice R (ou du dictionnaire).

La reconstruction du chemin posséde par contre une complexité linéaire en n 4+ p donc n’a pas une grosse incidence sur
la complexité finale.

PSI1 - Lycée Montaigne Page 4

	Principes généraux de la programmation dynamique
	Un cas concret de sous structure optimale
	Résolution par programmation dynamique
	Comparaison des différentes stratégies
	Force brute
	Stratégie gloutonne
	Programmation dynamique

