
Introduction à la
programmation

dynamique

I Principes généraux de la programmation dynamique
Afin de résoudre certains problèmes complexes, il existe différentes stratégies déjà rencontrée en première année :

• une stratégie diviser pour mieux régner, qui consiste à diviser un problèmes en plusieurs sous-problèmes indépen-
dants : la recherche dichotomique dans une liste triée par exemple.

• une stratégie gloutonne, qui consiste à faire un choix localement optimal : le problème du rendu de monnaie dans
lequel on choisit de commencer par utiliser la plus grosse pièce possible par exemple.

Chacune de ces deux stratégies possède des avantages et des défauts : les deux stratégies possèdent une complexité
intéressante et sont simples à mettre en œuvre ; la stratégie diviser pour mieux régner demande de réussir à diviser le
problème en sous problèmes indépendants et la stratégie gloutonne ne fournit pas toujours une solution optimale.
La programmation dynamique est une autre stratégie qui demande de diviser la résolution d’un problème en passant par
des sous problèmes, mais, à la différence de la stratégie diviser pour mieux régner, ces sous problèmes peuvent ne pas être
indépendants entre eux.
On a par exemple vu lors du calcul du nème terme de la suite de Fibonacci (définie par ∀n ∈ N, fn+2 = fn+1 + fn)
qu’il suffisait de calculer fn−1 et fn−2 (deux sous problèmes) pour déterminer la valeur de fn. Comme le calcul de fn−1
nécessitait lui aussi de connaître la valeur de fn−2, ces deux sous problèmes ne sont pas indépendants, ce qui pouvait
rendre un calcul récursif naïf particulièrement inefficace (complexité exponentielle).
La programmation dynamique est une stratégie efficace lorsque l’on recherche à maximiser ou minimiser une certaine
quantité. Plus particulièrement, on peut résoudre des problèmes qui présentent la propriété de sous structure optimale
et qui nécessitent la gestion de chevauchements :

• on parle de sous structure optimale si la recherche de la solution optimale à un problème donné passe par la
recherche (souvent récursive) de solutions optimales de sous problèmes (et la façon de reconstruire la solution au
problème initial à partir des solutions de ces sous problèmes).

• on parle de chevauchement des sous problèmes si ces sous problèmes ne sont pas indépendants et que leurs
résolutions demandent de refaire plusieurs fois les mêmes calculs.

II Un cas concret de sous structure optimale
On dispose d’une matrice de M = (mi,j) ∈ Mn,p(N) dont les coefficients sont des entiers naturels et on cherche à rejoindre
la case en haut à gauche (indices 0, 0) à celle en bas à droite (indice n − 1, p − 1) en respectant les règles suivantes :

— seuls les déplacements d’une case vers la droite ou vers le bas sont possibles,
— on cherche le chemin pour lequel la somme des coefficients rencontrés sera la plus grande possible (on parlera de

chemin de récolte maximale).
La résolution du problème repose sur la propriété suivante : si le chemin de récolte maximale de m0,0 à mn−1,p−1 passe
par la case d’indice i, j alors les chemins empruntés pour aller de m0,0 à mi,j puis de mi,j à mn−1,p−1 sont de récoltes
maximales. Cette propriété se justifie facilement par l’absurde.

PSI1 - Lycée Montaigne Page 1/4

On peut donc déterminer la valeur de la récolte maximale de la façon suivante : si on note ri,j la récolte maximale dans
un chemin allant de m0,0 à mi,j alors on a

ri,j = mi,j +


0 si i = j = 0

r0,j−1 si i = 0 on suit obligatoirement le bord supérieur de M
ri−1,0 si j = 0 on suit obligatoirement le bord gauche de M

max{ri−1,j , ri,j−1} si i, j ⩾ 1 selon que le dernier déplacement se fait vers la droite ou vers le bas
Les sous problèmes à résoudre pour déterminer rn,p sont donc : déterminer rn−1,p et rn,p−1, qui sont donc deux solutions
optimales à des sous problèmes mais qui ne sont pas indépendants.
Ces dernières formules peuvent amener à considérer une programmation récursive mais l’interdépendance des calculs
de rn−1,p et rn,p−1 rendrait la complexité exponentielle (au final très proche d’un calcul récursif naïf des coefficients
binomiaux par la formule de Pascal).

III Résolution par programmation dynamique
Comme dans le problème du calcul des coefficients binomiaux, pour éviter les calculs répétitifs, on peut mémoriser au fur
et à mesure les valeurs de ri,j successifs dans une autre matrice R = (ri,j) ∈ Mn,p(N) : l’avantage de cette méthode est
de pouvoir faire le calcul de bas en haut (programmation itérative).

def R(M) :
n , p = len (M) , len (M[0])
B = [[0 for _ in range (p)] for _ in range (n)]
B [0] [0] = M[0] [0]
premi è re l i g n e
for i in range (1 , n) :

B[i] [0] = B[i − 1] [0] + M[i] [0]
premi è re colonne
for j in range (1 , p) :

B [0] [j] = B [0] [j −1] + M[0] [j]
for i in range (1 , n) : # l e r e s t e

for j in range (1 , p) :
B[i] [j] = M[i] [j] + max([B[i −1] [j] ,B[i] [j −1]])

return B

M =

Ñ
2 1 7 2
3 1 3 3
5 1 2 4

é
donne R =

Ñ
2 3 10 12
5 6 13 16
10 11 15 20

é
La récolte maximale cherchée est la valeur rn,p = 20 dans cet exemple.
On peut alors utiliser la matrice R pour déterminer aussi le chemin permettant cette récolte maximale : en partant de la
case finale, on remonte à la case initiale en retrouvant les choix qui avaient été faits.

def chemin (M) :
i , j = len (M) −1, len (M[0]) −1 # case f i n a l e
L = [(i , j)]
B = R(M)
while i >0 and j >0 :

i f B[i −1] [j] > B[i] [j −1] : # on vena i t de l a gauche
i −= 1

else :
j −=1

L . append ((i , j))
L = L [: : − 1] # on remet L dans l e bon ordre
s i on a a t t e i n t l e bord sup é r i e u r
i f i == 0 :

L = [(0 , k) for k in range (j)]+L
ou l e bord gauche
else :

L = [(k , 0) for k in range (i)] + L
return L

Ce qui donne [(0, 0), (0, 1), (0, 2), (1, 2), (1, 3), (2, 3)] et qui correspond au chemin suivant :

M =

Ñ
2 1 7 2
3 1 3 3
5 1 2 4

é
PSI1 - Lycée Montaigne Page 2/4

Pour une approche récursive (dont le code sera plus proche de la définition des coefficients de la matrice R donnée
précédemment), on peut utiliser la mémoïsation

def r (M) :
n , p = len (M) , len (M[0])
d i co = {}
def r1 (i , j ,M) :

i f (i , j) not in dico :
i f i == j == 0 :

s = M[0] [0]
e l i f i == 0 :

s = r1 (0 , j −1,M) + M[0] [j]
e l i f j == 0 :

s = r1 (i −1 ,0 ,M) + M[i] [0]
else :

s = M[i] [j] + max([r1 (i −1, j ,M) , r1 (i , j −1,M)])
d i co [(i , j)] = s

return dico [(i , j)]
return r1 (n−1,p−1,M)

Ici le choix a été fait de définir le dictionnaire et la fonction r1 comme variables locales de la fonction r qui permet d’obtenir
la récolte maximale directement avec r(M) mais qui rend le dictionnaire inaccessible une fois la fonction exécutée.

Exemple(s) :�
 �	III.1 Comment modifier le code précédent de façon à ce qu’il renvoie le chemin à emprunter et non la
valeur de la récolte maximale ?

IV Comparaison des différentes stratégies
1. Force brute

Une méthode non évoquée jusqu’ici serait de tester tous les chemins possibles : comme un chemin est constitué de n − 1

déplacements vers la droite et p − 1 vers le bas, le nombre de chemins à étudier est
Ç

n + p − 2
p − 1

å
, ce qui conduirait à

une complexité exponentielle (la détermination du maximum après le calcul de toutes les récoltes possibles est linéaire en
n + p).

2. Stratégie gloutonne
Le code de la stratégie gloutonne est le suivant :

def glouton (M) :
n , p = len (M) , len (M[0])
i , j = 0 ,0
s = M[0] [0]
while i+j < n+p−2 :

i f i == n−1 :
j += 1

e l i f j == p−1 :
i += 1

e l i f M[i +1] [j] > M[i] [j +1] :
i += 1

else :
j += 1

print (i , j)
s += M[i] [j]

return s

La complexité devient linéaire mais la recette trouvée (17) n’est pas optimale ; elle correspond au chemin suivant :

M =

Ñ
2 1 7 2
3 1 3 3
5 1 2 4

é
PSI1 - Lycée Montaigne Page 3/4

3. Programmation dynamique
La complexité du code de bas en haut est O(np) (boucles imbriquées) donc moins bonne que l’approche gloutonne mais
fournit bien une solution optimale. La programmation dynamique possède aussi une complexité spatiale plus importante
à cause de l’utilisation de la matrice R (ou du dictionnaire).
La reconstruction du chemin possède par contre une complexité linéaire en n + p donc n’a pas une grosse incidence sur
la complexité finale.

PSI1 - Lycée Montaigne Page 4/4

	Principes généraux de la programmation dynamique
	Un cas concret de sous structure optimale
	Résolution par programmation dynamique
	Comparaison des différentes stratégies
	Force brute
	Stratégie gloutonne
	Programmation dynamique

