CHAPITRE 6 SUITES ET SÉRIES DE FONCTIONS

PARTIE 6.1: MODES DE CONVERGENCE

DÉFINITION 6.1:

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}(I,\mathbb{K})^{\mathbb{N}}$ une suite de fonctions de I dans \mathbb{K} . On dit que :

- $(f_n)_{n \in \mathbb{N}}$ converge simplement sur I vers $f \in \mathcal{F}(I, \mathbb{K})$ $(sa \ limite \ simple)$ $si \ \forall x \in I$, $\lim_{n \to +\infty} f_n(x) = f(x)$. $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur I vers f si $\lim_{n \to +\infty} ||f_n f||_{\infty} = 0$ $(f_n f \ born\acute{e}e \ si \ n \ assez \ grand)$.
- $(f_n)_{n\in\mathbb{N}}\in \mathfrak{F}(I,\mathbb{K})^{\mathbb{N}}$ converge uniformément sur tout segment de I vers f si pour tout segment $[a;b] \subset I$, $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers f sur [a;b] (comme son nom l'indique).

<u>REMARQUE 6.1</u>: • Convergence simple: $\forall x \in I, \ \forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ |f_n(x) - f(x)| \leqslant \varepsilon.$

- Convergence uniforme : $\forall \epsilon > 0$, $\exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ \forall x \in I, \ |f_n(x) f(x)| \leqslant \epsilon$.
- Conv. unif. sur tout segment: $\forall \epsilon > 0$, $\forall [a;b] \subset I$, $\exists n_0 \in \mathbb{N}$, $\forall n \geqslant n_0$, $\forall x \in [a;b]$, $|f_n(x) f(x)| \leqslant \epsilon$.
- CVS: n₀ dépend de ε et x. CVU: n₀ dépend de ε seulement. CVUTS: n₀ dépend de ε et de a, b.
- Si $(f_n)_{n\in\mathbb{N}}$ converge simplement (resp. uniformément) sur I, elle le fait sur tout partie J de I.
- Pour I segment, les notions de convergence uniforme sur I et sur tout segment de I sont équivalentes.

PROPOSITION 6.1:

 $(f_n)_{n\in\mathbb{N}}\ \mathbf{CVU}\ \mathbf{vers}\ f\ \mathbf{sur}\ I\Longrightarrow (f_n)_{n\in\mathbb{N}}\ \mathbf{CVU}\ \mathbf{vers}\ f\ \mathbf{sur}\ \mathbf{TS}\ \mathbf{de}\ I\Longrightarrow (f_n)_{n\in\mathbb{N}}\ \mathbf{CVS}\ \mathbf{vers}\ f\ \mathbf{sur}\ I.$

DÉFINITION 6.2:

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}(I,\mathbb{K})^{\mathbb{N}}$ une suite de fonctions, on dit que :

- $\sum f_n$ converge simplement sur I $si \ \forall x \in I$, $\sum_{n \in \mathbb{N}} f_n(x)$ converge. On note $S: x \mapsto \sum_{n=0}^{+\infty} f_n(x)$ sa somme.
- $\sum f_n$ converge uniformément sur I si $\left(S_n = \sum_{k=0}^n f_k\right)_{n \in \mathbb{N}}$ converge uniformément sur I ou encore que

 $\left(R_n=S-S_n=\sum_{k=n+1}^{+\infty}f_k\right)_{n\in\mathbb{N}} \text{ converge uniform\'ement vers } 0 \text{ sur } I \text{ } (\lim_{n\to+\infty}||R_n||_{\infty}=0).$

- $\sum f_n$ converge uniformément sur tout segment de I $si \ \forall [a;b] \subset I$, $\sum f_n \ CVU \ sur \ [a;b]$. $\sum f_n$ converge normalement sur I $si \ \sum_{n \geqslant n_0} ||f_n||_{\infty,I} \ converge \ (f_n \ bornée \ pour \ n \ assez \ grand)$.
- $\bullet \ \textstyle \sum f_{\mathfrak{n}} \ \text{converge normalement sur tout segment de } I \ \mathit{si} \ \forall [\mathfrak{a};\mathfrak{b}] \subset I, \ \textstyle \sum f_{\mathfrak{n}} \ \mathit{CVN} \ \mathit{sur} \ [\mathfrak{a};\mathfrak{b}].$

 $\underline{\mathit{REMARQUE~6.2}} : \bullet \mathit{Si} \sum_{n \in \mathbb{N}} f_n \mathit{CVS~sur~I~alors} \ (R_n)_{n \in \mathbb{N}} \mathit{CVS~vers~la~fonction~nulle~sur~I}.$

- Si $\sum f_n$ CVS (resp. CVU, CVN) sur I et si $J \subset I$, alors $\sum f_n$ CVS (resp. CVU, CVN) sur J.
- Si $\sum f_n$ CVN sur I, alors la suite $(f_n)_{n \in \mathbb{N}}$ CVU vers la fonction nulle sur I.
- Si $\sum f_n$ CVN sur tout segment de I alors $\forall x \in I$, $\sum_{n \in \mathbb{N}} f_n(x)$ CVA.
- S'il existe $(\alpha_n)_{n\in\mathbb{N}}\in\mathbb{R}_+^{\mathbb{N}}$ telle que $\forall x\in I$, $|f_n(x)|\leqslant \alpha_n$ avec $\sum \alpha_n$ CV, alors $\sum f_n$ CVN sur I.

THÉORÈME 6.2:

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}(I,\mathbb{K})^{\mathbb{N}}$ une suite de fonctions. À propos de convergence sur I:

 $\sum f_n \text{ CVN} \Longrightarrow \sum f_n \text{ CVNTS} \Longrightarrow \sum f_n \text{ CVUTS} \Longrightarrow \sum f_n \text{ CVS et aussi}$

 $\textstyle \sum f_n \ CVN \Longrightarrow \textstyle \sum f_n \ CVU \Longrightarrow \textstyle \sum f_n \ CVUTS \Longrightarrow \textstyle \sum f_n CVS.$

PARTIE 6.2: THÉORÈMES DE DOMINATION

THÉORÈME ÉNORME 6.3:

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}(I,\mathbb{K})^\mathbb{N}$ une suite de fonctions. On suppose que :

- (H_1) la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers f,
- (H_2) les fonctions f_n et la fonction f sont continues par morceaux sur I,
- $(H_3) \ \exists \phi: I \to \mathbb{R}^+ \ \text{continue par morceaux et int\'egrable sur } I \ \text{telle que} \ \forall n \in \mathbb{N}, |f_n| \leqslant \phi.$

Alors les fonctions f_n et la fonction f sont intégrables sur I et $\lim_{n\to +\infty}\int_I f_n = \int_I f$ (TCD).

THÉORÈME ÉNORME 6.4:

Soit $(f_{\mathfrak{n}})_{\mathfrak{n}\in\,\mathbb{N}}\in\mathfrak{F}(I,\,\mathbb{K})^{\,\mathbb{N}}$ une suite de fonctions. On suppose que :

- (H_1) la série $\sum f_n$ converge simplement sur I vers S,
- (H_2) les fonctions f_n et la fonction S sont continues par morceaux sur I,
- (H_3) les fonctions f_n sont intégrables sur I et la série $\sum \left(\int_I |f_n|\right)$ converge.

Alors S est intégrable sur I, $\sum \int_I f_n$ converge et surtout $\int_I S = \int_I \left(\sum_{n=0}^{+\infty} f_n\right) = \sum_{n=0}^{+\infty} \int_I f_n$ (TITT).

PARTIE 6.3 : CONTINUITÉ ET LIMITE

THÉORÈME 6.5:

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}(I,\mathbb{K})^\mathbb{N}$ une suite de fonctions qui converge uniformément sur I (ou sur tout segment de I) vers la fonction $f:I\to\mathbb{K}$, alors :

- (i) Soit $a \in I$, si pour tout $n \in \mathbb{N}$, f_n est continue en a alors f est continue en a.
- (ii) Si pour tout $n \in \mathbb{N}$, f_n est continue sur I alors f est continue sur I.

THÉORÈME ÉNORME 6.6:

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}(I,\mathbb{K})^\mathbb{N}$ une suite de fonctions. On suppose que :

- (i) $\sum f_n$ CVU (ou CVN ou CVUTS ou CVNTS) sur I vers S,
- (ii) pour tout $n \in \mathbb{N}$, la fonction f_n est continue sur I.

Alors la somme $S = \sum_{n=0}^{+\infty} f_n$ est continue sur I.

 $\underline{\mathit{REMARQUE~6.3}}: Soit~(f_n)_{n\in\,\mathbb{N}}\in\mathfrak{F}(I,\,\mathbb{K})^{\,\mathbb{N}},~a~un~r\acute{e}el~adh\acute{e}rent~\grave{a}~I~(\mathfrak{a}=\pm\infty~est~possible).~On~suppose:$

- (H_1) la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I (vers f),
- (H_2) pour tout $n \in \mathbb{N}$, la fonction f_n admet une limite finie ℓ_n en a.

 $\mathit{Alors}\; (\ell_n)_{n\in\mathbb{N}}\; \mathit{converge}\; \mathit{et}\; \lim_{x\to a} f(x) = \lim_{n\to +\infty} \ell_n \; \mathit{i.e.}\; \lim_{x\to a} \Big(\lim_{n\to +\infty} f_n(x) \Big) = \lim_{n\to +\infty} \Big(\lim_{x\to a} f_n(x) \Big).$

THÉORÈME ÉNORME 6.7:

Soit $(f_n)_{n\in\mathbb{N}}\in \mathfrak{F}(I,\mathbb{K})^{\mathbb{N}}$ une suite de fonctions et a un réel adhérent à I ($\mathfrak{a}=\pm\infty$ est possible) ; on suppose de plus avoir les deux hypothèses suivantes :

- (H_1) la série de fonctions $\sum f_n$ converge uniformément (ou normalement) sur I vers S,
- (H_2) pour tout $n\in\mathbb{N},$ la fonction f_n admet une limite finie ℓ_n en a.

Alors
$$\sum \ell_n$$
 converge et $\lim_{x \to a} S(x) = \sum_{n=0}^{+\infty} \ell_n$ i.e. $\lim_{x \to a} \left(\sum_{n=0}^{+\infty} f_n(x) \right) = \sum_{n=0}^{+\infty} \left(\lim_{x \to a} f_n(x) \right)$.

<u>REMARQUE 6.4</u>: Ce théorème de la double limite est faux (dans la remarque et le théorème précédents) si par exemple $a = Sup(I) \notin I$ et qu'on a juste convergence uniforme sur tout segment de I (ou convergence normale sur tout segment de I dans le cas des séries de fonctions).

EN PRATIQUE : Soit une suite de fonctions $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}(I,\mathbb{K})^{\mathbb{N}}$:

- On détermine la limite simple f de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$.
- Pour montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f, on calcule $||f_n-f||_{\infty}$ (étude de fonction) ou on cherche $(\alpha_n)_{n\in\mathbb{N}}$ tendant vers 0 telle que $\forall x\in I, |f_n(x)-f(x)|\leqslant \alpha_n$.
- Pour montrer que $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur I, on cherche une suite $(x_n)_{n\in\mathbb{N}}\in I^\mathbb{N}$ telle que la suite $(f_n(x_n)-f(x_n))_{n\in\mathbb{N}}$ ne tende pas vers 0.
- On étudie la convergence simple de $\sum\limits_{n\in\mathbb{N}}f_n$: ensemble de définition D de $S=\sum\limits_{n=0}^{+\infty}f_n,$
- On étudie la convergence normale sur D (éventuellement sur tout segment de D).
- À défaut, on cherche à établir la convergence uniforme en étudiant $||R_n||_{\infty}$ et en la majorant.
- \bullet On cherche limite ou équivalent de S(x) aux bornes par comparaison série-intégrale ou double limite.

PARTIE 6.4: INTÉGRATION ET DÉRIVATION

THÉORÈME ÉNORME 6.8:

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}([a;b],\mathbb{K})^\mathbb{N}$ une suite de fonctions, on suppose que :

- (H_1) La suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur le segment [a;b] vers f.
- (H₂) Pour tout $n \in \mathbb{N}$, la fonction f_n est continue sur le segment [a;b].

Alors f est continue sur
$$[a;b]$$
 et $\int_a^b f(t)dt = \lim_{n \to +\infty} \left(\int_a^b f_n(t)dt \right) = \int_a^b \left(\lim_{n \to +\infty} f_n(t) \right) dt$.

THÉORÈME ÉNORME 6.9:

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}([a;b],\,\mathbb{K})^\mathbb{N}$ une suite de fonctions, on suppose que :

- (H_1) La série $\sum f_n$ converge uniformément sur le segment [a;b] vers S.
- (H₂) Pour tout $n \in \mathbb{N}$, la fonction f_n est continue sur le segment [a;b].

Alors S est continue sur [a;b], $\sum \int_a^b f_n(t)dt$ converge et $\int_a^b S(t)dt = \int_a^b \Big(\sum_{n=0}^{+\infty} f_n(t)\Big)dt$.

THÉORÈME 6.10 :

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}([\alpha;b],\,\mathbb{K})^\mathbb{N}$ une suite de fonctions, on suppose que :

- (H_1) La série $\sum f_n$ converge normalement sur le segment $[\mathfrak{a};\mathfrak{b}]$ vers S.
- (H_2) Pour tout $n \in \mathbb{N}$, la fonction f_n est continue sur le segment [a;b].

Alors en plus du th. 5.9, $\sum \int_a^b |f_n(t)| dt$ CV et $\int_a^b |S(t)| dt = \int_a^b |\sum_{n=0}^{+\infty} f_n(t)| dt \leqslant \sum_{n=0}^{+\infty} \int_a^b |f_n(t)| dt$.

THÉORÈME ÉNORME 6.11 :

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}(I,\mathbb{K})^\mathbb{N}$ une suite de fonctions telle que :

- (H_1) la suite $(f_{\mathfrak{n}})_{\mathfrak{n}\in\mathbb{N}}$ converge simplement sur I vers $f_{\boldsymbol{\tau}}$
- (H_2) pour tout $n \in \mathbb{N}$, la fonction f_n est de classe C^1 sur I,
- (H_3) $(f'_n)_{n\in\mathbb{N}}$ converge uniformément sur I (ou unif. sur tout segment de I) vers g.

Alors f est de classe C¹ sur I et f' = g, ie $\forall x \in I$, $\left(\lim_{n \to +\infty} f_n\right)'(x) = \lim_{n \to +\infty} \left(f'_n(x)\right)$.

THÉORÈME 6.12 :

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}(I,\mathbb{K})^{\mathbb{N}}$ une suite de fonctions, $p\geqslant 2$, si :

- (H_1) toutes les fonctions f_n sont de classe C^p sur I,
- $(H_2) \text{ les suites } \big(f_n^{(k)}\big)_{n\in\mathbb{N}} \text{ convergent simplement sur I (vers } \phi_k) \text{ pour } k \in [\![0;p-1]\!],$
- (H_3) $(f_n^{(p)})_{n\in\mathbb{N}}$ converge uniformément sur I (ou unif. sur tout segment de I) (vers φ_p).

Alors on peut conclure (on admet que ces conditions suffisent):

- (R_1) f = φ_0 est de classe C^p sur I.
- $(R_2) \ \forall k \in [0; p], f^{(k)} = \phi_k, \mathbf{c'est-\hat{a}-dire}: \ \forall k \in [0; p], \ \forall x \in I, \ \left(\lim_{n \to +\infty} f_n\right)^{(k)}(x) = \lim_{n \to +\infty} \left(f_n^{(k)}(x)\right).$

 $\underline{\textit{REMARQUE FONDAMENTALE 6.5}}: Soit \ (f_n)_{n \in \, \mathbb{N}} \in \mathfrak{F}(I, \, \mathbb{K})^{\, \mathbb{N}} \ une \ suite \ de \ fonctions \ telle \ que :$

- (H_1) la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers une fonction f,
- $(H_2) \ \ \text{pour tout} \ \mathfrak{n} \in \mathbb{N}, \ \text{la fonction} \ \mathfrak{f}_{\mathfrak{n}} \ \text{est de classe} \ C^{\infty} \ \text{sur} \ I,$
- (H_3) pour tout $k \in \mathbb{N}^*$, la suite $(f_n^{(k)})_{n \in \mathbb{N}}$ converge uniformément sur I (ou uniformément sur tout segment de I) (vers φ_k).

Alors f est de classe C^{∞} sur I et $\forall k \in \mathbb{N}^*$, $f^{(k)} = \phi_k \iff \forall x \in I$, $\left(\lim_{n \to +\infty} f_n\right)^{(k)}(x) = \lim_{n \to +\infty} \left(f_n^{(k)}(x)\right)$.

THÉORÈME ÉNORME 6.13 :

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}(I,\mathbb{K})^{\mathbb{N}}$ une suite de fonctions telle que :

- (H₁) la série $\sum f_n$ converge simplement sur I vers S, (H₂) pour tout $n \in \mathbb{N}$, la fonction f_n est de classe C^1 sur I, (H₃) $\sum f'_n$ converge uniformément sur I (ou uniformément sur tout segment de I).

Alors S est de classe C^1 sur I et $S' = \sum_{n=0}^{+\infty} f'_n$ ie $\forall x \in I$, $\left(\sum_{n=0}^{+\infty} f_n\right)'(x) = \sum_{n=0}^{+\infty} \left(f'_n(x)\right)$.

THÉORÈME 6.14 :

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}(I,\mathbb{K})^{\mathbb{N}}$ une suite de fonctions, $\mathfrak{p}\geqslant 2,$ si :

- (H_1) pour tout $n\in\mathbb{N},$ la fonction f_n est de classe C^p sur I,
- (H_2) les séries $\sum f_n^{(k)}$ convergent simplement sur I pour $k \in [0; p-1]$,
- (H_3) $\sum f_n^{(p)}$ converge uniformément sur I (ou uniformément sur tout segment de I).

Alors $\sum_{n=0}^{+\infty} f_n$ est de classe C^p sur I et $\forall x \in I$, $\forall k \in [1; p]$, $\left(\sum_{n=0}^{+\infty} f_n\right)^{(k)}(x) = \sum_{n=0}^{+\infty} f_n^{(k)}(x)$.

<u>REMARQUE FONDAMENTALE 6.6</u>: Soit $(f_n)_{n \in \mathbb{N}} \in \mathfrak{F}(I, \mathbb{K})^{\mathbb{N}}$ telle que :

- (H_1) la série $\sum f_n$ converge simplement sur I,
- (H_2) pour tout $n \in \mathbb{N}$, la fonction f_n est de classe C^{∞} sur I,
- $(H_3)\ \forall k\in\mathbb{N}^*,\,\sum f_n^{(k)}$ converge uniformément sur I (ou unif. sur tout segment de I).

Alors
$$\sum_{n=0}^{+\infty} f_n$$
 est de classe C^{∞} sur I et $\forall x \in I$, $\forall k \in \mathbb{N}^*$, $\left(\sum_{n=0}^{+\infty} f_n\right)^{(k)}(x) = \sum_{n=0}^{+\infty} f_n^{(k)}(x)$.