CHAPITRE 7 ALGÈBRE BILINÉAIRE

PARTIE 7.1: ESPACES PRÉHILBERTIENS

DÉFINITION 7.1:

Soit E un \mathbb{R} -espace vectoriel et $\varphi: E^2 \to \mathbb{R}$, on dit que φ est un **produit scalaire** sur E si φ est une forme bilinéaire symétrique définie positive sur E, c'est-à-dire si :

- $\bullet \ \forall (\alpha,\beta) \in \mathbb{R}^2, \ \forall (u,v,w) \in E^3, \ \begin{cases} \phi(\alpha u + \beta v,w) = & \alpha \phi(u,w) + \beta \phi(v,w) \\ \phi(u,\alpha v + \beta w) = & \alpha \phi(u,v) + \beta \phi(u,w) \end{cases} \ \ \textit{(bilinéarité)}.$
- $\forall (u, v) \in E^2$, $\varphi(u, v) = \varphi(v, u)$ (symétrie).
- $\forall u \in E, \phi(u, u) = q(u) \ge 0$ (positivité).
- $\bullet \ \forall \mathfrak{u} \in E, \phi(\mathfrak{u},\mathfrak{u}) = \mathfrak{q}(\mathfrak{u}) \geqslant 0 \ \ \mathrm{et} \ \ \phi(\mathfrak{u},\mathfrak{u}) = \mathfrak{q}(\mathfrak{u}) = 0 \Longrightarrow \mathfrak{u} = 0_E \ \mathit{(aspect d\'efini)}.$

Un espace préhilbertien réel est un R-espace vectoriel muni d'un produit scalaire.

 $\underline{\mathit{REMARQUE~7.1}}:\ On\ note\ souvent\ (\mathfrak{u}|\nu)=\phi(\mathfrak{u},\nu),\ ou\ \mathfrak{u.\nu}\ (en\ g\acute{e}om\acute{e}trie)\ ou\ \langle\mathfrak{u},\nu\rangle\ le\ produit\ scalaire.$

THÉORÈME 7.1:

Soit E un espace préhilbertien réel muni d'un produit scalaire noté (.|.). Alors l'application $x \in E \mapsto ||x|| = \sqrt{(x|x)}$ est une norme sur E appelée norme euclidienne associée à (.|.):

- (i) $\forall x \in E, ||x|| \ge 0$ (positivité),
- (ii) $\forall x \in E$, $||x|| = 0 \iff x = 0_E$ (séparation),
- (iii) $\forall (\lambda, x) \in \mathbb{R} \times E$, $||\lambda x|| = |\lambda| ||x||$ (homogénéité),
- (iv) $\forall (x,y) \in E^2$, $||x+y|| \le ||x|| + ||y||$ (inégalité triangulaire ou de MINKOWSKI).

De plus : $||x + y|| = ||x|| + ||y|| \iff (\exists \lambda \in \mathbb{R}^+, x = \lambda y \text{ ou } y = \lambda x)$ (x et y sont positivement liés).

THÉORÈME 7.2:

Soit E un espace préhilbertien réel et $(u, v) \in E^2$:

- $|(u|v)| \le ||u|| \times ||v||$ (Cauchy-Schwarz) et $|(u|v)| = ||u|| \times ||v|| \iff (u,v)$ est liée.
- $(u|v) = \frac{1}{2} (||u+v||^2 ||u||^2 ||v||^2) = \frac{1}{2} (||u||^2 + ||v||^2 ||u-v||^2)$ (identités de polarisation).
- $(u|v) = \frac{1}{4}(||u+v||^2 ||u-v||^2)$ (identité de polarisation).
- $||u+v||^2+||u-v||^2=2\big(||u||^2+||v||^2\big)$ (identité du parallélogramme).

DÉFINITION 7.2:

Soit (E, (.|.)) un espace préhilbertien réel et $(u, v) \in E^2$, on dit que :

- u est unitaire (ou normé) si ||u|| = 1.
- \mathfrak{u} et \mathfrak{v} sont orthogonaux si $(\mathfrak{u}|\mathfrak{v})=\mathfrak{0}$; on le note $\mathfrak{u}\perp\mathfrak{v}$.

<u>REMARQUE 7.3</u>: Si $x \neq 0_E$ alors le vecteur $\frac{x}{||x||}$ est toujours unitaire.

DÉFINITION 7.3:

Soit (E, (.|.)) un espace préhilbertien réel et $(x_i)_{i \in I}$ une famille de vecteurs de E, on dit que $(x_i)_{i \in I}$ est :

- orthogonale $si \ \forall (i,j) \in I^2, \ i \neq j \Longrightarrow (x_i|x_i) = 0.$
- orthonormale (ou orthonormée) $si \ \forall (i,j) \in I^2, \ (x_i|x_j) = \delta_{i,j}$.

PROPOSITION 7.3:

Soit E un espace préhilbertien réel.

- Toute famille orthogonale de vecteurs non nuls est libre.
- Si $(x_k)_{1 \le k \le n}$ est une famille orthogonale : $\left| \left| \sum_{k=1}^n x_k \right| \right|^2 = \sum_{k=1}^n ||x_k||^2$ (PYTHAGORE).

<u>REMARQUE 7.4</u>: • Pour $(x,y) \in E^2$, $||x+y||^2 = ||x||^2 + ||y||^2 \iff x \perp y$. Par contre:

 \bullet Si n>2 et si (x_1,\cdots,x_n) vérifie la relation de Pythagore, elle n'est pas forcément orthogonale.

DÉFINITION 7.4:

Soit (E, (.|.)) un espace préhilbertien réel, F et G deux sous-espaces vectoriels de E. On dit que F et G sont des sous-espaces orthogonaux si $\forall (x,y) \in F \times G, (x|y) = 0$; on le note $F \perp G$.

PROPOSITION 7.4:

Soit E un espace préhilbertien réel et F_1, \dots, F_n des sous-espaces vectoriels de E supposés deux à deux orthogonaux. Alors la somme des F_k est directe : $\sum_{k=1}^n F_k = \bigoplus_{k=1}^n F_k$.

DÉFINITION 7.5:

Soit (E, (.|.)) un espace préhilbertien réel et F un sous-espace vectoriel de E (et même si F n'est qu'une partie E). On définit l'orthogonal de F, noté F^{\perp} par : $F^{\perp} = \{x \in E \mid \forall y \in F, (x|y) = 0\}$.

<u>REMARQUE 7.5</u>: Avec cette définition, on a toujours $\{0_E\}^{\perp} = E$ et $E^{\perp} = \{0_E\}$.

PROPOSITION 7.5:

Soit (E, (.|.)) un espace préhilbertien réel, F et G deux sous-espaces vectoriels de E:

- ullet est un sous-espace vectoriel de E $\qquad ullet$ $F \subset G \Longrightarrow G^{\perp} \subset F^{\perp}$
- $\bullet \ F \perp G \Longleftrightarrow F \subset G^{\perp} \Longleftrightarrow G \subset F^{\perp} \qquad \qquad \bullet \ F \cap F^{\perp} = \{0_{\mathsf{E}}\} \ \mathrm{et} \ F \subset \left(F^{\perp}\right)^{\perp}$

- $F^{\perp} + G^{\perp} \subset (F \cap G)^{\perp}$
- $\bullet \ (F+G)^{\perp} = F^{\perp} \cap G^{\perp}$

 $\underline{\textit{REMARQUE 7.6}} \,:\, \text{On peut avoir } \left(F^{\perp}\right)^{\perp} \neq F \,\, \text{et/ou} \,\, F^{\perp} + G^{\perp} \neq (F \cap G)^{\perp}.$

PARTIE 7.2: ESPACES EUCLIDIENS

DÉFINITION 7.6:

- Un espace euclidien E est un espace préhilbertien réel de dimension finie.
- Dans un tel espace E, une famille B de vecteurs de E est dite une base orthonormale (ou orthonormée) de E si B est base de E et une famille orthonormale de E.

THÉORÈME ÉNORME 7.6:

Soit E un espace préhilbertien réel et $\mathcal{B}=(x_1,\cdots,x_n)$ une famille libre de E, alors il existe une famille (e_1,\cdots,e_n) de vecteurs de E qui vérifie les conditions suivantes :

- $\forall p \in [[1; n]]$, $Vect(x_1, \dots, x_p) = Vect(e_1, \dots, e_p)$.
- $\mathfrak{B}'=(e_1,\cdots,e_n)$ est une famille orthonormale de E.
- $\forall k \in [1; n], (x_k | e_k) > 0$ (ceci amène aussi l'unicité).

C'est le procédé d'orthonormalisation de GRAM-SCHMIDT.

<u>REMARQUE 7.7</u>: On orthonormalise directement (x_1, \dots, x_n) en (f_1, \dots, f_n) avec les formules :

- $e_1 = \frac{x_1}{||x_1||}$ (et on a bien $(e_1|x_1) = ||x_1|| > 0$).
- $\bullet \ \forall p \in [\![2;n]\!], \ e_p = \frac{g_p}{||g_p||} \ \text{en notant} \ g_p = x_p \sum_{k=1}^{p-1} (e_k|x_p) e_k \ (\text{avec} \ (e_p|x_p) = ||g_p|| > 0 \ \text{car} \ g_p \neq 0_E).$

PROPOSITION 7.7:

Soit E un espace euclidien.

- E possède au moins une base orthonormale.
- Toute famille orthonormale de E peut être complétée en une base orthonormale.

THÉORÈME 7.8:

Soit E un espace euclidien et $\mathcal{B}=(e_1,\ldots,e_n)$ une base orthonormale de E, $(x,y)\in E^2$ qui se décomposent $x=\sum\limits_{k=1}^n x_ke_k$ et $y=\sum\limits_{k=1}^n y_ke_k$ dans la base \mathcal{B} :

- $\forall k \in [1; n]$, $x_k = (e_k|x)$, $(x = \sum_{k=1}^n (e_k|x)e_k$: coordonnées en fonction des produits scalaires).
- $(x|y) = \sum_{k=1}^{n} x_k y_k$ (produit scalaire en fonction des coordonnées).
- $||x|| = \sqrt{\sum_{k=1}^{n} x_k^2}$ (norme en fonction des coordonnées).

PROPOSITION 7.9:

Soit E un espace euclidien et $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormale de E, on associe à des vecteurs x et y de E les vecteurs colonnes X et Y de leurs coordonnées dans la base \mathcal{B} .

Alors on a $(x|y) = {}^{t}XY = X^{T}Y$ (en identifiant réel et matrice de $\mathcal{M}_{1,1}(\mathbb{R})$).

 $\underline{\mathit{REMARQUE}\;\mathit{FONDAMENTALE}\;\mathit{7.9}}:\mathit{Soit}\;E\;\mathit{euclidien},\;\mathcal{B}=(e_1,\cdots,e_n)\;\mathit{une}\;\mathit{base}\;\mathit{orthonorm\'ee}\;\mathit{de}\;E:$

- Si $f \in \mathcal{L}(E)$ et $A = Mat_{\mathcal{B}}(f)$, alors on a $A = ((e_i|f(e_j)))_{1 \le i,j \le n}$
- Si \mathcal{B}' est une autre base orthonormée et P la matrice de passage de \mathcal{B} à \mathcal{B}' : ${}^tP = P^{-1}$.

THÉORÈME 7.10:

Soit E un espace préhilbertien réel (pas forcément de dimension finie) et F un sous-espace vectoriel de E de dimension finie. Alors F^{\perp} et F sont supplémentaires dans E. Et $(F^{\perp})^{\perp} = F$. En particulier, si E est de dimension finie alors $\dim F^{\perp} = \dim E - \dim F$.

DÉFINITION 7.7:

Soit E un espace préhilbertien réel et F un sous-espace vectoriel de E de dimension finie, alors le sous-espace F^{\perp} est appelé le supplémentaire orthogonal de F.

La projection orthogonale sur F est la projection p_F sur F parallèlement à F^{\perp} .

PROPOSITION 7.11:

Soit E un espace euclidien, F et G deux sous-espaces vectoriels de E.

Nous avons maintenant les égalités : $(F^{\perp})^{\perp} = F$ et $F^{\perp} + G^{\perp} = (F \cap G)^{\perp}$.

PROPOSITION 7.12:

Soit (E,(.|.)) un espace préhilbertien réel, F un sous-espace de E de dimension finie, (e_1,\cdots,e_n) une base orthonormale de F. Pour $x\in E$, le projeté orthogonal de x sur F est $p_F(x)=\sum\limits_{k=1}^n(e_k|x)e_k$.

$$\underline{\textit{REMARQUE 7.10}}: \textit{Si } \alpha \neq 0_{E}, \ D = \textit{Vect}(\alpha), \ H = D^{\perp}: \\ p_{D}(x) = \frac{\left(\alpha|x\right)}{\left|\left|\alpha\right|\right|^{2}}\alpha, \\ p_{H}(x) = x - p_{D}(x) = x - \frac{\left(\alpha|x\right)}{\left|\left|\alpha\right|\right|^{2}}\alpha.$$

DÉFINITION 7.8:

Soit E un espace préhilbertien réel, F un sous-espace de E, la distance de $x \in E$ à F est $d(x, F) = \inf_{y \in F} ||x - y||$.

THÉORÈME ÉNORME 7.13:

Soit E un espace préhilbertien réel, F un sous-espace de E de dimension finie et $x \in E$. Alors la distance $d(x,F) = ||x-p_F(x)|| = \sqrt{||x||^2 - ||p_F(x)||^2} = \underset{y \in F}{\text{Min}} \, ||x-y||$ est atteinte seulement en $y = p_F(x)$.

THÉORÈME ÉNORME 7.14:

Soit (E, (.|.)) un espace euclidien et φ une forme linéaire (element de E^*) alors il existe un unique vecteur a de E tel que $\forall x \in E$, $\varphi(x) = (a|x)$ (théorème de représentation).

PROPOSITION 7.15:

Soit E un espace euclidien, $H = Vect(\alpha)^{\perp}$ un hyperplan de E (donc $\alpha \neq 0_E$), la droite associée $D = H^{\perp} = Vect(\alpha)$ et $x \in E$: $d(x, H) = \frac{|(x|\alpha)|}{||\alpha||}$ et $d(x, D)^2 = \left|\left|x - \frac{(\alpha|x)}{||\alpha||^2}\alpha\right|\right|^2 = ||x||^2 - \frac{(x|\alpha)^2}{||\alpha||^2}$.