ÉNONCÉS EXERCICES CORRIGÉS 4 **PROBABILITÉS**

4.1 Dénombrement

- 4.1Soit E un ensemble fini de cardinal n ; dénombrer les relations binaires, les relations réflexives, les relations symétriques, les relations réflexives et symétriques, les relations antisymétriques, les relations réflexives et antisymétriques.
- <u>Centrale PSI 2012</u> On note T_n (resp. S_n) le nombre de surjections de [1; n+1] (resp. [1; n+2]) dans [1; n].
 - ${\bf a}$. Déterminer T_n en fonction de n.
 - **b.** Décrire les deux types de surjections de [1; n+2] dans [1; n].
 - c. En déduire que $S_n = \frac{(n+2)!n}{24}(an+b)$ où a, b sont deux entiers à déterminer.
- 4.3On considère l'expérience suivante: n couples danseurs de tango sont séparés par la surprise de l'extinction inopinée de la lumière et les couples se recomposent au hasard dans l'obscurité. Quelle est la probabilité qu'aucun couple ne se reforme comme auparavant? Indication : on pourra faire intervenir l'ensemble P_n de toutes les permutations de l'ensemble [1;n] et, pour

tout $k \in [\![1;n]\!]$, la partie F_k des permutations $\sigma:[\![1;n]\!] \to [\![1;n]\!]$ telles que $\sigma(k)=k$.

- On a un jeu de 52 cartes. Dénombrer les mains de 5 cartes dont l'annonce est :
 - quinte flush
- full couleur
- suite (ou quinte)

- double paire paire carte haute (rien).
- $\mathrm{Pour}\; (n,p) \in (\,\mathbb{N}^*)^2, \; \mathrm{calculer}\; \mathrm{le}\; \mathrm{nombre}\; \mathrm{de}\; n\text{-uplets}\; \mathrm{de}\; \mathrm{la}\; \mathrm{forme}\; (\alpha_1,\cdots,\; \alpha_n) \in \, \mathbb{Z}^n \; \mathrm{avec}\; \underset{1\leqslant i \leqslant n}{\mathsf{Max}} |\alpha_i| = p.$
- (4.6) On note $S_{p,n}$ le nombre de surjections d'un ensemble de cardinal p dans un ensemble de cardinal n.

Ce nombre ne dépend que du cardinal des ensembles et pas des ensembles eux-mêmes.

On convient que $S_{0,0}=1$, que $S_{p,0}=0$ si $p\geqslant 1$ et que $S_{0,n}=0$ si $n\geqslant 1$.

- **a.** Que vaut $S_{p,n}$ si n > p?
- **b.** Justifier que $\forall n \in \mathbb{N}^*, \ \forall p \in \mathbb{N}^*, \ n^p = \sum_{k=1}^n \binom{n}{k} S_{p,k}$.
- **c.** Justifier que si deux familles (a_0, \dots, a_n) et (b_0, \dots, b_n) vérifient $\forall k \in [0; n], \ a_k = \sum_{i=0}^n \binom{k}{i} b_i$, alors on a aussi $\forall k \in [\![0;n]\!], \ b_k = \sum\limits_{i=n}^n (-1)^{n-i} \binom{k}{i} \alpha_i$ (formule d'inversion de PASCAL).
- d. En déduire une expression de $S_{p,n}$ sous forme de somme.

4.2 Espaces probabilisés infinis

- 4.7 On lance une pièce un nombre infini de fois. Elle amène pile avec une probabilité $\alpha \in]0;1[$ et face avec une probabilité $\beta = 1 \alpha \neq \alpha$. Pour $n \in \mathbb{N}^*$, on pose P_n : "obtenir pile au n-ième lancer" (resp. F_n avec "face") et A_n : "obtenir pile pour la première fois au n-ième lancer". Soit A_0 : "n'obtenir aucun pile" et, pour $n \geq 2$, E_n : "la séquence PF apparaît pour la première fois aux lancers n-1 et n".
 - **a.** Exprimer E_2 en fonction des $(P_n)_{n \in \mathbb{N}^*}$ et des $(F_n)_{n \in \mathbb{N}^*}$.
 - **b.** Justifier que : $\forall n \ge 2$, $\mathbb{P}(E_n) = \sum_{k=1}^{n-1} \mathbb{P}(E_n \cap A_k)$.
 - **c.** Calculer $\mathbb{P}(E_n \cap A_{n-1})$.
 - $\mathbf{d.} \text{ Pour } k \in [\![1;n-2]\!], \text{ décrire l'événement } E_n \cap A_k \text{ à l'aide des } (P_i)_{i \in \mathbb{N}^*} \text{ et } (F_i)_{i \in \mathbb{N}^*}. \text{ En déduire } \mathbb{P}(E_n \cap A_k).$
 - $\textbf{e. Montrer que } \forall n \geqslant 2, \ \mathbb{P}(E_n) = \alpha\beta\left(\frac{\beta^{n-1} \alpha^{n-1}}{\beta \alpha}\right).$
 - **f.** Soit E : "obtenir au moins une séquence PF". À l'aide de ce qui précède, calculer $\mathbb{P}(E)$.
- (4.8) Deux joueurs A et B jouent à tour de rôle avec 2 dés non pipés.
 - A lance les deux dés. Si la somme des points obtenus par A vaut 6, A gagne la partie et le jeu s'arrête.
 - Sinon, B lance les deux dés. Si la somme des points obtenus par B vaut 7, B gagne la partie.
 - Sinon il passe les dés à A qui rejoue. Et ainsi de suite ...

Pour $k \in \mathbb{N}^*$, on définit les évènements suivants :

 $A_k\,=\,\text{``A}$ gagne la partie après avoir lancé pour la k^e fois les dés''

 E_k = "la somme des points obtenus par A lorsqu'il lance pour la k^e fois les dés vaut 6"

 B_k = "B gagne la partie après avoir lancé pour la k^e fois les dés"

 F_k = "la somme des points obtenus par B lorsqu'il lance pour la k^e fois les dés vaut 7"

Enfin, on pose G_A = "A gagne la partie" et G_B = "B gagne la partie".

- a. Calculer $\mathbb{P}(A_1)$. Exprimer A_2 à l'aide des $(E_i)_{i\geqslant 0}$ et des $(F_i)_{i\geqslant 0}$. En déduire $\mathbb{P}(A_2)$.
- **b.** Calculer $\mathbb{P}(A_k)$ pour $k \in \mathbb{N}^*$ puis déterminer $\mathbb{P}(G_A)$.
- c. Calculer $\mathbb{P}(B_k)$ pour $k \in \mathbb{N}^*$ puis déterminer $\mathbb{P}(G_B)$.
- **d.** Soit C = "la partie ne s'arrête jamais". Calculer $\mathbb{P}(C)$.
- (4.9) Un pion évolue sur trois cases A, B, C. À l'étape n = 0, il est en A.

S'il est en A ou en B à l'étape n, il va, à l'instant suivant, de façon équiprobable sur l'une des deux autres cases vides. S'il est en C à l'étape n, il y reste.

Soit A_n (resp. B_n, C_n) l'évènement "à l'étape n, le pion est en A" (resp. en B, C)

On pose $\forall n \in \mathbb{N}^*$, $a_n = \mathbb{P}(A_n)$, $b_n = \mathbb{P}(B_n)$ et $c_n = \mathbb{P}(C_n)$.

- **a.** Écrire, pour $n \in \mathbb{N}^*$, une relation entre a_{n+1}, a_n, b_n et c_n puis entre b_{n+1}, a_n, b_n et c_n .
- **b.** En déduire c_n en fonction de n.

On désigne par C l'événement "le pion atteint la case C".

- **c.** À l'aide d'une relation d'inclusion, justifier que $\forall n \in \mathbb{N}^*, \ \mathbb{P}(\overline{C}) \leqslant \left(\frac{1}{2}\right)^n$. En déduire $\mathbb{P}(C)$.
- **d.** Exprimer C à l'aide des événements $(C_n)_{n\in\mathbb{N}}$. Retrouver alors la valeur de $\mathbb{P}(C)$.

4.10] <u>Lemme de BOREL-CANTELLI et loi du zéro-un de BOREL</u> Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $(A_n)_{n \in \mathbb{N}}$

une famille quelconque d'évènements. On pose $U_n = \bigcup_{k=n}^{+\infty} A_k$ et $B = \bigcap_{n=0}^{+\infty} U_n$.

- a. Montrer que $B \in \mathcal{A}$. Dire en mots ce que vérifient les $\omega \in B$.
- **b.** On suppose que $\sum_{n>0} \mathbb{P}(A_n)$ converge. Montrer que $\mathbb{P}(B)=0$.
- **c.** Soit $(A_n)_{n\in\mathbb{N}}$ une famille d'évènements mutuellement indépendants, montrer que pour $n\in\mathbb{N}$ et $m\geqslant n$, on a $\mathbb{P}\Big(\bigcap_{k=n}^m \overline{A_k}\Big) \leqslant \exp\Big(-\sum_{k=n}^m \mathbb{P}(A_k)\Big)$. Montrer que l'on a l'alternative suivante : $\mathbb{P}(B) = 0$ ou $\mathbb{P}(B) = 1$.

Dans la suite, on lance indéfiniment (à partir d'un lancer numéro $\mathfrak 0$) une pièce équilibrée.

- **d.** On pose A_n = "on ne fait que des pile du lancer numéro n au lancer numéro 2n-1". Calculer $\mathbb{P}(B)$.
- e. Soit $p \in \mathbb{N}^*$ et $A_n =$ "on ne fait que des pile du lancer numéro n au lancer numéro n+p-1".

Calculer $\mathbb{P}(B)$. Indication : on pourra constater que $\bigcup_{k=n}^{+\infty} A_{pk} \subset \bigcup_{k=n}^{+\infty} A_k$.

4.3 Exercices aux oraux des étudiants de PSI1

4.11 ENS Cachan PSI 2017 Rémy Larue II

On dispose de deux boîtes de n allumettes, on pioche successivement une allumette dans l'une des deux boîtes de manière équiprobable.

Quelle est la probabilité qu'il reste k allumettes dans une des deux boîtes lorsque l'autre est vide?

4.12] <u>TPE, EIVP PSI 2017</u> Manon Bové II

On lance une infinité de fois une pièce qui fait pile avec une probabilité $p \in]0;1[$. On définit les évènements :

- A = "on obtient pile pour la première fois au bout d'un nombre pair de lancers".
- B = "on obtient pile pour la première fois au bout d'un nombre de lancers multiple de 3".

Calculer $\mathbb{P}(A)$ et $\mathbb{P}(B)$. A et B sont-ils indépendants ?

4.13 Centrale Maths1 PSI 2018 Alexandre Morisse

Soit une infinité de personnages $(A_n)_{n\in\mathbb{N}}$. Ils jouent à pile ou face avec une pièce équilibrée, les lancers sont indépendants. Ao joue contre A1, celui qui gagne joue contre A2. Puis celui des deux qui gagne joue contre A_3 et ainsi de suite. Le jeu s'arrête lorsqu'un des joueurs A_n gagne trois parties d'affilée. On définit q_n la probabilité que le personnage A_n joue au moins une fois, p_n celle qu'il gagne le jeu.

- a. Calculer p_n en fonction de q_n . Calculer pour n = 0, 1, 2, 3 les valeurs de p_n et q_n .
- b. Exprimer q_n en fonction de n. En déduire la probabilité que le jeu s'arrête.

Question en plus : "100% des élèves de classes préparatoires qui travaillent réussissent. 85% des élèves travaillent en classes préparatoires. 50% des élèves de classes préparatoire qui ne travaillent pas réussissent. Quelle est la probabilité qu'un élève ayant réussi ait travaillé?".

4.14 CCP PSI 2018 Quentin Meynieu II

a. Soit une population de n personnes. L'une d'elles envoie une lettre à l'une des n-1 autres personnes. Celle-ci renvoie la lettre à l'une des n-1 autres, etc.... ceci se répète n-1 fois.

Quelle est la probabilité que les $\mathfrak n$ personnes aient reçu la lettre ?

b. Chacun dispose d'une lettre et l'envoie à l'une des n-1 autres personnes.

Soit $p \in [0; n-1]$, quelle est la probabilité qu'une personne donnée reçoive p lettres ?

(4.15) ENS Cachan PSI 2019 (OdlT 2019/2020 X-ENS PSI planche 34) Fabien Dupuis

Soit $\mathcal{P} = \{p_1, p_2, \dots\}$ l'ensemble des nombres premiers $(p_1 = 2, p_2 = 3, \text{ etc...})$ et, pour s > 1, $\zeta(s) = \sum_{n=1}^{+\infty} n^{-s}$.

a. Soit s > 1, pour quels valeurs de $\lambda \in \mathbb{R}$, la famille $(\mathfrak{q}_n)_{n \in \mathbb{N}^*} = (\lambda \mathfrak{n}^{-s})_{n \in \mathbb{N}^*}$ définit-elle une loi de probabilité sur \mathbb{N}^* par l'intermédiaire de $\forall n \geq 1$, $\mathbb{P}(\{n\}) = \lambda \mathfrak{n}^{-s}$?

b. Soit s > 1, pour λ trouvé à la question **a.**, soit X une variable aléatoire suivant la loi Q_s précédente : c'est-à-dire $\mathbb{P}(X = n) = \lambda n^{-s}$. Pour quelles valeurs de s la variable X admet-elle une espérance finie ?

c. Pour \mathfrak{p} nombre premier, on pose $A_{\mathfrak{p}} = \mathfrak{p} \, \mathbb{N}^*$. Montrer que les $(A_{\mathfrak{p}})_{\mathfrak{p} \in \mathcal{P}}$ sont mutuellement indépendants pour la loi de probabilité précédente.

 $\textbf{d.} \text{ En d\'eduire que } \zeta(s) = \lim_{\substack{N \to +\infty}} \prod_{n=1}^N \frac{1}{1-p_n^{-s}} \text{ qu'on note } \zeta(s) = \prod_{\mathfrak{p} \in \mathfrak{P}} \frac{1}{1-\mathfrak{p}^{-s}}.$

e. Est-ce que la série $\sum_{\mathfrak{n}\geqslant 1}\frac{1}{\mathfrak{p}_{\mathfrak{n}}}$ converge ?

4.16 Centrale Maths 1 PSI 2019 Auriane Luquet

Soit deux réels a et b tels que $0 < a \le b < 1$.

Pour une élection, il y a deux candidats A et B. On interroge des gens sur leurs intentions de vote. Chaque jour, une fraction $\mathfrak a$ de ceux qui votent pour A et une fraction $\mathfrak b$ de ceux qui votent pour B changent d'avis. Pour $\mathfrak n \in \mathbb N$, on note $\mathfrak p_{\mathfrak n}$ (resp. $\mathfrak q_{\mathfrak n}$) la proportion des gens interrogés qui pensent voter pour A (resp. B) au $\mathfrak n$ -ième jour. On note aussi $\mathfrak U_{\mathfrak n} = \begin{pmatrix} \mathfrak p_{\mathfrak n} \\ \mathfrak q_{\mathfrak n} \end{pmatrix}$.

- a. Déterminer U_n en fonction de U_0 , n, a et b.
- **b.** Étudier la convergence des suites $(p_n)_{n\in\mathbb{N}}$ et $(q_n)_{n\in\mathbb{N}}$.

4.17 CCINP PSI 2021 Alexandre Marque et Adèle Robert I

On note A, B, C trois points distincts du plan sur lesquels une puce peut se déplacer selon la règle suivante :

- \bullet La puce est initialement en A (à l'instant 0).
- À chaque tour, elle change de point de manière équiprobable.

On pose A_n = "la puce est en A au temps n", B_n = "la puce est en B au temps n", C_n = "la puce est en C au temps n". Soit aussi $J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, $M = J - I_3$ et, pour $n \in \mathbb{N}$, le vecteur colonne $U_n = \begin{pmatrix} \mathbb{P}(A_n) \\ \mathbb{P}(B_n) \\ \mathbb{P}(C_n) \end{pmatrix}$.

- **a.** Exprimer U_{n+1} en fonction de U_n .
- **b.** Montrer que M est diagonalisable. Donner ses sous-espaces propres. En déduire M^n .
- c. Trouver un polynôme annulateur P de J. Trouver le reste de la division euclidienne de $(X-1)^n$ par P. En déduire la valeur de M^n d'une autre manière que celle de la question précédente.
- d. Déduire des questions précédentes la valeur de $\lim_{n\to +\infty} U_n.$
- e. Que dire de cette limite si on ne connaît pas U_0 ?

4.18 ENS Cachan PSI 2022 Noé Chassagne II

Soit un entier $n \ge 2$ et $r \in [2; n]$. On note $E_{n,r}$ l'ensemble des parties de [1; n] ayant r éléments. On note $F_{n,r}$ l'ensemble des parties de [1; n+r-1] ayant r éléments et telles qu'aucun de ces éléments ne soient consécutifs ; c'est-à-dire que si on prend r entiers a_1, \dots, a_r tels que $1 \le a_1 \le \dots \le a_r \le n+r-1$, on a $\{a_1, \dots, a_r\} \in F_{n,r} \iff (\forall i \in [1; r-1], a_{i+1}-a_i > 1)$.

a. Montrer que card $(E_{n,r}) = \operatorname{card}(F_{n,r})$.

On tire au hasard quatre numéros simultanément entre 1 et 49.

Chaque quadruplet a la même probabilité d'être tiré.

- b. Calculer la probabilité d'avoir au moins deux éléments consécutifs dans le tirage.
- c. Calculer la probabilité d'avoir exactement deux éléments consécutifs dans le tirage.

(4.19) Mines PSI 2022 Thibault Le Gal III

Un homme a une probabilité $p \in]0;1[$ d'être dans un immeuble de sept étages. Il n'est pas dans les six premiers étages, quelle est la probabilité qu'il soit au septième étage?

$(\mathbf{4.20})$ Mines PSI 2022 Camille Pucheu I

Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'évènements indépendants. On pose l'évènement B= "aucun des A_n n'est réalisé".

- a. Montrer que $\mathbb{P}(B) \leqslant exp\left(-\sum_{i=0}^{+\infty} \mathbb{P}(A_i)\right)$.
- **b.** Que déduire sur $\mathbb{P}(B)$ si on suppose que $\sum_{n\geqslant 0} \mathbb{P}(A_n)$ diverge.

On suppose construite sur \mathbb{N} une probabilité $\mathbb{P}: \mathcal{P}(\mathbb{N}) \to [0;1]$ telle que pour tout $k \in \mathbb{N}^*$, un entier a une probabilité $\frac{1}{k}$ d'être une multiple de k. On note l'évènement $A_k = k \, \mathbb{N}^*$ de sorte que l'on ait $\mathbb{P}(A_k) = \frac{1}{k}$ et on note $\mathcal{P} = \{2,3,5,7,\cdots\}$ l'ensemble des nombres premiers. On admet qu'en notant \mathfrak{p}_n le \mathfrak{n} -ième nombre premier $(\mathfrak{p}_1 = 2, \mathfrak{p}_2 = 3...)$ on a $\mathfrak{p}_n \sim \mathfrak{n} \, ln(\mathfrak{n})$.

- **c.** Montrer que $\mathbb{P}(\{0\}) = 0$.
- **d.** Montrer que $(A_p)_{p\in\mathcal{P}}$ est une suite d'évènements indépendants.
- e. Conclure.

(4.21) Mines-Télécom PSI 2022 Naïs Baubry II

Soit un entier $n \ge 2$. Une urne contient n-1 boules numérotées de 1 à n-1. On dispose aussi de n boîtes B_1, \dots, B_n telles que la boîte B_i contient i jetons numérotés de 1 à i. On réalise l'expérience suivante :

- On tire une boule dans l'urne et on note i son numéro.
- On tire un jeton (numéro a) dans la boîte B_i et un jeton (numéro b) dans la boite B_{i+1} .
- On a "gagné" si a = b.
- a. Déterminer la probabilité p_2 de gagner si n = 2.
- **b.** Déterminer la probabilité p_n de gagner dans le cas général.
- $\textbf{c.} \ \text{Montrer que } \forall k \in \, \mathbb{N}^*, \ \frac{1}{k+1} \leqslant \ln(k+1) \ln(k) \leqslant \frac{1}{k}. \ \text{En d\'eduire un \'equivalent de } \mathfrak{p}_{\pi}.$

(**4.22**) *X PSI 2023* Paul Picard I

Un jeu peut être dans seulement deux états notés 0 et 1. Et on passe de l'un à l'autre par des étapes discrètes numérotées par des entiers naturels.

On passe de l'état 0 à l'état 1 avec une probabilité $p \in]0;1[$.

On passe de l'état 1 à l'état 0 avec une probabilité $q \in]0;1[$.

- a. Calculer la probabilité p_n d'être à l'état 1 à l'instant n.
- **b.** Calculer $\lim_{n\to+\infty} p_n$.

4.23 ENS Cachan PSI 2023 Arthur Biot et Maddie Bisch

Soit un entier $n \ge 2$ et $n = p_1^{s_1} \cdots p_r^{s_r}$ sa décomposition en produit de nombres premiers. Pour tout diviseur $d \in [\![1;n]\!]$ de n, on pose $A_d = \left\{kd \mid k \in \left\{1,\cdots,\frac{n}{d}\right\}\right\}$.

Soit l'univers $\Omega = [\![1;n]\!]$ qu'on munit de la probabilité uniforme : pour $A \subset \Omega$, $\mathbb{P}(A) = \frac{|A|}{n}$ où $|A| = \operatorname{card}(A)$.

On pose $B_{\mathfrak{n}} = \{k \in \llbracket 1; \mathfrak{n} \rrbracket \mid \operatorname{pgcd}(k, \mathfrak{n}) = 1\} \text{ et on note } \phi(\mathfrak{n}) = |B_{\mathfrak{n}}| \text{ le cardinal de } B_{\mathfrak{n}}.$

- **a.** Soit d et d' deux diviseurs de n premiers entre eux tels que $(d, d') \in [1; n]^2$. Montrer que $A_d \cap A_{d'} = A_{dd'}$. En déduire que A_d et $A_{d'}$ sont indépendants.
- **b.** Exprimer B_n en fonction de A_{p_1}, \dots, A_{p_r} .
- c. En déduire une expression de $\varphi(n)$ en fonction de p_1, \dots, p_r .
- **d.** Montrer que si deux entiers n et m de $\mathbb{N}^* \setminus \{1\}$ sont premiers entre eux, on a $\varphi(nm) = \varphi(n)\varphi(m)$.

Pour un entier $n \in \mathbb{N}^*$, on pose $\mathbb{U}_n = \{z \in \mathbb{C} \mid z^n = 1\}$ et on définit $\mathbb{U} = \bigcup_{n=1}^{+\infty} \mathbb{U}_n$. Pour un élément z de \mathbb{U} ,

on définit $\mathfrak{m}_z=\operatorname{Inf}\big\{\mathfrak{n}\in\mathbb{N}^*\mid z^\mathfrak{n}=1\big\}$. Pour un entier $\mathfrak{n}\in\mathbb{N}^*,$ on pose $P_\mathfrak{n}=\{z\in\mathbb{U}\mid \mathfrak{m}_z=\mathfrak{n}\}.$

- $\textbf{e. Soit } z \in \mathbb{C} \text{ tel que } |z| = 1. \text{ Montrer qu'il existe une suite } (z_k)_{k \in \mathbb{N}} \in \mathbb{U}^{\mathbb{N}} \text{ telle que } \lim_{k \to +\infty} z_k = z.$
- $\mathbf{f.}$ Montrer que $P_{\mathfrak{n}}$ est un ensemble fini ; puis que $|P_{\mathfrak{n}}|=\phi(\mathfrak{n}).$
- $\mathbf{g.} \ \mathrm{Montrer} \ \mathrm{que} \ \mathbb{U} = \bigcup_{\mathfrak{n} \in \, \mathbb{N}^*} P_{\mathfrak{n}} \ \mathrm{et} \ \mathrm{que} \ P_{\mathfrak{n}} \cap P_{\mathfrak{m}} = \emptyset \ \mathrm{si} \ \mathfrak{n} \neq \mathfrak{m}.$

(4.24) Mines PSI 2023 Mathys Bureau II

Pour un entier $n \ge 2$ et $p \in [0; n]$, on note F_n^p le nombre de parties A à p éléments de [1; n] telles que l'on ait la propriété suivante (C): $\forall i \in [1; n-1], i \in A$ ou $i+1 \in A$. Calculer F_n^p .

[4.25] <u>Mines PSI 2024</u> Yasmine Azzaoui III

Sur 1000 électeurs, 700 votent pour A et 300 pour B.

Quelle est la probabilité pour que A soit toujours en tête (au sens strict) lors du dépouillement ?

(4.26) Mines PSI 2024 Jonathan Filocco II

Une urne contient au début une bille blanche et une bille rouge. On répète indéfiniment des tirages selon le mode suivant : on tire une bille, et on remet dans l'urne deux billes de la couleur obtenue.

- a. Quelle est la probabilité qu'on n'obtienne que des boules rouges lors des n premiers tirages ?
- b. Quelle est la probabilité qu'on obtienne indéfiniment seulement des boules rouges?
- c. Quelle est la probabilité d'obtenir une boule blanche au 42-ième tirage ?
- d. Est-ce que le résultat du b. change si on remet 3 billes de la couleur obtenue ou lieu de 2 ?
- e. Est-ce que le résultat de b. change si on remet k billes de la couleur obtenue ou lieu de 2 au tirage k?

4.27 Mines PSI 2024 Adrien Saugnac I

Soit E un ensemble non vide et p une application de E dans E. On suppose que p est idempotente, c'est-à-dire que $p \circ p = p$.

- **a.** Montrer que si p est injective, on a $p = id_F$.
- **b.** Montrer que si p est surjective, on a $p = id_E$.
- c. Si card (E) = 2, trouver une application idempotente de E dans E qui ne soit pas id E.
- **d.** Trouver 3 applications idempotentes de E si card(E) = 2.
- e. Trouver 10 applications idempotentes de E si card(E) = 3.
- **f.** Prouver que si $p: E \to E$, on a p idempotente si et seulement si $(\forall x \in p(E), p(x) = x)$.
- g. Dénombrer les applications idempotentes de E dans E si card (E) = n.

4.28 Mines-Télécom PSI 2024 Eva Rojo II

On dispose d'un dé blanc non truqué et d'un dé noir pipé avec lequel la probabilité de faire 6 est $\frac{1}{3}$. Le joueur 1 prend un dé au choix et le lance, le joueur 2 lance l'autre dé. Celui qui a fait strictement plus que l'autre a gagné, et si le score est égal, le dé blanc gagne.

Quelle est la meilleure stratégie pour le joueur 1?

4.4 Officiel de la Taupe

4.29) OdlT 2015/2016 Mines PSI planche 127II Soit (B_n) une suite d'évènements mutuellement indépendants.

$$\text{Montrer que}:\ \mathbb{P}\Big(\bigcap_{\mathfrak{n}\in\,\mathbb{N}}\overline{B_{\mathfrak{n}}}\,\Big)\leqslant exp\,\Big(-\textstyle\sum\limits_{\mathfrak{n}=0}^{+\infty}\,\mathbb{P}(B_{\mathfrak{n}})\Big).$$

4.30 OdlT 2016/2017 Centrale PSI planche 168

On donne une suite $(A_n)_{n\geqslant 0}$ d'évènements d'un espace probabilité $(\Omega,\mathcal{A},\,\mathbb{P})$ et on note $A=\bigcap_{k=0}^{+\infty}\bigcup_{n=k}^{+\infty}A_n$.

- **a.** Montrer que $\mathbb{P}(A) = \lim_{k \to +\infty} \mathbb{P}\left(\bigcup_{n=k}^{+\infty} A_n\right)$. On suppose que $\sum_{n \geqslant 0} \mathbb{P}(A_n)$ converge ; déterminer $\mathbb{P}(A)$.
- b. Déterminer $\mathbb{P}(B)$ où B est l'ensemble des ω appartenant à une infinité de A_n .
- c. On suppose la famille $(A_n)_{n\geqslant 0}$ indépendante et la série $\sum_{n\geq 0} \mathbb{P}(A_n)$ divergente.

Déterminer $\mathbb{P}(A)$. Indication : on pourra considérer $\mathbb{P}(\overline{A})$ et montrer que $\forall x \in [0, 1], 1-x \leqslant e^{-x}$.