TD 09: RÉDUCTION

PSI 1 2025-2026

vendredi 14 novembre 2025

9.1 a. Posons $C = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$, alors $\chi_C = X^2 - 2X - 3 = (X+1)(X-3)$ est scindé à racines simples donc Cest diagonalisable. Comme $E_{-1}(C) = Vect((-2,1))$ et $E_3(C) = Vect((2,1))$, on a $C = P\begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix} P^{-1}$ avec $P = \begin{pmatrix} -2 & 2 \\ 1 & 1 \end{pmatrix}. \text{ Posons } Q = \begin{pmatrix} -2I_n & 2I_n \\ I_n & I_n \end{pmatrix}, \text{ comme } P^{-1} = \frac{1}{4}\begin{pmatrix} -1 & 2 \\ 1 & 2 \end{pmatrix}, \text{ on v\'erifie (par blocs) que } Q \text{ est } P^{-1} = \frac{1}{4}\begin{pmatrix} -1 & 2 \\ 1 & 2 \end{pmatrix}$ $\mathrm{inversible\ avec}\ Q^{-1} = \frac{1}{4} \left(\begin{matrix} I_n & 2I_n \\ I_n & -2I_n \end{matrix} \right) \ \mathrm{et}\ Q^{-1} B Q = \left(\begin{matrix} -A & 0 \\ 0 & 3A \end{matrix} \right) \ \mathrm{donc\ B} \ \mathrm{est\ semblable\ \grave{a}}\ B' = \left(\begin{matrix} -A & 0 \\ 0 & 3A \end{matrix} \right).$ **b.** Si A est diagonalisable, il existe une matrice inversible U telle que $A = UDU^{-1}$ et avec $V = \begin{pmatrix} U & 0 \\ 0 & U \end{pmatrix}$, $V^{-1} = \begin{pmatrix} U^{-1} & 0 \\ 0 & U^{-1} \end{pmatrix}, \text{ on a } V^{-1} \begin{pmatrix} -A & 0 \\ 0 & 3A \end{pmatrix} V = \begin{pmatrix} -D & 0 \\ 0 & 3D \end{pmatrix} \text{ diagonale donc B est diagonalisable.}$

Si B est diagonalisable, il existe un polynôme scindé à racines simples R tel que R(B) = 0. Comme B et B' sont semblables, on a aussi $R(B') = \begin{pmatrix} R(-A) & 0 \\ 0 & R(3A) \end{pmatrix} = 0$ donc en posant S(X) = R(-X), S est aussi scindé à racines simples et annule A donc A est diagonalisable.

- c. Puisque B est semblable à B', $\chi_B = \chi_{B'} = \det(XI_n + A)\det(XI_n 3A) = (-1)^n 3^n \chi_A(-X)\chi_A(X/3)$. Ainsi, $S\mathfrak{p}(B) \,=\, (-\,S\mathfrak{p}(A))\,\cup\, (3\,S\mathfrak{p}(A)). \ \, \text{Supposons que } A\,\in\, \mathfrak{M}_2(\,\mathbb{R}) \,\,\text{est diagonalisable, alors il existe une base}$ $(X_1,X_2) \text{ de } \mathbb{R}^2 \text{ formée de vecteurs propres de } A: \text{ par exemple } AX_1=\lambda_1X_1 \text{ et } AX_2=\lambda_2X_2. \text{ Alors en notant exemple } AX_1=\lambda_1X_1 \text{ et } AX_2=\lambda_2X_2.$ $Y_1 = \begin{pmatrix} X_1 \\ 0 \end{pmatrix}, Y_2 = \begin{pmatrix} X_2 \\ 0 \end{pmatrix}, Y_3 = \begin{pmatrix} 0 \\ X_1 \end{pmatrix}, Y_4 = \begin{pmatrix} 0 \\ X_2 \end{pmatrix}, \text{ on a } B'Y_1 = -\lambda_1 Y_1, B'Y_2 = -\lambda_2 Y_2, B'Y_3 = 3\lambda_1 Y_3 \text{ et } A_1 Y_1 = -\lambda_1 Y_1, B'Y_2 = -\lambda_2 Y_2, B'Y_3 = 3\lambda_1 Y_3 \text{ et } A_1 Y_1 = -\lambda_1 Y_1, B'Y_2 = -\lambda_2 Y_2, B'Y_3 = 3\lambda_1 Y_3 \text{ et } A_1 Y_1 = -\lambda_1 Y_1, B'Y_2 = -\lambda_2 Y_2, B'Y_3 = 3\lambda_1 Y_3 \text{ et } A_1 Y_1 = -\lambda_1 Y_1, B'Y_2 = -\lambda_2 Y_2, B'Y_3 = 3\lambda_1 Y_3 \text{ et } A_1 Y_1 = -\lambda_1 Y_1, B'Y_2 = -\lambda_2 Y_2, B'Y_3 = 3\lambda_1 Y_3 \text{ et } A_1 Y_1 = -\lambda_1 Y_1, B'Y_2 = -\lambda_2 Y_2, B'Y_3 = 3\lambda_1 Y_3 \text{ et } A_1 Y_1 = -\lambda_1 Y_1, B'Y_2 = -\lambda_2 Y_2, B'Y_3 = 3\lambda_1 Y_3 \text{ et } A_1 Y_1 = -\lambda_1 Y_1, B'Y_2 = -\lambda_2 Y_2, B'Y_3 = 3\lambda_1 Y_3 \text{ et } A_1 Y_1 = -\lambda_1 Y_1, B'Y_2 = -\lambda_2 Y_2, B'Y_3 = 3\lambda_1 Y_3 \text{ et } A_1 Y_1 = -\lambda_1 Y_1, B'Y_2 = -\lambda_2 Y_2, B'Y_3 = 3\lambda_1 Y_3 \text{ et } A_1 Y_1 = -\lambda_1 Y_1, B'Y_2 = -\lambda_2 Y_2, B'Y_3 = 3\lambda_1 Y_3 \text{ et } A_1 Y_1 = -\lambda_1 Y_1, B'Y_2 = -\lambda_2 Y_2, B'Y_3 = 3\lambda_1 Y_3 \text{ et } A_1 Y_1 = -\lambda_1 Y_1, B'Y_2 = -\lambda_2 Y_2, B'Y_3 = 3\lambda_1 Y_3 \text{ et } A_1 Y_1 = -\lambda_1 Y_1, B'Y_2 = -\lambda_2 Y_2, B'Y_3 = -\lambda_2 Y_2, B'Y_3 = -\lambda_2 Y_2, B'Y_3 = -\lambda_2 Y_2, B'Y_3 = -\lambda_2 Y_3, B'Y_3 = -\lambda_2 Y_2, B'Y_3 = -\lambda_2 Y_3, B'Y_3 = -\lambda_2 Y$ $B'Y_4 = 3\lambda_2Y_4$ et il est facile de vérifier que (Y_1,Y_2,Y_3,Y_4) est libre dans $\mathcal{M}_{4,1}(\mathbb{R})$ donc que c'en est une base qui est une base de vecteurs propres de B', et une base de vecteurs propres de B est donc, d'après ce qui précède, (QY_1,QY_2,QY_3,QY_4) (qui est une famille libre donc une base de \mathbb{R}^4 car Q est inversible).
- **9.2** a. Soit un polynôme $P = \sum_{n=0}^{m} a_n X^n \in \mathbb{R}[X]$, alors $P(u) = \sum_{n=0}^{m} a_n u^n$ par définition donc, en intervertissant les sommes doubles, on obtient $P(u) = \sum_{n=0}^{m} \left(a_n \sum_{k=1}^{p} \lambda_k^n v_k \right) = \sum_{k=1}^{p} \left(\sum_{n=0}^{m} a_n \lambda_k^n \right) v_k = \sum_{k=1}^{p} P(\lambda_k) v_k$. Soit $P = \prod_{k=1}^{p} (X - \lambda_k)$. On a clairement $\forall k \in [1; p]$, $P(\lambda_k) = 0$ donc P(u) = 0 d'après ce qui précède. Comme

P est un polynôme annulateur scindé à racines simples de u, on en déduit que u est diagonalisable.

- **b.** Ce sont les fameux polynômes d'interpolation de LAGRANGE. Pour $j \in [1; p]$, soit $L_j = \prod_{k=1}^{P} \left(\frac{X \lambda_k}{\lambda_j \lambda_k} \right)$. On a $\forall j \in [1; p]$, $L_j \in \mathbb{R}_{p-1}[X]$, et plus précisément $deg(L_j) = p-1$. De plus, $\forall (i,j) \in [1; p]^2$, $L_j(\lambda_i) = \delta_{i,j}$. Or si $\sum_{k=1}^{p} \alpha_k L_k = 0$ avec $(\alpha_1, \dots, \alpha_p) \in \mathbb{R}^p$, en évaluant ceci en λ_j pour $j \in [1; p]$, on trouve $\alpha_j = 0$ ce qui prouve que (L_1, \cdots, L_p) est libre. Comme $\dim(\mathbb{R}_{p-1}[X]) = p$, (L_1, \cdots, L_p) est une base de $\mathbb{R}_{p-1}[X]$.
- c. Comme $P = \prod_{k=1}^P (X \lambda_k)$ est annulateur de u, on sait d'après le cours que $Sp(u) \subset \{\lambda_1, \cdots, \lambda_p\}$.

Si, pour $j \in [1;p]$, on avait $\lambda_j \notin Sp(u)$, alors le spectre de u serait inclus dans l'ensemble des racines de L_j $\prod_{\lambda \in \operatorname{Sp}(\mathfrak{u})} (X-\lambda) \text{ diviserait } L_j. \text{ Mais puisque } \mathfrak{u} \text{ est diagonalisable, } \prod_{\lambda \in \operatorname{Sp}(\mathfrak{u})} (X-\lambda) \text{ est annulateur de } \mathfrak{u} \text{ donce}$ on aurait $L_j(u)=0$. Or, avec ${\bf a}$ et ${\bf b}$, on a $L_j(u)=\sum\limits_{k=1}^nL_j(\lambda_k)\nu_k=\nu_j\neq 0$ (par hypothèse) ce qui clôt le raisonnement par l'absurde. Par conséquent, par double inclusion, on conclut $Sp(u)=\{\lambda_1,\cdots,\lambda_p\}$.

raisonnement par l'absurde. Par consequent, par 3000. $2000 = \begin{bmatrix} X - 1 - \alpha & -1 & 1 \\ \alpha - 2 & X - 2 & 2 \\ 1 & 1 & X - 1 \end{bmatrix} = \begin{bmatrix} X - 1 - \alpha & -1 & 0 \\ \alpha - 2 & X - 2 & X \\ 1 & 1 & X \end{bmatrix} \text{ après l'opération } C_3 \longleftarrow C_3 + C_2 \text{ puis, après }$ $L_2 \longleftarrow L_2 - L_3, \text{ on obtient } \chi_M = \begin{bmatrix} X - 1 - \alpha & -1 & 0 \\ \alpha - 3 & X - 3 & 0 \\ 1 & 1 & X \end{bmatrix}. \text{ On développe par rapport à la troisième colonne }$ $et \chi_M = X \begin{bmatrix} X - 1 - \alpha & -1 \\ \alpha - 3 & X - 3 \end{bmatrix} = X ((X - 1 - \alpha)(X - 3) + \alpha - 3) = X(X^2 - (\alpha + 4)X + 4\alpha) = X(X - \alpha)(X - 4).$

Traitons trois cas:

- Si $\alpha \notin \{0,4\}$, alors χ_M est scindé à racines simples donc M est diagonalisable.
- Si a = 0, $\chi_M = X^2(X 4)$, rang (M) = 1 car $M = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 2 & -2 \\ -1 & -1 & 1 \end{pmatrix}$ donc, avec la formule du rang, $\dim(\text{Ker}(M)) = 2$ et M est diagonalisable car les ordres algébrique et géométrique de 0 sont égaux.

• Si
$$a = 4$$
, $\chi_M = X(X - 4)^2$, $M = \begin{pmatrix} 5 & 1 & -1 \\ -2 & 2 & -2 \\ -1 & -1 & 1 \end{pmatrix}$ donc $M - 4I_3 = \begin{pmatrix} 1 & 1 & -1 \\ -2 & -2 & -2 \\ -1 & -1 & -3 \end{pmatrix}$ est de rang 2

donc $dim(E_4(M)) = 1$ toujours d'après la formule du rang et l'ordre de multiplicité géométrique de 4 est strictement inférieur à son ordre algébrique donc M n'est alors pas diagonalisable.

En conclusion : la condition nécessaire et suffisante pour que M soit diagonalisable est $a \neq 4$.

- Plus précisément si a=0: $E_0(M)=Vect(\nu_1,\nu_2)$ avec $\nu_1=(0,1,1)$ et $\nu_2=(1,-1,0)$ et $E_4(M)=Vect(\nu_3)$ avec $\nu_3=(1,2,-1)$ donc $M=PDP^{-1}$ avec $D=4E_{3,3}$ et $P=\begin{pmatrix} 0 & 1 & 1 \\ 1 & -1 & 2 \\ 1 & 0 & -1 \end{pmatrix}$.
- Plus précisément si $\alpha=4$: comme χ_M est scindé dans \mathbb{R} , la matrice M est trigonalisable dans $\mathfrak{M}_3(\mathbb{R})$. Après calculs, on trouve $E_0(M)=Vect(\nu_1)$ avec $\nu_1=(0,1,1)$ et $E_4(M)=Vect(\nu_2)$ avec $\nu_2=(1,-1,0)$. On espère prouver que M est semblable à la matrice $T=\begin{pmatrix} 0 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{pmatrix}$ (réduction de JORDAN) ce qui nous pousse à chercher un vecteur ν_3 tel que $M\nu_3=4\nu_3+\nu_2$ ou encore $(M-4I_3)\nu_3=\nu_2$. On trouve par exemple $\nu_3=\left(\frac{3}{4},0,-\frac{1}{4}\right)$ et (ν_1,ν_2,ν_3) est une base de \mathbb{R}^3 donc $M=QTQ^{-1}$ avec $Q=\begin{pmatrix} 0 & 1 & 3/4 \\ 1 & -1 & 0 \\ 1 & 0 & -1/4 \end{pmatrix}$.

9.4 a. Analyse : soit un hyperplan H supposé stable par u.

Méthode 1 : soit φ une forme linéaire non nulle sur E telle que H = Ker φ. Pour $x \in H$, on a $u(x) \in H$ donc φ(u(x)) = 0, ainsi ψ = φ ∘ u est une forme linéaire sur E telle que $H \subset Ker(ψ)$. Soit ψ = 0 et alors ψ = 0.φ = λφ avec λ = 0, soit $ψ \neq 0$ et alors H = Ker(φ) = Ker(ψ) donc, d'après le cours, φ et ψ sont proportionnelles et $∃λ ∈ \mathbb{K}^*$ tel que ψ = λφ = φ ∘ u. Que λ soit nul ou pas, il existe donc $λ ∈ \mathbb{C}$ tel que ψ = φ ∘ u = λφ ce qui s'écrit aussi $φ ∘ (u - λid_E) = 0$ donc $Im(u - λid_E) \subset Ker(φ) = H$.

On a bien établi l'équivalence : H stable par $\mathfrak{u} \Longleftrightarrow \exists \lambda \in \mathbb{K}, \ \operatorname{Im}\,(\mathfrak{u}-\lambda \operatorname{id}_E) \subset H.$

b. Soit F un sous-espace de \mathbb{R}^3 stable par A. Distinguons selon la dimension de F:

- si dim(F) = 0, alors $F = \{0\}$ qui est bien stable par A.
- si dim(F) = 1, alors F = Vect(e) et on sait que F est stable par u si et seulement si e est un vecteur propre de A. On calcule donc $\chi_A = X^3 3X^2 + 12X$ donc 0 est la seule valeur propre réelle car le discriminant de $X^2 3X + 12$ vaut $\Delta = 9 48 < 0$. Comme rang (u) = 2, Ker(A) = E₀(A) est une droite, c'est Ker(A) = Vect(e) avec e = (1, 1, 1). Ainsi, Vect(e) est la seule droite stable par A.
- si $\dim(F) = 2$, F est un hyperplan de \mathbb{R}^3 et la question précédente montre l'existence d'un scalaire λ tel que $\operatorname{Im}(A \lambda I_3) \subset F$ ce qui prouve que $\lambda \in \operatorname{Sp}(A)$ car $A \lambda I_3$ ne peut pas être inversible. Ainsi, $\lambda = 0$ et $\operatorname{Im}(A) \subset F$ donc $\operatorname{Im}(A) = F$ car ils ont même dimension. Comme $\operatorname{Im}(A) = \operatorname{Vect}(\mathfrak{a},\mathfrak{b})$ avec $\mathfrak{a} = f(\mathfrak{e}_2) = (-6, -10, 4)$ et $\mathfrak{b} = f(\mathfrak{e}_3) = (-4, -8, 3)$ par exemple, $\operatorname{Vect}(\mathfrak{a},\mathfrak{b})$ est le seul plan stable par A.
- \bullet si dim(F) = 3, alors $F = \mathbb{R}^3$ qui est bien stable par A.

vaut aussi 1. Par conséquent $C \in S_n$ et S_n est bien stable par produit.

Au final, les seuls sous-espaces propres stables par A sont $\{0\}$, la droite Ker(A), le plan Im(A) et \mathbb{R}^3 .

- **9.5 a.** Soit X_0 le vecteur colonne ne contenant que des 1, alors $A^TX_0 = X_0$ par hypothèse sur les colonnes de A (donc les lignes de A^T). Ainsi, 1 est valeur propre de A^T donc aussi valeur propre de A car $\chi_A = \chi_{A^T}$.
 - **b.** Soit A et B deux matrices de S_n et $C = (c_{i,j})_{1 \leqslant i,j \leqslant n} = AB$. Comme $c_{i,j} = \sum_{k=1}^n \alpha_{i,k} b_{k,j}$, la somme des termes de la j-ième colonne de C vaut $\sum_{i=1}^n c_{i,j} = \sum_{i=1}^n \left(\sum_{k=1}^n \alpha_{i,k} b_{k,j}\right) = \sum_{k=1}^n b_{k,j} \left(\sum_{i=1}^n \alpha_{i,k}\right) = \sum_{k=1}^n b_{k,j} = 1$ car la somme des termes de chaque colonne k de A vaut 1 et que la somme de chaque colonne j de la matrice B

c. Soit $\lambda \in Sp(A)$, alors $\lambda \in Sp(A^T)$ de sorte qu'il existe $X \neq \emptyset \in \mathfrak{M}_{n,1}(\mathbb{C})$ tel que $A^TX = \lambda X$. Notons j l'un des indices tels que $|x_j| = ||X||_{\infty} = \underset{1 \leq k \leq n}{\text{Max}} |x_k| > \emptyset$. Alors, en regardant à la ligne j de $A^TX = \lambda X$, on trouve

$$\lambda x_j = \sum_{i=1}^n \alpha_{i,j} x_i \text{ donc, par inégalité triangulaire, } |\lambda| \, |x_j| \leqslant \sum_{i=1}^n |\alpha_{i,j}| |x_i| \leqslant \sum_{i=1}^n |\alpha_{i,j}| |x_j| \leqslant |x_j|. \text{ Ainsi, } |\lambda| \leqslant 1.$$

- **9.6 a.** Le caractère continu est linéaire et admettre une limite finie en $+\infty$ l'est aussi donc E est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R},\mathbb{R})$ car il contient la fonction nulle. E est donc lui-même un espace vectoriel. Par ailleurs, si $f \in E$, il est clair que $g = T(f) \in E$ aussi car g est continue et tend vers la même limite que f en $+\infty$ par composition. Soit $(f,g) \in E^2$ et $\lambda \in \mathbb{R}$, alors $T(\lambda f + g) = \lambda T(f) + T(g)$ car on a pour tout $x \in \mathbb{R}$, l'égalité $T(\lambda f + g)(x) = (\lambda f + g)(x + 1) = \lambda f(x + 1) + g(x + 1) = \lambda T(f)(x) + T(g)(x) = (\lambda T(f) + T(g))(x)$ ce qui prouve la linéarité de T: T est bien un endomorphisme de E.
 - **b.** Analyse: si $\lambda \in \mathbb{R}$ et $f \in E$ non nulle telle que $T(f) = \lambda f$, on a $\forall x \in \mathbb{R}_+$, $f(x+1) = \lambda f(x)$, alors en notant $\ell = \lim_{x \to +\infty} f(x) \in \mathbb{R}$, on a $\ell = \lambda \ell$ en passant à la limite dans la relation $f(x+1) = \lambda f(x)$ quand $x \to +\infty$.
 - Si $\ell \neq 0$ alors $\lambda = 1$.
 - Si $\ell = 0$, soit $\alpha \in \mathbb{R}_+$ tel que $f(\alpha) \neq 0$, par une récurrence simple, on a $\forall n \in \mathbb{N}$, $f(\alpha + n) = \lambda^n f(\alpha)$. Comme $\lim_{n \to +\infty} f(\alpha + n) = 0$ par composition, la suite $(\lambda^n)_{n \in \mathbb{N}}$ tend vers 0 ce qui impose $\lambda \in]-1;1[$.
 - Si $\lambda = 0$, on a $\forall x \in \mathbb{R}$, f(x+1) = 0.f(x) = 0 ce qui contredit f non nulle.

Ce qui précède montre que le spectre de T est inclus dans $]-1;0[\cup]0;1]$.

Synthèse:

- Si $\lambda=1$, la fonction 1 constante égale à 1 vérifie T(1)=1 donc 1 est valeur propre de T. De plus, pour $x\in\mathbb{R}$ et $n\in\mathbb{N}$, on a f(x+n)=f(x) par une récurrence simple donc, en passant à la limite quand n tend vers $+\infty$, on obtient $f(x)=\ell$ donc f est constante. On vient de montrer que $E_1(T)=Vect(1)$.
- si $\lambda \in]0;1[$, soit $p_{\lambda}: x \mapsto \lambda^{x}$. La fonction p_{λ} est non nulle, continue et tend vers 0 en $+\infty$ donc $p_{\lambda} \in E$. De plus, pour $x \in \mathbb{R}$, $p_{\lambda}(x+1) = \lambda^{x+1} = \lambda p_{\lambda}(x)$ donc $T(p_{\lambda}) = \lambda p_{\lambda}$ et $\lambda \in Sp(T)$.
- si $\lambda \in]-1;0[$, la fonction $q_{\lambda}: x \mapsto sin(\pi x)|\lambda|^x$ est non nulle, continue et tend vers 0 en $+\infty$ donc $q_{\lambda} \in E$. $\forall x \in \mathbb{R}, \ q_{\lambda}(x+1) = sin(\pi x + \pi)|\lambda|^{x+1} = (-|\lambda|)q_{\lambda}(x) = \lambda q_{\lambda}(x) \ donc \ T(q_{\lambda}) = \lambda q_{\lambda} \ et \ \lambda \in Sp(T)$. Par conséquent : $Sp(T) = [-1;0[\cup]0;1]$.
- 9.7) a. D'abord, si $f \in E$, T(f) est bien définie sur [0;1] car les fonctions $t \mapsto tf(t)$ et $t \mapsto (1-t)f(t)$ sont continues sur le segment [0;1]. D'après le théorème fondamental de l'intégration, T(f) est C^1 sur [0;1] en tant que somme de produit de fonctions de classe C^1 sur [0;1]. La linéarité de T provient de la linéarité de l'intégrale. Ainsi, T est bien un endomorphisme de E.

Pour tout réel $x \in [0;1]$, on a $T(f)'(x) = -\int_0^x f(t)dt + (1-x)xf(x) + \int_x^1 (1-t)f(t)dt + x(1-x)f(x)$ donc $T(f)'(x) = -\int_0^x tf(t)dt + \int_x^1 (1-t)f(t)dt$. On constate que T(f) est à nouveau de classe C^1 par le théorème fondamental de l'intégration et que T(f)''(x) = -xf(x) - (1-x)f(x) = -f(x).

Soit $f \in Ker(T)$, alors T(f) = 0 donc T(f)'' = 0 ce qui montre que f = 0 avec le calcul précédent. Ainsi, $Ker(T) = \{0\}$ ce qui prouve l'injectivité de T.

b. Soit λ une valeur propre de T, alors il existe une fonction non nulle $f \in E$ telle que $T(f) = \lambda f$ et on sait que $\lambda \neq 0$ car T est injective. Avec le calcul précédent, en dérivant deux fois, on a $T(f)'' = \lambda f'' = -f$. Ainsi, f est solution de l'équation différentielle linéaire du second ordre à coefficients constants $(E_{\lambda}): y'' + \frac{1}{\lambda}y = 0$.

Distinguons deux cas:

- Si $\lambda > 0$, il existe $(a,b) \in \mathbb{R}^2$ tel que $\forall x \in [0;1]$, $f(x) = a \cos\left(\frac{1}{\sqrt{\lambda}}\right) + b \sin\left(\frac{1}{\sqrt{\lambda}}\right)$. Or l'expression de T(f) montre que T(f)(0) = T(f)(1) = 0 ce qui impose a = 0 et $b \neq 0$ (sinon f serait nulle) et $\frac{1}{\sqrt{\lambda}} \equiv 0$ $[\pi]$ donc il existe $n \in \mathbb{N}^*$ tel que $\lambda = \frac{1}{n^2\pi^2}$ et $f(x) = b \sin(nx)$ donc $E_{\lambda}(T) \subset Vect(f_n : x \mapsto \sin(nx))$.
- Si $\lambda < 0$, il existe $(a,b) \in \mathbb{R}^2$ tel que $\forall x \in [0;1]$, $f(x) = ach\left(\frac{1}{\sqrt{-\lambda}}\right) + bsh\left(\frac{1}{\sqrt{-\lambda}}\right)$. Or les conditions T(f)(0) = T(f)(1) = 0 imposent a = 0 et $b \neq 0$ (sinon f serait nulle) et sh $\left(\frac{1}{\sqrt{-\lambda}}\right) = 0$: absurde.

Réciproquement, si $n \in \mathbb{N}^*$, $\lambda = \frac{1}{n^2\pi^2}$ et $f_n : x \mapsto \sin(n\pi x)$, alors $f_n'' + n^2\pi^2 f_n = 0$ donc $T(f_n)'' = \frac{1}{n^2\pi^2}f_n''$. On intègre deux fois sur l'intervalle [0;1] donc $\exists (\alpha,\beta) \in \mathbb{R}^2$, $\forall x \in [0;1]$, $T(f_n)(x) = \frac{1}{n^2\pi^2}f_n(x) + \alpha x + \beta$. Mais en prenant x = 0 on a $\beta = 0$ car $T(f_n)(0) = \sin(0) = 0$, et en prenant x = 1 on a $\alpha = 0$ car $T(f_n)(1) = \sin(n\pi) = 0$. Ainsi, $T(f_n) = \frac{1}{n^2\pi^2}f_n$ et $\frac{1}{n^2\pi^2}$ est bien une valeur propre de T car $f_n \neq 0$.

 $\mathrm{Par\ double\ inclusion},\, Sp(T) = \left\{\frac{1}{n^2\pi^2} \ \middle|\ n \in \, \mathbb{N}^*\right\} \,\mathrm{et}\,\, \forall n \geqslant 1,\,\, E_{1/n^2\pi^2}(T) = Vect(f_n).$

- **9.8 a.** Pour $m \in \mathbb{R}$, on a $\chi_{A_m} = \begin{vmatrix} X-1 & 0 & 1 \\ -1 & X-1 & 1 \\ m-2 & 2-m & X-m \end{vmatrix} = \begin{vmatrix} X-1 & 0 & 2-X \\ -1 & X-1 & 2(2-X) \\ m-2 & 2-m & X-2 \end{vmatrix}$ après avoir effectué $C_3 \leftarrow C_3 C_1 2C_2$ et $\chi_{A_m} = (X-2) \begin{vmatrix} X-1 & 0 & -1 \\ -1 & X-1 & -2 \\ m-2 & 2-m & 1 \end{vmatrix}$ en factorisant par X-2 dans la troisième colonne. On développe et $\chi_{A_m} = (X-2) ((X-1)(X-1+4-2m)+(m-2)(X-2)) = (X-2)(X^2-mX+1)$. **b.** Traitons les deux valeurs m=1 et m=2:
 - Si $\mathfrak{m}=1$, $\chi_{A_1}=(X-2)(X^2-X+1)=(X-2)(X+\mathfrak{j})(X+\mathfrak{j}^2)$ est scindé à racines simples dans $\mathbb{C}[X]$ mais n'est même pas scindé dans $\mathbb{R}[X]$ donc A_1 est diagonalisable dans $\mathfrak{M}_3(\mathbb{C})$ mais même pas trigonalisable dans $\mathfrak{M}_3(\mathbb{R})$.

Si m=2, $\chi_{A_2}=(X-2)(X^2-2X+1)=(X-2)(X-1)^2$ est scindé dans $\mathbb{R}[X]$ donc A_2 est trigonalisable et $Sp(A_2)=\{1,2\}$. Comme $A_2-I_3=\begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ est de rang 2, $dim(E_1(A_2))=1$ par la formule du rang donc A_2 n'est pas diagonalisable.

c. Le discriminant Δ_m de X^2-mX+1 vaut $\Delta_m=m^2-4$. Si $\Delta_m>0$, on pose $\alpha_m=\frac{m-\sqrt{m^2-4}}{2}$ et $\beta_m=\frac{m+\sqrt{m^2-4}}{2}$ de sorte que $\alpha_m<\beta_m$. Si $\alpha_m=2$ ou $\beta_m=2$, on a $(m-4)^2=m^2-4$ en passant $m-4=\pm\sqrt{m^2-4}$ au carré donc $m^2-8m+16=m^2-4$ soit $m=\frac{5}{2}$. Avec les signes, α_m ne vaut jamais 2 mais $\beta_m=2$ si et seulement si $m=\frac{5}{2}$. On traite plusieurs cas :

Si $\mathfrak{m} \in]-2; 2[, \Delta_{\mathfrak{m}} < 0 \text{ donc } \chi_{A_{\mathfrak{m}}} \text{ est scind\'e à racines simples dans } \mathbb{C}[X]$ mais n'est même pas scind\'e dans $\mathbb{R}[X]$ donc $A_{\mathfrak{m}}$ est diagonalisable dans $\mathfrak{M}_3(\mathbb{C})$ mais même pas trigonalisable dans $\mathfrak{M}_3(\mathbb{R})$.

Si m=2, on a déjà en vu en ${\bf b}$ que A_2 est trigonalisable mais pas diagonalisable.

Si $\mathfrak{m}=-2,\ \chi_{A_\mathfrak{m}}=(X-2)(X^2+2X+1)=(X-2)(X+1)^2$ est scindé dans $\mathbb{R}[X]$ donc A_{-2} est scindé dans $\mathbb{R}[X]$

trigonalisable et $Sp(A_{-2}) = \{-1, 2\}$. Comme $A_{-2} + I_3 = \begin{pmatrix} 2 & 0 & -1 \\ 1 & 2 & -1 \\ 4 & -4 & -1 \end{pmatrix}$ est de rang 2, $\text{dim}(E_{-1}(A_{-2}))=1$ par la formule du rang donc A_{-2} n'est pas diagonalisable.

 $\begin{array}{l} A_{5/2} \ \mathrm{est} \ \mathrm{trigonalisable}. \ \mathrm{Comme} \ A_{5/2} - 2I_3 = \begin{pmatrix} -1 & 0 & -1 \\ 1 & -1 & -1 \\ -1/2 & 1/2 & 1/2 \end{pmatrix} \ \mathrm{est} \ \mathrm{de} \ \mathrm{rang} \ 2, \\ \mathrm{dim}(E_2(A_{5/2})) = 1 \ \mathrm{par} \ \mathrm{la} \ \mathrm{formule} \ \mathrm{du} \ \mathrm{rang} \ \mathrm{donc} \ A_{5/2} \ \mathrm{n'est} \ \mathrm{pas} \ \mathrm{diagonalisable}. \end{array}$

 $\mathrm{Si}\ \mathfrak{m}\notin[-2;2]\ \cup\ \{5/2\},\ \Delta_{\mathfrak{m}}\ >\ 0\ \mathrm{donc}\ \chi_{A_{\mathfrak{m}}}\ \mathrm{est}\ \mathrm{scind\acute{e}}\ \mathrm{dans}\ \mathbb{R}[X]\ \mathrm{et}\ \mathrm{ses}\ \mathrm{racines}\ \mathrm{sont}\ 2, \alpha_{\mathfrak{m}}\ \mathrm{et}\ \beta_{\mathfrak{m}}\ \mathrm{qui}\ \mathrm{sont}$ distinctes. Ainsi, A_m est diagonalisable dans $\mathfrak{M}_3(\mathbb{R})$

(9.9) a. (\Longrightarrow) Supposons que F est stable par M. Montrons que F^{\perp} est stable par M^{T} . Soit $X \in F^{\perp}$ et $Y \in F$, alors $(M^TX|Y) = (Y|M^TX) = Y^TM^TX = (MY)^TX = (MY|X) = 0 \text{ car } X \in F^\perp \text{ et } MY \in F \text{ car } F \text{ est stable par } M.$ Ainsi, F^{\perp} est stable par M^{T} . On vient de montrer que, pour tout sous-espace F de E et toute matrice M de $\mathfrak{M}_{\mathfrak{n}}(\mathbb{R})$, on a F stable par $M \Longrightarrow F^{\perp}$ stable par M^{T} .

 (\Leftarrow) On applique ce qui précède à $(F^{\perp}, M^{\mathsf{T}})$ et F^{\perp} stable par $M^{\mathsf{T}} \Longrightarrow (F^{\perp})^{\perp} = F$ stable par $(M^{\mathsf{T}})^{\mathsf{T}} = M$. Par double implication, F est stable par M si et seulement si F^{\perp} est stable par M^{T} .

 $\mathbf{b.} \text{ On a } \chi_A = \begin{vmatrix} X - (1/2) & 0 & -(1/2) \\ 0 & X - 1 & 0 \\ (1/2) & 0 & X - (3/2) \end{vmatrix} = (X - 1) \begin{vmatrix} X - (1/2) & -(1/2) \\ (1/2) & X - (3/2) \end{vmatrix} \text{ en développant par rapport } \\ \text{à la deuxième colonne. Ainsi, } \chi_A = (X - 1) \Big[\Big(X - \frac{1}{2} \Big) \Big(X - \frac{3}{2} \Big) + \frac{1}{4} \Big] = (X - 1)^3. \text{ Soit F un sous-espace de } \mathbb{R}^3 :$

 $\underline{dim}(F) = 0$ Alors $F = \{0\}$ est stable par A.

 $\underline{\dim(F)} = 1$ Alors F est une droite et F est stable par A si et seulement si F est engendrée par un vecteur propre de A. Or, comme $A - I_3 = \frac{1}{2} \begin{pmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix}$, on a $\mathbb{E}_1(A) = \text{Ker}(A - I_3) = \text{Vect}(\nu_1, \nu_2)$ avec $v_1 = (1,0,1)$ et $v_2 = (0,1,0)$. Ainsi, toutes les droites stables F par A sont les droites F = Vect(v) avec $v = av_1 + b_2$ et $(a, b) \neq (0, 0)$. Il y en a une infinité.

 $\underline{\dim}(F) = 2$ Alors F^T est une droite et F est stable par A si et seulement si F^T est stable par A^T . Or $A^{\mathsf{T}} - I_3 = \frac{1}{2} \begin{pmatrix} -1 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \text{ donc } \mathsf{E}_1(A^{\mathsf{T}}) = \mathsf{Ker}(A^{\mathsf{T}} - I_3) = \mathsf{Vect}(\nu_3, \nu_2) \text{ avec } \nu_3 = (1, 0, -1).$

> Ainsi, F est un plan stable par A si et seulement si $F^{\perp} = \text{Vect}(\alpha v_3 + \beta v_2)$ avec $(\alpha, \beta) \neq (0, 0)$, c'est-à-dire si et seulement si F a pour équation F : $\alpha x + \beta y - \alpha z = 0$ avec $(\alpha, \beta) \neq (0, 0)$. Il y en a aussi une infinité.

dim(F) = 3 Alors $F = \mathbb{R}^3$ est stable par A.

9.10 a. Soit $P = \sum_{k=0}^{d} \alpha_k X^k$ un polynôme annulateur de A et λ une valeur propre de A, alors il existe un vecteur colonne $X \neq 0$ tel que $AX = \lambda X$. Par une récurrence simple, on montre que $\forall k \in \mathbb{N}$, $A^k X = \lambda^k X$. Ainsi, $P(A)X = \sum_{k=0}^{d} \alpha_k A^k X = \left(\sum_{k=0}^{d} \alpha_k \lambda^k\right) X = P(\lambda)X = 0$ car P(A) = 0 donc, comme $X \neq 0$, on obtient $P(\lambda) = 0$.

Les valeurs propres de A sont racines de tout polynôme annulateur de A.

- **d.** On définit $\varphi: \mathfrak{M}_{\mathfrak{n}}(\mathbb{C}) \to \mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$ par $\varphi(X) = AX XB$. Comme φ est visiblement linéaire et qu'on est en dimension finie, φ est un automorphisme si et seulement si elle est injective. Soit $X \in \text{Ker}(\varphi)$, on a AX = XB et, avec la question précédente, X = 0. Ainsi, $\text{Ker}(\varphi) = \{0\}$ ce qui montre que φ est un automorphisme de $\mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$. Cette bijectivité s'écrit, comme attendu, $\forall M \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{C}), \; \exists ! X \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{C}), \; AX XB = \varphi(X) = M$.
- **9.11 a.** φ est bien définie car si $(u_n)_{n\in\mathbb{N}^*}$ est une suite réelle, la suite $v=(v_n)_{n\in\mathbb{N}^*}$ définie par $v_n=\frac{1}{n}\sum_{k=1}^n u_k$ est aussi une suite réelle. De plus, si $u=(u_n)_{n\in\mathbb{N}^*}\in E$, $v=(v_n)_{n\in\mathbb{N}^*}\in E$ et $\lambda\in\mathbb{R}$, en notant $w=\varphi(u+\lambda v)$, on a $\forall n\in\mathbb{N}^*$, $w_n=\frac{1}{n}\sum_{k=1}^n (u_k+\lambda v_k)=\frac{1}{n}\sum_{k=1}^n u_k+\lambda\times\frac{1}{n}\sum_{k=1}^n v_k$ donc $\varphi(u+\lambda v)=\varphi(u)+\lambda\varphi(v)$ ce qui montre la linéarité de φ . Ainsi, φ est un endomorphisme de E.

 $\begin{aligned} & \underline{\mathrm{Injectivit\acute{e}}}: \ \mathrm{soit} \ u \in Ker(\phi), \ \mathrm{on} \ \mathrm{a} \ \mathrm{donc} \ \forall n \in \ \mathbb{N}^*, \ \frac{1}{n} \sum_{k=1}^n u_k = 0 \ \mathrm{donc} \ \sum_{k=1}^n u_k = 0. \ \mathrm{Ainsi}, \ \mathrm{pour} \ n \in \ \mathbb{N}^*, \ \mathrm{on} \ \mathrm{a} \\ & u_n = \bigg(\sum_{k=1}^n u_k\bigg) - \bigg(\sum_{k=1}^{n-1} u_k\bigg) = 0 \ \mathrm{et} \ u = 0. \ \mathrm{Comme} \ \phi \ \mathrm{est} \ \mathrm{lin\acute{e}aire} \ \mathrm{et} \ \mathrm{Ker}(\phi) = \{0\}, \ \phi \ \mathrm{est} \ \mathrm{injective}. \end{aligned}$

 $\underline{\operatorname{Surjectivit\acute{e}}}:$ soit $\nu\in E.$ Raisonnons par analyse/synthèse :

- Si $u \in E$ est un antécédent de v par ϕ , on a $\forall n \in \mathbb{N}^*$, $nv_n = \sum_{k=1}^n u_k$. Ainsi, $u_1 = v_1$ et, pour $n \geqslant 2$, $u_n = \left(\sum_{k=1}^n u_k\right) \left(\sum_{k=1}^{n-1} u_k\right) = nv_n (n-1)v_{n-1}.$
- $$\begin{split} \bullet & \text{ Soit } (u_n)_{n \in \, \mathbb{N}^*} \text{ définie par } u_1 = \nu_1 \text{ et } \forall n \geqslant 2, \ u_n = n\nu_n (n-1)\nu_{n-1}. \text{ Pour } n \in \, \mathbb{N}^*, \text{ par télescopage,} \\ n\nu_n \nu_1 &= \sum_{k=2}^n (k\nu_k (k-1)\nu_{k-1}) \text{ donc } n\nu_n = \sum_{k=1}^n u_k \text{ car } u_1 = \nu_1 \text{ donc } \nu_n = \frac{1}{n} \sum_{k=1}^n u_k \text{ et } \nu = \phi(u). \end{split}$$

Toute suite $v \in$ admet un antécédent $u \in E$ par φ donc l'application φ est surjective. φ est donc un endomorphisme bijectif de E, donc un automorphisme de E.

- **b.** Analyse : soit $\lambda \in \mathbb{R}$ et $u = (u_n)_{n \in \mathbb{N}^*} \in E$ tels que $\phi(u) = \lambda u$, alors $\forall n \in \mathbb{N}^*$, $\lambda u_n = \frac{1}{n} \sum_{k=1}^n u_k$ donc $(n\lambda 1)u_n = \sum_{k=1}^{n-1} u_k$ (R_n) . Traitons deux cas :
 - Si $\forall n \in \mathbb{N}^*$, $n\lambda \neq 1$, alors la relation (R_1) donne $(\lambda 1)u_1 = 0$ donc $u_1 = 0$ car $\lambda 1 \neq 0$. Si, pour un entier $n \geq 2$, on a établi que $u_1 = \cdots = u_{n-1} = 0$, la relation (R_n) montre que $(n\lambda 1)u_n = 0$ donc que $u_n = 0$ car $n\lambda 1 \neq 0$. Par principe de récurrence, on a donc $\forall n \in \mathbb{N}^*$, $u_n = 0$ donc u = 0 et u n'est pas un vecteur propre de φ donc λ n'est pas une valeur propre de φ .
 - Si $\exists p \in \mathbb{N}^*$, $\lambda = 1/p$, en résolvant $\varphi(u) = \lambda u$ pour $u = (u_n)_{n \in \mathbb{N}^*} \in E$, on trouve comme dans le cas précédent que $\forall n \in [1; p-1]$, $u_n = 0$ avec les relations $(R_1), \dots, (R_{p-1})$. Puis, avec (R_p) , on n'a aucun renseignement supplémentaire car on a 0 = 0. Ensuite, pour n > p, (R_n) donne $(n-p)u_n = p \sum_{k=p}^{n-1} u_k$. Par exemple, pour n = p+1, $u_{p+1} = pu_p = \binom{p}{p-1}u_p$ puis, pour n = p+2, $2u_{p+2} = p(u_p + u_{p+1})$ donc $u_{p+2} = \frac{p(p+1)}{2}u_p = \frac{(p+1)!}{2!(p-1)!}u_p = \binom{p+1}{p-1}$. Si on a $\forall k \in [p;q]$, $u_k = \binom{k-1}{p-1}u_p$ pour un entier $q \geqslant p$, alors R_{q+1} donne $(q+1-p)u_{q+1} = p\left(\sum_{k=p}^q \binom{k-1}{p-1}\right)u_p = p\binom{q}{p}u_p$ (formule des colonnes). Ainsi, $u_{q+1} = \frac{q!p}{(q-p)!p!(q+1-p)}u_p = \frac{q!}{(p-1)!(q+1-p)!}u_p = \binom{q}{p-1}u_p$. Par principe de récurrence, on a $\forall k \geqslant p$, $u_k = \binom{k-1}{p-1}u_p$. Ainsi, $\lambda = \frac{1}{p}$ est bien valeur propre de φ .

On vient d'établir que $Sp(\phi)=\left\{\frac{1}{p}\ \middle|\ p\in\mathbb{N}^*\right\}$ et que, pour tout $p\in\mathbb{N}^*,$ on a $E_{1/p}(\phi)=Vect(u^p)$ où $u^p=(u^p_n)_{n\in\mathbb{N}^*}=(0,\cdots,0,1,p,\frac{p(p+1)}{2},\cdots)$ est définie par $\forall n\in\mathbb{N}^*,\ u^p_n=\binom{n-1}{p-1}.$

(9.12) a. Posons $F = \{f_{a,b} : z \mapsto az + b\overline{z} \mid (a,b) \in \mathbb{C}^2\}$ et vérifions que E = F.

 $\underline{(\mathbb{C})}: \text{ soit } f \in E, \text{ alors } \forall z \in \mathbb{C}, \ f(z) = f(\operatorname{Re}(z).1 + \operatorname{Im}(z).i) = \operatorname{Re}(z)f(1) + \operatorname{Im}(z)f(i) \text{ car } f \text{ est } \mathbb{R}\text{-lin\'eaire et } que \ (\operatorname{Re}(z), \operatorname{Im}(z)) \in \mathbb{R}^2 \text{ et } (1,i) \in \mathbb{C}^2. \text{ Avec les formules d'Euler, } f(z) = \frac{z+\overline{z}}{2}f(1) + \frac{z-\overline{z}}{2i}f(i) = az + b\overline{z} \text{ avec } a = \frac{f(1)}{2} + \frac{f(i)}{2i} \in \mathbb{C} \text{ et } b = \frac{f(1)}{2} - \frac{f(i)}{2i} \in \mathbb{C}. \text{ Par cons\'equent, } f = f_{a,b} \text{ et } E \subset F.$

Par double inclusion, on a bien établi que $E=F=\{f_{\mathfrak{a},\mathfrak{b}}:z\mapsto \mathfrak{a}z+\mathfrak{b}\overline{z}\ \mid (\mathfrak{a},\mathfrak{b})\in \mathbb{C}^2\}.$

- $\begin{array}{lll} \textbf{b.} & \text{Soit } \mathcal{B} = (1,i) \text{ la base canonique du } \mathbb{R}\text{-espace vectoriel } \mathbb{C}, \text{ comme } f(1) = \mathfrak{a} + \mathfrak{b} \text{ et } f(\mathfrak{i}) = \mathfrak{a}\mathfrak{i} \mathfrak{b}\mathfrak{i} \\ \text{donc } f(1) = (\operatorname{Re}(\mathfrak{a}) + \operatorname{Re}(\mathfrak{b})).1 + (\operatorname{Im}(\mathfrak{a}) + \operatorname{Im}(\mathfrak{b})).\mathfrak{i} \text{ et } f(\mathfrak{i}) = (-\operatorname{Im}(\mathfrak{a}) + \operatorname{Im}(\mathfrak{b})).1 + (\operatorname{Re}(\mathfrak{a}) \operatorname{Re}(\mathfrak{b})).\mathfrak{i}, \\ \text{Mat}_{\,\mathcal{B}}(f_{\mathfrak{a},\mathfrak{b}}) = \begin{pmatrix} \operatorname{Re}(\mathfrak{a}) + \operatorname{Re}(\mathfrak{b}) & -\operatorname{Im}(\mathfrak{a}) + \operatorname{Im}(\mathfrak{b}) \\ \operatorname{Im}(\mathfrak{a}) + \operatorname{Im}(\mathfrak{b}) & \operatorname{Re}(\mathfrak{a}) \operatorname{Re}(\mathfrak{b}) \end{pmatrix} \text{ d'où Tr } (f_{\mathfrak{a},\mathfrak{b}}) = 2\operatorname{Re}(\mathfrak{a}) \text{ et } \det(f_{\mathfrak{a},\mathfrak{b}}) = |\mathfrak{a}|^2 |\mathfrak{b}|^2. \end{array}$
- $\textbf{c.} \ \ \text{D'après la question précédente}, \ \chi_{f_{\mathfrak{a},\mathfrak{b}}} = X^2 \text{Tr} \ (f_{\mathfrak{a},\mathfrak{b}})X + \text{det}(f_{\mathfrak{a},\mathfrak{b}}) = X^2 2\text{Re} \ (\mathfrak{a})X + |\mathfrak{a}|^2 |\mathfrak{b}|^2. \ \ \text{Soit} \ \Delta$ le discriminant de $\chi_{f_{\mathfrak{a},\mathfrak{b}}}$, comme $\Delta = 4\text{Re} \ (\mathfrak{a})^2 4(|\mathfrak{a}|^2 |\mathfrak{b}|^2) = 4(|\mathfrak{b}|^2 \text{Im} \ (\mathfrak{a})^2)$, on traite trois cas :

 $\underline{\mathrm{Si}\ |b| > |\mathrm{Im}\ (\mathfrak{a})|}\ ,\ \Delta > 0\ \mathrm{donc}\ \chi_{f_{\mathfrak{a},b}}\ \mathrm{admet}\ \mathrm{deux}\ \mathrm{racines}\ \mathrm{simples}\ \mathrm{r\acute{e}elles}\ \mathrm{ce}\ \mathrm{qui}\ \mathrm{prouve}\ \mathrm{que}\ f_{\mathfrak{a},b}\ \mathrm{est}\ \mathrm{diagonometric}$

nalisable sur \mathbb{C} considéré comme un \mathbb{R} -espace vectoriel.

 $\underline{\mathrm{Si}\ |\mathfrak{b}| < |\mathrm{Im}\ (\mathfrak{a})|}$, $\Delta < 0$ donc $\chi_{f_{\mathfrak{a},\mathfrak{b}}}$ admet deux racines simples complexes non réelles (et conjuguées) ce qui prouve que $f_{a,b}$ n'est diagonalisable sur $\mathbb C$ considéré comme un $\mathbb R$ -espace vectoriel $\operatorname{car} \chi_{f_{\mathfrak{a},\mathfrak{b}}}$ n'est même pas scindé dans $\mathbb{R}[X]$.

 $\underline{\mathrm{Si}\,\left|b\right|=\left|\mathrm{Im}\,\left(a\right)\right|}\ ,\,\,\Delta=0\ \mathrm{et}\ \chi_{f_{\mathfrak{a},\mathfrak{b}}}=(X-\mathrm{Re}\,\left(a\right))^{2}\ \mathrm{donc}\ Sp(f_{\mathfrak{a},\mathfrak{b}})=\{\mathrm{Re}\,\left(a\right)\}.\ \mathrm{Or,\ d'après\ le\ cours},\ f_{\mathfrak{a},\mathfrak{b}}$ est diagonalisable si et seulement si $f_{\mathfrak{a},\mathfrak{b}} - \operatorname{Re}\left(\mathfrak{a}\right)$ id $_{\mathbb{C}^{2}} = \mathfrak{0},$ c'est-à-dire si et seulement si $\operatorname{Mat}_{\mathfrak{B}}(f_{\mathfrak{a},\mathfrak{b}}) - \operatorname{Re}\left(\mathfrak{a}\right)I_{2} = \begin{pmatrix} \operatorname{Re}\left(\mathfrak{b}\right) & -\operatorname{Im}\left(\mathfrak{a}\right) + \operatorname{Im}\left(\mathfrak{b}\right) \\ \operatorname{Im}\left(\mathfrak{a}\right) + \operatorname{Im}\left(\mathfrak{b}\right) & -\operatorname{Re}\left(\mathfrak{b}\right) \end{pmatrix} = \mathfrak{0}.$ Cette condition impose $\operatorname{Re}\left(\mathfrak{b}\right) = \operatorname{Im}\left(\mathfrak{a}\right) = \operatorname{Im}\left(\mathfrak{b}\right),$ c'est-à-dire $\mathfrak{b} = \mathfrak{0}$ et $\mathfrak{a} \in \mathbb{R}.$

Ainsi, $f_{\mathfrak{a},\mathfrak{b}}$ est diagonalisable si et seulement si $(|\mathfrak{b}| \neq |\mathrm{Im}\,(\mathfrak{a})|$ ou $(\mathfrak{b}=0$ et $\mathfrak{a}\in\mathbb{R}))$. Dans ce dernier cas, $f_{a,0}$ est l'homothétie de rapport a.

(9.13) a. Méthode 1: soit f l'endomorphisme de $\mathbb{R}_{\mathbb{N}}[X]$ dont la matrice dans la base canonique de $\mathbb{R}_{\mathbb{N}}[A]$ est $\text{la matrice A. Par d\'efinition, } f(1) = X, \ \forall k \in [\![1;N-1]\!], \ f(X^k) = \frac{k}{N}X^{k-1} + \frac{N-k}{N}X^{k+1} \ \text{ et } f(X^N) = X^{N-1}.$ $\begin{array}{l} \text{Pour } P \, = \, \sum\limits_{k=0}^{N} \alpha_k X^k \, \in \, \mathbb{R}_N[X], \text{ par linéarité de } f, \text{ on a } f(P) \, = \, \alpha_0 f(1) \, + \, \left(\, \sum\limits_{k=0}^{N} \alpha_k f(X^k) \right) \, + \, \alpha_N f(X^N) \, \text{ donc} \\ f(P) = \, \alpha_0 X \, + \, \alpha_N X^{N-1} \, + \, \sum\limits_{k=1}^{N-1} \alpha_k \left(\frac{k}{N} X^{k-1} \, + \, \frac{N-k}{N} X^{k+1} \right) \, = \, \frac{1}{N} \, \sum\limits_{k=1}^{N} \, k \alpha_k X^{k-1} \, + \, \sum\limits_{k=0}^{N} \alpha_k X^{k+1} \, - \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N-1} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N} k \alpha_k N X^{k+1} \, + \, \frac{1}{N} \, \sum\limits_{k=1}^{N} k \alpha_k N X^{k+1} \, + \, \frac$ ce qui donne $f(P) = \frac{P'}{N} + XP - \frac{X^2P}{N} = XP + \frac{1 - X^2}{N}P'$.

 $\text{La matrice } A_2 = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 \\ 1 & \ddots & \ddots & & \vdots \\ 0 & \frac{N-1}{N} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & 0 & 1 & 0 \end{pmatrix} \text{ est obtenue à partir de } A_1 \text{ en échangeant l'ordre des lignes et }$

des colonnes. Ceci signifie que $A_2 = PA_1P$ où P est la matrice qui contient des 1 sur la "seconde" diagonale et des 0 partout ailleurs : $P = (p_{i,j})_{1 \leq i,j \leq N+1}$ avec $p_{i,j} = 1$ si i+j = N+2 et $p_{i,j} = 0$ sinon. Or Pest la matrice de l'endomorphisme g de E qui envoie X^k sur X^{N-k} et on constate que l'on a l'expression $g: P \mapsto X^N P\left(\frac{1}{X}\right)$. Ainsi, A_2 est la matrice dans la base canonique $\mathcal B$ de E de $f_2 = g \circ f_1 \circ g$. Or, pour un $\text{polynôme } P \in E, \text{ il vient } f_1 \circ g(P) = \frac{1}{N} \Big(X^N P \Big(\frac{1}{X} \Big) \Big)' = X^{N-1} P \Big(\frac{1}{X} \Big) - \frac{X^{n-2}}{N} P' \Big(\frac{1}{X} \Big), \text{ ce qui donne finalement } f_1 \circ g(P) = \frac{1}{N} \Big(X^N P \Big(\frac{1}{X} \Big) \Big)' = X^{N-1} P \Big(\frac{1}{X} \Big) - \frac{X^{n-2}}{N} P' \Big(\frac{1}{X} \Big), \text{ ce qui donne finalement } f_1 \circ g(P) = \frac{1}{N} \Big(X^N P \Big(\frac{1}{X} \Big) \Big)' = X^{N-1} P \Big(\frac{1}{X} \Big) - \frac{X^{n-2}}{N} P' \Big(\frac{1}{X} \Big).$ $f_2(P) = g((f_1 \circ g)(P)) = X^N \Big(X^{1-N} P(X) - \frac{X^{2-N}}{N} P'(X) \Big) = X P(X) - \frac{X^2}{N} P'(X).$ Au final, comme $A = A_1 + A_2 = \operatorname{Mat}_{\mathcal{B}}(f)$ où $f = f_1 + f_2 : P \mapsto XP + \frac{1 - X^2}{N}P'$.

b. Cherchons les éléments propres de f.

Analyse : soit un réel $\lambda \in \mathbb{R}$ et un polynôme $P \in E$ tels que $f(P) = \lambda P$, on a donc $(1-X^2)P' - N(\lambda - X)P = 0$. La fonction polynomiale P est donc solution de l'équation différentielle $(E): (1-t^2)y' = N(\lambda - t)y$. Or $\frac{\lambda - t}{1 - t^2} = \frac{\lambda + 1}{2} \cdot \frac{1}{1 + t} + \frac{\lambda - 1}{2} \cdot \frac{1}{1 - t}$. Ainsi les solutions de (E) (sur l'intervalle]-1;1[par exemple) sont les $y: t \mapsto \alpha(1+t) \frac{N(\lambda+1)}{2}(1-t) \frac{N(1-\lambda)}{2}$ qui sont des fonctions polynomiales non nulles si $\alpha \neq 0$ et $\frac{N(\lambda+1)}{2} = k$ et $\frac{N(1-\lambda)}{2} = k'$ sont des entiers naturels avec k + k' = N. Ainsi, il existe $k \in [0;N]$ tel que $\lambda = \frac{2k}{N} - 1$ est valeur propre de A associé au vecteur propre $P_k = (1+X)^k(1-X)^{N-k} \in \mathbb{R}_N[X]$. A est bien diagonalisable. Synthèse : pour tout $k \in [0;N]$, posons $\lambda_k = \frac{2k}{N} - 1$ et $P_k = (1+X)^k(1-X)^{N-k} \in \mathbb{R}_N[X]$, les calculs précédents montrent que $f(P_k) = \lambda_k P_k$ avec $P_k \neq 0$ donc λ_k est une valeur propre de $f(P_k) = \lambda_k P_k$ avec $f(P_k) = \lambda_k P_k$ avec

 $\underline{\mathrm{Conclusion}}: A \text{ est diagonalisable car } A \in \mathfrak{M}_{N+1}(\mathbb{R}) \text{ admet } N+1 \text{ valeurs propres distinctes, on peut même}$ affirmer que tous les sous-espaces propres $E_{\lambda_k}(A)$ sont des droites et $E_{\lambda_k}(f) = Vect(P_k)$.

De plus, comme A est diagonalisable dans $\mathcal{M}_{N+1}(\mathbb{R})$ donc χ_A est scindé sur \mathbb{R} , on a Tr $(A) = \sum_{k=0}^N \lambda_k$ donc Tr $(A) = \sum_{k=0}^N \left(\frac{2k}{N} - 1\right) = \frac{2}{N} \times \frac{N(N+1)}{2} - (N+1) = 0$ (ce qu'on savait déjà car il n'y a que des 0 sur la diagonale de A) et $\det(A) = \prod_{k=0}^N \left(\frac{2k}{N} - 1\right)$ donc $\det(A) = 0$ si N = 2p est pair car $\lambda_p = \frac{2p}{2p} - 1 = 0$ et $\det(A) = \prod_{k=0}^N \left(\frac{2k}{2p+1} - 1\right) = \prod_{k=0}^N \frac{2k-2p-1}{2p+1} = (-1)^{p+1} \prod_{i=0}^p \frac{2i+1}{2p+1} = \frac{(2p+1)!}{2^p(2p+1)^{p+1}p!}$ (calcul classique en faisant intervenir les termes pairs manquants) si N = 2p+1 est impair.

- **9.14 a.** Soit $\lambda \in \mathbb{C}$ une valeur propre de M, il existe donc $X \neq 0 \in M_{4,1}(\mathbb{C})$ tel que $MX = \lambda X$. Par une récurrence simple, on a $\forall k \in \mathbb{N}$, $M^k X = \lambda^k X$ donc $(M^3 4M)X = M^3 X 4MX = \lambda^3 X 4\lambda X = (\lambda^3 4\lambda)X = 0$ alors que $X \neq 0$ donc $P(\lambda) = \lambda^3 4\lambda = 0$ et λ est une racine de P.
 - **b.** Comme $P = X(X^2 4) = X(X 2)(X + 2)$, on a donc $Sp(M) \subset \{-2, 0, 2\}$ d'après la question précédente. Comme P est scindé à racines simples sur $\mathbb R$ et que P est annulateur de M, la matrice M est donc diagonalisable dans $M_4(\mathbb R)$. Elle est donc semblable à une matrice D contenant dans sa diagonale les valeurs propres de M. Mais Tr(M) = Tr(D) = 0 donc la multiplicité de P0 est égale à celle de P2. Il P1 a donc trois cas :
 - \bullet Les valeurs propres de M sont 0,0,0,0 donc D=0 et M=0.
 - Les valeurs propres de M sont 0,0,2,-2 donc il existe une matrice inversible $P \in GL_4(\mathbb{R})$ telle que $M = PDP^{-1}$ avec D = diag(0,0,2,-2).
 - Les valeurs propres de M sont 2, 2, -2, -2 donc il existe une matrice inversible $P \in GL_4(\mathbb{R})$ telle que $M = PDP^{-1}$ avec D = diag(2, 2, -2, -2) (et M est alors inversible).

Réciproquement, les matrices évoquées ci-dessus vérifiant bien $M \in \mathcal{M}_4(\mathbb{R})$ avec $M^3 - 4M = 0$ et Tr (M) = 0.

(9.15) a. Soit $\lambda \in \mathbb{C}$ une valeur propre de A, il existe $X \neq \emptyset \in \mathfrak{M}_{n,1}(\mathbb{C})$ tel que $AX = \lambda X$. Une récurrence simple montre que $\forall k \in \mathbb{N}$, $A^k X = \lambda^k X$. Ainsi, $(A^3 - A^2 + A - I_n)X = 0X = 0 = A^3 X - A^2 X + AX + X$ donc $(\lambda^3 - \lambda^2 + \lambda + 1)X = 0$ et, comme $X \neq 0$, on a $\lambda^3 - \lambda^2 + \lambda + 1 = P(\lambda) = 0$ et λ est bien une racine de P. **b.** Comme $P = X^3 - X^2 + X - 1 = (X - 1)(X^2 + 1) = (X - 1)(X + i)(X - i)$, la question précédente montre que $Sp(A) \subset \{1, i, -i\}$. Comme P est scindé à racines simples sur \mathbb{C} et que P est annulateur de A, la matrice A est diagonalisable dans $\mathfrak{M}_n(\mathbb{C})$ et on sait qu'alors $\det(A) = \prod_{\lambda \in Sp(A)} \lambda^{\mathfrak{m}_\lambda(A)}$. Posons $\mathfrak{a} = \mathfrak{m}_1(A)$, $\mathfrak{b} = \mathfrak{m}_i(A)$ et $\mathfrak{c} = \mathfrak{m}_{-i}(A)$. Comme -i est le conjugué de \mathfrak{i} et que A est une matrice réelle, on sait d'après le cours que

De même, comme A est diagonalisable dans $\mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$, on a Tr $(A) = \sum_{\lambda \in Sn(A)} \mathfrak{m}_{\lambda}(A)\lambda = \mathfrak{a} \times 1 + \mathfrak{b} \times (\mathfrak{i}) + \mathfrak{b} \times (-\mathfrak{i})$ $\operatorname{car} b = c \operatorname{donc} \operatorname{Tr} (A) = a \in \mathbb{N}.$

(9.16) a. Comme $XI_3 - A$ est triangulaire inférieure, on a $\chi_A = \det(XI_3 - A) = (X - 1)(X - 4)(X - 9)$ donc $Sp(A) = \{1,4,9\}$ car les valeurs propres de A sont les racines de son polynôme caractéristique.

Comme χ_A est scindé à racines simples sur \mathbb{R} , on sait qu'alors A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$ et que ses

sous-espaces propres sont des droites. Or $A - I_3 = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 5 & 8 \end{pmatrix}$ et on constate que $E_1(A) = Vect(v_1)$ avec

 $v_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$. De même $A - 4I_3 = \begin{pmatrix} -3 & 0 & 0 \\ 3 & 0 & 0 \\ 5 & 5 & 5 \end{pmatrix}$ et on a clairement $E_4(A) = \text{Vect}(v_2)$ avec $v_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$.

Enfin, $A - 9I_3 = \begin{pmatrix} -8 & 0 & 0 \\ 3 & -5 & 0 \\ 5 & 5 & 0 \end{pmatrix}$ et on voit que $E_9(A) = \text{Vect}(\nu_3)$ avec $\nu_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Ainsi, $A = \text{PDP}^{-1}$ avec $P = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$ et $D = \text{diag}(1,4,9) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{pmatrix}$.

b = c. On a donc $det(A) = 1^a i^b (-i)^c = 1$ car i(-i) = 1.

 $\textbf{b.} \ \ \text{Si} \ M \in \mathfrak{M}_3(\mathbb{R}) \ \text{v\'erifie} \ M^2 = A, \ \text{alors} \ MA = M^3 = AM \ \text{donc}, \ \text{comme} \ A \ \text{et} \ M \ \text{commutent}, \ \text{on sait}$ d'après le cours que les sous-espaces propres de A sont stables par M. Ainsi, comme $v_1 \in E_1(A)$, on a $Mv_1 \in E_1(A) = Vect(v_1)$ donc il existe $\lambda_1 \in \mathbb{R}$ tel que $Mv_1 = \lambda_1 v_1$ ce qui fait de v_1 un vecteur propre de M aussi. De même, v_2 et v_3 sont aussi des vecteurs propres de M associés respectivement aux valeurs propres

 $\lambda_2 \text{ et } \lambda_3. \text{ Ainsi, on a } M = PD'P^{-1} \text{ avec } D' = \text{diag}(\lambda_1, \lambda_2, \lambda_3) = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \text{ donc } M \text{ est diagonalisable.}$

c. Analyse : si $M \in \mathcal{M}_3(\mathbb{R})$ vérifie $M^2 = A$, on a vu à la question précédente que $P^{-1}MP = diag(\lambda_1, \lambda_2, \lambda_3)$ $\mathrm{avec}\;(\lambda_1,\lambda_2,\lambda_3)\in\;\mathbb{R}^3\;\mathrm{donc}\;P^{-1}M^2P=diag(\lambda_1^2,\lambda_2^2,\lambda_3^2)=P^{-1}AP=D=diag(1,4,9)\;\mathrm{d'après}\;\mathbf{b.}\;\mathrm{donc}\;\lambda_1^2=1,$ $\lambda_2^2=4$ et $\lambda_3^2=9$ en identifiant. Ainsi, M=P $\text{diag}(\pm 1,\pm 2\pm 3)P^{-1}.$

 $\underline{\text{Synth\`ese}}: \text{ si } M = P \text{ diag}(\pm 1, \pm 2 \pm 3)P^{-1} \in \mathcal{M}_3(\mathbb{R}), \text{ on a clairement } M^2 = P \text{ diag}(1,49)P^{-1} = PDP^{-1} = A.$

Comme $\varphi: M \mapsto PMP^{-1}$ est un automorphisme de $\mathcal{M}_3(\mathbb{R})$ et que les 8 matrices diag $(\pm 1, \pm 2, \pm 3)$ sont distinctes, il existe exactement 8 matrices M qui vérifient $M \in \mathcal{M}_3(\mathbb{R})$ telles que $M^2 = A$ et ce sont les

matrices P diag $(\pm 1, \pm 2, \pm 3)$ P⁻¹. On peut les expliciter avec P⁻¹ = $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ mais est-ce bien nécessaire?

Soit $x = \sum_{i=1}^{n} x_i e_i$ un vecteur de E et $\lambda \in \mathbb{K}$. On cherche les éléments propres de f avec la suite d'équivalences

 $f(x) = \lambda x \iff \sum_{i=1}^{n} x_i f(e_i) = \lambda \sum_{i=1}^{n} x_i e_i \iff \left(\sum_{i=1}^{n} x_i e_i\right) + s u = \sum_{i=1}^{n} (\lambda x_i) e_i \text{ en posant } s = \sum_{i=1}^{n} x_i \text{ ce qui s'écrit aussi } f(x) = \lambda x \iff (\forall i \in [1; n], \ x_i + s = \lambda x_i) \text{ en identifiant les coordonnées sur la base } \mathcal{B}. \text{ Deux cas :}$ $\bullet \text{ Si } \lambda = 1, \text{ on a donc } f(x) = x \iff \sum_{i=1}^{n} x_i = 0 \text{ donc, en posant } H = \left\{ x = \sum_{i=1}^{n} x_i e_i \ \middle| \ \sum_{i=1}^{n} x_i = 0 \right\} \text{ qui est}$

- Si $\lambda = 1$, on a donc $f(x) = x \iff \sum_{i=1}^n x_i = 0$ donc, en posant $H = \left\{ x = \sum_{i=1}^n x_i e_i \mid \sum_{i=1}^n x_i = 0 \right\}$ qui est un hyperplan de E car $\phi : \sum_{i=1}^n x_i e_i \mapsto \sum_{i=1}^n x_i$ est une forme linéaire non nulle sur E (car $f(u) = n \neq 0$) et que $H = \text{Ker}(\phi)$, on a $E_1(f) = H$ donc 1 est valeur propre de f car $n \geqslant 2$ donc $\text{dim}(H) = n 1 \geqslant 1$.
- Si $\lambda \neq 1$, on a donc $f(x) = \lambda x \iff (\forall i \in [\![1;n]\!], \ x_i = \frac{s}{\lambda 1}) \iff x = \frac{s}{\lambda 1}u$. Les seuls autres vecteurs propres de f, à part les vecteurs non nuls de H vus ci-dessus, sont donc des vecteurs de la forme αu avec $\alpha \neq 0$. Or $f(u) = \sum_{i=1}^n f(e_i) = \left(\sum_{i=1}^n e_i\right) + nu = (n+1)u$ donc il n'y a qu'une autre valeur propre à part 1 et c'est n+1 avec $E_{n+1}(f) = Vect(u)$ d'après ce qui précède.
- $b. \ \, \text{Comme} \ \, \text{dim}(E_1(f)) + \text{dim}(E_{n+1}(f)) = n = \text{dim}(E) \ \, \text{et que} \ \, E_1(f) \\ \text{et } E_{n+1}(f) \ \, \text{sont en somme directe, on} \\ E = E_1(f) \oplus E_{n+1}(f) \ \, \text{donc } f \ \, \text{est diagonalisable avec} \ \, \text{Sp}() = \{1,n+1\} \ \, \text{et } \chi_f = (X-1)^{n-1}(X-n-1).$

Comme χ_f est scindé sur \mathbb{K} , on sait d'après le cours que $det(f) = \prod_{\lambda \in Sp(f)} \lambda^{\mathfrak{m}_{\lambda}(f)} = \mathfrak{n} + 1$ et qu'on a aussi

Tr $(f) = \sum_{\lambda \in Sp(f)} m_{\lambda}(f)\lambda = (n-1) \times 1 + 1 \times (n+1) = 2n$.