PROGRAMME DE KHÔLLE SEMAINE 09

PSI 1 2025-2026

du lundi 24/11 au vendredi 28/11

1 Éléments propres d'un endomorphisme ou d'une matrice : voir programme précédent

2 Polynôme caractéristique :

- définition du polynôme caractéristique ($\chi_{\mathfrak{u}}=det(X\mathrm{id}_{\,E}-\mathfrak{u})$) d'une matrice ou d'un endomorphisme ;
- expression développée de $\chi_{\mathfrak{u}}=X^n-\text{Tr }(\mathfrak{u})X^{n-1}+\cdots+(-1)^n\text{det}(\mathfrak{u})$;
- les valeurs propres d'un endomorphisme $\mathfrak u$ sont exactement les racines de $\chi_{\mathfrak u}$;
- multiplicité algébrique (ordre de multiplicité de la racine dans $\chi_{\mathfrak{u}}$) d'une valeur propre ;
- si $\chi_{\mathfrak{u}}$ est scindé dans $\mathbb{K}[X]$ relation entre $\dim(E)$, $Tr(\mathfrak{u})$, $det(\mathfrak{u})$ et les valeurs propres ;
- polynôme caractéristique de matrices semblables ou de la transposée d'une matrice ;
- si F stable par $\mathfrak u$ alors $\chi_{\mathfrak u_F}$ divise $\chi_{\mathfrak u}$;
- multiplicité géométrique (dimension du sous-espace propre associé) d'une valeur propre ;
- la multiplicité géométrique est inférieure à la multiplicité algébrique (et ≥ 1) pour une valeur propre ;
- application du polynôme caractéristique pour calculer le déterminant des matrices ;
- théorème de Cayley-Hamilton (preuve non exigible);

3 Diagonalisation en dimension finie :

- définition d'un endomorphisme diagonalisable, propriétés équivalentes ;
- projecteurs (spectraux) associés à la décomposition de l'espace avec les sous-espaces propres ;
- équivalence entre u diagonalisable et χ_u scindé dans $\mathbb{K}[X]$ et $\forall \lambda \in Sp(u), \ dim(E_{\lambda}(u)) = m_{\lambda}(u)$;
- cas particulier pratique où il y a dim(E) racines distinctes de χ_u ;
- matrices A diagonalisables et relations avec un endomorphisme de matrice A ;
- polynômes en u et relations avec les valeurs propres de u ; racines des polynômes annulateurs ;
- u diagonalisable si et seulement s'il existe un polynôme annulateur simplement scindé de u ;
- si u diagonalisable, caractérisation de son polynôme minimal (hors programme);
- si F stable par u et u diagonalisable alors u_F l'est aussi ;
- trigonalisation : définition et caractérisation par χ_u scindé ;

4 Codiagonalisation (hors programme mais bon...):

- si u diagonalisable, $\nu \circ u = u \circ \nu \Longleftrightarrow \forall \lambda \in Sp(u), \ E_{\lambda}(u)$ stable par ν ;
- si u et ν diagonalisables et commutent, ils codiagonalisent ;

QUESTIONS DE COURS :

- 1 définir la diagonalisabilité d'un endomorphisme (déf. 5.6)
- 2 énoncer le résultat sur le polynôme caractéristique d'un endomorphisme induit (rem. 5.9)
- 3 énoncer le théorème sur Tr (u) et det(u) en fonction des valeurs propres si χ_u est scindé (th. 5.13)
- 4 énoncer les inégalités concernant les différents ordre de multiplicité d'une valeur propre (th. 5.14)
- 5 énoncer quelques propriétés équivalentes au fait que u est diagonalisable (th. 5.17)
- 6 énoncer la CNS de diagonalisabilité de u par les ordres de multiplicité (th. 5.19)
- 7 énoncer la CNS de trigonalisabilité d'un endomorphisme (th. 5.26)
- 8 prouver que λ est valeur propre de u si et seulement si $\chi_{\mu}(\lambda) = 0$ (th. 5.8)
- 9 prouver que si A et B sont semblables, alors $\chi_A = \chi_B$ (prop. 5.10)
- 10 prouver que si u diagonalisable et F stable par u, alors u_F est diagonalisable (prop. 5.24)

Prévision pour la prochaine semaine : révision sur la réduction et début des suites et séries de fonctions