ÉNONCÉS EXERCICES CORRIGÉS 5 RÉDUCTION

5.1 Éléments propres

- **5.3** <u>Centrale PSI 2012</u> Montrer que, pour tout triplet $(A, B, C) \in \mathcal{M}_2(\mathbb{C})^3$, il existe $(a, b, c) \neq (0, 0, 0) \in \mathbb{R}^3$ tel que aA + bB + cC admette une valeur propre double (commencer par le cas où (A, B, C) est liée).
- **5.4** <u>Centrale PSI 2012</u> Soit E l'espace vectoriel des fonctions continues de $[0; +\infty[$ dans \mathbb{R} , pour $f \in E$ on définit la fonction g par g(0) = f(0) et $\forall x > 0$, $g(x) = \frac{1}{x} \int_0^x f(t) dt$. On pose alors u(f) = g.
 - a. Montrer que $u \in \mathcal{L}(E)$ et déterminer ses vecteurs propres et valeurs propres.
 - b. La restriction de u au sous-espace des fonctions polynomiales de degré au plus n est-elle diagonalisable ?
- 5.5 Soit E le \mathbb{R} -espace vectoriel des fonctions continues de $[0; +\infty[$ dans \mathbb{R} ayant une limite finie en $+\infty$. Soit T l'endomorphisme de E donné par $\forall x \in [0; +\infty[$, T(f)(x) = f(x+1). Déterminer les valeurs propres de T et les vecteurs propres associés.
- - a. Montrer que u est un automorphisme de E et que ses valeurs propres sont dans]-1;1].
 - **b.** Soit f un vecteur propre de u. Montrer qu'il existe $k \in \mathbb{N}$ tel que $f^{(k)} = 0$.
 - ${\bf c.}$ Déterminer les valeurs propres et les vecteurs propres associés de ${\bf u.}$
- **5.8** <u>Centrale PSI 2012</u> Soit a_1, \dots, a_p des réels, déterminer le polynôme caractéristique de la matrice $A \in \mathcal{M}_{2p}(\mathbb{R})$ dont le coefficient en position (i,j) est $a_{i,j} = \alpha_{Min(i,j)}$ si i+j=2p+1 et 0 sinon.
- - a. Calculer $P(a_k)$ et justifier que P est un polynôme unitaire de degré $\mathfrak n$.
 - **b.** Former la décomposition en éléments simples de la fraction rationnelle $\frac{P(X)}{\prod\limits_{k=1}^{n}(X-\alpha_k)}$.
 - c. En déduire le déterminant de $A + I_n$. Que vaut celui de A?

- $\overbrace{\mathbf{5.11}}$ Soit E un \mathbb{K} -espace vectoriel muni d'une base \mathcal{B} et $f \in \mathcal{L}(\mathsf{E})$ et H un hyperplan de E .
 - a. Déterminer la dimension du sous-espace vectoriel $\left\{\mathfrak{u}\in E^*\mid \mathfrak{u}(H)=\{0\}\right\}$?
 - **b.** Montrer que si H a pour équation u(x) = 0 $(u \in E^*)$: (H stable par f) \iff $(u \circ f \text{ et } u \text{ colinéaires})$.
 - c. Soit A et L les matrices dans \mathcal{B} de f et u. Montrer : (H stable par f) \iff (t L vecteur propre de t A).
 - **d.** Déterminer les plans stables par u canoniquement associé à $A = \begin{pmatrix} 3 & -2 & -4 \\ -1 & 1 & 1 \\ 1 & -2 & -2 \end{pmatrix}$.
- **[5.12]** Soit $n \in \mathbb{N}^*$ et $E = \mathcal{M}_n(\mathbb{R})$; pour $A \in E$, on introduit $u : E \to E$ défini par : u(M) = AM. Montrer que A et u ont les mêmes valeurs propres et préciser les sous-espaces propres de u en fonction de ceux de A.
- $\boxed{\textbf{5.13}} \ \underline{\textit{CCP PSI 2007 d'après RMS}} \ \text{Soit} \ A \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{C}) \ \text{avec} \ \mathfrak{n} \geqslant 3.$

On suppose que : rang A=2, Tr A=0 et $A^n\neq 0.$ Montrer que A est diagonalisable.

- - a. A est-elle nécessairement diagonalisable ?
 - **b.** On suppose ici B diagonale, donner une CNS pour que A soit diagonalisable (commencer par n=1).
 - c. On revient au cas général, donner une CNS sur le spectre de B pour que A soit diagonalisable.
- - a. Montrer que la matrice J est diagonalisable dans $\mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$
 - **b.** Application : calculer $\begin{vmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_{n-1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_1 \\ a_1 & \cdots & a_{n-1} & a_0 \end{vmatrix}.$
- (5.16) Compléments OdlT 2016/2017 Mines-Télécom PSI planche 566I

Montrer que les valeurs propres possibles de A réelle, carrée de taille n, vérifiant $A^3 = A^2 + 4A - 4I_n$ sont -2, 1 et 2. En déduire que A est inversible et donner A^{-1} en fonction de A.

5.2 Diagonalisation

- (5.17) <u>Centrale PSI 2012</u> Soit E un \mathbb{R} -espace vectoriel dimension 3, \mathcal{B} une base de E, $\mathfrak{u} \in \mathcal{L}(E)$ et A la matrice de \mathfrak{u} dans la base \mathcal{B} notée $A = \operatorname{Mat}_{\mathcal{B}}(\mathfrak{u})$. On suppose que les 9 coefficients de A sont des entiers relatifs (soit $A \in \mathcal{M}_3(\mathbb{Z})$). On suppose enfin qu'il existe un entier $\mathfrak{p} \geqslant 1$ tel que $\mathfrak{u}^{\mathfrak{p}} = \operatorname{id}_E$.
 - a. Montrer que $u \in GL(E)$. À quelle condition nécessaire et suffisante u est-il diagonalisable?

Comment appelle-t-on ces endomorphismes u diagonalisables ?

- On suppose dans toute la suite que $\mathfrak u$ n'est pas diagonalisable.
- $\textbf{c.} \ \text{Montrer qu'il existe } \alpha \in \llbracket -2; 2 \rrbracket \ \text{et } b \in \{-1, 1\} \ \text{tels que } \chi_{\mathfrak{u}}(X) = (\epsilon X)(X^2 + \alpha X + b) \ \text{avec } \epsilon = \pm 1.$
- $\mathbf{d}.$ En déduire les valeurs possibles de $\chi_{\mathfrak{u}}(X)$ et justifier que $\mathfrak{u}^{12}=\operatorname{id}_E.$

5.18] <u>Centrale PSI 2012</u> Soit $n \ge 2$ et J_n la matrice de $\mathcal{M}_n(\mathbb{R})$ contenant des 1 dans toutes ses cases.

Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$; pour $i \in [[1;n]]$, on note $l_i(A) = \sum_{i=1}^n a_{i,j}$ la somme des coefficients de la

ligne i et, pour $j\in [\![1;n]\!],$ $c_j(A)=\sum\limits_{i=1}^n\alpha_{i,j}$ la somme des coefficients sur la colonne j.

On note $X_n(\mathbb{R})$ l'ensemble des matrices magiques de $\mathfrak{M}_n(\mathbb{R})$: ce sont les matrices $A \in \mathfrak{M}_n(\mathbb{R})$ telles que $\forall (i,j) \in [1,n]^2$, $l_i(A) = c_j(A)$; on note alors $s_n(A)$ la valeur commune de toutes ces sommes.

- a. Donner un élément non élémentaire de $X_3(\mathbb{R})$ (autre que I_3 , J_3 , etc...).
- $\mathbf{b.} \ \mathrm{Montrer} \ \mathrm{que} \ X_{\mathfrak{n}}(\, \mathbb{R}) = \big\{ A \in \mathfrak{M}_{\mathfrak{n}}(\, \mathbb{R}) \mid A \, J_{\mathfrak{n}} = J_{\mathfrak{n}} \, A \big\}.$
- c. En déduire que $X_n(\mathbb{R})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ stable par multiplication. Montrer que $s_n: X_n(\mathbb{\,R\,}) \to \mathbb{\,R\,} \text{ une forme linéaire telle que}: \, \forall (A,B) \in X_n(\mathbb{\,R\,})^2, \,\, s_n(AB) = s_n(A)s_n(B).$
- **d.** Diagonaliser J_n et en déduire $\dim (X_n(\mathbb{R}))$. Trouver $\dim (X_n^0(\mathbb{R}))$ où $X_n^0(\mathbb{R})$ est le sous-espace vectoriel de $X_n(\mathbb{R})$ formé des matrices magiques A telles que $s_n(A) = 0$.
- - $\mathbf{a.}$ Déterminer l'unique valeur \mathfrak{m}_0 telle que $A_{\mathfrak{m}_0}$ soit diagonalisable
 - b. Caractériser géométriquement l'endomorphisme \mathfrak{u}_0 de \mathbb{R}^3 canoniquement associé à $A_{\mathfrak{m}_0}$.
- (5.20) <u>Centrale PSI 2012</u> Soit $n \in \mathbb{N}^*$ tel que $n \geqslant 3$ et A_n la matrice de $\mathcal{M}_n(\mathbb{R})$ qui contient des 1 dans la première

ligne et la première colonne et des 0 partout ailleurs. Par exemple $A_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

- a. Montrer que (A_n, A_n^2, A_n^3) est une famille liée. Justifier que A_n est diagonalisable.
- **b.** Déterminer les valeurs propres de A_n et son polynôme caractéristique χ_{A_n} . Calculer $det(I_n + A_n)$.
- **c.** On prend dans cette question n = 7. Pour $p \ge 1$, trouver $(a_p, b_p) \in \mathbb{R}^2$ tel que $A_7^p = a_p A_7^2 + b_p A_7$.
- $\underbrace{\textbf{5.21}} \ \underline{\text{Centrale PSI 2012}} \ \text{Soit } n \in \mathbb{N}^*, \ (a,b) \in \mathbb{R}^2, \ a^2 \neq b^2, \ \text{on pose } M = \begin{pmatrix} a & b & a & b & \cdots & b & a \\ b & a & b & \cdots & b & a \\ \vdots & \vdots & \ddots & & \vdots & \vdots \\ \vdots & \vdots & & \ddots & \vdots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & & & \ddots & \vdots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & & & & \ddots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & & & & & \ddots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & & & & & \ddots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & & & & & \ddots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & & & & & \ddots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & & & & & \ddots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & & & & & \ddots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & b & a & \cdots & a & b \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & b & a & \cdots & a \\ b & a & \cdots & a & b \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & b & a & \cdots & a \\ b & a & \cdots & a & b \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & b & a & \cdots & a \\ b & a &$
 - **a.** Que vaut rang (M)? Diagonaliser M.
 - $\textbf{b.} \ \ \text{Déterminer le polynôme caractéristique} \ \chi_{M}. \ \ \text{Pour un complexe} \ c, \ \text{en déduire} \ \text{det}(A) \ \text{où la matrice}$ $A=(\mathfrak{a}_{i,j})_{1\leqslant i,j\leqslant 2\mathfrak{n}}\in \mathfrak{M}_{2\mathfrak{n}}(\mathbb{R}) \text{ v\'erifie}: \ \forall k\in \llbracket 1;2\mathfrak{n}\rrbracket, \ \mathfrak{a}_{k,k}=c, \ \forall (i,j)\in \llbracket 1;2\mathfrak{n}\rrbracket^2, \ \mathfrak{a}_{i,j}=b \text{ si } i+j \text{ est impair et } i+j \text{ est$ $\forall (i,j) \in [[1;2n]]^2, \ a_{i,j} = a \text{ si } i+j \text{ est pair et } i \neq j.$
- $(\mathbf{5.22})$ <u>Centrale PSI 2012</u> Soit $q \in \mathbb{N}^*$ et $A \in \mathcal{M}_q(\mathbb{C})$ telle qu'il existe $\mathfrak{p} \in \mathbb{N}^*$, une famille libre (B_1, \dots, B_p) de

matrices de $\mathcal{M}_q(\mathbb{C})$ et des scalaires $\lambda_1, \cdots, \lambda_p$ qui vérifient : $\forall n \in [0, p], \ A^n = \sum_{k=1}^p \lambda_k^n B_k$.

- a. Montrer que si les complexes $\lambda_1, \cdots, \lambda_p$ sont distincts 2 à 2 on a $p \leqslant q.$
- b. Montrer que si les complexes $\lambda_1, \cdots, \lambda_p$ sont distincts 2 à 2 A est diagonalisable.
- c. Expliquer pourquoi A est diagonalisable même si $\lambda_1,\cdots,\lambda_p$ ne sont pas supposés distincts 2 à 2.
- **d.** Établir que : $\forall n \in \mathbb{N}, \ A^n = \sum_{k=1}^p \lambda_k^n B_k$.
- e. Réciproquement, si A est diagonalisable, justifier que A satisfait aux hypothèses de cet exercice.

- 5.24Soit E un \mathbb{C} -espace vectoriel de dimension $n \in \mathbb{N}^*$ et f un endomorphisme de E ayant n valeurs propres distinctes deux à deux. Soit g un autre endomorphisme de E tel que f o g = g o f.
 - a. Montrer qu'un vecteur propre de f est aussi un vecteur propre de g.
 - **b.** En déduire qu'il existe un unique $P \in \mathbb{C}_{n-1}[X]$ tel que g = P(f).
 - **c.** Que peut-on en déduire à propos de $\mathcal{C}(f) = \{g \in \mathcal{L}(E) \mid g \circ f = f \circ g\}$?
- $\boxed{\mathbf{5.25}} \text{ Soit } E = \mathbb{R}^3, \, \mathcal{B} \text{ une base de } E, \, \mathfrak{u} \in \mathcal{L}(E) \text{ tel que } \exists \mathfrak{p} \geqslant 1, \, \, \mathfrak{u}^{\mathfrak{p}} = \operatorname{id}_E \text{ et } A = \operatorname{Mat}_{\mathcal{B}}(\mathfrak{u}) \in \mathfrak{M}_3(\mathbb{Z}).$
 - a. Montrer que $u \in GL(E)$. À quelle condition nécessaire et suffisante u est-il diagonalisable?

Comment appelle-t-on ces endomorphismes u diagonalisables? On suppose dans toute la suite que $\mathfrak u$ n'est pas diagonalisable.

- **b.** Montrer qu'il existe deux entiers $a \in [-2, 2]$ et $b \in \{-1, 1\}$ tels que $\chi_u(X) = (\epsilon X)(X^2 + aX + b)$ avec $\varepsilon = \pm 1$. En déduire les valeurs possibles de $\chi_{\mathfrak{u}}(X)$ et justifier que $\mathfrak{u}^{12} = \mathrm{id}_{E}$.
- **5.26**) Soit $n \in \mathbb{N}^*$ et $r \in [0; n]$ et une matrice $M \in \mathcal{M}_n(\mathbb{C})$ de rang r.
 - **a.** Montrer que M est semblable à une matrice du type $\begin{pmatrix} A & 0 \\ B & 0 \end{pmatrix}$ où $A \in \mathcal{M}_r(\mathbb{C})$.
 - b. En déduire qu'il existe un polynôme P de degré inférieur ou égal à r+1 tel que P(M)=0.
 - c. Montrer par un exemple où vous choisirez n, r et M qu'il n'existe pas toujours de polynôme Q de degré inférieur ou égal à r qui vérifie Q(M) = 0.
 - ${f d.}$ On suppose que Ker(f) et ${
 m Im}\,(f)$ sont supplémentaires, établir que ${\cal M}$ est alors semblable à une matrice du type $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$ où $A \in \mathcal{M}_r(\mathbb{C})$. Quel est le polynôme minimal de M en fonction de celui de A?
 - e. Si M est diagonalisable, à quelle condition nécessaire et suffisante M admet-elle un polynôme annulateur de degré inférieur ou égal à r?
- **5.27** Centrale PSI 2012

Soit $n \in \mathbb{N}^*$, $\alpha \in \mathbb{C}$ et $A \in \mathcal{M}_n(\mathbb{C})$, on définit $u : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ par $u(M) = \alpha M + Tr(M) A$.

- **a.** Montrer que u est un endomorphisme de $\mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$.
- **b.** u est-elle diagonalisable? Si Tr (A) = 0, déterminer Tr (u).
- [5.28] <u>Centrale PSI 2012</u> Soit $A \in \mathcal{M}_n(\mathbb{R})$ diagonalisable. Montrer qu'il existe $P \in \mathbb{R}[X]$ tel que $P(A^5) = A$.

Est-ce toujours vrai si on suppose $A \in \mathcal{M}_n(\mathbb{C})$ diagonalisable?

- **5.29** Centrale PSI 2012 On considère la matrice A de $\mathcal{M}_n(\mathbb{R})$ telle que la colonne j est composée de nombres tous égaux à j, sauf le coefficient sur la diagonale valant 0.
 - a. Montrer que $\lambda \in \mathbb{R}$ est valeur propre de A si et seulement si $\sum_{k=1}^{n} \frac{k}{\lambda + k} = 1$.
 - b. En déduire que la matrice A est diagonalisable et déterminer un équivalent de la plus grande valeur propre λ_n de A lorsque n tend vers $+\infty$.

5.31 Soit $A \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$ et $B = \begin{pmatrix} 2A & -2A \\ A & 5A \end{pmatrix}$.

Donner une condition nécessaire et suffisante sur A pour que B soit diagonalisable.

(5.32) <u>Centrale PSI 2012</u> Soit $n \ge 2$ et $(a_1, \dots, a_n) \in \mathbb{R}^n$. On définit la matrice $M \in \mathcal{M}_n(\mathbb{R})$ de la façon suivante :

$$M = \begin{pmatrix} 0 & \cdots & 0 & \alpha_1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & \alpha_{n-1} \\ \alpha_1 & \cdots & \alpha_{n-1} & \alpha_n \end{pmatrix}. \ M \text{ est-elle diagonalisable ? Dans ce cas, la diagonaliser.}$$

5.33 Centrale PSI 2012 Soit E de dimension finie $n \in \mathbb{N}^*$ et $p \in \mathcal{L}(E)$ un projecteur. On note φ l'endomorphisme

de $\mathcal{L}(E)$ tel que : $\forall g \in \mathcal{L}(E)$, $\varphi(g) = \frac{1}{2} (g \circ p + p \circ g)$. On considère également les ensembles suivants :

 $A = \big\{g \in \mathcal{L}(E) \mid \operatorname{Im}(g) \subset \operatorname{Ker}(\mathfrak{p}) \text{ et } \operatorname{Im}(\mathfrak{p}) \subset \operatorname{Ker}(g)\big\}, \ B = \big\{g \in \mathcal{L}(E) \mid \operatorname{Im}(g) \subset \operatorname{Im}(\mathfrak{p}) \text{ et } \operatorname{Im}(\mathfrak{p}) \subset \operatorname{Ker}(g)\big\},$

- $C = \big\{g \in \mathcal{L}(\mathsf{E}) \mid \mathrm{Im}\,(g) \subset \mathsf{Ker}(\mathsf{p}) \; \mathrm{et} \; \mathsf{Ker}(\mathsf{p}) \subset \mathsf{Ker}(g)\big\}, \, D = \big\{g \in \mathcal{L}(\mathsf{E}) \mid \mathrm{Im}\,(g) \subset \mathrm{Im}\,(\mathsf{p}) \; \mathrm{et} \; \mathsf{Ker}(\mathsf{p}) \subset \mathsf{Ker}(g)\big\}.$
- a. Montrer que B et C sont des sous-espaces vectoriels de $\mathcal{L}(E)$.

On montre de la même façon que A et D sont des sous-espaces vectoriels de $\mathcal{L}(E)$.

- b. Déterminer les dimensions de ces quatre sous-espaces vectoriels. On fera intervenir r, le rang de p.
- c. Déduire de ce qui précède que φ est diagonalisable et déterminer ses valeurs propres.
- (5.34) <u>Centrale PSI 2012</u> Soit $n \ge 2$, trouver une condition nécessaire et suffisante sur $M \in \mathcal{M}_n(\mathbb{C})$ pour qu'il existe $P \in GL_n(\mathbb{C})$ telle que $\forall z \in \mathbb{C}, \ P-zM \in GL_n(\mathbb{C})$. Commencer par examiner le cas où M est inversible.
- **5.35**) <u>Centrale PSI 2012</u> Soit $n \in \mathbb{N}^*$, deux matrices A et B dans $\mathfrak{M}_n(\mathbb{C})$. Pour une matrice $Y \in \mathfrak{M}_n(\mathbb{C})$, on définit l'équation $(E_Y): AX - XB = Y$ où l'on cherche les solutions $X \in \mathfrak{M}_n(\mathbb{C})$. On dit qu'un couple (A, B) vérifie la propriété \mathcal{P} si l'équation (E_Y) possède au moins une solution quelle que soit la matrice $Y \in \mathcal{M}_n(\mathbb{C})$.
 - **a.** Traduire le fait que (A, B) vérifie la propriété \mathcal{P} sur $\varphi : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ définie par $\varphi(X) = AX XB$.
 - **b.** Soit $X \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$ non nulle telle que AX = XB, justifier qu'alors $\chi_{A}(B)$ n'est pas inversible.

En déduire que si (A, B) ne vérifie par \mathcal{P} , alors A et B ont au moins une valeur propre commune.

- c. Étudier la réciproque.
- **5.36**) Soit $M \in \mathcal{M}_n(\mathbb{R})$ vérifiant $M^2 + {}^tM = 2I_n$. Montrer que cette matrice M est diagonalisable.
- (5.37) <u>Mines PC 2006</u> Soit $(A, B, C) \in \mathcal{M}_n(\mathbb{R})^3$ tel que C = A + B, $C^2 = 2A + 3B$ et $C^3 = 5A + 6B$. Les matrices A et B sont-elles diagonalisables ?
- **5.38**) Soit E un espace vectoriel de dimension 3 et f un endomorphisme de E vérifiant $f^4 = f^2$. On suppose que 1 et -1 sont valeurs propres de f. Montrer que f est diagonalisable.
- **5.39**) Soit $P \in \mathcal{M}_n(\mathbb{R})$ une matrice de projection et φ l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par $\varphi(M) = PM + MP$. Montrer que l'endomorphisme φ est diagonalisable.
- (5.40) Mines MP 2004 Soit $A \in \mathcal{M}_n(\mathbb{R})$, on définit $f_A \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$ par $f_A(M) = AM$.
 - a. Montrer que si $A^2 = A$ alors f_A est diagonalisable.
 - **b.** Montrer que f_A est diagonalisable si et seulement si A est diagonalisable.
- **5.41**) Trouver les matrices $M \in \mathcal{M}_n(\mathbb{C})$ vérifiant $M^5 = M^2$ et Tr(M) = n.
- - b. Énoncer une condition nécessaire et suffisante pour que M soit diagonalisable.
- (5.43) <u>Centrale PSI 2013</u> Soit $n \in \mathbb{N}^*$, deux matrices A et B de $\mathcal{M}_n(\mathbb{C})$ et l'application $\varphi : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ définie par $\forall M \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{C}), \ \phi(M) = AM - MB.$
 - **a.** Montrer que si $(a,b) \in Sp(A) \times Sp(B)$ alors $a-b \in Sp(\phi)$. On pourra d'abord justifier qu'il existe deux vecteurs colonnes non nuls de $\mathfrak{M}_{n,1}(\mathbb{C})$ tels que AU=aU et ${}^tBV=bV$.
 - ${\bf b}$. Justifier que ϕ est diagonalisable si on suppose que A et B le sont.
 - c. Pour $C \in \mathcal{M}_n(\mathbb{C})$, établir que $\chi_A(C)$ est inversible si et seulement si $Sp(A) \cap Sp(C) = \emptyset$.
 - **d.** En déduire que si $\lambda \in Sp(\varphi)$, alors $\exists (a,b) \in Sp(A) \times Sp(B)$ tel que $\lambda = a b$.

5.44 X MP 2005 Soit $A \in \mathcal{M}_n(\mathbb{R})$.

- a. On suppose $A^3 = A^2$. Montrer que A^2 est diagonalisable et que $A^2 A$ est nilpotente.
- **b.** Plus généralement on suppose $A^{k+1} = A^k$ pour un certain entier $k \in \mathbb{N}^*$, établir l'existence d'un entier p > 0 tel que A^p est diagonalisable et $A^p A$ nilpotente.

5.3 Trigonalisation et diagonalisation simultanée

- (5.45) Montrer que toute matrice de $\mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$ est limite d'une suite de matrices diagonalisables.
- $\boxed{\textbf{5.46}} \ \, \mathrm{Soit} \,\, A \in \mathfrak{M}_{\mathfrak{n}}(\, \mathbb{C}), \, \mathrm{on \,\, pose} \,\, \rho(A) = \underset{\lambda \in S\mathfrak{p}(A)}{\mathsf{Max}} \, |\lambda| \,\, (\textbf{rayon \,\, spectral \,\, de} \,\, A).$

On va montrer que pour toute norme de E, on a $\lim_{k\to +\infty} ||A^k||^{\frac{1}{k}} = \rho(A)$.

- a. Montrer que si le résultat est vrai pour une norme, alors il est vrai pour toute norme sur $\mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$.
- **b.** Montrer que si le résultat est vrai pour une matrice A alors il est vrai pour toute matrice semblable à A. Dans la suite, on considère la norme $||A||_{\infty} = \underset{(i,j) \in [\![1;n]\!]^2}{Max} |a_{i,j}|$.
- c. Montrer que si T est triangulaire et que ses coefficients diagonaux valent 1 alors $\lim_{k \to +\infty} ||T^k||_{\infty}^{\frac{1}{k}} = 1$. (indication : écrire $T = I_n + N$ avec $N = T I_n$ (nilpotente) et utiliser la formule du binôme)
- **d.** Montrer que si B est telle que $\forall (i,j) \in [[1;n]]^2$, $|a_{i,j}| \leq b_{i,j}$ alors $||A^k||_{\infty} \leq ||B^k||_{\infty}$. Conclure en trigonalisant $\frac{A}{\rho(A)}$.
- **5.47** Centrale PC 2008 Soit $A \in \mathcal{M}_n(\mathbb{R})$ diagonalisable, à valeurs propres strictement positives.
 - **a.** Montrer que la suite $(X_n)_{n\in\mathbb{N}}$ définie par $X_0=I_n$ et $\forall n\in\mathbb{N},\ X_{n+1}=\frac{1}{2}\Big(X_n+AX_n^{-1}\Big)$ est bien définie et que $\forall n\in\mathbb{N},\ X_n$ est diagonalisable (on pourra utiliser une base de vecteurs propres de A).
 - **b.** Montrer que $(X_n)_{n\in\mathbb{N}}$ converge et que sa limite X vérifie $X^2=A$. On la note \sqrt{A} .
 - c. Montrer que si A est symétrique alors \sqrt{A} est symétrique.
- - a. Montrer que T est un endomorphisme continu de E. Déterminer sa norme subordonnée.
 - **b.** Soit $f \in E$ non nulle telle que f(0) = 0. Montrer que : $\exists x_0 \in]0;1], \ \forall x \in [0;x_0[,\ |f(x)| < |f(x_0)| = ||f||_{\infty}$. En déduire que l'espace propre de T associé à la valeur propre 2 est de dimension 1.
- (5.49) Soit $A \in \mathcal{M}_n(\mathbb{C})$ et $P \in \mathbb{C}[X]$. Exprimer le polynôme caractéristique de P(A) en fonction de Sp(A).

5.4 Exercices posés aux étudiants de PSI1

[5.51] Centrale PSI 2013 Thomas M.

Soit $A \in \mathcal{M}_{n+1}(\mathbb{R})$ donnée par $A = \begin{pmatrix} 0 & \cdots & 0 & b_1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & b_n \\ a_1 & \cdots & a_n & 0 \end{pmatrix}$. Montrer que A est diagonalisable si et seulement

si tous les a_k et les b_k sont nuls ou si $\sum_{k=1}^n a_k b_k > 0$. Indication : on pourra raisonner sur A^2 .

5.52 *CCP PSI 2013* Romain

$$\mathrm{Soit}\ M = \begin{pmatrix} \alpha & c & b \\ c & \alpha + b & c \\ b & c & \alpha \end{pmatrix} \in \mathfrak{M}_3(\,\mathbb{R})\ \mathrm{et}\ K = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

- **b.** Exprimer M en fonction de puissances de K.
- **c.** Diagonaliser M et calculer M^n pour $n \in \mathbb{N}^*$.

(**5.53**) *CCP PSI 2013* Adrien

Soit $A \in \mathcal{M}_3(\mathbb{R})$ telle que A inversible, Tr(A) = 5 et $A^3 - 4A^2 + 3A = 0$. Donner χ_A .

[5.54] Petites Mines PSI 2013 Camille

Soit A et B des matrices carrées réelles, montrer que Sp(AB) = Sp(BA).

5.55 Centrale PSI 2014 Mathias

- On pose E l'ensemble des fonctions polynomiales de degré inférieur ou égal à $\mathfrak n.$ a. Montrer que $\forall P \in E, \ \forall x \in \mathbb R, \ \int_{-\infty}^x P(t)e^tdt$ converge.
- **b.** On définit L l'application sur E telle que $\forall x \in \mathbb{R}$, $L(P)(x) = e^{-x} \int_{-\infty}^{x} P(t)e^{t} dt$.

Montrer que L est un endomorphisme de E. Est-il diagonalisable ?

(**5.56**) <u>Mines PSI 2014</u> Lucie

Soit M la matrice de $\mathfrak{M}_{\mathfrak{n}}(\mathbb{R})$ avec des a sur la diagonale et des b partout ailleurs $(b \neq 0 \text{ et } n \geq 2)$.

- a. Donner les valeurs propres de M et dire si elle est diagonalisable.
- **b.** Dans le cas où M est inversible trouver M^{-1} .
- **c.** Trouver M^p avec p un entier naturel (sans passer par la matrice diagonale).

5.57 Mines PSI 2014 Valentine

Soit
$$M = \begin{pmatrix} 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$
 et m canoniquement associé à M .

a. En effectuant un produit par blocs, déterminer le plus petit entier $p \ge 1$ tel que $M^p = I_5$.

7

- **b.** En déduire que M est diagonalisable dans $\mathfrak{M}_5(\mathbb{C})$.
- **c.** Trouver un vecteur $x \in \mathbb{R}^5$ tel que $(x, m(x), m^2(x), m^3(x), m^4(x))$ soit une base de \mathbb{R}^5 .
- d. Donner alors la matrice de m dans cette base, puis les valeurs propres de M.

5.58 Mines PSI 2014 Mathias

- a. Soit $A \in \mathcal{M}_n(\mathbb{C})$ et $\lambda \notin Sp(A)$. Montrer que $(A \lambda I_n)^{-1}$ est un polynôme en A.
- **b.** Soit $k \in \mathbb{N}^*$ le degré d'un polynôme annulateur de A et $\lambda_1, \dots, \lambda_k$ des complexes qui ne sont pas dans le spectre de A. Montrer qu'il existe une famille de complexes (c_1, \dots, c_k) telle que $\sum_{i=1}^k c_i (A \lambda_i I_n)^{-1} = I_n$.

5.59 CCP PSI 2014 Mohammed

Dans $E = \mathbb{R}_n[X]$, on considère $f : P \mapsto X^n P\left(\frac{1}{X}\right)$. Montrer que f est un endomorphisme de E, que f est diagonalisable et trouver une base de E constituée de vecteurs propres de f.

5.60 Centrale Maths1 PSI 2015 Vincent Barrère et Adrien Gruson

Soit E un \mathbb{C} -espace vectoriel de dimension finie, \mathfrak{u} et \mathfrak{v} deux endomorphismes de E.

- a. On suppose que $u \circ v = 0$. Montrer que u et v ont un vecteur propre commun.
- **b.** On suppose que $u \circ v \in Vect(u, v)$, montrer que u et v ont un vecteur propre en commun.
- c. On suppose que $u \circ v \in Vect(u, v)$, montrer qu'il existe une base \mathcal{B} dans laquelle les matrices de u et v sont triangulaires supérieures. Indication : raisonner par récurrence sur la dimension de E.

(5.61) Centrale Maths1 PSI 2015 Térence Burcelin

$$\mathrm{Soit}\; F: \mathfrak{M}_2(\,\mathbb{R})^2 \to \mathfrak{M}_4(\,\mathbb{R}) \; \mathrm{d\acute{e}finie}\; \mathrm{par}\; F(A,B) = \left(\begin{matrix} \mathfrak{a}B & \mathfrak{b}B \\ \mathfrak{c}B & \mathfrak{d}B \end{matrix} \right) \, \mathrm{si}\; A = \left(\begin{matrix} \mathfrak{a} & \mathfrak{b} \\ \mathfrak{c} & \mathfrak{d} \end{matrix} \right).$$

- **a.** Montrer que $F(A_1, B_1)F(A_2, B_2) = F(A_1A_2, B_1B_2)$.
- **b.** Calculer Tr (F(A, B)), rang (F(A, B)) et det(F(A, B)).
- \mathbf{c} . À quelles conditions F(A,B) est-elle diagonalisable?

(5.62) Centrale Maths1 PSI 2015 Margaux Ledieu

Soit $E = C^{\infty}(\mathbb{R}, \mathbb{R})$, on définit $D : E \to E$ par $\forall f \in E$, D(f)(x) = xf'(x).

- a. Montrer que D est un endomorphisme de E.
- **b.** Déterminer Ker(D).
- c. Trouver les éléments propres de D.
- d. Déterminer Im (D).

(5.63) Mines PSI 2015 Jean-Raphaël Biehler

Soit $M \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$, $P \in \mathbb{C}[X]$. Montrer que $Sp(P(M)) = \{P(\lambda) \mid \lambda \in Sp(M)\}$.

[5.64] Mines PSI 2015 Bastien Chevallier

Soit E un \mathbb{R} -espace vectoriel de dimension \mathfrak{n} . Soit \mathfrak{f} un endomorphisme de E tel que $\mathfrak{f}^3+\mathfrak{f}^2-\mathrm{id}_E=0$ et $\mathrm{Tr}\,(\mathfrak{f})\in\mathbb{Q}$. Montrer que \mathfrak{n} est un multiple de 3.

(5.65) Mines PSI 2015 Arthur Lacombe

Soit B une matrice nilpotente de $\mathfrak{M}_n(\mathbb{C})$. Soit $\lambda \in \mathbb{C}$ et $P \in \mathbb{C}[X]$. On pose $M = \lambda I_n + B$.

Montrer que P(M) est diagonalisable si et seulement s'il existe $\mu \in \mathbb{C}$ tel que $P(M) = \mu I_n$.

5.66 Mines PSI 2015 Édouard Le Goas

On pose $E = C^{\infty}(\mathbb{R}, \mathbb{R})$, $\mathfrak p$ un réel non nul de valeur absolue strictement inférieure à 1 et $\mathfrak q = 1 - \mathfrak p$. Soit $\mathfrak u$ l'application qui pour tout $\mathfrak f$ de E associe $\mathfrak u(\mathfrak f): \mathbb{R} \to \mathbb{R}$ telle que $\mathfrak u(\mathfrak f)(\mathfrak x) = \mathfrak f(\mathfrak p \mathfrak x + \mathfrak q)$.

- a. Montrer que u est un automorphisme.
- **b.** Montrer que les valeurs propres de u appartiennent à]-1;1].
- c. Montrer que si f est un vecteur propre, alors il existe $k \in \mathbb{N}$ tel que $f^{(k)} = 0$.
- d. Trouver les valeurs propres de u et les vecteurs propres associés.

(5.67) Mines PSI 2015 Ludovic Péron

Soit E un \mathbb{R} -espace vectoriel de dimension finie $n \ge 2$ et $\mathfrak{u} \in \mathcal{L}(E)$.

- a. u admet-il toujours une droite stable?
- b. u admet-il toujours un plan stable?

(5.68) Mines PSI 2015 Julien Venne

Soit $A \in GL_n(\mathbb{R})$ avec $A - A^{-1}$ diagonalisable dans \mathbb{R} et toutes ses valeurs propres distinctes.

- a. Montrer que A est diagonalisable. Idem pour A^{-1} .
- **b.** Qu'en est-il si les valeurs propres de $A A^{-1}$ ne sont pas toutes distinctes ?
- c. Reprendre les questions en supposant que c'est $A + A^{-1}$ qui est diagonalisable.

(5.69) CCP PSI 2015 Clément Suberchicot

- a. Soit $M \in GL_k(\mathbb{C})$, on suppose M^2 diagonalisable, montrer que M est diagonalisable.
- $\mathbf{b.} \ \mathrm{Soit} \ (A,B) \in GL_{\mathfrak{n}}(\mathbb{C})^2 \ \mathrm{et} \ N = \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}, \ \mathrm{montrer} \ \mathrm{que} \ N \ \mathrm{est} \ \mathrm{inversible} \ \mathrm{et} \ \mathrm{calculer} \ N^{-1}. \ \mathrm{Calculer} \ N^2.$

Soit $P \in \mathbb{C}[X]$, calculer $P(N^2)$. Si N est diagonalisable, montrer que AB est diagonalisable. Réciproque ?

(5.70) Petites Mines PSI 2015 Marin de Bonnières

Soit E un espace de dimension $n \ge 1$, $(u, v) \in \mathcal{L}(E)$, u avec n valeurs propres distinctes et $v \circ u = u \circ v$.

- **a.** Montrer que ν est diagonalisable.
- **b.** Montrer que $v \in \text{Vect}(\text{id}_{F}, u, \dots, u^{n-1})$.
- **c.** En déduire $\dim(C_{\mathfrak{u}})$ où $C_{\mathfrak{u}}$ est le commutant de \mathfrak{u} : $C_{\mathfrak{u}} = \{f \in \mathcal{L}(E) \mid f \circ \mathfrak{u} = \mathfrak{u} \circ f\}$.

5.71 Cachan PSI 2016 Alexandre Janot

Soit $A \in \mathcal{M}_n(\mathbb{R})$, on définit $C(A) = \{M \in \mathcal{M}_n(\mathbb{R}) \mid AM = MA\}$.

- a. Montrer que C(A) est une sous-algèbre de $\mathfrak{M}_{\mathfrak{n}}(\mathbb{R})$.
- **b.** Montrer que si $M \in C(A) \cap GL_n(\mathbb{R})$, alors $M^{-1} \in C(A)$.
- c. Soit D un matrice diagonale réelle dont tous les coefficients sont distincts deux à deux. Déterminer C(D). Montrer que (I_n, D, \dots, D^{n-1}) est une base de C(D).

On suppose dorénavant que n = 2.

- **d.** Quelles sont les matrices A telles que $\dim(C(A)) = 4$?
- **e.** Montrer que pour toute matrice $A \in \mathcal{M}_2(\mathbb{R})$, on a $\dim(C(A)) \geq 2$.
- **f.** Soit $A \in \mathcal{M}_2(\mathbb{R})$ telle que $\dim(C(A)) \geqslant 3$.

En utilisant $F = Vect(E_{1,1}, E_{1,2})$ et $G = Vect(E_{2,1}, E_{2,2})$, montrer qu'il existe $\lambda \in \mathbb{R}$ tel que $A = \lambda I_2$.

g. Trouver une base de C(A).

(5.72) Centrale Maths1 PSI 2016 Sylvin Bielle

a. Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{K})$. Donner une condition nécessaire et suffisante pour que A soit trigonalisable. Donner $A \in \mathcal{M}_n(\mathbb{C})$ qui soit non diagonalisable.

b. Soit $M \in \mathcal{M}_n(\mathbb{C})$. Montrer que pour tout $\varepsilon > 0$, il existe $A = (a_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathcal{M}_n(\mathbb{C})$ triangulaire supérieure et semblable à M telle que $\forall i \neq j, \ |a_{i,j}| \leqslant \varepsilon$.

Questions : pouvez-vous me donner toutes les CNS de diagonalisabilité que vous connaissez dans $\mathcal{M}_n(\mathbb{K})$?

(5.73) Centrale Maths1 PSI 2016 Elliott Jean-François

Soit $(A,B,C) \in \mathcal{M}_n(\mathbb{R})^3$, $a \in \mathbb{R}^*$ tels que pour $\mathfrak{p} \in \{1,2,3\}$, on ait $A^{\mathfrak{p}} = \mathfrak{a}^{\mathfrak{p}}(B+\mathfrak{p}C)$ (1).

- **a.** Montrer que la proposition (1) est vraie pour tout $p \in \mathbb{N}^*$.
- b. Montrer que tout vecteur propre de A appartient au noyau de C.
- c. Déterminer une condition pour que A soit diagonalisable.

(5.74) Mines PSI 2016 Erwann Alric II

Soit E un \mathbb{C} -espace vectoriel de dimension $n \geq 2$.

Soit \mathfrak{u} un endomorphisme de E tel que $\mathfrak{u}^2 = \mathrm{id}_E$. On dit que \mathfrak{u} est une involution.

- a. Étudier la diagonalisabilité de u.
- **b.** On suppose que $E_1(u)$ est de dimension 1. Montrer qu'il existe un vecteur $a \in E$ et θ une forme linéaire sur E tels que $\forall x \in E$, $u(x) = -x + \theta(x)a$.

$({f 5.75})$ Mines PSI 2016 Thomas Corbères II

Déterminer les différentes classes de similitude des matrices de $\mathcal{M}_3(\mathbb{C})$.

Indication : la classe de similitude d'une matrice A est l'ensemble des matrices semblables à A.

(5.76) Mines PSI 2016 Samy Essabar I

- **a.** Soit $A \in GL_n(\mathbb{C})$. Montrer que A diagonalisable $\iff A^3$ diagonalisable.
- **b.** Donner une matrice $A\in \mathfrak{M}_{n}(\mathbb{C})$ telle que A^{3} est diagonalisable alors que A ne l'est pas.
- **c.** Que se passe-t-il dans $\mathcal{M}_n(\mathbb{R})$?

(5.77) Mines PSI 2016 Jean Migliorini I

Soit
$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ n & 0 & 2 & \ddots & \vdots \\ 0 & n-1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & n \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$
. Trouver les valeurs propres de A en considérant son endomorphisme

associé dans un espace E judicieusement choisi.

(5.78) <u>Mines PSI 2016</u> Paul Mondou II

Soit une matrice $M \in \mathfrak{M}_n(\mathbb{C})$ et son polynôme caractéristique $\chi_M(X) = \sum_{k=0}^n \mathfrak{a}_k X^k$.

Montrer que $\forall \lambda \in Sp(M), |\lambda| \leqslant \sum_{k=0}^{n} |a_k|.$

5.79 *Mines PSI 2016* Hugo Tarlé II

Soit E un \mathbb{R} -espace vectoriel de dimension finie, $\mathfrak{u}\in\mathcal{L}(E),\,\nu_1,\cdots,\nu_p$ des endomorphismes non nuls de E. On suppose que $\forall n\in\mathbb{N},\,\,\mathfrak{u}^n=\sum\limits_{k=1}^p\lambda_k^n\nu_k\,\,\mathrm{avec}\,\,\lambda_1,\cdots,\lambda_p\,\,\mathrm{des}$ réels distincts deux à deux.

- a. Montrer que u est diagonalisable. Indication : on pourra montrer que $\forall P \in \mathbb{R}[X], \ P(u) = \sum_{k=1}^p P(\lambda_k) \nu_k$.
- $\textbf{b.} \ \text{Montrer qu'il existe une base de} \ \mathbb{R}_{p-1}[X], \ \text{not\'ee} \ (L_1, \cdots, L_p) \ \text{tel que} \ \forall (i,j) \in [\![1;p]\!]^2, \ L_i(\lambda_j) = \delta_{i,j}.$
- **c.** Montrer que $Sp(u) = \{\lambda_1, \dots, \lambda_p\}.$

5.80 Mines PSI 2016 Théo Taupiac I

Soit $M \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$ non nilpotente.

- a. Montrer que l'ensemble des $\lambda \in \mathbb{C}$ tels que M et λM soient semblables est fini.
- **b.** Qu'en est-il pour M nilpotente?

$(\mathbf{5.81})\,\underline{Mines\,PSI\,2016}\,$ Arthur Robbe II

Soit $A_n \in \mathcal{M}_n(\mathbb{K})$ définie par $(a,b) \in \mathbb{K}^2$ et $a_{i,j} = a$ si i = j, $a_{i,j} = b$ si |i-j| = 1 et $a_{i,j} = 0$ sinon. Quel est le spectre de A_n ?

(5.82) Mines PSI 2016 Hugo Saint-Vignes I

$$\mathrm{Soit}\;(\alpha_1,\cdots,\alpha_n)\in\;\mathbb{C}^n\;\mathrm{et}\;M=\begin{pmatrix}(0)&&&\alpha_n\\&&\cdot\\&&\cdot\\\alpha_1&&&(0)\end{pmatrix}\in\mathfrak{M}_n(\,\mathbb{C}).$$

- a. Trouver une CNS pour que M soit diagonalisable.
- **b.** Trouver les sous-espaces propres de M.

(**5.83**) *CCP PSI 2016* Adrien Boudy II

- **a.** Calculer A^n pour tout entier $n \in \mathbb{N}$.
- **b.** Montrer que A est inversible et donner son inverse.
- c. Donner les éléments propres de A. Caractère diagonalisable de A?
- d. Donner une autre façon de prouver que A est inversible, diagonalisable.

(5.84) CCP PSI 2016 Matthieu Cadiot I

Soit $f: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ défini par f(P) = R reste de la division euclidienne de X^2P par $D = X^4 - 1$.

- **a.** Montrer que f est un endomorphisme de $\mathbb{R}_3[X]$.
- **b.** f est-elle diagonalisable?
- **c.** f est-elle injective ?

[**5.85**] <u>CCP PSI 2016</u> David Espert II

Soit $a \in \mathbb{C}$ et $M = \begin{pmatrix} 1+a & 1 & -1 \\ 2-a & 2 & -2 \\ -1 & -1 & 1 \end{pmatrix}$. Trouver une CNS pour que M soit diagonalisable.

11

5.86 CCP PSI 2016 Sam Pérochon II

Soit E un K-espace vectoriel de dimension finie, H un hyperplan de E et u un endomorphisme de E.

- **a.** Montrer que : H stable par $\mathfrak{u} \Longleftrightarrow \exists \lambda \in \mathbb{K}, \ \operatorname{Im} (\mathfrak{u} \lambda \operatorname{id}_E) \subset H.$
- **b.** Trouver les sous-espaces stables de $A = \begin{pmatrix} 10 & -6 & -4 \\ 18 & -10 & -8 \\ -7 & 4 & 3 \end{pmatrix} \in \mathfrak{M}_3(\mathbb{R}).$

5.87) <u>CCP PSI 2016</u> Marie Rebière II

Soit
$$A = \begin{pmatrix} 3 & -2 \\ 4 & -3 \end{pmatrix}$$
.

- a. Donner deux conditions suffisantes mais non nécessaires pour qu'une matrice soit diagonalisable.
- **b.** Montrer que A est diagonalisable et donner P et D telles que $A = PDP^{-1}$.

On définit B par blocs par $B = \begin{pmatrix} 2A & 0 \\ 0 & 3A \end{pmatrix}$.

c. B est-elle diagonalisable? Donner ses valeurs propres.

5.88 CCP PSI 2016 Arthur Robbe II

Soit $E = \mathbb{R}^n$, $u \in \mathcal{L}(E)$ vérifiant $u^3 + u^2 + u = 0$.

- **a.** Déterminer $Ker(u) \cap Ker(u^2 + u + id_E)$.
- **b.** Montrer que $\operatorname{Im}(\mathfrak{u}) = \operatorname{Ker}(\mathfrak{u}^2 + \mathfrak{u} + \operatorname{id}_F)$. En déduire que $E = \operatorname{Ker}(\mathfrak{u}) \oplus \operatorname{Im}(\mathfrak{u})$.
- c. Soit ν la restriction de \mathfrak{u} à $\mathrm{Im}\,(\mathfrak{u})$. Quel lien entre $\deg(\chi_{\nu})$ et \mathfrak{u} ?
- **d.** Montrer que $0 \notin Sp(v)$. En déduire que rang (u) est pair.

(5.89) <u>E3A PSI 2016</u> Clément Suberchicot II

Soit $n \in \mathbb{N}^*$, $E = \mathbb{R}_n[X]$ et $U : E \to E$ défini par $U(P)(x) = e^x \int_{X}^{+\infty} e^{-t} P(t) dt$.

- a. Montrer que U est un endomorphisme de E.
- **b.** U est-il diagonalisable? Inversible? Si oui, déterminer U^{-1} .

(5.90) Petites Mines PSI 2016 Rogelio Escalona I

Soit N = $\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$. Trouver les éléments propres de N.

(5.91) ENS Cachan PSI 2017 Valentin Gorce et Iñigo Saez-Casares

Soit $A \in GL_n(\mathbb{R})$ dont les valeurs propres $\lambda_1, \dots, \lambda_n$ sont réelles (éventuellement répétées), $\alpha \in \mathbb{R}^*$ et $b \in \mathbb{R}^n$. On considère la suite $(x^{(k)})_{k \in \mathbb{N}}$ définie par $x^{(0)}$ donné, $\forall k \geq 0$, $x^{(k+1)} = x^{(k)} - \alpha r_k$ où $r_k = Ax^{(k)} - b$ (I).

- a. Trouver $B_\alpha\in \mathfrak{M}_n(\,\mathbb{R})$ et $c\in\,\mathbb{R}^n$ tels que $x^{(k+1)}=B_\alpha x^{(k)}+c.$
- **b.** Trouver une CNS sur α en fonction des λ_i pour que la méthode (I) converge : cela signifie que $\forall x^{(0)} \in \mathbb{R}^n$, la suite $(x^{(k)})_{k\geqslant 0}$ converge vers le vecteur ν : l'unique solution de Au = b.
- c. Montrer que si tous les λ_i ne sont pas de même signe, la méthode (I) ne converge pas.
- **d.** On suppose $\forall k \in [1; n]$, $\lambda_k > 0$ et que la méthode (I) converge. Montrer qu'il existe C, à exprimer en fonction des λ_i , tel que $0 < \alpha < C$. Soit $f_i : \alpha \mapsto |1 \lambda_i \alpha|$. Tracer les fonctions f_i .

Trouver α_{opt} tel que la méthode (I) converge le plus rapidement.

(5.92) <u>Centrale Maths1 PSI 2017</u> Aloïs Blarre

$$\mathrm{Soit}\; A\in \mathfrak{M}_{3,2}(\,\mathbb{R})\; \mathrm{et}\; B\in \mathfrak{M}_{2,3}(\,\mathbb{R})\; \mathrm{telles}\; \mathrm{que}\; AB=\begin{pmatrix} 1 & 0 & x \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

- a. AB est-elle inversible? Quelles valeurs peut prendre x?
- **b.** La matrice BA est-elle diagonalisable?
- **c.** Montrer que $Ker(B) \oplus Im(A) = \mathbb{R}^3$.

5.93 Centrale Maths1 PSI 2017 Manon Bové

- **a.** Soit $A \in \mathcal{M}_n(\mathbb{R})$ tel que $A^2 = A$. Quel peut être le rang de A?
- **b.** Soit $P = \{U \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{R}) \mid U^2 = U\}$. Combien existe-t-il de classes de similitude dans P?
- **c.** Soit $A \in \mathcal{M}_n(\mathbb{R})$ avec n pair et $A^2 = 0$. Quel peut être le rang de A? Soit m le rang maximal possible. Trouver un endomorphisme u de \mathbb{R}^n tel que $u^2 = 0$ et rang (u) = m.

(5.94) <u>Centrale Maths1 PSI 2017</u> Adrien Cassagne

Soit $n \in \mathbb{N}^*$ et E l'ensemble des matrices $A = (a_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathfrak{M}_n(\mathbb{C})$ dont la somme des coefficients de chaque colonne vaut $1: \forall j \in [\![1;n]\!], \ \sum\limits_{i=1}^n \alpha_{i,j} = 1.$

- **a.** Soit $A \in E$, montrer que 1 est valeur propre de A.
- **b.** Montrer que E est stable par produit.
- c. Montrer que si $\forall j \in [[1; n]], \sum_{i=1}^{n} |a_{i,j}| \leq 1$, alors $\forall \lambda \in Sp(A), |\lambda| \leq 1$.

$(\mathbf{5.95})\,\underline{Mines\,PSI\,2017}\,$ Manon Bové II

$$\mathrm{Soit}\;(a,b)\in\mathbb{R}^2.\;\mathrm{La\;matrice}\;M=\begin{pmatrix}a&b&0&\cdots&0&b\\b&a&\ddots&\ddots&&0\\0&\ddots&\ddots&\ddots&\ddots&\vdots\\\vdots&\ddots&\ddots&\ddots&\ddots&0\\0&&\ddots&\ddots&\ddots&b\\b&0&\cdots&0&b&a\end{pmatrix}\;\mathrm{est\text{-elle inversible}}\;?$$

(5.96) Mines PSI 2017 Adrien Cassagne II et Elliott Jean-François II

Soit $E = \{ f \in C^0(\mathbb{R}, \mathbb{R}) \mid f \text{ admet une limite finie en } +\infty \}$. Soit $T : f \mapsto g \text{ tel que } g(x) = f(x+1)$.

- a. Montrer que E est un espace vectoriel et que $T \in \mathcal{L}(E)$.
- **b.** Trouver les valeurs propres de T.

- a. Étudier la diagonalisabilité de A en fonction de a_1, \dots, a_n .
- b. Lorsque A est diagonalisable, déterminer une base de vecteurs propres de A.

- a. Déterminer le polynôme caractéristique de A. À quelles conditions A est-elle diagonalisable ?
- **b.** Déterminer si A est diagonalisable des conditions de convergence de la suite $(A^p)_{p\in\mathbb{N}}$.

5.99 Mines PSI 2017 Joseph Dumoulin I

- a. Montrer que $A \in \mathcal{M}_n(\mathbb{C})$ admet un polynôme annulateur de degré minimal dont on note k le degré.
- **b.** Soit $A \in \mathcal{M}_n(\mathbb{C})$ et $\lambda \notin Sp(A)$. Montrer que $(A \lambda I_n)^{-1}$ est un polynôme en A.

Soit $\lambda_1, \dots, \lambda_k$ des complexes qui ne sont pas dans le spectre de A.

c. Montrer qu'il existe une famille de complexes (c_1,\cdots,c_k) telle que $\sum\limits_{i=1}^k c_i(A-\lambda_iI_n)^{-1}=I_n.$

(5.100) Mines PSI 2017 Valentin Gorce I

Soit un entier $n \ge 2$.

- a. Soit $A \in GL_n(\mathbb{C})$, montrer que A diagonalisable \iff A^3 diagonalisable
- **b.** Trouver des contre-exemples dans $\mathcal{M}_n(\mathbb{C})$.
- **c.** Trouver des contre-exemples dans $GL_n(\mathbb{R})$.

[5.101] Mines PSI 2017 Thomas Laborde I

Soit E un espace de dimension finie $\mathfrak{n}\in\mathbb{N}^*$ et $\mathfrak{p}\in\mathcal{L}(E)$ un projecteur. On note ϕ l'endomorphisme de $\mathcal{L}(E)$ tel que : $\forall g \in \mathcal{L}(E), \ \varphi(g) = \frac{1}{2} \Big(g \circ p + p \circ g \Big)$. On considère également les ensembles suivants :

$$A = \left\{g \in \mathcal{L}(E) \mid \operatorname{Im}(g) \subset \operatorname{Ker}(p) \text{ et } \operatorname{Im}(p) \subset \operatorname{Ker}(g)\right\}, B = \left\{g \in \mathcal{L}(E) \mid \operatorname{Im}(g) \subset \operatorname{Im}(p) \text{ et } \operatorname{Im}(p) \subset \operatorname{Ker}(g)\right\}, C = \left\{g \in \mathcal{L}(E) \mid \operatorname{Im}(g) \subset \operatorname{Ker}(p) \text{ et } \operatorname{Ker}(p) \subset \operatorname{Ker}(g)\right\}, D = \left\{g \in \mathcal{L}(E) \mid \operatorname{Im}(g) \subset \operatorname{Im}(p) \text{ et } \operatorname{Ker}(p) \subset \operatorname{Ker}(g)\right\}.$$

- a. Donner une condition sur p pour que φ soit un projecteur.
- **b.** Montrer que A, B, C et D sont des sous-espaces vectoriels de $\mathcal{L}(E)$.
- c. Montrer φ est diagonalisable et déterminer ses valeurs propres.

(5.102) <u>Mines PSI 2017</u> Bastien Lamagnère I

a. Soit $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$ tel que AB = BA, et toutes les valeurs propres de A sont de multiplicité 1. Montrer qu'il existe $P \in GL_n(\mathbb{C})$ et deux matrices diagonales D et D' telles que $A = PDP^{-1}$ et $B = PD'P^{-1}$.

$$\mathrm{Soit}\ D = diag(d_1\cdots,d_n)\ \mathrm{et}\ D' = diag(d_1',\cdots,d_n').\ \mathrm{On\ pose}\ f: P \in C_{n-1}[X] \mapsto (P(d_1),\cdots,P(d_n)).$$

- b. Montrer que f est linéaire et injective.
- c. Montrer qu'il existe un polynôme $L \in \mathbb{C}_{n-1}[X]$ tel que $\forall k \in [1;n], L(d_k) = d_k'$.
- **d.** Montrer qu'il existe des complexes a_0, \dots, a_{n-1} tels que $B = a_0 I_n + a_1 A + \dots + a_{n-1} A^{n-1}$. Que peut-on en déduire sur le commutant de A défini par $\{B \in \mathcal{M}_n(\mathbb{C}) \mid AB = BA\}$?
- e. Est-ce toujours vrai si les valeurs propres de A ne sont plus de multiplicité 1?

5.103 Mines PSI 2017 Antoine Romero-Romero I

Soit $A \in GL_n(\mathbb{R})$ telle que $A + A^{-1} = I_n$.

- a. Calculer, pour tout entier $k\in\,\mathbb{N},$ la valeur de $A^k+A^{-k}.$
- b. Calculer det(A). Que peut-on dire de n?

a. Que dire des valeurs propres de A?

Soit λ la valeur propre de A de module maximal. On pose $\mathfrak{u}_n=\sin\left(2\pi \operatorname{Tr}\left(A^n\right)\right)$ et $\nu_n=\sin\left(2\pi\lambda^n\right)$.

b. Déterminer les natures des séries $\sum_{n\geqslant 1} u_n$ et $\sum_{n\geqslant 1} v_n$.

- a. Montrer qu'il n'existe pas de polynôme annulateur non nul de A de degré inférieur ou égal à 2.
- **b.** Trouver un polynôme annulateur de A et en déduire A^{-1} .
- c. Quels sont tous les polynômes qui annulent A?

(5.106) <u>CCP PSI 2017</u> Adrien Cassagne I

Soit $A \in GL_n(\mathbb{R})$. On définit l'application $f: \mathfrak{M}_n(\mathbb{R}) \to \mathfrak{M}_n(\mathbb{R})$ par $f(M) = 2 \operatorname{Tr}(M) A$.

- a. Montrer que f est un endomorphisme.
- **b.** f est-il diagonalisable?

(5.107) <u>CCP PSI 2017</u> Alexandre Chamley I et Elliott Jean-François I

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{C})$.

- a. Montrer que A diagonalisable $\Longrightarrow A^2$ diagonalisable.
- **b.** Est-il vrai que A^2 diagonalisable \Longrightarrow A diagonalisable ?
- c. Montrer que A^2 diagonalisable et A inversible \Longrightarrow A diagonalisable.

(5.108) CCP PSI 2017 Maxime Lacourcelle I

Soit $A \in \mathcal{M}_3(\mathbb{R})$ telle que $A^3 = 2A^2 - 3A$. La matrice A est-elle inversible ?

5.109 CCP PSI 2017 Cléa Maricourt I

Soit
$$A = \begin{pmatrix} 1 & a & a \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix}$$
.

- a. Déterminer le polynôme caractéristique de A.
- **b.** Discuter de la diagonalisabilité de A selon les valeurs de $a \in \mathbb{R}$.

(5.110) <u>CCP PSI 2017</u> Louise Piton II

Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ telle que $a_{i,j} = 0$ si i = j et $a_{i,j} = 1$ sinon.

- a. La matrice A est-elle diagonalisable ?
- b. Soit P un polynôme annulateur de A, montrer que les valeurs propres de A sont des racines de P.
- c. Calculer $(A + I_n)^2$. En déduire les valeurs propres possibles de A.
- **d.** Le sont-elles effectivement ?

(5.111) <u>CCP PSI 2017</u> Antoine Romero-Romero II

On considère l'application $f: M \mapsto M + Tr(M)I_n$.

- a. Montrer que f est un endomorphisme de $\mathcal{M}_n(\mathbb{C})$. Déterminer la dimension de Ker(f) et Im(f).
- b. Déterminer un polynôme annulateur de f de degré 2.
- **c.** f est-elle diagonalisable? f est-elle bijective? Si oui, calculer f^{-1} .

5.112 CCP PSI 2017 Roland Tournade II

Soit $n \ge 2$, $A \in \mathcal{M}_n(\mathbb{K})$ et $P \in \mathbb{K}[X]$ tel que P(A) soit triangulaire supérieure avec des coefficients diagonaux distincts deux à deux. Montrer que A est diagonalisable.

5.113 <u>E3A PSI 2017</u> Vincent Meslier

Soit
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. On veut résoudre l'équation $M^2 = A$.

- a. Montrer que A n'est pas diagonalisable mais seulement trigonalisable dans $\mathcal{M}_3(\mathbb{R})$.
- **b.** Trigonaliser A.
- c. Montrer que le spectre de $M \in \mathcal{M}_3(\mathbb{R})$ vérifiant $M^2 = A$ est inclus dans $\{-1,0,1\}$.

Estimer la dimension des sous-espaces propres correspondants.

- **d.** Montrer que 0 est valeur propre de M si $M^2 = A$.
- e. Trouver toutes les matrices M solution de $M^2 = A$.

5.114 <u>E3A PSI 2017</u> Grégoire Verdès

Soit f l'endomorphisme de \mathbb{R} euclidien canonique associé à $A=\frac{1}{5}\begin{pmatrix}7&4&0\\-6&-7&0\\0&0&-5\end{pmatrix}$.

- ${\bf a}$. Calculer ${\bf A}^2$. Interpréter ${\bf f}$. Donner ses éléments caractéristiques.
- **b.** Déterminer l'image par f du plan P d'équation x-y-z-5=0.

5.115) TPE, EIVP PSI 2017 Manon Bové I

Soit $n \ge 2$ et $A \in \mathcal{M}_n(\mathbb{R})$ telle que $3A^3 = A^2 + A + I_n$.

Montrer que la suite $(A^k)_{k \in \mathbb{N}}$ converge vers une matrice B de projecteur.

(5.116) ENS Ulm/Cachan PSI 2018 Thomas Gerbeaud

Soit $(A,B) \in \mathcal{M}_n(\mathbb{R})^2$. On dit que le système stationnaire discrétisé X' = AX + BU est contrôlable pour un entier $N \in \mathbb{N}^*$ si pour tout $(\widetilde{X_0}, \cdots, \widetilde{X_N}) \in \mathcal{M}_{n,1}(\mathbb{R})^{N+1}$, il existe $(U_0, \cdots, U_N) \in \mathcal{M}_{n,1}(\mathbb{R})^{N+1}$ tel que si on pose $X_0 = \widetilde{X_0}$ et $\forall k \in [1; N-1]$, $X_{k+1} = AX_k + BU_k$, alors $\forall k \in [0; N]$, $X_k = \widetilde{X_k}$.

- a. Déterminer le terme X_k ainsi défini en fonction de k.
- **b.** Soit $C=(B \quad AB \quad \cdots \quad A^{n-1}B)$ (matrice définie par bandes).

Si rang (C) < n, montrer qu'il existe $X \neq 0 \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que $\forall j \in \mathbb{N}, \ ^tXA^jB = 0$. Indication : on admettra avant le chapitre sur la réduction qu'il existe un polynôme unitaire de degré n qui annule A.

- c. Montrer qu'alors le système n'est contrôlable pour aucune valeur $N \in \mathbb{N}^*$.
- **d.** Si le système n'est pas contrôlable pour un certain entier $N \in \mathbb{N}$, montrer alors que l'application $F: (U_0, \cdots, U_{N-1}) \in \mathcal{M}_{n,1}(\mathbb{R})^N \mapsto \sum_{k=0}^{N-1} A^k B U_{N-k-1}$ est linéaire, non surjective.

 $\mathrm{En\ d\acute{e}duire\ qu'il\ existe\ }X\neq 0\in \mathfrak{M}_{n,1}(\,\mathbb{R})\ \mathrm{tel\ que\ }\forall (u_0,\cdots,u_{N-1})\in \mathfrak{M}_{n,1}(\,\mathbb{R})^N,\ ^tX\Big(\sum\limits_{k=0}^{N-1}A^kBu_{N-k-1}\Big)=0.$

(5.117) <u>Centrale Maths1 PSI 2018</u> Peio Betbeder

Soit $n \in \mathbb{N}^*$, $X \in \mathbb{R}^n$ non nul et E_X l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ qui ont X comme vecteur propre.

- a. Montrer que E_X est un espace vectoriel.
- **b.** Déterminer E_X . Quelle est sa dimension ?

Question de cours : montrer que si $u \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$, alors $\lambda \in Sp(u) \iff \chi_u(\lambda) = 0$.

5.118 Centrale Maths1 PSI 2018 Anaïs Chaumeil et Amélie Guyot

a. Trouver $A \in \mathcal{M}_3(\mathbb{R})$ telle que $A \neq I_3$ et $A^3 = I_3$.

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 = I_n$.

- **b.** On suppose que 1 n'est pas valeur propre de A. Montrer que n est pair. Exprimer A^2 en fonction de A et I_n . Soit $B \in \mathcal{M}_{n,1}(\mathbb{R})$, résoudre l'équation AX = X B d'inconnue $X \in \mathcal{M}_{n,1}(\mathbb{R})$.
- **c.** On suppose que $1 \in Sp(A)$. Soit $B \in \mathcal{M}_{n,1}(\mathbb{R})$, résoudre l'équation AX = X B d'inconnue $X \in \mathcal{M}_{n,1}(\mathbb{R})$.

5.119 Centrale Maths1 PSI 2018 Thibaud Vendrely

$$\mathrm{Soit}\; F: \mathfrak{M}_2(\,\mathbb{C})^2 \to \mathfrak{M}_4(\,\mathbb{C})\; \mathrm{d\acute{e}finie}\; \mathrm{par}\; F(A,B) = \left(\begin{matrix} \alpha B & b B \\ c B & d B \end{matrix}\right) \; (\mathrm{par}\; \mathrm{blocs}) \; \mathrm{si}\; A = \left(\begin{matrix} \alpha & b \\ c & d \end{matrix}\right).$$

- $\mathbf{a.}\ \mathrm{Montrer}\ \mathrm{que}\ F(A_1A_2,B_1B_2)=F(A_1,B_1)F(A_2,B_2).$
- **b.** Donner Tr(F(A,B)), det(F(A,B)), rang(F(A,B)) grâce à Tr(A), Tr(B), det(A), det(B), rang(A), rang(B).
- c. Déterminer une condition suffisante sur A et B pour que F(A,B) soit diagonalisable.

(5.120) <u>Mines PSI 2018</u> Charlotte Beaune et Santiago Monteagudo II

Déterminer toutes les classes de similitude de $\mathcal{M}_3(\mathbb{C})$.

5.121) Mines PSI 2018 Elisabeth Carreau-Gaschereau II

- **a.** Soit $(A,B) \in \mathcal{M}_2(\mathbb{C})^2$ tel que AB = BA. Montrer que B est un polynôme en A ou A un polynôme en B.
- **b.** Soit $(A, B) \in \mathcal{M}_3(\mathbb{C})^2$ tel que AB = BA. Est-ce que B est un polynôme en A ou A un polynôme en B?
- c. Soit $(A, B) \in \mathcal{M}_3(\mathbb{R})^2$ tel que AB = BA. Est-ce que B est un polynôme en A ou A un polynôme en B?

(5.122) Mines PSI 2018 Anaïs Chaumeil II et Adrien Sarrade II

Soit E un \mathbb{R} -espace vectoriel de dimension finie, $\mathfrak{u}\in\mathcal{L}(E),\,\mathfrak{n}\in\mathbb{N}^*,\,\nu_1,\cdots,\nu_n$ des endomorphismes non nuls et $(\lambda_1,\cdots,\lambda_n)\in\mathbb{R}^n$ des réels tous distincts. On suppose que $\forall k\in[0,n],\,\mathfrak{u}^k=\sum\limits_{i=1}^n\lambda_i^k\nu_i.$

- a. Montrer que $\forall P\in \mathbb{R}_n[X],\ P(\mathfrak{u})=\sum\limits_{i=1}^n P(\lambda_i)\nu_i$; puis que \mathfrak{u} est diagonalisable.
- **b.** Montrer que $\forall k \in \mathbb{N}, \ u^k = \sum_{i=1}^n \lambda_i^k \nu_i$.
- $\textbf{c.} \ \, \text{Trouver des polynômes} \ \, (L_1,\cdots,L_n) \in \ \, \mathbb{R}_{n-1}[X]^n \ \, \text{tels que} \, \, \forall i \in [\![1;n]\!], \, \, \forall k \in [\![1;n]\!], \, \, L_i(\lambda_k) = \delta_{i,k}.$
- **d.** Montrer que $Sp(u) = \{\lambda_1, \dots, \lambda_n\}$.
- e. Que peut-on dire des dimensions des sous-espaces propres de $\mathfrak u$ si $\dim(E)=\mathfrak n$?

(5.123) <u>Mines PSI 2018</u> Gauthier Crosio II

Soit E un \mathbb{R} -espace vectoriel de dimension finie et f, u, v trois endomorphismes de E et $(\lambda, \mu) \in \mathbb{R}^2$ tels que l'on ait $\begin{cases} f = \lambda u + \mu v \\ f^2 = \lambda^2 u + \mu^2 v. \end{cases}$ Montrer que f est diagonalisable. $f^3 = \lambda^3 u + \mu^3 v$

(5.124) <u>Mines PSI 2018</u> Mathilde Dutreuilh II

Soit E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$ tel que $u^3 = u$.

- a. Montrer que u^2 est un projecteur.
- **b.** Que peut-on dire de u si Tr (u) = rang(u)?

5.125 Mines PSI 2018 Elio Garnaoui II

a. Trouver un polynôme $P\in\,\mathbb{Z}[X]$ dont $\alpha=\cos\left(\frac{2\pi}{5}\right)$ est racine.

Déterminer une expression de a et $b = \cos\left(\frac{4\pi}{5}\right)$ avec des racines.

b. Soit $n \in \mathbb{N}^*$ et $A \in \mathfrak{M}_n(\mathbb{R})$ telle que $A^4 + A^3 + A^2 + A + I_n = 0$.

Montrer que si Tr $(A) \in \mathbb{Q}$, alors n est un multiple de 4.

c. Réciproquement, si $n \in \mathbb{N}^*$ est un multiple de 4, montrer qu'il existe une matrice $A \in \mathcal{M}_n(\mathbb{R})$ telle que l'on ait à la fois $A^4 + A^3 + A^2 + A + I_n = 0$ et $Tr(A) \in \mathbb{Q}$.

5.126 *Mines PSI 2018* Martin Gros I

Soit $n \in \mathbb{N}^*$ et A, B deux matrices diagonalisables de $\mathfrak{M}_n(\mathbb{C})$.

- $\textbf{a. Soit } D \in \mathfrak{M}_{\mathfrak{n}}(\,\mathbb{C}), \, \text{déterminer l'inverse de } P = \left(\begin{array}{cc} I_{\mathfrak{n}} & D \\ \mathfrak{0} & I_{\mathfrak{n}} \end{array} \right).$
- **b.** On suppose $Sp(A) \cap Sp(B) = \emptyset$. Montrer que toute matrice $C \in \mathfrak{M}_n(\mathbb{C})$ s'écrit C = DB AD avec une matrice $D \in \mathfrak{M}_n(\mathbb{C})$. En déduire que $N = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ est semblable à $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ pour toute $C \in \mathfrak{M}_n(\mathbb{R})$.
- **c.** Réciproquement, montrer que $\forall C \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{C}), \ \exists D \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{C}), \ C = DB AD \Longrightarrow Sp(A) \cap Sp(B) = \emptyset.$

(5.127) Mines PSI 2018 Lucie Jandet III

Soit $A \in \mathcal{M}_2(\mathbb{Z})$ telle qu'il existe un entier $\mathfrak{n} \in \mathbb{N}^*$ pour lequel $A^\mathfrak{n} = I_2$. Montrer que $A^{12} = I_2$.

(5.128) Mines PSI 2018 Pauline Lamaignère I

Soit E un espace vectoriel et $f \in \mathcal{L}(E)$. On pose $C(f) = \{u \in \mathcal{L}(E) \mid u \circ f = f \circ u\}$.

- a. Montrer que C(f) est un sous-espace vectoriel de $\mathcal{L}(E)$ qui est stable par composition.
- b. On suppose dans cette question que E est de dimension finie et que f est diagonalisable.

Soit $u \in \mathcal{L}(E)$. Montrer que $u \in C(f) \iff (\forall \lambda \in Sp(f), E_{\lambda}(f) \text{ est stable par } u)$. En déduire $\dim(C(f))$.

c. Soit $n \in \mathbb{N}^*$, $E = \mathcal{M}_n(\mathbb{R})$ et $f: M \mapsto {}^tM$. Déterminer $\dim(C(f))$.

5.129 Mines PSI 2018 Pierre Le Bouille II

Soit E un \mathbb{C} -espace vectoriel et $(f,g) \in \mathcal{L}(E)^2$ des symétries telles que $f \circ g + g \circ f = 0$.

- a. Montrer que dim(E) est pair.
- **b.** Montrer qu'il existe une base \mathcal{B} de E telle que $\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} I_n & 0 \\ 0 & -I_n \end{pmatrix}$ et $\operatorname{Mat}_{\mathcal{B}}(g) = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix}$.

5.130 <u>Mines PSI 2018</u> Claire Raulin II

Les matrices $A = \begin{pmatrix} 0 & 1 & 3 \\ 2 & 1 & -3 \\ 0 & 2 & 4 \end{pmatrix}$ et $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & -12 \\ 0 & 1 & 5 \end{pmatrix}$ sont-elles semblables ?

(5.131) <u>Mines PSI 2018</u> Titouan Sancier II

Soit E un \mathbb{R} -espace vectoriel de dimension \mathfrak{n} et $f \in \mathcal{L}(E)$ tel que $f^3 + f^2 - \operatorname{id}_E = 0$ et $Tr(f) \in \mathbb{Q}$. Montrer que \mathfrak{n} est un multiple de 3.

(5.132) Mines PSI 2018 Benoit Souillard II

Soit $A \in \mathcal{M}_2(\mathbb{C})$ telle que $A^2 \neq 0$. Montrer que $\forall n \in \mathbb{N}^*, \exists B_n \in \mathcal{M}_2(\mathbb{C}), A = B_n^n$.

5.133 Mines PSI 2018 Thibaud Vendrely II

Soit
$$P = X^5 - 2X^4 - 2X^3 + X^2 + 4X + 4$$
.

- a. Trouver quelles valeurs parmi -2, -1, 0, 1, 2 sont racines de P.
- **b.** Factoriser P dans $\mathbb{R}[X]$, puis dans $\mathbb{C}[X]$.
- **c.** Trouver les $n \in \mathbb{N}^*$ pour lesquels il existe $M \in \mathfrak{M}_n(\mathbb{R})$ telle que $Tr(M^3) = 0$, $det(M) = \pm 1$ et P(M) = 0.

5.134 Mines PSI 2018 Nicolas Ziegler I

Soit
$$n \in \mathbb{N}^*$$
 et $(A, B) \in \mathfrak{M}_n(\mathbb{C})^2$ tel que $Sp(A) \cap Sp(B) = \emptyset$.

- a. Montrer que $\chi_A(B)$ est inversible.
- $\mathbf{b.}\ \mathrm{Montrer}\ \mathrm{que}\ \forall Y\in \mathfrak{M}_{\mathfrak{n}}(\,\mathbb{C}),\ \exists X\in \mathfrak{M}_{\mathfrak{n}}(\,\mathbb{C}),\ AX-XB=Y.$

(5.135) <u>CCP PSI 2018</u> Charlotte Beaune et Florian Gaboriaud II

Soit
$$(A, B) \in \mathcal{M}_n(\mathbb{C})^2$$
 et $\alpha \in \mathbb{C}^*$ tels que $AB - BA = \alpha A$.

- **a.** Montrer que $\forall k \in \mathbb{N}$, $A^k B B A^k = k \alpha A^k$.
- **b.** Montrer que A est nilpotente. Indication : s'intéresser à $L: M \mapsto MB BM$.

5.136) *CCP PSI 2018* Peio Betbeder et Paul Simon I

Soit
$$A = \begin{pmatrix} 1 & \alpha & \alpha \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix}$$
.

- a. Déterminer le polynôme caractéristique de A.
- **b.** Discuter de la diagonalisabilité de A selon les valeurs de $\mathfrak{a} \in \mathbb{R}$.

(5.137) <u>CCP PSI 2018</u> Elisabeth Carreau-Gaschereau II

Soit
$$n \in \mathbb{N}^*$$
, $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A \neq 0$ et $f : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ définie par $f(M) = M + Tr(M)A$.

- a. Montrer que Tr $(A) \neq -1 \Longrightarrow f$ bijective.
- **b.** On suppose maintenant $\operatorname{Tr}(A) = -1$. Donner $\operatorname{Ker}(f)$. Montrer que $\operatorname{Im}(f) = \{M \in \mathfrak{M}_n(\mathbb{R}) \mid \operatorname{Tr}(M) = \emptyset\}$.
- **c.** On revient au cas général, soit $B \in \mathcal{M}_n(\mathbb{R})$. Résoudre M + Tr(M)A = B d'inconnue $M \in \mathcal{M}_n(\mathbb{R})$.

[5.138] CCP PSI 2018 Mathilde Dutreuilh II

Soit E un \mathbb{R} -espace vectoriel et $f \in \mathcal{L}(E)$.

- a. Montrer que si E est de dimension finie et f est diagonalisable, alors f² l'est aussi.
- **b.** On suppose que $f^3 = f$. Montrer que si f est injective alors f est surjective.
- **b.** On suppose que $f^3 = f$. Montrer que si f est surjective alors f est injective.

Question de cours : donner une CNS de diagonalisabilité d'une matrice carrée.

[5.139] CCP PSI 2018 Santiago Monteagudo II

Soit
$$n \ge 2$$
 et $(a_1, \dots, a_n) \in \mathbb{K}^n$ tel que $a_n \ne 0$ et $a_1 \dots a_{n-1} \ne 0$.

On définit la matrice
$$M \in \mathcal{M}_n(\mathbb{K})$$
 de la façon suivante : $M = \begin{pmatrix} 0 & \cdots & 0 & a_1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & a_{n-1} \\ a_1 & \cdots & a_{n-1} & a_n \end{pmatrix}$.

- **a.** Montrer que si $\mathbb{K} = \mathbb{R}$, alors M est diagonalisable. Trouver ses valeurs propres.
- **b.** Trouver un exemple avec $\mathbb{K} = \mathbb{C}$ où M n'est pas diagonalisable.
- c. Si $\mathbb{K} = \mathbb{C}$, donner une condition nécessaire et suffisante pour que M soit diagonalisable.

5.140 CCP PSI 2018 Claire Raulin I

Soit $n \in \mathbb{N}^*$ et $(A, B) \in \mathfrak{M}_n(\mathbb{K})^2$ tel que $P = \chi_A = \chi_B$.

- a. Montrer que si P possède n racines distinctes alors les A et B sont semblables.
- b. Trouver deux telles matrices carrées telles que A et B ne sont pas semblables.

- a. A est-elle diagonalisable ? Inversible ? Donner ses éléments propres.
- **b.** Soit $B = \begin{pmatrix} A & A \\ A & A \end{pmatrix}$. Donner les éléments propres de B.

(5.142) <u>E3A PSI 2018</u> Vincent Barreau

On se donne quatre points A_0 , B_0 , C_0 et D_0 dans le plan qui forment un parallélogramme $A_0B_0C_0D_0$. On construit ensuite par récurrence quatre suites de points par $\forall n \in \mathbb{N}$, A_{n+1} (resp. B_{n+1} , C_{n+1} , D_{n+1}) est le milieu du segment $[A_nB_n]$ (resp. $[B_nC_n]$, $[C_nD_n]$, $[D_nA_n]$).

- a. Montrer que $\forall n \in \mathbb{N}, \ A_n B_n C_n D_n$ est un parallélogramme.
- $\textbf{b.} \ \text{Calculer les affixes des points} \ A_{n+1}, \ B_{n+1}, \ C_{n+1}, \ D_{n+1} \ \text{en fonction de celles de } A_n, \ B_n, \ C_n, \ D_n.$
- c. Déterminer $\lim_{n\to+\infty} a_n$, $\lim_{n\to+\infty} b_n$, $\lim_{n\to+\infty} c_n$, $\lim_{n\to+\infty} d_n$.

(5.143) <u>E3A PSI 2018</u> Anaïs Chaumeil

Soit $E=C^2([0;1],\mathbb{R})$. Pour $f\in E$ et $x\in [0;1]$, on pose $T(f)(x)=\int_0^1 Min(x,t)f(t)dt$.

- a. Montrer que T ainsi définie est un endomorphisme de E.
- b. Soit f un vecteur propre de T. Montrer que f satisfait une équation différentielle de la forme $y''=\beta y$ avec β à déterminer en fonction de la valeur propre associée à f.
- c. Réciproquement, si f est solution non nulle de $y'' = \beta y$, à quelle(s) condition(s) f est vecteur propre de T.
- d. Déterminer le spectre de T.

(5.144) <u>Petites Mines PSI 2018</u> Baptiste Egreteau II

a. Soit B et C deux matrices semblables de $\mathfrak{M}_n(\mathbb{C})$ et $x \in \mathbb{C} \setminus \operatorname{Sp}(A)$.

Les matrices $xI_n - B$ et $xI_n - C$ sont-elles semblables? Et $(xI_n - B)^{-1}$ et $(xI_n - C)^{-1}$?

b. Soit $A \in \mathcal{M}_n(\mathbb{C})$ et $x \in \mathbb{C} \setminus Sp(A)$. Montrer que Tr $((xI_n - A)^{-1}) = \frac{\chi_A'(x)}{\chi_A(x)}$.

(5.145) <u>Centrale Maths1 PSI 2019</u> Elaia Mugica

Soit $n \in \mathbb{N}^*$ et $(A,B) \in \mathfrak{M}_n(\mathbb{C})^2$. On pose $M = \begin{pmatrix} \mathfrak{0}_n & A \\ B & \mathfrak{0}_n \end{pmatrix}$.

a. On suppose M diagonalisable. Montrer que AB est diagonalisable.

On suppose dorénavant AB diagonalisable et inversible.

- **b.** Montrer que M est diagonalisable.
- c. Montrer que M est inversible de deux manières différentes.

(**5.146**) <u>Mines PSI 2019</u> Tom Boileau II

Soit $A \in \mathcal{M}_2(\mathbb{Z})$ telle qu'il existe un entier $n \ge 1$ tel que $A^n = I_2$. Montrer que $A^{12} = I_2$.

5.147 <u>Mines PSI 2019</u> Thomas Brémond II

$$\mathrm{Pour}\ f\in E=C^0([0;1],\,\mathbb{R}),\ \mathrm{on}\ \mathrm{definit}\ T(f):[0;1]\to\,\mathbb{R}\ \mathrm{par}\ T(f)(x)=(1-x)\int_0^x tf(t)dt+x\int_x^1(1-t)f(t)dt.$$

- a. Montrer que T est un endomorphisme injectif de E.
- **b.** Donner les valeurs propres et les sous-espaces propres de T.

5.148 Mines PSI 2019 Charles Broquet II

Soit $\mathfrak{n} \in \mathbb{N}^*$ et $f : \mathbb{R}_{\mathfrak{n}}[X] \to \mathbb{R}_{\mathfrak{n}}[X]$ défini par $f(P) = \mathfrak{n} X P(X) - (X^2 - 1) P'(X).$

- **a.** Montrer que f est un endomorphisme de $\mathbb{R}_n[X]$.
- **b.** Trouver les solutions polynomiales sur] -1; 1[de l'équation (E) : $nxy (x^2 1)y' = \lambda y$ avec $\lambda \in \mathbb{R}$.
- c. Quels sont les valeurs propres et sous-espaces propres de f? Est-il diagonalisable?
- d. Déterminer Tr (f), det(f), rang (f).

$ig({f 5.149} ig) {\it Mines~PSI~2019} \ { m Mathis~Chénet~I}$

Soit $n \in \mathbb{N}^*$ et $D \in \mathfrak{M}_n(\mathbb{C})$.

Soit A et B deux matrices diagonalisables de $\mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$ telles que $Sp(A) \cap Sp(B) = \emptyset$.

- a. Donner l'inverse de $\begin{pmatrix} I_n & D \\ 0_n & I_n \end{pmatrix}$.
- **b.** Montrer que $\forall C \in \mathfrak{M}_n(\mathbb{C}), \ \exists D \in \mathfrak{M}_n(\mathbb{C}), \ DB AD = C.$
- **c.** Montrer que $N = \begin{pmatrix} A & C \\ 0_n & B \end{pmatrix}$ et $\begin{pmatrix} A & 0_n \\ 0_n & B \end{pmatrix}$ sont semblables.
- **d.** N est-elle diagonalisable ? Commenter le cas n = 1.
- e. Montrer que N est diagonalisable d'une autre manière.

5.150) Mines PSI 2019 Carla Chevillard II

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 - A + I_n = 0$.

- a. Calculer det(A).
- **b.** Montrer que n est pair et que Tr $(A) \in \mathbb{N}$.

Question de cours : montrer que si $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$, alors $\overline{\lambda} \in \operatorname{Sp}_{\mathbb{C}}(A)$ et que $\mathfrak{m}_{\lambda}(A) = \mathfrak{m}_{\overline{\lambda}}(A)$.

(5.151) Mines PSI 2019 Kévin Dufrechou II

$$\mathrm{Soit}\; (\alpha,b,c) \in \, \mathbb{R}^3. \; \mathrm{On\;pose}\; J = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \; \mathrm{et}\; M = \begin{pmatrix} \alpha & c & b \\ b & \alpha & c \\ c & b & \alpha \end{pmatrix}.$$

- **a.** La matrice J est-elle diagonalisable dans $\mathfrak{M}_3(\mathbb{R})$? Dans $\mathfrak{M}_3(\mathbb{C})$?
- **b.** La matrice M est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$? Dans $\mathcal{M}_3(\mathbb{C})$?

5.152 Mines PSI 2019 Fabien Dupuis II

$$\mathrm{Soit}\; k \in \mathbb{C}\; \mathrm{et}\; A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & k & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

- **a.** Si $k \in \mathbb{R}$, la matrice A est-elle diagonalisable dans $\mathcal{M}_4(\mathbb{R})$? Si oui, la diagonaliser.
- **b.** Si $k \in \mathbb{C}$, pour quelles valeurs de k la matrice A est-elle diagonalisable ?

${f (5.153)}\, { ext{Mines PSI 2019}}\,$ Mathis Girard II

- **a.** Soit $A \in \mathcal{M}_2(\mathbb{C})$ telle que Tr (A) = 0. Montrer que A est soit diagonalisable, soit nilpotente.
- **b.** Si $A \in \mathcal{M}_3(\mathbb{C})$ et Tr (A) = 0, A est-elle forcément diagonalisable ou nilpotente?

5.154 Mines PSI 2019 Lola Josseran II

Soit $M = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 3 & -2 \\ 1 & 1 & 0 \end{pmatrix}$ et f l'endomorphisme de \mathbb{R}^3 canoniquement associé à M.

- **a.** Caractériser l'endomorphisme $f id_{\mathbb{R}^3}$.
- **b.** Donner les sous-espaces de \mathbb{R}^3 stables par f.

5.155) Mines PSI 2019 Benoît Le Morvan II

a. Trouver un polynôme $P \in \mathbb{Z}[X]$ dont $\mathfrak{a} = cos\left(\frac{2\pi}{5}\right)$ est racine.

Déterminer une expression de a et $b = \cos\left(\frac{4\pi}{5}\right)$ avec des racines.

b. Soit $n \in \mathbb{N}^*$ et $A \in \mathfrak{M}_n(\mathbb{R})$ telle que $A^4 + A^3 + A^2 + A + I_n = 0$.

Montrer que si Tr $(A) \in \mathbb{Q}$, alors n est un multiple de 4.

c. Réciproquement, si $n \in \mathbb{N}^*$ est un multiple de 4, montrer qu'il existe une matrice $A \in \mathcal{M}_n(\mathbb{R})$ telle que l'on ait à la fois $A^4 + A^3 + A^2 + A + I_n = 0$ et $Tr(A) \in \mathbb{Q}$.

5.156 <u>Mines PSI 2019</u> Enola Soenen II

$$\mathrm{Soit}\; (a,b,c) \in \, \mathbb{R}^3 \; \mathrm{et}\; A = \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{pmatrix}.$$

- ${\tt a.}$ Trouver une condition nécessaire et suffisante sur ${\tt a,b,c}$ pour que A soit diagonalisable.
- **b.** Si A est diagonalisable, déterminer $(\alpha_n)_{n\in\mathbb{N}}$ et $(\beta_n)_{n\in\mathbb{N}}$ telles que $\forall n\in\mathbb{N},\ A^n=\alpha_nA+\beta_nI_4$.

(5.157) Mines PSI 2019 Tanguy Sommet I

Soit $A \in \mathcal{M}_2(\mathbb{C})$. Montrer que : A diagonalisable \iff $(\forall Q \in \mathbb{C}[X] \setminus \mathbb{C}_0[X], \exists M \in \mathcal{M}_2(\mathbb{C}), \ Q(M) = A)$. Questions de cours : conditions nécessaires et suffisantes de diagonalisabilité.

(5.158) <u>CCP PSI 2019</u> Augustin Aumont et Enola Soenen II

Soit $E = C^0([0;1], \mathbb{R})$ et $\phi: f \mapsto g$ où g est défini par g(0) = f(0) et $g(x) = \frac{1}{x} \int_0^x f(t) dt$ si $x \in]0;1]$.

- a. Montrer que φ est un endomorphisme de E.
- **b.** φ est-il surjectif? Montrer que 0 n'est pas valeur propre de φ .
- c. Montrer que 1 est valeur propre de φ . Déterminer $E_1(\varphi)$.
- d. Déterminer les autres valeurs propres de φ et leurs espaces propres associés.

${f (5.159)}\, \underline{CCP\; PSI\; 2019}\;$ Réjane Bastien-Amaré et Fabien Dupuis I

On donne $M = \begin{pmatrix} A & B \\ 0_n & A \end{pmatrix}$ où A et B sont deux matrices complexes, carrées de taille n, qui commutent.

- a. Montrer que si U est semblable à V, pour tout polynôme R, R(U) est semblable à R(V).
- **b.** Pour $P \in \mathbb{C}[X]$, exprimer P(M) en fonction de P(A), P'(A) et B.
- c. Montrer que si A est diagonalisable et B nulle, alors M est diagonalisable.
- d. Démontrer la réciproque.

5.160 CCP PSI 2019 Tom Boileau et Charles Broquet II

$$\mathrm{Soit}\; x \in \mathbb{R}\; \mathrm{et}\; n \geqslant 1. \; \mathrm{On}\; \mathrm{d\acute{e}finit}\; M_n(x) \in \mathfrak{M}_n(\mathbb{R}) \; \mathrm{par}\; M_n(x) = \begin{pmatrix} x & 1 & 0 & \dots & 0 \\ 1 & x & 1 & \ddots & \vdots \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \dots & 0 & 1 & x \end{pmatrix}.$$

- $\textbf{a. Pour } n \geqslant 3, \text{ trouver } a \text{ et } b \text{ en fonction de } x \text{ tels que } \det(M_n(x)) = a \det(M_{n-1}(x)) + b \det(M_{n-2}(x)).$ Soit $\theta \in \mathbb{R} \setminus \pi\mathbb{Z}$, on pose $\Delta_n = \det(M_n(2\cos(\theta)).$
- **b.** Pour $n \ge 3$, donner Δ_n en fonction de Δ_{n-1} , Δ_{n-2} et θ . En déduire que $\forall n \in \mathbb{N}^*$, $\Delta_n = \frac{\sin((n+1)\theta)}{\sin(\theta)}$
- c. La matrice $M_n(x)$ est-elle diagonalisable?
- **d.** Trouver les valeurs propres de $M_n(x)$.

5.161 CCP PSI 2019 Axel Brulavoine II

Soit $n \in \mathbb{N}^*$ et $\mathfrak{u} \in \mathcal{L}(\mathbb{C}^n)$.

- $\mathbf{a}.$ Montrer que si $\mathfrak u$ est diagonalisable alors $\mathfrak u^2$ est diagonalisable.
- b. Montrer que la réciproque de la question précédente est fausse.
- **c.** Soit $\lambda \in \mathbb{C}^*$, montrer que $\operatorname{Ker}(\mathfrak{u}^2 \lambda^2 \operatorname{id}_{\mathbb{C}^n}) = \operatorname{Ker}(\mathfrak{u} \lambda \operatorname{id}_{\mathbb{C}^n}) \oplus \operatorname{Ker}(\mathfrak{u} + \lambda \operatorname{id}_{\mathbb{C}^n})$.
- d. Montrer que la réciproque de la question a. est vraie si u est bijective.

(**5.162**) *CCP PSI 2019* Mathis Chénet II

Soit
$$n \in \mathbb{N}^*$$
 et $A = (a_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathfrak{M}_n(\mathbb{R})$ telle que $\forall i \in [\![1;n]\!], \ \alpha_{i,j} > 0$ et $\sum_{i=1}^n \alpha_{i,j} = 1$.

a. Montrer que 1 est valeur propre de A.

Soit $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$ et $X \in \mathcal{M}_{n,1}(\mathbb{C})$ tel que ${}^tX = (x_1 \cdots x_n)$ un vecteur propre associé à λ . Soit $k \in [\![1;n]\!]$ l'un des indices tel que $|x_k| = \underset{1 \le i \le n}{\operatorname{Max}} |x_i|$.

- **b.** Montrer que $|\lambda| \le 1$ et que $|a_{k,k} \lambda| \le \sum_{\substack{j=1 \ j \neq k}}^n |a_{k,j}|$.
- **c.** On suppose que $|\lambda| = 1$. Montrer que $\lambda = 1$.

(5.163) CCP PSI 2019 Thomas Crété et Léo Simplet II

Soit $n \in \mathbb{N}^*$ et $M \in \mathfrak{M}_n(\mathbb{C})$ telle que $M^2 + {}^tM = I_n$.

- a. Montrer que si $P \in \mathbb{C}[X]$ annule M, les valeurs propres de M sont des racines de P.
- **b.** On suppose que M est symétrique. Montrer que M est diagonalisable et que $Tr(M) \times det(M) \neq 0$.
- c. On ne suppose plus M symétrique. Montrer que M est toujours diagonalisable.
- d. Montrer que M est inversible si et seulement si 1 n'est pas valeur propre de M.

(5.164) CCP PSI 2019 Louis Destarac et Victor Margueritte II

Soit f un endomorphisme de \mathbb{R}^3 tel que $f^3 = \mathrm{id}_{\mathbb{R}^3}$ et $f \neq \mathrm{id}_{\mathbb{R}^3}$.

- a. Montrer que 1 est valeur propre de f.
- **b.** Montrer que $\mathbb{R}^3 = \text{Ker}(f \text{id }_{\mathbb{R}^3}) \oplus \text{Ker}(f^2 + f + \text{id }_{\mathbb{R}^3})$.
- $\mathbf{c.} \ \mathrm{Trouver} \ \mathrm{une} \ \mathrm{base} \ \mathcal{B} = (\nu_1, \nu_2, \nu_3) \ \mathrm{de} \ \mathbb{R}^3 \ \mathrm{telle} \ \mathrm{que} \ \mathrm{Mat} \ _{\mathcal{B}}(f) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$

5.165 *CCP PSI 2019* Romain Galea II

Soit $A = \begin{pmatrix} 0 & 3 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$. Pour tout entier $n \in \mathbb{N},$ on pose $\mathfrak{u}_n = Tr\ (A^n).$

- a. En utilisant un polynôme annulateur de A, établir une relation entre $u_{n+3}, u_{n+2}, u_{n+1}$ et u_n .
- **b.** En déduire que $\forall n \geq 2$, $u_n \in \mathbb{N}^*$.
- c. Étudier la convergence de $\sum_{n\geqslant 2} \frac{1}{u_n}$.

5.166) <u>CCP PSI 2019</u> Lola Josseran II

Soit $n \in \mathbb{N}^*$ et $\varphi : P \mapsto P(1 - iX)$.

- a. Montrer que ϕ est un endomorphisme de $E=\mathbb{C}_n[X].$
- b. Montrer que si $Q \in \mathbb{C}[X]$ est annulateur de φ , les valeurs propres complexes de φ sont des racines de Q.
- c. Calculer φ^4 . En déduire que φ est bijective et diagonalisable.
- **d.** Quelles sont les valeurs propres possibles de φ ? Montrer que $1 \in Sp(\varphi)$.
- e. Trouver un vecteur propre de degré 1 associé à la valeur propre –i.
- f. Retrouver les résultats de la question c. avec une autre méthode et en déduire le spectre de φ .

Donner aussi la dimension des différents sous-espaces propres.

5.167 <u>CCP PSI 2019</u> Thomas Méot I

a. Énoncer le théorème de CAYLEY-HAMILTON.

Soit pour les deux prochaines questions $n \in \mathbb{N}^*$ et $(A, B, C) \in \mathfrak{M}_n(\mathbb{C})^3$ tel que $C \neq \mathfrak{0}_n$ et AC = CB.

- **b.** Montrer que $\forall P \in \mathbb{C}[X], P(A)C = CP(B)$.
- c. En déduire que A et B ont au moins une valeur propre commune.

Soit $n \in \mathbb{N}^*$ et $(A, B, C) \in \mathfrak{M}_n(\mathbb{C})^3$ tel que A et B ont une valeur propre commune.

d. Existe-t-il une matrice $C \in \mathcal{M}_n(\mathbb{C})$ non nulle telle que AC = CB?

(**5.168**) *CCP PSI 2019* Tanguy Sommet I

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$, on définit $f_A : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ par $f_A(M) = AM$.

- **a.** Montrer que f_A est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- **b.** Montrer que $A^2=A$ si et seulement si f_A est un projecteur de $\mathfrak{M}_{\mathfrak{n}}(\mathbb{R}).$
- c. Montrer que A est diagonalisable si et seulement si f_A est diagonalisable.
- d. Construire un vecteur propre de f_A (resp. A) via un vecteur propre de A (resp. f_A).
- e. Montrer que A et f_A ont le même spectre.

(**5.169**) <u>CCP PSI 2019</u> Julien Tissot II

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 - A^2 + A - I_n = 0$.

- a. Montrer que les valeurs propres de A sont racines de $P=X^3-X^2+X-1$.
- b. En déduire le déterminant de A.
- **c.** Montrer que Tr (A) est un entier.

5.170 CCP PSI 2019 Quentin Vacher II

Soit $n \ge 2$ et E un \mathbb{R} -espace vectoriel de dimension n.

Soit $\ell: E \to \mathbb{R}$ une forme linéaire, $\mathfrak{a} \in E$ et $\mathfrak{f}: E \to E$ défini par $\mathfrak{f}(x) = \ell(\mathfrak{a})x - \ell(x)\mathfrak{a}$.

a. Montrer que f est un endomorphisme de E. Calculer f(a).

On suppose pour les trois prochaines questions que $\ell(a) \neq 0$.

- **b.** Soit $x \in E$ tel que $f(x) = 0_E$. Montrer que $x \in Vect(a)$. En déduire Ker(f).
- c. Si $x \in Ker(\ell)$, calculer f(x). En déduire le spectre de f et les sous-espaces propres associés.
- d. L'endomorphisme f est-il diagonalisable?

On suppose pour les deux prochaines questions que $\ell(a) = 0$.

- e. Calculer $f(Ker(\ell))$. Déterminer f^2 et en déduire un polynôme annulateur de f.
- f. L'endomorphisme f est-il diagonalisable?

5.171 Petites Mines PSI 2019 Réjane Bastien-Amaré II

$$\text{On d\'efinit } (x_n)_{n \in \mathbb{N}}, \, (y_n)_{n \in \mathbb{N}} \text{ et } (z_n)_{n \in \mathbb{N}} \text{ par } (x_0, y_0, z_0) \in \mathbb{R}^3 \text{ et } \forall n \in \mathbb{N}, \\ \begin{cases} x_{n+1} = -\frac{x_n}{4} + \frac{y_n}{2} + \frac{z_n}{2} \\ y_{n+1} = -\frac{x_n}{2} + \frac{y_n}{4} + \frac{z_n}{2} \\ z_{n+1} = -\frac{x_n}{2} + \frac{y_n}{2} + \frac{z_n}{4} \end{cases}$$

Montrer que ces trois suites convergent et donner leurs limites en fonction de x₀, y₀ et z₀.

5.172 ICNA PSI 2019 Léa Deveyneix II

Soit $n \in \mathbb{N}^*$ et $A \in \mathfrak{M}_n(\mathbb{C})$ telle qu'il existe $p \in \mathbb{N}^*$ tel que $A^p = I_n$.

Que pouvez-vous dire de la matrice A?

(**5.173**) <u>X *PSI* 2020</u> Matthieu Darius II

$$\mathrm{Soit}\ n\in\mathbb{N}^*,\, (\alpha_0,\alpha_1,\cdots,\alpha_{n-1})\in\mathbb{Z}^n\ \mathrm{et\ la\ matrice}\ C=\begin{pmatrix}0&\cdots&\cdots&0&-\alpha_0\\1&\ddots&&\vdots&-\alpha_1\\0&\ddots&\ddots&\vdots&\vdots\\\vdots&\ddots&\ddots&0&\vdots\\0&\cdots&0&1&-\alpha_{n-1}\end{pmatrix}.$$

a. Déterminer le polynôme caractéristique P de C.

On note $(\lambda_1, \dots, \lambda_n)$ les racines complexes de P.

b. Montrer que, pour tout entier $k \in \mathbb{N}$, le polynôme $P_k = \prod_{i=1}^n (X - \lambda_i^k)$ est à coefficients entiers.

5.174) *X PSI 2021* Arthur Riché I

Soit $n \ge 1$ et E un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$ tel que $E \setminus GL_n(\mathbb{C}) = \{0\}$.

Quelles sont les dimensions possibles pour E? Indication : tester pour les petites valeurs de d = dim(E).

5.175 ENS Cachan PSI 2021 Antoine Greil

Soit un polynôme $P \in \mathbb{R}[X]$.

- a. Donner une condition nécessaire et suffisante pour que P soit surjectif de $\mathbb R$ dans $\mathbb R$.
- b. Donner une condition nécessaire et suffisante pour que P soit injectif sur \mathbb{R} .
- **c.** Supposons $deg(P) \ge 2$. Montrer que $f: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$ définie par f(M) = P(M) n'est pas injective.
- **d.** Supposons que la fonction polynomiale $P: \mathbb{R} \to \mathbb{R}$ est bijective. Montrer que la restriction de la fonction f de la question précédente est injective sur l'ensemble des matrices diagonalisables dans $\mathcal{M}_n(\mathbb{R})$.

(5.176) <u>Centrale Maths1 PSI 2021</u> Tinaël Gelpe

Soit $n \in \mathbb{N}^*$, $A \in \mathfrak{M}_n(\mathbb{C})$ dont les valeurs propres distinctes sont $\lambda_1, \dots, \lambda_p$ avec $p \geqslant 2$.

On suppose de plus que $\forall i \in [\![2;p]\!], \ |\lambda_i| < |\lambda_1| \ (*).$

Pour tout entier $k \in \mathbb{N}$ tel que $Tr\left(A^k\right) \neq 0$, on pose $t_k = \frac{Tr\left(A^{k+1}\right)}{Tr\left(A^k\right)}.$

- a. Montrer que les t_k sont définis à partir d'un rang k_0 et que $(t_k)_{k \geqslant k_0}$ converge vers une limite à déterminer.
- b. Les résultats de la question a. sont-ils encore vérifiés si (*) ne l'est plus ?

c. Montrer que
$$A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 3 & 1 \\ 4 & -4 & -1 \end{pmatrix}$$
 est semblable à $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

d. Déterminer $\lim_{k\to+\infty} \frac{A^k}{k}$.

5.177 <u>Centrale Maths1 PSI 2021</u> Clément Lérou

Soit $f: \mathbb{R}[X] \to \mathbb{R}[X]$ définie par f(P) = P(X+1).

- **a.** Justifier que f est un endomorphisme de $\mathbb{R}[X]$.
- **b.** Déterminer Ker(g) et Im(g) si $g: P \mapsto P(X+1) P(X)$.
- **c.** Déterminer, pour tout entier $k \in \mathbb{N}^*$, $Ker(g^k)$ et $Im(g^k)$.

Soit un entier $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_{n+1}(\mathbb{R})$ la matrice de la restriction de f à $R_n[X]$ dans la base canonique.

On pose aussi la matrice $B = A^{t}A$.

- d. Déterminer A et det(A). A est-elle diagonalisable ?
- e. Trouver l'inverse de B.

Questions de cours :

- Donner l'inégalité de Markov.
- Donner l'inégalité de BIENAYMÉ-TCHEBYCHEV.
- Énoncer le théorème spectral version vectorielle.

(5.178) <u>Mines PSI 2021</u> Mathilde Arnaud I

Soit $n \in \mathbb{N}^*$ et $C = \{ f \in \mathcal{L}(\mathcal{M}_n(\mathbb{R})) \mid \forall M \in \mathcal{M}_n(\mathbb{R}), \ f(M^T) = f(M)^T \}$. On note traditionnellement $S_n(\mathbb{R})$ l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$ et $A_n(\mathbb{R})$ celui des matrices antisymétriques.

- a. Montrer que C est un sous-espace vectoriels de $\mathcal{L}(\mathcal{M}_n(\mathbb{R}))$.
- **b.** Montrer que $f \in C$ si et seulement si $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ sont stables par f.
- c. En déduire la dimension de C.
- d. Exhiber un endomorphisme non diagonalisable de C.

5.179 <u>Mines PSI 2021</u> Thomas Boudaud II

On considère la matrice $A = \begin{pmatrix} 1 & 3 & 0 \\ 3 & -2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$.

- a. Donner tous les sous-espaces de \mathbb{R}^3 stables par A.
- **b.** Quelle est la structure de $C(A) = \{M \in M_3(\mathbb{R}) \mid AM = MA\}$? Déterminer sa dimension.
- $\textbf{c.} \ \, \mathrm{Quelles} \ \, \mathrm{sont} \ \, \mathrm{les} \ \, \mathrm{matrices} \ \, M \in \mathfrak{M}_{3}(\,\mathbb{R}) \ \, (\mathrm{resp.} \ \, M \in \mathfrak{M}_{3}(\,\mathbb{C})) \ \, \mathrm{telles} \ \, \mathrm{que} \ \, M^{2} = A \,\, ?$

5.180 <u>Mines PSI 2021</u> Aloïs Doucet I

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{K})$ diagonalisable dans $\mathcal{M}_n(\mathbb{K})$, on pose $B = A^3 + A + I_n$.

- **a.** Si $\mathbb{K} = \mathbb{R}$, exprimer A comme un polynôme en B.
- **b.** Si $\mathbb{K} = \mathbb{C}$, peut-on exprimer A comme un polynôme en B ?

(5.181) <u>Mines PSI 2021</u> Tinaël Gelpe I

Soit $n \in \mathbb{N}^*$, $(A,B) \in \mathfrak{M}_n(\mathbb{R})^2$ telles que $A \neq 0$ et $B \neq 0$ et ABAB = 0. A-t-on BABA = 0? Indication : on pourra commencer par les petites valeurs de n.

(5.182) <u>Mines PSI 2021</u> Pierre-Issa Lacourte II

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$ la matrice d'un projecteur.

Soit $u, v, w : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ définis par u(M) = MA, v(M) = AM et w(M) = AM - MA.

- a. u, v sont-ils diagonalisables?
- **b.** Quelles peuvent-être les valeurs propres de w?
- \mathbf{c} . w est-il diagonalisable?

5.183 Mines PSI 2021 Clément Lopez I

Soit $E = C^{\infty}([0;1], \mathbb{R})$ et T définie sur E par $T(f)(x) = \frac{1}{2} \left(f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right) \right)$.

- a. Montrer que f est un endomorphisme de E.
- **b.** Pour $n \in \mathbb{N}^*$, $x \in [0;1]$ et $f \in E$, donner une expression de $T^n(f)(x)$ sous forme de somme.
- c. Déterminer la valeur de $\lim_{n\to+\infty} T^n(f)(0)$.
- **d.** Trouver de même, pour $x \in [0;1]$, la valeur de $\lim_{n \to +\infty} T^n(f)(x)$.
- e. Montrer que 1 est valeur propre de T et déterminer $E_1(T)$.
- **f.** Soit $k \in \mathbb{R}$ tel que |k| > 1, est-ce que k peut être valeur propre de T?
- **g.** Pour $f \in E$, calculer (T(f))'. Déterminer $E_{1/2}(T)$.

(5.184) <u>Mines PSI 2021</u> Baptiste Pozzobon I

Soit $n \in \mathbb{N}^*$, f un endomorphisme de \mathbb{C}^n et H un supplémentaire de Ker(f). On pose r = rang(f).

- a. Montrer que $g: H \to \text{Im}(f)$ définie par g(x) = f(x) est un isomorphisme.
- $\mathbf{b.} \ \mathrm{Montrer} \ \mathrm{qu'il} \ \mathrm{existe} \ \mathrm{deux} \ \mathrm{bases} \ \mathbb{B}_1 \ \mathrm{et} \ \mathbb{B}_2 \ \mathrm{et} \ \mathbb{C}^n \ \mathrm{telle} \ \mathrm{que} \ \mathrm{Mat}_{\mathbb{B}_1,\mathbb{B}_2}(f) = \begin{pmatrix} \mathrm{I}_r & 0 \\ 0 & 0 \end{pmatrix} = \mathrm{J}_r.$
- $\textbf{c.} \ \operatorname{Soit} \ C \in \mathfrak{M}_n(\mathbb{C}) \ \operatorname{telle} \ \operatorname{que} \ \operatorname{rang}(C) = r. \ \operatorname{Montrer} \ \operatorname{qu'il} \ \operatorname{existe} \ (P,Q) \in (\operatorname{GL}_n(\mathbb{C})^2 \ \operatorname{tell} \ \operatorname{que} \ C = PJ_rQ.$

Soit $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$ tel qu'il existe une matrice $C \in \mathcal{M}_n(\mathbb{C})$ de rang r telle que AC = CB.

- **d.** Montrer que les matrices A et B admettent au moins r valeurs propres en commun (comptées avec leurs ordres de multiplicité).
- e. Donner un argument plus rapide pour montrer que si C est inversible, alors A et B admettent au moins n valeurs propres en commun (comptées avec leurs ordres de multiplicité).

27

5.185 <u>Mines PSI 2021</u> Arthur Riché II

On considère la matrice $A=\begin{pmatrix}1&0&0\\1&2&1\\2&-2&-1\end{pmatrix}\in\mathfrak{M}_3(\,\mathbb{R}).$

- a. Trouver le spectre de A. La matrice A est-elle diagonalisable ?
- **b.** Justifier l'existence de $P \in GL_3(\mathbb{R})$ et de $T \in \mathcal{M}_3(\mathbb{R})$ triangulaire supérieure telles que $A = PTP^{-1}$.
- c. Donner une matrice $P \in GL_3(\mathbb{R})$ telle que $A = PTP^{-1}$ avec $T = \begin{pmatrix} 0 & 0 & -3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}$.
- **d.** Déterminer l'ensemble des matrices $N \in \mathcal{M}_3(\mathbb{R})$ telles que TN = NT.
- e. En déduire l'ensemble des matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que AM = MA.

${f (5.186)}\, \underline{Mines\, PSI\, 2021}\,$ Arthur Sureau I

Soit $\alpha \in \mathbb{R}^*$ et $\beta \in \mathbb{R}$, on définit $\varphi : \mathbb{R}[X] \to \mathbb{R}[X]$ par $\varphi(P) = ((\alpha X + \beta)P)'$.

- a. Montrer que φ est un endomorphisme de $\mathbb{R}[X]$.
- **b.** Trouver les valeurs propres et les vecteurs propres de φ .
- c. Soit $n \in \mathbb{N}$, diagonaliser l'application φ_n induite par φ dans $\mathbb{R}_n[X]$.

$ig({f 5.187} ig) {f extit{Mines PSI 2021}} \,$ Guillaume Touly II

Soit $n \in \mathbb{N}^*$ et $M \in \mathfrak{M}_n(\mathbb{C})$, on note $P = \sum\limits_{k=0}^n \alpha_k X^k = \chi_M$ son polynôme caractéristique.

Montrer que $\forall \lambda \in Sp(M), \ |\lambda| \leqslant \sum\limits_{k=0}^{n} |\alpha_k|.$

${f (5.188)}\, {CCINP\; PSI\; 2021}\,$ Mathilde Arnaud II

Soit $v = (v_1, \dots, v_n) \in \mathbb{R}^n$ tel que $\sum_{k=1}^n v_k = 1$. Pour $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, on pose $f(x) = x - \Big(\sum_{k=1}^n x_k\Big)v$.

- **a.** Montrer que f est un endomorphisme de \mathbb{R}^n .
- **b.** Pour $y \in \mathbb{R}^n$, montrer que $y \in \text{Im}(f) \iff f(y) = y$.
- c. Justifier que $\operatorname{Im}(f) \oplus \operatorname{Ker}(f) = \mathbb{R}^n$. Qu'en déduire?
- d. Expliciter les sous-espaces propres de f.

(**5.189**) <u>CCINP PSI 2021</u> Maëva Berland II

Soit $n \in \mathbb{N}^*$ et $M \in \mathfrak{M}_n(\mathbb{C})$ telle que $M^2 + {}^tM = I_n$.

- a. Montrer que si $P \in \mathbb{C}[X]$ annule M, les valeurs propres de M sont des racines de P.
- **b.** On suppose que M est symétrique. Montrer que M est diagonalisable et que $Tr(M) \times det(M) \neq 0$.
- c. On ne suppose plus M symétrique. Montrer que M est toujours diagonalisable.
- d. Montrer que M est inversible si et seulement si 1 n'est pas valeur propre de M.

(**5.190**) <u>CCINP PSI 2021</u> Julie Coheleach II

Soit E un espace de dimension finie n. Soit $f \in \mathcal{L}(E)$ et $\lambda_1, \dots, \lambda_n$ des valeurs propres distinctes de f.

a. Montrer que $\phi: P \mapsto (P(\lambda_1), \dots, P(\lambda_n))$ est un isomorphisme de $\mathbb{K}_{n-1}[X]$ dans \mathbb{K}^n .

Soit $g \in \mathcal{L}(E)$ tel que $g \circ f = f \circ g$.

- b. Montrer que tout vecteur propre de f est un vecteur propre de g.
- c. Montrer qu'il existe une base de E composée de vecteurs propres communs à f et g.
- **d.** Montrer l'existence et l'unicité de $P \in \mathbb{R}_{n-1}[X]$ tel que g = P(f).
- **e.** En déduire la dimension de $\mathcal{C}(f) = \{g \in \mathcal{L}(E) \mid f \circ g = g \circ f\}.$

5.191 CCINP PSI 2021 Johan Haramboure II

a. Énoncer le théorème de CAYLEY-HAMILTON pour une matrice carrée.

b. Soit $n \in \mathbb{N}^*$ et A, B deux matrices semblables de $\mathfrak{M}_n(\mathbb{R})$, montrer que, quel que soit le polynôme $P \in \mathbb{R}[X]$, les matrices P(A) et P(B) sont semblables.

Soit, dans la suite de cet exercice, $A\in\mathfrak{M}_{\mathfrak{n}}(\mathbb{R})$ et $M=\begin{pmatrix}A&A\\\mathfrak{0}_{\mathfrak{n}}&A\end{pmatrix}\in\mathfrak{M}_{2\mathfrak{n}}(\mathbb{R}).$

c. Calculer M^k pour $k \in \mathbb{N}$. En déduire une expression par blocs de P(M) si $P \in \mathbb{R}[X]$.

 $\mathbf{d.}$ Montrer que si M est diagonalisable alors A l'est aussi.

e. Montrer que si M est diagonalisable alors A = 0.

(5.192) <u>CCINP PSI 2021</u> Antonio Treilhou II

$$\mathrm{Soit}\ M = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \ \mathrm{et}, \ \mathrm{pour}\ (a,b) \in \mathbb{R}^2, \ R(a,b) = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}.$$

Pour tout entier $n \in \mathbb{N}$, on pose $u_n = Tr(M^n)$ et $v_n = Tr(R(a,b)^n)$.

a. Montrer que M est diagonalisable.

b. Exprimer R(a,b) en fonction de M et I_3 .

c. Montrer que $(u_n)_{n\in\mathbb{N}}$ est une suite divergente à valeurs entières.

d. Montrer qu'on peut choisir a et b de sorte que la suite $(\nu_n)_{n\in\mathbb{N}}$ converge.

5.193 *CCINP PSI 2021* Adeline Vaudrey II

Soit E un K-espace vectoriel et $f \in \mathcal{L}(E)$ tel que f a la même matrice A dans toutes les bases de E.

a. Soit $P \in GL_n(\mathbb{K})$, montrer que PA = AP.

b. Soit $B \in \mathcal{M}_n(\mathbb{K})$, montrer qu'il existe $\lambda \in \mathbb{K}^*$ tel que $B - \lambda I_n \in GL_n(\mathbb{K})$. En déduire que BA = AB.

c. En déduire la forme de la matrice A. Comment appelle-t-on l'endomorphisme f?

5.194 <u>Mines-Télécom PSI 2021</u> Juliette Maricourt II

Soit $n \in \mathbb{N}^*$, une matrice $A = (C_1 \cdots C_n) \in \mathfrak{M}_n(\mathbb{R})$ définie par ses colonnes et $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathfrak{M}_{n,1}(\mathbb{R})$.

a. Que dire de X si $\sum_{j=1}^{n} x_j C_j = 0$?

b. Diagonaliser $M = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$ sans calculer son polynôme caractéristique.

5.195 X *PSI* 2022 Olivier Courmont IV

$$\mathrm{Soit}\ m\in\mathbb{R}\ \mathrm{et}\ A_m=\begin{pmatrix}1&0&-1\\1&1&-1\\2-m&m-2&m\end{pmatrix}.$$

a. Calculer χ_{A_m} .

b. Les matrices A_1 et A_2 sont-elles diagonalisables ?

 $\mathbf{c}.$ Traiter la diagonalisabilité de $A_{\mathfrak{m}}$ dans le cas général.

5.196 X PSI 2022 Lucas Lacampagne II

Soit $n \in \mathbb{N}^*$ et $\mathfrak{B} = (e_1, \dots, e_n)$ la base canonique de \mathbb{R}^n .

Soit $u \in \mathcal{L}(\mathbb{R}^n)$ tel que $u(e_i) = e_{i+1}$ si $i \in [1; n-1]$ et $u(e_n) = 0$.

Trouver les sous-espaces de \mathbb{R}^n stables par \mathfrak{u} .

$(\mathbf{5.197})\,\underline{X\,PSI\,2022}\,$ Lucas Lacampagne III

Soit un polynôme $P \in \mathbb{R}[X]$ non constant.

a. Soit $n = 2p \in \mathbb{N}^*$ un entier pair, montrer qu'il existe $A \in \mathcal{M}_n(\mathbb{R})$ telle que P(A) = 0.

Indication : considérer les petites valeurs de deg(P).

b. Que se passe-t-il si on suppose n = 2p + 1 impair ?

(5.198) ENS Cachan PSI 2022 Jimmy Guertin II

Soit $A \in \mathcal{M}_2(\mathbb{Z})$ telle qu'il existe $n \in \mathbb{N}^*$ avec $A^n = I_2$. Montrer que $A^{12} = I_2$.

(5.199) <u>ENS Cachan PSI 2022</u> Maxence Rossignol I

Soit $n \in \mathbb{N}^*$ et A, B dans $\mathcal{M}_n(\mathbb{R})$ deux matrices symétriques.

- a. Montrer que AB est symétrique si et seulement si AB = BA.
- b. Trouver A et B symétriques telles que AB n'est pas symétrique.
- c. Montrer que s'il existe une base de vecteurs propres communs à A et à B, alors AB est symétrique.

[5.200] <u>Centrale Maths1 PSI 2022</u> Louis Bardinet

Soit $n \in \mathbb{N}^* \setminus \{1\}$, $\alpha \in \mathbb{R}$, E un \mathbb{R} -espace de dimension n et f un endomorphisme de E tel que $f^2 + 2f + \alpha$ id g = 0.

a. Si n = 2 et $\alpha = 1$, que dire de f?

On suppose dans la suite que $\alpha > 1$.

- **b.** Montrer que n est pair.
- **c.** Si n = 2, construire une base \mathcal{B} de E telle que $\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 1 \\ \alpha & -2 \end{pmatrix}$.
- **d.** Si n=2p>2, construire une base $\mathcal B$ de E telle que $\operatorname{Mat}_{\mathcal B}(f)$ est diagonale par blocs.

(5.201) Mines PSI 2022 Amandine Darrigade I

Soit A =
$$\begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- a. La matrice A est-elle diagonalisable?
- **b.** Soit $M \in \mathcal{M}_4(\mathbb{R})$ telle que AM = MA, montrer qu'il existe $P \in \mathbb{R}[X]$ tel que M = P(A).
- **c.** Résoudre l'équation $M^2 = A$ d'inconnue $M \in \mathcal{M}_4(\mathbb{R})$.

(5.202) Mines PSI 2022 Lucas Lacampagne II

Soit $n \in \mathbb{N}^*$, $(A,B) \in \mathfrak{M}_n(\mathbb{R})^2$ telles que $A \neq 0$ et $B \neq 0$ et ABAB = 0. A-t-on BABA = 0?

Indication : on pourra commencer par les petites valeurs de n.

- **a.** Peut-on avoir $A = -I_n$?
- **b.** Montrer que $A^2 + (2 LC)A + (1 LC)I_n = 0$.
- c. Dans quel cas A est une matrice de symétrie?
- **d.** Soit $\lambda \in Sp(A)$, montrer que λ est racine d'un polynôme de degré 2.
- e. A est-elle diagonalisable? Donner ses sous-espaces propres.

5.204 <u>Mines PSI 2022</u> Margaux Millaret I

Soit
$$n \in \mathbb{N}^*$$
, $(a_0, \dots, a_{n-1}) \in \mathbb{K}^n$ et la matrice $A = \begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & \ddots & & \vdots & \vdots \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix} \in \mathcal{M}_n(\mathbb{K}).$

- **a.** Calculer χ_A .
- b. Montrer que A est diagonalisable si et seulement si χ_A est scindé à racines simples.

(5.205) <u>Mines PSI 2022</u> Florian Picq I

 $\mathrm{Pour}\ k\in\,\mathbb{N}^*,\,\mathrm{on}\ \mathrm{pose}\ f_k:x\mapsto\mathrm{ch}\,(kx)\ \mathrm{et}\ g_k:x\mapsto\mathrm{sh}\,(kx)\ \mathrm{d\acute{e}finies}\ \mathrm{sur}\ \mathbb{R}\ \mathrm{des}\ \mathrm{vecteurs}\ \mathrm{de}\ E=C^\infty(\,\mathbb{R},\,\mathbb{R}).$

On pose $F = Vect(f_1, \cdots, f_n, g_1, \cdots, g_n)$ et Φ définie sur E par $\Phi(f) = f'' - 3f' + 2f$.

- a. Montrer que $\mathcal{B} = (f_1, \dots, f_n, g_1, \dots, g_n)$ est une base de F.
- **b.** Montrer que la restriction de Φ à F est un endomorphisme qu'on note Ψ .
- c. L'endomorphisme Φ est-il diagonalisable ?

5.206 Mines PSI 2022 Élouan Princelle II

Soit $A \in \mathcal{M}_2(\mathbb{C})$. Montrer que : A diagonalisable \iff $(\forall Q \in \mathbb{C}[X] \setminus \mathbb{C}_0[X], \ \exists M \in \mathcal{M}_2(\mathbb{C}), \ Q(M) = A)$.

(5.207) Mines PSI 2022 Maxence Rossignol II

Soit $n \in \mathbb{N}^*$ et deux matrices A, B de $\mathfrak{M}_n(\mathbb{C})$ telles que AB – BA = B.

- **b.** Montrer que $\forall k \in \mathbb{N}^*$, $AB^k B^kA = kB^k$.
- c. En déduire que B est nilpotente.

(5.208) Mines PSI 2022 Alban Soyez II

$$\mathrm{Soit}\; n \in \mathbb{N}^*,\, (\alpha_1,\cdots,\alpha_n) \in \mathbb{K}^n \; \mathrm{et\; la\; matrice}\; A = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \cdots & \alpha_n \\ 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \in \mathfrak{M}_n(\,\mathbb{K}).$$

- **a.** Calculer χ_A .
- b. Trouver une condition nécessaire et suffisante de diagonalisabilité.

(**5.209**) <u>CCINP PSI 2022</u> Naïs Baubry II

Soit
$$A = \begin{pmatrix} 2 & 2 & -1 \\ -1 & 5 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$
 et a l'endomorphisme de \mathbb{R}^3 canoniquement associé à A .

- $\mathbf{a.}$ Montrer que A n'est pas diagonalisable mais trigonalisable dans $\mathfrak{M}_{3}(\,\mathbb{R}).$
- **b.** Trouver toutes les droites de \mathbb{R}^3 stables par a.

Soit dans les questions suivantes un plan P de \mathbb{R}^3 stable par \mathfrak{a} . On définit alors l'endomorphisme \mathfrak{a}' de P induit par \mathfrak{a} dans P, qu'on note $\mathfrak{a}'=\mathfrak{a}_P$.

- c. Montrer que $\chi_{\alpha'}$ divise χ_{α} .
- **d.** En déduire que $P \subset Ker((a-3id_{\mathbb{R}^3})^2)$.
- e. Que vaut donc P?

5.210 CCINP PSI 2022 Anna Decrock II

Soit
$$A = \begin{pmatrix} 0 & 1 & 3 \\ 2 & 1 & -3 \\ -2 & 1 & 5 \end{pmatrix}$$
 et f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A .

- a. Trouver les valeurs propres de A.
- **b.** Est-ce que la matrice A est diagonalisable ?
- **c.** Donner des vecteurs propres u et ν de A et un vecteur w tels que $\mathcal{B} = (u, v, w)$ soit une base de de \mathbb{R}^3 .
- d. Montrer que A est trigonalisable et la trigonaliser.

(5.211) <u>CCINP PSI 2022</u> Léo Ducos-Tourenne II et Anatole Rousset II

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$, on définit $f_A : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ par $f_A(M) = AM$.

- **a.** Montrer que f_A est un endomorphisme de $\mathfrak{M}_n(\mathbb{R})$.
- **b.** Montrer que $A^2 = A$ si et seulement si f_A est un projecteur de $\mathfrak{M}_n(\mathbb{R})$.
- ${f c.}$ Montrer que A est diagonalisable si et seulement si ${f f}_A$ est diagonalisable.
- d. Construire un vecteur propre de f_A via un vecteur propre de A.
- e. Construire un vecteur propre de A via un vecteur propre de f_A.
- **f.** Montrer que A et f_A ont le même spectre.

5.212 CCINP PSI 2022 Colin Herviou-Laborde et Élouan Princelle II

Soit $n \in \mathbb{N}^*$ et $M \in \mathfrak{M}_n(\mathbb{C})$ telle que $M^2 + M^T = I_n$.

- a. Montrer que si $P \in \mathbb{C}[X]$ annule M, les valeurs propres de M sont des racines de P.
- **b.** On suppose que M est symétrique. Montrer que M est diagonalisable et que $Tr(M) \times det(M) \neq 0$.
- c. On ne suppose plus M symétrique. Montrer que M est toujours diagonalisable.
- d. Montrer que M est inversible si et seulement si 1 n'est pas valeur propre de M.

5.213 CCINP PSI 2022 Fares Kerautret I et Louis Lacarrieu I

Soit $n \in \mathbb{N}^*$ et $(A, B) \in (\mathfrak{M}_n(\mathbb{C}))^2$ avec $Sp(A) \cap Sp(B) = \emptyset$.

- a. Montrer que si $P \in \mathbb{C}[X]$ est un polynôme annulateur de A, les valeurs propres de A sont racines de P.
- **b.** Montrer que $\chi_A(B)$ est inversible.
- **c.** Montrer que si $X \in \mathcal{M}_n(\mathbb{C})$ vérifie AX = XB, alors X = 0.
- **d.** Montrer que $\forall M \in \mathcal{M}_n(\mathbb{C}), \exists ! X \in \mathcal{M}_n(\mathbb{C}), AX XB = M.$

(**5.214**) *CCINP PSI 2022* Paul Lafon II

Soit $n \in \mathbb{N}^*$, $(A,B) \in \mathfrak{M}_n(\mathbb{R})^2$ tel que AB - BA = A et $f: \mathfrak{M}_n(\mathbb{R}) \to \mathfrak{M}_n(\mathbb{R})$ définie par f(M) = MB - BM.

- **a.** Montrer que f est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- **b.** Calculer Tr (A). Généraliser en calculant, pour $k \in \mathbb{N}^*$, Tr (A^k) .
- c. Montrer que A est nilpotente.

(5.215) CCINP PSI 2022 Joël Lascoumes et Jade Mirassou II

Soit
$$A = \begin{pmatrix} 3 & -3 & 2 \\ -1 & 5 & -2 \\ -1 & 3 & 0 \end{pmatrix}$$
.

- a. La matrice A est-elle diagonalisable ? Quels sont ses éléments propres ?
- **b.** Montrer qu'il existe une matrice $R \in \mathcal{M}_3(\mathbb{R})$ telle que $R^2 = A$.
- c. Montrer que toute matrice $R \in \mathcal{M}_3(\mathbb{R})$ vérifiant $R^2 = A$ est diagonalisable.
- **d.** Combien y a-t-il de matrices $R \in \mathcal{M}_3(\mathbb{R})$ telles que $R^2 = A$?

5.216 <u>CCINP PSI 2022</u> Paul Mayé II

Soit
$$A=\begin{pmatrix}0&3&0\\1&0&1\\1&0&0\end{pmatrix}$$
. Pour tout entier $n\in\mathbb{N},$ on pose $\mathfrak{u}_n=\text{Tr }(A^n).$

- a. En utilisant un polynôme annulateur de A, établir une relation entre u_{n+3} , u_{n+2} , u_{n+1} et u_n .
- **b.** En déduire que $\forall n \geq 2$, $u_n \in \mathbb{N}^*$.
- c. Montrer que A est diagonalisable dans $\mathfrak{M}_3(\mathbb{C})$. Exprimer \mathfrak{u}_n en fonction des valeurs propres de A.
- **d.** En déduire que $\sum_{n\geq 2} \frac{1}{u_n}$ converge.

$ig({f 5.217} ig) \, {\color{red} CCINP} \, {\color{blue} PSI} \, {\color{gray} 2022} \,\,\,\, { m Manon} \,\, { m Odelot} \,\, { m II}$

$$\mathrm{Soit}\; \mathfrak{n}\in\,\mathbb{N}^*,\, A\in\mathfrak{M}_\mathfrak{n}(\,\mathbb{C})\;\mathrm{et}\; B=\left(\begin{matrix}O_\mathfrak{n}&A\\I_\mathfrak{n}&O_\mathfrak{n}\end{matrix}\right)\!.$$

- a. Déterminer χ_B en fonction de χ_A . En déduire le spectre de B en fonction de celui de A.
- b. Si A est inversible et a n valeurs propres distinctes, montrer que B est diagonalisable.
- c. Montrer que si B est diagonalisable, alors A l'est aussi.
- d. Donner un exemple où A est diagonalisable et B ne l'est pas.
- e. Montrer que si A est inversible et diagonalisable, alors B est aussi diagonalisable.

5.218 *CCINP PSI 2022* Ewan Sarrazin I

On définit sur l'espace vectoriel $E = \mathbb{R}_3[X]$ l'application ϕ qui à tout polynôme $P \in E$ associe le reste de la division euclidienne du polynôme X^2P par $D = X^4 - 1$.

- a. Montrer que ϕ définit un endomorphisme de E.
- **b.** Montrer que ϕ est diagonalisable, donner ses valeurs propres et ses vecteurs propres.
- **c.** Est-ce que ϕ est inversible ? Si oui, donner ϕ^{-1} .

(5.219) <u>CCINP PSI 2022</u> Baptiste Savarit II

Soit $n \in \mathbb{N}^*$ et $u \in \mathcal{L}(\mathbb{C}^n)$. On note Id l'application identité de \mathbb{C}^n .

- a. Montrer que si u est diagonalisable alors u^2 est diagonalisable.
- b. Montrer que la réciproque de la question précédente est fausse.
- **c.** Soit $\lambda \in \mathbb{C}^*$, montrer que $\operatorname{Ker}(\mathfrak{u}^2 \lambda^2 \operatorname{Id}) = \operatorname{Ker}(\mathfrak{u} \lambda \operatorname{Id}) \oplus \operatorname{Ker}(\mathfrak{u} + \lambda \operatorname{Id})$.
- d. Montrer que la réciproque de la question a. est vraie si u est bijective.

[5.220] <u>CCINP PSI 2022</u> Guillaume Tran-Ruesche II

Soit $n \in \mathbb{N}^*$, E un \mathbb{R} -espace de dimension finie n, f un endomorphisme de E qui admet n valeurs propres distinctes $\lambda_1, \dots, \lambda_n$.

a. Montrer que $\varphi : P \mapsto (P(\lambda_1), \dots, P(\lambda_n))$ est un isomorphisme de $\mathbb{R}_{n-1}[X]$ dans \mathbb{R}^n .

Soit $g \in \mathcal{L}(E)$ tel que $g \circ f = f \circ g$.

- b. Montrer que les sous-espaces propres de f sont stables par g, puis que tout vecteur propre de f est un vecteur propre de g.
- ${\bf c.}$ En déduire qu'il existe une base de E composée de vecteurs propres communs à f et ${\bf g.}$
- **d.** Montrer l'existence et l'unicité de $P \in \mathbb{R}_{n-1}[X]$ tel que g = P(f).
- **e.** En déduire la dimension de $\mathcal{C}(f) = \{g \in \mathcal{L}(E) \mid f \circ g = g \circ f\}.$

5.221 <u>Mines-Télécom PSI 2022</u> Jade Mirassou I

Soit E un espace vectoriel de dimension $n \ge 2$ et $u \in \mathcal{L}(E)$.

- **a.** Montrer que $\forall k \in \mathbb{N}$, $Ker(u^k) \subset_k er(u^{k+1})$.
- **b.** Soit $p \in \mathbb{N}$ tel que $Ker(u^p) = Ker(u^{p+1})$, montrer que $\forall \ell \in \mathbb{N}$, $Ker(u^{p+\ell}) = Ker(u^p)$.

Supposons u nilpotent et $q \in \mathbb{N}^*$ tel que $u^q = 0$ et $u^{q-1} \neq 0$.

- c. Déterminer le polynôme caractéristique de u.
- **d.** En déduire que $q \leq n$.

5.222 <u>Mines-Télécom PSI 2022</u> Manon Odelot I

$$\mathrm{Soit}\ \alpha \in \mathbb{R}\ \mathrm{et}\ A = \left(\begin{array}{ccc} \alpha+1 & \alpha & \alpha \\ \alpha & \alpha+1 & \alpha \\ \alpha & \alpha & \alpha+1 \end{array} \right)\ \mathrm{et}\ B = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right).$$

- **a.** Calculer B^n pour tout entier $n \in \mathbb{N}$.
- **b.** Calculer A^n pour tout entier $n \in \mathbb{N}$.
- c. Comment aurait-on pu faire autrement pour b.?

(5.223) <u>Mines-Télécom PSI 2022</u> Paul Sterlin I

Soit l'application Φ définie sur $\mathbb{R}[X]$ définie par $\Phi(P) = \int_X^{X+1} P(t) dt.$

Pour tout entier $n \in \mathbb{N}$, on note Φ_n l'application induite par Φ dans $\mathbb{R}_n[X]$.

- a. Montrer que Φ_2 est un endomorphisme de $\mathbb{R}_2[X]$.
- **b.** Φ_2 est-il diagonalisable ?
- c. Montrer que Φ_n est un endomorphisme de $\mathbb{R}_n[X]$. Est-il diagonalisable ?

5.224 Navale PSI 2022 Naïs Baubry II

Soit
$$A = \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & 3 \\ 1 & -1 & 4 \end{pmatrix}$$
.

- a. La matrice A est-elle diagonalisable?
- **b.** Trouver une base de $Ker(A 2I_3)$.
- c. Trouver les plans stables par A.

(**5.225**) <u>ENS Cachan PSI 2023</u> Alban Dujardin I

$$\mathrm{Soit}\ n\in\mathbb{N}^*\ \mathrm{et}\ A=(\alpha_{i,j})_{1\leqslant i,j\leqslant n}\in \mathfrak{M}_n(\mathbb{C}).\ \mathrm{Montrer}\ \mathrm{que}\ \mathrm{Sp}(A)\subset \bigcup_{i=1}^n\Big\{z\in\mathbb{C}\ \Big|\ |z-\alpha_{i,i}|\leqslant \sum\limits_{j=1\atop j\neq i}^n|\alpha_{i,j}|\Big\}.$$

Indication : écrire le système $Au = \lambda u$ en une ligne i quelconque.

(5.226) <u>Centrale Maths1 PSI 2023</u> Antoine Campos

Soit
$$S = \begin{pmatrix} 5 & -3 \\ -3 & -5 \end{pmatrix}$$
. On note, pour $(a,b) \in \mathbb{R}^2$, $D(a,b) = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$.

- a. Montrer que S est semblable à une matrice D(a,b) que vous déterminerez.
- b. Montrer que S est semblable à une matrice à diagonale nulle que vous déterminerez.
- c. En étudiant l'application $\phi: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$ définie par $\phi(M) = D(1,2)M MD(1,2)$, montrer qu'il existe un couple $(C,D) \in \mathcal{M}_2(\mathbb{R})^2$ tel que S = CD DC.

5.227 <u>Centrale Maths1 PSI 2023</u> Marius Desvalois

Soit $E = \mathbb{C}^4$, $(u, v) \in \mathcal{L}(E)^2$ tel que $u^2 = v^2 = \operatorname{id}_E$ et $u \circ v = -v \circ u$.

- **a.** Montrer que Tr (u) = Tr (v) = 0.
- b. Montrer que $\mathfrak u$ est diagonalisable et que -1 et 1 sont valeurs propres doubles de $\mathfrak u$.
- c. Soit (x,y) une base de $E_1(u)$. Montrer que la famille (v(x),v(y)) est une base de $E_{-1}(u)$ et que la famille (x,y,v(x),v(y)) est une base de E.
- **d.** Montrer que $\mathfrak{u} \circ \mathfrak{v}$ est diagonalisable et donner les éléments propres de $\mathfrak{u} \circ \mathfrak{v}$.

5.228 Centrale Maths1 PSI 2023 Clément Gallice

Soit E l'ensemble des fonctions polynomiales de \mathbb{R} dans \mathbb{R} .

Soit
$$P \in E$$
, on pose $L(P) : x \mapsto e^{-x} \int_{-\infty}^{x} P(t)e^{t}dt$.

Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que f est intégrable en $-\infty$.

- $\textbf{a.} \ \mathrm{Montrer} \ \mathrm{que} \ F: x \mapsto \int_{-\infty}^x f(t) dt \ \mathrm{est} \ \mathrm{de} \ \mathrm{classe} \ C^1 \ \mathrm{sur} \ \mathbb{R} \ \mathrm{et} \ \mathrm{calculer} \ F'(x) \ \mathrm{pour} \ \mathrm{tout} \ \mathrm{r\'eel} \ x.$
- **b.** Montrer que L est un endomorphisme de E.
- c. Déterminer les éléments propres de L.

5.229 <u>Centrale Maths1 PSI 2023</u> Sacha Meslier

Soit un entier $q\geqslant 2$ et deux familles (a_1,\cdots,a_q) et (b_1,\cdots,b_{q-1}) de réels strictement positifs. On définit

alors la matrice
$$A = \begin{pmatrix} a_1 & \cdots & \cdots & a_q \\ b_1 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & b_{q-1} & 0 \end{pmatrix} \in \mathcal{M}_q(\mathbb{R}).$$

- a. Justifier que 0 n'est pas valeur propre de A.
- **b.** Montrer que A^q a tous ses coefficients strictement positifs.
- c. Donner la dimension des sous-espaces propres associés aux valeurs propres complexes de A.
- d. Montrer que A admet une unique valeur propre strictement positive.

(**5.230**) <u>Mines *PSI* 2023</u> Bader Ben Amira I

Soit un entier $n \ge 2$ et $E = \mathbb{R}_n[X]$. Pour $P \in E$, on pose $T(P) = P(1)(X^2 - X) + P(-1)(X^2 + X)$.

- a. Montrer que T est un endomorphisme de E et donner sa matrice dans la base canonique de E.
- **b.** Déterminer Ker(T) et Im(T).
- c. En déduire les sous-espaces propres de T. T est-il diagonalisable?

(5.231) Mines PSI 2023 Arthur Biot III

$$\mathrm{Soit}\; A = \begin{pmatrix} 1 & j & j^2 \\ j & j^2 & 1 \\ j^2 & 1 & j \end{pmatrix}.$$

- a. La matrice A est-elle diagonalisable?
- **b.** Déterminer une matrice triangulaire T semblable à A.
- **c.** Quelle est la dimension du commutant $C(A) = \{B \in \mathcal{M}_3(\mathbb{C}) \mid AB = BA\}$?

5.232 Mines PSI 2023 Rebecca Blé III

Soit $n \in \mathbb{N}^* \setminus \{1\}$ et $M \in \mathfrak{M}_n(\mathbb{C})$ telle que $M^2 + M^T = I_n$.

- a. Montrer que M est diagonalisable. Donner les valeurs propres possibles de M.
- b. La matrice M est-elle forcément symétrique?

(5.233) <u>Mines PSI 2023</u> Mathys Bureau I

Soit $E = C^{\infty}([0;1], \mathbb{R})$ et T définie sur E par $T(f)(x) = \frac{1}{2} \left(f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right) \right)$.

- a. Montrer que f est un endomorphisme de E.
- **b.** Pour $n \in \mathbb{N}^*$, $x \in [0;1]$ et $f \in E$, donner une expression de $T^n(f)(x)$ sous forme de somme.
- c. Déterminer la valeur de $\lim_{n\to +\infty} T^n(f)(0).$
- **d.** Trouver de même, pour $x \in [0;1],$ la valeur de $\lim_{n \to +\infty} T^n(f)(x)$.
- e. Montrer que 1 est valeur propre de T et déterminer $E_1(T)$.
- **f.** Soit $k \in \mathbb{R}$ tel que |k| > 1, est-ce que k peut être valeur propre de T?
- g. Pour $f \in E$, calculer (T(f))'. Déterminer $E_{1/2}(T)$.

(**5.234**) <u>Mines *PSI* 2023</u> Hugo Delval I

 $\text{Pour } n \in \, \mathbb{N}^* \text{ et } \alpha \in \, \mathbb{R}, \, \text{on pose } A_n = \left(\begin{matrix} 1 & -\alpha/n \\ \alpha/n & 1 \end{matrix} \right) \!.$

- $\textbf{a. Pour } \alpha \in \mathbb{R}, \, \text{calculer } \lim_{n \to +\infty} \left(1 + \frac{i\alpha}{n}\right)^n.$
- **b.** Diagonaliser A_n .
- c. En déduire la convergence et la limite de la suite $(A_n^n)_{n\geq 1}$.

(5.235) Mines PSI 2023 Raphaël Déniel II et Tom Graciet I

Soit $n \in \mathbb{N}^*$ et $(A, B) \in \mathfrak{M}_n(\mathbb{C})^2$. Montrer que les assertions suivantes sont équivalentes :

- (i) $\forall Y \in \mathcal{M}_n(\mathbb{C}), \exists ! X \in \mathcal{M}_n(\mathbb{C}), AX XB = Y.$
- (ii) $\forall X \in \mathcal{M}_n(\mathbb{C}), AX = XB \Longrightarrow X = 0.$
- (iii) $\chi_B(A)$ est une matrice inversible.
- (iv) A et B n'ont aucune valeur propre commune.

(**5.236**) <u>Mines PSI 2023</u> Esteban Maurer II

- **a.** Soit $(A,B) \in \mathcal{M}_2(\mathbb{C})^2$ tel que AB = BA. Montrer que B est un polynôme en A ou A un polynôme en B.
- **b.** Soit $(A, B) \in \mathcal{M}_3(\mathbb{C})^2$ tel que AB = BA. Est-ce que B est un polynôme en A ou A un polynôme en B?
- c. Soit $(A, B) \in \mathcal{M}_3(\mathbb{R})^2$ tel que AB = BA. Est-ce que B est un polynôme en A ou A un polynôme en B?

(**5.237**) <u>Mines PSI 2023</u> Arthur Melnitchenko I

Soit une matrice $A \in \mathcal{M}_3(\mathbb{R})$ telle que $\det(A) = 32$ et $A^2 - 6A + 8I_3 = 0$.

On définit $\varphi_A : \mathcal{M}_3(\mathbb{R}) \to \mathcal{M}_3(\mathbb{R})$ par la relation $\varphi_A(B) = AB$. Déterminer $\text{Tr } (\varphi_A)$.

5.238 Mines PSI 2023 Sacha Meslier II

$$\mathrm{Soit}\ k\in\mathbb{C}\ \mathrm{et}\ A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & k & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

- **a.** Si $k \in \mathbb{R}$, la matrice A est-elle diagonalisable dans $\mathcal{M}_4(\mathbb{R})$? Si oui, la diagonaliser.
- **b.** Si $k \in \mathbb{C}$, pour quelles valeurs de k la matrice A est-elle diagonalisable?

5.239 <u>Mines PSI 2023</u> Antoine Notelle-Maire II

Soit
$$\alpha \in \mathbb{R}$$
 et $A = \begin{pmatrix} 0 & \sin(2\alpha) & \sin(\alpha) \\ \sin(2\alpha) & 0 & \sin(\alpha) \\ \sin(\alpha) & 0 & \sin(2\alpha) \end{pmatrix}$. Étudier la diagonalisabilité de $A(\alpha)$ en fonction de α .

(5.240) <u>Mines PSI 2023</u> Marie-Lys Ruzic II

Soit $n \in \mathbb{N}^*$ et un ensemble $G \subset GL_n(\mathbb{C})$ tel que :

- $\forall A \in G, A^{-1} \in G$.
- $\exists p \in \mathbb{N}^*, \ \forall A \in G, \ A^p = I_n$.
- $\forall (A, B) \in G^2$, $AB \in G$.

On note F le sous-espace vectoriel de $\mathcal{M}_{\pi}(\mathbb{C})$ engendré par les matrices de G, r = dim(F) et (M_1, \dots, M_r) une base de F. On définit $\varphi : G \to \mathbb{C}^r$ par $\varphi(A) = (Tr\ (AM_1), \dots, Tr\ (AM_r))$.

- a. Montrer que φ est injective.
- **b.** Montrer que $\operatorname{Im}(\varphi)$ est fini.
- c. En déduire que G est fini.

(**5.241**) <u>CCINP PSI 2023</u> Paul Bats I

Soit E un \mathbb{C} -espace vectoriel de dimension $n \ge 1$ et $f \in \mathcal{L}(E)$.

- a. Montrer que si f est diagonalisable alors f² est diagonalisable.
- ${\bf b.}$ Si ${\bf f^2}$ est diagonalisable, ${\bf f}$ l'est-elle forcément ?
- **c.** Soit $\lambda \in \mathbb{C}^*$ et $\mu \in \mathbb{C}$ tel que $\mu^2 = \lambda$, montrer que $\text{Ker}(f^2 \lambda \text{id}_E) = \text{Ker}(f \mu \text{id}_E) \oplus \text{Ker}(f + \mu \text{id}_E)$.
- d. Montrer que si f² est diagonalisable et inversible, alors f est diagonalisable.

(5.242) CCINP PSI 2023 Bader Ben Amira II

Soit $n \in \mathbb{N}^*$ et $M \in \mathcal{M}_n(\mathbb{R})$. On note $E_{i,j}$ la matrice élémentaire classique telle que $\mathfrak{B} = (E_{i,j})_{1 \leq i,j \leq n}$ forme la base canonique de l'espace vectoriel $\mathcal{M}_n(\mathbb{R})$.

- a. Donner la définition d'un projecteur.
- **b.** Pour $(i,j) \in [1;n]^2$, est-ce que $E_{i,j}$ est une matrice de projecteur ?
- c. Montrer que si M est diagonalisable, M est une combinaison linéaire de matrices de projecteurs.
- **d.** Montrer que $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ et $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ sont des matrices de projecteurs.

Vous donnerez les éléments géométriques caractéristiques de ces deux projections.

e. Une matrice écrite comme combinaison de matrices de projecteurs est-elle diagonalisable dans $\mathcal{M}_n(\mathbb{R})$?

37

5.243) CCINP PSI 2023 Maddie Bisch I et Rebecca Blé I

Soit $n \in \mathbb{N}^*$, $(A, B) \in \mathfrak{M}_n(\mathbb{C})^2$ tel que $Sp(A) \cap Sp(B) = \emptyset$.

- a. Soit $P \in \mathbb{C}[X]$ tel que P(A) = 0, montrer que $\forall \lambda \in Sp(A), \ P(\lambda) = 0$.
- **b.** Montrer que $\chi_A(B) \in GL_n(\mathbb{C})$.
- **c.** Soit $M \in \mathcal{M}_n(\mathbb{C})$, montrer que $AM = MB \iff M = 0$.
- **d.** Montrer que $\forall C \in \mathcal{M}_n(\mathbb{C}), \exists ! M \in \mathcal{M}_n(\mathbb{C}), AM MB = C.$

[**5.244**] <u>CCINP PSI 2023</u> Armand Dépée II

Soit un entier $n \ge 2$ et un complexe α . On pose $A = (a_{i,j})_{1 \le i,j \le n} \in \mathfrak{M}_n(\mathbb{C})$ avec $a_{i,j} = \alpha^{i+j-2}$.

- a. Si $\alpha \in \mathbb{R}$, montrer que A est diagonalisable.
- b. Calculer le rang de A, en déduire ses valeurs propres.
- c. Trouver une condition nécessaire et suffisante pour que A soit diagonalisable.

5.245 *CCINP PSI 2023* Pierre Dobeli II

a.
$$A = \begin{pmatrix} 3 & -3 & 2 \\ -1 & 5 & -2 \\ -1 & 3 & 0 \end{pmatrix}$$
 est-elle diagonalisable?

- b. Trouver ses éléments propres.
- c. Trouver $R \in \mathcal{M}_3(\mathbb{R})$ telle que $R^2 = A$. Montrer que les matrices R qui conviennent sont diagonalisables.

(5.246) <u>CCINP PSI 2023</u> Olivier Farje II et Arthur Melnitchenko I et Marie-Lys Ruzic I

Soit
$$A=\begin{pmatrix}2&2&-1\\-1&5&-1\\0&1&2\end{pmatrix}$$
 et a l'endomorphisme de \mathbb{R}^3 canoniquement associé à A .

- a. Montrer que A n'est pas diagonalisable mais trigonalisable dans $\mathfrak{M}_3(\mathbb{R}).$
- **b.** Trouver toutes les droites de \mathbb{R}^3 stables par \mathfrak{a} .

Soit dans les deux questions suivantes un plan P de \mathbb{R}^3 stable par \mathfrak{a} . On définit alors l'endomorphisme \mathfrak{a}' de P induit par \mathfrak{a} dans P, qu'on note $\mathfrak{a}'=\mathfrak{a}_P$.

- c. Montrer que $\chi_{\alpha'}$ divise χ_{α} .
- **d.** En déduire que $P \subset Ker((\alpha 3id_{\mathbb{R}^3})^2)$.
- e. Quels sont les plans stables par a ?

[5.247] CCINP PSI 2023 Jonathan Filocco II et Antoine Vallade II

Soit
$$n \in \mathbb{N}^*$$
 et $A_n = (a_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathcal{M}_n(\mathbb{R})$ telle que $\forall (i,j) \in [\![1;n]\!]^2$, $a_{i,j} = i$ si $i = j$ et $a_{i,j} = 1$ sinon, c'est-à-dire $A_n = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & n \end{pmatrix}$. On note P_n le polynôme caractéristique de A_n .

- \mathbf{a} . Justifier que A_n est diagonalisable.
- **b.** Trouver le spectre de A_2 .
- **c.** Montrer que $\forall n \ge 3$, $P_n = (X n + 1)P_{n-1} X(X 1) (X n + 2)$.
- $\textbf{d.} \ \, \text{En d\'eduire que } A_n \ \, \text{admet au moins une valeur propre dans }]0;1[,\]1;2[,\ ...,]n-2;n-1[\ \, \text{et }\]n;+\infty[.]1;2[,\ ...,]n-2;n-1[$
- e. En déduire, autrement qu'à la première question, que An est diagonalisable.

5.248 <u>Mines-Télécom PSI 2023</u> Armand Dépée I

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 - 3A - 5I_n = 0$. Montrer que det(A) > 0.

(5.249) <u>Centrale Maths1 PSI 2024</u> Amélia Arangoits

Soit $n \in \mathbb{N}^*$, $M \in \mathcal{M}_n(\mathbb{R})$ et F un sous-espace vectoriel de \mathbb{R}^n .

- a. Montrer que F est stable par M si et seulement si F^{\perp} est stable par M^{T} .
- **b.** Trouver les sous-espaces stables par $A = \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$.

(5.250) <u>Centrale Maths1 PSI 2024</u> Romane Mioque et Maxime Plottu

 $\mathbf{a.}$ Montrer que si A et B dans $\mathfrak{M}_{\mathfrak{n}}(\,\mathbb{C})$ sont semblables, alors Sp(A)=Sp(B).

Soit $M \in \mathcal{M}_n(\mathbb{C})$ telle que M et 2M sont semblables.

- **b.** Que vaut Sp(M)? Qu'en déduire sur M?
- **c.** Trouver un exemple de matrice $M \in \mathcal{M}_2(\mathbb{C})$ non nulle telle que M et 2M sont semblables.
- **d.** Soit $M \in \mathcal{M}_3(\mathbb{C})$ nilpotente telle que rang (M) = 1, montrer que M est semblable à $E_{2,3}$. En déduire que M est semblable à 2M.
- e. Soit $M \in \mathcal{M}_n(\mathbb{C})$ nilpotente d'indice n-1, montrer que M est semblable à 2M.

5.251 <u>Mines PSI 2024</u> Amélia Arangoits II

Soit $n \in \mathbb{N}^*$, montrer qu'il existe $(a_0, \cdots, a_{n-1}) \in \mathbb{R}^n$ tel que $\forall P \in \mathbb{R}_{n-1}[X]$, $P(X+n) = \sum_{k=0}^{n-1} a_k P(X-k)$.

(5.252) <u>Mines PSI 2024</u> Yasmine Azzaoui II

Soit $n \in \mathbb{N}^*$ et $(A, B) \in (\mathfrak{M}_n(\mathbb{C}))^2$ avec $Sp(A) \cap Sp(B) = \emptyset$.

- a. Montrer que $\chi_A(B)$ est inversible.
- **b.** Montrer que si $X \in \mathcal{M}_n(\mathbb{C})$ vérifie AX = XB, alors X = 0.
- **c.** Montrer que $\forall M \in \mathcal{M}_n(\mathbb{C}), \exists ! X \in \mathcal{M}_n(\mathbb{C}), AX XB = M$

(5.253) Mines PSI 2024 Thomas Favant I

Soit E le \mathbb{R} -espace vectoriel des suites réelles indexées par \mathbb{N}^* et $\varphi: E \to E$ définie par $\varphi(u) = \nu$ où $u = (u_n)_{n \in \mathbb{N}^*}$ et $\nu = (\nu_n)_{n \in \mathbb{N}^*}$ avec $\nu_n = \frac{1}{n} \sum_{k=1}^n u_k$.

- a. Montrer que φ est un automorphisme de E.
- **b.** Trouver les valeurs propres et les sous-espaces propres de φ .

(5.254) Mines PSI 2024 Tiago Genet et Lou Goiffon I

Soit
$$P = X^5 - 4X^4 + 2X^3 + 8X^2 - 8X$$
.

- a. Vérifier que P(2) = P'(2) = 0. En déduire une factorisation de P dans $\mathbb{R}[X]$.
- **b.** Soit $n \in \mathbb{N}^*$, trouver toutes les matrices $M \in \mathfrak{M}_n(\mathbb{R})$ telles que P(M) = 0 et Tr(M) = 0.

$ig({f 5.255} ig) \, {\it Mines \ PSI \ 2024} \,\,\,\, {\it Martin \ Mayot \ I}$

On définit $A_0 = (1) \in \mathfrak{M}_1(\mathbb{R})$ et, pour tout $\mathfrak{n} \in \mathbb{N}, \ A_{\mathfrak{n}+1} = \begin{pmatrix} A_{\mathfrak{n}} & A_{\mathfrak{n}} \\ A_{\mathfrak{n}} & 0 \end{pmatrix}$.

- a. Donner, pour tout $n \in \mathbb{N}$, la taille de la matrice A_n .
- **b.** Calculer le rang de A_n .
- c. Donner les valeurs propres de A_n . La matrice A_n est-elle diagonalisable?

5.256 Mines PSI 2024 Clément Reiner II

On considère \mathbb{C} en tant que \mathbb{R} -espace vectoriel et on pose $\mathsf{E} = \mathcal{L}(\mathbb{C})$.

- **a.** Montrer que $E = \{f_{a,b} : z \mapsto az + b\bar{z} \mid (a,b) \in \mathbb{C}^2\}.$
- **b.** Déterminer le déterminant et la trace de $f_{\mathfrak{a},\mathfrak{b}}$ en fonction de \mathfrak{a} et $\mathfrak{b}.$
- c. Donner une condition nécessaire et suffisante pour que $f_{a,b}$ soit diagonalisable.

5.257 Mines PSI 2024 Guilhem Thébault I

$$\mathrm{Soit}\; N\geqslant 2\;\mathrm{et}\; A=\begin{pmatrix}0&\frac{1}{N}&0&\cdots&0\\1&\ddots&\frac{2}{N}&\ddots&\vdots\\0&\frac{N-1}{N}&\ddots&\ddots&0\\\vdots&\ddots&\ddots&\ddots&1\\0&\cdots&0&\frac{1}{N}&0\end{pmatrix}\in \mathfrak{M}_{N+1}(\mathbb{R}).$$

- a. Identifier un endomorphisme f de $\mathbb{R}_N[X]$ tel que $\mathrm{Mat}_{\mathcal{B}}(f) = A$ où \mathcal{B} est la base canonique de $\mathbb{R}_N[X]$.
- b. En déduire que A est diagonalisable et donner ses éléments propres.

5.258 <u>Mines PSI 2024</u> Antoine Vergnenègre I

Soit $n \in \mathbb{N}^*$ et $(U, V) \in (\mathfrak{M}_n(\mathbb{C}))^2$ tel que UV = VU et V nilpotente.

- a. Montrer que $det(I_n + M) = 1$ si $M \in \mathcal{M}_n(\mathbb{C})$ est nilpotente.
- **b.** Montrer que det(U + V) = det(U) si U est inversible.
- c. Montrer que det(U+V) = det(U). Indication : montrer que Ker(U) est stable par V.

(**5.259**) *CCINP PSI 2024* Amélia Arangoits II

Soit
$$A = \begin{pmatrix} -2 & 4 & 1 \\ -1 & 3 & 1 \\ -3 & 3 & 2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$
 et f l'endomorphisme canoniquement associé à A .

- a. Donner au moins une condition nécessaire et suffisante de diagonalisabilité d'un endomorphisme sur un espace vectoriel de dimension fini.
- **b.** Donner les valeurs propres de A.
- c. La matrice A est-elle diagonalisable?
- **d.** Trouver une base \mathcal{B} de \mathbb{R}^3 telle que Mat $_{\mathcal{B}}(f) = \begin{pmatrix} * & 0 & 0 \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix}$.

[5.260] <u>CCINP PSI 2024</u> Edward Bauduin II

Soit $M \in \mathcal{M}_4(\mathbb{R})$ vérifiant (1) : $M^3 - 4M = 0$ et Tr(M) = 0.

- a. Montrer que les valeurs propres de M sont des racines de $P = X^3 4X$.
- **b.** En déduire toutes les matrices $M \in \mathcal{M}_4(\mathbb{R})$ vérifiant (1).

5.261 CCINP PSI 2024 Amjad Belmiloud I

a. Étudier la diagonalisabilité de $A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \\ 3 & -3 & 6 \end{pmatrix}$.

 $\mathrm{Soit}\ \mathrm{une}\ \mathrm{matrice}\ A\in \mathfrak{M}_3(\,\mathbb{R})\ \mathrm{telle}\ \mathrm{que}\ \mathrm{dim}(Ker(A))=2.\ \mathrm{On}\ \mathrm{pose}\ B=\begin{pmatrix}\alpha A&\beta A\\\gamma A&0\end{pmatrix}\ \mathrm{et}\ C=\begin{pmatrix}A&A\\0&A\end{pmatrix}.$

- **b.** Calculer χ_C en fonction de χ_A . En déduire Sp(C) en fonction de Sp(A).
- c. On suppose $\beta \neq 0$, $\gamma \neq 0$ et $\alpha + \beta = \gamma$. Calculer χ_B en fonction de χ_A , puis Sp(B) en fonction de Sp(A).
- $\mathbf{d.} \ \mathrm{Montrer} \ \mathrm{que} \ \mathrm{si} \ X \in \mathrm{Ker}(A), \ \mathrm{alors} \ \binom{X}{0} \in \mathrm{Ker}(B). \ \mathrm{En} \ \mathrm{d\'eduire} \ \mathrm{que} \ \mathrm{d\'em}(\mathrm{Ker}(B)) \geqslant 2 \ \mathrm{d\'em}(\mathrm{Ker}(A)).$
- e. Diagonaliser B pour $\alpha = 1$, $\beta = 2$ et $\gamma = 3$.

5.262 CCINP PSI 2024 Martin Mayot I

Soit $n \geqslant 1$, $A \in \mathfrak{M}_n(\mathbb{R})$ et $M = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix} \in \mathfrak{M}_{2n}(\mathbb{R})$.

- a. Soit $Q \in \mathbb{R}[X]$ et U et V des matrices semblables de $\mathcal{M}_n(\mathbb{R})$. Montrer que Q(U) et Q(V) sont semblables.
- **b.** Soit $k \in \mathbb{N}$, calculer M^k .
- c. Pour $P \in \mathbb{R}[X]$, donner une expression de P(M) en fonction de A, P(A) et P'(A).
- d. Montrer que si M est diagonalisable, alors A l'est aussi.
- e. Étudier la réciproque si A est inversible.
- f. Montrer que si M est diagonalisable et A n'est pas inversible, alors A=0.

5.263) *CCINP PSI 2024* Jasmine Meyer II

Soit $n \in \mathbb{N}^*$, $A \in \mathfrak{M}_n(\mathbb{R})$ vérifiant $A^3 - A^2 + A - I_n = 0$.

- a. Montrer que les valeurs propres de A sont des racines de $P = X^3 X^2 + X 1$.
- **b.** Calculer det(A).
- **c.** Prouver que $Tr(A) \in \mathbb{N}$.

[**5.264**] *CCINP PSI 2024* Tom Sanchez II

Soit $n \in \mathbb{N}^*$, $(A, B) \in (\mathfrak{M}_n(\mathbb{C}))^2$ et $U \in \mathfrak{M}_n(\mathbb{C})$ telles que AU = UB et $U \neq 0$.

- a. Montrer que si $P \in \mathbb{C}[X]$ vérifie P(A) = 0, alors Sp(A) est inclus dans l'ensemble des racines de P.
- **b.** Montrer que $\forall P \in \mathbb{C}[X], P(A)U = UP(B)$.
- c. En déduire A et B possèdent une valeur propre commune.
- **d.** Montrer que si deux matrices C, D de $\mathfrak{M}_n(\mathbb{C})$ ont une valeur propre commune, il existe une matrice non nulle $M \in \mathfrak{M}_n(\mathbb{R})$ telle que CM = MD.

5.265) <u>Mines-Télécom PSI 2024</u> Clément Lacoste II

Soit
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 4 & 0 \\ 5 & 5 & 9 \end{pmatrix}$$
.

- a. Donner les valeurs propres et les vecteurs propres de A.
- **b.** Soit $M \in M_3(\mathbb{R})$ telle que $M^2 = A$, montrer que les vecteurs propres de A sont aussi des vecteurs propres de M. La matrice M est-elle diagonalisable ?
- **c.** Donner toutes les matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que $M^2 = A$.

5.266 Mines-Télécom PSI 2024 Romane Mioque I

Soit E un espace vectoriel de dimension finie $n \ge 2$, $\mathcal{B} = (e_1, \dots, e_n)$ une base de E et $u = \sum_{k=1}^n e_k$.

Soit $f \in \mathcal{L}(E)$ tel que $\forall i \in [1; n], f(e_i) = e_i + u$.

- a. Trouver les valeurs propres et les vecteurs propres de f.
- **b.** L'endomorphisme f est-il diagonalisable?
- c. Déterminer la valeur de det(f) et Tr (f).

5.5 Officiel de la Taupe

(5.267) OdlT 2012/2013 Centrale PSI planche 123II

Donner quelques exemples de matrices carrées d'ordre n dont les éléments diagonaux correspondent aux valeurs propres avec leur ordre de multiplicité.

Déterminer les matrices $A = \begin{pmatrix} \alpha + 1 & 0 & \alpha \\ 12 & 3 & 7 \\ \alpha - 1 & 0 & -1 \end{pmatrix}$ vérifiant cette propriété notée (P).

Montrer qu'une matrice symétrique réelle vérifie cette propriété si et seulement si elle est diagonale.

5.268) OdlT 2012/2013 CCP PSI planche 208II

Soit A une matrice carrée réelle de taille 2, non nulle et telle que ^tA = A². Déterminer un polynôme annulateur de A. Montrer que si 0 est valeur propre de A, alors elle est semblable à $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

5.269 OdlT 2012/2013 CCP PSI planche 210II

On veut montrer par récurrence que si $A \in \mathcal{M}_n(\mathbb{R})$ vérifie $\forall k \in [1; n]$, Tr $(A^k) = 0$ alors $A^n = 0$.

Soit A une telle matrice avec $n \ge 2$, en calculant $\chi_A(A)$, montrer que 0 est valeur propre de A.

Montrer que A est semblable à une matrice A' dont la dernière colonne est nulle. On note B la matrice obtenue en supprimant la dernière colonne et la dernière ligne de A'. Conclure.

5.270 OdlT 2012/2013 Ensam PSI planche 242I

Soit $n \in \mathbb{N}^*$ et A l'ensemble de tous les sous-espaces vectoriels F de $\mathfrak{M}_n(\mathbb{R})$ ne contenant que des matrices diagonalisables. Calculer $d = \underset{F \in A}{Sup} (dim F)$.

5.271 OdlT 2013/2014 X-Cachan PSI planche 73

On note $D_n(\mathbb{C})$ l'ensemble des matrices diagonalisables. Pour D diagonale de coefficients diagonaux d_1, \cdots, d_n (dans cet ordre), on note exp(D) la matrice diagonale de coefficients diagonaux e^{d_1}, \dots, e^{d_n} (dans cet ordre). Si $M = PDP^{-1}$ est diagonalisable, on note $exp(M) = P \exp(D)P^{-1}$. Montrer que exp est bien définie sur $D_n(\mathbb{C})$, c'est-à-dire que $PDP^{-1} = QD'Q^{-1} \Longrightarrow P \exp(D)P^{-1} = Q \exp(D')Q^{-1}$.

Pour $M \in D_n(\mathbb{C})$, soit $g: t \mapsto exp(tM)$. Montrer que g est dérivable sur \mathbb{R} et calculer sa dérivée.

$$\begin{split} &\operatorname{Si}\left(M,N,R\right)\in D_{\mathfrak{n}}(\mathbb{C})^{2}\times \mathfrak{M}_{\mathfrak{n}}(\mathbb{C}), Y(t)=exp(tM)R\,exp(tN), \operatorname{montrer}Y(t)-R=M\int_{0}^{t}Y(s)ds+\left(\int_{0}^{s}Y(s)ds\right)N. \\ &\operatorname{On\;pose\;}||A||=\sum_{1\leqslant i,j\leqslant n}|\alpha_{i,j}|. \ \, \operatorname{Montrer\;que\;}||AB||\leqslant ||A||\,||B||. \end{split}$$

On suppose les valeurs propres de M et N à parties réelles strictement négatives. Montrer que $\lim_{t\to +\infty} Y(t) = 0$ et que $\int_0^t Y(s)ds$ admet une limite finie quand t tend vers $+\infty$. Montrer que $\exists !X \in \mathcal{M}_n(\mathbb{C}), \ MX + XN = R$.

(5.272) OdlT 2013/2014 Mines PSI planche 190I

Soit f un endomorphisme de \mathbb{C}^n .

Si rang (f) = 2, donner son polynôme caractéristique en fonction de Tr (f) et Tr (f^2) .

Si rang (f) = 3, le donner en fonction de Tr (f), Tr (f^2) et Tr (f^3) .

5.273 OdlT 2013/2014 CCP PSI planche 247I

Décomposer A, matrice carrée complexe de rang 1, comme produit d'une matrice colonne et d'une matrice ligne. En déduire que $A^2 = Tr(A)A$. Trouver le polynôme caractéristique de A. À quelle condition $A + I_n$ est-elle inversible ? Calculer alors son inverse.

5.274 OdlT 2014/2015 Mines PSI planche 156I (Mathias)

- a. Soit $A \in \mathcal{M}_n(\mathbb{C})$ et $\lambda \notin Sp(A)$. Montrer que $(A \lambda I_n)^{-1}$ est un polynôme en A.
- **b.** Soit $k \in \mathbb{N}^*$ le degré d'un polynôme annulateur de A et $\lambda_1, \cdots, \lambda_k$ des complexes qui ne sont pas dans le spectre de A. Montrer qu'il existe une famille de complexes (c_1, \cdots, c_k) telle que $\sum_{i=1}^k c_i (A \lambda_i I_n)^{-1} = I_n$.

${f (5.275)}$ OdlT 2014/2015 Mines PSI planche 157I

- **a.** Pour $A \in \mathcal{M}_n(\mathbb{R})$, de coefficients $\mathfrak{a}_{i,j} = Min(i,j)$, trouver une matrice L, triangulaire inférieure, n'ayant que des 1 sur la diagonale, et une matrice U, triangulaire supérieure, telle que A = LU.
- **b.** Exprimer A^{-1} en fonction de $N \in \mathcal{M}_n(\mathbb{R})$ telle que $n_{i,j} = 1$ si j = i+1 et 0 sinon.
- c. Montrer que le spectre de A^{-1} est inclus dans [1;4].

$ig(oldsymbol{5.276} ig) \, \underline{OdlT \, 2014/2015 \, Mines \, PSI \, planche \, 160I}$

Soit $A \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$ et la propriété \mathfrak{P} : " $\exists M \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{C}), \ \forall \lambda \in \mathbb{C} \setminus \{0\}, \ det(\lambda A - M) \neq 0$ ".

La propriété est-elle vraie pour A inversible ? Est-elle vraie pour A non inversible ?

5.277 OdlT 2014/2015 Mines PSI planche 163II

- $\mathbf{a.} \ \grave{\mathrm{A}} \ \mathrm{quelle}(\mathrm{s}) \ \mathrm{condition}(\mathrm{s}) \ \mathsf{M} = \begin{pmatrix} 1 & \alpha & b & c \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{pmatrix} \ \mathrm{est\text{-elle diagonalisable ?}}$
- b. Montrer que, dans ce cas, pour tout $\mathfrak n,\, M^{\mathfrak n}$ est combinaison linéaire de M et I_4 .

5.278 OdlT 2014/2015 Mines PSI planche 170III

- **a.** Montrer que $GL_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$.
- **b.** En déduire que pour $(A, B) \in (\mathcal{M}_n(\mathbb{C}))^2$, les polynômes caractéristiques de AB et BA sont identiques.

5.279 OdlT 2014/2015 Centrale PSI planche 224I

- a. Montrer que : $\forall P \in \mathbb{R}_n[X], \ \forall x \in \mathbb{R}, \ \int_{-\infty}^x P(t)e^tdt$ converge.
- $\mathbf{b.} \ \text{Montrer que } L \ \text{tel que } L(P)(x) = e^{-x} \int_{-\infty}^{x} P(t) e^{t} dt \ \text{est un endomorphisme de } \mathbb{R}_{\pi}[X]. \ \text{Est-il diagonalisable ?}$

$ig(oldsymbol{5.280} ig) \, \underline{OdlT \, 2014/2015 \, PSI \, Centrale \, planche \, 233I}$

On note r l'application qui fait tourner d'un angle $\frac{\pi}{2}$ le coefficient (i,j) d'une matrice autour de son centre.

Par exemple r(1,n)=(1,1). Si A est une matrice carrée, complexe de taille n de coefficients $a_{i,j}$, on note R(A) la matrice obtenue après rotation et $b_{i,j}$ ses coefficients.

Montrer que R est un isomorphisme diagonalisable et trouver ses valeurs propres.

5.281) OdlT 2014/2015 Centrale PSI planche 233II

Soit $A \in \mathcal{M}_n(\mathbb{C})$ à valeurs propres strictement positives et telle que $\{A^p \mid p \in \mathbb{Z}\}$ est bornée. Montrer que $Sp(A) = \{1\}$ puis que $A = I_n$.

(5.282) OdlT 2014/2015 Centrale PSI planche 239II

On donne $\lambda_1, \cdots, \lambda_p$ des réels deux à deux distincts, $\mathfrak{u}, \mathfrak{v}_1, \cdots, \mathfrak{v}_p$ des endomorphismes non nuls d'un \mathbb{R} -espace vectoriel E tels que $\forall n \in [0; p], \ u^n = \sum_{k=1}^p \lambda_k^n \nu_k.$

- **a.** Montrer que $\forall P \in \mathbb{R}[X], \ P(u) = \sum_{k=1}^{p} P(\lambda_k) \nu_k$.
- b. En déduire que u est diagonalisable
- c. Montrer que $\lambda_1, \cdots, \lambda_p$ sont les valeurs propres de $\mathfrak u$ et déterminer l'idéal annulateur de $\mathfrak u$.
- $\mathbf{d.} \ \mathrm{Montrer} \ \mathrm{que} \ \mathrm{les} \ \nu_k \ \mathrm{sont} \ \mathrm{les} \ \mathrm{projecteurs} \ \mathrm{associ\acute{e}s} \ \grave{\mathrm{a}} \ \mathrm{la} \ \mathrm{d\acute{e}composition} \ E = \bigoplus_{k=1}^{\cdot} Ker(u \lambda_k \mathrm{id} \ E).$

5.283 OdlT 2014/2015 Centrale PSI planche 243II

Trouver $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 - 4A^2 + 4A = 0$ et Tr (A) = 2.

5.284) OdlT 2014/2015 Centrale PSI planche 245II

- **a.** Pour $A \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{R})$, montrer que $B = \begin{pmatrix} A & 4A \\ A & A \end{pmatrix}$ est semblable à $\begin{pmatrix} -A & 0 \\ 0 & 3A \end{pmatrix}$. **b.** Montrer que B est diagonalisable si et seulement si A l'est aussi.
- c. Pour n = 2, exprimer les vecteurs propres de B en fonction de ceux de A.

5.285 OdlT 2014/2015 CCP PSI planche 274I

f, définie sur $M_n(\mathbb{R})$ par $f(M) = M - Tr(M)I_n$, est-elle linéaire? Est-elle diagonalisable?

(5.286) OdlT 2014/2015 CCP PSI planche 275II

Montrer que f qui à $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ associe $\begin{pmatrix} d & 2b \\ 2c & a \end{pmatrix}$ est un endomorphisme et déterminer ses valeurs propres. f est-il diagonalisable? Inversible?

(5.287) OdlT 2014/2015 CCP PSI planche 278II

On cherche $M \in GL_n(\mathbb{R})$ telle que $M^2 + {}^tM = I_n$. Trouver un polynôme annulateur de degré 4 de M. Montrer que $M - I_n$ est inversible et conclure.

5.288 OdlT 2014/2015 CCP PSI planche 283

a.
$$A = \begin{pmatrix} 3 & -3 & 2 \\ -1 & 5 & -2 \\ -1 & 3 & 0 \end{pmatrix}$$
 est-elle diagonalisable? (on calculera $C_1 - C_2 - C_3$)?

- **b.** Trouver ses éléments propres.
- c. Trouver $R \in \mathcal{M}_3(\mathbb{R})$ telle que $R^2 = A$. Montrer que les matrices R qui conviennent sont diagonalisables.

5.289 OdlT 2014/2015 CCP PSI planche 288II

Trouver les valeurs propres de la matrice réelle, carrée, de taille n qui a $1, 2, \dots, n$ sur la dernière ligne et la dernière colonne et des 0 partout ailleurs.

44

(5.290) OdlT 2014/2015 CCP PSI planche 292II

Soit f un endomorphisme d'un espace vectoriel E de dimension n, ayant n valeurs propres distinctes.

- a. Montrer que si g commute avec f, tout vecteur propre de f est vecteur propre de g et en déduire qu'il existe un base de vecteurs propres commune à f et g.
- **b.** Montrer l'existence et l'unicité de $P \in \mathbb{R}_{n-1}[X]$ tel que g = P(f).

(5.291) OdlT 2014/2015 CCP PSI planche 293I

- a. Soit $M \in GL_k(\mathbb{C})$. Montrer que si M^2 est diagonalisable, alors M l'est aussi.
- **b.** Soit $(A,B) \in GL_n(\mathbb{C})^2$. Montrer que $N = \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}$ est inversible.
- c. Calculer N² et en déduire que N est diagonalisable si et seulement si AB l'est.

5.292 OdlT 2014/2015 ENSAM PSI planche 322II

$$J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \text{ est-elle diagonalisable sur } \mathbb{R} ? \text{ Sur } \mathbb{C} ?$$

(5.293) OdlT 2014/2015 ENTPE-EIVP PSI planche 324I

Déterminer les éléments propres de $A \in \mathcal{M}_n(\mathbb{C})$ telle que $a_{n,j} = 1$ si $j \leqslant n-1$, $a_{i,n} = -1$ si $i \leqslant n-1$ et $a_{i,j} = 0$ sinon. Est-elle diagonalisable ?

5.294 OdlT 2014/2015 ENSEA-ENSIIE PSI planche 327II

 $A \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{R})$, telle que $A^3 + A - I_{\mathfrak{n}} = 0$, est-elle diagonalisable dans $\mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$? Dans $\mathfrak{M}_{\mathfrak{n}}(\mathbb{R})$? Montrer que det(A) > 0.

5.295 OdlT 2015/2016 X-Cachan PSI planche 42

Pour A et B des polynômes fixés de $\mathbb{R}[X]$, avec deg(B) = n + 1, on note Φ l'application qui, à $P \in \mathbb{R}_n[X]$, associe le reste de la division euclidienne de AP par B.

Montrer que si A et B sont premiers entre eux, ϕ est un isomorphisme.

On suppose B scindé à racines simples ; trouver les valeurs propres de Φ . Est-il diagonalisable ?

On choisit $A = aX^{p+1} - (a+1)X^p + 1$ et $B = (1-X)^2$; Φ est-il diagonalisable?

$({f 5.296})~{ m OdIT}~2015/2016~{ m Mines}~{ m PSI}~{ m planche}~118{ m II}$

Montrer que, si $A \in \mathcal{M}_n(\mathbb{R})$ vérifie $A^3 = A + I_n$, alors det(A) > 0.

(5.297) OdlT 2015/2016 Mines PSI planche 123II

On note P l'ensemble des fonctions polynomiales de $\mathbb R$ dans $\mathbb C$. Pour T>0, justifier la légitimité de l'endomorphisme $\mathfrak u$ défini sur P par : $\mathfrak u(f)(x)=\frac1T\int_x^{x+T}f(t)dt$. Montrer que $\mathfrak u\in GL(P)$ et donner son spectre.

(5.298) OdlT 2015/2016 Mines PSI planche 127III

Soient A et B deux matrices réelles, carrées d'ordre 2 telles qu'il existe trois réels a, b, c vérifiant la relation $AB = aI_2 + bA + cB$; montrer qu'il existe trois réels x, y, z tels que $BA = xI_2 + yA + zB$.

5.299 OdlT 2015/2016 Mines PSI planche 131I

Montrer que λ est valeur propre de la matrice A dont les coefficients diagonaux sont $1, 2, \cdots, n$ et tous les autres valent 1, si et seulement si $\sum_{\nu=n}^{n-1} \frac{1}{\lambda-k} = 1$. En déduire que A admet n valeurs propres distinctes.

5.300 OdlT 2015/2016 Mines PSI planche 133III

Déterminer les éléments propres de l'endomorphisme T, défini sur l'espace des fonctions continues de $\mathbb R$ dans \mathbb{R} et admettant une limite finie en $+\infty$, par T(f)(x) = f(x+1).

5.301 OdlT 2015/2016 Centrale PSI planche 178

Soient u et v deux endomorphismes d'un \mathbb{C} -espace vectoriel E de dimension finie.

Montrer que si $u \circ v = 0$, $u \in v$ ont un vecteur propre commun (on étudiera d'abord le cas où u est injectif). Montrer que si $u \circ v \in Vect(u, v)$, u et v ont un vecteur propre commun, puis qu'il existe une base B dans laquelle u et v ont des matrices triangulaires supérieures.

5.302 OdlT 2015/2016 Centrale PSI planche 183

Calculer
$$D(t) = \begin{vmatrix} a+t & c+t & \cdots & c+t \\ b+t & a+t & \ddots & \vdots \\ \vdots & \ddots & \ddots & c+t \\ b+t & \cdots & b+t & a+t \end{vmatrix}$$
 où $b \neq c$ et $bc \neq 0$. En déduire le polynôme caractéristique
$$de\ M = \begin{pmatrix} a & c & \cdots & c \\ b & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & c \\ b & \cdots & b & a \end{pmatrix}.$$
 Donner les valeurs propres $de\ M$; est-elle diagonalisable?

$$de\ M = \begin{pmatrix} a & c & \cdots & c \\ b & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & c \\ b & \cdots & b & a \end{pmatrix}. Donner\ les\ valeurs\ propres\ de\ M\ ;\ est-elle\ diagonalisable\ ?$$

5.303 OdlT 2015/2016 CCP PSI planche 233I

Montrer qu'un endomorphisme de rang 1 d'un espace vectoriel de dimension finie est diagonalisable si et seulement si sa trace est non nulle.

5.304 OdlT 2015/2016 CCP PSI planche 237II

Soient $x_0 \in E \setminus \{0_E\}$ et Φ une forme linéaire non nulle de E, \mathbb{R} -espace vectoriel.

Montrer que u, défini par $u(x) = x + \Phi(x)x_0$ est un endomorphisme admettant 1 pour valeur propre.

Donner la dimension de $Ker(u - id_E)$ puis une CNS pour que u soit diagonalisable.

5.305 OdlT 2015/2016 CCP PSI planche 241II

Montrer que Φ , défini par $\Phi(M) = M + Tr(M)I_n$ est un endomorphisme de $\mathfrak{M}_n(\mathbb{C})$, dont on donnera le noyau et le rang. Trouver un polynôme annulateur de degré 2 annulateur de Φ .

 Φ est-il diagonalisable? Bijectif? Si oui, calculer Φ^{-1} .

5.306 OdlT 2015/2016 CCP PSI planche 242I

Soient $A \in \mathcal{M}_n(\mathbb{R})$ et $P \in \mathbb{R}[X]$ tels que P(A) est triangulaire à coefficients diagonaux 2 à 2 distincts; montrer que A est diagonalisable.

(5.307) OdlT 2015/2016 CCP PSI planche 243I

Soit $n \ge 3$, montrer que $N \in \mathcal{M}_n(\mathbb{R})$, constituée de 1 sur la diagonale, la première et la dernière colonne et des 0 partout ailleurs est diagonalisable et trouver ses éléments propres.

5.308 OdlT 2015/2016 CCP PSI planche 244II

Montrer que $M \in GL_n(\mathbb{C})$ est diagonalisable ssi M^2 l'est. Est-ce toujours vrai si M n'est pas inversible?

5.309 OdlT 2015/2016 CCP PSI planche 245I

Soit f un endomorphisme de \mathbb{R}^3 tel que $f^4 = f^2$ et dont 1 et -1 sont valeurs propres ; montrer que $Sp(f) \subset \{-1,0,1\}$ (on n'utilisera pas directement que le spectre est inclus dans l'ensemble des racines d'un polynôme annulateur). Montrer que f est diagonalisable.

5.310 OdlT 2015/2016 CCP PSI planche 247II

On note E l'ensemble des fonctions C^{∞} de \mathbb{R} dans \mathbb{R} .

Montrer que Φ défini par $\Phi(f)(x) = f'(x) - xf(x)$ est un endomorphisme de E.

Déterminer ses valeurs propres, ses sous-espaces propres et $Ker(\Phi^2)$.

(5.311) <u>OdlT 2015/2016 CCP PSI planche 248I</u>

Justifier que $A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$ est diagonalisable et donner une base orthonormale de \mathbb{R}^3 de vecteurs propres de A. Donner une CNS sur (u_0, v_0, w_0) pour que les trois suites (u_n) , (v_n) , (w_n) vérifiant la récurrence couplée $\begin{cases} u_{n+1} &= -u_n + v_n + w_n \\ v_{n+1} &= u_n - v_n + w_n \\ w_{n+1} &= u_n + v_n - w_n \end{cases}$ convergent.

Calculer M^n pour $n \in \mathbb{N}$ et z = 0. Donner les éléments propres de M pour $z = e^{i\theta}$.

(5.313) OdlT 2015/2016 ENSAM PSI planche 274II

Pour f continue de \mathbb{R}_+ dans \mathbb{R} , on pose $T(f)(x) = \frac{1}{x} \int_0^x f(t) dt$ si x > 0 et T(f)(0) = f(0).

Montrer que f est un endomorphisme de l'espace E des fonctions continues de \mathbb{R}_+ dans \mathbb{R} .

Est-il surjectif? Injectif? Donner ses éléments propres.

[5.314] OdlT 2015/2016 ENTPE-EIVP planche 279II

Pour $a \in \mathbb{R}$, donner les valeurs et vecteurs propres de $\mathfrak u$ défini sur $\mathbb{R}[X]$ par $\mathfrak u(P)(X) = (X-a)P'(X)$. Trouver l'ensemble des polynômes divisibles par leur dérivée.

(5.315) <u>OdlT 2015/2016 Télécom SudParis planche 284I</u>

Montrer que si $A \in \mathfrak{M}_n(\mathbb{R})$ est de rang 1, il existe $(U,V) \in (\mathbb{R}^n)^2$ tels que $A = U^t V$.

Montrer que A est diagonalisable si et seulement si $Tr(A) \neq 0$. Trouver le polynôme minimal de A.

(5.316) OdlT 2016/2017 X/Cachan PSI planche 36II

Trouver une CNS sur $A \in \mathfrak{M}_n(\mathbb{K})$ pour que $B = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$ soit diagonalisable.

(5.317) OdlT <u>2016/2017 X/Cachan PSI planche 36III</u>

Résoudre
$$B^2 = N = \begin{pmatrix} -1 & x & y \\ 0 & -1 & z \\ 0 & 0 & 1 \end{pmatrix}$$
 avec $B \in \mathcal{M}_3(\mathbb{R})$.

5.318 OdlT 2016/2017 X/Cachan PSI planche 40II

Soit E un espace de dimension fini, f, g deux endomorphismes de E de matrices A, B dans la base B de E.

- a. Montrer que AB et BA ont même polynôme caractéristique.
- **b.** Si $\lambda \in Sp(AB)$, on note E_{λ} (resp. F_{λ}) le sous-espace propre associé à la valeur propre λ de AB (resp. de BA). Montrer que $g(E_{\lambda}) \subset F_{\lambda}$ et que $f(F_{\lambda}) \subset E_{\lambda}$. En déduire que E_{λ} et F_{λ} ont même dimension si $\lambda \neq 0$.
- c. Montrer que si $f \circ q$ est diagonalisable et si rang $(f \circ q) = \text{rang}(q \circ f)$, alors $q \circ f$ l'est aussi.
- d. Trouver deux matrices X et Y telles que XY soit diagonalisable mais pas YX.

(5.319) OdlT 2016/2017 Mines PSI planche 107II

Déterminer le polynôme caractéristique de $B=\begin{pmatrix}A&I_n\\I_n&0\end{pmatrix}$ en fonction de celui de $A\in\mathcal{M}_n(\mathbb{R})$. Montrer que, si A est diagonalisable, B l'est aussi.

5.320) OdlT 2016/2017 Mines PSI planche 111II

Montrer que si A et B, carrées, complexes de taille 2 commutent, alors A est un polynôme en B ou B est un polynôme en A. Cela reste-t-il vrai pour des matrices de taille 3 ? Pour des matrices réelles ?

[5.321] OdlT 2016/2017 Mines PSI planche 113I

Montrer que D défini par D(f)(x) = xf'(x) est un endomorphisme de l'espace des fonctions de classe C^{∞} de \mathbb{R} dans \mathbb{R} . Trouver Ker (D) puis ses éléments propres.

$ig(oldsymbol{5.322} ig) \, OdlT \, 2016/2017 \, Mines \, PSI \, planche \, 114II$

Soit $\mathfrak u$ un endomorphisme d'un $\mathbb R$ -espace E de dimension finie tel qu'il existe $\mathfrak p$ endomorphismes non nuls $\mathfrak v_1,\ldots,\mathfrak v_{\mathfrak p}$ et $\mathfrak p$ réels $\lambda_1,\ldots,\lambda_{\mathfrak p}$ distincts deux à deux vérifiant $\forall \mathfrak n\in\mathbb N,\,\mathfrak u^\mathfrak n=\sum_{i=1}^p\lambda_i^\mathfrak n\mathfrak v_i.$

$$\begin{split} \text{Montrer que } \forall P \in \mathbb{R}[X], \, P(\mathfrak{u}) &= \sum_{i=1}^p P(\lambda_i) \nu_i \text{ et que } \mathfrak{u} \text{ est diagonalisable. Montrer qu'il existe une base} \\ (L_1, \ldots, L_p) \text{ de } \mathbb{R}_{p-1}[X] \text{ telle que : } \forall (i,j) \in [\![1;p]\!]^2, \, L_i(\lambda_j) = \delta_{ij}. \text{ Montrer que } Sp(\mathfrak{u}) = \{\lambda_1, \ldots, \lambda_p\}. \end{split}$$

(5.323) OdlT 2016/2017 Mines PSI planche 116II

Réduire ϕ définie sur $\mathcal{M}_n(\mathbb{K})$ par $\phi(M) = M + \text{Tr } (AM)A$ où A est fixée dans $\mathcal{M}_n(\mathbb{K})$.

5.324 OdlT 2016/2017 Mines PSI planche 118I

Soit u un endomorphisme d'un \mathbb{C} -espace vectoriel E de dimension finie. On suppose que u est diagonalisable, de valeurs propres distinctes $\lambda_1,\ldots,\lambda_p$. Montrer qu'il existe p endomorphismes u_1,\ldots,u_p tels que l'on ait : $\forall P\in\mathbb{C}[X],\, P(u)=\sum_{i=1}^p P(\lambda_i)u_i. \text{ Montrer que } \forall i\in[\![1;p]\!],\, \exists P_i\in\mathbb{C}[X],\, P_i(u)=u_i.$

Réciproquement, montrer que si u est un endomorphisme tel qu'il existe p endomorphismes $u_1, \dots u_p$ vérifiant $\forall P \in \mathbb{C}[X], P(u) = \sum_{i=1}^p P(\lambda_i)u_i$, alors u est diagonalisable.

5.325 OdlT 2016/2017 Mines PSI planche 119I

Trouver les polynômes annulateurs de $M = \begin{pmatrix} a & 0 & 0 & 0 & 0 & 0 \\ 0 & b & 1 & 0 & 0 & 0 \\ 0 & 0 & b & 0 & 0 & 0 \\ 0 & 0 & 0 & c & 0 & 0 \\ 0 & 0 & 0 & 1 & c & 0 \\ 0 & 0 & 0 & 0 & 1 & c \end{pmatrix}$

(5.326) OdlT 2016/2017 Mines PSI planche 121II

Déterminer les classes de similitude de $\mathfrak{M}_3(\mathbb{C})$.

5.327 OdlT 2016/2017 Centrale PSI planche 173 et compléments Centrale PSI planche 207

Soit $A \in \mathcal{M}_n(\mathbb{R})$; on cherche la dimension de $E = \{M \in \mathcal{M}_n(\mathbb{R}) \mid AMA = 0\}$.

Si A est diagonalisable; montrer que dim $E = \dim\{N \in \mathcal{M}_n(\mathbb{R}) \mid DND = 0\}$ où D est une matrice diagonale à expliciter. Donner la dimension de E en fonction du rang de A.

Peut-on généraliser au cas où A n'est pas diagonalisable?

5.328 OdlT 2016/2017 CCP PSI planche 203I

Si $E = \mathbb{R}_n[X]$, déterminer la matrice de $f \in \mathcal{L}(E)$ donné par f(P)(X) = (X - a)P'(X) + P(X) - P(a) dans la base canonique. Donner son noyau, son image, ses éléments propres.

(5.329) OdlT 2016/2017 CCP PSI planche 208I

Calculer le rang de
$$A = \begin{pmatrix} 0 & \dots & 0 & 1 \\ 1 & \ddots & (0) & \vdots \\ \vdots & (0) & \ddots & 1 \\ 1 & 0 & \dots & 0 \end{pmatrix}$$
, puis le rang de A^2 . Montrer que $\operatorname{Ker}(A)$ et $\operatorname{Im}(A)$ sont supplémentaires. En déduire que A est semblable à $A' = \begin{pmatrix} 0 & 0 \\ 0 & B \end{pmatrix}$ avec $B \in \operatorname{GL}_2(\mathbb{R})$.

Donner le spectre de B et en déduire que A est diagonalisable

(5.330) OdlT 2016/2017 CCP PSI planche 209II et compléments CCP PSI planche 372II

Déterminer les valeurs propres de $A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 2 & -4 & -1 \end{pmatrix}$ ainsi qu'une matrice diagonale D semblable à A.

Montrer que si M commute avec D, elle est diagonale.

Déterminer toutes les matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que $M^7 + M + I_3 = A$.

5.331 OdlT 2016/2017 CCP PSI planche 210II

Calculer le polynôme caractéristique de $A_n = \begin{pmatrix} 1 & 0 & 1 \\ -1 & -1 & 1 \\ 2-n & n-2 & n \end{pmatrix} \in \mathfrak{M}_3(\mathbb{R})$. Déterminer les sous-espaces propres de A₃. Les matrices A₂ et A₁ sont-elles diagor

(5.332) OdlT 2016/2017 CCP PSI planche 211II abordable dès la 1^{ère} année

Montrer que f, défini sur $\mathbb{R}_n[X]$ par $f(P)(x) = \int_x^{x+1} P(t)dt$ est un endomorphisme et donner sa trace.

(5.333) OdlT 2016/2017 CCP PSI planche 214I

a. Montrer que si $M \in GL_k(\mathbb{C})$ est de carré diagonalisable, alors elle est diagonalisable (on pourra montrer qu'il existe un polynôme scindé à racines simples annulant M).

b. Soit A et B inversibles dans $\mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$ et $N = \begin{pmatrix} 0 & B \\ A & 0 \end{pmatrix} \in \mathfrak{M}_{2\mathfrak{n}}(\mathbb{C})$, montrer que $N \in GL_{2\mathfrak{n}}(\mathbb{C})$.

c. Calculer N^2 puis, pour $P \in \mathbb{C}[X]$, calculer $P(N^2)$.

d. On suppose N diagonalisable, montrer que le produit AB est diagonalisable.

e. Qu'en est-il de la réciproque ?

(5.334) OdlT 2016/2017 CCP PSI planche 218II

Pour n pair, $n \ge 2$, déterminer le rang de $A_n = \begin{pmatrix} 1 & n & 1 & \dots & n \\ 2 & n-1 & 2 & \dots & n-1 \\ \vdots & \vdots & \vdots & & \vdots \\ n & 1 & n & \dots & 1 \end{pmatrix}$. Montrer qu'une matrice et

sa transposée ont même spectre. Montrer que A_n est diagonalisable, donner ses éléments propres.

5.335 OdlT 2016/2017 ENSAM PSI planche 240I

Que peut-on dire de $A \in \mathcal{M}_n(\mathbb{K})$ qui commute avec une matrice diagonale $D \in \mathcal{M}_n(\mathbb{K})$ dont tous les coefficients sont distincts 2 à 2 ? Trouver $X \in \mathcal{M}_2(\mathbb{C})$ vérifiant $X^2 - 2X = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.

5.336 OdlT 2016/2017 ENSAM PSI planche 241I

Montrer que si $A \in \mathcal{M}_n(\mathbb{R})$ vérifie $A^2 = -I_n$, alors n est pair.

Montrer que si $B \in \mathcal{M}_n(\mathbb{R})$ vérifie $B^2 - B + I_n = 0$, alors n est pair. Montrer que si $C \in \mathcal{M}_n(\mathbb{R})$ vérifie $C^3 + C^2 + C = 0$, alors C est de rang pair.

5.337 OdlT 2016/2017 ENSAM PSI planche 242I

À quelle(s) condition(s), nécessaire(s) et suffisante(s), $A = \begin{pmatrix} 0 & a & b \\ a & 0 & b \\ a & b & 0 \end{pmatrix}$ est-elle diagonalisable?

5.338 OdlT 2016/2017 ENSEA PSI planche 251I

Donner le spectre de la matrice $J \in \mathcal{M}_n(\mathbb{R})$ dont tous les coefficients valent 1.

Soit ϕ une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$ telle que $\forall A \in \mathcal{M}_n(\mathbb{R}), \phi(A) \in Sp(A)$.

Déterminer $\phi(M)$ quand M est triangulaire et n'a que des 0 sur sa diagonale.

Déterminer $\phi(J)$ et aboutir à une contradiction. Que conclure ?

5.339 OdlT 2016/2017 ENSEA PSI planche 252II

Soit E un C-espace de dimension n et $f \in \mathcal{L}(E)$, tel que $(f - \mathrm{id}_F)^3 \circ (f - 2\mathrm{id}_F) = 0$ et $(f - \mathrm{id}_F)^2 \circ (f - 2\mathrm{id}_F) \neq 0$. L'endomorphisme f est-il diagonalisable?

5.340 OdlT 2017/2018 Mines PSI planche 116II

Soit $n \in \mathbb{N}^*$ et des matrices A, B et C dans $\mathcal{M}_n(\mathbb{C})$.

- **a.** Montrer que si A et B n'ont aucune valeur propre commune, $\exists ! M \in M_n(\mathbb{C}), AM MB = C.$
- b. Qu'en est-il de la réciproque ?

5.341 OdlT 2017/2018 Mines PSI planche 118II

Montrer que f, défini par $f(P)(X) = nXP(X) - (X^2 - 1)P'(X)$ est un endomorphisme de $\mathbb{R}_n[X]$.

Résoudre $nxy - (x^2 - 1)y' = \lambda y$ sur] - 1;1[et donner les solutions polynomiales.

Réduire f, trouver son déterminant et sa trace. Que dire de son rang?

5.342) OdlT 2017/2018 Mines PSI planche 124II

Éléments propres de $M = (x_i x_j)_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R}).$

5.343 OdlT 2017/2018 Centrale PSI planche 169

Soit E un R-espace vectoriel de dimension n. Donner une relation entre l'ordre de multiplicité d'une valeur propre et la dimension du sous-espace propre associé.

Qu'est-ce que le polynôme caractéristique ? Donner le théorème de CAYLEY-HAMILTON.

Montrer que si $\chi'_{\mathfrak{u}}(0) \neq 0$, alors $\operatorname{Ker}(\mathfrak{u}) = \operatorname{Ker}(\mathfrak{u}^2)$.

5.344) OdlT 2017/2018 CCP PSI planche 215I

Deux matrices A et B de taille $n \ge 2$ possèdent le même spectre.

Sachant que les valeurs propres sont distinctes 2 à 2, montrer qu'elles sont semblables.

Donner 2 matrices possédant les mêmes valeurs propres mais qui ne sont pas semblables.

5.345 OdlT 2017/2018 Mines-Télécom PSI planche 252I et 2014/2015 CCP PSI planche 282I

et 2015/2016 CCP PSI planche 240II

Soit E un espace vectoriel et $(u, v) \in \mathcal{L}(E)^2$.

- a. Soit $\lambda \neq 0$ une valeur propre de $\nu \circ u$. Montrer que λ est une valeur propre de $\nu \circ \nu$.
- **b.** Montrer que si E est de dimension finie, le résultat est encore vrai pour $\lambda=0$.
- c. On choisit $E=\mathbb{R}[X]$, $\mathfrak{u}(P)=P'$ et $\nu(P)=Q$ où Q est la primitive de P s'annulant en 0. Calculer $Ker(\nu\circ \mathfrak{u})$ et $Ker(\mathfrak{u}\circ \nu)$. Conclure.

5.346 Compléments OdlT 2017/2018 CCP PSI planche 442I et compléments Mines-Télécom PSI planche 574I

Donner le rang et une base de l'image de $A \in \mathcal{M}_n(\mathbb{R})$ de coefficient $\mathfrak{a}_{i,j} = \frac{i}{j}$. En déduire une valeur propre de A et le sous-espace propre associé. Montrer que A est diagonalisable et donner ses éléments propres. Déterminer P inversible telle que $A = PDP^{-1}$ avec D diagonale. Montrer que $\forall M \in \mathcal{M}_n(\mathbb{R})$, M commute avec A si et seulement si Ker(A) et Im(A) sont stables par M. En déduire la dimension du commutant de A.

5.347 Compléments OdlT 2017/2018 CCP PSI planche 454II

Existe-t-il $A \in \mathcal{M}_3(\mathbb{R})$ telle que Tr A = 0 et $A^2 + {}^tA = I_3$ (on pourra chercher un polynôme annulateur de A et montrer que les valeurs propres de A en sont racines)?

(5.348) Compléments OdlT 2017/2018 Mines-Télécom PSI planche 566I

Montrer que $f: P \mapsto X(1+X)P' - nXP$, est un endomorphisme de $\mathbb{R}_n[X]$ dont on donnera les éléments propres.

(5.349) Compléments OdlT 2017/2018 Mines-Télécom PSI planche 569II

Montrer que si $A \in \mathcal{M}_n(\mathbb{R})$ vérifie $A^5 + A = I_n$, alors det(A) > 0.

5.350 Compléments OdlT 2017/2018 ENSEA PSI planche 580II

Montrer que si f, u et ν sont trois endomorphismes d'un \mathbb{R} -espace vectoriel vérifiant : $\exists (\alpha, \beta) \in \mathbb{R}^2$, $\forall i \in [1; 3]$, $f^i = \alpha^i u + \beta^i \nu$, alors f est diagonalisable.