PROGRAMME 143

CHAPITRE 8
INTEGRALES A PARAMETRE

(® Nous entrons dans le champ des transformées de fonctions. Une transformée est une opération
consistant & associer a une fonction appartenant a un espace fonctionnel une nouvelle fonction, la plupart
du temps définie de maniere intégrale, et appartenant a un espace fonctionnel potentiellement différent. Une

transformation est donnée en général par T : f (T(f) DU fI f(t)K(t, t)dt) ou K est appelé le noyau de
la transformation T sur un intervalle temporel I (sous réserve de convergence).

Au début du XIX€ siecle, FOURIER montre que toute fonction périodique peut se décomposer comme
somme d’une série de fonctions t — cos(kt) et t — sin(kt) (les harmoniques), il utilise cette décomposition
pour étudier les solutions de I’équation de la chaleur. Mais il généralise cette propriété a toute fonction non
périodique par la transformée de FOURIER a valeurs réelles ou complexes dont la variable indépendante peut
s'interpréter en physique comme la fréquence ou la pulsation : cette transformation permet de passer du
domaine temporel au domaine fréquentiel (spectre).

La transformation de LAPLACE généralise la transformation de FOURIER ; elle est utilisée pour résoudre
les équations différentielles. Contrairement a cette derniere, elle tient compte des conditions initiales et peut
ainsi étre utilisée en théorie des vibrations mécaniques ou en électricité dans I’étude des régimes forcés sans
négliger le régime transitoire. Elle est tres utilisée en automatique.

Il y a beaucoup d’autres transformations intégrales, par exemple et de maniere non exhaustive, celles
de MELLIN, de HANKEL, de STIELTJES, de HILBERT, de WEIERSTASS....

Ces transformations sont d’autant plus intéressantes qu’elles sont bijectives et qu'on a une expression
exploitable de la transformation inverse. Ce faisant, le travail sur les fonctions transformées peut donc
donner en retour des informations sur le signal originel : par exemple, la résolution d’équations différentielles
linéaires par la transformée de LAPLACE qui ramene cette résolution a une équation algébrique.
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Dans I'application des théorémes de passage a la limite sous l'intégrale ou de régularité des intégrales a
parameétre, on se limite a la vérification des hypothéses cruciales, sans insister sur la continuité par morceaux
en la variable d’intégration.

1 : Régularité d’une fonction définie par une intégrale a parameétre

Pour Papplication pratique des énoncés de ce paragraphe, on vérifie les hypothéses de régularité par
rapport a x et de domination, sans expliciter celles relatives a la continuité par morceaux par rapport a t.
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Théoreme de continuité :

si A et I sont deux intervalles de R et f une fonction
définie sur A X 1, telle que :
- pour tout t € I, x — f(x,t) est continue sur A ;
- pour tout x € A, t — f(x,t) est continue par morceaux sur I ;
- il existe une fonction ¢ intégrable sur 1, telle que pour
tout (x,t) € A X 1, on ait |f(x,t)| < ¢(t) ;
alors la fonction x +— fl f(x,t)dt est définie et continue sur A.

Théoréme de convergence dominée a parameétre continu :

si A et I sont deux intervalles de R, a une borne de A
et f une fonction définie sur A x 1 telle que :
- pour tout t € 1, f(x, t)’:c)lf(t) ;
- pour tout x € A, t — f(x,t) et t — {(t) sont
continues par morceaux sur I ;
- il existe une fonction ¢ intégrable sur 1, telle que
pour tout (x,t) € A x I, on ait [f(x,t)] < @(t) ;
alors { est intégrable sur 1 et fl f(x, t)dt):>1 fI £(t)at.

Théoréme de dérivation :

si A et I sont deux intervalles de R et f une fonction
définie sur A X 1, telle que :
- pour tout t € I, x — f(x,t) est de classe C' sur A ;
- pour tout x € A, t — f(x,t) est intégrable sur I ;
- pour tout x € A, t — g—i(x, t) est continue par morceaux sur I ;
- il existe une fonction ¢ intégrable sur I, telle que
pour tout (x,t) € A X I, on ait ‘%(x,t)’ <ot);
alors la fonction g : x fI f(x,t)dt est de classe C! sur A

et vérifie Vx € A, ¢’'(x) = f of

I ox (X, t)dt

Extension a la classe C* d’une intégrale a paramétre,
orf

sous hypothése de domination de t — W(X’ t) et
X
d’intégrabilité des t — %(x, t) pour 0 <j < k.
x

En pratique, on vérifie I’hypothese de
domination sur tout segment de A, ou
sur d’autres intervalles adaptés a la

situation.

On remarque qu’il s’agit d’une simple
extension du théoréme relatif aux suites

de fonctions.

La démonstration n’est pas exigible.
En pratique, on vérifie ’hypothése de
domination sur tout segment de A, ou
sur d’autres intervalles adaptés a la

situation.

Exemples d’études de fonctions définies
comme intégrales a parameétre : régularité,
étude asymptotique, exploitation

d’une équation différentielle élémentaire.
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PARTIE 8.1 : CONTINUITE DES
INTEGRALES A PARAMETRE

[8.1.1 : Version universelle]

On note I et | deux “vrais” intervalles de R ; c’est-a-dire qu’ils contiennent au moins deux réels distincts.

THEOREME DE CONTINUITE SOUS LE SIGNE SOMME (ENORME) 8.1 :
Soit f: I x ] — K, on suppose que :

(H1) pour tout t € ], la fonction x — f(x,t) est continue sur I,

(H2) pour tout x € I, la fonction t — f(x,t) est continue par morceaux,

(H3) J¢ : ] — RT continue par morceaux, intégrable sur ] avec V(x,t) € I x ], [f(x,t)| < @(t).
Alors la fonction g: I — K telle que g(x) = f} f(x,t)dt est continue sur I.

EXEMPLE 8.1 : Prenonsicil = R, ] =]0;1] et f:1x ] — R définie par f(x,t) = — :-tz'
x
Les hypothéses (H1) et (Hz) sont clairement vérifiées. (Hz) Dest-elle ?

REMARQUE FONDAMENTALE 8.1 : e On remarque encore que (Hz) entraine U'intégrabilité dans (Hz).
e Si les intervalles 1 et | sont des segments et si f est une fonction continue (de deux variables) sur

I x J, on verra que les fonctions “partielles” des hypothéses (H1) et (Hz2) sont continues et que f est
bornée (par M) sur I X | donc on peut choisir ¢(t) = M ci-dessus.

+oo
EXFERCICE 8.2 : Soitg:x — fo ﬁdt. Donner I’ensemble de définition D de g et montrer
X

que g est continue sur D.

’8.1.2 : Version “sur tout segment”

THEOREME DE CONTINUITE SOUS LE SIGNE SOMME (VERSION SUR TOUS LES
SEGMENTS) (ENORME) 8.2 :

Soit f: I x ] - K, on suppose que :
(H1) pour tout t € ], la fonction x — f(x,t) est continue sur I,

(Hz) pour tout x € I, la fonction t — f(x,t) est continue par morceaux sur J,
(H3) pour tout segment [a;b] C I, il existe une fonction ¢4 : ] — R continue par morceaux

et intégrable sur | telle que V(x,t) € [a;b] X ], [f(x,t)] < @q,b(t).
Alors la fonction g: I — K telle que g(x) = fl f(x,t)dt est continue sur I.

REMARQUE 8.2 : o La fonction ¢q,p peut dépendre de a et b mais elle doit étre indépendante de x.

e Dans le théoréme ci-dessus, on n’est pas obligé de considérer des segments, si par exemple on prouve

que f est continue sur tous les intervalles de la forme [a; +o0o] pour a > 0 (le probléme se trouvant dans
ce cas au voisinage de 0), alors on conclura tout de méme a la continuité de g sur R .

1 tx71

EXERCICE 8.3 : Justifier que g(x) = j; T

R . Calculer g(x) + g(x + 1) pour x > 0 et en déduire un équivalent de g en 07 et en +oo.

dt existe pour tout x > 0 et que g est continue sur
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[8.1.3 : Version “limite” ]

THEOREME DE CONVERGENCE DOMINEE A PARAMETRE CONT. (ENORME) 8.3 :
Soit f: I x ] — K et a une borne de I (a = o0 est possible) telles que :

(H1) il existe h: ] — K telle que pour tout t € J, lim f(x,t) = h(t),

(H2) pour tout x € I, la fonction t — f(x,t) est continue par morceaux sur J, h aussi

(H3) Jo : ] — R cont. par morceaux, intégrable sur | et V(x,t) € I x J, [f(x,t)] < ¢(t).
Alors h est intégrable sur ] et la fonction g : I — K définie par g(x) = f]f(x, t)dt admet une

limite en a qui est donnée par la relation lim g(x) = f h.
Xx—a J

. Too  at
EXEMPLE 8.4 : Calculer lim —_—.
x—4o0 J O ]+tzet

PARTIE 8.2 : DERIVATION DES
INTEGRALES A PARAMETRE

18.2.1 : Version universelle]

THEOREME DE DERIVATION SOUS LE SIGNE SOMME (ENORME) 8.4 :

Soit I et | des intervalles et f: I x ] - K telle que
(H1) pour tout t € J, x — f(x,t) est de classe C' sur I,
H,) pour tout x € I, les fonctions t — f(x,t) et t — of x,t) sont continues par morceaux sur
0x
] et t — f(x,t) est intégrable sur J,
(Hz) J¢ : ] — R, continue par morceaux, intégrable sur | et V(x,t) € I x J, %(x, t)’ < @(t).
Alors :

(Ry) La fonction g:1— K telle que g(x) = f] f(x,t)dt est de classe C' sur I.

(R2) Vx €1, ¢'(x) = I%(X, t)dt (formule de LEIBNIZ).

DEMONSTRATION : Non exigible.

REMARQUE 8.3 : Souvent, I’étude de la monotonie de g ne nécessite pas l'utilisation de ce théoréme.

1

dt est décroissante sur RY .

] —
EXEMPLE 8.5 : Justifier que g :x+ || }’:L -
—t _itx

+
ORAL BLANC 8.6 : Montrer ’existence et trouver une expression simple de fo e \/eE dt.
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’8.2.2 : Version “sur tout segment”

THEOREME DE DERIVATION SOUS LE SIGNE SOMME (VERSION SUR TOUS LES
SEGMENTS) (ENORME) 8.5 :

Soit f: I x ] - K, on suppose que :

(H7) pour tout t € J, la fonction x + f(x,t) est de classe C! sur I,

(H2) pour tout x € I, les fonctions t — f(x,t) et t — %(x, t) sont continues par morceaux sur

] et t — f(x,t) est intégrable sur J,
(H3) pour tout segment [a;b] C I, il existe une fonction @a,b : ] = RT continue par morceaux

et intégrable sur ] telle que V(x,t) € [a;b] X J, aX f(x, t)‘ < @q,p(t).

(Ry) La fonction g:1— K telle que g(x f f(x,t)dt est de classe C' sur I.

(R2) e g'(x) = | 9 (x,t)dt (formule de LEIBNIZ).

too 2,2
EXFERCICE 8.7 : Ensemble de définition, dérivée et valeur de g : x — f Mdt

14t
THEOREME 8.6 :
Soit f: I x ] - K, on suppose que :
(H1) Vt€]J, x— f(x,t) est de classe C™ sur I,
k
(Hz) Vk e [[O;n—1], Vx €1, t— g f (x,t) est continue par morceaux et intégrable sur J,
xk

n
(H3) Vx €1, t— %(x, t) est continue par morceaux sur J,

(Hs) V[a;b] C 1, il existe une fonction J9qpn : ] = RT continue par morceaux et intégrable

sur ] telle que V(x,t) € [a;b] x ], a f(x, t)| < @a,b,n(t)

K
Alors g : I — K telle que g(x ffx t)dt est C" sur I et Vk € [[0;n], Vx €1, g (x )zf]%(x,t)dt.
X

DEMONSTRATION : Non exigible.

REMARQUE 8.4 : Et, par récurrence avec les théorémes précédents....

[PROPOSITION 8.7 :
Soit f: I x ] — K, on suppose que :
(Hy) YVt €], x> f(x,t) est de classe C™ sur I,

Hy) Vx €1, t+— f(x,t) est continue par morceaux et intégrable sur ],

(
(H3) Vne N*, ¥x e, t— M(x t) est continue par morceaux sur J,
(

a n
H4) Vn € N* V]a;b] C I, il existe une fonction J¢q,p,n : ] =& RT continue par morceaux et
intégrable sur | telle que V(x,t) € [a;b] X ], a f(x t)| < @q,bo,n(t).
omf
Alors g: 1 — K telle que g(x f f(x,t)dt est C® sur I et Yn € N, ¥x € I, g™ (x) = f] a—n(x,t)dt.
X
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+oo
EXEMPLE FONDAMENTAL 8.8 : Soit I' définie par I'(x) = fo - Te tat :

o I' (appelée fonction “Gamma” d’EULER) est définie sur R .

e I est de classe C* sur son ensemble de définition.
e Vx>0, I'(x+1) =xT'(x). Comme I'(1) =1, par récurrence : Yn € N*, T'(n) = (n — 1)\

|
. I‘(%) = /m donc par récurrence : Vn € N, F(n + %) = 2(53;)[' VT

b
EN PRATIQUE : Pour étudier une fonction définie par g(x) = f f(x,t)dt :
a

e On identifie I'intervalle | (on inclut ou pas les bornes a ou b).

e On vérifie que t — f(x,t) est bien continue par morceaux et on détermine I’ensemble de définition de

g qu’on décompose en intervalles 1.

e On traite si possible élémentairement la parité, monotonie, limite aux bornes....

e On montre laspect C° de g avec le théoréme ad-hoc éventuellement sur tout segment.
e On montre I'aspect C' de g avec le théoréme ad-hoc éventuellement sur tout segment.

e Pour obtenir une nouvelle expression de g(x) (sans intégrale), on peut utiliser la formule de LEIBNIZ

pour établir une équation différentielle vérifiée par g qu’on integre.

EXFRCICE CONCOURS 8.9 : Mines PSI 2015 Arthur Lacombe

o Tn(1 + t)dt ' n(1 £ xt)dt
On définit 1 = fo % et, pour x € [0;1], on pose g(x) = fo %

a. Expliciter g(x) et en déduire la valeur de 1.

b. Par un changement de variable dans 1, retrouver le résultat.

(COMPETENCES|

e reconnaitre le cadre de la continuité ou la dérivabilité sous le signe somme quand g(x) = fI f(x,t)dt.

e énoncer une a une toutes les hypothéses de ces théorémes lors de leurs utilisations.

%(x, t)‘ par une fonction intégrable sur I et indépendante de x.

e dominer |f(x,t)| ou




