
PROGRAMME 143

CHAPITRE 8

INTÉGRALES À PARAMÈTRE⊙
Nous entrons dans le champ des transformées de fonctions. Une transformée est une opération

consistant à associer à une fonction appartenant à un espace fonctionnel une nouvelle fonction, la plupart
du temps définie de manière intégrale, et appartenant à un espace fonctionnel potentiellement différent. Une

transformation est donnée en général par T : f 7→
(
T(f) : u 7→

∫
I
f(t)K(u, t)dt

)
où K est appelé le noyau de

la transformation T sur un intervalle temporel I (sous réserve de convergence).

Au début du XIXe siècle, Fourier montre que toute fonction périodique peut se décomposer comme
somme d’une série de fonctions t 7→ cos(kt) et t 7→ sin(kt) (les harmoniques), il utilise cette décomposition
pour étudier les solutions de l’équation de la chaleur. Mais il généralise cette propriété à toute fonction non
périodique par la transformée de Fourier à valeurs réelles ou complexes dont la variable indépendante peut
s’interpréter en physique comme la fréquence ou la pulsation : cette transformation permet de passer du
domaine temporel au domaine fréquentiel (spectre).

La transformation de Laplace généralise la transformation de Fourier ; elle est utilisée pour résoudre
les équations différentielles. Contrairement à cette dernière, elle tient compte des conditions initiales et peut
ainsi être utilisée en théorie des vibrations mécaniques ou en électricité dans l’étude des régimes forcés sans
négliger le régime transitoire. Elle est très utilisée en automatique.

Il y a beaucoup d’autres transformations intégrales, par exemple et de manière non exhaustive, celles
de Mellin, de Hankel, de Stieltjes, de Hilbert, de Weierstass....

Ces transformations sont d’autant plus intéressantes qu’elles sont bijectives et qu’on a une expression
exploitable de la transformation inverse. Ce faisant, le travail sur les fonctions transformées peut donc
donner en retour des informations sur le signal originel : par exemple, la résolution d’équations différentielles
linéaires par la transformée de Laplace qui ramène cette résolution à une équation algébrique.
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Dans l’application des théorèmes de passage à la limite sous l’intégrale ou de régularité des intégrales à
paramètre, on se limite à la vérification des hypothèses cruciales, sans insister sur la continuité par morceaux
en la variable d’intégration.

1 : Régularité d’une fonction définie par une intégrale à paramètre

Pour l’application pratique des énoncés de ce paragraphe, on vérifie les hypothèses de régularité par
rapport à x et de domination, sans expliciter celles relatives à la continuité par morceaux par rapport à t.
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Contenus Capacités & Commentaires

Théorème de continuité :

si A et I sont deux intervalles de R et f une fonction En pratique, on vérifie l’hypothèse de

définie sur A× I, telle que : domination sur tout segment de A, ou

- pour tout t ∈ I, x 7→ f(x, t) est continue sur A ; sur d’autres intervalles adaptés à la

- pour tout x ∈ A, t 7→ f(x, t) est continue par morceaux sur I ; situation.

- il existe une fonction φ intégrable sur I, telle que pour

tout (x, t) ∈ A× I, on ait |f(x, t)| 6 φ(t) ;

alors la fonction x 7→
∫
I
f(x, t)dt est définie et continue sur A.

Théorème de convergence dominée à paramètre continu :

si A et I sont deux intervalles de R, a une borne de A On remarque qu’il s’agit d’une simple

et f une fonction définie sur A× I telle que : extension du théorème relatif aux suites

- pour tout t ∈ I, f(x, t) −→
x→a

ℓ(t) ; de fonctions.

- pour tout x ∈ A, t 7→ f(x, t) et t 7→ ℓ(t) sont

continues par morceaux sur I ;

- il existe une fonction φ intégrable sur I, telle que

pour tout (x, t) ∈ A× I, on ait |f(x, t)| 6 φ(t) ;

alors ℓ est intégrable sur I et
∫
I
f(x, t)dt −→

x→a

∫
I
ℓ(t)dt.

Théorème de dérivation :

si A et I sont deux intervalles de R et f une fonction La démonstration n’est pas exigible.

définie sur A× I, telle que : En pratique, on vérifie l’hypothèse de

- pour tout t ∈ I, x 7→ f(x, t) est de classe C1 sur A ; domination sur tout segment de A, ou

- pour tout x ∈ A, t 7→ f(x, t) est intégrable sur I ; sur d’autres intervalles adaptés à la

- pour tout x ∈ A, t 7→ ∂f
∂x

(x, t) est continue par morceaux sur I ; situation.

- il existe une fonction φ intégrable sur I, telle que

pour tout (x, t) ∈ A× I, on ait
∣∣∣ ∂f∂x (x, t)∣∣∣ 6 φ(t) ;

alors la fonction g : x 7→
∫
I
f(x, t)dt est de classe C1 sur A

et vérifie ∀x ∈ A, g′(x) =
∫
I

∂f
∂x

(x, t)dt.

Extension à la classe Ck d’une intégrale à paramètre,

sous hypothèse de domination de t 7→ ∂kf

∂xk
(x, t) et

d’intégrabilité des t 7→ ∂jf

∂xj
(x, t) pour 0 6 j < k.

Exemples d’études de fonctions définies

comme intégrales à paramètre : régularité,

étude asymptotique, exploitation

d’une équation différentielle élémentaire.
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PARTIE 8.1 : CONTINUITÉ DES

INTÉGRALES À PARAMÈTRE� �
8.1.1 : Version universelle

On note I et J deux “vrais” intervalles de R ; c’est-à-dire qu’ils contiennent au moins deux réels distincts.

THÉORÈME DE CONTINUITÉ SOUS LE SIGNE SOMME (ÉNORME) 8.1 :

Soit f : I× J → K, on suppose que :
(H1) pour tout t ∈ J, la fonction x 7→ f(x, t) est continue sur I,
(H2) pour tout x ∈ I, la fonction t 7→ f(x, t) est continue par morceaux,
(H3) ∃φ : J → R+ continue par morceaux, intégrable sur J avec ∀(x, t) ∈ I× J, |f(x, t)| 6 φ(t).

Alors la fonction g : I → K telle que g(x) =
∫
J
f(x, t)dt est continue sur I.

EXEMPLE 8.1 : Prenons ici I = R, J =]0; 1] et f : I× J → R définie par f(x, t) = x

x2 + t2
.

Les hypothèses (H1) et (H2) sont clairement vérifiées. (H3) l’est-elle ?

REMARQUE FONDAMENTALE 8.1 : • On remarque encore que (H3) entrâıne l’intégrabilité dans (H2).
• Si les intervalles I et J sont des segments et si f est une fonction continue (de deux variables) sur

I × J, on verra que les fonctions “partielles” des hypothèses (H1) et (H2) sont continues et que f est

bornée (par M) sur I× J donc on peut choisir φ(t) = M ci-dessus.

EXERCICE 8.2 : Soit g : x 7→
∫ +∞

0

e−t

1+ x2t2
dt. Donner l’ensemble de définition D de g et montrer

que g est continue sur D.

8.1.2 : Version “sur tout segment”

THÉORÈME DE CONTINUITÉ SOUS LE SIGNE SOMME (VERSION SUR TOUS LES
SEGMENTS) (ÉNORME) 8.2 :

Soit f : I× J → K, on suppose que :

(H1) pour tout t ∈ J, la fonction x 7→ f(x, t) est continue sur I,

(H2) pour tout x ∈ I, la fonction t 7→ f(x, t) est continue par morceaux sur J,
(H3) pour tout segment [a; b] ⊂ I, il existe une fonction φa,b : J → R+ continue par morceaux

et intégrable sur J telle que ∀(x, t) ∈ [a; b]× J, |f(x, t)| 6 φa,b(t).

Alors la fonction g : I → K telle que g(x) =
∫
J
f(x, t)dt est continue sur I.

REMARQUE 8.2 : • La fonction φa,b peut dépendre de a et b mais elle doit être indépendante de x.

• Dans le théorème ci-dessus, on n’est pas obligé de considérer des segments, si par exemple on prouve

que f est continue sur tous les intervalles de la forme [a; +∞[ pour a > 0 (le problème se trouvant dans

ce cas au voisinage de 0), alors on conclura tout de même à la continuité de g sur R∗
+.

EXERCICE 8.3 : Justifier que g(x) =
∫ 1

0

tx−1

1+ t
dt existe pour tout x > 0 et que g est continue sur

R∗
+. Calculer g(x) + g(x+ 1) pour x > 0 et en déduire un équivalent de g en 0+ et en +∞.
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8.1.3 : Version “limite”

THÉORÈME DE CONVERGENCE DOMINÉE À PARAMÈTRE CONT. (ÉNORME) 8.3 :

Soit f : I× J → K et a une borne de I (a = ±∞ est possible) telles que :
(H1) il existe h : J → K telle que pour tout t ∈ J, lim

x→a
f(x, t) = h(t),

(H2) pour tout x ∈ I, la fonction t 7→ f(x, t) est continue par morceaux sur J, h aussi

(H3) ∃φ : J → R+ cont. par morceaux, intégrable sur J et ∀(x, t) ∈ I× J, |f(x, t)| 6 φ(t).

Alors h est intégrable sur J et la fonction g : I → K définie par g(x) =
∫
J
f(x, t)dt admet une

limite en a qui est donnée par la relation lim
x→a

g(x) =
∫
J
h.

EXEMPLE 8.4 : Calculer lim
x→+∞

∫ +∞

0

dt

1+ t2et
x
.

� �
PARTIE 8.2 : DÉRIVATION DES

INTÉGRALES À PARAMÈTRE� �
8.2.1 : Version universelle

THÉORÈME DE DÉRIVATION SOUS LE SIGNE SOMME (ÉNORME) 8.4 :

Soit I et J des intervalles et f : I× J → K telle que

(H1) pour tout t ∈ J, x 7→ f(x, t) est de classe C1 sur I,

(H2) pour tout x ∈ I, les fonctions t 7→ f(x, t) et t 7→ ∂f
∂x

(x, t) sont continues par morceaux sur

J et t 7→ f(x, t) est intégrable sur J,

(H3) ∃φ : J → R+ continue par morceaux, intégrable sur J et ∀(x, t) ∈ I× J,

∣∣∣ ∂f∂x (x, t)∣∣∣ 6 φ(t).

Alors :

(R1) La fonction g : I → K telle que g(x) =
∫
J
f(x, t)dt est de classe C1 sur I.

(R2) ∀x ∈ I, g′(x) =
∫
J

∂f
∂x

(x, t)dt (formule de Leibniz).

Démonstration : Non exigible.

REMARQUE 8.3 : Souvent, l’étude de la monotonie de g ne nécessite pas l’utilisation de ce théorème.

EXEMPLE 8.5 : Justifier que g : x 7→
∫ 1

0

tx−1

1+ t
dt est décroissante sur R∗

+.

ORAL BLANC 8.6 : Montrer l’existence et trouver une expression simple de
∫ +∞

0

e−teitx√
t

dt.
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8.2.2 : Version “sur tout segment”

THÉORÈME DE DÉRIVATION SOUS LE SIGNE SOMME (VERSION SUR TOUS LES
SEGMENTS) (ÉNORME) 8.5 :

Soit f : I× J → K, on suppose que :

(H1) pour tout t ∈ J, la fonction x 7→ f(x, t) est de classe C1 sur I,

(H2) pour tout x ∈ I, les fonctions t 7→ f(x, t) et t 7→ ∂f
∂x

(x, t) sont continues par morceaux sur

J et t 7→ f(x, t) est intégrable sur J,

(H3) pour tout segment [a; b] ⊂ I, il existe une fonction φa,b : J → R+ continue par morceaux

et intégrable sur J telle que ∀(x, t) ∈ [a; b]× J,

∣∣∣ ∂f∂x (x, t)∣∣∣ 6 φa,b(t).

Alors :

(R1) La fonction g : I → K telle que g(x) =
∫
J
f(x, t)dt est de classe C1 sur I.

(R2) ∀x ∈ I, g′(x) =
∫
J

∂f
∂x

(x, t)dt (formule de Leibniz).

EXERCICE 8.7 : Ensemble de définition, dérivée et valeur de g : x 7→
∫ +∞

0

ln(1+ x2t2)

1+ t2
dt.

THÉORÈME 8.6 :

Soit f : I× J → K, on suppose que :

(H1) ∀t ∈ J, x 7→ f(x, t) est de classe Cn sur I,

(H2) ∀k ∈ [[0;n− 1]], ∀x ∈ I, t 7→ ∂kf

∂xk
(x, t) est continue par morceaux et intégrable sur J,

(H3) ∀x ∈ I, t 7→ ∂nf

∂xn
(x, t) est continue par morceaux sur J,

(H4) ∀[a; b] ⊂ I, il existe une fonction ∃φa,b,n : J → R+ continue par morceaux et intégrable

sur J telle que ∀(x, t) ∈ [a; b]× J,

∣∣∣∣ ∂nf∂xn
(x, t)

∣∣∣∣ 6 φa,b,n(t).

Alors g : I → K telle que g(x) =
∫
J
f(x, t)dt est Cn sur I et ∀k ∈ [[0;n]], ∀x ∈ I, g(k)(x) =

∫
J

∂kf

∂xk
(x, t)dt.

Démonstration : Non exigible.

REMARQUE 8.4 : Et, par récurrence avec les théorèmes précédents....� �
PROPOSITION 8.7 :

Soit f : I× J → K, on suppose que :

(H1) ∀t ∈ J, x 7→ f(x, t) est de classe C∞ sur I,

(H2) ∀x ∈ I, t 7→ f(x, t) est continue par morceaux et intégrable sur J,

(H3) ∀n ∈ N∗, ∀x ∈ I, t 7→ ∂nf

∂xn
(x, t) est continue par morceaux sur J,

(H4) ∀n ∈ N∗, ∀[a; b] ⊂ I, il existe une fonction ∃φa,b,n : J → R+ continue par morceaux et

intégrable sur J telle que ∀(x, t) ∈ [a; b]× J,

∣∣∣∣ ∂nf∂xn
(x, t)

∣∣∣∣ 6 φa,b,n(t).

Alors g : I → K telle que g(x) =
∫
J
f(x, t)dt est C∞ sur I et ∀n ∈ N, ∀x ∈ I, g(n)(x) =

∫
J

∂nf

∂xn
(x, t)dt.� �
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EXEMPLE FONDAMENTAL 8.8 : Soit Γ définie par Γ(x) =
∫ +∞

0
tx−1e−tdt :

• Γ (appelée fonction “Gamma” d’Euler) est définie sur R∗
+.

• Γ est de classe C∞ sur son ensemble de définition.

• ∀x > 0, Γ(x+ 1) = xΓ(x). Comme Γ(1) = 1, par récurrence : ∀n ∈ N∗, Γ(n) = (n− 1)!.

• Γ
(
1

2

)
=

√
π donc par récurrence : ∀n ∈ N, Γ

(
n+ 1

2

)
=

(2n)!

22nn!

√
π.

EN PRATIQUE : Pour étudier une fonction définie par g(x) =
∫ b

a
f(x, t)dt :

• On identifie l’intervalle J (on inclut ou pas les bornes a ou b).

• On vérifie que t 7→ f(x, t) est bien continue par morceaux et on détermine l’ensemble de définition de

g qu’on décompose en intervalles I.

• On traite si possible élémentairement la parité, monotonie, limite aux bornes....

• On montre l’aspect C0 de g avec le théorème ad-hoc éventuellement sur tout segment.

• On montre l’aspect C1 de g avec le théorème ad-hoc éventuellement sur tout segment.

• Pour obtenir une nouvelle expression de g(x) (sans intégrale), on peut utiliser la formule de Leibniz

pour établir une équation différentielle vérifiée par g qu’on intègre.

EXERCICE CONCOURS 8.9 : Mines PSI 2015 Arthur Lacombe

On définit I =
∫ 1

0

ln(1+ t)dt

1+ t2
et, pour x ∈ [0; 1], on pose g(x) =

∫ 1

0

ln(1+ xt)dt

1+ t2
.

a. Expliciter g(x) et en déduire la valeur de I.

b. Par un changement de variable dans I, retrouver le résultat.

� �
COMPÉTENCES� �

• reconnâıtre le cadre de la continuité ou la dérivabilité sous le signe somme quand g(x) =
∫
I
f(x, t)dt.

• énoncer une à une toutes les hypothèses de ces théorèmes lors de leurs utilisations.

• dominer |f(x, t)| ou
∣∣∣ ∂f∂x (x, t)∣∣∣ par une fonction intégrable sur I et indépendante de x.


