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1.1 Pour (M,N) ∈ Mn(R)2 et (α, β) ∈ R2, ϕA(αM+βN) = A(αM+βN)− (αM+βN)A = αϕA(M)+βϕA(N)

donc ϕA ∈ L(Mn(R)). ϕA(In) = AIn − InA = 0 et ϕA(A) = A2 − A2 = 0 donc (In, A) ∈ (KerϕA)
2.

1.2 Cas n = 2 :

1.2.1 Avec des calculs de produits matriciels simples, ϕA(E1,1) =

(
0 −b
c 0

)
= −bE1,2 + cE2,1, de même

ϕA(E1,2) = −cE1,1+(a−d)E1,2+ cE2,2, ϕA(E2,1) = bE1,1+(d−a)E2,1−bE2,2 et ϕA(E2,2) = bE1,2− cE2,1.

On a donc, par définition, MatBc
(ϕA) =


0 −c b 0

−b a− d 0 b

c 0 d− a −c
0 c −b 0

.

1.2.2 ϕA est nulle si et seulement si MatBc
(ϕA) =


0 −c b 0

−b a− d 0 b

c 0 d− a −c
0 c −b 0

 est nulle, c’est-à-dire que

ϕA = 0⇐⇒ (b = c = 0 et a = d)⇐⇒ (A = aI2). Ainsi, ϕA = 0 si et seulement si A est scalaire.

1.2.3 On a χA =

∣∣∣∣X− a −b
−c X− d

∣∣∣∣ = X2−(a+d)X+ad−bc donc χA est scindé sur R⇐⇒ ∆ = (a−d)2+4bc > 0

en notant ∆ le discriminant de χA. Traitons trois cas :

Si ∆ < 0, alors A n’est donc pas diagonalisable dans M2(R) car χA n’est même pas scindé sur R.
Si ∆ > 0, χA est scindé à racines simples sur R donc, d’après le cours, A est diagonalisable dans M2(R).
Si ∆ = 0, alors A admet une valeur propre double λ donc A n’est pas diagonalisable (car sinon elle serait

semblable à λI2 donc on aurait A = λI2 contrairement à l’énoncé).

On en déduit que (A est diagonalisable) ⇐⇒ (a− d)2 + 4bc > 0.

1.2.4 La factorisation de χϕA
étant donnée, il suffit de développer bêtement χϕA

et de vérifier sa factorisation.

Sinon, χϕA
=

∣∣∣∣∣∣∣
X c −b 0

b X− a+ d 0 −b
−c 0 X− d+ a c

0 −c b X

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
X 0 0 X

b X− a+ d 0 −b
−c 0 X− d+ a c

0 −c b X

∣∣∣∣∣∣∣ après L1 ←− L1 + L4

puis χϕA
=

∣∣∣∣∣∣∣
X 0 0 2X

b X− a+ d 0 0

−c 0 X− d+ a 0

0 −c b X

∣∣∣∣∣∣∣ après C4 ←− C4+C1 et on développe par rapport à la dernière

colonne pour avoir χϕA
= X2

(
X2 − (d− a)2 − 4bc

)
comme attendu.



1.2.5 (⇐=) Si A est diagonalisable, alors (d− a)2 + 4bc > 0 d’après 1.2.3 donc ϕA admet 2 valeurs propres

simples ±
√
(a− d)2 + 4bc et une valeur propre double 0 d’après 1.2.4. De plus, (I2, A) est libre (car A n’est

pas scalaire) de Ker(ϕA) donc dimE0(ϕA) > 2 = m0(ϕA) ce qui montre que dimE0(ϕA) = 2 et, toujours

d’après le cours, que ϕA est diagonalisable.

(=⇒) Réciproquement, si ϕA est diagonalisable alors χϕA
est scindé sur R, d’où (a− d)2 + 4bc > 0. Si on

avait (a− d)2 + 4bc = 0, alors Sp(ϕA) = {0} donc ϕA ne serait pas diagonalisable (sinon la matrice de ϕA

dans une base de vecteurs propres serait nulle donc on aurait ϕA = 0, exclu par l’énoncé et 1.2.2).

Par double implication, ϕA est diagonalisable si et seulement si (a− d)2 + 4bc > 0. On a donc bien, d’après

1.2.3, l’équivalence ϕA est diagonalisable si et seulement si A est diagonalisable.

1.3 Cas d’une projection :

1.3.1 Puisque A2 = A, ϕ2
A(M) = ϕA(AM−MA) = A(AM−MA)− (AM−MA)A = AM−2AMA+MA pour

toutM ∈ Mn(R), puis ϕ3
A(M) = ϕA(AM−2AMA+MA) = A(AM−2AMA+MA)− (AM−2AMA+MA)A

donc ϕ3
A(M) = AM− 2AMA+ AMA− AMA+ 2AMA−MA = AM−MA donc ϕ3

A(M) = ϕA(M) de sorte

que ϕ3
A = ϕA, c’est-à-dire que X3 − X annulateur de ϕA.

1.3.2 On sait que les valeurs propres d’un endomorphisme font partie des racines de tout polynôme annulateur

de celui-ci, ainsi, comme X3 − X = X(X− 1)(X+ 1), Sp(ϕA) ⊂ {−1, 0, 1}.

1.3.3 X3 − X est un polynôme annulateur de ϕA et il est scindé à racines simples donc, d’après le cours,

ϕA est diagonalisable. De plus, on a vu que ϕA(In) = 0 = 0.In et In ̸= 0 donc 0 ∈ Sp(ϕA).

1.3.4 Soit u l’endomorphisme de Rn canoniquement associé à A, alors u est une symétrie et on sait que

Rn = Im(u)⊕Ker(u) = E1(u)⊕E0(u). Il existe une base B = (v1, . . . , vr, vr+1, . . . , vn) de Rn adaptée à cette

décomposition de Rn en notant r = rg(u). Comme A ̸= 0, r > 1 et r < n car A ̸= In donc Ker(A) ̸= {0}. En

notant P la matrice de passage de la base canonique de Rn à la base B, comme on a ∀k ∈ [[1; r]], u(vk) = vk

et ∀k ∈ [[r+ 1;n]], u(vk) = 0, il vient P ∈ GLn(R), r ∈ [[1;n− 1]], A = P

(
Ir 0

0 0

)
P−1

1.3.5 Avec ces notations, on a ϕA(M) = P

((
Ir 0

0 0

)(
0 B

0 0

)
−

(
0 B

0 0

)(
Ir 0

0 0

))
P−1 = P

(
0 B

0 0

)
P−1

par calcul matriciel par blocs donc ϕA(M) =M.

1.3.6 Avec B ̸= 0 dans 1.3.5, ce qui est possible car r ̸= 0 et r ̸= n, on a M ̸= 0 (car P est inversible)

qui vérifie ϕA(M) = M = 1.M donc M est vecteur propre associé à la valeur propre 1, d’où 1 ∈ Sp(ϕA).

Par un calcul analogue, si M = P

(
0 0

B 0

)
P−1 avec B ̸= 0, ce qui est encore possible, on trouve cette fois

ϕA(M) = −M = (−1).M avecM ̸= 0 doncM est vecteur propre associé à la valeur propre −1 : −1 ∈ Sp(ϕA).

Avec l’inclusion inverse déjà justifiée en 1.3.2, la 1.3.3 et ce qui précède, on a Sp(ϕA) = {−1, 0, 1}.



� �
PARTIE 2 : ÉTUDE DES VALEURS PROPRES DE ϕA� �

Les polynômes caractéristiques de ϕA et ϕ̃A sont égaux car ∀(i, j) ∈ [[1;n]]2, ϕA(Ei,j) = ϕ̃A(Ei,j) donc la

matrice de ϕA dans la base canonique de Mn(R) vaut elle de ϕ̃A dans la base canonique de Mn(C).

2.1 Trigonalisabilité de A

2.1.1 On sait que Sp(A) = Sp(AT ) donc, β étant une valeur propre de A, β est aussi une valeur propre de

AT . Ainsi, par définition, il existe un vecteur colonne Y ̸= 0 ∈ Mn,1(C) tel que ATY = βY.

2.1.2 On a XYT ∈ Mn(C) et ϕ̃A(XY
T ) = AXYT −XYTA = (AX)YT −X(ATY)T = αXYT −X(βY)T = (α−β)XYT .

De plus, si YT = (y1 . . . yn), la j-ième colonne de XYT est Cj = yjX et comme Y ̸= 0, un des yj au moins

est non nul, de même X ̸= 0. Par conséquent, au moins une des colonnes de XYT est non nulle ce qui prouve

que XYT ̸= 0 donc que XYT est un vecteur propre de ϕ̃A associé à la valeur propre α− β. D’après le cours,

α− β est une racine de χ
ϕ̃A

donc α− β est une racine de χϕA
.

2.1.3 Si α est une valeur propre complexe de A, comme A est réelle, β = α est aussi une valeur propre de A.

D’après 2.1.2, α − α = 2i Im(α) est alors une valeur propre de ϕ̃A. Or ϕA est trigonalisable par hypothèse

donc χϕA
est scindé sur R d’où toutes les valeurs propres de ϕ̃A sont réelles car χϕA

= χ
ϕ̃A

. Ainsi, Im(α) = 0

et donc α ∈ R. Par conséquent, toutes les valeurs propres α de A sont réelles, ainsi χA est scindé sur R et,

d’après le cours, A est trigonalisable dans Mn(R). Ainsi, A est trigonalisable si ϕA est trigonalisable.

2.2 Réciproque

2.2.1 On montre le résultat par récurrence sur k :

• Initialisation : A0M = InM =M =M(A+ λIn)
0 =MIn =M.

• Hérédité : soit k ∈ N tel que AkM = M(A + λIn)
k, alors Ak+1M = A(AkM) = AM(A + λIn)

k par

hypothèse de récurrence et, comme ϕ̃A(M) = λM, on a AM = MA + λM = M(A + λIn) et on conclut en

remplaçant ci-dessus que Ak+1M =M(A+ λIn)
k+1.

Par principe de récurrence, ∀k ∈ N, AkM =M(A+ λIn)
k.

2.2.2 On pose P =
+∞∑
k=0

akX
k et on a P(A)M =

+∞∑
k=0

akA
kM =

+∞∑
k=0

akM(A + λIn)
k d d’après 2.2.1 donc

P(A)M =MP(A+ λIn). En choisissant P = χA, avec le théorème de Cayley-Hamilton, on a χA(A)M = 0

donc MχA(A+ λIn) = 0 et comme M ̸= 0, on en déduit que χA(A+ λIn) n’est pas inversible.

2.2.3 On a det
(
χA(A + λIn)

)
=

n∏
i=1

det(A + λIn − αiIn) par multiplicativité du déterminant des matrices

carrées donc det
(
χA(A+ λIn)

)
=

n∏
i=1

(
(−1)nχA(αi − λ)

)
. Comme χA(A+ λIn) n’est pas inversible, il existe

un indice i ∈ [[1;n]] tel que χA(αi − λ) = 0, c’est-à-dire αi − λ est une des valeurs propres de A et il existe

j ∈ [[1;n]] tel que αi − λ = αj. Ainsi, on a λ = αi − αj pour i ∈ [[1;n]] et j ∈ [[1;n]].



2.2.4 Si A est trigonalisable dans Mn(R), alors les αi sont tous réels puis λ = αi − αj est aussi réel d’après

2.2.3. Ainsi, toutes les valeurs propres de ϕ̃A sont réelles donc χϕA
= χ

ϕ̃A
est scindé sur R. On en déduit

d’après le cours que ϕA est trigonalisable. Par conséquent, ϕA est trigonalisable si A est trigonalisable.

2.3 Si N est nilpotente, il existe k ∈ N∗ tel que Nk = 0 donc Xk est annulateur de N. Ainsi, on sait que

SpR(N) ⊂ SpC(N) ⊂ {0} car les valeurs propres de N sont racines de tout polynôme annulateur de N. Mais

comme SpC(N) ̸= ∅ d’après le théorème de d’Alembert-Gauss, on a SpC(N) = {0} donc, comme χN est

de degré n et unitaire, on a χN = 1.(X− 0)n donc χN = Xn.

2.4 Nilpotence de ϕA

2.4.1 On pose N = A − αIn, N est donc nilpotente par hypothèse donc, avec 2.3, χN = Xn. Ainsi,

χA = det(XIn − A) = det((X− α)In −N) = χN(X− α) = (X− α)n donc SpC(A) = SpR(A) = {α}.

2.4.2 D’après 2.2.3, la seule valeur propre de ϕA est alors λ = α− α = 0 donc Sp(ϕA) = {0} ce qui montre

que χϕA
= Xn2

et le théorème de Cayley-Hamilton permet d’avoir ϕn2

A = 0 donc ϕA est nilpotent.

2.5 Réciproque

2.5.1 D’après la question 2.3, comme ϕA est nilpotent, en passant par la matrice de ϕA dans une base, on a

χϕA
= Xn2

donc χϕA
= χ

ϕ̃A
= Xn2

ce qui montre que Sp(ϕ̃A) = {0}. Si α et β sont deux valeurs propres

de A alors, d’après 2.1.2, α − β est une valeur propre de ϕA donc α − β = 0. Ainsi, on peut conclure que

A ne possède qu’une seule valeur propre complexe.

En effet, il existe une moins une valeur propre complexe de ϕ̃A car les valeurs propres de ϕ̃A sont les racines

de χ
ϕ̃A

qui est scindé dans C[X] par le théorème de D’Alembert-Gauss.

2.5.2 Si α /∈ R alors, comme A est réelle, α est aussi une valeur propre de A car χA ∈ R[X]. Or α ̸= α car

α /∈ R, donc A aurait au moins deux valeurs propres distinctes, ce qui contredirait 2.5.1. Ainsi, α ∈ R.

Puisque SpR(A) = SpC(A) = {α}, on a χA = (X− α)n car χA est unitaire de degré n donc, par le théorème

de Cayley-Hamilton, on a (A− αIn)n = 0 et A− αIn est nilpotente.

� �
PARTIE 3 : ÉTUDE DE DIAGONALISABILITÉ� �

3.1 Diagonalisabilité de ϕA

3.1.1 Pour (i, j) ∈ [[1;n]]2, on a D =
n∑

k=1

λkEk,k donc DEi,j =
n∑

k=1

λkEk,kEi,j =
n∑

k=1

λkδk,iEk,j = λiEi,j et, de

même, Ei,jD = λjEi,j. Ainsi, DEi,j − Ei,jD = (λi − λj)Ei,j.



3.1.2 Soit (i, j) ∈ [[1;n]]2, A = PDP−1 donc ϕA(Bi,j) = P (DEi,j − Ei,jD) P−1 = (λi−λj)Bi,j. P étant inversible

et Ei,j ̸= 0, on a Bi,j ̸= 0, donc Bi,j est un vecteur propre de ϕA associé à la valeur propre λi − λj.

3.1.3 L’application ψ : M ∈ Mn(R) 7→ PMP−1 est linéaire, donc ψ est un endomorphisme de Mn(R) et

ψ(M) = 0 =⇒ M = 0 car P est inversible donc ψ est injective. D’après le cours, ψ est un isomorphisme

de Mn(R) et, en ce titre, transforme une base en une base. Ainsi, (Bi,j)16i,j6n est une base de Mn(R)

car image par ψ de la base canonique de Mn(R). On en déduit qu’il existe une base de Mn(R) formée de

vecteurs propres de ϕA, ce qui est la définition de ϕA diagonalisable.

3.2 Réciproque

3.2.1 Pour (i, j) ∈ [[1;n]]2, on a APi,j − Pi,jA = λi,jPi,j par définition donc APi,jX = (Pi,jA + λi,jPi,j)X et

APi,jX = Pi,j(AX) + λi,jPi,jX = (λ+ λi,j)Pi,jX donc µi,j = λ+ λi,j.

3.2.2 Comme X ̸= 0, on peut compléter la famille libre (X) de Rn en une base B = (X, X2, . . . , Xn) de Rn. Il

existe donc, d’après le cours, un unique endomorphisme v de Rn qui envoie B sur (Y, 0, . . . , 0) (par exemple).

Ceci se traduit, en notant M la matrice de v dans la base canonique, par MX = Y et ∀i ∈ [[2;n]], MXi = 0.

Comme (Pi,j)16i,j6n est une base de Mn(R), on peut décomposer M =
∑

16i,j6n

αi,jPi,j, ce qui donne

Y =
∑

16i,j6n

αi,jPi,jX. Comme ceci est valable pour tout vecteur Y ∈ Rn, on vient d’établir que la famille

(Pi,jX)16i,j6n est génératrice de Rn, et on peut donc en extraire une base de Rn, formée de vecteurs propres

de A car les Pi,jX ̸= 0 sont des vecteurs propres de A d’après 3.2.1. Ainsi, A est diagonalisable.

� �
PARTIE 4 : ÉTUDE DES VECTEURS PROPRES DE ϕA

ASSOCIÉS À LA VALEUR PROPRE 0� �
4.1 Base de R[A]

4.1.1 (In, A, . . . , A
m) est une famille de m+ 1 vecteurs de R[A] qui est de dimension m, elle est donc liée par

théorème. Il existe donc m + 1 réels α0, . . . , αm, non tous nuls, tels que
m∑
i=0

αiA
i = 0, ce qui montre que le

polynôme P =
m∑
i=0

αiX
i est annulateur de A avec P ̸= 0 et deg(P) 6 m.

4.1.2 Procédons par double inclusion :

(⊃) si M ∈ Vect(In, A, . . . , A
d−1), il existe (α0, . . . , αd−1) ∈ Rd tel que M =

d−1∑
i=0

αiA
i = U(A) avec

U =
d−1∑
i=0

αiX
i et on en déduit que M ∈ R[A].



(⊂) Si M ∈ R[A], il existe U ∈ R[X] tel que M = U(A). On écrit la division euclidienne de U par P et il

existe Q ∈ R[X] et R ∈ Rd−1[X] tels que U = PQ+R car deg(R) < deg(P). En notant R =
d−1∑
i=0

αiX
i, on

a M = U(A) = (PQ+ R)(A) = Q(A)P(A) + R(A) = R(A) =
d−1∑
i=0

αiA
i donc M ∈ Vect(In, A, . . . , Ad−1).

Par double inclusion, on a bien établi que R[A] = Vect(In, A, . . . , A
d−1) où d = deg(P).

4.1.3 La famille (In, A, . . . , A
d−1) est génératrice de R[A] d’après 4.1.2 donc m = dim(R[A]) 6 d. De plus,

on a vu en 4.1.1 que d = deg(P) 6 m et on a donc m = d. La famille (In, A, . . . , A
m−1) est donc génératrice

de R[A], constituée de m = dim(R[A]) vecteurs donc d = m et
(
In, A, . . . , A

m−1
)
est une base de R[A].

4.2 Pour tout k ∈ [[0;m − 1]], on a ϕA(A
k) = AAk − AkA = Ak+1 − Ak+1 = 0 donc tous les vecteurs

de la base
(
In, A, . . . , A

m−1
)
de R[A] appartiennent à Ker(ϕA) qui est un sous-espace de Mn(R), ainsi

R[A] ⊂ Ker(ϕA) d’où dim(R[A]) 6 dim(Ker(ϕA)) ce qui montre que dim(Ker(ϕA)) > m.

4.3 Cas où u est diagonalisable

4.3.1 Raisonnons par double implication :

(=⇒) Supposons B ∈ Ker(ϕA), donc AB − BA = 0 d’où u ◦ v = v ◦ u. Comme u et v commutent, les

sous-espaces propres de u sont stables par v. En effet, soit k ∈ [[1; p]] et x ∈ Eλk
(u), alors u(x) = λkx

donc u(v(x)) = u ◦ v(x) = v ◦ u(x) = v(u(x)) = v(λkx) = λkv(x) donc v(x) ∈ Eλk
(u).

(⇐=) Supposons Eλ1
(u), . . . , Eλp

(u) tous stables par v. Soit x ∈ Rn qu’on écrit x =
p∑

k=1

xk avec xk ∈ Eλk
(u)

pour k ∈ [[1; p]] car Rn =

p⊕
k=1

Eλk
(u). Par linéarité de u et de v et comme ∀k ∈ [[1; p]], v(xk) ∈ Eλk

(u),

on a u ◦ v(x) = u

( p∑
k=1

v(xk)
)
=

p∑
k=1

u(v(xk)) =
p∑

k=1

λkv(xk) = v

( p∑
k=1

λkxk

)
= v(u(x)) = v ◦ u(x) donc

u ◦ v = v ◦ u ce qui devient, au niveau matriciel, AB = BA donc B ∈ Ker(ϕA).

On a montré par double implication que B ∈ Ker(ϕA)⇐⇒ (∀k ∈ [[1; p]], Eλk
(u) est stable par v).

4.3.2 Soit une base B de Rn adaptée à la décomposition Rn =

p⊕
k=1

Eλk
(u), la question précédente se traduit,

d’après le cours, par B ∈ Ker(ϕA) si et seulement si MatB(v) est diagonale par blocs.

4.3.3 Soit B une base de Rn adaptée à la décomposition Rn =

p⊕
k=1

Eλk
(u) (car u est diagonalisable),

définissons l’application θ : (B1, . . . , Bp) 7→ diag(B1, . . . , Bp) qui va de
p∏

k=1

Mmk
(R) dans Mn(R). θ est

linéaire et clairement injective car θ(B1, . . . , Bp) = diag(B1, . . . , Bp) = 0 implique (B1, . . . , Bp) = (0, . . . , 0).

D’après la question précédente, son image est exactement l’ensemble des matrices {MatB(v) | B ∈ Ker(ϕA)} (v

toujours l’endomorphisme canoniquement associé à B). Ainsi, θ induit un isomorphisme entre
p∏

k=1

Mmk
(R) et



Ker(ϕA) (car v 7→MatB(v) est aussi un isomorphisme). On en déduit dim(Ker(ϕA)) = dim

(
p∏

k=1

Mmk
(R)

)
donc dim(Ker(ϕA)) =

p∑
k=1

dim(Mmk
(R)) et on obtient dim(Ker(ϕA)) =

p∑
k=1

m2
k.

4.3.4 Prenons ici n = 5 et traitons tous les cas possibles. On a 1 6 p 6 n et n =
p∑

k=1

mk dans tous les cas

car u est diagonalisable. On calcule alors dim(Ker(ϕA)) en fonctions des valeurs de p (l’ordre des valeurs

propres n’a pas d’influence sur la valeur de dim(Ker(ϕA))) :

• Si p = 1, on a forcément m1 = 5 donc dim(Ker(ΦA)) = 25 (en fait Ker(ΦA) = M5(R) car A scalaire).

• Si p = 2 et m1 = 1, m2 = 4, on a dim(Ker(ΦA)) = 1+ 16 = 17.

• Si p = 2 et m1 = 2, m2 = 3, on a dim(Ker(ΦA)) = 4+ 9 = 13.

• Si p = 3 et m1 = 1, m2 = 1, m3 = 3, on a dim(Ker(ΦA)) = 1+ 1+ 9 = 11.

• Si p = 3 et m1 = 1, m2 = 2, m3 = 2, on a dim(Ker(ΦA)) = 1+ 4+ 4 = 9.

• Si p = 4 et m1 = 1, m2 = 1, m3 = 1, m4 = 2, on a dim(Ker(ΦA)) = 1+ 1+ 1+ 4 = 7.

• Si p = 5, on a forcément m1 = m2 = m3 = m4 = m5 = 1 donc dim(Ker(ΦA)) = 1+ 1+ 1+ 1+ 1 = 5

(dans ce cas, χA est scindé à racines simples).

Lorsque n = 5, les dimension possibles de Ker(ϕA) sont 5, 7, 9, 11, 13, 17, 25.

4.4 Cas où u est nilpotent d’indice n

4.4.1 Supposons (v1, v2, . . . , vn) liée et soit (α1, . . . , αn) ̸= (0, . . . , 0) ∈ Rn tel que
n∑

i=1

αivi = 0. L’ensemble

{i ∈ [[1;n]] | αi ̸= 0} est non vide par hypothèse et majoré, il admet donc un maximum qu’on note k. On a

donc
k∑

i=1

αiu
n−i(y) = 0, relation à laquelle on applique uk−1 et, comme un = 0, on a αku

n−1(y) = 0 alors

que αk ̸= 0 par construction et que un−1(y) ̸= 0 par hypothèse. NON. Ainsi, la famille (v1, v2, . . . , vn) est

libre et elle admet n vecteurs dans Rn de dimension n donc (v1, v2, . . . , vn) est une base de Rn.

4.4.2 On a AB = BA donc u ◦ v = v ◦ u et, par une récurrence facile, ∀j ∈ N, uj ◦ v = v ◦ uj. Posons

w =
n∑

i=1

αiu
n−i, w est un endomorphisme de Rn et il s’agit de montrer que v = w. Pour cela, il suffit de

vérifier que v et w cöıncident sur la base (ei)16i6n. Pour k ∈ [[1;n]], on a v(ek) = v ◦un−k(y) = un−k ◦ v(y).

De même, w ∈ R[u] donc u et w commutent, ce qui donne w(ek) = w ◦ un−k(y) = un−k ◦ w(y) et comme

on a v(y) = w(y), on a bien v(ek) = w(ek) pour tout k ∈ [[1;n]]. On en déduit v =
n∑

k=1

αku
n−k.

4.4.3 On vient de voir que si B ∈ Ker(ϕA) alors v =
n∑

k=1

αku
n−k donc B ∈ Vect(In, A, . . . , An−1) ⊂ R[A].

L’inclusion inverse a déjà été prouvée au 4.2 donc Ker(ϕA) = R[A]. De plus, (In, A, . . . , A
n−1) est

génératrice de R[A] d’après 4.4.2 et elle est libre car si
n∑

k=1

akA
k = 0, on a

n∑
k=1

aku
k = 0 donc

n∑
k=1

aku
k(y) = 0

et
n∑

k=1

akvn−k = 0 donc a1 = . . . = an = 0. Ainsi, n = m et (In, A, . . . , A
n−1) est une base de Ker(ΦA).



� �
PARTIE 5 : VECTEURS PROPRES DE ϕA ASSOCIÉS

AUX VALEURS PROPRES NON NULLES� �
5.1 On montre le résultat par récurrence sur k :

• Initialisation : ϕA(B
0) = ϕA(In) = AIn − InA = A− A = 0 = α× 0B0.

• Hérédité : soit k ∈ N tel que l’on suppose ϕA

(
Bk

)
= αkBk alors ϕA

(
Bk+1

)
= ABk+1−Bk+1A qu’on écrit

ϕA

(
Bk+1

)
= (ABk − BkA)B + Bk(AB − BA) = ϕA

(
Bk

)
B + BkϕA(B) donc, par hypothèse de récurrence,

on parvient à ϕA(B
k+1 = kαBk + BkαB = (k+ 1)αBk.

Par principe de récurrence, ∀k ∈ N, ϕA

(
Bk

)
= kαBk.

5.2 Si B n’était pas nilpotente, on aurait ∀k ∈ N, Bk ̸= 0 donc, avec la question précédente, Bk serait un vecteur

propre de ϕA associé à la valeur propre kα. Mais comme α ̸= 0, cela ferait une infinité de valeurs propres

de ϕA qui est un endomorphisme en dimension finie car dim(Mn(R)) = n2. C’est impossible car les valeurs

propres de ϕA sont les racines de χϕA
qui est de degré n2. Ainsi, par l’absurde, B est nilpotente.
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DS 4.2 : INSPIRÉ DE CCP PSI 2008 MATHS1

PSI 1 2025/2026 samedi 06 décembre 2025� �� �
PARTIE 1 : ÉTUDE DE LA FONCTION η� �

1.1 Il est clair que lim
n→+∞

1

nx = 0 si x > 0, puis lim
n→+∞

1

nx = 1 si x = 0 et lim
n→+∞

1

nx = +∞ si x < 0.

1.2 Traitons deux cas :

Si x 6 0, la suite
(
1

nx

)
n>1

ne tend pas vers 0 d’après 1.1 donc la série
∑
n>1

(−1)n+1

nx diverge grossièrement.

Si x > 0, la suite
(
1

nx

)
n>1

est décroissante et tend vers 0 d’après 1.1 donc, puisque la série
∑
n>1

(−1)n+1

nx

est alternée, par le critère spécial des séries alternées, la série
∑
n>1

(−1)n+1

nx converge.

Ainsi, le domaine de définition de la fonction η est ]0 ; +∞[.

1.3 On applique le théorème de continuité :

(H1) pour tout n ∈ N, les fonctions un sont continues sur R∗
+ par théorèmes généraux.

(H2) Si a > 0, alors ||un||∞,[a;+∞[ = un(a) car un est décroissante et positive sur R∗
+. Puisque

∑
n>1

un(a)

converge d’après 1.2, la série de fonctions
∑
n>1

un converge normalement sur tout segment de R∗
+.

On en déduit que η est continue sur ]0 ; +∞[.

1.4 D’après 1.2 et le critère spécial des séries alternées, si x > 0, R1(x) =
+∞∑
k=2

uk(x) = η(x) − S1(x) du signe de

u2(x) donc négatif et R2(x) =
+∞∑
k=3

uk(x) = η(x)−S2(x) = η(x)− 1+ 1

2x
du signe de u3(x) donc positif. Ainsi,

1− 1

2x
6 η(x) 6 1 = S1(x) si x > 0 donc, ∀x > 0, 0 6 η(x) 6 1 et la fonction η est bornée sur R∗

+ . De

plus, par le théorème d’encadrement, comme lim
x→+∞

(
1− 1

2x

)
= 1, on a lim

x→+∞
η(x) = 1.

1.5 On a vu dans le cours que η(1) =
+∞∑
n=1

(−1)n+1

n
= ln(2) et, en séparant les termes d’indices pairs et impairs

dans ζ(2) = π2

6
=

+∞∑
n=1

1

(2n)2
+

+∞∑
n=0

1

(2n+ 1)2
= π2

24
+

+∞∑
n=0

1

(2n+ 1)2
, on a

+∞∑
n=0

1

(2n+ 1)2
= π2

8
. Alors

η(2) =
+∞∑
n=1

(−1)n+1

n2 =
+∞∑
n=0

1

(2n+ 1)2
−

+∞∑
n=1

1

(2n)2
= π2

8
− π2

24
= π2

12
. Ainsi, η(1) = ln(2) et η(2) = π2

12
.



� �
PARTIE 2 : ÉTUDE DE LA FONCTION f� �

2.1 Pour tout réel x > 0, comme lim
n→+∞

e−nx = 0 et que ln(1 + u)∼
0
u, on a un(x) ∼

+∞
e−nx = (e−x)n et la

série géométrique
∑
n>0

(e−x)n converge car |e−x| < 1 donc, par comparaison, la série
∑
n>0

un(x) converge

absolument donc converge. Ainsi, f est définie sur R∗
+.

2.2 On applique le théorème de continuité :

(H1) Pour n ∈ N, la fonction un est continue sur R∗
+ par théorèmes généraux (1+ e−nx > 0 pour x > 0).

(H2) Soit [a; b] ⊂ R∗
+, alors ||un||∞,[a;b] = un(a) car un est clairement décroissante et positive sur R∗

+.

Comme
∑
n>0

un(a) converge d’après 2.1,
∑
n>0

un converge normalement sur tout segment de R∗
+.

On en déduit que la fonction f est continue sur R∗
+. De plus, si on prend deux réels x et y tels que

0 < x < y, on a f(x)−f(y) =
+∞∑
n=1

(un(x)−un(y)) < 0 car toutes les fonctions un sont strictement décroissantes

sur R∗
+ pour n > 1, donc que un(x) − un(y) < 0 et que la somme de quantités strictement négatives est

strictement négative. Ainsi, la fonction f est strictement décroissante sur R∗
+.

2.3 E est l’image de l’intervalle R∗
+ par une fonction continue donc, par le théorème des valeurs intermédiaires,

E est un intervalle. Si on veut le prouver ici, on prend deux réels y1 < y2 dans E et y ∈ [y1; y2], il existe

donc (x1, x2) ∈ (R∗
+)

2 tel que f(x1) = y1 et f(x2) = y2 par définition de l’image directe. Ensuite, puisque

f est continue sur R∗
+ donc en particulier sur ˜[x1; x2], par le théorème des valeurs intermédiaires, il existe

x ∈ ˜[x1; x2] tel que f(x) = y. Comme x ∈ R∗
+, y ∈ f(R∗

+) = E donc E est un convexe d’où, d’après le cours,

un intervalle. Toujours est-il que E = f(]0 ; +∞[) est un intervalle de R.

2.4 On applique le théorème de double limite en +∞ :

(H1) On a lim
x→+∞

u0(x) = ln(2) = ℓ0 et, pour tout entier n ∈ N∗, lim
x→+∞

un(x) = 0 = ℓn.

(H2) Comme un est une fonction positive et décroissante sur [1; +∞[, il vient ||un||∞,[1;+∞[ = un(1) et la

série
∑
n>0

un(1) converge d’après 2.1 donc
∑
n>1

un converge normalement sur [1; +∞[.

On en déduit lim
x→+∞

f(x) =
+∞∑
n=0

ℓn donc lim
x→+∞

f(x) = λ = ln 2.

2.5 Calcul d’intégrales :

2.5.1 La fonction φ et toutes les fonctions φk (pour k ∈ N) sont continues sur ]0 ; 1] par théorèmes généraux.

De plus, lim
y→0+

φ(y) = 1, φ0(y) = ln(y)=
0
o

(
1√
y

)
et, par croissances comparées, ∀k ∈ N∗, lim

y→0+
φk(y) = 0

donc, par comparaison aux intégrales de Riemann ou prolongement par continuité φ(0) = 1 et φk(0) = 0 si

k > 1, on en déduit que φ et les φk sont est intégrables sur ]0 ; 1].

Les fonctions u : y 7→ ln(1 + y) et v : y 7→ ln(y) sont de classe C1 sur ]0 ; 1] et u(y)v(y)∼
0
y ln(y) donc

lim
y→0+

u(y)v(y) = 0 par croissances comparées donc, par intégration par parties et puisque u(1)v(1) = 0, on



en déduit que
∫ 1

0
φ(y)dy = −

∫ 1

0

ln y

1+ y
dy. Pour k ∈ N, les fonctions u : y 7→ ln(y) et vk : y 7→ yk+1

k+ 1
sont

de classe C1 sur ]0 ; 1] et lim
y→0

u(y)vk(y) = 0 par croissances comparées car k + 1 > 0. Ainsi, par intégration

par parties,
∫ 1

0
φk(y)dy =

[
u(y)v(y)

]1
0
−
∫ 1

0

yk+1

k+ 1
× 1

y
dy donc

∫ 1

0
φk(y)dy = − 1

(k+ 1)2
.

2.5.2 Si y ∈]0 ; 1[, on sait que ln y

1+ y
= ln(y)

+∞∑
k=0

(−y)k =
+∞∑
k=0

(−1)kφk(y). On intervertit alors la série et

l’intégrale (par théorème d’intégration terme à terme vu que ]0 ; 1[ n’est pas un segment) :

(H1) on vient de voir
∑
k>0

(−1)kφk converge simplement sur ]0 ; 1[ vers la fonction S : y 7→ ln y

1+ y
.

(H2) les fonctions φk et la fonction S sont continues sur ]0 ; , 1[.

(H3) les fonctions (−1)kφk sont intégrables sur ]0 ; 1] d’après 2.5.1 (car (−1)k est une constante).

(H4)
∫ 1

0
|(−1)kφk(y)|dy = −

∫ 1

0
φk(y)dy = 1

(k+ 1)2
et la série de Riemann

∑
k>0

1

(k+ 1)2
converge car

2 > 1 donc
∑
k>0

∫ 1

0
|(−1)kφk(y)|dy converge.

On en déduit que
∫ 1

0

ln y

1+ y
dy =

∫ 1

0
S(y)dy =

+∞∑
k=0

∫ 1

0
(−1)kφk(y)dy =

+∞∑
k=0

(−1)k 1

(k+ 1)2
donc, après

changement d’indice et avec 1.5,
∫ 1

0
φ(y)dy = η(2) = π2

12
.

2.5.3 Soit x > 0, la fonction ψx est continue sur R+ par théorèmes généraux et, comme x > 0, lim
t→+∞

e−xt = 0

donc ψx(t) ∼
+∞

e−xt. Comme x > 0, la fonction de référence t 7→ e−xt est intégrable au voisinage de +∞

donc ψx est intégrable sur R+.

2.5.4 Dans l’intégrale
∫ +∞

0
ψx(t)dt, on pose alors y = e−xt ou plutôt t = − ln y

x
= αx(y) et la fonction αx

est de classe C1 et strictement décroissante sur ]0 ; 1] et réalise une bijection de ]0 ; 1] dans R+ donc, comme

α′
x(y) = − 1

xy
, on a

∫ +∞

0
ψx(t)dt =

∫ 0

1

− ln(1+ y)dy
xy

donc
∫ +∞

0
ψx(t)dt =

η(2)
x

.

2.6 La fonction t 7→ ψx(t) est décroissante et continue sur R+. Effectuons donc une comparaison série-intégrale.

Pour n ∈ N, on a un+1(x) 6
∫ n+1

n
ψx(t)dt 6 un(x) donc, en sommant ces inégalités pour n > 0, on a

+∞∑
n=1

un(x) 6
∫ +∞

0
ψx(t)dt 6

+∞∑
n=0

un(x) ce qui donne, avec la question précédente
η(2)
x

6 f(x) 6 ln 2+
η(2)
x

,

pour tout x > 0. On en déduit, par encadrement, que lim
x→0

xf(x) = η(2). Comme η(2) > 0 d’après 1.5,

on a f(x)∼
0

η(2)
x

donc lim
x→0+

f(x) = +∞. Comme f est strictement décroissante et continue d’après 2.2, que

lim
x→0+

f(x) = +∞ et que lim
x→+∞

f(x) = ln 2 d’après 2.4, E =] ln(2) ; +∞[ avec le théorème de la bijection.



2.7 Un dernier équivalent :

2.7.1 Par concavité de a : x 7→ ln(1+x) sur [0 ; 1] car a′′(x) = − 1

(1+ x)2
< 0, on a ∀x ∈ [0 ; 1], ln(1+x) 6 x. On

peut aussi étudier les deux fonctions b : x 7→ x−ln(1+x) et c : x 7→ x2

2
−x+ln(1+x), elles sont dérivables sur

[0 ; 1] par théorèmes généraux et ∀x ∈ [0 ; 1], b′(x) = 1− 1

1+ x
= x

1+ x
> 0 et c′(x) = x−1+ 1

1+ x
= x2

1+ x
> 0

donc b et c sont croissantes sur l’intervalle [0 ; 1]. Comme b(0) = c(0) = 0, ces fonctions sont positives sur

[0 ; 1] donc ∀x ∈ [0 ; 1], 0 6 x− ln(1+ x) 6 x2

2
.

2.7.2 Puisque ∀x > 0, f(x) − ln(2) =
+∞∑
n=1

un(x) et que ∀n > 1, ∀x > 0, 0 6 e−nx − un(x) 6 1

2
e−2nx

d’après la question précédente car e−nx ∈ [0; 1], en sommant ces inégalités pour n ∈ N∗ (toutes les séries qui

apparaissent convergent pour x > 0), on obtient l’encadrement 0 6
+∞∑
n=1

e−nx − (f(x) − ln 2) 6 1

2

+∞∑
n=1

e−2nx.

On sait calculer ces sommes de séries géométrique pour obtenir 0 6 e−x

1− e−x − (f(x) − ln 2) 6 e−2x

2(1− e−2x)

pour x > 0 puis 1

1− e−x − e−x

2(1− e−2x)
6 ex(f(x)− ln 2) 6 1

1− e−x . Par le théorème d’encadrement, comme

lim
x→+∞

(
1

1− e−x

)
= lim

x→+∞

(
1

1− e−x− e−x

2(1− e−2x)

)
= 1, lim

x→+∞
ex(f(x)−ln 2) = 1 donc f(x)− ln 2 ∼

+∞
e−x.


