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[PARTIE 1 : GENERALITES ET EXEMPLES

Pour (M,N) € M, (R)? et (a, B) € R, dpa(aM +BN) = A(aM + BN) — (aM + BN)A = apa (M) + Bda(N)

donc ]cpA € L(J\/[n(R)).| dA(ln) = AL, —I,A =0et pa(A) = A2 — A2 =0 donc ’(In,A) € (Kerpa)?.

Casn:2:

0 —b

Avec des calculs de produits matriciels simples, ¢pa(E1,1) = c o0 )7 —bE12 + cE21, de méme
da(Er2) = —cEr 1+ (a—d)Er2+cEz2, da(E2,1) =bEr 1+ (d—a)Ez 1 —bEz 2 et da(Ez2) =bEy 2 —cEp 1.
0 —c b 0
— [ -b a=d 0o b
On a donc, par définition, |[Matg,_ (dpa) = c 0 d—a —c
0 c —-b 0
0 —c b 0
. . b a—d 0 b L
b est nulle si et seulement si Matg_(pa) = c 0 d—a —c est nulle, c’est-a-dire que
0 c —b 0

da=0<=(b=c=0et a=d) <= (A = aly). Ainsi, ‘4)/\ = 0 si et seulement si A est scalaire. |

X—a —-b
—C X—-d

Onaxa =

en notant A le discriminant de xa. Traitons trois cas :

‘ = X2 —(a+d)X+ad—bc donc x est scindé sur R <= A = (a—d)?+4bc > 0

Si A <0, alors A n’est donc pas diagonalisable dans M;(R) car xA n’est méme pas scindé sur R.
Si A >0, xa est scindé a racines simples sur R donc, d’apres le cours, A est diagonalisable dans M2 (R).
Si A =0, alors A admet une valeur propre double A donc A n’est pas diagonalisable (car sinon elle serait

semblable & Al donc on aurait A = Al, contrairement & ’énoncé).

On en déduit que ’(A est diagonalisable) <= (a — d)? + 4bc > 0.

La factorisation de x4, étant donnée, il suffit de développer bétement x4, , et de vérifier sa factorisation.

X c —b 0 X 0 0 X
. b X—a+d 0 —b b X—a+d 0 —b N
Sinon, Xg, = —c 0 X—d+a ¢ | |—c 0 X—d+a ¢ apres L «— L1 + 14
0 —c b X 0 —c b X
X 0 0 2X
. X - R . R .
puis x¢, = ;bc 8 +d X _ (()1 +a g apres C4 «— C4+Cq et on développe par rapport a la derniere
0 —c b X

colonne pour avoir |xg, = X* (X* — (d — a)? — 4bc) | comme attendu.




(<=) Si A est diagonalisable, alors (d — a)? + 4bc > 0 d’aprés 1.2.3 donc ¢ admet 2 valeurs propres
simples i\/m et une valeur propre double 0 d’apres 1.2.4. De plus, (I2,A) est libre (car A n’est
pas scalaire) de Ker(¢pa) donc dimEp(dba) = 2 = mo(da) ce qui montre que dimEo(dpa) = 2 et, toujours
d’apres le cours, que ¢ est diagonalisable.

(=) Réciproquement, si ¢4 est diagonalisable alors x¢, est scindé sur R, d’ott (a — d)? + 4bc > 0. Si on
avait (a — d)? + 4bc = 0, alors Sp(pa) = {0} donc ¢ ne serait pas diagonalisable (sinon la matrice de ¢
dans une base de vecteurs propres serait nulle donc on aurait ¢ = 0, exclu par ’énoncé et 1.2.2).

Par double implication, ¢ A est diagonalisable si et seulement si (a — d)? 4 4bc > 0. On a donc bien, d’apres

1.2.3, 'équivalence |dpa est diagonalisable si et seulement si A est diagonalisable.

Cas d’une projection :

Puisque A% = A, $3 (M) = A (AM —MA) = A(AM —MA) — (AM —MA)A = AM —2AMA +MA pour

tout M € My (R), puis ¢3 (M) = dA(AM —2AMA +MA) = A(AM —2AMA +MA) — (AM —2AMA + MA)A
donc ¢3 (M) = AM —2AMA + AMA — AMA + 2AMA — MA = AM — MA donc ¢3 (M) = ¢ (M) de sorte

que cbf\ = ¢ a, c’est-a-dire que ’X3 — X annulateur de ¢ 4. |

On sait que les valeurs propres d’'un endomorphisme font partie des racines de tout polynéme annulateur

de celui-ci, ainsi, comme X3 — X = X(X — 1)(X 4+ 1), ’Sp(d);\) c {-1,0,1}. |

X3 — X est un polynéme annulateur de ¢pa et il est scindé & racines simples donc, d’apres le cours,

’d)A est diagonalisable. | De plus, on a vu que ¢pa(l,) =0=0.I,, et I, # 0 donc |0 € Sp(da).

Soit u ’endomorphisme de R™ canoniquement associé a A, alors u est une symétrie et on sait que
R™ = Im(u) ®Ker(u) = E1(u) ®Ep(u). Il existe une base B = (vi,...,Vr,Vyy1,-..,vn) de R™ adaptée & cette
décomposition de R™ en notant r = rg(u). Comme A # 0, > 1 et r <n car A # I, donc Ker(A) # {0}. En

notant P la matrice de passage de la base canonique de R™ & la base B, comme on a Vk € [1;7], w(vy) = vk

et Vk € [r+ 1;n], u(vk) =0, il vient |P € GL(R),r€[ls;n—1],A="P (IOT 8) p-!

. B I, 0 013_0131r0),1_013,1
Aveccesnotatlons,onad)A(M)—P((O 0)(0 O) (0 O)(O 0> p~l=p o 0 p

par calcul matriciel par blocs donc | $pa (M) = M.

Avec B # 0 dans 1.3.5, ce qui est possible car r # 0 et 1 # n, on a M # 0 (car P est inversible)

qui vérifie o (M) = M = 1.M donc M est vecteur propre associé & la valeur propre 1, d’out 1 € Sp(da).

0 0

Par un calcul analogue, si M = P (B 0

) P~ avec B # 0, ce qui est encore possible, on trouve cette fois

daA(M) =—M = (—1).M avec M # 0 donc M est vecteur propre associé a la valeur propre —1: —1 € Sp(da).

Avec Uinclusion inverse déja justifiée en 1.3.2, la 1.3.3 et ce qui précede, on a |Sp(pa)={-1,0,1}.




PPARTIE 2 : ETUDE DES VALEURS PROPRES DE ¢ 4]

Les polyndomes caractéristiques de da et ba sont égauz car V(i,j) € [1;n]?, da(Eij) = ba(Eij) donc la

matrice de da dans la base canonique de My (R) vaut elle de A dans la base canonique de Mn(C).
Trigonalisabilité de A

On sait que Sp(A) = Sp(AT) donc, B étant une valeur propre de A, p est aussi une valeur propre de

AT. Ainsi, par définition, ‘il existe un vecteur colonne Y # 0 € My 1(C) tel que ATY =Y.

OnaXY" € Mp(C) et da(XYT) = AXYT —XYTA = (AX)YT —X(ATY)T = aX¥YT —X(BY)T = (x—B)XYT.
De plus, si YT = (y1 ... yn), la j-itme colonne de XY' est Cj; = y;X et comme Y # 0, un des y; au moins
est non nul, de méme X # 0. Par conséquent, au moins une des colonnes de XY est non nulle ce qui prouve

que XYT % 0 donc que XYT est un vecteur propre de ¢ associé & la valeur propre o — p. D’apres le cours,

« — B est une racine de X3 donc |« — B est une racine de xg, -
A

Si « est une valeur propre complexe de A, comme A est réelle, B = & est aussi une valeur propre de A.
D’apres 2.1.2, « — @ = 2iIlm(«) est alors une valeur propre de $a. Or g est trigonalisable par hypothese
donc x4, est scindé sur R d’olt toutes les valeurs propres de ¢4 sont réelles car x gy, = Xg A Ainsi, Im(x) =0

et donc o € R. Par conséquent, toutes les valeurs propres o de A sont réelles, ainsi xa est scindé sur R et,

d’apres le cours, A est trigonalisable dans M, (R). Ainsi, |A est trigonalisable si ¢p A est trigonalisable.

Réciproque

On montre le résultat par récurrence sur k :

e Initialisation : A°M = I,M = M = M(A +Al,,)® = MI,, = M.

e Hérédité : soit k € N tel que AKM = M(A + Al,)X, alors AKTTM = A(AYM) = AM(A + AL,)¥ par
hypothese de récurrence et, comme ¢pa(M) = AM, on a AM = MA +AM = M(A + Al,,) et on conclut en
remplagant ci-dessus que AXTTM = M(A 4 AL, )<+,

Par principe de récurrence, |Vk € N, AKM = M(A + AL,)¥.

+oo —+oo +oo
On pose P = > axX¥ et on a P(A)M = Y axA*M = Y axM(A + Al,)* d d’aprés 2.2.1 donc
k=0 k=0 k=0

’P(A)M = MP(A + Aly). | En choisissant P = x 4, avec le théoréme de CAYLEY-HAMILTON, on a xa (A)M =0

donc Mxa (A 4+ Al,) = 0 et comme M # 0, on en déduit que ‘XA(A + Aly) n’est pas inversible. |

[2.2.3] On a det(xa(A +Aly)) =

carrées donc det(xa (A +Aln)) =

t(A + A, — aily) par multiplicativité du déterminant des matrices

| u;:]:s”:lﬁ

d
( xa (o — ?\)) Comme xa (A + Al ) n’est pas inversible, il existe
A) =

un indice i € [[1;n] tel que XA( c’est-a-dire oy — A est une des valeurs propres de A et il existe

j € [15n] tel que &y —A = ;. Ainsi, ona |A =y —«j pour i € [1;n] et j € [1;n].




Si A est trigonalisable dans My, (R), alors les o sont tous réels puis A = a; — o est aussi réel d’apres

2.2.3. Ainsi, toutes les valeurs propres de $a sont réelles donc Xba =X, est scindé sur R. On en déduit

d’apres le cours que ¢ est trigonalisable. Par conséquent,

b A est trigonalisable si A est trigonalisable.

Si N est nilpotente, il existe k € N* tel que N* = 0 donc X* est annulateur de N. Ainsi, on sait que
Spr(N) C Spc(N) C {0} car les valeurs propres de N sont racines de tout polynéme annulateur de N. Mais

comme Sp ¢(N) # () d’apres le théoréme de D’ ALEMBERT-GAUSS, on a Sp¢(N) = {0} donc, comme xn est

de degré n et unitaire, on a xy = 1.(X — 0)™ donc  |xn = X™.

Nilpotence de ¢ a

On pose N = A — «l,, N est donc nilpotente par hypothese donc, avec 2.3, xn = X™. Ainsi,

xA = det(XI; — A) = det((X — a)In = N) =xn(X — ) = (X — «)™ donc

Spc(A) = Spr(A) = {a}.

D’apres 2.2.3, la seule valeur propre de ¢ est alors A = « — « = 0 donc Sp(pa) = {0} ce qui montre

que Xp, = X™" et le théoreme de CAYLEY-HAMILTON permet d’avoir d)RZ =0donc |bAa est nilpotent.

Réciproque

D’apres la question 2.3, comme ¢ 4 est nilpotent, en passant par la matrice de ¢4 dans une base, on a

Xba = X" donc Xba =XG, = X" ce qui montre que

Sp(ba) = {0}

Si « et p sont deux valeurs propres

de A alors, d’apres 2.1.2, o — B est une valeur propre de ¢po donc o« — 3 = 0. Ainsi, on peut conclure que

A ne possede qu’une seule valeur propre complexe.

En effet, il existe une moins une valeur propre complexe de ¢ a car les valeurs propres de ¢4 sont les racines

de Xg, quiest scindé dans C[X] par le théoreme de D’ ALEMBERT-GAUSS.

Si « ¢ R alors, comme A est réelle, @ est aussi une valeur propre de A car xa € R[X]. Or x # « car

a € R, donc A aurait au moins deux valeurs propres distinctes, ce qui contredirait 2.5.1. Ainsi, |« € R.

Puisque Spr(A) = Spc(A) = {a}, on axa = (X — )™ car xa est unitaire de degré n donc, par le théoréeme

de CAYLEY-HAMILTON, on a (A — «ly)™ =0et |A — «ly est nilpotente.

[PARTIE 3 : ETUDE DE DIAGONALISABILITE)

Diagonalisabilité de ¢ a

n n n
Pour (i,j) € [[1;11}]2, onabD = Z }\kEk,k donc DEiy)' = Z AkEk,kEi,j = Z )\kék,iEk,j = )\iEi,j et, de
k=1 k=1

k=1

méme, Ei’jD = )\jEi,j- Ainsi, DEi’j — Eiij = (}\i — }\j)Ei,j-




Soit (i,j) € [[1;TL]]2, A = PDP~! donc d)A(Bi,j) =P (DEi,j — Eiy)'D) Pl = (7\1—)\1')]31“]'. P étant inversible

et Ey; #0,0on a Byj # 0, donc ’Bi,j est un vecteur propre de ¢p A associé a la valeur propre A; — Aj. |

L’application ¢ : M € M, (R) = PMP~! est linéaire, donc ¢ est un endomorphisme de M (R) et
P(M) =0 = M = 0 car P est inversible donc ¥ est injective. D’apres le cours, P est un isomorphisme
de Mn(R) et, en ce titre, transforme une base en une base. Ainsi, (Bij)i<i,j<n est une base de My (R)

car image par { de la base canonique de My (R). On en déduit qu’il existe une base de My (R) formée de

vecteurs propres de ¢pa, ce qui est la définition de |¢dpa diagonalisable.

Réciproque

Pour (i,j) € [1;n]?, on a APyj — PijA = Ay,jPi,; par définition donc AP;;X = (PijA + Ay,jPij)X et
APy ;X = Py (AX) + AijPi,iX = (A + Ayj)Pi,;X donc

Comme X # 0, on peut compléter la famille libre (X) de R™ en une base B = (X,X2,...,X,) de R™. 1l
existe donc, d’apres le cours, un unique endomorphisme v de R™ qui envoie B sur (Y,0,...,0) (par exemple).

Ceci se traduit, en notant M la matrice de v dans la base canonique, par MX =Y et Vi € [[2;n], MX; = 0.

Comme (Pij)i<ij<n est une base de M, (R), on peut décomposer M = > «y;Pij, ce qui donne
1<ij<n
Y= > ,;P;X. Comme ceci est valable pour tout vecteur Y € R™, on vient d’établir que la famille
1<ij<n

(P1,;X)1<i,j<n est génératrice de R™, et on peut donc en extraire une base de R™, formée de vecteurs propres

de A car les Py jX # 0 sont des vecteurs propres de A d’apres 3.2.1. Ainsi, ’A est diagonalisable. |

PARTIE 4 : ETUDE DES VECTEURS PROPRES DE ¢ 4
ASSOCIES A LA VALEUR PROPRE 0

Base de R[A]

(In, A, ..., A™) est une famille de m + 1 vecteurs de R[A] qui est de dimension m, elle est donc liée par
m .
théoréme. Il existe donc m + 1 réels «g, ..., am, non tous nuls, tels que > o;A' = 0, ce qui montre que le
i=0

m .
polynéme |P = > «;X' est annulateur de A avec P # 0 et deg(P) < m.
i=0

Procédons par double inclusion :
a-1

(D) si M € Vect(In, A,...,Ad 1) il existe (xg,...,xq_1) € R tel que M = > oAl = U(A) avec
i=0
-1 '
U= > aiX" et on en déduit que M € R[A].
i=0



(C) Si M € RIA], il existe U € R[X] tel que M = U(A). On écrit la division euclidienne de U par P et il

a-1
existe Q € R[X] et R € Rq_1[X] tels que U = PQ +R car deg(R) < deg(P). En notant R = > «; X', on
i=0
d—1 .
aM=U(A) = (PQ + R)(A) = Q(A)P(A) + R(A) = R(A) = 3 aiA! donec M € Vect(In, A, ..., Ad"T).
i=0

Par double inclusion, on a bien établi que | R[A] = Vect(In, A,...,A%" 1) olt d = deg(P).

La famille (I, A,...,A%"") est génératrice de R[A] d’apres 4.1.2 donc m = dim(R[A]) < d. De plus,

on avuen 4.1.1 que d = deg(P) < m et on a donc m = d. La famille (I, A,...,A™ 1) est donc génératrice

de R[A], constituée de m = dim(R[A]) vecteurs donc |d =m et (In,A,...,A™ ") est une base de R[A].

Pour tout k € [0;m — 1], on a dpa(A*) = AA* — AKA = AKHT — AKT = 0 donc tous les vecteurs
de la base (In,A,...,A™"') de R[A] appartiennent & Ker($pa) qui est un sous-espace de M, (R), ainsi

’ R[A] C Ker(da) | d’ott dim(RJ[A]) < dim(Ker(pa)) ce qui montre que ’dim(Ker(d)A)) > m. |

Cas ot u est diagonalisable

Raisonnons par double implication :

(=) Supposons B € Ker($a), donc AB —BA = 0 dot uov = vou. Comme u et v commutent, les
sous-espaces propres de u sont stables par v. En effet, soit k € [[1;p] et x € Ex, (u), alors u(x) = Axx
donc u(v(x)) =uwov(x) =vou(x) = v(u(x)) = v(Axx) = MAv(x) donc v(x) € Ex, (u).

P
<=) Supposons Ej, (u),...,Ex_(u) tous stables par v. Soit x € qu’on écrit x = xk avec xx € Ex, (u
S Ea, E]D t tabl Soit R™ ’ éerit Exy
k=1

P
pour k € [1;p]] car R™ = @ Ea, (u). Par linéarité de u et de v et comme Yk € [1;p], v(xk) € Ex, (u),
k=1

onauov(x) = u( Ep: v(xk)) = f: u(v(xk)) = EP: Av(xk) = v( i 7\ka) =v(u(x)) = vou(x) donc
k=1 k=1

k=1 k=1
uov=vou ce qui devient, au niveau matriciel, AB = BA donc B € Ker(da).

On a montré par double implication que |B € Ker(da) <= (Vk € [1;p], Ea, (u) est stable par v).

P
Soit une base B de R™ adaptée & la décomposition R™ = @ Ea, (u), la question précédente se traduit,
k=1

d’apres le cours, par ’B € Ker(dpa) si et seulement si Matg(v) est diagonale par blocs. |

P
Soit B une base de R™ adaptée & la décomposition R™ = @Exk(u) (car u est diagonalisable),
k=1

P
définissons I’application 6 : (Bj,...,Bp) — diag(B1,...,Bp) qui va de [[ My, (R) dans M, (R). 6 est
k=1

linéaire et clairement injective car 6(B1,...,Bp) = diag(B1,...,Bp) = 0 implique (By,...,Bp) = (0,...,0).
D’apres la question précédente, son image est exactement ’ensemble des matrices {Mats (v) | B € Ker(ba)} (v

P
toujours endomorphisme canoniquement associé a B). Ainsi, 6 induit un isomorphisme entre [[ My, (R) et
k=1



P
Ker(ba) (car v — Matg(v) est aussi un isomorphisme). On en déduit dim(Ker(da)) = dim ( 11 Mmk(R)>

M=
M=

donc dim(Ker(pa)) = dim(Mm, (R)) et on obtient |dim(Ker(da)) =

1 k

2
my.
k

1

P
Prenons ici n = 5 et traitons tous les cas possibles. On a1 <p <netn = ) my dans tous les cas
k=1

car u est diagonalisable. On calcule alors dim(Ker(¢a)) en fonctions des valeurs de p (l'ordre des valeurs
propres n’a pas d’'influence sur la valeur de dim(Ker($a))) :
e Sip =1, on a forcément m; =5 donc dim(Ker(®4)) = 25 (en fait Ker(Pa) = Ms5(R) car A scalaire).

eSip=2etm; =1, my =4, onadim(Ker(®a)) =1+16=17.

)
eSip=2etm; =2, my=3,0nadim(Ker(®Pa)) =4+9=13.
eSip=3etm;=1,my=1m3=3,onadm(Ker(Pa))=1+1+9=11.
eSip=3etm;=1,my =2 m3=2 onadim(Ker(®Pa))=1+4+4=09.
eSip=4detm=1,my=1,m3=1,mqg =2,0nadim(Ker(®Pa)) =1+1+14+4=7.

e Sip =5, on a forcément m; = my = m3 = mg = ms = 1 donc dim(Ker(®p)) =1+1+14+14+1=5

(dans ce cas, xa est scindé & racines simples).

Lorsque n = 5, les dimension possibles de Ker(¢pA) sont 5,7,9,11,13,17,25.

Cas ot u est nilpotent d’indice n

n
Supposons (vi,v2,...,vn) liée et soit (a1,...,0n) # (0,...,0) € R™ tel que > oyvi = 0. L’ensemble
i=1
{i€[1;n] | «i # 0} est non vide par hypothese et majoré, il admet donc un maximum qu’on note k. On a
k .
donc Y aju™i(y) = 0, relation & laquelle on applique u*~!

n—](
i=1

et, comme u™ =0, on a ou y) = 0 alors

que o # 0 par construction et que u™ ' (y) # 0 par hypothese. NON. Ainsi, la famille (vi,va,...,vn) est

libre et elle admet n vecteurs dans R™ de dimension n donc ’ (V1,v2,...,vn) est une base de R™. |

On a AB = BA donc uov = vou et, par une récurrence facile, ¥j € N, W ov = vou. Posons

n .
w= > oiu™ " w est un endomorphisme de R™ et il s’agit de montrer que v = w. Pour cela, il suffit de
i=1

vérifier que v et w coincident sur la base (ei)1<i<n. Pour k € [1;n], on a v(ex) = vou™ *(y) = u"*ov(y).

De méme, w € R[u] donc u et w commutent, ce qui donne w(ex) = wou™ ¥(y) = u™ " * o w(y) et comme

n
on a v(y) = w(y), on a bien v(ex) = w(ex) pour tout k € [1;n]. On en déduit |[v= > ogu™ .
k=1

n
On vient de voir que si B € Ker(da) alors v = > apu™"* donc B € Vect(In, A,...,A" 1) C RJA].
k=1

L’inclusion inverse a déja été prouvée au 4.2 donc ’Ker(d)A) = ]R[A].l De plus, (In,A,...,A™" 1) est

n n n
génératrice de R[A] d’apres 4.4.2 et elle est libre car si Y. axA* =0,0ona > auk =0donc 3 apu®(y) =0
k=1 k=1 k=1

n
et 3 agvn_k =0donc a; =...=a, =0. Ainsi, n = m et (In,A,...,A™ ) est une base de Ker(®4).
k=1



PARTIE 5 : VECTEURS PROPRES DE ¢4 ASSOCIES
AUX VALEURS PROPRES NON NULLES

On montre le résultat par récurrence sur k :
e Initialisation : ¢pa(B®) = dpa(In) = Al, —[LA=A — A =0=« x 0BC.
e Hérédité : soit k € N tel que I'on suppose ¢pa (B¥) = akB¥ alors ¢ (B¥F') = ABKF! —B*HTA qu'on écrit
da (BXT!) = (AB* — B¥A)B + BX(AB — BA) = ¢a (B¥) B + B*dpa(B) donc, par hypothese de récurrence,
on parvient & ¢ (BT = kaB* + B¥aB = (k + 1)aBX.

Par principe de récurrence, |Vk € N,; ¢a (Bk) = kaBX.

Si B n’était pas nilpotente, on aurait Yk € N, B* # 0 donc, avec la question précédente, BX serait un vecteur

propre de ¢ associé a la valeur propre ka. Mais comme « # 0, cela ferait une infinité de valeurs propres

de ¢ qui est un endomorphisme en dimension finie car dim(Mn (R)) = n?. C’est impossible car les valeurs

propres de ¢ sont les racines de xq,, qui est de degré n2. Ainsi, par absurde, |B est nilpotente.
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INSPIRE DE CCP PSI 2008 MATHS1

PARTIE 1 : ETUDE DE LA FONCTION 7|
Il est clair que

Um

1 . .
— = 0si1 x>0, puis
n—>—|—oonX ' P

lim - =1six=0et lim - =-+oosix<0.
n—+oon n—toon

Traitons deux cas :

_1\n+1

Six <0, la suite (ix) , e tend pas vers 0 d’apres 1.1 donc la série > ( ])X diverge grossierement.
n>= n>l n
_1\yn+1
Six > 0, la suite (%) est décroissante et tend vers 0 d’aprés 1.1 donc, puisque la série > %
n n>1 n>1 n
_1\n+1
est alternée, par le critére spécial des séries alternées, la série ) ( ])X converge.
n>1 n

Alinsi, ’1e domaine de définition de la fonction n est ]0; +oo[ |

On applique le théoréeme de continuité :
(Hy
(Hz2

) pour tout n € N, les fonctions u,, sont continues sur R’ par théorémes généraux

n>l
converge d’apres 1.2, la série de fonctions Y uy, converge normalement sur tout segment de R

n>1

On en déduit que ’n est continue sur |0 ; +oo]. |

“+o00
D’aprés 1.2 et le critere spécial des séries alternées, si x > 0, Rq(x)

k=2

S1(x) six >0

donc, Vx > 0, 0 <

(x) <Tet ’1a fonction n est bornée sur R

plus, par le théoreme d’encadrement, comme lim (1

Jm lim n(x) =1.

x——+00

+o00 (_1)n+1
On a vu dans le cours que n(1) = A

) Sia>0,alors [[un||o,[a;4+oc] = Un(a) car u, est décroissante et positive sur R* . Puisque ) un(a)

x) = > up(x) =n(x) — S1(x) du signe de

+oo

(x) donc négatif et Ra(x) = > ur(x) =n(x) —S2(x) =n(x) -1+ 2]7 du signe de uz(x) donc positif. Ainsi
k=3

. De

Alors

= In(2) et, en séparant les termes d’indices pairs et impairs
n=1 n
> +o0 +o0 2 +oo 2
dans ¢(2) = & = 14 1 = 1 , on a =T
@) 6 n; (2n)* HX_IO n+1)?2 24 2o (n+1)? Z (2n+ ) 8
+°o( ™ w 1 = ot _ 2
=L - =2 Ainsi, 1) =wn(2) et n(2) = .
R i DN LA DAy Ry SR T n(1) =m(2) et n(2) = 33




[PARTIE 2 : ETUDE DE LA FONCTION f|

Pour tout réel x > 0, comme Uim e ™ =0 et que In(1 +u)~u, on aup(x) ~ e ™ = (e *)" et la
n—-+oo 0 +o0
série géométrique Y (e *)™ converge car |e”*| < 1 donc, par comparaison, la série Y un(x) converge
n=0 n=0

absolument donc converge. Ainsi, ‘f est définie sur R7.

On applique le théoreme de continuité :
Hy) Pour n € N, la fonction u,, est continue sur R* par théoréemes généraux (1 + e~ ™* > 0 pour x > 0).
+
(Hz2) Soit [a;b] C RY, alors ||un|o,[a;b] = un(a) car u, est clairement décroissante et positive sur RY.

Comme z>:o un (a) converge d’apres 2.1, Z>:o u, converge normalement sur tout segment de R* .
nz nz

On en déduit que ’1& fonction f est continue sur R% .| De plus, si on prend deux réels x et y tels que

+oo

0<x<y,onaf(x)—f(y) = > (un(x)—un(y)) < 0 car toutes les fonctions u, sont strictement décroissantes
n=1

sur R* pour n > 1, donc que un(x) — un(y) < 0 et que la somme de quantités strictement négatives est

strictement négative. Ainsi, |la fonction f est strictement décroissante sur R? .

E est I'image de 'intervalle R” par une fonction continue donc, par le théoréme des valeurs intermédiaires,
E est un intervalle. Si on veut le prouver ici, on prend deux réels y; < y dans E et y € [y1;y2], il existe
done (x1,x2) € (R%)? tel que f(x1) = y1 et f(x2) = y par définition de I'image directe. Ensuite, puisque

—_—~—

f est continue sur R* donc en particulier sur [xq;x2], par le théoreme des valeurs intermédiaires, il existe

x € [x1;x2] tel que f(x) =y. Comme x € RY, y € f(R%) = E donc E est un convexe d’ot1, d’apres le cours,

un intervalle. Toujours est-il que |E = f(]0;+o00[) est un intervalle de R.

On applique le théoreme de double limite en +oo :
(H7) Ona Um up(x) =1n(2) = ¢y et, pour tout entier n € N*, lim un(x) =0 = &,.
X—>+00 X—>=400
(Hz) Comme uy, est une fonction positive et décroissante sur [1;+o0[, il vient |[un|[oo,[1:4-00[ = un(1) et la

série > un (1) converge d’aprés 2.1 done Y uy, converge normalement sur [1; 400|.
n=0 n>1

“+oo
On en déduit XETOO f(x) = nZ::O £, donc x&?—loo f(x) =A=1n2.

Calcul d’intégrales :

La fonction ¢ et toutes les fonctions ¢y (pour k € N) sont continues sur ]0; 1] par théorémes généraux.
De plus, lim =1, =In(y)= O(L) et, par croissances comparées, Yk € N*, lim =0
plus, lim, ¢ (y) eoly) = n(y) = ) et p p » Jlim e (y)

donc, par comparaison aux intégrales de RIEMANN ou prolongement par continuité ¢(0) =1 et @y (0) =0 si

k > 1, on en déduit que ’(p et les @ sont est intégrables sur ]0;1]. |

Les fonctions u : y + In(1 +y) et v : y > In(y) sont de classe C' sur ]0;1] et u(y)v(y)rgyln(y) donc

lim+ u(y)v(y) = 0 par croissances comparées donc, par intégration par parties et puisque u(1)v(1) = 0, on
—0



1 1 k+1
1 . ) ) y
en déduit que fo e(y)d fo i +y Pour k € N, les fonctionsu : y — In(y) et v 1y — T sont

de classe C' sur 0;1] et lin}) u(y)vk(y) = 0 par croissances comparées car k + 1 > 0. Ainsi, par intégration
y—

1 e 1
. o _ 1
par parties, fo ex(y)dy = [uly fo e dy donc fo er(y)dy = 172
n +o0o +oo
Siy €]0;1], on sait que ﬁl = In(y) X (—y)* = 3 (=1)*ex(y). On intervertit alors la série et
Y k=0 k=0

l'intégrale (par théoréme d’intégration terme & terme vu que ]0;1[ n’est pas un segment) :

(H1) on vient de voir > (—1)¥@y converge simplement sur ]0; 1] vers la fonction S : y + ﬁl
k>0 Yy

(Hz) les fonctions ¢y et la fonction S sont continues sur |0;,1].

(H3) les fonctions (—1)*¢y sont intégrables sur ]0;1] d’apres 2.5.1 (car (—1)* est une constante).

1 1

H —1)k dy = — dy = — 1 et la série de RIEMANN — 1 converge car

(Ha) [y 11 0xlv)lay f o)dy = =572 i Z s comere
2>1donc Y, f ¢k (y)|dy converge.
k>0
+o0 1 +oo
On en déduit que = S(y = —1)k dy = k1 donc, apres
ave [ 7L ay = ['s( 2 Jo 0oy = 5 (-0 P

1
changement d’indice et avec 1.5, fo e(y)dy =n(2) = %

Soit x > 0, la fonction VP est continue sur R, par théoremes généraux et, comme x > 0, . li_Tp e Xt =0
— 400

xt

donc Py (t) o e *t. Comme x > 0, la fonction de référence t — e *' est intégrable au voisinage de +oo
o0

donc ’ﬂ’x est intégrable sur R . |

—+oo
Dans l'intégrale fo Py (t)dt, on pose alors y = e™*' ou plutdt t = _ny _ ox(y) et la fonction ay
X

est de classe C! et strictement décroissante sur ]0;1] et réalise une bijection de ]0;1] dans R, donc, comme

oo 0 —1n(1 d +oo 2
o (y) = _iv on a fo Py (t)dt = f] W donc o Py (t)dt = T%

La fonction t — P (t) est décroissante et continue sur R. Effectuons donc une comparaison série-intégrale.

n+1
Pour n € N, on a uny1(x) < f Py (t)dt < un(x) donc, en sommant ces inégalités pour n > 0, on a
n

+ +oo
x) < fo = Py (t)dt < D un(x) ce qui donne, avec la question précédente n(2) < flx) < n2+ @,
n=0 x x

pour tout x > 0. On en déduit, par encadrement, que |lim xf(x) =n(2).| Comme n(2) > 0 d’apres 1.5,

x—0
on a f(x) N n2) donc liT(r)t+ f(x) = +oo. Comme f est strictement décroissante et continue d’apres 2.2, que
X xX—

lim f(x) =400 et que lim f(x) =1n2 d’apres 2.4, ’E =]n(2); +oo[| avec le théoreme de la bijection.

x—0+ X—+00




Un dernier équivalent :

Par concavité de a : x — In(1+4x) sur [0;1] car a”(x) = —(]_:7)2 <0,onaVx € [0;1], In(1+x) < x. On
x

2
peut aussi étudier les deux fonctions b : x — x—In(1+x) et ¢ : x — x7 —x—+1n(1+4x), elles sont dérivables sur
2
0;1] par théore iné tWx € 0;1], b/ (x) =1——1— = X >oetc/(x) =x—1+-—— =X >0
[0; 1] par théorémes généraux et Vx € [0;1], b'(x) i etc'(x) =x —1—14_X T+
donc b et ¢ sont croissantes sur I'intervalle [0;1]. Comme b(0) = ¢(0) = 0, ces fonctions sont positives sur

2
[0;1] donc [Vx €[051], 0 <x—1In(1+x) < "7
+oo 1
Puisque ¥x > 0, f(x) —In(2) = > un(x) et que Vn > 1, ¥x > 0, 0 < e™™ — uy(x) < Ee_zm‘
n=1
d’apres la question précédente car e ™ € [0;1], en sommant ces inégalités pour n € N* (toutes les séries qui
+oo too
apparaissent convergent pour x > 0), on obtient 'encadrement 0 < Y e ™ — (f(x) —In2) < % 3 e X,
n=1 n=1
—x —2x
On sait calculer ces sommes de séries géométrique pour obtenir 0 < ]ei_x — (f(x) = n2) < Z(]ei_h)
—e —e
—X
pour x > 0 puis ] 1 =30 € =75 <eX(f(x) —1n2) < ]% Par le théoreme d’encadrement, comme
e —e —e

. ] o . 1 _ eix ) _ . x _ — — ~ -x
XBTM <7] — e_x> = XET& (1 (e A 1, XBTOOe (f(x)—n2) = 1 donc |f(x) ln2+ooe .




