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(PARTIE 1 : PROJECTEURS ORTHOGONAUX]

(=) Si p est une projection orthogonale, G = FX. Soit (x,y) € E? qu’on décompose x = x71+x2 et y = y1+y2
avec (x1,Y1,%2,Yy2) € F? x G2, alors, comme p(x) = x1, p(y) = y2, p est un endomorphisme symétrique car
(P(y) = Galyr +y2) = xalyr) + Galyz) = (alyr) = Galyr) + (x2fyr) = (a1 +x2fy1) = (xlp(v))-

(<) Si p est un endomorphisme symétrique, soit x € F et y € G, alors p(x) = x et p(y) = 0 donc
(xly) = (p(x)ly) = (x|p(y)) = (x|0g) = 0. Ainsi, F L G et, avec les dimensions, on conclut que G = F- donc

p est une projection orthogonale.

Par double implication, si p est un projecteur : |p est orthogonal si et seulement si p est symétrique. |
n n
Sin = dim(E) et B = (u1,---,un) une base orthonormée de E, en notant x = > xux et y = Y. yux,
k=1 k=1

n
on a (x]y) = Y. xkyk. Comme les matrices respectives de x et y dans la base B sont X et Y telles que
k=1

XT = (x7 ---xn) et YT = (y1 ---yn), quitte & identifier un réel a avec la matrice (a) : ‘(x\y) =XTy=vTx

par définition du produit matriciel.

Matrice et inégalité

Soit z € F, d’apres le cours, [p(z) = > (z|ei)ei | car (er,---,ex) est une base orthonormée de H.

i=1

k
L’égalité ci-dessus s’écrit matriciellement M(p)Z = > [E] Z]E; out E] Z est ici vu comme un scalaire. Si
i=1

op

on le voit plutét comme une matrice de M1 (R), cela s’écrit alors M(p)Z = Ei[EfZ]. Par associativité

i=1

Kk
du produit matriciel, on a donc |M(p)Z = 3 E{E]Z.| Soit f Pendomorphisme de F canoniquement associé
i=1

K
a M(p) — 21 EiE]. L’égalité précédente montre que, pour tout z € E, f(z) = O, donc f = 0 et, au niveau
i=

k
matriciel, on en déduit la relation |M(p) = > E{E].
i=1

Soit z € F, comme ||z]|* = ||z — p(z) + p(2)||* = ||z — p(2)||* + |[p(2)||* d’aprés PYTHAGORE puisque

p(z) L (z—p(z)) car p est un projecteur orthogonal, on a ||z||> > ||p(z)||? ce qui donne bien |||p(z)|| < ||z]|.



Exemple

Soit f 'endomorphisme de R? canoniquement associé 4 M. Comme M? = M (petit calcul), f est
un projecteur de R*. Comme les deux premicres colonnes de M ne sont pas colinéaires, et que I'on a
C3+Cy = Cz2+Cq =0, il vient rang(M) = 2 donc dim(Ker(f)) = 2 par la formule du rang et les
relations sur les colonnes donnent Ker(f) = Vect(vi,v2) avec vi = (1,0,1,0) et vo = (0,1,0,1). De plus,
Im (f) = Vect(f(e1),f(e2)) car f(e3) = —f(e1) et f(eq) = —f(e2). Posons v3 = (1,0, —1,0) et v4 = (0,1,0,—1)

de sorte que Tm (f) = Vect(v3,vs4). On sait que R* = Ker(f) @ Im (f) car f est un projecteur. Comm vy L v3,

vi Lvg, vy Lvsetvy L vy, ’f est un projecteur orthogonal de R*.

D’apres la question précédente, les vecteurs vq,v2,v3,v4 sont orthogonaux deux a deux et sont de norme

1 1
V2, donc (—w , \TZVZ) est une base orthonormée de Ker(f), (

V2

Encadrement des valeurs propres

) en est une de Im (f).

1 1
—=V3, —=V4
V2 V2

1
Par définition, Au = p(r(un)). Comme A # 0, u = p(Xr(u)) donc u € Im(p) = H. D’autre part,
p(r(u) — Au) = p(r(u)) — Ap(uw) = A(w — p(u)) = Of car p(u) = u puisque Im (p) = Ker(idr — p). Ainsi,

r(u) — Au € Ker(p) = Im (p)* = H* car p est orthogonal. Par conséquent, ’u € Het r(u) — Au € HE. |

D’apres la question précédente, (u|r(w) — Au) = 0 donc (ufr(u)) = A|Jul[?. Or, r étant un projecteur

orthogonal, c’est un endomorphisme symétrique d’apres la question 1 et la relation ’7\||u2|| = [|r(w)||?

découle du calcul (ulr(w)) = (ufr?(1)) = (ur(r(v))) = (r(w)|r(w)) = |[r(w)||*.

2
D’apres la question 3.3, ||r(u)|| < |[u]|. Comme ||u|| # 0, on a donc A = |r|(u|)||2| € [0;1]. On en déduit
u

que ’toutes les valeurs propres de p o r sont dans 'intervalle [0; 1]. |

@ Commutation
Par composition, p o r est un endomorphisme de F et, p et r commutant et étant des projecteurs,
(por)?2 =pZor? =pordoncypor est aussi un projecteur de F.
De plus, pour des vecteurs x et y de F, (p(r(x))[y) = (r(x)|p(y)) = (x|r(p(y)) car p et r sont symétriques.

Comme r et p commutent, (p(r(x))ly) = (x|p(r(y)) et p ot est donc aussi un endomorphisme symétrique.

Ainsi, d’apres la question 1, ’p o est un projecteur orthogonal. |

Si A est une valeur propre du projecteur por, il existe par définition un vecteur x de F tel que por(x) = Ax.
En composant par p or, on a donc Ax = A?x donc, comme x # Og, A*> = A donc A € {0,1}. Comme por # 0,
le sous-espace Im (p o) = Ker(p ot — id §) contient un vecteur x non nul tel que p o r(x) = 1.x donc 1 est
valeur propre de por. Comme Im (por) C Im (p) = H et que H est strictement inclus dans F par hypothese,
Im (p or) est strictement inclus dans H ce qui montre que Ker(p o) (qui est un supplémentaire de Im (por))

n’est pas réduit & {0r}. Soit donc y un vecteur non nul de Ker(p o), alors p o r(y) = 0.y donc 0 est valeur

propre de p o r. Par double inclusion, on a établi que lles valeurs propres de p or sont 0 et 1. |




Soit x € Ker(p or), comme on a les relations p(r(x)) = O et r(x — r(x)) = r(x) — r2(x) = Of, en écrivant

x = 1(x) 4+ (x — r(x)), il vient x € Ker(p) + Ker(r). Réciproquement, soit x € Ker(p) + Ker(r), on peut donc

éerire x =y + z avec p(y) = Or et 1(z) = O d'ot p(r(x)) = p(r(y)) + p(r(2)) = p(r(y)) = (p(y)) = OF car p
)

et * commutent donc x € Ker(p or). Par double inclusion, ’Ker(p or) = Ker(p) + Ker(r). |

Soit x e Im(por) ety € Ftel que por(y) =p(r(y)) = x, on voit que x € Im (p). Comme p et r commutent,
on a aussi x = r(p(y)) € Im(r) donc x € Im (p) NIm (r). Réciproquement, soit x € Im (p) N Im (r), alors

x € Ker(p —idf) NKer(r —id ), d’out p(x) = x et r(x) = x et por(x) = p(r(x)) = p(x) = x ce qui montre que

x € Ker(por —id¢) = Im (p or). Par double inclusion toujours, ’Im (por)=Im(p)NIm/(r). |

Condition nécessaire et suffisante de commutation

C D CA +DC CB+D?
dont on déduit les quatre relations A2 + BC = A, AB+BD =B, CA+DC = C et CB + D? = D. De plus, si

. B 2+B B + BD
Comme r* =, on a Q* = Q ce qui, en calculant par blocs, donne (A ) = ( Sipe cbs )

Q = (9i,)1<i,j<m € Mm(R) est la matrice de p o r dans une base orthonormale B = (e1,---,em) de F, on

sait d’apres le cours que qi; = (por(ej)|ei). Comme por est symétrique car c’est un projecteur orthogonal,
o AT cT
on a qij = (ej|por(ei)) = (por(ei)lej) = qj,i donc Q est symétrique. Comme QT = <BT DT> et que

Q = QT, en identifiant, ona AT = A, CT =B et D' =D.

On a donc bien ]A2+BC:A,AB+BD:B, CB+D?=D,AT=A,B"=Cet D" =D.

En calculant les produits par blocs, on a PQ = (/3 E) et QP = (/é g)

1)==(ii) : si A est valeur propre de A, il existe un vecteur colonne X € My 1(R) non nul tel que AX = AX.
En posant Y = <>0(> € Mm,1(R), onaY #0et PQY = (AOX> = ()\?) =A (z() = AY donc A est valeur
propre de PQ, donc de p o, ce qui impose A € {0,1} d’aprés 6.2. Comme admis dans 1’énoncé, A% = A par

le théoreme spectral. D’apres la question précédente, A2+ BC = A 4+ BC = A donc BC =0 d’ou C'C = 0.

ii)==(iii) : en posant C = (cij)1<i<m—x € Mm_k,k(R) et comme c'c=0,0=Tr(CTC)= X cizj.
1<i<k I<i<m—k
1<k

Puisque qu’une somme de quantités réelles positives nulle implique que tous ces termes sont nuls, C = 0.

A 0> etonapor=rop donc p et r commutent.

iii)=(iv :siczo,B:cT:odonCpQ:Qp:<0 0

iv)=(i) : sipor =rop = 0, la seule valeur propre de p or = 0, sinon, la question 6.2 montre que les

valeurs propres de p or valent 0 et 1. En général, les valeurs propres de p o r valent 0 et 1.

Par transitivité de I'implication, |on a I’équivalence des quatre conditions de 1’énoncé.




[PARTIE 2 : PSEUDO-SOLUTIONS D’UN SYSTEME|

Soit w le projeté orthogonal de v sur Im (f) et xp un vecteur de E tel que f(xo) = w. Pour tout vecteur x de E,
on a [|f(x) —v|[? = ||(f(x) — f(x0)) + (f(xo) = V)||?. Or f(x) —f(x0) = f(x —x0) € Im (f) et, par définition d’une
projection orthogonale, f(xo) —v = w —v € (Im (f))* donc, d’apres le théoréme de PYTHAGORE, il vient
1506 =v[[2 = [[£(x) = F(x0) [I> +[If(x0) —v[|* > |[f(x0) — V]| d’0lt [[f(x) =vI| > [[f(x0) —V||. Ainsi, [[f(x0)—v]| est

un minorant de {||f(x) —v|| | x € E}, mais ce réel faisant partie de I’ensemble qu’il minore, en est le minimum,

d’out |lexistence (mais pas I'unicité) d’un vecteur xo € E tel que ||f(xo) — v|| = Mig [[f(x) — v]].
xXe

Soit x7 une autre pseudo-solution de (x), alors ||f(x1) —v|| = M11E1 [If(x) —v|| = d(v,Im (f)) et on sait d’apres
xX€

le cours que ceci implique f(x71) = w (le projeté orthogonal de v sur Im (f)). Si f injective, f(xp) = f(x1) =w

implique xo = x1. Par conséquent, ’si f est injective, il existe une unique pseudo-solution de (x). |

D’apres la question précédente, si xo est une pseudo-solution de (x), f(xo) est le projeté orthogonal de v sur
I'image de f. f(xp) — v est donc orthogonal & Im (f) et, si x € E, on a (f(x)|f(xo) —v) = 0.
Réciproquement, si Vx € E, (f(x)|f(xo) —v) = 0, comme on a vu plus haut que (f(xo) — f(x)|f(x0) —Vv) =0,
il vient [[f(xo) = vl|* = (f(x0) — f(x) + f(x) = v[f(x0) —v) = (f(x) = vIf(x0) = v) <[[f(x) = v[|. |[f(x0) — V|| par
I'inégalité de CAUCHY-SCHWARZ. On traite maintenant deux cas :
e si f(xo) = v, alors x¢ est bien pseudo-solution de (x) d’apres ce qui précede.
o si f(xp) # v, en divisant I'inégalité précédente par ||f(xo) — v|| > 0, on a ||f(x0) — v|| < |[f(x) — V|| ce

qui prouve, avec la question 1 de cette partie, que xo est pseudo-solution de (k).

Par double implication, ’xo est pseudo-solution de (E) <= (¥x € E, (f(x)|f(x0) —v) =0). |

L’équation vectorielle de la question précédente s’écrit matriciellement (AX)T(AXo — V) = 0 pour tout vecteur
colonne ayant dim(E) lignes, soit encore XTATAXy = XTATV. On peut transposer, ce qui montre que,
pour tout X, (VTA — XgATA)X = 0. Mais comme ceci est vrai pour tout X, on sait d’apres le cours que
VTA — XgATA =0, donc que ATAXo = ATV. Réciproquement, si ATAXy = ATV, on multiplie & gauche par
XT (avec X quelconque) pour obtenir (f(x)|f(xo) —v) = 0) en revenant aux vecteurs, ce qui entraine que xo

est pseudo-solution de (x) d’apres la question 3 de cette partie.

Par double implication, ‘xo est pseudo-solution de I’équation (E) si, et seulement si, ATAXy = ATV.

X 3 0 -3 3x—3z =0
En notant Xo = | y |, comme ATA = 0 6 0 |,léquation ATAXy = ATV s’écrit { 6y =
z -3 0 3 —3x+3z =0

1
donc |les pseudo-solutions de (x) sont les vecteurs (x, E’X> oux € R.




@ Application
En posant f(A\, 1) = Aa + ub, le probléme est de minimiser |[f(A, 1) — c||?, c’est-a-dire de déterminer
les pseudo-solutions de (%) : f(A,p) = c car f est linéaire et la fonction racine carrée est strictement

croissante. Plus précisément, par rapport aux notations précédentes, c’est le probleme de la recherche des

a; by

pseudo-solutions avec |v = c et la matrice de f dans les bases canoniques est A =

an bn

D’apres le théoreme du rang, f est injective si, et seulement si, elle est de rang 2, ce qui se traduit plus

simplement ici par |f est injective si et seulement si a et b ne sont pas colinéaires. ‘|

2
On suppose donc a et b non colinéaires. Apres calculs, ATA = ( L‘;!) |(|(ll)|‘k|) 2) > donc I’équation matricielle

€1

de ta question 4 devient s xo = (1) 5 ([l (WRD) s (3) = (0 o) () = (1),

n

Ce systeme est de CRAMER car det(ATA) = ||a||?|[b]]? — (a|b)? > 0 d’aprés linégalité de CAUCHY-
SCHWARZ et son cas d’égalité : en effet, si on avait det(ATA) = 0, on aurait |(a|b)] = ||a|||[b]| ce
qui conduit & (a,b) liée, ce qui contredit ’hypothese. Apres des calculs de CRAMER, on trouve une

)(ole) . _ llal[*(ble) — (alb)(ale)
| b)”

|b
7 Gtu= 211112 2
b) llal[[[o]|= = (afb)

[[6]*(ale) — (alb
[lal|?[[b]]> — (a

unique pseudo-solution (A, n) de (%) avec A =

PARTIE 3 : PSEUDO-INVERSE D’UNE
APPLICATION LINEAIRE

Construction

Soit z le projeté orthogonal de y sur Im (f), alors par définition d’une projection orthogonale, on a
y =y —z€ (Im(f))t. Comme z € Im (f), il existe un vecteur u € E tel que f(1) = z. Comme le noyau de f

et son orthogonal sont supplémentaires dans E, il existe (x’,x) € Ker(f) x (Ker(f))* tel que u = x +x’. Par

linéarité de f, f(u) = f(x') + f(x) = f(x), de sorte que ’y = f(x) +y’ avec (x,y’) € (Ker(f))L x (Im (f))*.

Soit (x1,45) € (Ker(f)): x (Im (f))* et (x2,y5) € (Ker(f)): x (Im (f))* tels que y = f(x1)+y = f(x2)+yh.
En soustrayant, on obtient f(x1) +y; = f(x2) + y5, donc f(x1 —x2) =y, — y} € (Im (f))L NIm (f) = {0¢}.
Ainsi, f(X] - Xz) = yq - ylz = Of donc y/1 = y'z et x1 —x2 € Ker(f) X (Ker(f))J‘ = {OE} donc x7 — x2 = Og.

Par conséquent, (x1,y5) = (x2,y5) et ’il y a unicité du couple (x,y’) de la question précédente. |

Soit x et y deux vecteurs de F et a et b deux réels, par construction de g, on a x = f(g(x)) + x’ et
y = f(g(y)) + vy avec (x,y") € ((Im(f))*+)2. Par linéarité de f, ax + by = f(ag(x) + bg(y)) + ax’ + by’
Comme ag(x) + bg(y) € (Ker(f))* et ax’ + by’ € (Im (f)) (ce sont des sous-espaces), par définition de g,

on a la relation g(ax + by) = ag(x) + bg(y) qui montre bien que .



Soit x € Ker(g), comme g(x) = O, il vient x = f(g(x)) +x' = x’ € (Im (f))*. Ainsi, Ker(g) C (Im (f))=.
Soit x € (Im(f))*, alors x = f(g(x)) + x’" avec x’ € (Im (f))*, mais on a également x = f(0g) + x avec

(0g,x) € (Ker(f)): x (Im (f))*. L’unicité de cette écriture impose alors g(x) = Og donc x € Ker(g) et on a

4

l'autre inclusion (Im (f))1 C Ker(g). Ainsi, par double inclusion, ’Ker(g) = (Im (f))

Par définition de g, on a Im(g) C (Ker(f))*. D’autre part, par la formule du rang appliquée & g puis a f

et comme Im (f) et (Im (f))* sont supplémentaires dans F, on a dim(Im (g)) = dim(F) — dim(Ker(g)) donc
dim(Im (g)) = dim(F) — dim((Im (f))*) = dim(F) — (dim(F) — dim(Im (f))) ce qui conduit & la relation
dim(Im(g)) = dim(Im (f)) = dim(E) — dim(Ker(f)) = dim((Ker(f))*), d’ou, par inclusion et égalité des

dimensions, cela donne bien ’Im (g) = (Ker(f))*.

Projecteurs orthogonaux

Par construction de g, pour tout vecteur x € E, on a f(x) = f(g(f(x))) +y’, avec y’ € (Im (f))+. Comme
on a clairement y’ = f(x) — f(g(f(x))) = f(x — g(f(x))) € Im (f), il vient y’ € Im (f) N (Im (f))* donc y’ = O
et f(x) = f(g(f(x))). Ainsi, f=fogofdou (gof)?=go(fogof)=gof: gof un projecteur de E.

De plus, on a toujours l'inclusion Ker(f) C Ker(g o f). Pour x € Ker(g o f), comme g(f(x)) = Og, on a
f(x) € Ker(g) = (Im (f))*. Mais comme on a aussi f(x) € Im (), on a donc f(x) € Im (f) N (Im (f))+ = {0}
donc f(x) = O et x € Ker(f). Par double inclusion, Ker(g o f) = Ker(f).

De méme, on a toujours Im (g o f) C Im (g) = (Ker(f))*. La formule du rang appliquée & g o f et 1'égalité
ci-dessus montrent que dim(Im (gof)) = dim(E) — dim(Ker(gof)) = dim(E) — dim(Ker(f)) = dim((Ker(f))*).

Par inclusion et égalité des dimensions, Im (g o f) = (Ker(f))=.

On peut donc conclure que ’g o f est le projecteur orthogonal de E sur (Ker(f))=.

Pour tout y € F, on a par définition f(g(y)) = f(g(f(g(y)))) +y’, avec y € (Im(f))t. Le méme
raisonnement que ci-dessus montre que ce vecteur y’ est nul, d’ol (fog)? = fog : fog est donc un projecteur

de F.

De plus, (Im (f))+ = Ker(g) C Ker(fog) et Im (fog) C Im (f). Un raisonnement analogue & celui qui précede

montre que ces inclusions sont des égalités et que ‘f o g est le projecteur orthogonal de F sur Im (f). |

Soit B la matrice de g dans les bases canoniques de R? et R3 respectivement. La matrice A est de rang 2

donc f est surjective, ainsi Im (f) = R2. D’apres la question 3.2 de cette partie, on a donc fo g = id g2 d’oi

a b a b
AB =1;. Sionpose B=| ¢ d |, larelation AB =1, montre que B= | 1—a —b |. Le noyau de f
e f a—1 b+1

étant clairement la droite (par la formule du rang) engendrée par le vecteur (1,—1,1) (car C; —C2+C3 =0

dans A) et comme Im (g) = Ker(f)* d’apres la question 2, les vecteurs (a,1 —a,a — 1) et (b, —b,b + 1) sont

2 1 1
orthogonaux & (1,—1,1), ce qui impose a = 3 et b= 3 c’est-a-dire |B = - 1 1




Cas symétrique
Soit deux vecteurs x € Ker(f) et y € Im (f), soit alors z € E tel que y = f(z), comme f est symétrique,

on a la relation (x|y) = (x|f(z)) = (f(x)]z) = (0g|z) = 0 donc Ker(f) C (Im(f))t. Par la formule du

rang, dim((Im (f))*) = dim(E) — dim(Im (f)) = dim(Ker(f)). Par inclusion et égalité des dimensions,

Ker(f) = (Im (f))*.| Ainsi, E étant de dimension finie, ‘Im (f) = ((Im (£))H)+ = (Ker(f))*.

Soit x un vecteur propre de f et A la valeur propre associée, supposée non nulle, de sorte que, par
définition, on a f(x) = Ax. En particulier, x = f(%x) € Im(f) = Ker(fog—idg) (d’apres 3.2) d’on
fg(x)) = x = f(%x) ot f(%x ~g(v) = 0. Ainsi %x — g(x) € Ker(f) = (Im(f))*. D’autre part,
g(x) € Im(g) = (Ker(f))* = Im(f) (d’apres les questions 2 et 5.1) et x € Im (f) donc %x —g(x) € Im(f).

1

Comme le vecteur 3T g(x) appartient & Im (f) N (Im (f))+ = {0g}, il vient g(x) = 3 ce qui prouve bien

que ‘tout vecteur propre de f associé a une valeur propre non nulle est vecteur propre de g | (associé a la

valeur propre inverse). D’autre part, on a vu aux questions 2 et 5.1 que Ker(f) = (Im (f))~ = Ker(g) donc

’tout vecteur propre de f associé a la valeur propre 0 est vecteur propre de g associé a la valeur propre 0. |

f étant un endomorphisme symétrique, il existe d’apres le théoréme spectral (que l'on verra plus tard
dans I’année) une base orthonormée B = (v1,---,vn) de E formée de vecteurs propres de f. Comme ce sont

aussi des vecteurs propres de g, il existe des scalaires pq,-- -, un tels que Vk € [1;n], g(vk) = mxvk. Alors,

n n
pour deux vecteurs x et y de E qu'on écrit x = > xxvk et y = Y. yxvk, on a par linéarité de g et comme
k=1 k=1

B est une base orthonormée de E :

n

j=

n n n
> i) = 3 oy = (30 xivi
k=1 i=1

. ujij)') = (xlg(v))
j=1 1

(99ly) = 22 mixevs
i=1

Ainsi, ’g est aussi un endomorphisme symétrique de E. |

@ D’apres la question précédente il suffit de trouver une base de R3 formée de vecteurs propres de f pour que ce
soit aussi une base formée de vecteurs propres de g. A—AI3 n’est pas inversible si et seulement si f—Aid s n’est
pas un automorphisme si et seulement si det(A —Al3) = 0. Or, apres calculs, det(A —AlI3) = —A(A—3)(A—6)
donc les valeurs cherchées sont par exemple A1 =0, A\, = 3 et A3 = 6.

e Comme 2C; + C3 — 2Cy dans A, le vecteur wy = (—2,2,1) est propre pour la valeur propre A; = 0.

0o 2 2
e Comme A —3I3 = |2 —1 0| et qu'on a, dans cette matrice, C; + 2C, — 2C3 = 0, le vecteur
2 0 1
wy = (1,2, —2) est propre pour la valeur propre A, = 3.
-3 2 2
e Comme A—6l3=| 2 -4 0 et que, dans cette matrice, on a 2Cy + C2 +2C3 = 0, le vecteur
2 0o -2

w3 = (2,1,2) est propre pour la valeur propre Az = 6.

On aurait pu résoudre les trois systemes linéaires AX = 0, AX = 3X et AX = 6X pour trouver ces trois droites.

Ces trois vecteurs forment une famille libre (& vérifier) donc forment une base de R3. Or, ils ont pour norme



1 1
V144 +4 =3 donc B = (v1,v2,v3) est une base orthonormée de R3 si on pose vi = —wq = =(=2,2,1),

3 3
1 1 1 1
V) = —wp = 5(1,2, —2) et v; = —w3 = —(2,1,2). Par construction, la matrice de f dans la base B est
0 0 0 1 -2 1 2
D= |0 3 0] et, par la formule de changement de base, A = PDP~! avec P = - | 2 2 1
00 6 S\1 22

Comme P est la matrice de passage entre deux bases orthonormées, on a vu dans le cours que P~ = PT. On

a vu en 5.3 que v1 est un vecteur propre de g associé a la valeur propre 0, et que v, (resp. v3) est un vecteur

0 0 0
1 1
propre de g associé & la valeur propre 3 (resp. g) Ainsi, D’ = Matg(g) =10 1/3 0 ce qui donne,
0o 0 1/6

2
avec la formule de changement de base, B = PD’PT. Apres calculs, on adonc |[B=— 2 3 -2
0




