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1 (=⇒) Si p est une projection orthogonale, G = F⊥. Soit (x, y) ∈ E2 qu’on décompose x = x1+x2 et y = y1+y2

avec (x1, y1, x2, y2) ∈ F2 × G2, alors, comme p(x) = x1, p(y) = y2, p est un endomorphisme symétrique car

(p(x)|y) = (x1|y1 + y2) = (x1|y1) + (x1|y2) = (x1|y1) = (x1|y1) + (x2|y1) = (x1 + x2|y1) = (x|p(y)).

(⇐=) Si p est un endomorphisme symétrique, soit x ∈ F et y ∈ G, alors p(x) = x et p(y) = 0E donc

(x|y) = (p(x)|y) = (x|p(y)) = (x|0E) = 0. Ainsi, F ⊥ G et, avec les dimensions, on conclut que G = F⊥ donc

p est une projection orthogonale.

Par double implication, si p est un projecteur : p est orthogonal si et seulement si p est symétrique.

2 Si n = dim(E) et B = (u1, · · · , un) une base orthonormée de E, en notant x =
n∑

k=1

xkuk et y =
n∑

k=1

ykuk,

on a (x|y) =
n∑

k=1

xkyk. Comme les matrices respectives de x et y dans la base B sont X et Y telles que

XT = (x1 · · · xn) et YT = (y1 · · · yn), quitte à identifier un réel a avec la matrice (a) : (x|y) = XTY = YTX

par définition du produit matriciel.

3 Matrice et inégalité

3.1 Soit z ∈ F, d’après le cours, p(z) =
k∑

i=1

(z|ei)ei car (e1, · · · , ek) est une base orthonormée de H.

3.2 L’égalité ci-dessus s’écrit matriciellement M(p)Z =
k∑

i=1

[ET
i Z]Ei où ET

i Z est ici vu comme un scalaire. Si

on le voit plutôt comme une matrice de M1(R), cela s’écrit alors M(p)Z =
k∑

i=1

Ei[E
T
i Z]. Par associativité

du produit matriciel, on a donc M(p)Z =
k∑

i=1

EiE
T
i Z. Soit f l’endomorphisme de F canoniquement associé

à M(p) −
k∑

i=1

EiE
T
i . L’égalité précédente montre que, pour tout z ∈ E, f(z) = 0F, donc f = 0 et, au niveau

matriciel, on en déduit la relation M(p) =
k∑

i=1

EiE
T
i .

3.3 Soit z ∈ F, comme ||z||2 = ||z − p(z) + p(z)||2 = ||z − p(z)||2 + ||p(z)||2 d’après Pythagore puisque

p(z) ⊥ (z−p(z)) car p est un projecteur orthogonal, on a ||z||2 > ||p(z)||2 ce qui donne bien ||p(z)|| 6 ||z||.



4 Exemple

4.1 Soit f l’endomorphisme de R4 canoniquement associé à M. Comme M2 = M (petit calcul), f est

un projecteur de R4. Comme les deux premières colonnes de M ne sont pas colinéaires, et que l’on a

C3 + C1 = C2 + C4 = 0, il vient rang (M) = 2 donc dim(Ker(f)) = 2 par la formule du rang et les

relations sur les colonnes donnent Ker(f) = Vect(v1, v2) avec v1 = (1, 0, 1, 0) et v2 = (0, 1, 0, 1). De plus,

Im (f) = Vect(f(e1), f(e2)) car f(e3) = −f(e1) et f(e4) = −f(e2). Posons v3 = (1, 0,−1, 0) et v4 = (0, 1, 0,−1)

de sorte que Im (f) = Vect(v3, v4). On sait que R4 = Ker(f)⊕ Im (f) car f est un projecteur. Comm v1 ⊥ v3,

v1 ⊥ v4, v2 ⊥ v3 et v2 ⊥ v4, f est un projecteur orthogonal de R4.

4.2 D’après la question précédente, les vecteurs v1, v2, v3, v4 sont orthogonaux deux à deux et sont de norme

√
2, donc

(
1√
2
v1,

1√
2
v2

)
est une base orthonormée de Ker(f),

(
1√
2
v3,

1√
2
v4

)
en est une de Im (f).

5 Encadrement des valeurs propres

5.1 Par définition, λu = p(r(u)). Comme λ ̸= 0, u = p

(
1

λ
r(u)

)
donc u ∈ Im (p) = H. D’autre part,

p(r(u) − λu) = p(r(u)) − λp(u) = λ(u − p(u)) = 0F car p(u) = u puisque Im (p) = Ker(id F − p). Ainsi,

r(u)− λu ∈ Ker(p) = Im (p)⊥ = H⊥ car p est orthogonal. Par conséquent, u ∈ H et r(u)− λu ∈ H⊥.

5.2 D’après la question précédente, (u|r(u) − λu) = 0 donc (u|r(u)) = λ||u||2. Or, r étant un projecteur

orthogonal, c’est un endomorphisme symétrique d’après la question 1 et la relation λ||u2|| = ||r(u)||2

découle du calcul (u|r(u)) = (u|r2(u)) = (u|r(r(u))) = (r(u)|r(u)) = ||r(u)||2.

5.3 D’après la question 3.3, ||r(u)|| 6 ||u||. Comme ||u|| ̸= 0, on a donc λ =
||r(u)||2

||u||2
∈ [0; 1]. On en déduit

que toutes les valeurs propres de p ◦ r sont dans l’intervalle [0; 1].

6 Commutation

6.1 Par composition, p ◦ r est un endomorphisme de F et, p et r commutant et étant des projecteurs,

(p ◦ r)2 = p2 ◦ r2 = p ◦ r donc p ◦ r est aussi un projecteur de F.

De plus, pour des vecteurs x et y de F, (p(r(x))|y) = (r(x)|p(y)) = (x|r(p(y)) car p et r sont symétriques.

Comme r et p commutent, (p(r(x))|y) = (x|p(r(y)) et p ◦ r est donc aussi un endomorphisme symétrique.

Ainsi, d’après la question 1, p ◦ r est un projecteur orthogonal.

6.2 Si λ est une valeur propre du projecteur p◦r, il existe par définition un vecteur x de F tel que p◦r(x) = λx.

En composant par p ◦ r, on a donc λx = λ2x donc, comme x ̸= 0E, λ
2 = λ donc λ ∈ {0, 1}. Comme p ◦ r ̸= 0,

le sous-espace Im (p ◦ r) = Ker(p ◦ r − id F) contient un vecteur x non nul tel que p ◦ r(x) = 1.x donc 1 est

valeur propre de p ◦ r. Comme Im (p ◦ r) ⊂ Im (p) = H et que H est strictement inclus dans F par hypothèse,

Im (p ◦ r) est strictement inclus dans H ce qui montre que Ker(p ◦ r) (qui est un supplémentaire de Im (p ◦ r))

n’est pas réduit à {0F}. Soit donc y un vecteur non nul de Ker(p ◦ r), alors p ◦ r(y) = 0.y donc 0 est valeur

propre de p ◦ r. Par double inclusion, on a établi que les valeurs propres de p ◦ r sont 0 et 1.



6.3 Soit x ∈ Ker(p ◦ r), comme on a les relations p(r(x)) = 0F et r(x− r(x)) = r(x)− r2(x) = 0F, en écrivant

x = r(x) + (x − r(x)), il vient x ∈ Ker(p) + Ker(r). Réciproquement, soit x ∈ Ker(p) + Ker(r), on peut donc

écrire x = y+ z avec p(y) = 0F et r(z) = 0F d’où p(r(x)) = p(r(y)) + p(r(z)) = p(r(y)) = r(p(y)) = 0F car p

et r commutent donc x ∈ Ker(p ◦ r). Par double inclusion, Ker(p ◦ r) = Ker(p) + Ker(r).

Soit x ∈ Im (p ◦ r) et y ∈ F tel que p ◦ r(y) = p(r(y)) = x, on voit que x ∈ Im (p). Comme p et r commutent,

on a aussi x = r(p(y)) ∈ Im (r) donc x ∈ Im (p) ∩ Im (r). Réciproquement, soit x ∈ Im (p) ∩ Im (r), alors

x ∈ Ker(p− id F)∩ Ker(r− id F), d’où p(x) = x et r(x) = x et p ◦ r(x) = p(r(x)) = p(x) = x ce qui montre que

x ∈ Ker(p ◦ r− id F) = Im (p ◦ r). Par double inclusion toujours, Im (p ◦ r) = Im (p) ∩ Im (r).

7 Condition nécessaire et suffisante de commutation

7.1 Comme r2 = r, on a Q2 = Q ce qui, en calculant par blocs, donne

(
A B

C D

)
=

(
A2 + BC AB+ BD

CA+DC CB+D2

)
dont on déduit les quatre relations A2 + BC = A, AB+ BD = B, CA+DC = C et CB+D2 = D. De plus, si

Q = (qi,j)16i,j6m ∈ Mm(R) est la matrice de p ◦ r dans une base orthonormale B = (e1, · · · , em) de F, on

sait d’après le cours que qi,j = (p ◦ r(ej)|ei). Comme p ◦ r est symétrique car c’est un projecteur orthogonal,

on a qi,j = (ej|p ◦ r(ei)) = (p ◦ r(ei)|ej) = qj,i donc Q est symétrique. Comme QT =

(
AT CT

BT DT

)
et que

Q = QT , en identifiant, on a AT = A, CT = B et DT = D.

On a donc bien A2 + BC = A, AB+ BD = B, CB+D2 = D, AT = A, BT = C et DT = D.

7.2 En calculant les produits par blocs, on a PQ =

(
A B

0 0

)
et QP =

(
A 0

C 0

)
.

(i)=⇒(ii) : si λ est valeur propre de A, il existe un vecteur colonne X ∈ Mk,1(R) non nul tel que AX = λX.

En posant Y =

(
X

0

)
∈ Mm,1(R), on a Y ̸= 0 et PQY =

(
AX

0

)
=

(
λX

0

)
= λ

(
X

0

)
= λY donc λ est valeur

propre de PQ, donc de p ◦ r, ce qui impose λ ∈ {0, 1} d’après 6.2. Comme admis dans l’énoncé, A2 = A par

le théorème spectral. D’après la question précédente, A2 + BC = A+ BC = A donc BC = 0 d’où CTC = 0.

(ii)=⇒(iii) : en posant C = (ci,j) 16i6m−k

16j6k

∈ Mm−k,k(R) et comme CTC = 0, 0 = Tr (CTC) =
∑

16i6m−k

16j6k

c2i,j.

Puisque qu’une somme de quantités réelles positives nulle implique que tous ces termes sont nuls, C = 0.

(iii)=⇒(iv) : si C = 0, B = CT = 0 donc PQ = QP =

(
A 0

0 0

)
et on a p ◦ r = r ◦ p donc p et r commutent.

(iv)=⇒(i) : si p ◦ r = r ◦ p = 0, la seule valeur propre de p ◦ r = 0, sinon, la question 6.2 montre que les

valeurs propres de p ◦ r valent 0 et 1. En général, les valeurs propres de p ◦ r valent 0 et 1.

Par transitivité de l’implication, on a l’équivalence des quatre conditions de l’énoncé.



� �
PARTIE 2 : PSEUDO-SOLUTIONS D’UN SYSTÈME� �

1 Soit w le projeté orthogonal de v sur Im (f) et x0 un vecteur de E tel que f(x0) = w. Pour tout vecteur x de E,

on a ||f(x)− v||2 = ||(f(x)− f(x0))+(f(x0)− v)||2. Or f(x)− f(x0) = f(x−x0) ∈ Im (f) et, par définition d’une

projection orthogonale, f(x0) − v = w − v ∈ (Im (f))⊥ donc, d’après le théorème de Pythagore, il vient

||f(x)−v||2 = ||f(x)−f(x0)||2+||f(x0)−v||2 > ||f(x0)−v||2 d’où ||f(x)−v|| > ||f(x0)−v||. Ainsi, ||f(x0)−v|| est

un minorant de {||f(x)−v|| | x ∈ E}, mais ce réel faisant partie de l’ensemble qu’il minore, en est le minimum,

d’où l’existence (mais pas l’unicité) d’un vecteur x0 ∈ E tel que ||f(x0)− v|| = Min
x∈E

||f(x)− v||.

2 Soit x1 une autre pseudo-solution de (∗), alors ||f(x1)− v|| = Min
x∈E

||f(x)− v|| = d(v, Im (f)) et on sait d’après

le cours que ceci implique f(x1) = w (le projeté orthogonal de v sur Im (f)). Si f injective, f(x0) = f(x1) = w

implique x0 = x1. Par conséquent, si f est injective, il existe une unique pseudo-solution de (∗).

3 D’après la question précédente, si x0 est une pseudo-solution de (∗), f(x0) est le projeté orthogonal de v sur

l’image de f. f(x0)− v est donc orthogonal à Im (f) et, si x ∈ E, on a (f(x)|f(x0)− v) = 0.

Réciproquement, si ∀x ∈ E, (f(x)|f(x0)− v) = 0, comme on a vu plus haut que (f(x0)− f(x)|f(x0)− v) = 0,

il vient ||f(x0)− v||2 = (f(x0)− f(x) + f(x)− v|f(x0)− v) = (f(x)− v|f(x0)− v) 6 ||f(x)− v|| . ||f(x0)− v|| par

l’inégalité de Cauchy-Schwarz. On traite maintenant deux cas :

• si f(x0) = v, alors x0 est bien pseudo-solution de (∗) d’après ce qui précède.

• si f(x0) ̸= v, en divisant l’inégalité précédente par ||f(x0)− v|| > 0, on a ||f(x0)− v|| 6 ||f(x)− v|| ce

qui prouve, avec la question 1 de cette partie, que x0 est pseudo-solution de (∗).

Par double implication, x0 est pseudo-solution de (E) ⇐⇒ (∀x ∈ E, (f(x)|f(x0)− v) = 0).

4 L’équation vectorielle de la question précédente s’écrit matriciellement (AX)T (AX0−V) = 0 pour tout vecteur

colonne ayant dim(E) lignes, soit encore XTATAX0 = XTATV. On peut transposer, ce qui montre que,

pour tout X, (VTA − XT
0A

TA)X = 0. Mais comme ceci est vrai pour tout X, on sait d’après le cours que

VTA− XT
0A

TA = 0, donc que ATAX0 = ATV. Réciproquement, si ATAX0 = ATV, on multiplie à gauche par

XT (avec X quelconque) pour obtenir (f(x)|f(x0) − v) = 0) en revenant aux vecteurs, ce qui entrâıne que x0

est pseudo-solution de (∗) d’après la question 3 de cette partie.

Par double implication, x0 est pseudo-solution de l’équation (E) si, et seulement si, ATAX0 = ATV.

5 En notant X0 =

 x

y

z

, comme ATA =

 3 0 −3

0 6 0

−3 0 3

, l’équation ATAX0 = ATV s’écrit

{
3x− 3z = 0

6y = 3

−3x+ 3z = 0

donc les pseudo-solutions de (∗) sont les vecteurs
(
x,

1

2
, x

)
où x ∈ R.



6 Application

6.1 En posant f(λ, µ) = λa + µb, le problème est de minimiser ||f(λ, µ) − c||2, c’est-à-dire de déterminer

les pseudo-solutions de (∗) : f(λ, µ) = c car f est linéaire et la fonction racine carrée est strictement

croissante. Plus précisément, par rapport aux notations précédentes, c’est le problème de la recherche des

pseudo-solutions avec v = c et la matrice de f dans les bases canoniques est A =

 a1 b1
...

...
an bn

.

6.2 D’après le théorème du rang, f est injective si, et seulement si, elle est de rang 2, ce qui se traduit plus

simplement ici par f est injective si et seulement si a et b ne sont pas colinéaires.

6.3 On suppose donc a et b non colinéaires. Après calculs, ATA =

(
||a||2 (a|b)
(a|b) ||b||2

)
donc l’équation matricielle

de la question 4 devient, si X0 =

(
λ

µ

)
:

(
||a||2 (a|b)
(a|b) ||b||2

)
×
(

λ

µ

)
=

(
a1 · · · an

b1 · · · bn

)
×

 c1
...
cn

 =

(
(a|c)
(b|c)

)
.

Ce système est de Cramer car det(ATA) = ||a||2||b||2 − (a|b)2 > 0 d’après l’inégalité de Cauchy-

Schwarz et son cas d’égalité : en effet, si on avait det(ATA) = 0, on aurait |(a|b)| = ||a|| ||b|| ce

qui conduit à (a, b) liée, ce qui contredit l’hypothèse. Après des calculs de Cramer, on trouve une

unique pseudo-solution (λ, µ) de (∗) avec λ =
||b||2(a|c)− (a|b)(b|c)
||a||2||b||2 − (a|b)2

et µ =
||a||2(b|c)− (a|b)(a|c)
||a||2||b||2 − (a|b)2

.

� �
PARTIE 3 : PSEUDO-INVERSE D’UNE

APPLICATION LINÉAIRE� �
1 Construction

1.1 Soit z le projeté orthogonal de y sur Im (f), alors par définition d’une projection orthogonale, on a

y′ = y− z ∈ (Im (f))⊥. Comme z ∈ Im (f), il existe un vecteur u ∈ E tel que f(u) = z. Comme le noyau de f

et son orthogonal sont supplémentaires dans E, il existe (x′, x) ∈ Ker(f)× (Ker(f))⊥ tel que u = x+ x′. Par

linéarité de f, f(u) = f(x′) + f(x) = f(x), de sorte que y = f(x) + y′ avec (x, y′) ∈ (Ker(f))⊥ × (Im (f))⊥.

1.2 Soit (x1, y
′
1) ∈ (Ker(f))⊥×(Im (f))⊥ et (x2, y

′
2) ∈ (Ker(f))⊥×(Im (f))⊥ tels que y = f(x1)+y′

1 = f(x2)+y′
2.

En soustrayant, on obtient f(x1) + y′
1 = f(x2) + y′

2, donc f(x1 − x2) = y′
2 − y′

1 ∈ (Im (f))⊥ ∩ Im (f) = {0F}.
Ainsi, f(x1 − x2) = y′

1 − y′
2 = 0F donc y′

1 = y′
2 et x1 − x2 ∈ Ker(f) × (Ker(f))⊥ = {0E} donc x1 − x2 = 0E.

Par conséquent, (x1, y
′
1) = (x2, y

′
2) et il y a unicité du couple (x, y′) de la question précédente.

1.3 Soit x et y deux vecteurs de F et a et b deux réels, par construction de g, on a x = f(g(x)) + x′ et

y = f(g(y)) + y′ avec (x′, y′) ∈ ((Im (f))⊥)2. Par linéarité de f, ax + by = f(ag(x) + bg(y)) + ax′ + by′.

Comme ag(x) + bg(y) ∈ (Ker(f))⊥ et ax′ + by′ ∈ (Im (f))⊥ (ce sont des sous-espaces), par définition de g,

on a la relation g(ax+ by) = ag(x) + bg(y) qui montre bien que g est linéaire .



2 Soit x ∈ Ker(g), comme g(x) = 0E, il vient x = f(g(x)) + x′ = x′ ∈ (Im (f))⊥. Ainsi, Ker(g) ⊂ (Im (f))⊥.

Soit x ∈ (Im (f))⊥, alors x = f(g(x)) + x′ avec x′ ∈ (Im (f))⊥, mais on a également x = f(0E) + x avec

(0E, x) ∈ (Ker(f))⊥ × (Im (f))⊥. L’unicité de cette écriture impose alors g(x) = 0E donc x ∈ Ker(g) et on a

l’autre inclusion (Im (f))⊥ ⊂ Ker(g). Ainsi, par double inclusion, Ker(g) = (Im (f))⊥. .

Par définition de g, on a Im (g) ⊂ (Ker(f))⊥. D’autre part, par la formule du rang appliquée à g puis à f

et comme Im (f) et (Im (f))⊥ sont supplémentaires dans F, on a dim(Im (g)) = dim(F) − dim(Ker(g)) donc

dim(Im (g)) = dim(F) − dim((Im (f))⊥) = dim(F) − (dim(F) − dim(Im (f))) ce qui conduit à la relation

dim(Im (g)) = dim(Im (f)) = dim(E) − dim(Ker(f)) = dim((Ker(f))⊥), d’où, par inclusion et égalité des

dimensions, cela donne bien Im (g) = (Ker(f))⊥.

3 Projecteurs orthogonaux

3.1 Par construction de g, pour tout vecteur x ∈ E, on a f(x) = f(g(f(x))) + y′, avec y′ ∈ (Im (f))⊥. Comme

on a clairement y′ = f(x)− f(g(f(x))) = f(x− g(f(x))) ∈ Im (f), il vient y′ ∈ Im (f) ∩ (Im (f))⊥ donc y′ = 0F

et f(x) = f(g(f(x))). Ainsi, f = f ◦ g ◦ f d’où (g ◦ f)2 = g ◦ (f ◦ g ◦ f) = g ◦ f : g ◦ f un projecteur de E.

De plus, on a toujours l’inclusion Ker(f) ⊂ Ker(g ◦ f). Pour x ∈ Ker(g ◦ f), comme g(f(x)) = 0E, on a

f(x) ∈ Ker(g) = (Im (f))⊥. Mais comme on a aussi f(x) ∈ Im (f), on a donc f(x) ∈ Im (f) ∩ (Im (f))⊥ = {0F}

donc f(x) = 0F et x ∈ Ker(f). Par double inclusion, Ker(g ◦ f) = Ker(f).

De même, on a toujours Im (g ◦ f) ⊂ Im (g) = (Ker(f))⊥. La formule du rang appliquée à g ◦ f et l’égalité

ci-dessus montrent que dim(Im (g◦f)) = dim(E)−dim(Ker(g◦f)) = dim(E)−dim(Ker(f)) = dim((Ker(f))⊥).

Par inclusion et égalité des dimensions, Im (g ◦ f) = (Ker(f))⊥.

On peut donc conclure que g ◦ f est le projecteur orthogonal de E sur (Ker(f))⊥.

3.2 Pour tout y ∈ F, on a par définition f(g(y)) = f(g(f(g(y)))) + y′, avec y′ ∈ (Im (f))⊥. Le même

raisonnement que ci-dessus montre que ce vecteur y′ est nul, d’où (f◦g)2 = f◦g : f◦g est donc un projecteur

de F.

De plus, (Im (f))⊥ = Ker(g) ⊂ Ker(f◦g) et Im (f◦g) ⊂ Im (f). Un raisonnement analogue à celui qui précède

montre que ces inclusions sont des égalités et que f ◦ g est le projecteur orthogonal de F sur Im (f).

4 Soit B la matrice de g dans les bases canoniques de R2 et R3 respectivement. La matrice A est de rang 2

donc f est surjective, ainsi Im (f) = R2. D’après la question 3.2 de cette partie, on a donc f ◦ g = id R2 d’où

AB = I2. Si on pose B =

a b

c d

e f

, la relation AB = I2 montre que B =

 a b

1− a −b

a− 1 b+ 1

. Le noyau de f

étant clairement la droite (par la formule du rang) engendrée par le vecteur (1,−1, 1) (car C1 −C2 +C3 = 0

dans A) et comme Im (g) = Ker(f)⊥ d’après la question 2, les vecteurs (a, 1− a, a− 1) et (b,−b, b+ 1) sont

orthogonaux à (1,−1, 1), ce qui impose a =
2

3
et b = −1

3
, c’est-à-dire B =

1

3

 2 −1

1 1

−1 2

.



5 Cas symétrique

5.1 Soit deux vecteurs x ∈ Ker(f) et y ∈ Im (f), soit alors z ∈ E tel que y = f(z), comme f est symétrique,

on a la relation (x|y) = (x|f(z)) = (f(x)|z) = (0E|z) = 0 donc Ker(f) ⊂ (Im (f))⊥. Par la formule du

rang, dim((Im (f))⊥) = dim(E) − dim(Im (f)) = dim(Ker(f)). Par inclusion et égalité des dimensions,

Ker(f) = (Im (f))⊥. Ainsi, E étant de dimension finie, Im (f) = ((Im (f))⊥)⊥ = (Ker(f))⊥.

5.2 Soit x un vecteur propre de f et λ la valeur propre associée, supposée non nulle, de sorte que, par

définition, on a f(x) = λx. En particulier, x = f

(
1

λ
x

)
∈ Im (f) = Ker(f ◦ g − id E) (d’après 3.2) d’où

f(g(x)) = x = f

(
1

λ
x

)
et f

(
1

λ
x − g(x)

)
= 0E. Ainsi,

1

λ
x − g(x) ∈ Ker(f) = (Im (f))⊥. D’autre part,

g(x) ∈ Im (g) = (Ker(f))⊥ = Im (f) (d’après les questions 2 et 5.1) et x ∈ Im (f) donc
1

λ
x − g(x) ∈ Im (f).

Comme le vecteur
1

λ
x − g(x) appartient à Im (f) ∩ (Im (f))⊥ = {0E}, il vient g(x) =

1

λ
x ce qui prouve bien

que tout vecteur propre de f associé à une valeur propre non nulle est vecteur propre de g (associé à la

valeur propre inverse). D’autre part, on a vu aux questions 2 et 5.1 que Ker(f) = (Im (f))⊥ = Ker(g) donc

tout vecteur propre de f associé à la valeur propre 0 est vecteur propre de g associé à la valeur propre 0.

5.3 f étant un endomorphisme symétrique, il existe d’après le théorème spectral (que l’on verra plus tard

dans l’année) une base orthonormée B = (v1, · · · , vn) de E formée de vecteurs propres de f. Comme ce sont

aussi des vecteurs propres de g, il existe des scalaires µ1, · · · , µn tels que ∀k ∈ [[1;n]], g(vk) = µkvk. Alors,

pour deux vecteurs x et y de E qu’on écrit x =
n∑

k=1

xkvk et y =
n∑

k=1

ykvk, on a par linéarité de g et comme

B est une base orthonormée de E :

(g(x)|y) =
( n∑

i=1

µixivi

∣∣∣ n∑
j=1

yjvj

)
=

n∑
k=1

µkxkyk =
( n∑

i=1

xivi

∣∣∣ n∑
j=1

µjyjvj

)
= (x|g(y))

Ainsi, g est aussi un endomorphisme symétrique de E.

6 D’après la question précédente il suffit de trouver une base de R3 formée de vecteurs propres de f pour que ce

soit aussi une base formée de vecteurs propres de g. A−λI3 n’est pas inversible si et seulement si f−λid R3 n’est

pas un automorphisme si et seulement si det(A−λI3) = 0. Or, après calculs, det(A−λI3) = −λ(λ− 3)(λ− 6)

donc les valeurs cherchées sont par exemple λ1 = 0, λ2 = 3 et λ3 = 6.

• Comme 2C2 + C3 − 2C1 dans A, le vecteur w1 = (−2, 2, 1) est propre pour la valeur propre λ1 = 0.

• Comme A − 3I3 =

 0 2 2

2 −1 0

2 0 1

 et qu’on a, dans cette matrice, C1 + 2C2 − 2C3 = 0, le vecteur

w2 = (1, 2,−2) est propre pour la valeur propre λ2 = 3.

• Comme A− 6I3 =

−3 2 2

2 −4 0

2 0 −2

 et que, dans cette matrice, on a 2C1+C2+ 2C3 = 0, le vecteur

w3 = (2, 1, 2) est propre pour la valeur propre λ3 = 6.

On aurait pu résoudre les trois systèmes linéaires AX = 0, AX = 3X et AX = 6X pour trouver ces trois droites.

Ces trois vecteurs forment une famille libre (à vérifier) donc forment une base de R3. Or, ils ont pour norme



√
1+ 4+ 4 = 3 donc B = (v1, v2, v3) est une base orthonormée de R3 si on pose v1 =

1

3
w1 =

1

3
(−2, 2, 1),

v2 =
1

3
w2 =

1

3
(1, 2,−2) et v3 =

1

3
w3 =

1

3
(2, 1, 2). Par construction, la matrice de f dans la base B est

D =

 0 0 0

0 3 0

0 0 6

 et, par la formule de changement de base, A = PDP−1 avec P =
1

3

−2 1 2

2 2 1

1 −2 2

.

Comme P est la matrice de passage entre deux bases orthonormées, on a vu dans le cours que P−1 = PT . On

a vu en 5.3 que v1 est un vecteur propre de g associé à la valeur propre 0, et que v2 (resp. v3) est un vecteur

propre de g associé à la valeur propre
1

3
(resp.

1

6
). Ainsi, D′ = MatB(g) =

 0 0 0

0 1/3 0

0 0 1/6

 ce qui donne,

avec la formule de changement de base, B = PD′PT . Après calculs, on a donc B =
1

18

 2 2 0

2 3 −2

0 −2 4

.


