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15.1� �a. Supposons que le résultat est vrai pour une norme N1 et soit une autre norme N2. Comme on est en

dimension finie, toutes les normes sont équivalentes donc il existe des constantes α > 0 et β > 0 telles que

αN1 6 N2 6 βN1. Par hypothèse, lim
k→+∞

N1(A
k)

1
k = ρ(A). Or, lim

k→+∞
α

1
k = lim

k→+∞
β

1
k = 1 donc, par

le théorème des gendarmes, comme ∀k ∈ N, α
1
kN1(A

k)
1
k 6 N2(A

k)
1
k 6 β

1
kN1(A

k)
1
k , on en déduit que

lim
k→+∞

N2(A
k)

1
k = ρ(A) : le résultat est aussi vrai pour N2.

b. Si B ∈ Mn(C) est semblable à A ∈ Mn(C), il existe P ∈ GLn(C) telle que A = PBP−1. Soit N une norme

sur E. Comme le produit matriciel est bilinéaire il existe M > 0 telle que ∀(U, V) ∈ E2, N(UV) 6 MN(U)N(V)

d’après le cours car E est de dimension finie. Ou on a vu en cours que ||UV||∞ 6 n||U||∞||V||∞ et il existe

des constantes α′ > 0 et β′ > 0 telles que α′N 6 ||.||∞ 6 β′N, on trouve facilement que pour toutes matrices

U et V dans Mn(C), on a N(UV) 6 n(β′)2

α′ N(U)N(V) et M =
n(β′)2

α′ convient.

Or, Ak = PBkP−1 et Bk = P−1AkP, donc N(Ak) 6 M2N(P)N(Bk)N(P−1) et N(Bk) 6 M2N(P−1)N(Ak)N(P).

On passe ces deux inégalités à la puissance 1

k
> 0 et 1

M2N(P)N(P−1)
N(Ak) 6 N(Bk) 6 M2N(P−1)N(Ak)N(P)

et, par encadrement, on obtient lim
k→+∞

N(Bk)
1
k = ρ(A) car, par exemple, lim

k→+∞

(
M2N(P−1)N(P)

) 1
k = 1.

c. On écrit T = In+N avec N = T− In nilpotente d’ordre inférieur ou égal à n (classique avec le théorème de

Cayley-Hamilton car χN = Xn) et, comme N et In commutent, on a Tk =
k∑

i=0

(
k

i

)
Ni =

n−1∑
i=0

(
k

i

)
Ni pour

k > n. On écrit l’inégalité triangulaire et 1 6 ||Tk||∞ =
n−1∑
i=0

(
k

i

)
||Ni||∞. Le terme de droite est polynomial

en k de degré inférieur ou égal à n− 1 donc quand on élève tout à la puissance 1

k
, la limite vaut 1 à gauche

et à droite (par croissances comparées) et on conclut par encadrement que lim
k→+∞

||Tk||
1
k∞ = 1.

d. Comme A0 = In = B0, ||A0||∞ 6 ||B0||∞ et, par définition de B, ||A1||∞ = ||A||∞ 6 ||B||∞ = ||B1||∞. Si

on suppose, pour un entier k ∈ N∗, que ||Ak||∞ 6 ||Bk||∞, alors ∀(i, j) ∈ [[1;n]]2, [Ak+1]i,j =
n∑

ℓ=1

ai,ℓ[A
k]ℓ,j

donc, par inégalité triangulaire,
∣∣[Ak+1]i,j

∣∣ 6
n∑

ℓ=1

|ai,ℓ|
∣∣[Ak]ℓ,j

∣∣ 6
n∑

ℓ=1

bi,ℓ
∣∣[Bk]ℓ,j

∣∣ par définition de B et

par hypothèse de récurrence. Ainsi, comme les coefficients de Bk sont positifs (clair par récurrence et par

définition du produit matriciel), on a
∣∣[Ak+1]i,j

∣∣ 6 n∑
ℓ=1

bi,ℓ[B
k]ℓ,j = [Bk+1]i,j donc ||Ak+1||∞ 6 ||Bk+1||∞.

Par principe de récurrence, on a bien établi que ∀k ∈ N, ||Ak||∞ 6 ||Bk||∞.

Traitons maintenant deux cas :

ρ(A) = 0 , alors il n’y a aucune valeur propre non nulle de A donc Sp(A) = {0} et χA = Xn donc An = 0

par Cayley-Hamilton ce qui prouve que ∀k > n,Ak = 0 donc lim
k→+∞

||Ak||
1
k∞ = 0 = ρ(A).

ρ(A) > 0 , la matrice A

ρ(A)
a une valeur propre de module 1 et ensuite uniquement des valeurs propres

de modules inférieurs ou égaux à 1 par construction ; elle est trigonalisable car χA est scindé

sur C donc est semblable à une matrice triangulaire supérieure T ′ dont les coefficients sont en

module inférieur à 1 sur la diagonale. En posant m = Max
16i<j6n

|ti,j| et T la matrice triangulaire



supérieure ayant des 1 sur la diagonale et des m au dessus, ∀(i, j) ∈ [[1;n]]2, |t′i,j| 6 ti,j donc,

avec ce qui précède, on a ∀k ∈ N, ||T ′k||∞ 6 ||Tk||∞. Or la question précédente montre que

lim
k→+∞

||Tk||
1
k∞ = 1. Mais comme T ′ a un terme qui vaut 1 sur la diagonale, T ′k l’a également

donc 1 6 ||T ′k||∞ 6 ||Tk||∞ d’où 1 6 ||T ′k||
1
k∞ 6 ||Tk||

1
k∞. Par encadrement, lim

k→+∞
||T ′k||

1
k∞ = 1.

Comme A

ρ(A)
et T ′ sont semblables, d’après la question b., on a donc lim

k→+∞

∣∣∣∣∣∣( A

ρ(A)

)k∣∣∣∣∣∣ 1k
∞

= 1

donc, par homogénéité de la norme, lim
k→+∞

||Ak||
1
k∞ = ρ(A).

Dans tous les cas, on a lim
k→+∞

||Ak||
1
k∞ = ρ(A) donc, d’après la question a., puisque ça marche pour la norme

infinie, pour toute norme || . || de E, on a lim
k→+∞

||Ak||
1
k = ρ(A).� �

15.2� �a. On sait d’après le cours que || . ||∞ est une norme sur Mn(R) : il faut le refaire ici et montrer la séparation,

l’homogénéité et l’inégalité triangulaire !

Soit (M,X) ∈ Mn(R)×Mn,1(R), alors ∀i ∈ [[1;n]], [MX]i =
n∑

k=1

mi,kxk. Ainsi, par inégalité triangulaire, on

a |[MX]i| 6
n∑

k=1

|mi,k||xk| 6
n∑

k=1

||M||∞||X||∞ = n||M||∞||X||∞. On en déduit que ||MX||∞ 6 n||M||∞||X||∞.

b. Par hypothèse, il existe m > 0 tel que ∀k ∈ N, ||Ak||∞ 6 m. Soit aussi X ∈ Ker(A−In)∩Im (A−In), on a

AX = X et ∃Y ∈ Mn,1(R), X = AY−Y. On multiplie cette dernière égalité par Ak donc AkX = Ak+1Y−AkY.

Or ∀k ∈ N, AkX = X par une récurrence simple et car A0X = InX = X, donc en sommant ces relations, on

obtient BpX = 1

p

p−1∑
k=0

AkX = X = 1

p

p−1∑
k=0

(Ak+1Y − AkY) = ApY − Y

p
.

D’après a. et par inégalité triangulaire, ||X||∞ =
∣∣∣∣∣∣ApY − Y

p

∣∣∣∣∣∣
∞

6 mn+ 1

p
||Y||∞. Comme lim

p→+∞
mn+ 1

p
= 0,

on a ||X||∞ = 0 par encadrement donc X = 0. Les deux sous-espaces Ker(A− In) et Im (A− In) sont donc en
somme directe donc supplémentaires car, avec la formule du rang, dim(Ker(A− In))+dim(Im (A− In)) = n.

c. Notons P la matrice dans la base canonique de la projection sur Ker(A− In) parallèlement à Im (A− In).

La première colonne de Bp est constituée des coordonnées (dans la base canonique (E1, · · · , En)) de BpE1.

En décomposant E1 = X1 +X2 avec X1 ∈ Ker(A− In) et X2 ∈ Im(A− In) donc AX1 = X1 et ∃X3 ∈ Mn,1(R)

tel que AX3 − X3 = X2, alors BpE1 = BpX1 + BpX2. Comme avant, BpX1 = X1 car ∀k ∈ N, AkX1 = X1. De

plus, BpX2 = 1

p

p−1∑
k=0

(Ak+1X3−AkX3) =
ApX3 − X3

p
par télescopage donc ||BpX2||∞ 6 nm+ 1

p
||X3||∞ ce qui

donne lim
p→+∞

BpX2 = 0 par encadrement comme ci-dessus.

Comme PX = X1 par construction, on a lim
p→+∞

BpE1 = PE1. On fait bien sûr de même pour les autres

colonnes, ce qui montre que les n2 coordonnées (les n2 cases) de la suite (Bp)p>0 convergent vers celles de
P. Comme on est en dimension finie, ceci assure que lim

p→+∞
Bp = P.� �

15.3� �a. Comme a et b ont été choisis strictement positifs, la suite (un)n>1 est bien définie et strictement

positive car la fonction racine est bien définie et strictement positive sur R∗
+. Par construction, elle est aussi

strictement croissante car la fonction
√

est strictement croissante sur R∗
+ (par exemple a +

√
b > a donc

u2 > u1 et a+
√

b+
√
a > a+

√
b donc u3 > u2).

Si a = b, notons (vn)n>1 la suite associée, alors v1 =
√
a et ∀n > 1, vn+1 =

√
a+ vn = fa(vn). La

fonction fa : R+ → R+ est dérivable, strictement croissante et son unique point fixe est ℓa > 0 tel que



ℓa =
√
a+ ℓa =⇒ ℓ2a − ℓa − a = 0. On trouve classiquement ℓa = 1+

√
1+ 4a

2
(car 1−

√
1+ 4a

2
< 0).

Comme v1 =
√
a <

√
1+ 4a

4
<

1+
√
1+ 4a

2
= ℓa, on a 0 < v1 < ℓa. Soit n ∈ N∗ tel que 0 < vn < ℓa, on

applique fa strictement croissante à cette inégalité et on a 0 < fa(0) < fa(vn) = vn+1 < fa(ℓa) = ℓa. Par

principe de récurrence, on a donc ∀n > 1, 0 < vn < ℓa. La suite (vn)n>1 est donc croissante et majorée par

ℓa donc elle converge vers un réel ℓ′a 6 ℓa. Mais en passant à la limite dans vn+1 = fa(vn), comme fa est

continue, on a ℓ′a = fa(ℓ
′
a) ce qui montre que ℓ′a = ℓa d’après ce qui précède. Par conséquent, lim

n→+∞
vn = ℓa.

Si b < a (le cas b > a est similaire), on pose, pour tout entier n > 1, un =

√
a+

√
b+

√
a+
√
b+ ... et

vn =

√
a+

√
a+

√
a+
√
a+ .... Il est clair que ∀n > 1, un 6 vn. D’après ce qui précède, ∀n ∈ N∗, un 6 ℓa

donc (un)n∈N est croissante et majorée donc elle converge (vers ℓ) par le théorème de la limite monotone.

b. Par construction, ∀n > 1, un+2 =
√

a+
√
b+ un. On passe à la limite dans cette relation (elles

existent). Comme
√

est une fonction continue, on a donc ℓ =
√

a+
√
b+ ℓ ce qui donne en élevant au

carré la relation ℓ2 = a +
√
b+ ℓ puis ℓ2 − a =

√
b+ ℓ donc (ℓ2 − a)2 = b + ℓ. En développant, on trouve

ℓ4 − 2aℓ2 − ℓ+ a2 − b = 0. Ainsi, le polynôme P = X4 − 2aX2 − X+ a2 − b admet ℓ comme racine.� �
15.4� �a. Soit h : [0; 1] → R définie par h(x) = f(x) − g(x). Alors h > 0 sur [0; 1] par hypothèse. Comme f et g

sont continues, h l’est aussi sur le segment [0; 1] donc elle est bornée et atteint ses bornes. Ainsi, il existe

a ∈ [0; 1] tel que h(a) = Min
x∈[0;1]

h(x) = α > 0.

Initialisation : pour n = 0, ∀x ∈ [0; 1], f0(x)− g0(x) = id [0;1](x)− id [0;1](x) = x− x > 0.α. Pour n = 1, par

construction de α, ∀z ∈ [0; 1], f(z)− g(z) = h(z) > α = 1.α (1).

Hérédité : soit n ∈ N∗ tel que ∀y ∈ [0; 1], fn(y)− gn(y) > nα (2).

Soit x ∈ [0; 1], fn+1(x) − gn+1(x) = fn+1(x) − fn(g(x)) + fn(g(x)) − gn+1(x) qu’on réécrit sous la forme

fn+1(x)−gn+1(x) = (f(fn(x))−g(fn(x)))+(fn(g(x))−gn(g(x))) car comme f et g commutent, fn◦g = g◦fn.

En prenant z = gn(x) ∈ [0; 1] dans (1) et y = g(x) dans (2), fn+1(x)− gn+1(x) > α+ nα = (n+ 1)α.

Par principe de récurrence, on a donc ∀n ∈ N, ∀x ∈ [0; 1], fn(x)− gn(x) > nα.

Puisque [0; 1] est stable par f et g, par récurrence, on a ∀n ∈ N, ∀x ∈ [0; 1], 0 6 fn(x) 6 1 et 0 6 gn(x) 6 1.

Dès que nα > 1, comme ∀x ∈ [0; 1], fn(x)− gn(x) 6 1− 0 = 1, fn(x)− gn(x) > nα est impossible.

b. Raisonnons par l’absurde. Si on avait ∀c ∈ [0; 1], f(c) ̸= g(c), alors la fonction h = f− g ne s’annulerait

pas sur [0; 1]. Or cette fonction est continue donc elle garderait un signe constant sur [0; 1] par le théorème

des valeurs intermédiaires. Traitons deux cas :

• Soit h = f− g > 0 sur [0; 1], alors on a vu la contradiction à la question précédente.

• Soit h = f − g < 0, en posant α = Max
x∈[0;1]

(h(x)) < 0, on a ∀n ∈ N, ∀x ∈ [0; 1], fn(x) − gn(x) 6 nα ce qui

devient absurde dès que nα < −1 car ∀x ∈ [0; 1], fn(x)− gn(x) > 0− 1 = −1 comme avant.

Dans tous les cas, on a une impossibilité donc h s’annule au moins une fois sur [0; 1] : ∃c ∈ [0; 1], f(c) = g(c).� �
15.5� �a. Une norme sur un K-espace vectoriel est une application N : E→ R+ telle que :

• ∀λ ∈ K, ∀x ∈ E, N(λx) = |λ|N(x) (homogénéité).

• ∀x ∈ E, N(x) = 0⇐⇒ x = 0E (séparation).

• ∀(x, y) ∈ E2, N(x+ y) 6 N(x) +N(y) (inégalité triangulaire).



b. Les trois applications N0, N1, N2 sont bien définies car, puisque les fonctions f de E sont de classe C2 sur

[0; 1], les fonctions f, f′, f′′ sont continues sur le segment [0; 1] donc les intégrales sont bien définies.

Les trois applications N0, N1, N2 vérifient l’homogénéité par linéarité de la dérivation, de l’intégrale et par

homogénéité de la valeur absolue sur R : il suffit de l’écrire !

Les trois applications N0, N1, N2 vérifient l’inégalité triangulaire par linéarité de la dérivation, de l’intégrale

et parce que la valeur absolue vérifie elle-même l’inégalité triangulaire : il suffit de l’écrire !

N0 vérifie la séparation parce que si f ∈ E et N0(f) = 0, la fonction continue et positive |f| a une intégrale

nulle sur [0; 1] donc elle y est nulle ce qui donne f = 0.

N1 vérifie la séparation parce que si f ∈ E et N1(f) = 0, on a forcément
∫ 1

0
f(t)dt =

∫ 1

0
|f′(t)|dt = 0 donc,

comme |f′| est positive et continue, on a f′ = 0 sur l’intervalle [0; 1] donc f y est constante, cette constante

étant nulle avec la condition
∫ 1

0
f(t)dt = 0. On a donc bien f = 0.

N2 ne vérifie pas la séparation car la fonction f : x 7→ sin(2πx) est dans E et, après des calculs élémentaires,∫ 1

0
f(t)dt =

∫ 1

0
f′(t)dt =

∫ 1

0
f′′(t)dt = 0 donc N2(f) = 0 alors que la fonction f n’est pas nulle.

Au final, N0 et N1 sont des normes mais N2 n’en est pas une.

c. Soit f ∈ E et F : [0; 1]→ R la primitive de f qui s’annule en 0 définie par F(x) =
∫ x

0
f(t)dt. Comme F est

de classe C3 sur [0; 1] car f y est C2, le théorème des accroissements finis justifie l’existence de c ∈]0; 1[⊂ [0; 1]

tel que F′(c) =
F(1)− F(0)

1− 0
= F(1). Or F′(c) = f(c) et F(1) =

∫ 1

0
f(t)dt donc f(c) =

∫ 1

0
f(t)dt.

d. Soit f ∈ E et x ∈ [0; 1], f(t) = f(c) +
∫ t

c
f′(x)dx (avec le c de la question précédente) donc, par inégalité

triangulaire et de la moyenne, |f(t)| 6 |f(c)|+
∣∣∣∫ t

c
|f′(x)|dx

∣∣∣ 6 |f(c)|+∫ 1

0
|f′(x)|dx car [̃c; t] ⊂ [0; 1] et |f′| > 0.

Ainsi, N1(f) = |f(c)|+
∫ 1

0
|f′(x)|dx est un majorant de f sur [0; 1] etN0(f) =

∫ 1

0
|f(t)|dt 6

∫ 1

0
N1(f)dt = N1(f)

qui prouve que N1 domine N0.

Soit f ∈ E non nulle telle que N0(f) = N1(f). Avec les notations précédentes,
∫ 1

0
|f(t)|dt =

∫ 1

0
N1(f)dt donc∫ 1

0
(N1(f) − |f(t)|)dt = 0 mais on a vu que t 7→ N1(f) − |f(t)| est positive et continue ce qui montre que

∀t ∈ [0; 1], |f(t)| = N1(f) ̸= 0 car f ̸= 0 et, puisque f est continue donc ne change pas de signe, f = N1(f) ou

f = −N1(f). Réciproquement, si f = a est constante avec a ̸= 0, alors N0(f) = N1(f) = |a|. Les fonctions

non nulles telles que N0(f) = N1(f) sont les fonctions constantes non nulles.

e. Supposons l’existence d’une telle constante k > 0 telle que ∀f ∈ E, N1(f) 6 kN0(f). Soit, pour tout

entier n, la fonction fn : [0; 1] → R définie par fn(t) = tn. Alors fn ∈ E et N0(fn) =
∫ 1

0
fn(t)dt =

1

n+ 1

et N1(fn) = 1

n+ 1
+
∫ 1

0
ntn−1dt = 1

n+ 1
+ 1 ce qui donne 1

n+ 1
+ 1 6 k

n+ 1
ou k > n + 2. Ceci étant

supposé être vrai pour tout entier n, on a notre contradiction. On conclut donc qu’il n’existe pas k > 0 telle

que ∀f ∈ E, N1(f) 6 kN0(f). Par conséquent, N0 ne domine pas N1 : N0 et N1 ne sont pas équivalentes.� �
15.6� �a. Le maximum d’un nombre fini de réels positifs étant clairement défini et positif, la fonction N est bien

définie sur Rn quelle que soit la famille F et elle est à valeurs dans R+.



Séparation : soit x ∈ Rn tel que N(x) = 0, alors Max
16i6m

(|(vi|x)|) = 0 donc ∀i ∈ [[1;m]], (vi|x) = 0.

Ainsi, x ∈
(
Vect(v1, · · · , vm)

)⊥
. Mais F est une famille génératrice par hypothèse ce qui se traduit par

Vect(v1, · · · , vm) = Rn. On a vu dans le cours qu’alors (Rn)⊥ = {0}, ce qui montre que x = 0.

Homogénéité et inégalité triangulaire : par définition N = ||vx||∞ où on a posé vx =
(
(vi|x)

)
16i6m

∈ Rm

et où || . ||∞ est la norme infinie classique (mais dans Rm). Si λ ∈ R et (x, y) ∈ (Rn)2, par bilinéarité du

produit scalaire canonique dans Rn, on a les relations vλx = λvx et vx+y = vx + vy. Comme on sait que

justement || . ||∞ est une norme, on en déduit que N(λx) = ||vλx||∞ = ||λvx||∞ = |λ| ||vx||∞ = |λ|N(x) et

N(x+ y) = ||vx+y||∞ = ||vx + vy||∞ 6 ||vx||∞ + ||vy||∞ = N(x) +N(y).

N vérifie l’axiome de séparation, l’homogénéité et l’inégalité triangulaire, donc N est une norme sur Rn.

b. Prenons m = n et F = (e1, · · · , en) la base canonique de Rn (bien génératrice), alors si x =
n∑

i=1

xiei,

puisque F est orthonormale, xi = (ei|x) donc N(x) = Max
16i6n

|xi| = ||x||∞ (norme infini classique dans Rn).

c. Prenons m = 2n et F = (vε)ε∈{−1,1}n où, si on note ε = (ε1, · · · , εn) ∈ {−1, 1}n, on pose vε =
n∑

i=1

εiei.

La famille F est bien génératrice de Rn car, par exemple en notant A1 = {ε ∈ {−1, 1}n | ε1 = 1} la partie

de {−1, 1}n de cardinal 2n−1, on a
∑

ε∈A1

vε = 2n−1e1 car dès que j > 2, il existe autant de n-uplets ε dans

A1 tels que εj = 1 que de n-uplets tels que εj = −1 (2n−2 de chaque sorte). Ainsi, e1 = 1

2n−1

∑
ε∈A1

vε. Bien

sûr, par symétrie, si k ∈ [[2;n]], ek = 1

2n−1

∑
ε∈Ak

vε avec Ak = {ε ∈ {−1, 1}n | εk = 1}. De plus, toujours

si x =
n∑

i=1

xiei, pour ε ∈ {−1, 1}n, (vε|x) =
n∑

i=1

εixi ce qui donne N(x) = Max
ε∈{−1,1}n

∣∣∣ n∑
i=1

εixi

∣∣∣. Il est clair

que
∣∣∣ n∑
i=1

εixi

∣∣∣ est maximale si les εixi sont tous de même signe, c’est-à-dire si (∀i ∈ [[1;n]], εixi = |xi|) ou si

(∀i ∈ [[1;n]], εixi = −|xi|). On a donc N(x) =
n∑

i=1

|xi| = ||x||1 (norme 1 classique dans Rn).

d. Supposons qu’il existe une famille génératrice F de Rn telle que ||.||2 = N (N associée à F comme dans

l’énoncé). On peut déjà supposer que deux vecteurs différents de F ne sont pas colinéaires. En effet, si par

exemple v1 et v2 sont colinéaires, et si on suppose que v2 est celui des deux qui a une norme maximale

(||v2||2 > ||v1||2), alors N(x) = Max
16i6m

(|(vi|x)|) = Max
26i6m

(|(vi|x)|) = N′(x) avec la famille F′ = (v2, · · · , vm)

qui est encore génératrice. Dorénavant, on prendra donc F avec des vecteurs non deux à deux colinéaires.

Soit j ∈ [[1;m]] tel que ||vj||2 = Max
16i6m

||vi||2. Comme, par Cauchy-Schwarz, pour i ∈ [[1;m]], on a

|(vi|vj)| 6 ||vi||2||vj||2 6 ||vj||22 par définition de j, on en déduit que N(vj) = Max
16i6m

(|(vi|vj)|) = ||vj||22.

Puisqu’on a supposé que N = ||.||2, on a aussi N(vj) = ||vj||22 = ||vj||2 donc ||vj|| = 1 (on ne peut pas avoir

||vj||2 = 0 sinon tous les vecteurs de F seraient nuls par définition de j et F ne pourrait pas être génératrice).

On prend un vecteur v unitaire qui est orthogonal à vj, on le peut car n > 2. Et on pose alors x = vj + λv

avec λ ∈ R∗. Alors, d’après Pythagore, ||x||22 = ||vj||22 + λ2||v||22 > ||vj||22 donc ||x||2 > ||v||2 = 1. On va

montrer que, pour λ assez petit, le vecteur x vérifie N(x) = N(vj) (les boules unités pour les normes N sont

des polyèdres et, comme vj est sur la sphère unité BN(0Rn , 1), la “face” du polyèdre contenant vj est une

partie du plan passant par vj et de vecteur normal vj - on l’a constaté pour les normes 1 et ∞ en b. et c.).



D’abord, comme vj ⊥ v, on a |(vj|v)| = |(vj|vj + λv)| = |(vj|vj) + 0| = ||vj||22 = 1. Évaluons, pour i ∈ [[1;m]]

tel que i ̸= j, la quantité (vi|x) = (vi|vj + λv) = (vi|vj) + λ(vi|v). Par inégalité triangulaire et puisque

l’on a ||vi||2 6 ||vj||2 = 1, |(vi|x)| 6 |(vi|vj)| + |λ| |(vi|v)| 6 |(vi|vj)| + |λ| ||vi||2 ||v||2 6 |(vi|vj)| + |λ|.
Comme vi n’est pas colinéaire à vj, d’après le cas d’égalité dans l’inégalité de Cauchy-Schwarz, on a

|(vi|vj)| < ||vi||2||vj||2 = ||vi||2 6 1 donc |(vi|vj)| < 1. Il suffit donc de choisir λ tel que 0 < |λ| 6 1− |(vi|vj)|

pour qu’on ait |(vi|x)| 6 1. Il faut maintenant rendre ce choix indépendant de i.

Posons donc λ0 = Min
16i6m

i ̸=j

(1−|(vi|vj)|) > 0, alors si on choisit λ ∈ [−λ0; λ0], on a donc ∀i ∈ [[1;m]], |(vi|x)| 6 1

et |(vj|x)| = 1 donc N(x) = 1. Comme on a vu que ||x||2 > 1, on ne peut donc pas avoir N = ||.||2.

Ainsi, la norme 2 classique ||.||2 de Rn n’est pas une norme N obtenue comme ceci.� �
15.7� �a. C est une partie non vide et majorée de R donc, par la propriété fondamentale des réels, elle admet une

borne supérieure. Pour tout entier n ∈ N, Sup(C) est un majorant de C mais Sup(C)− 1

2n
n’en est pas un car

Sup(C) est le plus grand des majorants. Ainsi, il existe un réel xn ∈ C tel que Sup(C)− 1

2n
< xn 6 Sup(C).

Comme lim
n→+∞

(
Sup(C) − 1

2n

)
= Sup(C), par le théorème d’encadrement, on a lim

n→+∞
xn = Sup(C). Par

conséquent, (xn)n∈N est une suite d’éléments de C qui converge vers Sup(C). Bien sûr, il existe aussi une

suite (yn)n∈N d’éléments de C qui converge vers Inf(C).

b. Comme C est non vide, X ne l’est pas non plus car si c ∈ C, alors |c− c| = 0 ∈ X. De plus, comme C est

non vide et bornée, il existe M ∈ R+ tel que ∀x ∈ C, |x| 6 M. Ainsi, ∀(x, y) ∈ C2, |x− y| 6 |x|+ |y| 6 2M

par inégalité triangulaire donc C est non vide, minoré par 0 et majoré par 2M donc X admet une borne

inférieure et une borne supérieure toujours par la propriété fondamentale des réels. Mieux, si (x, y) ∈ C2, en

supposant que x > y (l’autre cas est symétrique), on a |x− y| = x− y 6 Sup(C) − Inf(C) car xn 6 Sup(C)

et yn > Inf(C) donc Sup(C)− Inf(C) est un majorant de C.

• 0 minore X et 0 ∈ X donc 0 = Min(C) = Inf(X).

• D’après a., il existe des suites (xn)n∈N et (yn)n∈N d’éléments de C qui convergent respectivement

vers Sup(C) et Inf(C). Il existe un rang n0 tel que ∀n > n0, xn > yn (et ceci même si C = {c} car

alors xn = yn = c). Alors ∀n > n0, xn − yn = |xn − yn| ∈ C et lim
n→+∞

(xn − yn) = Sup(C)− Inf(C).

Comme Sup(C)−Inf(C) est un majorant de X et qu’il existe une suite d’éléments de X qui converge vers

Sup(C)− Inf(C), par la caractérisation séquentielle de la borne supérieure, Sup(X) = Sup(C)− Inf(C).� �
15.8� �a. Soit (A, B) ∈ E2, la case (i, j) de ATB contient, par définition du produit matriciel et de la transposée, le

terme
n∑

k=1

ak,ibk,j. Ainsi, Tr (ATB) =
n∑

i=1

( n∑
k=1

ak,ibk,i
)
=

∑
16i,j6n

ai,jbi,j =< A, B > en remplaçant k par i,

i par j. ||A|| est donc la norme euclidienne (associée au produit scalaire canonique) de A.

b. Pour (u, v) ∈ (Rm)2, si on écrit u = (u1, · · · , um) et v = (v1, · · · , vm), on a l’inégalité de Cauchy-

Schwarz (pour le produit scalaire canonique dans Rm) : |(u|v)| =
∣∣∣ m∑
i=1

uivi

∣∣∣ 6√ m∑
i=1

u2
i

√
m∑
i=1

v2i = ||u|| ||v||.

Si on note la matrice C = AB = (ci,j)16i,j6n, on a ci,j =
n∑

k=1

ai,kbk,j par définition du produit matriciel



donc, avec l’inégalité précédente élevée au carré, en posant uk = ai,k et vk = bk,j et m = n, il vient

||AB||2 6
n∑

i=1

(
n∑

j=1

( n∑
k=1

a2
i,k

)
×
( n∑

k=1

b2k,j

))
=

n∑
i=1

(( n∑
k=1

a2
i,k

) n∑
j=1

( n∑
k=1

b2k,j

))
or

n∑
j=1

( n∑
k=1

b2k,j

)
= ||B||2

donc ||AB||2 6
n∑

i=1

(
||B||2

( n∑
k=1

a2
i,k

))
= ||A||2 ||B||2.

c. On a déjà AM0 = M0A par hypothèse. Si on suppose, pour un entier p ∈ N, que AMp = MpA, alors

AMp+1 = A(2Mp −MpAMp) = 2AMp − (AMp)
2 = 2MpA− (MpA)

2 = (2Mp −MpAMp)A = Mp+1A par

hypothèse de récurrence. Ainsi, par principe de récurrence, on a ∀p ∈ N, AMp = MpA.

Pour p ∈ N, ||In − AMp+1|| = ||In − 2AMp + AMpAMp|| = ||(In − AMp)
2|| 6 ||In − AMp||2 d’après la

question b.. On a ||In − AM0|| = ||In − AM0||2
0

et, si on suppose que ||In − AMp|| 6 ||In − AM0||2
p

pour

un entier p ∈ N, alors ||In−AMp+1|| 6 ||In−AMp||2 6 (||In−AM0||2
p

)2 = ||In−AM0||2
p+1

. Par principe

de récurrence, ∀p ∈ N, 0 6 ||In − AMp|| 6 ||In − AM0||2
p

.

Comme ||In −AM0|| < 1 par hypothèse, on a lim
p→+∞

||In −AM0||2
p

= 0 et, par encadrement avec l’inégalité

précédente, on en déduit que lim
p→+∞

||In − AMp|| = 0, ce qui prouve que lim
p→+∞

AMp = In. On a aussi

||A−1 −Mp|| = ||A−1(In − AMp)|| 6 ||A−1|| ||In − AMp|| donc, de même, lim
p→+∞

Mp = A−1.

La suite
(
||In−AM0||2

p)
p∈N tend très vite vers 0 donc la convergence de (Mp)p∈N vers A−1 est extrêmement

rapide, seul le choix de la matrice M0 telle que ||In − AM0|| < 1 reste à faire.� �
15.9� �a. Soit φ : [0; 1] → R telle que φ(x) = f(x) − x. Comme f est continue sur [0; 1], φ est aussi continue par

opérations sur [0; 1]. Or φ(0) = f(0) > 0 car f(0) ∈ [0; 1] et φ(1) = f(1)− 1 6 0 car f(1) ∈ [0; 1]. Ainsi, par le

théorème des valeurs intermédiaires, comme φ(0)φ(1) 6 0 et que φ est continue sur [0; 1], il existe un réel

α ∈ [0; 1] tel que φ(α) = 0, ce qui justifie que α ∈ A donc A ̸= ∅.

A est donc une partie non vide de R, majorée par 1 et minorée par 0. La propriété fondamentale de R

montre que A admet une borne supérieure M 6 1 et une borne inférieure m > 0. Par caractérisation

de la borne supérieure, il existe une suite (un)n∈N d’éléments de A qui converge vers M. On a donc

∀n ∈ N, f(un) = un (R) et, en passant à la limite dans cette relation (R) et par caractérisation séquentielle

de la continuité de f, on a f(M) = M. Ainsi, M ∈ A et M majore A assure que M est le maximum de A. De

même, m est le minimum de A.

b. Posons h = f−g, de sorte que h est continue sur [0; 1] par opérations. Comme f◦g = g◦ f, en l’appliquant

en M, on a f(g(M)) = g(f(M)) = g(M) donc g(M) ∈ A ce qui montre que g(M) 6 M = Max(A). Ainsi,

h(M) = f(M)− g(M) = M− g(M) > 0. De même, f(g(m)) = g(f(m)) = g(m) donc g(m) ∈ A ce qui montre

que g(m) > m = Min(A). Ainsi, h(m) = f(m) − g(m) = m − g(m) 6 0. À nouveau, par le théorème des

valeurs intermédiaires, puisque h est continue sur ˜[m;M] et h(m)h(M) 6 0, il existe un réel c ∈ ˜[m;M] ⊂ [0; 1]

tel que h(c) = 0, ce qui revient à f(c) = g(c).� �
15.10� �a. Dans le calcul de χA =

∣∣∣∣∣∣
X −1 3

5 X− 2 −1
−5 1 X+ 6

∣∣∣∣∣∣, on effectue l’opération de Gauss C1 ←− C1+C2+C3 pour



avoir χA =

∣∣∣∣∣∣
X+ 2 −1 3

X+ 2 X− 2 −1
X+ 2 1 X+ 6

∣∣∣∣∣∣ = (X + 2)

∣∣∣∣∣∣
1 −1 3

1 X− 2 −1
1 1 X+ 6

∣∣∣∣∣∣ par linéarité du déterminant par rapport

à la première colonne. On effectue ensuite L2 ←− L2 − L1 et L3 ←− L3 − L1 et on trouve l’expression

χA = (X+2)

∣∣∣∣∣∣
1 −1 3

0 X− 1 −4
0 2 X+ 3

∣∣∣∣∣∣ = (X+2)

∣∣∣∣X− 1 −4
2 X+ 3

∣∣∣∣ = (X+2)
(
(X−1)(X+3)+8

)
= (X+2)(X2+2X+5)

après avoir développé par rapport à la première colonne.

b. Comme χA = (X+2)
(
(X+1)2+4

)
= (X+2)(X+1+2i)(X+1−2i), on a SpC(A) = {−2,−1−2i,−1+2i} et A

est diagonalisable car χA est scindé à racines simples sur C. Il existe donc une matrice inversible P ∈ GL3(C)

telle A = PDP−1 avec D =

−2 0 0

0 −1− 2i 0

0 0 −1+ 2i

. Il est alors classique que ∀n ∈ N, An = PDnP−1 et,

comme | − 1± 2i| =
√
5 > 2 = | − 2|, on a ||Dn||∞ = (

√
5)n.

Pour M ∈ Mn(C), posons le réel positif ||M||0 = ||P−1MP||∞. Comme || . ||∞ est une norme d’après le cours :

Séparation : soit M ∈ Mn(C) telle que ||M||0 = 0, alors ||P−1MP||∞ = 0 donc P−1MP = 0 d’où M = 0.

Homogénéité : soit M ∈ Mn(C) et λ ∈ C, ||λM||0 = ||P−1(λM)P||∞ = |λ|| ||P−1MP||∞ = |λ| ||M||0.

Inégalité triangulaire : soit (M,M′) ∈ (Mn(C))2, ||M+M′||0 = ||P−1(M+M′)P||∞ = ||P−1MP+P−1M′P||∞
donc ||M+M′||0 6 ||P−1MP||∞ + ||P−1M′P||∞ = ||M||0 + ||M′||0.

Ainsi, l’application M 7→ ||M||0 est une norme sur Mn(C). Puisque toutes les normes sont équivalentes sur

l’espace Mn(C) de dimension finie, il existe (α, β) ∈ (R∗
+)

2 tel que ∀M ∈ Mn(C), α||M||0 6 ||M|| 6 β||M||0.

On a donc, ∀n ∈ N, α||An||0 6 ||An|| 6 β||An||0 et, d’après le cours, en notant R (resp. R0) le rayon de

convergence de la série entière
∑
n>0

||An||zn (resp.
∑
n>0

||An||0zn), on a R0 > R > R0 car α > 0 et β > 0.

Comme le rayon de convergence de la série
∑
n>0

||An||0zn =
∑
n>0

||Dn||∞zn =
∑
n>0

(
√
5z)n vaut clairement

R0 = 1√
5
car

(
(
√
5|z|)n

)
n∈N est bornée si et seulement si |z| 6 1√

5
, on a R = 1√

5
.� �

15.11� �a. Comme x ∈ Im (u− id E), il existe y ∈ E tel que x = (u− id E)(y) = u(y)− y ce qui s’écrit u(y) = x+ y.

b. Comme x ∈ Ker(u− id E), on a u(x) = x. Ainsi, par une récurrence facile, on a ∀k ∈ N, uk(x) = x. Soit

n ∈ N, en composant l’égalité u(y) = x+ y par uk pour k ∈ [[0;n− 1]], on a uk+1(y) = uk(x) + uk(y) donc

uk+1(y) − uk(y) = uk(x) = x. Ainsi, par télescopage, on a
n−1∑
k=0

(uk+1(y) − uk(y)) = un(y) − y = nx donc

un(y) = nx+ y (et même pour n = 0 car u0(y) = id E(y) = y = 0.x+ y).

c. Ainsi, ∀n ∈ N∗, x =
un(y)− y

n
. Or ||u(y)|| 6 ||y|| et, là encore par une récurrence simple, on montre que

∀m ∈ N, ||um(y)|| 6 ||y||, ce qui montre que 0 6 ||x|| 6 ||u
n(y)||+ ||y||

n
6 2||y||

n
par inégalité triangulaire

donc, comme lim
n→+∞

2||y||
n

= 0, en passant à la limite, ||x|| = 0 donc x = 0E.

d. On vient de voir avec c. que Im (u − id E) et Ker(u − id E) sont en somme directe mais, avec la formule

du rang, dim(Im (u− id E)) + dim(Ker(u− id E)) = dim(E). Ainsi, on a Im (u− id E)⊕ Ker(u− id E) = E et

les sous-espaces Im (u− id E) et Ker(u− id E) sont supplémentaires dans E.


