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a. Supposons que le résultat est vrai pour une norme N et soit une autre norme N,. Comme on est en
dimension finie, toutes les normes sont équivalentes donc il existe des constantes o« > 0 et B > 0 telles que

1 1 1
aN7 < N2 < BNj. Par hypothese, lim Nj(A¥)k = p(A). Or, lim «k = lim Bk = 1 donc, par
k—4o00 k—+o00 k—+4o00

1 1 1 1 1
le théoréme des gendarmes, comme Vk € N, akNj(A*)k < Na(A%)k < BkN;(AX)k, on en déduit que
1
lim N2 (AX)k = p(A) : le résultat est aussi vrai pour Nj.
k——+o0
b. Si B € M, (C) est semblable & A € M,,(C), il existe P € GLn(C) telle que A = PBP~'. Soit N une norme

sur E. Comme le produit matriciel est bilinéaire il existe M > 0 telle que ¥(U, V) € E2, N(UV) < MN(U)N(V)
d’apres le cours car E est de dimension finie. Ou on a vu en cours que |[UV||oo < n||Ul|ool|V]|oo et il existe

des constantes o > 0 et B’ > 0 telles que o/N < ||.||cc < B'N, on trouve facilement que pour toutes matrices

"2 "2
U et V dans M, (C), on a N(UV) < %N(U)N(V) et M = % convient.
Or, A% = PB*P~! et B® = PTAKP, donc N(A¥) < M2N(P)N(B*)N(P~T) et N(B¥) < M2N(P~)N(AX)N(P).

1

<
On passe ces deux inégalités a la puissance i Oet N(AK) < N(BF) < M2N(PTT)N(AX)N(P)

1
MN(P)N(P™)
1 1
et, par encadrement, on obtient lim N(B¥)k = p(A) car, par exemple, lim (MZN(P~")N(P))¥k =1.
k—+o0 k—4o00
c. On écrit T = I, +N avec N = T — I, nilpotente d’ordre inférieur ou égal & n (classique avec le théoréme de

k k . n—1 /k .
CAYLEY-HAMILTON car xn = X™) et, comme N et I,, commutent, on a T¢ = > () = (,)Nl pour
i=0 \1 i=0 \1

n—1 /x 3
k > n. On éerit I'inégalité triangulaire et 1 < [|T*]| = Y ( >||Nl||oo. Le terme de droite est polynomial
i=0

en k de degré inférieur ou égal a n — 1 donc quand on éléve tout a la puissance %, la limite vaut 1 a gauche

1
et & droite (par croissances comparées) et on conclut par encadrement que klim [|T%||& = 1.
— 400
d. Comme A® = I, = B®, ||A%|| < ||B®||x et, par définition de B, [|A'||cc = ||A]lco < ||Blloc = ||B'||oo- Si
n

on suppose, pour un entier k € N*, que [|A¥|[oc < [|B¥||o, alors V(1,7) € [1;n]%, [AM )15 = 3 ai¢[AN]q,;

donc, par inégalité triangulaire, |[Ak+1]i,j [Bk]g)j’ par définition de B et

n n
< X lawel[[AMe;] < 30 bie
=1 =1
par hypothese de récurrence. Ainsi, comme les coefficients de B* sont positifs (clair par récurrence et par

n
définition du produit matriciel), on a |[AMF]i;| < 3 bie[B¥e; = [B¥F']i; donc [[AMT || < |[BXT||w.
(=1

)

Par principe de récurrence, on a bien établi que Vk € N, [|A%||o0 < [|B¥||so-
Traitons maintenant deux cas :
p(A) =0 , alors il n’y a aucune valeur propre non nulle de A donc Sp(A) = {0} et xa = X™ donc A™ =0
1

par CAYLEY-HAMILTON ce qui prouve que Yk > n,A¥ = 0 donc klim AKX =0 =p(A).
—+0o0

p(A) >0 , la matrice (}/\\ ] a une valeur propre de module 1 et ensuite uniquement des valeurs propres
P

de modules inférieurs ou égaux a 1 par construction ; elle est trigonalisable car xa est scindé
sur C donc est semblable & une matrice triangulaire supérieure T’ dont les coeflicients sont en

module inférieur a 1 sur la diagonale. En posant m = ! Max |ty j| et T la matrice triangulaire
<i<j<n



supérieure ayant des 1 sur la diagonale et des m au dessus, Y(i,j) € [1;n]?, Iti;] < ti,j don,
avec ce qui précede, on a Vk € N, |[T%]| < [|T*||s- Or la question précédente montre que
1

klim ||T*||X, = 1. Mais comme T’ a un terme qui vaut 1 sur la diagonale, T’* ’a également
—+o0
1

1 1 1
donc 1 < ||| < [|T¥]|ee d’ot T < ||T*||& < ||T¥||&. Par encadrement, kHT [[T%||& = 1.
—+o0

Comme

-
A ot T/ sont semblables, d’apres la question b., on a donc lim H(i) Hk =1
p(A) k—+o0 [ \p(A) o0

1
donc, par homogénéité de la norme, lim [|A¥||% = p(A).
k——+oo

1
Dans tous les cas, on a kliT ||[A*||% = p(A) donc, d’aprés la question a., puisque ca marche pour la norme
— 00
1
infinie, pour toute norme ||.|| de E, on a lim [|[A¥||x = p(A).
k—+o00

a. On sait d’apres le cours que || . || est une norme sur My, (R) : il faut le refaire ici et montrer la séparation,
I’homogénéité et I'inégalité triangulaire !

n
Soit (M, X) € Mn(R) x My, 1(R), alors Vi € [1;n], [MX]; = >~ mjxx. Ainsi, par inégalité triangulaire, on
k=1

n n
a |[MXJi| < 30 fmipa] < 22 (Moo [X[loo = n{IM[[oo][X[|oc. On en déduit que |[[MX[loo < 1Moo X[|oo-
k=1 k

—_

b. Par hypothese, il existe m > 0 tel que Vk € N, ||A¥|| < m. Soit aussi X € Ker(A—1,,)NIm (A —1,), on a
AX = X et JY € Myu,1(R), X = AY =Y. On multiplie cette derniere égalité par A* donc AKX = A*FTY — ARy,

Or Vk € N, A*X = X par une récurrence simple et car A°X = I,X = X, donc en sommant ces relations, on

p—1 p—1 P
obtient ByX = 1 37 Akx =x = L 37 (AR y — Aky) = AV =Y
P k=0 P x=0 p

Py _
D’apres a. et par inégalité triangulaire, ||X||c = HA Y YH gmntl [[Y]|oo. Comme lim mntl_,
Pl p potoo P
on a ||X||eoc = 0 par encadrement donc X = 0. Les deux sous-espaces Ker(A —1I,,) et Im (A — I,) sont donc en
somme directe donc supplémentaires car, avec la formule du rang, dim(Ker(A —1I,,)) + dim(Im (A — 1)) = n.

)

c. Notons P la matrice dans la base canonique de la projection sur Ker(A — I,,) parallelement & Im (A — I,).
La premiere colonne de By, est constituée des coordonnées (dans la base canonique (Eq,---,En)) de BpE;.
En décomposant Ej = X7 +X; avec X; € Ker(A — 1) et X; € Im(A —1I,) donc AXy = X; et 3X3 € My 1(R)
tel que AX3 — X3 = X3, alors BpEq = By X7 4 BpX2. Comme avant, B,X; = X; car Yk € N, AKX; =X;. De

P PX, —
plus, BpX; = 1S (ARHTX5 — ARX3) = AX3 = X3 par télescopage donc [[BpX2||oo < nmt1x), ce qui
P k=0 P P
donne lim BpX; = 0 par encadrement comme ci-dessus.
p—+o0
Comme PX = Xj par construction, on a HT B,E; = PE7. On fait bien sir de méme pour les autres
p—+oo

colonnes, ce qui montre que les n? coordonnées (les n? cases) de la suite (Bp)p=o convergent vers celles de
P. Comme on est en dimension finie, ceci assure que lim B, = P.
p—+oo

a. Comme a et b ont été choisis strictement positifs, la suite (un)n>1 est bien définie et strictement

positive car la fonction racine est bien définie et strictement positive sur R’ . Par construction, elle est aussi
strictement croissante car la fonction \/~ est strictement croissante sur R% (par exemple a + Vb > a donc

uz >ug et a++/b++/a>a++vbdoncuz >uy).
Si a="b, notons (vn)n>1 la suite associée, alors vi = y/a et Vn > 1, vpy1 = Va+vy, = foq(vn). La

fonction fq : Ry — Ry est dérivable, strictement croissante et son unique point fixe est ¢4 > 0 tel que



=Va+ g =% —{, —a=0. On trouve classiquement {, =1ty ] +4a (car VZ] +da 0).

Comme vi = /a < 1—24a<1+v21+4a

applique fq strictement croissante a cette inégalité et on a 0 < fq(0) < fq(vn) = vnt1 < fa(lq) = Lq. Par

=g, onal<vy <y Soit n € N* tel que 0 < vy < {q, ON

principe de récurrence, on a donc ¥n > 1, 0 < vy < {q. La suite (v )n>1 est donc croissante et majorée par

¢, donc elle converge vers un réel ¢, < {q. Mais en passant a la limite dans vy11 = fq(vn), comme f, est
continue, on a ¢, = fq({}) ce qui montre que €, = {4 d’apres ce qui précede. Par conséquent, nEToo vn = {q.

Sib < a (le cas b > a est similaire), on pose, pour tout entier n > 1, up = \/a + \/b +va++vb+... et

v = \/a + \/a + \/a—i—i\/m. Il est clair que Vn > 1, u, < v. D’apres ce qui précede, Vn € N*| u, < {4
donc (un)nen est croissante et majorée donc elle converge (vers () par le théoréme de la limite monotone.
b. Par construction, Vn > 1, unyy = m. On passe & la limite dans cette relation (elles
existent). Comme \/ est une fonction continue, on a donc { = \/m ce qui donne en élevant au
carré la relation €2 = a + /b + € puis {> — a = /b + { donc (¢ — a)?> = b + ¢. En développant, on trouve
¢4 —2at? — (+ a?> — b = 0. Ainsi, le polynéme P = X* — 2aX? — X + a? — b admet { comme racine.

a. Soit h: [0;1] — R définie par h(x) = f(x) — g(x). Alors h > 0 sur [0;1] par hypothese. Comme f et g
sont continues, h l'est aussi sur le segment [0;1] donc elle est bornée et atteint ses bornes. Ainsi, il existe
a € [0;1] tel que h(a) = xl\e/}(i)ﬁ] h(x) = a > 0.
Initialisation : pour n =0, Vx € [0;1], fO(x) — ¢°(x) = id [,1)(x) — id [0.;1](x) = x —x > 0.&. Pour n =1, par
construction de «, Vz € [0;1], f(z) — g(z) = h(z) > 1
Hérédité : soit n € N* tel que Yy € [0; 1] M (y) —
Soit x € [0;1], " 1(x) — g™t (x) = MH1(x) — f(g(x)) + f(g(x)) — g™ (x) qu’on rééerit sous la forme
T (x) — g™t (x) = (F(F(x)) — g(f™(x))) + (f™(g(x)) —g™(g(x))) car comme f et g commutent, f*og = gof™.
En prenant z = g™(x) € [0;1] dans (1) et y = g(x) dans (2), f**'(x) — g™ (x) > «+no = (n + 1)«.

Par principe de récurrence, on a donc ¥n € N, Vx € [0;1], f*(x) — g™(x) > no.

Puisque [0; 1] est stable par f et g, par récurrence, on a ¥n € N, ¥x € [0;1], 0 < ™ (x) <1et 0 < g™ (x) < 1.
Des que na > 1, comme Vx € [0;1], f*(x) — g™ (x) <1 —-0=1, f*(x) — g"(x) > n« est impossible.

b. Raisonnons par I’absurde. Si on avait Vc € [0;1], f(c) # g(c), alors la fonction h = f — g ne s’annulerait
pas sur [0;1]. Or cette fonction est continue donc elle garderait un signe constant sur [0;1] par le théoréme
des valeurs intermédiaires. Traitons deux cas :

e Soit h =f — g > 0 sur [0;1], alors on a vu la contradiction & la question précédente.

e Soit h = f— g < 0, en posant « = Max (h(x)) < 0, on a ¥n € N, Vx € [0;1], f*(x) — g"(x) < na ce qui

x€[0;1]
devient absurde dés que na < —1 car Vx € [0;1], f™(x) — g™(x) = 0 —1 = —1 comme avant.

Dans tous les cas, on a une impossibilité donc h s’annule au moins une fois sur [0;1] : 3c € [0;1], f(c) = g(c).
a. Une norme sur un K-espace vectoriel est une application N : E — R telle que :
e VA € K, Vx € E, N(Ax) = |AIN(x) (homogénéité).
e Vx € E, N(x) = 0 <= x = 0¢ (séparation).

e V(x,y) € E2, N(x +y) < N(x) + N(y) (inégalité triangulaire).



b. Les trois applications Ng, N7, N, sont bien définies car, puisque les fonctions f de E sont de classe C? sur
[0; 1], les fonctions f, f', f”” sont continues sur le segment [0; 1] donc les intégrales sont bien définies.

Les trois applications Ng, N1, N vérifient I’homogénéité par linéarité de la dérivation, de I'intégrale et par
homogénéité de la valeur absolue sur R : il suffit de Iécrire !

Les trois applications Ng, N1, N2 vérifient I'inégalité triangulaire par linéarité de la dérivation, de l'intégrale
et parce que la valeur absolue vérifie elle-méme 'inégalité triangulaire : il suffit de I’écrire !

Ny vérifie la séparation parce que si f € E et No(f) = 0, la fonction continue et positive |f| a une intégrale
nulle sur [0;1] donc elle y est nulle ce qui donne f = 0.

Ny vérifie la séparation parce que si f € E et Ni(f) = 0, on a forcément f; f(t)dt = fol [f'(t)|dt = 0 donc,
comme [f’| est positive et continue, on a f' = 0 sur U'intervalle [0;1] donc f y est constante, cette constante
étant nulle avec la condition f; f(t)dt = 0. On a donc bien f = 0.

N2 ne vérifie pas la séparation car la fonction f : x — sin(2nx) est dans E et, apres des calculs élémentaires,
f()] f(t)dt = f()] f/(t)dt = f()] "/ (t)dt = 0 donc N (f) = 0 alors que la fonction f n’est pas nulle.

Au final, Ng et N7 sont des normes mais N, n’en est pas une.

c. Soit f € E et F:[0;1] — R la primitive de f qui s’annule en 0 définie par F(x) = fox f(t)dt. Comme F est

de classe C3 sur [0; 1] car f y est C2, le théoréme des accroissements finis justifie 'existence de ¢ €]0; 1[C [0;1]
— 1 1
tel que F/(c) = w = F(1). Or F(e) = £(c) et F(1) = [ (t)at done 1(c) = [ r(t)at.

t
d. Soit f € E et x € [0;1], f(t) = f(c) + f f'(x)dx (avec le ¢ de la question précédente) donc, par inégalité
C

t 1 .
triangulaire et de la moyenne, |f(t)] < |f(c)|+’ f [/ (x)]dx| < \f(c)|+fo [f'(x)|dx car [c;t] C [0;1] et |f'| > 0.
C

Ainsi, Ny (1) = [#()}+ [ 1F/(x) x est un majorant de fsur [0: 1] et No(f) = [ [r(0)|at < [ Ni(fae = Ny ()
qui prouve que N7 domine Ng.

Soit f € E non nulle telle que No(f) = N7 (f). Avec les notations précédentes, f; [f(t)|dt = f()] N (f)dt donc
f()] (Nq(f) — |f(t)])dt = 0 mais on a vu que t — Ny (f) — |f(t)| est positive et continue ce qui montre que
Yt € [0;1], |f(t)] = N1 (f) # 0 car f # 0 et, puisque f est continue donc ne change pas de signe, f = N;(f) ou
f = —Nj(f). Réciproquement, si f = a est constante avec a # 0, alors No(f) = Ny (f) = |a|. Les fonctions
non nulles telles que No(f) = Ny (f) sont les fonctions constantes non nulles.

e. Supposons l'existence d’une telle constante k > 0 telle que Vf € E, Ny(f) < kNo(f). Soit, pour tout
)=/, !

entier n, la fonction f,, : [0;1] — R définie par f, (t) = t™. Alors f, € E et No(fn) = o fn(t)dt = ——
n
et Ny(fn) = L#—f]nt“_]dt: —1 41 cequidonne —— +1< —*— ouk>n+2 Ceciétant
" n+1 0 n+1 n+1 S+ - '

supposé étre vrai pour tout entier n, on a notre contradiction. On conclut donc qu’il n’existe pas k > 0 telle

que Vf € E, N1 (f) < kNo(f). Par conséquent, No ne domine pas Nt : Npo et N7 ne sont pas équivalentes.
a. Le maximum d’un nombre fini de réels positifs étant clairement défini et positif, la fonction N est bien

définie sur R™ quelle que soit la famille F et elle est a valeurs dans R,.



Séparation : soit x € R™ tel que N(x) = 0, alors Max (|(vi]x)]) = 0 donc Vi € [1;m], (vi]x) = 0.

1<i<m
.. 1 . . r s . N . .
Ainsi, x € (Vect(v1,---,vm)) . Mais F est une famille génératrice par hypothése ce qui se traduit par
Vect(vi,---,vm) = R™. On a vu dans le cours qu’alors (R™)* = {0}, ce qui montre que x = 0.

Homogénéité et inégalité triangulaire : par définition N = ||vy||oo OU on & posé vy = ((vi\x))KKm e R™

et ot ||.||oo est la norme infinie classique (mais dans R™). Si A € R et (x,y) € (R™)?, par bilinéarité du
produit scalaire canonique dans R™, on a les relations vax = Ay et vy = vx +v,. Comme on sait que
justement ||.||co est une norme, on en déduit que N(Ax) = |[vax|loo = [|Avx|loo = A [|[vx|loc = [A|N(x) et
N(x+Y) = [Vrtylloo = [vx +vylleo < [Vxlloo + [[vylloe = N(x) + N(y).

N vérifie 'axiome de séparation, ’homogénéité et I'inégalité triangulaire, donc N est une norme sur R™.
n

b. Prenons m = n et § = (e1,---,en) la base canonique de R™ (bien génératrice), alors si x = ) xjei,
i=1
puisque JF est orthonormale, x; = (ei|x) donc N(x) = 1T\</l.(ix [xi] = ||x||co (norme infini classique dans R™).
<ign
n
c. Prenons m = 2™ et F = (v¢)ee(—1,1}n OU, si on note e = (e1,--+,en) € {—1,1}™, on pose ve = ) eie;.

i=1
La famille F est bien génératrice de R™ car, par exemple en notant A; = {e € {—1,1}" | 1 = 1} la partie

de {—1,1}" de cardinal 2™~ ", on a > v, = 2" Te; car dés que j > 2, il existe autant de n-uplets ¢ dans

e€EA
Aq tels que &5 = 1 que de n-uplets tels que ¢ = —1 (2™=2 de chaque sorte). Ainsi, e; = n]_1 > ve. Bien
€A,
stir, par symétrie, si k € [2;n], ex = 2“]*1 > v avec Ax = {e € {—1,1}"™ | ex = 1}. De plus, toujours
A
n Eenk n
six = > xjei, pour ¢ € {=T1,1}™, (ve|[x) = > eixqy ce qui donne N(x) = Max | Y. eixq|. Il est clair
i=1 i=1 ee{-1,1}" 1=
n
que | Y eixi| est maximale si les eix; sont tous de méme signe, c’est-a-dire si (Vi € [1;n]), eixi = |xi]) ou si
i=1
n
(Vi e [1;n], eixi = —|xi|). On a donc N(x) = > |xi| = ||x||1 (norme 1 classique dans R™).
i=1

d. Supposons qu’il existe une famille génératrice F de R™ telle que ||.||2 = N (N associée & F comme dans

Pénoncé). On peut déja supposer que deux vecteurs différents de F ne sont pas colinéaires. En effet, si par
exemple vi et vy sont colinéaires, et si on suppose que vy est celui des deux qui a une norme maximale

(Iv2llz = |v1ll2), alors N(x) = Max (|(vi]x)|]) = Max (|(vi|]x)|) = N'(x) avec la famille ¥ = (v2, -+, vm)
1<i< 2<i<m

qui est encore génératrice. Dorénavant, on prendra donc F avec des vecteurs non deux a deux colinéaires.

Soit j € [1;m] tel que [|vj||2 = 1%?‘ [[vi]|]2. Comme, par CAUCHY-SCHWARZ, pour i € [1;m], on a
<igm

|(vilv)| < [vill2lvill2 < [[vil|5 par définition de j, on en déduit que N(vj) = 1Tl/gg>:]l(|(vi|vj)|) = ||v]13.
Puisqu’on a supposé que N = [|.||2, on a aussi N(v;) = ||vj||3 = |[vj||2 donc ||vj]| = 1 (on ne peut pas avoir

[[vj|]2 = 0 sinon tous les vecteurs de F seraient nuls par définition de j et F ne pourrait pas étre génératrice).
On prend un vecteur v unitaire qui est orthogonal a vj, on le peut car n > 2. Et on pose alors x = vj + Av
avec A € R*. Alors, d’aprés PYTHAGORE, ||x|[3 = |[v;||3 + A?|v||3 > |[v;||3 donc [[x||]2 > [[v||2 = 1. On va
montrer que, pour A assez petit, le vecteur x vérifie N(x) = N(v;) (les boules unités pour les normes N sont
des polyedres et, comme v; est sur la sphere unité By (Ogn, 1), la “face” du polyedre contenant vj est une

partie du plan passant par vj et de vecteur normal v; - on I'a constaté pour les normes 1 et oo en b. et c.).



D’abord, comme vj L v, on a |[(vj[v)| = [(vj|v; +Av)| = [(vj]v;) + 0] = []v;]|5 = 1. Evaluons, pour i € [[1;m]]
tel que i # j, la quantité (vi|x) = (vi|lv; + Av) = (vi]vj) + A(vi|]v). Par inégalité triangulaire et puisque
Pon a [[vifl2 < [pvllz = 1, [(viP)] < [(vilvi)] + AL < [vilvi)] + INHvill2 [z < [vilv)] + -
Comme v; n’est pas colinéaire a vj, d’aprés le cas d’égalité dans l'inégalité de CAUCHY-SCHWARZ, on a
|(vilvj)| < [|vill2][vjll2 = [[vill2 < 1 donc |(vi]vj)| < 1. 11 suffit donc de choisir A tel que 0 < [A| <1 — [(vi|vj)]
pour qu’on ait |(vi|x)| < 1. Il faut maintenant rendre ce choix indépendant de i.

Posons donc Ao = Min (1—1(vi]v;)|) > 0, alors si on choisit A € [—Ao;Ag], on a donc Vi € [1;m], |(vilx)] <1
AT

et |(vj|x)| =1 donc N(x) = 1. Comme on a vu que ||x||2 > 1, on ne peut donc pas avoir N = ||.||2.
Ainsi, la norme 2 classique ||.||2 de R™ n’est pas une norme N obtenue comme ceci.

a. C est une partie non vide et majorée de R donc, par la propriété fondamentale des réels, elle admet une

borne supérieure. Pour tout entier n € N, Sup(C) est un majorant de C mais Sup(C)— Zi“ n’en est pas un car

Sup(C) est le plus grand des majorants. Ainsi, il existe un réel x,, € C tel que Sup(C) — 2]“ < xn < Sup(C).

Comme lim (Sup(C) - i) = Sup(C), par le théoreme d’encadrement, on a lim x, = Sup(C). Par
n—+00 n—-4o00

2TL
conséquent, (xn)nen est une suite d’éléments de C qui converge vers Sup(C). Bien sir, il existe aussi une

suite (yn)nen d’éléments de C qui converge vers Inf(C).
b. Comme C est non vide, X ne l’est pas non plus car si ¢ € C, alors |c — ¢|] = 0 € X. De plus, comme C est
non vide et bornée, il existe M € R tel que Vx € C, x| < M. Ainsi, V(x,y) € C?, [x —y| < |x| + [y| <2M
par inégalité triangulaire donc C est non vide, minoré par 0 et majoré par 2M donc X admet une borne
inférieure et une borne supérieure toujours par la propriété fondamentale des réels. Mieux, si (x,y) € C?, en
supposant que x > y (l'autre cas est symétrique), on a [x —y| = x —y < Sup(C) — Inf(C) car xn < Sup(C)
et yn = Inf(C) donc Sup(C) — Inf(C) est un majorant de C.
e 0 minore X et 0 € X donc 0 = Min(C) = Inf(X).
e D’aprés a., il existe des suites (xn)nen €t (Yn)nen d’éléments de C qui convergent respectivement
vers Sup(C) et Inf(C). Il existe un rang no tel que ¥n = ng, xn = yn (et ceci méme si C = {c} car
alors xn, =yn =c¢). Alors Vn > ng, xn —yn = |xn —yn| € C et nEToo(Xn —yn) = Sup(C) — Inf(C).
Comme Sup(C)—Inf(C) est un majorant de X et qu’il existe une suite d’éléments de X qui converge vers

Sup(C) — Inf(C), par la caractérisation séquentielle de la borne supérieure, Sup(X) = Sup(C) — Inf(C).

a. Soit (A,B) € E2, la case (i,j) de ATB contient, par définition du produit matriciel et de la transposée, le

n
terme Z ax,ibk,j. Ainsi, Tr (ATB) = Y ( > ax,ibk l) = > aijbij =< A,B > en remplagant k par i,
k=1 i=1 k=1 1<ij<n
i parj. ||A]| est donc la norme euclidienne (associée au produit scalaire canonique) de A.

b. Pour (u,v) € (R™)? si on écrit u = (ur, -, um) et v = (v1, +,vm), on a l'inégalité de CAUCHY-

<SRy vE =l

Si on note la matrice C = AB = (cij)1<ij<n, O & cij = »_ ai bk, par définition du produit matriciel
k=1

SCHWARZ (pour le produit scalaire canonique dans R™) : |(u|v)| =



donc, avec l'inégalité précédente élevée au carré, en posant ux = ayx et v = byxj et m = n, il vient

||AB||2 S él:l (]i—l:l (ki:l aiz’k> x (ké bid)) - ii:] <<k§1 aiz’k) ]i::] (1;::1 bij)) o ji::] (1;::1 bi’j) - ||BH2

n n
done [|AB||? < 3 <|B||2( > a%,k)> = [IAII? 18]

i=1 k=1
c. On a déja AMy = MoA par hypothese. Si on suppose, pour un entier p € N, que AM, = M,A, alors
AMpi1 = A2Mp — MpAM,) = 2AMy,, — (AMp)? = 2MpA — (MpA)? = (2M}, — MpAMp)A = M4 1A par
hypothese de récurrence. Ainsi, par principe de récurrence, on a Vp € N, AM;, = MpA.
Pour p € N, [|[Iy — AMp41]| = ||In — 2AMp, + AMpAM, || = [|(In — AMp)?|| < [|In — AM,||? d’apres la
question b.. On a ||I, — AMo|| = ||In — AM0||20 et, si on suppose que ||In — AMy|| < [|In — AMo||?” pour
un entier p € N, alors ||In — AMp1]] < [|In =AM, |2 < (||In — AMol?")2 = ||In —AM0||ZP+]. Par principe
de récurrence, ¥p € N, 0 < ||In — AM, || < |[In — AMol|?".

Comme ||I, — AMy|| < 1 par hypothese, on a liT |[In — AMg]|?" = 0 et, par encadrement avec l'inégalité
p—+oo

précédente, on en déduit que lim |[|I, — AMy|| = 0, ce qui prouve que Uim AM, = I,. On a aussi
p—+o0 p——+o0
AT = My || = []A7 1 (In — AM,,) || < ||ATT|]||In — AM,|| donc, de méme, pLi)TJ_loo M, =A"".

La suite (|[In—AMo| 12" )PE y tend tres vite vers 0 donc la convergence de (Myp )pen vers A~ est extrémement

rapide, seul le choix de la matrice Mg telle que ||In — AMp|| < 1 reste a faire.

a. Soit ¢ : [0;1] — R telle que @(x) = f(x) — x. Comme f est continue sur [0;1], @ est aussi continue par
opérations sur [0;1]. Or ¢(0) = f(0) > 0 car f(0) € [0;1] et (1) = (1) —1 < 0 car f(1) € [0;1]. Ainsi, par le
théoréme des valeurs intermédiaires, comme @(0)p(1) < 0 et que ¢ est continue sur [0;1], il existe un réel

o € [0;1] tel que @(«) = 0, ce qui justifie que « € A donc A # 0.

A est donc une partie non vide de R, majorée par 1 et minorée par 0. La propriété fondamentale de R
montre que A admet une borne supérieure M < 1 et une borne inférieure m > 0. Par caractérisation
de la borne supérieure, il existe une suite (un)nen d’éléments de A qui converge vers M. On a donc
Vn e N, f(un) =un (R) et, en passant a la limite dans cette relation (R) et par caractérisation séquentielle
de la continuité de f, on a f(M) = M. Ainsi, M € A et M majore A assure que M est le maximum de A. De

méme, m est le minimum de A.

b. Posons h = f— g, de sorte que h est continue sur [0; 1] par opérations. Comme fog = gof, en 'appliquant
en M, on a f(g(M)) = g(f(M)) = g(M) donc g(M) € A ce qui montre que g(M) < M = Max(A). Ainsi,
h(M) = f(M) — g(M) =M — g(M) > 0. De méme, f(g(m)) = g(f(m)) = g(m) donc g(m) € A ce qui montre

que g(m) > m = Min(A). Ainsi, h(m) = f(m) — g(m) = m — g(m) < 0. A nouveau, par le théoréme des

—~ —~—

X
valeurs intermédiaires, puisque h est continue sur [m; M| et h(m)h(M) < 0, il existe un réel ¢ € [m; M| C [0;1]
tel que h(c) = 0, ce qui revient a f(c) = g(c).

X —1 3
15.10 Ja. Dansle calculdexa =| 5 X—2 —1 |, on effectue 'opération de GAuss C1 +— C;+Cy+ C3 pour
-5 1 X+6



X+2 —1 3 1 —1 3

avoir xa = [X+2 X—-2 -1 | = (X+2)|1 X—=2 —1 | par linéarité du déterminant par rapport
X+2 1 X+6 1 1 X+6

a la premieére colonne. On effectue ensuite L, +— L[, — Ly et L3 +— L3 — L7 et on trouve 'expression
1 —1 3

XA =(X+2)[0 x—1 -4 :(x+2)‘
0 2 X+3

X—1 —4

5 x+3‘ = (X+2)(X=1)(X+3)+8) = (X+2)(X* +2X+5)

apres avoir développé par rapport a la premiere colonne.
b. Comme xa = (X42)((X+1)2+4) = (X+2)(X+1421)(X+1-2i),ona Spc(A) = {2, —1-21,—1+2i} et A

est diagonalisable car xa est scindé a racines simples sur C. Il existe donc une matrice inversible P € GL3(C)

-2 0 0

telle A = PDP~! avec D = 0 —-1-2 0 . 11 est alors classique que ¥n € N, A™ = PD"P~! et,
0 0 —1+2i

comme | —142i|=+5>2=]—-2],0ona |[[D"[e = (V5™

Pour M € My, (C), posons le réel positif |[M||o = [[P~"MP||.. Comme ||.||s est une norme d’aprés le cours :

Séparation : soit M € M, (C) telle que |[M||o = 0, alors |[P~"MP||s = 0 donc P"'MP =0 d’olt M = 0.
Homogénéité : soit M € M, (C) et A € C, [|AM|[o = [[P7T(AM)P||oo = [A[[[[PT"MP||oo = |A| [[M]]o-
Inégalité triangulaire : soit (M,M’) € (Mn(C))?, |[M+M|[o = [[P"' (M +M')P||oc = |[P"TMP+P~TM'P||»

done [[M + M'[o < [[P7'MP||oo + [[P7TM'P|[oc = [[M]lo + [[M] 0.

Ainsi, 'application M — ||M||o est une norme sur M, (C). Puisque toutes les normes sont équivalentes sur
I'espace My (C) de dimension finie, il existe («, B) € (R%)? tel que YM € Mn (C), |[M||o < [[M]] < B||[M|lo.
On a donc, Vn € N, «||A™||o < ||A™]] < B||A™||o et, d’apres le cours, en notant R (resp. Rp) le rayon de

convergence de la série entiere Y [|[A™||z™ (resp. > ||A™||oz™), on a Rgp = R > Rp car o« > 0 et B > 0.
n=0 n=0

Comme le rayon de convergence de la série Y. [|[A™oz™ = Y [[D™|ez™ = Y (v/52)™ vaut clairement
n>0 n=o nzo
1

1 n , . . 1
Ro = —= car 5|z est bornée si et seulement si |z] < —, ona R=—.
0 \/g ((\[| ) )nEN 2| NG \/g
15.11 ) a. Comme x € Im (u—idg), il existe y € E tel que x = (u—id g)(y) = u(y) —y ce qui s’écrit u(y) = x+y.
b. Comme x € Ker(u —idg), on a u(x) = x. Ainsi, par une récurrence facile, on a Yk € N, u*(x) = x. Soit
n € N, en composant 'égalité u(y) = x +y par u* pour k € [0;n — 1], on a u**+!(y) = u*(x) + u*(y) donc

k+1(

n—1
uR T (y) — uk(y) = uk(x) = x. Ainsi, par télescopage, on a > (u*1(y) — uk(y)) = u™(y) — y = nx donc

k=0
u(y) = nx +y (et méme pour n =0 car u®(y) = ide(y) =y = 0.x +y).

n p—
c. Ainsi, Yn € N*, x = u(yiy Or [[u(y)|] < ||y]| et, 1& encore par une récurrence simple, on montre que
n

W+l ¢ 2[ll
n n

n
vm e N, [[lu™(y)]| < |lyll, ce qui montre que 0 < ||x|| < [[u par inégalité triangulaire

donc, comme lim 2]l _ 0, en passant a la limite, ||x|| = 0 donc x = O.

n—+oco N
d. On vient de voir avec c. que Im (u —idg) et Ker(u —id g) sont en somme directe mais, avec la formule
du rang, dim(Im (v —id¢)) + dim(Ker(u —id ¢)) = dim(E). Ainsi, on a Im (uw —idg) @ Ker(u—idg) = E et

les sous-espaces Im (uw — id g) et Ker(u — id g) sont supplémentaires dans E.



