Apprentissage
supervisé

I Algorithme des k£ plus proches voisins

On va chercher a apprendre a un ordinateur a reconnaitre par lui-méme des « objets », c’est-a-dire a prédire a quelle
« classe » ils appartiennent. On suppose que

e un objet est défini par un certain nombre de caractéristiques : une couleur, une forme, une marque,. ..

e les différentes classes forment une partition de I’ensemble des différents objets : elles sont donc deux a deux disjointes
et tous les objets considérés appartiennent bien a une des classes.

e on dispose d'un ensemble d’objets E pour lesquels on connait leur classe respective

e on dispose d'un ensemble d’objets X que l'on va chercher a reconnaitre en cherchant des « similitudes » avec les
objets de F.

Pour mesurer les similitudes entre deux objets, on a besoin d’une distance, ie une application telle que, pour tous objets
T,y etz
dz,y) =0=z=y dzy) =dyz) day) <dz2)+dzy)
Le principe de I'algorithme des k plus proches voisins est le suivant :
— on fixe au départ un entier k, compris entre 1 et n = len(E)
— pour un objet z de X, on détermine les k éléments de E les plus proches de x (au sens de la distance d)

— on prédit que la classe de I'objet x est la classe majoritaire parmi les k objets de F précédents.

II Un exemple dans le plan

1. Codage de l’algorithme

On considere un ensemble de points du plan divisé en deux sous-ensembles :
— 10 points ronds (et bleus)
— 10 points carrées (et rouges)

Les points ronds ont une abscisse z < 0, les rouges ont une abscisse x > 0

Un point est représenté par un triplet (x,y,c) ou x,y sont les coordonnées du point et c est sa classe (0 pour un point
bleu, 1 pour un point rouge).

L’ensemble E est par exemple le suivant :
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On rajoute alors 40 points pour définir ’ensemble X :

T
10

T
20

T
30

30 . i . 30 . i ]
+ | L
01, ! 207 i
. . * .i * . . * .i *
1 e ' Lo, ¢ ©1 & et N ’
L] o L] L] ° L] o +
o e i o o) e ¢ o
L] 1 L] 1
L . L] L AR B
-10 ¢ E -10 . ¢ E n
n
R K . | o K
20 4 E . . —20 1 . E + L]
. | o ' i M
30 i ) ¢ 30 i ¢ r 4
7‘3(] 7&0 -10 (I) lID 20 Sb 7‘30 7‘20 -10 (I) l‘D Zb 3‘0
L’ensemble X Les ensembles E et X

On va donc chercher a prédire le signe de 1'abscisse de ces points en fonction de leurs plus proches voisins.
Pour cet exemple on utilisera la distance euclidienne canonique : si X = (x1,22) et Y = (y1,y2),

d(X,Y) = /(01— ) + (22— 1)?.

def d(x,y)
return ((x[0]—y[0]) *%x24(x[1]—y[1]) **2) xx0.5
La fonction suivante détermine la classe d’'un point x de X en fonction de ’échantillon E avec l'algorithme de k& plus
proches voisins :
def kKNN(x,E, k)
L = [(d(x,(p[0],p[1])),p[2])
L.sort ()
test =0
for i in range(k) :
if L[i][1] =1
test 4+=1

for p in E]

else
test —=l1
if test > 0
return (x[0],x[1],1)
else
return (x[0],x[1],0)

— La liste L initiale contient des couples (d(x,p),c) ou p est un point de E et c est la couleur du point p

— La ligne L.sort () permet de trier la liste L selon sa premiére coordonnée, donc suivant les distances & x croissantes.

— Les lignes suivantes servent & déterminer, parmi les k plus proches voisins, s’il y a plus de points bleus (et test est
alors > 0) ou de points rouges (et test est alors < 0); pour éviter les ambiguités, on choisira k impair.

— On renvoie alors un nouveau point, avec les méme coordonnées et avec la couleur prédite.

En modifiant la valeur de k, on obtient les résultats suivants :
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2. Matrice de confusion

On voit sur 'exemple précédent que le choix du parametre k a une incidence sur les résultats :

— pour k =1, la couleur donnée est celle du point le plus proche, ce qui donne 6 erreurs dans notre exemple
— pour k =7, on a toujours 6 erreurs (mais pas sur les mémes points)
— pour k=11, il n’y en a qu’une

— pour k = 19 (le maximum), la couleur donnée est la couleur opposée au point le plus loin, ce qui donne 9 erreurs.

On pourrait imaginer qu’augmenter la valeur de k donne de meilleurs résultats, mais comme on le voit sur cet exemple,
ce n’est pas toujours le cas. Afin de déterminer la meilleure valeur de k, il faut faire un certain nombre de tests.

Pour mesurer P'efficacité de I’algorithme (et du choix de k), on utilise la matrice de confusion définie par M = (m; j)1<i,j<p €
M, (R), ot p est le nombre de classes et

m; ; est le nombre d’objets de classe réelle ¢ dont I'algorithme & prédit la classe j

Dans notre exemple M € Ms(R) et
— my,1 est le nombre de points de X d’abscisses < 0 et prédits dans la classe « ronde »
— my 2 est le nombre de points de X d’abscisses < 0 et prédits dans la classe « carrée »
— mg,1 est le nombre de points de X d’abscisses > 0 et prédits dans la classe « ronde »
— Mg, est le nombre de points de X d’abscisses > 0 et prédits dans la classe « carrée »

Dans une prédiction parfaite, cette matrice serait diagonale. On cherche dont une valeur de k pour laquelle la matrice de
confusion est la plus proche d’une matrice diagonale.
Avec les valeurs de k précédentes, on obtient les matrices suivantes :

13 5 12 6 17 1 18 0
My = ( 1 21) Mz = (0 22) M = <0 22) Mo = (9 13)
IIT Reconnaissance de caractéres

En utilisant I'algorithme des k plus proches voisins, on peut apprendre a un ordinateur & reconnaitre des chiffres sur une
image, pour lire le code postal sur une enveloppe ou la plaque minéralogique d’une voiture par exemple.

La reconnaissance des chiffres est un probléme & 10 classes (donc la matrice de confusion sera une matrice de Mio(R)).
On suppose disposer d’un échantillons d’image de chiffres et du chiffre correspondant a partir duquel on va lire les autres
images. Un tel échantillon est par exemple disponible dans le dataset MNIST784 qui contient 70000 images de chiffres.
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Une image, en noir et blanc, de chiffre est représentée par une matrice de taille 28 x 28 pixels codés par des entiers de
[0,255] (0 pour du noir et 255 pour du blanc).

C’est un 4

On peut calculer la distance entre deux images X et Y par

AXY)= | > (wij—vi;)?

1<4,5<28

Si on considére un ensemble E, choisi aléatoirement, composé de 600 images & partir desquelles on fait des tests pour
reconnaitre 200 images (de 'ensemble X), on peut obtenir, avec seulement k = 3, la matrice de confusion suivante :

2 0 0 0 0 0O 0 0 0 O
0 2 0 0 O O O 0 0 O
0 2 1 0 1 0 0 0 0 1
10 0 22 0 1 0 0 2 0
M = 0o o0 o o0 17 0 0 0 0 O
0O 0 o 3 0 12 0 0 0 O
10 0 0 0 0 12 0 0 0
0O 0 o o0 1 0 0 28 0 1
o 1 0 3 0 O 0 1 6 1
o 0 o o0 2 0 0 0 0 21

Les principales erreurs concernent la reconnaissance du chiffre 8. Plus précisément, si on cherche, avec cet échantillon a
reconnaitre des 8, le taux de bons résultats est, en faisant le test sur 100 images représentant effectivement un 8 :

— 78% pour k =3
— 2% pour k=7
— 72% pour k=12

On voit a nouveau qu’il peut étre difficile de déterminer la meilleure valeur de k en fonction de I’échantillon F choisi.
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