
Correction TD10

1. La classe majoritaire
1. On utilise un dictionnaire pour compter le nombre d’occurrence de chaque classe avant d’en déterminer la plus

grande

def m a j o r i t a i r e (L) :
d = {}
for e l t in L :

i f e l t [2] in d :
d [e l t [2]] += 1

else :
d [e l t [2]] = 1

Maj = 0
for c in d :

i f d [c] > Maj :
c la s seMaj = c
Maj = d [c]

return c las seMaj

2. On modifie le début de la fonction précédente en prenant comme valeur associée à une clé le poids du point à
rajouter

def m a j o r i t a i r e (x , d i s t , L) :
d = {}
for e l t in L :

i f e l t [2] in d :
d [e l t [2]] += 1/(1+ d i s t (x , e l t [2]))

else :
d [e l t [2]] = 1/(1+ d i s t (x , e l t [2]))

Maj = 0
for c in d :

i f d [c] > Maj :
c la s seMaj = c
Maj = d [c]

return c las seMaj

2. Éviter un tri complet

1. def posMax(x , L , d i s t) :
ind = 0
for k in range (len (L)) :

i f d i s t (x , L [k]) < d i s t (x , L [ind]) :
ind = k

return ind

2. On remplace le point de L (les k premiers points de E) le plus loin de x s’il est plus loin que le nouveau point de E
que l’on examine. Il faut faire attention à ne pas garder la classe des points de E pour utiliser la fonction précédente.

def plusProche (x ,E, d i s t , k) :
L = E [: k]
for y in E [: k] :

L1 = [z [: 2] for z in L]
ind = posMax(x , L1)
i f d i s t (x , y [: 2]) < d i s t (x , L1 [ind]) :

L [ind] = y # i c i i l f a u t garder l e s c l a s s e
return L

3. La complexité dans le code du cours, dus au tri de la liste des distances entière est en O(n ln n) si n = len(E). Ici
le coût de posMax est en O(k), on l’utilise O(n) fois donc on a une complexité en O(nk), ce qui est meilleur si k est
petit devant n (ce qui est en général le cas)

PSI1 - Lycée Montaigne Page 1/2

3. Choisir k

1. On coupe l’ensemble E en deux (parts égales par exemple), on utilise la première partie comme ensemble de référence
pour faire les prédictions sur la seconde partie puis on calcule le taux de bonnes réponses en fonction de la valeur de
k. Pour un choix cohérent, il faut faire ce test plusieurs fois, donc en mélangeant E avant pour ne pas faire toujours
le même découpage

2. def choixK (E, d i s t) :
K = [0] ∗ 11 # on t e s t l e s v a l e u r s de k impairs de 1 à 21
n = len (E)
for _ in range (100) : # pour f a i r e 100 t e s t s

random . s h u f f l e (E) # E e s t mé lang é sur p l ace
T = E [: n //2]
for h in range (len (K)) :

exact = 0
k = 2∗h+1
for i in range (n//2 ,n) :

y = kNN(E[i] ,T, k)
i f y [2] == E[i] [2] : # bonne pr é d i c t i o n

exact += 1
K[h] += exact

hMax = 0 # on cherche l a va l eu r de k qu i a donné l e
p l u s de bonnes pr é d i c t i o n s

for i in range (len (K)) :
i f K[i] > H[hMax] :

hMax = i
return 2∗hMax+1

PSI1 - Lycée Montaigne Page 2/2

	La classe majoritaire
	Éviter un tri complet
	Choisir k

