Correction TD10

1. La classe majoritaire

1. On utilise un dictionnaire pour compter le nombre d’occurrence de chaque classe avant d’en déterminer la plus
grande

def majoritaire (L)
d = {}
for elt in L :
if elt[2] in d
dlelt [2]] +=1
else
dlelt [2]] =1
Maj = 0
for ¢ in d
if d[c] > Maj
classeMaj = ¢
Maj = d[c]
return classeMaj

2. On modifie le début de la fonction précédente en prenant comme valeur associée a une clé le poids du point a
rajouter

def majoritaire (x,dist ,L)
d = {}
for elt in L :
if elt[2] in d :
d[elt [2]] 4= 1/(1+dist (x,elt [2]))
else
dlelt [2]]

1/(1+dist (x,elt [2]))
Maj = 0
for ¢ in d :
if d[c] > Maj
classeMaj = ¢
Maj = d[c]
return classeMaj

2. Eviter un tri complet

1.| def posMax(x,L, dist)
ind =0
for k in range(len(L))
if dist(x,L[k]) < dist(x,L[ind])
ind = k
return ind

2. On remplace le point de L (les k premiers points de E) le plus loin de x s’il est plus loin que le nouveau point de E
que 'on examine. Il faut faire attention a ne pas garder la classe des points de E pour utiliser la fonction précédente.

def plusProche (x,E, dist ,k)

L =E[:k]
for y in E[:k] :

L1 = [z[:2] for z in L]

ind = posMax(x,L1)

if dist(x,y[:2]) < dist(x,L1[ind])

L[ind] =y # ici il faut garder les classe

return L

3. La complexité dans le code du cours, dus au tri de la liste des distances entiere est en O(nlnn) si n = len(E). Ici
le cotlit de posMax est en O(k), on 'utilise O(n) fois donc on a une complexité en O(nk), ce qui est meilleur si k est
petit devant n (ce qui est en général le cas)

PSI1 - Lycée Montaigne Page 1



3. Choisir k

1. On coupe l'ensemble E en deux (parts égales par exemple), on utilise la premiére partie comme ensemble de référence
pour faire les prédictions sur la seconde partie puis on calcule le taux de bonnes réponses en fonction de la valeur de
k. Pour un choix cohérent, il faut faire ce test plusieurs fois, donc en mélangeant E avant pour ne pas faire toujours
le méme découpage

2.|def choixK (E, dist)
K= [0] % 11 # on test les wvaleurs de k impairs de 1 a 21
= len(E)
for _ in range(100) : # pour faire 100 tests
random. shuffle (E) # E est mélangé sur place
T=E[:n//2]
for h in range(len (K))
exact = 0
k = 2xh+1
for i in range(n//2,n)
y = KNN(E[i],T,k)

if y[2] = E[i][2] : # bonne prédiction
exact += 1
K[h] 4= exact
hMax = 0 # on cherche la wvaleur de k qui a donné le

plus de bonnes prédictions
for i in range(len (K))
if K[i] > H[hMax]
hMax = i
return 2xhMax+1

PSI1 - Lycée Montaigne Page 2



	La classe majoritaire
	Éviter un tri complet
	Choisir k

