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1 Convexité : soit (E,N) un espace vectoriel normé et C une partie non vide de E

1.1 C convexe ⇐⇒ (∀(x, y) ∈ C2, ∀t ∈ [0; 1], tx+ (1− t)y ∈ C) 1.3 une intersection de convexes en est un

1.2 C convexe ⇐⇒ (∀(x, y) ∈ C2, ∀t ∈ R, tx+ (1− t)y ∈ C) 1.4 une réunion de convexes en est un

2 Normes : soit E un R-espace et N une norme sur E, λ ∈ R et x, y deux vecteurs non nuls de E

2.1 N(λx) 6 |λ|N(x) 2.3 N(x+ y) = N(x) +N(y) ⇐⇒ ∃α ∈ R+, x = αy

2.2 N(x+ λy) 6 N(x) + |λ|N(y) 2.4 N(x− y) 6
∣∣N(x)−N(y)

∣∣
3 Normes : exemples et contre-exemples dans l’espace R3[X], l’application N : R3[X] → R qui à un polynôme

P = aX3 + bX2 + cX+ d associe ..... est-elle une norme dans R3[X] ?

3.1 N(P) = |P(0)|+ |P(1)|+ |P(2)| 3.3 N(P) = Max
x∈[0;1]

(|P(x)|)

3.2 N(P) = |a|+ |b|+ 5|c|+ |d| 3.4 N(P) =
∫ 1

0
P(t)dt

4 Normes usuelles dans R2: soit les normes classiques || . ||1, || . ||2 et || . ||∞ dans R2 et les trois boules unités

associées à ces normes B1 = {v ∈ R2 | ||v||1 < 1}, B2 = {v ∈ R2 | ||v||2 < 1} et B∞ = {v ∈ R2 | ||v||∞ < 1}

4.1 ∀v = (x, y) ∈ R2, ||v||2 6 ||v||∞ 4.3 B1 ⊂ B2

4.2 ∀v = (x, y) ∈ R2, ||v||1 6 2||v||∞ 4.4 B2 ⊂ B∞

Définition Soit E = Cn et x = (x1, · · · , xn) ∈ E. Soit deux réels a < b et E′ = C0([a; b], R) et f ∈ E′.

Donner la définition de ||x||1, ||x||2, ||x||∞ et ||f||1, ||f||2, ||f||∞.

Preuve Soit E un R-espace vectoriel normé E (muni d’une norme notée || . ||), a ∈ E et r > 0. Montrer que

la boule fermée Bf(a, r) = {x ∈ E | ||x− a|| 6 r} est convexe.

Exercice 1 Soit E = Rn[X] et N : E → R+ défini par N(P) =
n∑

k=0

∣∣P(k)(0)
∣∣. Prouver que N est une norme.

Exercice 2 Soit E = Mp(R) muni de la norme euclidienne || . || associée au produit scalaire canonique

(A, B) 7→ (A|B) = tr(ATB). On a vu en TD que ∀(U, V) ∈ E2, ||AB|| 6 ||A|| ||B||. Soit A, B deux matrices

de E et ||A|| < 1 et Ip − A inversible, on définit la suite de matrices (Un)n∈N ∈ EN telle que U0 = Ip et

∀n ∈ N, Un+1 = AUn + B. On pose M0 = (Ip − A)−1B.

a. Montrer que si (Un)n∈N converge, alors lim
n→+∞

Un = M0.

b. Montrer que ∀n ∈ N, Un+1 −M0 = A(Un −M0).

c. En déduire que la suite (Un)n∈N converge bien vers M0.
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QCM Répondre dans le tableau ci-dessous au QCM : mettre une croix dans la case de la ligne i colonne j

revient à déclarer la question i.j vraie. Ne rien mettre revient à la déclarer fausse.

i · j 1 2 3 4 Fautes

1

2

3

4

Définition

Preuve

Exercice 1



Exercice 2
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i · j 1 2 3 4 Fautes

1 X X

2 X X

3 X X

4 X X X

1.1 Vrai : définition 1.2 Faux : si t < 0 ou t > 1, on sort du segment [x; y] 1.3 Vrai : cours 1.4 Faux :
[0; 1] ∩ [2; 3] n’est pas convexe dans R.
2.1 Vrai : on a même égalité 2.2 Vrai : par inégalité triangulaire et homogénéité 2.3 Faux : si par exemple on
prend ||(x, y||∞ = Max(|x|, |y|) dans E = R2, x = (1, 0) et y = (1, 1) 2.4 Faux : c’est N(x−y) >

∣∣N(x)−N(y)
∣∣.

3.1 Faux : P = X(X − 1)(X − 2) ̸= 0 est dans R3[X] bien que N(P) = 0 3.2 Vrai : classique 3.3 Vrai :
classique 3.4 Faux : N est linéaire mais ni homogène ni positive.
4.1 Faux : si v = (1, 1), ||v||2 =

√
2 et ||v||∞ = 1 4.2 Vrai : |x|+ |y| 6 Max(|x|, |y|) +Max(|x|, |y|) = 2||v||∞

4.3 Vrai : ||v||2 =
√

v21 + v22 6 |v1|+ |v2| = ||v||1 4.4 Vrai : ||v||∞ = Max(|v1|, |v2|) 6
√

v21 + v22 = ||v||2.

Définition Par définition, ||x||1 =
n∑

k=1

|xk|, ||x||2 =

√
n∑

k=1

|xk|2, ||x||∞ = Max
k∈[[1;n]]

|xk| et ||f||1 =
∫ b

a
|f(t)|dt,

||f||2 =

√∫ b

a
f(t)2dt, ||f||∞ = Sup

t∈[a;b]
|f(t)| = Max

t∈[a;b]
|f(t)| (fonctions continues sur des segments donc

intégrables et théorème des bornes atteintes).

Preuve Soit x et y deux vecteurs de la boule fermée Bf(a, r), ce qui se traduit par ||x−a|| 6 r et ||y−a|| 6 r.

Soit aussi un réel t ∈ [0; 1], alors le vecteur tx+ (1− t)y est aussi dans Bf(a, r) car, par inégalité triangulaire

et homogénéité, ||tx+(1−t)y−a|| = ||t(x−a)+(1−t)(y−a)|| 6 t||x−a||+(1−t)||y−a|| 6 tr+(1−t)r = r.

On en déduit par définition que Bf(a, r) est une partie convexe de E.

Exercice 1 Soit λ ∈ R, P et Q deux polynômes de E.

Séparation : N(P) = 0 ⇐⇒ ∀k ∈ [[0;n]], |P(k)(0)| = 0 =⇒ P =
n∑

k=0

P(k)(0)
k!

Xk = 0 (formule de Taylor).

Homogénéité : N(λP) =
n∑

k=0

∣∣λP(k)(0)
∣∣ = n∑

k=0

|λ|
∣∣P(k)(0)

∣∣ = |λ|N(P) par linéarité de la dérivation.

Inégalité triangulaire : N(P + Q) =
n∑

k=0

∣∣(P + Q)(k)(0)
∣∣ = n∑

k=0

∣∣P(k)(0) + Q(k)(0)
∣∣ 6 n∑

k=0

∣∣P(k)(0)| + |Q(k)(0)
∣∣

par inégalité triangulaire sur les réels. Ainsi : N(P +Q) 6 N(P) +N(Q).

Au final : N est bien une norme sur E.

Exercice 2 a. (Un+1)n∈N est une suite extraite de (Un)n∈N donc lim
n→+∞

Un+1 = M si lim
n→+∞

Un = M

par hypothèse. Par opérations, on a aussi lim
n→+∞

AUn = AM car ||AUn − AM|| 6 ||A|| ||Un − M|| −→
n→+∞

0.

Par somme, comme Un+1 = AUn + B, on a donc lim
n→+∞

Un+1 = AM + B. Par unicité de la limite, il vient

M = AM+ B donc (Ip − A)M = B et, comme Ip − A est inversible, on a bien M = M0 = (Ip − A)−1B.

b. Pour n ∈ N, Un+1 −M0 = AUn + B− (AM0 + B) = AUn − AM0 = A(Un −M0).

c. On a donc ||Un+1 − M0|| 6 ||A|| ||Un − M0|| par l’inégalité vue en TD donc, par une récurrence facile,

∀n ∈ N, ||Un −M0|| 6 ||A||n ||U0 −M0||. Comme ||A|| < 1, par encadrement, on a lim
n→+∞

||Un −M0|| = 0,

ce qui est la définition de lim
n→+∞

Un = M0.


