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PARTIE 1 : UN COURT EXEMPLE� �

1.1 Par définition, G(u, v, w) =

 (u|u) (u|v) (u|w)
(v|u) (v|v) (v|w)
(w|u) (w|v) (w|w)

 =

 2 a 1− b
a 2a2 − 2a+ 1 a

1− b a 1+ b2

 car R3 est

muni ici de sa structure euclidienne canonique et, par exemple, (u|v) = 1× a+ 0× (1− a) + (−1)× 0 = a.

1.2.1 D’après l’énoncé, MatBc
(u, v, w) =

 1 a 1

0 1− a 0

−1 0 b

. Ainsi, après développement par rapport à la

seconde ligne, on a det
(
MatBc

(u, v, w)
)
= (1− a)

∣∣∣∣ 1 1

−1 b

∣∣∣∣ = (1− a)(1+ b) .

1.2.2 On sait que la famille (u, v, w) est liée si et seulement si det
(
MatBc

(u, v, w)
)
= 0. D’après 1.2.1, on a

donc (u, v, w) est liée si et seulement si a = 1 ou b = −1. Traitons les deux cas :

Si a = +1 on a dans ce cas G(u, v, w) =

 2 1 1− b
1 1 1

1− b 1 1+ b2

 et, avec la formule de Sarrus, on a

det(G(u, v, w)) = 2(1+ b2) + 1− b+ 1− b− 2− (1+ b2)− (1− b)2 = 0 (après calculs).

Si b = −1 on a maintenant G(u, v, w) =

 2 a 2

a 2a2 − 2a+ 1 a

2 a 2

 et, toujours avec la formule de Sarrus,

det(G(u, v, w)) = 4(2a2 − 2a+ 1) + 2a2 + 2a2 − 4(2a2 − 2a+ 1)− 2a2 − 2a2 = 0.

On a vérifié dans les deux cas que si (u, v, w) est liée, alors det(G(u, v, w)) = 0.

1.2.3 Dans le calcul de det(G(u, v, w)), après C3 ← C3 −C1, det(G(u, v, w)) =

∣∣∣∣∣∣
2 a −1− b
a 2a2 − 2a+ 1 0

1− b a b(b+ 1)

∣∣∣∣∣∣
donc, par linéarité selon C3, on a det(G(u, v, w)) = (1+ b)

∣∣∣∣∣∣
2 a −1
a 2a2 − 2a+ 1 0

1− b a b

∣∣∣∣∣∣. Après L3 ← L3 − L1

et linéarité par rapport à L3, il vient det(G(u, v, w)) = (1 + b)2

∣∣∣∣∣∣
2 a −1
a 2a2 − 2a+ 1 0

−1 0 1

∣∣∣∣∣∣. Ensuite, après

L1 ← L1+L3 et développement par rapport à la colonne 3, on a det(G(u, v, w)) = (1+b)2
∣∣∣∣ 1 a

a 2a2 − 2a+ 1

∣∣∣∣
ce qui donne det(G(u, v, w)) = (1+ b)2(a2 − 2a+ 1) = (1+ b)2(1− a)2.

On a donc det(G(u, v, w)) = det(MatBc
(u, v, w))2 donc det(G(u, v, w)) > 0 et, toujours parce (u, v, w) est

liée si et seulement si det
(
MatBc

(u, v, w)
)
= 0, det(G(u, v, w)) = 0 si et seulement si (u, v, w) est liée.



� �
PARTIE 2 : ÉQUIVALENCE� �

2.1.1 On vérifie XT
i CXj = ci,j soit par calcul direct, soit en remarquant que c’est (Xi|CXj) pour le produit

scalaire canonique de Rn et comme (X1, · · · , Xn) est la base canonique de Rn, qui est donc orthonormale

pour ce produit scalaire, (Xi|CXj) est la i-ième coordonnée du vecteur CXj, qui est la j-ième colonne de C.

2.1.2 (⇐=) Si XTCY = 0 pour tout couple (X, Y) ∈ Mn,1(R)2 alors, en prenant X = Xi et Y = Xj, on obtient

ci,j = 0 d’après 2.1.1 pour tout couple (i, j) ∈ [[1;n]]2 donc C = 0.

(=⇒) Si C = 0, on a donc CY = 0 pour Y ∈ Mn,1(R) puis XTCY = XT (CY) = XT0 = 0 pour X ∈ Mn,1(R).

Par double implication, on a C = 0⇐⇒
(
∀(X, Y) ∈ Mn,1(R)2, XTCY = 0

)
.

2.2 Si x =
n∑

i=1

xiei ∈ E et y =
n∑

j=1

yjej ∈ E, on a (x|y) =
n∑

i=1

n∑
j=1

xiyj(ei|ej) =
n∑

i=1

n∑
j=1

ai,jxiyj par bilinéarité du

produit scalaire. D’autre part, par définition du produit matriciel, on a [AY]i =
n∑

j=1

ai,jyj pour tout i ∈ [[1;n]]

puis XTAY =
n∑

i=1

xi[AY]i =
n∑

i=1

xi

n∑
j=1

ai,jyj donc (x|y) = XTAY.

2.3.1 Comme B′ est une base orthonormale de E, d’après le cours, (x|y) = X′TY′.

2.3.2 Comme X =MatB(x), X
′ =MatB′(x) et P =MatB′,B(idE), d’après le cours, X = PX′.

2.3.3 Pour (x, y) ∈ E2, on a (x|y) = XTAY = X′TY′ donc (PX′)TA(PY′) = X′TY′ ou X′T (PTAP − In)Y′ = 0. Cette

relation étant valable pour tout couple (X′, Y′) ∈ Mn,1(R)2, on en déduit, d’après 2.1.2, que PTAP = In.

2.3.4 On a A = (PT )−1P−1 (P est une matrice de passage donc det(P) ̸= 0 et P est inversible) d’après 2.3.3. On

en déduit que det(A) = det((P−1)T )det(P−1) = det(P−1)2 donc det(A) > 0 et A est inversible.

2.3.5 On applique 2.3.4 à l’espace F = Vect(ε1, · · · , εp) dont (ε1, · · · , εp) est une base car elle est libre par

hypothèse et génératrice de F par construction. Ainsi, en notant B = G(ε1, · · · , εp) ∈ Mp(R), det(B) > 0.

2.4.1 Pour i ∈ [[1;n]], on a [MX]i =
n∑

j=1

(ui|uj)xj par définition du produit matriciel puis, par linéarité à droite

du produit scalaire, [MX]i =
(
ui

∣∣∣ n∑
j=1

xjuj

)
donc [MX]i = (ui|v).

2.4.2 On a alors XTMX = XT (MX) =
n∑

i=1

xi[MX]i =
n∑

i=1

xi(ui|v) =
( n∑

i=1

xiui

∣∣∣v) par linéarité à gauche du produit

scalaire cette fois-ci, donc XTMX = ||v||2.

2.4.3 (⇐=) Si MX = 0 alors XTMX = 0 donc ||v||2 = 0 donc ||v|| = 0 et v = 0E par séparation.

(=⇒) Si v = 0 alors ∀i ∈ [[1;n]], [MX]i = (ui|v) = 0 donc MX = 0.

Par double implication, on a donc l’équivalence v = 0E ⇐⇒ XTMX = 0.

2.4.4 Si
n∑

i=1

xiui = 0 avec (x1, · · · , xn) ∈ Rn, alors alors v = 0E, ce qui donne MX = 0. Comme M est inversible

par hypothèse, on en déduit X =M−1(MX) = 0 donc x1 = · · · = xn = 0 donc (u1, · · · , un) est libre.



On vient de montrer avec 2.3 et 2.4 que (u1, · · · , up) est libre si et seulement si det
(
G(u1, · · · , up)

)
> 0.

2.5.1 D’après l’inégalité de Cauchy-Schwarz, on a |(u1|u2)| 6 ||u1|| × ||u2|| = 1 donc |α| 6 1.

2.5.2 La matrice M− (1− α)In est la matrice dont tous les coefficients valent α donc, selon les valeurs de α, on

a rg(M− (1− α)In) = 1 si α ̸= 0 et rg(M− (1− α)In) = 0 si α = 0.

On a donc rg(M − (1 − α)In) 6 1 < n donc 1 − α est valeur propre de M et, par le théorème du rang,

dim(E1−α(M)) = n − rg(M − (1 − α)In
)
> n − 1. Or dim(E1−α(M)) 6 m1−α(M) d’après le cours donc

m1−α(M) > n− 1. Le polynôme caractéristique de M vérifie donc XM = (X− 1+ α)n−1(X− λ) avec λ ∈ R.

Ainsi, χM est scindé sur R, et comme χM = Xn − tr(M)Xn−1 + ...., on obtient tr(M) = (n − 1)(1 − α) + λ

en identifiant. Comme tr(M) = n, on a λ = 1+ (n− 1)α et χM = (X− 1+ α)n−1(X− 1− (n− 1)α).

2.5.3 On a MX = λX donc XTMX = λXTX = λ
n∑

i=1

x2i et, avec 2.4.2, XTMX = ||v||2 > 0. Comme X ̸= 0, on a

n∑
i=1

x2i > 0 donc, comme λ =
||v||2
n∑

i=1

x2i

, on en déduit λ = 1+ (n− 1)α > 0 ce qui donne α > −1
n− 1 .

2.5.4 Si α = − 1

n− 1 alors λ = 0 est valeur propre de M et on vérifie que le vecteur X =

 1
...
1

 est un vecteur

propre de M associé à la valeur propre 0. En utilisant à nouveau 2.4.2, on a XTMX = ||v||2 mais, comme

MX = 0, on en déduit ||v||2 = 0 donc v = 0E.

� �
PARTIE 3 : DISTANCE À UN SOUS-ESPACE� �

3.1.1 On obtient det
(
G(v1, · · · , vn−1, λvn)

)
=

∣∣∣∣∣∣∣∣∣
(v1|v1) · · · (v1|vn−1) λ(v1|vn)

...
...

...
(vn−1|v1) · · · (vn−1|vn−1) λ(vn−1|vn)
λ(vn|v1) · · · λ(vn|vn−1) λ2(vn|vn)

∣∣∣∣∣∣∣∣∣ par définition de

G(v1, · · · , vn−1, λvn) et par bilinéarité du produit scalaire. Ainsi, par linéarité du déterminant par rapport à

la dernière ligne et la dernière colonne, on a det
(
G(v1, · · · , vn−1, λvn)

)
= λ2det

(
G(v1, · · · , vn−1, vn)

)
.

3.1.2 De même, par définition de D = det
(
G(v1, · · · , vn−1, vn + λv1)

)
et par bilinéarité du produit scalaire, on a

D =

∣∣∣∣∣∣∣∣∣
(v1|v1) · · · (v1|vn−1) (v1|vn) + λ(v1|v1)

...
...

...
(vn−1|v1) · · · (vn−1|vn−1) (vn−1|vn) + λ(vn−1|v1)

(vn|v1) + λ(v1|v1) · · · (vn|vn−1) + λ(v1|vn−1) ||vn + λv1||2

∣∣∣∣∣∣∣∣∣. Dans ce déterminant, on

effectue l’opération Ln ←− Ln−λL1 pour avoir D =

∣∣∣∣∣∣∣∣∣
(v1|v1) · · · (v1|vn−1) (v1|vn) + λ(v1|v1)

...
...

...
(vn−1|v1) · · · (vn−1|vn−1) (vn−1|vn) + λ(vn−1|v1)
(vn|v1) · · · (vn|vn−1) (vn|vn) + λ(vn|v1)

∣∣∣∣∣∣∣∣∣
après calculs. Puis, après Cn ←− Cn − λC1, det

(
G(v1, . . . , vn−1, vn + λv1)

)
= det

(
G(v1, . . . , vn−1, vn)

)
.



3.2.1 Comme ∀i ∈ [[1;n]], (vi|w) = 0 car vi ∈ F et w ∈ F⊥, tous les termes de la dernière colonne du déterminant

det
(
G(v1, · · · , vn, w)

)
sont nuls, sauf celui en case (n+ 1, n+ 1) qui vaut (w|w) = ||w||2. Par développement

de ce déterminant par rapport à la dernière colonne, det
(
G(v1, · · · , vn, w)

)
= ||w||2 × det

(
G(v1, · · · , vn)

)
.

3.2.2 D’après le cours, on a d(v, F) = ||v − pF(v)|| où pF(v) est le projeté orthogonal de v sur F. Le résultat de

la question 3.1.2 se généralise avec vk à la place de v1 pour k ∈ [[1;n− 1]] et, plus généralement, on établit

que si y ∈ Vect(v1, · · · , vn) alors det
(
G(v1, · · · , vn, v + y)

)
= det

(
G(v1, · · · , vn, v)

)
. Si on applique cela avec

y = −pF(v) ∈ F, on obtient det
(
G(v1, · · · , vn, v)

)
= det

(
G(v1, · · · , vn, v−y)

)
et, par définition d’un projecteur

orthogonal, on a v − pF(v) ∈ F⊥ = vect(v1, · · · , vn)⊥, donc, d’après 3.2.1 appliqué avec w = v − pF(v), on

obtient det
(
G(v1, · · · , vn, v) = ||v− pF(v)||2 × det

(
G(v1, · · · , vn)

)
= d(v, F)2 × det

(
G(v1, · · · , vn)

)
.

3.2.3 On a vu en 1.2.3 que det(G(u, v, w)) = (1+b)2(a−1)2. On calcule aussi det(G(u, v)) =

∣∣∣∣ 2 a

a 1− 2a+ 2a2

∣∣∣∣
et det(G(u, v)) = 2 − 4a + 3a2 donc (2 − 4a + 3a2)d(w, F)2 = (1 + b)2(a − 1)2 d’après 3.2.1. Comme

2− 4a+ 3a2 = 2(1− a)2 + a2 > 0, on en déduit d(w, F) =

√
(1+ b)2(a− 1)2
2− 4a+ 3a2

.

On retrouve d(w, F) = 0 si a = 1 ou b = −1, ce qui est logique puisque dans ce cas w ∈ F d’après la partie 1.
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PARTIE 1 : ÉTUDE DE DEUX FONCTIONS� �

1.1 La fonction t 7→ e−t2 est continue sur R+ et on a e−t2 =
+∞

o

(
1

t2

)
par croissances comparées donc, par

comparaison aux intégrales de Riemann, t 7→ e−t2 est intégrable sur R+.

1.2.1 La fonction t 7→ cos(2bt)e−t2 est continue sur R+ et
∣∣∣cos(2bt)e−t2

∣∣∣ 6 e−t2 donc, d’après la question

précédente et par comparaison, t 7→ cos(2bt)e−t2 est intégrable sur R+.

1.2.2 La fonction fn : t 7→ t2ne−t2 est continue sur R+ et fn(t) =
+∞

o

(
1

t2

)
par croissances comparées donc,

par comparaison aux intégrales de Riemann, fn : t 7→ t2ne−t2 est intégrable sur R+. Dans In, on pose

un : t 7→ t2n+1

2n+ 1
et v : t 7→ e−t2 qui sont de classe C1 sur R+ avec lim

t→+∞
un(t)v(t) = 0 = un(0)v(0) par

croissances comparées donc In =
∫ +∞

0
u′n(t)v(t)dt =

[
un(t)v(t)

]+∞
0
−
∫ +∞

0
un(t)v

′(t)dt, qui s’écrit aussi

In =

[
t2n+1

2n+ 1
e−t2

]+∞

0

−
∫ +∞

0

t2n+1

2n+ 1

(
−2te−t2

)
dt donc In = 2

2n+ 1
In+1.



1.2.3 Puisque la relation finale est donnée, on peut procéder par récurrence :

Initialisation : I0 =
∫ +∞

0
e−t2dt =

√
π

2
d’après l’énoncé (intégrale de Gauss) donc I0 =

(2.0)!

22.0(0!)
×
√
π

2
.

Hérédité : soit n ∈ N tel que In =
(2n)!

22n(n!)
×
√
π

2
, alors In+1 = 2n+ 1

2
×In = 2n+ 1

2
× (2n)!

22n(n!)
×
√
π

2
d’après

1.2.2 et par hypothèse de récurrence et In+1 =
(2n+ 2)(2n+ 1)(2n)!

2(2(n+ 1))22n(n!)
×
√
π

2
=

(2(n+ 1))!

22(n+1)((n+ 1)!)
×
√
π

2
.

Par principe de récurrence, on a bien ∀n ∈ N, In =
(2n)!

22n(n!)
×
√
π

2
.

1.2.4 Soit b ∈ R et t ∈ R+, on a e2ibt =
+∞∑
n=0

2ninbntn

n!
puis, comme i2p = (−1)p ∈ R et i2p+1 = i(−1)p ∈ iR,

en séparant les termes d’indices pairs et impairs dans cette somme de série, comme tout converge par

croissances comparées, e2ibt =
+∞∑
p=0

22p(−1)pb2pt2p
(2p)!

+ i
+∞∑
p=0

22p+1(−1)pb2p+1t2p+1

(2p+ 1)!
. Comme, de plus, on a

e2ibt = cos(2bt) + i sin(2bt), en identifiant, on a cos(2bt) =
+∞∑
p=0

(−1)p 4
pb2p

(2n)!
t2p.

1.2.5 Soit b ∈ R et t ∈ R+, d’après la question précédente, cos(2bt)e−t2 =
+∞∑
n=0

(−1)n (2bt)2n

(2n)!
e−t2 . Pour

intégrer terme à terme, on pose gn : t 7→ (−1)n (2bt)2n

(2n)!
e−t2 .

(H1)
∑
n>0

gn converge simplement sur R+ vers t 7→ cos(2bt)e−t2 d’après 1.2.4.

(H2) Toutes les fonctions gn et la fonction t 7→ cos(2bt)e−t2 sont continues sur R+ par opérations.

(H3) Toutes fonctions gn sont intégrables sur R+ d’après 1.2.2.

(H4) Pour n ∈ N,
∫ +∞

0
|gn(t)|dt =

(2b)2n

(2n)!
In =

√
π

2

b2n

n!
par linéarité de l’intégrale et d’après 1.2.3

donc
∑
n>0

∫ +∞

0
|gn(t)|dt converge d’après l’énoncé (et la somme vaut

√
π

2
eb

2

).

Par le théorème d’intégration terme à terme, on en déduit que h(b) =
∫ +∞

0

+∞∑
n=0

gn(t)dt =
+∞∑
n=0

∫ +∞

0
gn(t)dt

donc h(b) =
+∞∑
n=0

(−1)n (2b)2n

(2n)!
In =

√
π

2

+∞∑
n=0

(−1)n b
2n

n!
donc h(b) =

√
π

2
e−b2

si b ∈ R d’après l’énoncé.

1.3.1 Pour dériver sous le signe somme, on pose a : (b, t) 7→ cos(2bt)e−t2 de sorte que h(b) =
∫ +∞

0
a(b, t)dt.

(H1) Pour tout t ∈ R+, la fonction b 7→ a(b, t) est de classe C1 sur R par opérations.

(H2) Pour tout b ∈ R, la fonction t 7→ a(b, t) est continue et intégrable sur R+ d’après 1.2.1..

(H3) Pour tout b ∈ R, t 7→ ∂a
∂b

(b, t) = −2t sin(2bt)e−t2 est continue sur R+ par opérations.

(H3) Pour tout (b, t) ∈ R× R+, on a
∣∣∣∂a∂b (b, t)∣∣∣ 6 2te−t2 = ψ(t) car | sin(2bt)| 6 1 avec ψ continue

et intégrable sur R+ car ψ(t) =
+∞

o

(
1

t2

)
par croissances comparées.

Par dérivation sous le signe somme, h est C1 sur R et ∀b ∈ R, h′(b) =
∫ +∞

0
(−2t) sin(2bt)e−t2dt.



1.3.2 Dans cette dernière intégrale, on pose u : t 7→ sin(2bt) et v : t 7→ e−t2 qui sont de classe C1 sur R+ avec

u(0)v(0) = 0 = lim
t→+∞

u(t)v(t) donc h′(b) = [u(t)v(t)]+∞
0 −

∫ +∞

0
u′(t)v(t)dt = −

∫ +∞

0
(2b cos(2bt))e−t2dt

par intégration par parties puis h′(b) = −2bh(b) par linéarité. On a bien ∀b ∈ R, h′(b) + 2bh(b) = 0.

1.3.3 Les solutions réelles y sur R de cette équation différentielle (E) : y′ + 2xy = 0 sont, d’après le cours, les

fonctions pour lesquelles il existe λ ∈ R tel que y : x 7→ λe−x2

. Comme h est solutions réelle sur R de (E)

d’après 1.3.2 et que h(0) =

√
π

2
d’après l’énoncé, on a ∀b ∈ R, h(b) =

√
π

2
e−b2

.

1.4.1 On pose, pour x ∈ R et t ∈ R∗
+, f(x, t) = exp

(
−t2 − x2

t2

)
et on applique le théorème de continuité :

(H1) Pour tout t ∈ R∗
+, la fonction x 7→ f(x, t) est continue sur R par opérations.

(H2) Pour tout x ∈ R, la fonction t 7→ f(x, t) est continue sur R∗
+ par opérations.

(H3) Pour x ∈ R et t ∈ R∗
+, |f(x, t)| 6 e−t2 et t 7→ e−t2 est continue et intégrable sur R∗

+ avec 1.1.

Par théorème de continuité sous le signe somme, φ est continue sur R . De plus, grâce au terme x2,

comme (−x)2 = x2, la fonction φ : x 7→
∫ +∞

0
exp

(
−t2 − x2

t2

)
dt est paire.

1.4.2 Posons à nouveau f(x, t) = exp

(
−t2 − x2

t2

)
pour x ∈ R et t ∈ R∗

+ :

(H1) Pour tout t ∈ R∗
+, la fonction x 7→ f(x, t) est de classe C1 sur R∗

+ par opérations.

(H2) Pour tout x ∈ R∗
+, t 7→ f(x, t) est continue et intégrable sur R∗

+ par domination d’après 1.4.1.

(H3) Pour x ∈ R∗
+, la fonction t 7→ ∂f

∂x
(x, t) = −2x

t2
exp

(
−t2 − x2

t2

)
est continue sur R∗

+ par opérations.

(H4) Si [a; b] ⊂ R∗
+,

∣∣∣ ∂f∂x (x, t)∣∣∣ = 2x

t2
exp

(
−t2 − x2

t2

)
6 2b

t2
exp

(
−t2 − a2

t2

)
= θa,b(t) pour tout x ∈ [a; b]

et tout t ∈ R∗
+. La fonction θa,b est continue et intégrable sur R∗

+ car on a θa,b(t) =
+∞

o

(
1

t2

)
et

θa,b(t)∼
0

2b

t2
e−a2/t2 donc lim

t→0+
θa,b(t) = 0 par croissances comparées.

Par le théorème de dérivation sous le signe somme, on en déduit que φ est de classe C1 sur R∗
+ et qu’on

a, par la formule de Leibniz, ∀x ∈ R∗
+, φ

′(x) = −2x
∫ +∞

0

1

t2
exp

(
−t2 − x2

t2

)
dt.

1.4.3 Pour x > 0, dans l’intégrale ci-dessus, on pose t = x

u
= αx(u) avec αx qui est de classe C1 stricte-

ment décroissante et bijective de R∗
+ sur R∗

+ donc φ′(x) = −2x
∫ 0

+∞

(
u2

x2

)
exp

(
− x

2

u2
− u2

)(
−x
u2

)
du par

changement de variable, qui se simplifie en φ′(x) = −2φ(x).



1.4.4 On en déduit, comme R∗
+ est un intervalle, qu’il existe λ ∈ R tel que ∀x ∈ R∗

+, φ(x) = λe−2x. Par

continuité de φ en 0 d’après 1.4.1, on a λ = φ(0) =

√
π

2
d’après l’énoncé donc ∀x ∈ R+, φ(x) =

√
π

2
e−2x

puis, par parité de φ, ∀x ∈ R, φ(x) =
√
π

2
e−2|x|.

� �
PARTIE 2 : TRANSFORMÉE DE FOURIER� �

2.1.1 Pour a ∈ R et t ∈ R+, posons m(a, t) =
cos(2at)

1+ t2
:

(H1) Pour tout t ∈ R+, la fonction a 7→ m(a, t) est continue sur R par opérations.

(H2) Pour tout a ∈ R, la fonction t 7→ m(a, t) est continue sur R+ par opérations.

(H3) Pour t ∈ R+ et tout x ∈ R, |m(a, t)| 6 1

1+ t2
= p(t) car | cos(2at)| 6 1 et p est continue et intégrable

sur R+ car p(t) ∼
+∞

1

t2
.

Par théorème de continuité sous le signe somme, ψ est définie et continue et paire sur R car cos est paire.

2.1.2 ψ(0) =
∫ +∞

0

dt

1+ t2
=

[
Arctan(t)

]+∞

0
donc ψ(0) = π

2
.

2.2 Pour a ∈ R et n ∈ N∗ fixés, on pose vp(x) = jp(x) cos(2ax) pour x ∈ [0, n] :

(H1) (vp)p∈N∗ converge simplement sur [0;n] vers v : x 7→ cos(2ax)

2(1+ x2)
=
m(a, x)
2

car lim
p→+∞

e−p2(1+x2) = 0.

(H2) Toutes les fonctions vp et la fonction v sont continues sur [0;n].

(H3) Pour (p, x) ∈ N∗ × [0;n], |vp(x)| 6 1

2(1+ x2)
et x 7→ 1

2(1+ x2)
est continue donc intégrable sur le

segment [0;n].

Par le théorème de convergence dominée, lim
p→+∞

un,p =
∫ n

0

cos(2ax)

2(1+ x2)
dx.

Ou par convergence uniforme sur le segment [0;n] avec ||vp − v||∞;[0;n] 6 1

2
e−p2

et lim
p→+∞

e−p2

= 0.

2.3.1 Pour a ∈ R et n ∈ N∗ fixés, on pose h(y, x) = y cos(2ax)e−x2y2

:

(H1) Pour tout x ∈ [0;n], la fonction y 7→ h(y, x) est continue sur R+ par opérations.

(H2) Pour tout y ∈ R+, la fonction x 7→ h(y, x) est continue par morceaux sur [0;n] par opérations.

(H3) Soit [a; b] ⊂ R+, y ∈ [a; b] et x ∈ [0;n], alors |h(y, x)| 6 b et la fonction x 7→ b est continue

donc intégrable sur le segment [0;n].

On en déduit par théorème de continuité sous le signe somme que kn est continue sur R+.



2.3.2 Si y = 0, on a ∀n ∈ N∗, kn(0) = 0 donc lim
n→+∞

kn(0) = 0 = k(0).

Si y ∈ R∗
+, la fonction x 7→ y cos(2ax)e−x2y2

= h(y, x) est continue et intégrable sur R+ car h(y, x) =
+∞

o

(
1

x2

)
par croissances comparées donc lim

n→+∞
kn(y) =

∫ +∞

0
y cos(2ax)e−x2y2

dx. On pose alors t = xy ou x = t

y
et

la fonction t 7→ t

y
est de classe C1, strictement croissante et bijective de R+ sur R+, et on a la valeur de la

limite lim
n→+∞

kn(y) =
∫ +∞

0
cos

(
2a t

y

)
e−t2dt = h

(
a

y

)
=

√
π

2
e−a2/y2

d’après 1.2.5 ou 1.3.3.

Ainsi, la suite de fonctions (kn)n∈N∗ converge simplement sur R+ vers k : R+ → R où la fonction k a

été définie par k(0) = 0 et k(y) = h

(
a

y

)
=

√
π

2
e−a2/y2

si y > 0.

2.4 La fonction kn est continue sur R+ d’après 2.3.1 donc y 7→ kn(y)e
−y2

est aussi continue sur R+ par produit.

De plus, |kn(y)| 6
∫ n

0
ydy = n2

2
par inégalité triangulaire car ∀x ∈ [0;n], | exp(−y2x2) cos(2ax)| 6 1 donc∣∣∣kn(y)e−y2

∣∣∣ 6 n2

2
e−y2

donc, par comparaison, la fonction y 7→ kn(y)e
−y2

est intégrable sur R+.

2.5 Soit p ∈ N∗, on a
∫ p

0
ye−(1+x2)y2

dy =

[
−1
2
e−(1+x2)y2

]y=p

y=0

donc
∫ p

0
ye−(1+x2)y2

dy = jp(x).

2.6 D’après 2.2, on a ψ(a) = 2 lim
n→+∞

(
lim

p→+∞
un,p

)
. On va donc calculer cette double limite autrement. Avec

l’égalité admise, on a un,p =
∫ p

0
kn(y)e

−y2

dy et avec 2.4, lim
p→+∞

un,p =
∫ +∞

0
kn(y)e

−y2

dy. On va alors

appliquer le théorème de convergence dominée pour calculer la limite de
∫ +∞

0
kn(y)e

−y2

dy quand n tend

vers +∞. On pose wn(y) = kn(y)e
−y2

pour y ∈ R+ :

(H1) La suite (wn)n∈N∗ converge simplement sur R+ vers la fonction y 7→ k(y)e−y2

d’après 2.3.2.

(H2) Les fonctions wn sont continues sur R+ d’après 2.3.1 et la fonction y 7→ k(y)e−y2

est continue

par morceaux sur R+ d’après 2.3.2.

(H3) Pour n ∈ N∗ et y ∈ R∗
+, |kn(y)| 6

∫ n

0
ye−x2y2

dx 6
∫ +∞

0
ye−x2y2

dx =

√
π

2
avec le changement

de variable affine x = t

y
facile à justifier donc |wn(y)| 6

√
π

2
e−y2

pour y ∈ R+ car wn(0) = 0.

La fonction y 7→ e−y2

est continue et intégrable sur R+ d’après 1.1.

Ainsi, lim
n→+∞

∫ +∞

0
wn(y)dy =

∫ +∞

0
k(y)e−y2

dy =

√
π

2

∫ +∞

0
exp

(
−y2 − a2

y2

)
dy =

√
π

2
φ(a) par théorème

de convergence dominée. Avec 1.4.4, ψ(a) = π

2
e−2|a| pour tout a ∈ R par parité de ψ.


