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(PARTIE 1 : PROJECTIONS ORTHOGONALES)

n

Comme F = Vect(er,---,en), en notant y = x — Y. (x|ei)ei, on ay € F- <= (Vj € [I;n], (yle;) =0). Or,

Par définition de la projection orthogonale sur F, on a la relation |7mp(x) =

i=1

n n

pour j € [1;n], on a (ylej) = (x — > (x]ei)es ej) = (x|e;) — >_ (x|ei)(eilej) par linéarité du produit scalaire
i=1 i=1

par rapport a la premiere variable. Ainsi, comme (eiej) = 8;j, on obtient (ylej) = (x|ej) — (x|ej) = 0. Par

1o

I’équivalence précédente, on a bien |y =x— > (x|ei)e; € F[. On sait d’apres le cours que FNF- = {0g }.

i=1

mn n

On vient de voir que si x €E,onax =y + (x —y) avecy =x — >_ (x|ei)e; € Fr et x —y = 3. (x|ei)e; € F.

i=1 i=1
Ainsi, E = F+ F* et on a bien établi que |E =F@ F .

(x|ei)ei | car, d’apres 1,

o8

i=1

n n
x =Y (x|ei)ei + (x - > (x|ei)ei> € E (on garde la composante selon F et on “annule” celle selon F*).
i=1 i=1

€F €FL

On ax = mg(x) + (x —mg(x)) ot g (x) L (x —mg(x)) car mp(x) € Fet x —mp(x) € F-. Ainsi, d’apres le théoreme

NgE]

de PYTHAGORE, ||x||? = ||7r(x)||? +||x — 7 (x)||?. Comme 7tr(x) = Y (x|ei)ei avec B une base orthonormale,

i=1

n n
on sait d’apres le cours que |[rr(x)||2 = 3 (x]ei)?. On a bien |||x — mr(x)]|> = [|x||? — 3 (x]eq)?.
i=1 i=1

(PARTIE 2 : POLYNOMES DE LAGUERRE]

2 2
Pour (a,b) € R2, |ab] < % — 2|a||b] < a2 +b2 < o + b2 —2[a||b| = 0 < (Ja| — [b])2 > 0.

2
Comme cette derniere assertion est clairement vraie, on a bien |V(a,b) € R?, |ab| < %.

Soit (f,g) € E%, x — x%e *f(x)g(x) est continue sur R et, d’aprés 4 avec a = f(x) et b = g(x), on
xo‘e*"f(x)2 i x“eixf(x)z
2 2

+
a Vx € RY, [x¥e™*f(x)g(x)] < (I). Par linéarité, comme fo C>Ox”‘e‘"f(x)zdx
+ +
et fo cho‘e_xg(x)zdx convergent par hypothése, 'intégrale fo OOx"‘e_"(f(x)2 + g(x)?)dx converge. Par

ST +oo . +oo
comparaison, I'inégalité (I) montre que j; x%e *|f(x)g(x)|dx converge, soit que fo x%e *f(x)g(x)dx est

+o0o
absolument convergente. Ainsi, |l'intégrale fo x%e *f(x)g(x)dx est convergente | d’apres le cours.




EI Par définition de E4, on a bien I'inclusion E, C CO([0; +-o0[, R).

+oo
e La fonction nulle est bien continue sur R, et fo x*e~*0?dx converge donc 0 € Ey et Eo # ().

e Soit (A, i) € R? et (f, g) € EZ, la fonction Af+pug est continue sur R, car C°( R, R) est un espace vectoriel

et Vx > 0, x*e X((AMf +1g)(x))? = A2x%e *f(x)? + 2Aux* e *f(x)g(x) + n?x*e~*g(x)%. On sait par définition
N c ey +oo 2 +oo 2 +oo

de E, et d’apres 5 que les trois intégrales fo x%e T f(x)dx, fo x%e *g(x)“dx et fo x%e *f(x)g(x)dx

—+oo
convergent. Par linéarité, l'intégrale fo x*e *((Af +ug)(x))?dx converge. On en déduit que Af + g € Eq.

Ainsi, ‘E‘x est un sous-espace vectoriel de C°([0; +oo[, R).

Soit p une fonction polynomiale sur [0; +00[. Alors p est continue sur R, car elle est polynomiale. Comme
d d
p? est aussi polynomiale, on peut écrire p?(x) = ax® pour x > 0. Alors, x¥e *p(x)? = > apx®Fkex.
k=0 k=0

400
Pour tout entier k € [0; d]], 'intégrale fo x&H1+k=Te=xqx converge, c’est la définition de I'(« +k + 1) car

+oo
oa+k+1>0 (voir énoncé). Par linéarité, I'intégrale fo x*e*p(x)%2dx converge et on a méme la relation

+ d + d
f OOx"‘e_"p(x)zdx = > akf et tk—Te—x gy = S al (o + 14+ k).
0 k=0 0 k=0

On a donc bien le résultat attendu, ’p € E, pour toute fonction polynomiale p. |

Pour n € N, @, est de classe C>° sur R’} comme produit de fonctions C*.

® @o:x—x%e * donc Pg i x > x"%e*xXe X =1.

o @1 :x— x*e* donc cpgu cx e (e 1)x%e™ —x*H e > et Py 1 x x“"excpg)(x) =(a+1)—x.

e @2 : x — x*t2e™* donc, avec LEIBNIZ, (9(22) ix = (o 2) (o 1)x®e™ — 2(a + 2)x ¥ e ™ 4 x¥F2e % et
P2 i x i x %X 05 (x) = (@ 4+ 2) (o + 1) — 2(a + 2)x + 12

Ainsi, ’wo(x) =1, 91(x) = (x+1) —x et Ya(x) = (o +2)(ax + 1) — 2(x + 2)x + x2.

@ Pour tout a € R, posons gq : x = x® qui est de classe C* sur R et, par récurrence immédiate, on a

k=1

vk € N, ¥x > 0, 951“) (x) = ( 1] (e — i))xa’k ol, par convention, le produit vide (pour k = 0) vaut 1.
i=0

Posons aussi h : x = e™* qui est aussi de classe C> sur R* avec Vk € N, ¥x > 0, h(9(x) = (=1)ke™>.

n
Comme ¢, = gny«h, d’apres la formule de LEIBNIZ, pour tout x > 0, ol x)= > (E) ggﬂga(x)h(“—k) (x)
k=0

" k-1
donc oY (x) = > <<n>(—1)”_k><“+"‘_ke_x H(n + o — 1)) et, apres simplifications, on a la relation

k=0 \\k i=0
N 0 k-1 n o k-1
wn(x) — x %X Z < )(1)nkxn+ockex H(n +o— i) _ Z ( )(1>nk H(n +o— i) Kk
k=0 \ \k i=o k=0 \ \k i=0
0—1
donc P, est bien polynomiale sur RY et, comme (2) (-0 H(n +oa—1i) = (=)™ # 0, on en déduit
i=0

que ‘Il)n est bien polynomiale sur R’ , son degré est n et son coefficient dominant est (—1)™.




+
Pour tout (f,g) € E4, (flg) = fo * x%e *f(x)g(x)dx existe d’apres la question 5.

e E, est bien un R-espace vectoriel d’apres la question 6.
5 +oo - .
e Pour tout (f,g,h) € E3 et tout (A, 1) € R?, (Af + uglh) = fo x%e X (M(x) + ng(x))h(x)dx donc, puisque

les deux intégrales convergent, par linéarité, (Af+uglh) = Af:oo e f(x dx+uf x%e *g(x)h(x)dx
donc (M + uglh) = A(f|h) + u(g|h). Ainsi, (.].) est linéaire en la premiere varlable.

e Pour tout (f,g) € €2, (f|lg) = f0+oc x%e *f(x)g(x)dx = f;w x%e *g(x)f(x)dx = (g|f) par commutativité
du produit dans R done (.|.) est symétrique.

e (.|.) est linéaire & gauche et symétrique, donc bilinéaire.

e Pour tout f € E4, tout x > 0, on a x*e *f(x)2 > 0 donc, par positivité de I'intégrale convergente

¢ ” _ X ,—X 2 o ,—X 2 : L
. +oo
(“0 < +0”), on a (f|f) = . Xe f(x)“dx > 0. De plus, comme x — x%e~*f(x)* est continue positive,

+
comme 0 < 400 et comme fo Oox"‘e‘"f( )2dx converge, on a (f|f) = 0 = (Vx > 0, x*e *f(x)? = 0) donc
(f[f) =0 = (Vx > 0, f(x) =0) = (f =0 sur R} ) = (f = 0 sur R ) par continuité de f en 0. Ainsi, (.|.)

est défini positif.

Par conséquent, ’ (.].) définit bien un produit scalaire sur Eg. |

k K ) ) i—1
Soit n € N* et k € [[0;n—1], d’apres la question 9, oF )( )=> <) (—1)kixntoriemx H(n +a—j)
i=0 l ;
j=0
Pour tout i € [[0;k]] C [0;n—1],onan+a—i>a+1>0, donc lim x™ %"t =0. Ainsi,

x—0t+

i—1
K )
(k) = — k—1i _ n+o—i ,—x
W= | () Tlnta- e | o
= —0

constante par rapport a x

comme somme finie de termes de limite nulle en 0. De plus, par croissances comparées,

1
(pgmk)(x) _ Z k (_1)k—i11_[( +ox— ) n+o—i —X/Z —5 0
—x/2 i i o ]—/—’ X—+00
)= —0

constante par rapport a x

comme somme finie de termes de limite nulle en +oo.

On a bien | lim <p$1)( )=0cet (p(k)( )+: o(e™/?)sine N*et k€ [1;n—1].

x—0t

+oo _
Montrons par récurrence que, pour tout k € [0;n], (W |bn) = (=1)% fo P (x)np%TL k) (x)dx  (HRy).
+oo
Initialisation : par définition de Py et (.].), on a (Om|bn) = fo x%e P (x)Pn (x)dx ce qui donne

(Ym|dn) = f P (x n ( )dx, donc on a bien HRg car w&ﬁ) =Y.
+oo _
Hérédité : soit k € [[0;n — 1], supposons HRy vérifiée. Alors j;) P (x)cp%n k) (x)dx converge. Posons

u(x) = VI (x) et v(x) = e V(%) (avec n —k — 1 = 0) dott ' (x) = PETV(x) et vV(x) = o (x).



Les fonctions u et v sont de classe C! sur R%. 1V est polynomiale sur Ry, donc ﬂ‘)gf) I'est aussi et w%‘?
a une limite finie en 07, donc comme @ % a une limite nulle en 0F d’apres la question précédente, on
a la limite lim u(x)v(x) = lim w%’ (x)cp%“_k) (x) = 0. Toujours d’apres la question précédente, on a
x—0t x—0t
_ —x/2,,(K) . _ : . Foo /
u(x)v(x) = o(e Pm’ (x)) donc lim u(x)v(x) = 0 par croissances comparées. Enfin, fo u(x)v'(x)dx

“+oo X—-+00

—+oo
converge d’apres HRy, donc, par intégration par parties, fo u/(x)v(x)dx converge aussi et on a

Wmhbn) = (D% [ 000000 (x)ax
= 0 ([ e W] = LT e %“‘k‘%x)dx)
= (o LT el e ) = (R LT 0 00l Vs

On a donc bien HRy41.

+oo _
Conclusion : par principe de récurrence, pour k € [[0;n], on a (P |by) = (—1)F fo ik (x)(pgln k) (x)dx

d - _ . . _ n [T (1)
onc, en particulier, pour k = n, ce qui donne bien |(Ym|dn) = (—1) fo P (x)@n(x)dx

e Soit m et n deux entiers naturels tels que m # n et, quitte & intervertir les roles, supposons que m < n.

“+oo
Alors, d’apres le premier point, on a (P |hbn) = (—=1)™ fo 11)911) (x)@en(x)dx. Or P, est polynomiale de

+oo +oo
degré m < n, donc P = 0 et on a donc (Ym|dn) = (—l)“f g,?)(x)cpn(x)dx = fo 0dx = 0. La

0

famille ’(I])n)neN est donc orthogonale pour le produit scalaire (.|.). |

+
D’apres la question précédente, |[\n |2 = (Wn|bn) = (=1)" f Oolb(n) (x)en(x)dx. Or Py est une fonction
olynomlale de degre n et de coefficient dominant ( 1) , donc pour tout 11) ( )= (=1)"nlsix > 0et
[onll% = (— j; ll)n x)on(x)dx = (— Z“n'f on(x)dx = n'f x"%e ™ *dx = nIl'(n + a + 1).

On a bien, ‘Vne N, [[Wn|lZ =n!T(n+ o +1).

(PARTIE 3 : APPROXIMATION)

De la méme fagon qu’a la question 12, on peut montrer par récurrence, pour tout i € [0;n], la relation

.ot i ; ot s . . i
(Wnlfi) = (D' [ oV 0r ax = (1) [T ol ) (—k)te e = k[T ol (x)e<rax.
0 0 0
+oo —+o0
En particulier, pour i = n, on obtient ({n|fx) = k™ fo on(x)e ¥dx = k™ fo xMteae=(k+1x 4y donc
+o0 +
(On|fe) = k™ fo @ 1111)§+“e’” kill avec le changement de variable x = - U 1 facile & justifier. Ainsi,
1 k) 1 k)
fi) = ey = r 1).
(lbn‘ k) (k+])oc+1 (k+]) fO u e u (k+‘|)‘x+1 (k+]> (n_i'_(x_t'_ )
n 2
1 k
I'n+a+1
: ; : (ficlbn)? <(k+1)“+1 <k+]> ( )>
Par suite, pour tout n € N, d’apres la question 13, - = '
[onlla nl(n+a+1)

(ficlbn)? 1 e\ nF(n+oc+1) 1 A
kIWYn _ B k. . .
donc ||1pn\|§ - (k+1)2cx+2 <<k+1> ) y = (k+])2(x+2an <<k+1> > ol an a été



2
introduit dans 1’énoncé. D’aprés ce qui a été admis dans 1’énoncé, comme <k> €] — 1;1[, on a

k+1
(fichon)? i V)
k¥Yn
= a —_— converge et
Zo Tonlle = 1™ & “<<k+1> )

§ (dbn)® _ 1 &, I N P(x+ 1)
S TheallE e 50 e (e 1757 V)
]_ -
()
_ 1 NCES 1 Lo+ 1)(k+1)2  T(a+1)
(k1252 7 o \ 5P (kb 1)2%2 (2k + 1)+ (2K + 1)+
<(k+1)2>

+o0 2
On a montré que | > (fkllbnz) = Lo +¢lll
n=0 Hlp‘anc (2k+1)

pour k € N.

est une base

Pour N € N, Vy est un sous-espace vectoriel de dimension finie de E, dont ( Wn )
[[Wnlla/ nelosN]

orthonormée. D’apres 1 i — 2 — 2_ 3 bn 2— 2_ 3 Lklw“)z

- D’aprés la question 3, [[fic — 7o (fi) [[G = [Ifill* — 22 (fx = [Ifll* = > 7
n=0 ||1bTLHCX n=0 ||1bn||¢x

+ + + «
Or ||f|2 = j;) T xSeXem2kx gy = fo T ke (i x gy = j;) = (Zklfi— ])“e*Hdei] avec le changement
. s e - Foo _ MNa+41)
d bl = % facil tifier. A frel2 = —1 e Ydu = ————<+. P
e variable x = |~ facile & justifier. Ainsi, [1fx]l5 e fo u®e "du R ar

N (fiJwn)? I'(a+1) N (fiJvn)?
conséquent, ||fx — ﬁN(fk)Hz = ||fk|‘2 - Z n, = — Z Aki¥n,
x o Inlla  @k+D)*T L2 [[walla

Do+ 1) _*‘f(fkwn)z: Pla+1) — Tlat1)
N—+o00 (2k+])a+1 n=0 ||ll)n‘|§c

et on en déduit que

=0 et on a bien la limite

fir. — 7on (R )2 =
|| k TCN( k)”cx (2k—|—])“+1 (2k+])zx+1

attendue, um ||fx — in(fi)||a = 0.
N—+oo

D’apres la question précédente, pour tout k € N, pour tout ¢ > 0, il existe Ny € N tel que pour tout N > Ny,
on a ||fx — N (fi)||« < e. En particulier, en prenant N = Ny, on a la majoration ||fx — 7N, (fi)||a < €, €t

TiNg (fk) € VN, = Vect(Yo, -, IN,) C P comme espace vectoriel engendré par des éléments de P. Ainsi,

p = 7N, (fi) convient et vérifie ’p ePet||fk —plla <. |

Soit g : [0;1] — R définie par g(t) = f(—1n(t)) si t €]0;1] et g(0) = 0. Alors, g est continue sur ]0;1]
par opérations sur les fonctions continues. De plus, lim g(t) = lim f(x) = 0 par composée puisque
t—0+ x—+00
lim (—1In(t)) = +oo par hypothese sur f, ce qui fait que lim g(t) = g(0) = 0. g est donc continue sur
t—0+ t—0+
n
le segment [0;1]. Alors, d’apres le théoréme admis, il existe une fonction polynomiale p : t — > Apt®

k=0
telle que pour tout t € [0;1], on ait |g(t) — p(t)| < &. On a alors, pour tout x > 0, comme e * €]0;1],

n n n 2
f(x) = 22 Mfie(x)| = ’f(—ln(e‘x)) = X Me(e )| =lg(e™) —p(e ™) <& (f(X) - %kfk(X)> <e?.
k=0 k=0 k=0

2
n
On a donc, pour tout x > 0, 0 < x%e™* <f(x) -3 Akfk(x)) < x%e *¢? donc, par positivité de I'intégrale
k=0



convergente (avec 0 < +00), on a

2 2
+ n n +
0< [T xe (00 = 3 Nefi(0) ) dx= || = 3 Nehe|| < [ xe e = 2P (a+ 1),
0 k=0 k=0 0
En remplagant ¢ par dans le théoreme admis ’f — A fi <e“et Hf — A fx <e.
VI(a+1) 7 k=0 « k=0 «

Soit f vérifiant les hypotheses et e > 0. D’aprés la question précédente, il existe n € N et (A )ockn € R™H!

n
tels que ||f — > Axfil|| < % De plus, pour tout k € [0;n], d’apreés la question 16, il existe px € P tel que
k=0 o
fr — < & , et on a alors
1t =Pulle < Sy nT 1)
n n n
Hf— > AkPx = Hf— > Mfi+ D0 A(fk —pi)
k=0 o k=0 k=0 o
n n
< F= 3 Mfil] + X0 A lIfk — e« (inégalité triangulaire)
k=0 « k=0
< £y 3y N D
T2 S A+ 2n+1) T2 &2+ 202

n
En posant p = > Axpx € P, on a donc ’p ePet||f—plla < e.l
k=0

Soit f : x € [0; +-00[— h(y/x)e*/2. La fonction f est continue sur Ry par opérations et a une limite nulle en

+00 (car elle est nulle sur JA?; +oc[) done, d’aprés la question 18, pour tout a > —1, il existe p € P telle
que [[f = pll« < /e Or

F=plla = [ e (1(x) — p(x))?ax
= [T (1()e 2 p(v)e )2
+oo
- fo X (h(y/x) — p(x)e™*/?)%dx

—+oo
fo t2%(h(t) — p(t2)e~t"/2)22tdt

en posant le changement de variable x = t> = @(t) avec ¢ qui est une bijection strictement croissante et
de classe C' de R% dans R%. Alors, en prenant « = —% (et le p correspondant a cette valeur de ) et

q:t€ R p(t?) qui est une fonction polynomiale paire, on a

l=pl2y, = [ %00 - p()e /2 2
= 2 [0 - e 2ar
= fj: (h(x) - q(x)e%>2dx

par parité de la fonction t — (h(t) — q(t)e*tz/z)z. Ainsi; si h: R — R est une fonction continue, paire et

nulle en dehors d’un segment [—A; A] (ot A > 0) et si ¢ est un réel strictement positif, il existe une fonction

polynomiale q : R — R telle que fioo (h(x) —q(x)e 2 ) dx = ||f —p||_1/2 <.

On peut montrer que le résultat de la derniére question est en réalité valable pour toute fonction h: R — R

continue et de carré intégrable sur R.
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[PARTIE 1 : CALCUL D'UNE INTEGRALE

—t
La fonction h : t — e\ﬁ est continue sur R’ par théoremes généraux. De plus, h(t) = 7 — donc par

g

comparaison aux intégrales de RIEMANN, h est intégrable sur ]0;1]. On a aussi h(t) = \[ = ( 1 > par

croissances comparées car lim t3/2e~t = 0 donc h est intégrable sur [1; +oo[ encore par comparaison aux
t—+oco

+o0
intégrales de RIEMANN. Enfin, |h:t— est intégrable sur R* donc I = fo h(t)dt existe.

o
=i

2.1| La fonction ¢ est continue sur R*, ¢(t)= et o(t) ~ <o donc, par comparaison aux intégrales de
Y +(P()O\/{ (P()+Oot3/2 p p g

RIEMANN, ¢ est & la fois intégrable sur ]0; 1] et sur [1; 4+o00[ donc ’cp est intégrable sur R . |
efx(1+t)

2.2| Posons f: (x,t) — =—FF:

(H1) pour tout t > 0, la fonction x — f(x,t) est continue sur R.
(Hz) pour tout x > 0, la fonction t — f(x, t) est continue par morceaux sur R (et méme continue).

(H3) pour t >0 et x >0, |[f(x,t)| = f(x,t) < @(t) car e ** < 1 et @ est intégrable sur R* d’apres 2.1.

Par le théoréeme de continuité sous le signe somme, |g est continue sur R, .

+oo —xt
Par linéarité de U'intégrale, Vx > 0, g(x) = e~ * —€ 4t donc, comme ¢ est intégrable sur R* , on
g >0, g(x) I o T+ovk ® g +

—+oo
obtien < glx) S e @(t)dt. Par encadrement, comme lim e ~ =0, im X) =
btient 0 < g < X dt. P d t U x 0 U g 0
0 X—4o00 X—4o00

efx(H»t)

+ove

(Hy) pour tout t > 0, la fonction x — f(x, t) est de classe C' sur R¥.

Toujours avec la fonction f : (x,t) —

(H2) pour tout x > 0, la fonction t — f(x, t) est continue et intégrable sur R* (vu en 2.2).

—x(1+4t) . ~ .
(H3) pour tout x > 0, t — g—i(x, t) = —ET est continue par morceaux sur R (et méme continue).
—x(1+4+t) 7a(1+t)
(Ha) si[a;b] € R, pour x € [a,b] et t >0, on a g—i(x,t)‘ =¢ v < & v =1q(t). De plus, ¥

est continue par morceaux et intégrable sur R* car Palt) 3 7 et Yol + (]2)
o

+oo o —x(1+1)

Par le théoréme de dérivation sous le signe somme, |gest C!' sur R% et g/(x) = — fo Tdt.

+oo | —(xt
On a alors ¢'(x) = —e™* f et

o VA

dt et, en posant u = xt, comme x > 0, u — % est de classe C', bijective
X

et strictement croissante de R sur R et ¢'(x) = —e™* eroo e " du gope g'(x) = -1 x e
0 Vu/x X \/72




. - * _ 1 1 _ 1 _ et
0 : t — Arctan(v/t) est dérivable sur R% et Vt > 0, 6’(t)—2—\/{>< TR T 20t ovE g) On en

+oo
p(t)dt = {2 Arctan(\/{)} donc |g(0) = .| On pouvait aussi poser t = u? = P (u)
0

+oo

déduit g(0) = fo
avec 1 qui est C', bijective et strictement croissante de R’ dans R’ pour avoir, par changement de variable,

60 = f o= [T auodian = [ o au= arctan(w] ) =7

“+oo
Comme g est une primitive de g’ et que g admet des limites finies en 0 et 00, d’apres le cours, fo g'(t)dt

!/ _ _ . _ ! — ) IS
converge et fo g'(t)dt = [g(t)}o = tl}?oo g(t) — g(0) donc fo g'(t)at nt| d’apres 2.2.
Avec expression de g’ obtenue en 2.3, par linéarité de 'intégral f+oo '(t)dt——IerOCe—itdt——I2
vec Pexpression de g’ obtenue en 2.3, par linéarité de égrale, | =g = o A= .

On en déduit 12 = 7 et comme t — eﬁ est positive sur R¥, onaI> 0 puis |I= /7

(PARTIE 2 : ETUDE DE F|

, . in in 1 1 . Xln .
Pour tout réel x € R, la suite u,, = 5 = T4 X — = o(—) car lim “—— = 0 par croissances
(n!) n! n! +oo n—+oo n!

n

1

2
comparées. Or la série > - converge donc, par comparaison, »_ x' 5 converge. On aurait aussi pu,
n>o0 - n>o0 (n!)
. Un41 XZ RN 3 2n
pour x # 0, écrire 7‘ = — € =0 < 1 donc, par critéere de D’ALEMBERT, Y, 5 converge.
Un n+1n-+oo nso (n!)

Ainsi, ‘F(x) est défini pour tout x € R donc D = R.

On raisonne par récurrence :

e Onabiend —1< 1 —1< 4
1! (oh)? (2.0)!
1

= 1 donc ’encadrement est vrai pour n = 0.

n n
e Soit n € N tel que (2n4—|— I < (n!)z < én)!, alors, par hypothese de récurrence, on a l'inégalité
4n+1 4 qm 4 1 1 s ALz
= X < X = et, de lautre coté, il
n+3)]  @n+3)n+2) @A S 2mrn)Z W T )P " '
n+1 n
vient —% = 4 x A > 4 5 X 1 _ 1

n+2)!  (n+)2n+2) T ) T 2412 T ()2 T (n4+ 1)1

4m 1 4m
< <A
(2n+1)! (n!)z (2n)!
1 (ZX)Zn—H

ZX)Zn 2n (2X)2n
5.2| P 0 donc —- = A <2 S
5:2] Pour x >0, on a done - x Zn+ 0! 22n+ 1) S ()2 T (2n)!

par x*™ > 0. En sommant ces inégalités et avec les développements en série entiere classiques des fonctions

Par principe de récurrence, |Vn € N,

en multipliant ’encadrement de 5.1

2x
sh et ch valables sur R, on en déduit 'encadrement |Vx > 0, sh(2x) < F(x) < ch(2x).| Or shZy) | 2 et
2x 2x  +oo 4x
er . 7 . . . . .
lim £— = 400 par croissances comparées donc, par minoration, on obtient la limite | lim F(x) = +o0.
x—+oo 4x X—+00

“+oo n
On sait d’apres le cours que Vu € R, et = > u—' En prenant u = x cos(t) € R dans ce développement en
n=0 M-

£ 2" cos(t)™ o

série entiere, on a donc |Vx € R, Vt € [0;7], exp(2xcos(t)) = '
n!

n=0




On pourrait utiliser le théoreme d’intégration terme & terme du chapitre 6 mais comme [0; 7] est un segment....
2n cos(t)“Xn .

on pose, pour n € N et x € R, la fonction vy, : t +— '
n!

(Hy) Les fonctions v, sont toutes continues sur le segment [0; 7] par opérations.

n n n n
(H2) Pourn € Nett € [0;7] on a v ()| = 2 |Cos'(t)| x™ < 2 |T| car |cos(t)| < 1 donc vy, est bornée
n! n!

2™ x|™ - 2™ x|™ N
sur [0;7] avec [[vnlloo,(0;n] < =7 — et la série 3 ;— converge d’apres le cours (sa somme
vaut exp(2|x|)). Ainsi, la série Y vy, converge normalement sur [0; 7] vers x — exp(2x cos(t)).
n>0

s +oo A
Par le théoreme d’intégration terme a terme sur un segment, fo exp(2xcos(t))dt = > fo vn(t)dt. Mais
7T AL o . N . by
comme fo vn(t)dt = ’; wn par linéarité de l'intégrale, d’apres 1’énoncé, on a fo Vant1(t)dt = 0 et
n

T[ o ZZTLXZH Tt(Zn)' T( o in N . s 5. . .
fo van(t)dt = )1 X ()2 donc fo von(t)dt = ﬂ(n!)z. Apres avoir retiré les termes nuls d’indices

impairs, il reste [ exp(2xcos(t)dt =7 3° 2oy = xF(x) done |F(x) = L [ exp(2xcos(t))d
impairs, il reste [ e cos(t))dt = = onc == e cos(t))dt.
p o €xP(2xcos Z X x) = ], exp(2xcos
7T
Pour t € [% } =Tet x € Ry, on pose a(x,t) = exp(2xcos(t)) de sorte que fi(t) = f i a(x,t)dt qui existe
T

car t — a(x,t) est continue sur le segment [%, 71} :

(Hy) Site [g;n}, comme cos(t) < 0 si t > % et cos (%) =0,ona Um a(xt)=k(t) avec k(%) =1

X—+00
et k(t) =0 site}g;n}.
(H2) Pour tout x € Ry, t — a(x,t) est continue sur I et t — k(t) est continue par morceaux sur I.
(H3) Pour x € Ry et t €1, |a(x,t)] = exp(2xcost) < 1= ¢(t) car 2xcos(t) < 0 et la fonction constante

@ : t— 1 est continue et intégrable sur le segment I.

7T
Par le théoreme de convergence dominée a parameétre continu, on a donc | lim fi(x) = f k(t)dt = 0.
X—+00 /2

Pour x > 0, f2(x) est bien défini car la fonction t — exp(2x cos(t)) est continue sur le segment {0; %] Avec
I'indication de 1’énoncé, on pose t = Arccos (1 - —) = @(u) (ce qui revient & u = 2x(1 —cos(t))) avec ¢ qui

est de classe C!, bijective et strictement croissante de ]0;2x] dans }O; ﬂ donc, par changement de variable,

/ 1 —1 1 - x ePv

comme @' (u) = (— —) X = , on obtient f;(x) = f — —du dong,

2x u.\2 u? 0 N

\/1—(1—) 2\/72\/ -2 2/ u— —

2x 4x 4x

linéarité t ion de f f MOt
par linéarité, une autre expression de f2(x) : [f2(x) = 2 fo \/ —du.
o

Vv

2 2
Six>0etu€[0;2x],onau— ZL—X—%: % (1 —;;) > 0 puisque u € [0;2x]| d’ont l’inégalitéu—zt—X > %

2x —u

On détermine la limite quand x tend vers +oo de J(x) = 2y/xe™2*f,(x) = f —£& _du d’apres 8.1.

0 u?
u— —
4x



+ —u
On écrit plutot J(x) = Oob x,u)du en posant b(x,u) = —&—— si u €]0;2x] et b(x,u) =0 si u > 2x :
0
=
4x
. e ™ N u ; e ™
= —_— > = = E— =
(Hy) Pour u € R%, comme b(x,u) = des que x > S ona XETOOb(x,u) v h(u).

u— =
4x
Hz) u+ b(x,u) est continue par morceaux sur R’ pour tout x € R% et h est continue sur RY .
+
—u
(H3) Six € R% et u €]0,2x] alors [b(x,u)| = —=£ = v/2h(u) d’apres I'inégalité ci-dessus

I

et, si u > 2x, [b(x,u)| = 0 < v/2h(u) car h(u) > 0. On a donc ¥x > 0, Vu > 0, |b(x,u)| < v2h(u)

et h est continue et intégrable sur R* avec la question 1.

“+o0
Par le théoréme de convergence dominée & parametre continu, lim J(x) = f h(u)du = /m d’apres la

X—+00 0

2x
artie 1 ce qui prouve que |fa(x) ~ V/me .
p qui p q 2(x) NS

@ Avec la question 6.2 et par CHASLES, on a Vx > 0, F(x) =

fo

(f1(x) + f2(x)) or Um fi(x) = 0 avec 7

X—-+00

A=

et lim fa(x) = +oo avec 8.2 car lim = 400 par croissances comparées. Ainsi, par somme, on
X—+00 X—+00 2\/>
2x
obtient F(x) ~ fa(x) car lim o () _ 0 donc, toujours avec 8.2, |F(x) ~ =&—.
+oo T x—+o00 (%) +oo 24/mx

[PARTIE 3 : TRANSFORMEES DE LAPLACE

. tH(2-x) . . . _
La fonction gy : t + £ 7t est continue sur R et intégrable sur ]0;1] par comparaison aux intégrales

de RIEMANN pour tout x € R car gx(t) Y ﬁ De plus, si x > 2, alors 2 —x < 0 donc gy(t) = = o<t] ) par

croissances comparées donc gy est intégrable sur [1;+oo[ par comparaison aux intégrales de RIEMANN. Par

. t(2—x) s
contre, si x < 2, Vt € RY, € v > ﬁ > 0 donc, comme t — ﬁ n’est pas intégrable sur [1;+oo[ par

RIEMANN, par minoration, gy n’est pas intégrable sur [1;4o00[. Ainsi, gy est intégrable sur [1;+o0[ si et
seulement si x > 2. Par conséquent, g, est intégrable sur R’ si et seulement si x > 2. Comme gy est une

—+oo
fonction positive sur R% , gy intégrable sur R si et seulement si fo gx(t)dt converge. Ainsi, le domaine

de définition Dr . de Lg vaut |2;+o0] et ’LG (x) existe si et seulement si x > 2. |

Si x > 2, comme la fonction ¢ : u +— —% 7 est de classe C', bijective et strictement croissante de R%

dans R*, par le changement de variable t = ¢(u) = —%—, ona L du donc
+ P g (P( ) x—2’ G \/* f \/u/ X — _2

I

1 oo g1 :
= —— =—du = ———— et, avec la partie 1, |Lg(x) = —=—— pour x > 2.
2¢/n(x —2) fo Vu 2¢/n(x = 2) P c(x) z\/xfzp

Pour tout réel x, la fonction fy : t — F(t)e™*" est continue sur R, par opérations car F I'est. Comme

2t
F(t) ~ G(t) = =5—, on a f,(t) ~ gx(t) donc, puisque g, est intégrable sur [1; +o0| si et seulement si x > 2
+oo 24/t +oo



d’apres 10.1, par comparaison, fy est intégrable sur [1;+o00] si et seulement si x > 2. Comme fy est positive
sur R, fy est intégrable sur Ry si et seulement si x > 2. Comme fx est positive sur R, I'intégrabilité de

. \ +(>O
fy sur Ry équivaut a la convergence de fo fx.

Par conséquent, ’LF (x) existe si et seulement si x > 2. |

Pour n € N, la fonction hy, : t > t™e™*" est continue sur Ry et hy(t) = t"e™*t = o(t]—z) par croissances
[ee]

comparées car x > 0 donc hy est intégrable sur R, par comparaison aux intégrales de RIEMANN. Ainsi,

+oo
Pintégrale |I,, = fo t"e *tdt existe pour tout n € N.| Pour n € N* et x > 0, les fonctions un : t — t™

et vt —te=*t sont de classe C! sur R, et tliT un (t)v(t) = 0 = un (0)v(0) par croissances comparées
X — 400

+00 +oo
donc, par intégration par parties, I, = fo the *tdt = [ ]t“ ’Xt}o + I f e Xtqt = XIn_l.
e +oo +oo Foo !
Initialisation : Ip = j;) t0extgqt = fo e Xtdt = [— %e"‘t}o = i = xé)ﬁ'
4 s qes 2 . | N ’ . ;.
Hérédité : soit n € N tel que I, = %7 par hypothese de récurrence et la relation trouvée ci-dessus, on a
X
I _ntly _n+l nl _ (n+1)!
n+1 = X n — X X xn+1 - XTL+2 .
o ) . too ol
Par principe de récurrence, on a bien établi que |Vn € N, Vx >0, I, = fo thte *tdt = T
+oo £2n +oo
Six>2ette Ry, onacF(te ™ = ()2 e X' par définition de F(t). On a donc fx(t) = Zo an(t)
n= M n=
2n
pour tout t € Ry en posant an(t) = (t )2 e X' (pour x > 2 fixé) :
n!
1) La série de fonctions an, converge simplement sur vers fy avec ce qui précede.
H1) La série de foncti impl t Ry f i préced
n=0
(Hz) Les fonctions a,, et la fonction fy sont continues sur R..
(H3) Les fonctions a, sont intégrables sur Ry d’apres 11.2.
+oo _ I 2n)!
(H4) Vn € N, f lan(t)]dt = (Jﬁfo 2ne—xtqt — (TLZ'T)lz = (n')(z 2)n+1 = an > 0 avec 11.2 et
gt _ (2t 2)(2;1; 1) A donc lim Endl — A 9 car x > 2 d’on la convergence de la
o (m+1)x Yoo x no+4oo  Xn X
série numérique f |fn (t)|dt par le critére de D’ ALEMBERT.
n=0
X ()

+oo +oo 421
Par le théoreme d’intégration terme a terme, |Lp(x) = f A eXtdt = — 54— Si x > 2.
) ( ) ngo 0 (n!)z nzz:o ( |)2 2n+1

+oo +oo

. 1 s 1o . _ (2n)! _ (2n)! 4n

Six > 2 alors ‘ x’ < 1 et, d’aprés énoncé, Lp(x) = nZ::o 7(n!)2x2"+1 = nz::O T ()2 X 2nF donc
—+o00 n
Lr(x) = 1 Z r(1 n)! (iz) =11 avecl'énoncé d'on Lr(x) = — 1 six>2
X ( |) X X 1—(4/7(2) x2 —4
. Le(x) _ 2vx—2 2 : 2 2

12| Avec 10.2 et 11.4, six > 2, t 1 -2 —14q Lr(x) ~ Lg(x).
[12] Avec e si x Lot~ V4 = et lin s = onc | Lr(x) ~ L (x)




PARTIE 4 : FONCTIONS EQUIVALENTES]

Les fonctions dq : t — hy(t)e " et dz : t — hy(t)e ™" sont continues par morceaux sur R’ par opérations
car hy et hy le sont. De plus, pour i € {1,2}, di(t) = hi(t)e_"tfshi(t) car tllg1+ e™*" = 1 donc d; est
intégrable sur ]0; 1] par comparaison car h; ’est par hypothése. Enfin dq (t) = hq(t)e ™" fod ha(t)e ™t = d,(t)
car hq(t) ol hz(t) par hypotheése donc, par comparaison, d; est intégrable sur [1;4o00[ si et seulement si la
fonction d, est intégrable sur [1;+o00[. En regroupant les informations, la fonction d; est intégrable sur

R% =]0;1] U [1; 400 si et seulement dy est intégrable sur RY}. Comme h; et h, sont positives sur R’

+oo
par hypothese, les fonctions dq et d, sont aussi positives sur R’} donc la convergence de fo hi(t)e ™ *dt

équivaut a l'intégrabilité de d; sur RY. Par conséquent, on peut conclure que 'existence de Lj(x) est

équivalent a celle de Ly(x) donc |L; et Ly ont le méme ensemble de définition D.

Soit xo € D (qui existe car D # () par hypothese) et x > xo alors Vt > 0, 0 < hi(t)e™ ™" < hi(t)e " car
hi(t) > 0 et exp croissante donc, par théoréme de comparaison, la fonction t — hi(t)e ™! est intégrable sur
R% car t — hi(t)e ™0t 'est et on a x € D. Ainsi, [xo;+00[C D si xo € D. Traitons plusieurs cas :

(1) D est minoré et on sait dans ce cas que « = Inf(D) € R existe :
e Si a € D, alors en prenant xop = o ci-dessus, on vient de voir que [«; +o0o[C D. Mais comme
o« est la borne inférieure de D, donc un minorant de D, on a aussi D C [&; +00] et, par double
inclusion, on a D = [a; +0o[ avec « = Min(D) € R.
e Si o & D, encore une fois, comme « est un minorant de D, on a D C [oc; +oo[. Mais comme
o« ¢ D, on a méme D C|a;+0o[. Par propriété de la borne inférieure, si x > «, il existe un
xo € D tel que o < xo <x = a+ ¢ et on ax € D d’apres ce qui précede donc ]e; +00[C D. Par
double inclusion, on a bien D =]«; +0o[ avec « = Inf(D) € R.
(2) D n’est pas minoré donc, pour tout x € R, il existe un xo € D tel que xo < x et ce qui précede montre

alors que [xo; +00[C D donc que x € D. Ainsi, D = R =] — 00; +00[ (« = —00).

Dans les trois cas, si D # 0, ’D est une demi-droite de la forme [o; +-00[ ou Jet; +00]. |

Six < y sont dans D alors Vt > 0, 0 < hq(t)e™Y" < hy(t)e™™" par croissance de I’exponentielle et positivité

+oo +oo
de hy sur RY. Ainsi, par croissance de l'intégrale, on a 0 < fo hy(t)e™¥tdt < fo hq(t)e™*tdt (tout

converge), donc 0 < Ly (y) < Ly(x), c’est-a-dire que ’L1 est positive et croissante sur D. |

—+o0
Pour x > «, on a x € D d’apres 13.2 donc fo hq(t)e™**dt converge et, comme Vt > 0, hq(t)e™' >0, on

“+o0 A “+o0 +oo
a fo hy(t)e™*tdt = fo hi(t)e™*tdt + fA hi(t)e™*tdt par CHASLES avec fA hy(t)e™*tdt > 0 donc

A +o0
fo hy(t)e~*tdt < fo hy (e *tdt = L1(x) <M (I) pour x > «.




Pour A > 0 fixé et tout x € R, I'application e; : t — hq(t)e ™ *" est continue sur |0; A] avec e; (t) Y hy(t) donc
e est intégrable sur |0; A] par comparaison car hy Pest par hypothése. Ainsi, q : x — fOA hq(t)e™*dt est
définie sur R. Posons s(x,t) = hi(t)e™*" de sorte que Vx € R, q(x) = j;A s(x,t)dt :
(H1) Pour tout t €]0; A], la fonction x — s(x,t) est continue sur R par opérations.
(H2) Pour tout x € R, la fonction t — s(x,t) est continue par morceaux sur |0; A].
(H3) Soit [a;b] C R, Vx € [a;b], Vt €]0; A, |s(x,t)] = [hi(t)e ™' = hy(t)e ™" < hy(t)e™*" = @q(t) et
©q est continue et intégrable par comparaison sur |0; A] car hy est.

Par le théoreme de continuité sous le signe somme, la fonction q est continue sur R donc notamment en « et

on a donc lim q(x) = q(«). Il suffit donc de passer & la limite (qui existe donc) dans I'inégalité large (I), ce
X— X

A A
qul donne hi(t)e”*"dt = q(x) = lim q(x) < M car Vx > «, q(x) < M, d'ou hi(t)e” *tdt < M.
: d . ot CI < V < d’ N . ot <

x— ot

A
On vient de prouver que l'application A — j; hi(t)e”*'dt est majorée sur RY. Comme la fonction
t — hq(t)e”*" est continue par morceaux et positive sur R* , cela implique d’apres le cours l'intégrabilité

de t = hy(t)e”** sur R’ ce qui montre que a € D ce qui est contraire & I'’hypothese faite. On conclut

ce raisonnement par I’absurde : L n’est donc pas majorée sur D. Mais comme L; est décroissante d’apres

14.1, par le théoréme de la limite monotone, on a lim 1 (x) = +o0.
X—

Soit x > «, toutes les intégrales qui suivent sont convergentes (mémes justifications). Par CHASLES, on a
oo —xt B —xt oo —xt
ILi(x) — La(x)| = ‘fo (h1 (1) — ha(t))e dt‘ - ‘fo (ha(0) = ha()e ™ at+ [ (1 (1) — ha(1))e*tat].
. . B +m . ’ . 7’ . .
Ainsi, |L1(x) — La(x)| < fo lhq (1) — ha(t)|e~*tdt + fB |hy(t) — ha(t)|e *tdt par inégalité triangulaire
B “+o0
sur les réels et les intégrales. Ainsi, |L1(x) — La(x)] < fo [hi(t) — ha(t)le”*tdt + fB ehi(t)e *'dt par

I'hypothese faite dans I'énoncé et car x > « donc Vt €]0;B], e *' < e~ *'. Ainsi, par définition de L (x) et

B
car t — hq(t)e™*" est positive sur R* , on obtient ||Lj(x) — La(x)| < fo [hi(t) — ha(t)le”*tdt + el (x).

B
B étant fixé, f [h1(t) — ha(t)]e”*'dt est une constante et comme lim L1(x) = +oo par hypothese, il

0 X—x

B
existe un réel r > 0 tel que, pour 0 < x — o < 1, on ait fo [h1(t) — ha(t)]e™*tdt < elq(x). Ainsi on a

L1 (x) —La(x)| < 2eLy(x) pour 0 < x —« < T, ce qui prouve (définition de négligeable, ¢ > 0 étant quelconque)

que Ly(x) — La2(x) = . o(L1(x)) donc que |[Ly(x) ~ . La(x).

X=X X=X




