
� �
DS 5.1 : MINES 2 PC 2020

PSI 1 2025/2026 samedi 17 janvier 2026� �� �
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1 Comme F = Vect(e1, · · · , en), en notant y = x −
n∑

i=1

(x|ei)ei, on a y ∈ F⊥ ⇐⇒
(
∀j ∈ [[1;n]], (y|ej) = 0

)
. Or,

pour j ∈ [[1;n]], on a (y|ej) =
(
x−

n∑
i=1

(x|ei)ei
∣∣∣ej) = (x|ej)−

n∑
i=1

(x|ei)(ei|ej) par linéarité du produit scalaire

par rapport à la première variable. Ainsi, comme (ei|ej) = δi,j, on obtient (y|ej) = (x|ej)− (x|ej) = 0. Par

l’équivalence précédente, on a bien y = x−
n∑

i=1

(x|ei)ei ∈ F⊥ . On sait d’après le cours que F∩ F⊥ = {0E}.

On vient de voir que si x ∈ E, on a x = y+ (x− y) avec y = x−
n∑

i=1

(x|ei)ei ∈ F⊥ et x− y =
n∑

i=1

(x|ei)ei ∈ F.

Ainsi, E = F+ F⊥ et on a bien établi que E = F⊕ F⊥.

2 Par définition de la projection orthogonale sur F, on a la relation πF(x) =
n∑

i=1

(x|ei)ei car, d’après 1,

x =
n∑

i=1

(x|ei)ei︸ ︷︷ ︸
∈F

+
(
x−

n∑
i=1

(x|ei)ei
)

︸ ︷︷ ︸
∈F⊥

∈ E (on garde la composante selon F et on “annule” celle selon F⊥).

3 On a x = πF(x)+(x−πF(x)) où πF(x) ⊥ (x−πF(x)) car πF(x) ∈ F et x−πF(x) ∈ F⊥. Ainsi, d’après le théorème

de Pythagore, ||x||2 = ||πF(x)||2+||x−πF(x)||2. Comme πF(x) =
n∑

i=1

(x|ei)ei avec B une base orthonormale,

on sait d’après le cours que ||πF(x)||2 =
n∑

i=1

(x|ei)2. On a bien ||x− πF(x)||2 = ||x||2 −
n∑

i=1

(x|ei)2.

� �
PARTIE 2 : POLYNÔMES DE LAGUERRE� �

4 Pour (a, b) ∈ R2, |ab| 6 a2 + b2

2
⇐⇒ 2|a||b| 6 a2 + b2 ⇐⇒ a2 + b2 − 2|a||b| > 0 ⇐⇒ (|a| − |b|)2 > 0.

Comme cette dernière assertion est clairement vraie, on a bien ∀(a, b) ∈ R2, |ab| 6 a2 + b2

2
.

5 Soit (f, g) ∈ E2α, x 7→ xαe−xf(x)g(x) est continue sur R∗
+ et, d’après 4 avec a = f(x) et b = g(x), on

a ∀x ∈ R∗
+, |xαe−xf(x)g(x)| 6 xαe−xf(x)2

2
+
xαe−xf(x)2

2
(I). Par linéarité, comme

∫ +∞

0
xαe−xf(x)2dx

et
∫ +∞

0
xαe−xg(x)2dx convergent par hypothèse, l’intégrale

∫ +∞

0
xαe−x(f(x)2 + g(x)2)dx converge. Par

comparaison, l’inégalité (I) montre que
∫ +∞

0
xαe−x|f(x)g(x)|dx converge, soit que

∫ +∞

0
xαe−xf(x)g(x)dx est

absolument convergente. Ainsi, l’intégrale
∫ +∞

0
xαe−xf(x)g(x)dx est convergente d’après le cours.



6 Par définition de Eα, on a bien l’inclusion Eα ⊂ C0([0; +∞[, R).

• La fonction nulle est bien continue sur R+ et
∫ +∞

0
xαe−x02dx converge donc 0 ∈ Eα et Eα ̸= ∅.

• Soit (λ, µ) ∈ R2 et (f, g) ∈ E2α, la fonction λf+µg est continue sur R+ car C0(R+, R) est un espace vectoriel

et ∀x > 0, xαe−x((λf+ µg)(x))2 = λ2xαe−xf(x)2 + 2λµxαe−xf(x)g(x)+ µ2xαe−xg(x)2. On sait par définition

de Eα et d’après 5 que les trois intégrales
∫ +∞

0
xαe−xf(x)2dx,

∫ +∞

0
xαe−xg(x)2dx et

∫ +∞

0
xαe−xf(x)g(x)dx

convergent. Par linéarité, l’intégrale
∫ +∞

0
xαe−x((λf+µg)(x))2dx converge. On en déduit que λf+µg ∈ Eα.

Ainsi, Eα est un sous-espace vectoriel de C0([0; +∞[, R).

7 Soit p une fonction polynomiale sur [0; +∞[. Alors p est continue sur R+ car elle est polynomiale. Comme

p2 est aussi polynomiale, on peut écrire p2(x) =
d∑

k=0

akx
k pour x > 0. Alors, xαe−xp(x)2 =

d∑
k=0

akx
α+ke−x.

Pour tout entier k ∈ [[0;d]], l’intégrale
∫ +∞

0
xα+1+k−1e−xdx converge, c’est la définition de Γ(α+ k+ 1) car

α+ k+ 1 > 0 (voir énoncé). Par linéarité, l’intégrale
∫ +∞

0
xαe−xp(x)2dx converge et on a même la relation∫ +∞

0
xαe−xp(x)2dx =

d∑
k=0

ak

∫ +∞

0
xα+1+k−1e−xdx =

d∑
k=0

akΓ(α+ 1+ k).

On a donc bien le résultat attendu, p ∈ Eα pour toute fonction polynomiale p.

8 Pour n ∈ N, φn est de classe C∞ sur R∗
+ comme produit de fonctions C∞.

• φ0 : x 7→ xαe−x donc ψ0 : x 7→ x−αexxαe−x = 1.

• φ1 : x 7→ xα+1e−x donc φ
(1)
1 : x 7→ (α+ 1)xαe−x − xα+1e−x et ψ1 : x 7→ x−αexφ

(1)
1 (x) = (α+ 1)− x.

• φ2 : x 7→ xα+2e−x donc, avec Leibniz, φ
(2)
2 : x 7→ (α + 2)(α + 1)xαe−x − 2(α + 2)xα+1e−x + xα+2e−x et

ψ2 : x 7→ x−αexφ
(2)
2 (x) = (α+ 2)(α+ 1)− 2(α+ 2)x+ x2.

Ainsi, ψ0(x) = 1, ψ1(x) = (α+ 1)− x et ψ2(x) = (α+ 2)(α+ 1)− 2(α+ 2)x+ x2.

9 Pour tout a ∈ R, posons ga : x 7→ xa qui est de classe C∞ sur R∗
+ et, par récurrence immédiate, on a

∀k ∈ N, ∀x > 0, g
(k)
a (x) =

( k−1∏
i=0

(a − i)
)
xa−k où, par convention, le produit vide (pour k = 0) vaut 1.

Posons aussi h : x 7→ e−x qui est aussi de classe C∞ sur R∗
+ avec ∀k ∈ N, ∀x > 0, h(k)(x) = (−1)ke−x.

Comme φn = gn+αh, d’après la formule de Leibniz, pour tout x > 0, φ
(n)
n (x) =

n∑
k=0

(
n

k

)
g
(k)
n+α(x)h

(n−k)(x)

donc φ
(n)
n (x) =

n∑
k=0

((
n

k

)
(−1)n−kxn+α−ke−x

k−1∏
i=0

(n + α − i)
)

et, après simplifications, on a la relation

ψn(x) = x−αex
n∑

k=0

((
n

k

)
(−1)n−kxn+α−ke−x

k−1∏
i=0

(n+ α− i)

)
=

n∑
k=0

((
n

k

)
(−1)n−k

k−1∏
i=0

(n+ α− i)

)
xn−k

donc ψn est bien polynomiale sur R∗
+ et, comme

(
n

0

)
(−1)n−0

0−1∏
i=0

(n + α − i) = (−1)n ̸= 0, on en déduit

que ψn est bien polynomiale sur R∗
+, son degré est n et son coefficient dominant est (−1)n.



10 Pour tout (f, g) ∈ E2α, (f|g) =
∫ +∞

0
xαe−xf(x)g(x)dx existe d’après la question 5.

• Eα est bien un R-espace vectoriel d’après la question 6.

• Pour tout (f, g, h) ∈ E3α et tout (λ, µ) ∈ R2, (λf+ µg|h) =
∫ +∞

0
xαe−x(λf(x) + µg(x))h(x)dx donc, puisque

les deux intégrales convergent, par linéarité, (λf+µg|h) = λ

∫ +∞

0
xαe−xf(x)h(x)dx+µ

∫ +∞

0
xαe−xg(x)h(x)dx

donc (λf+ µg|h) = λ(f|h) + µ(g|h). Ainsi, ( . | . ) est linéaire en la première variable.

• Pour tout (f, g) ∈ E2α, (f|g) =
∫ +∞

0
xαe−xf(x)g(x)dx =

∫ +∞

0
xαe−xg(x)f(x)dx = (g|f) par commutativité

du produit dans R donc ( . | . ) est symétrique.

• ( . | . ) est linéaire à gauche et symétrique, donc bilinéaire.

• Pour tout f ∈ Eα, tout x > 0, on a xαe−xf(x)2 > 0 donc, par positivité de l’intégrale convergente

(“0 6 +∞”), on a (f|f) =
∫ +∞

0
xαe−xf(x)2dx > 0. De plus, comme x 7→ xαe−xf(x)2 est continue positive,

comme 0 < +∞ et comme
∫ +∞

0
xαe−xf(x)2dx converge, on a (f|f) = 0 =⇒ (∀x > 0, xαe−xf(x)2 = 0) donc

(f|f) = 0 =⇒ (∀x > 0, f(x) = 0) =⇒ (f = 0 sur R∗
+) =⇒ (f = 0 sur R+) par continuité de f en 0. Ainsi, ( . | . )

est défini positif.

Par conséquent, ( . | . ) définit bien un produit scalaire sur Eα.

11 Soit n ∈ N∗ et k ∈ [[0;n−1]], d’après la question 9, φ
(k)
n (x) =

k∑
i=0

(k
i

)
(−1)k−ixn+α−ie−x

i−1∏
j=0

(n+ α− j)

.

Pour tout i ∈ [[0; k]] ⊂ [[0;n− 1]], on a n+ α− i > α+ 1 > 0, donc lim
x→0+

xn+α−i = 0. Ainsi,

φ(k)
n (x) =

k∑
i=0


(
k

i

)
(−1)k−i

i−1∏
j=0

(n+ α− j)︸ ︷︷ ︸
constante par rapport à x

xn+α−i︸ ︷︷ ︸
→0

e−x︸︷︷︸
→1

 −→
x→0+

0

comme somme finie de termes de limite nulle en 0+. De plus, par croissances comparées,

φ(k)
n (x)

e−x/2
=

k∑
i=0


(
k

i

)
(−1)k−i

i−1∏
j=0

(n+ α− j)︸ ︷︷ ︸
constante par rapport à x

xn+α−ie−x/2︸ ︷︷ ︸
→0

 −→
x→+∞

0

comme somme finie de termes de limite nulle en +∞.

On a bien lim
x→0+

φ
(k)
n (x) = 0 et φ

(k)
n (x) =

+∞
o
(
e−x/2

)
si n ∈ N∗ et k ∈ [[1;n− 1]].

12 Montrons par récurrence que, pour tout k ∈ [[0;n]], (ψm|ψn) = (−1)k
∫ +∞

0
ψ
(k)
m (x)φ

(n−k)
n (x)dx (HRk).

Initialisation : par définition de ψn et ( . | . ), on a (ψm|ψn) =
∫ +∞

0
xαe−xψm(x)ψn(x)dx ce qui donne

(ψm|ψn) =
∫ +∞

0
ψm(x)φ

(n)
n (x)dx, donc on a bien HR0 car ψ

(0)
m = ψm.

Hérédité : soit k ∈ [[0;n− 1]], supposons HRk vérifiée. Alors
∫ +∞

0
ψ
(k)
m (x)φ

(n−k)
n (x)dx converge. Posons

u(x) = ψ
(k)
m (x) et v(x) = φ

(n−k−1)
n (x) (avec n − k − 1 > 0) d’où u′(x) = ψ

(k+1)
m (x) et v′(x) = φ

(n−k)
n (x).



Les fonctions u et v sont de classe C1 sur R∗
+. ψm est polynomiale sur R+, donc ψ

(k)
m l’est aussi et ψ

(k)
m

a une limite finie en 0+, donc comme φ
(n−k)
n a une limite nulle en 0+ d’après la question précédente, on

a la limite lim
x→0+

u(x)v(x) = lim
x→0+

ψ
(k)
m (x)φ

(n−k)
n (x) = 0. Toujours d’après la question précédente, on a

u(x)v(x) =
+∞

o(e−x/2ψ
(k)
m (x)) donc lim

x→+∞
u(x)v(x) = 0 par croissances comparées. Enfin,

∫ +∞

0
u(x)v′(x)dx

converge d’après HRk, donc, par intégration par parties,
∫ +∞

0
u′(x)v(x)dx converge aussi et on a

(ψm|ψn) = (−1)k
∫ +∞

0
ψ
(k)
m (x)φ

(n−k)
n (x)dx

= (−1)k
([
ψ
(k)
m (x)φ

(n−k)
n (x)

]+∞

0
−
∫ +∞

0
ψ
(k+1)
m (x)φ

(n−k−1)
n (x)dx

)
= (−1)k

(
0−
∫ +∞

0
ψ
(k+1)
m (x)φ

(n−k−1)
n (x)dx

)
= (−1)k+1

∫ +∞

0
ψ
(k+1)
m (x)φ

(n−k−1)
n (x)dx

On a donc bien HRk+1.

Conclusion : par principe de récurrence, pour k ∈ [[0;n]], on a (ψm|ψn) = (−1)k
∫ +∞

0
ψ
(k)
m (x)φ

(n−k)
n (x)dx

donc, en particulier, pour k = n, ce qui donne bien (ψm|ψn) = (−1)n
∫ +∞

0
ψ
(n)
m (x)φn(x)dx.

• Soit m et n deux entiers naturels tels que m ̸= n et, quitte à intervertir les rôles, supposons que m < n.

Alors, d’après le premier point, on a (ψm|ψn) = (−1)n
∫ +∞

0
ψ
(n)
m (x)φn(x)dx. Or ψm est polynomiale de

degré m < n, donc ψ
(n)
m = 0 et on a donc (ψm|ψn) = (−1)n

∫ +∞

0
ψ
(n)
m (x)φn(x)dx =

∫ +∞

0
0dx = 0. La

famille (ψn)n∈N est donc orthogonale pour le produit scalaire ( . | . ).

13 D’après la question précédente, ||ψn||2α = (ψn|ψn) = (−1)n
∫ +∞

0
ψ
(n)
n (x)φn(x)dx. Or ψn est une fonction

polynomiale de degré n et de coefficient dominant (−1)n, donc pour tout ψ
(n)
n (x) = (−1)nn! si x > 0 et

||ψn||2α = (−1)n
∫ +∞

0
ψ
(n)
n (x)φn(x)dx = (−1)2nn!

∫ +∞

0
φn(x)dx = n!

∫ +∞

0
xn+αe−xdx = n!Γ(n + α + 1).

On a bien, ∀n ∈ N, ||ψn||2α = n! Γ(n+ α+ 1).� �
PARTIE 3 : APPROXIMATION� �

14 De la même façon qu’à la question 12, on peut montrer par récurrence, pour tout i ∈ [[0;n]], la relation

(ψn|fk) = (−1)i
∫ +∞

0
φ

(n−i)
n (x)f

(i)
k (x)dx = (−1)i

∫ +∞

0
φ

(n−i)
n (x)(−k)ie−kxdx = ki

∫ +∞

0
φ

(n−i)
n (x)e−kxdx.

En particulier, pour i = n, on obtient (ψn|fk) = kn
∫ +∞

0
φn(x)e

−kxdx = kn
∫ +∞

0
xn+αe−(k+1)xdx donc

(ψn|fk) = kn
∫ +∞

0

un+α

(k+ 1)n+α e
−u du

k+ 1
avec le changement de variable x = u

k+ 1
facile à justifier. Ainsi,

(ψn|fk) = 1

(k+ 1)α+1

(
k

k+ 1

)n ∫ +∞

0
un+αe−udu = 1

(k+ 1)α+1

(
k

k+ 1

)n

Γ(n+ α+ 1).

Par suite, pour tout n ∈ N, d’après la question 13,
(fk|ψn)

2

||ψn||2α
=

(
1

(k+ 1)α+1

(
k

k+ 1

)n

Γ(n+ α+ 1)

)2

n!Γ(n+ α+ 1)

donc
(fk|ψn)

2

||ψn||2α
= 1

(k+ 1)2α+2

((
k

k+ 1

)2
)n

Γ(n+ α+ 1)
n!

= 1

(k+ 1)2α+2 an

((
k

k+ 1

)2
)n

où an a été



introduit dans l’énoncé. D’après ce qui a été admis dans l’énoncé, comme

(
k

k+ 1

)2

∈] − 1; 1[, on a

∑
n>0

(fk|ψn)
2

||ψn||2α
= 1

(k+ 1)2α+2

∑
n>0

an

((
k

k+ 1

)2
)n

converge et

+∞∑
n=0

(fk|ψn)
2

||ψn||2α
= 1

(k+ 1)2α+2

+∞∑
n=0

an

((
k

k+ 1

)2
)n

= 1

(k+ 1)2α+2

Γ(α+ 1)1−( k

k+ 1

)2
α+1

= 1

(k+ 1)2α+2

Γ(α+ 1)(
2k+ 1

(k+ 1)2

)α+1 = 1

(k+ 1)2α+2

Γ(α+ 1)(k+ 1)2α+2

(2k+ 1)α+1 =
Γ(α+ 1)

(2k+ 1)α+1 .

On a montré que
+∞∑
n=0

(fk|ψn)
2

||ψn||2α
=

Γ(α+ 1)

(2k+ 1)α+1 pour k ∈ N.

15 Pour N ∈ N, VN est un sous-espace vectoriel de dimension finie de Eα dont
(

ψn

||ψn||α

)
n∈[[0;N]]

est une base

orthonormée. D’après la question 3, ||fk − πN(fk)||2α = ||fk||2 −
N∑

n=0

(
fk

∣∣∣ ψn

||ψn||α

)2
= ||fk||2 −

N∑
n=0

(fk|ψn)
2

||ψn||2α
.

Or ||fk||2α =
∫ +∞

0
xαe−xe−2kxdx =

∫ +∞

0
xαe−(2k+1)xdx =

∫ +∞

0

uα

(2k+ 1)α
e−u du

2k+ 1
avec le changement

de variable x = u

k+ 1
facile à justifier. Ainsi, ||fk||2α = 1

(2k+ 1)α+1

∫ +∞

0
uαe−udu =

Γ(α+ 1)

(2k+ 1)α+1 . Par

conséquent, ||fk − πN(fk)||2α = ||fk||2 −
N∑

n=0

(fk|ψn)
2

||ψn||2α
=

Γ(α+ 1)

(2k+ 1)α+1 −
N∑

n=0

(fk|ψn)
2

||ψn||2α
et on en déduit que

||fk − πN(fk)||2α −→
N→+∞

Γ(α+ 1)

(2k+ 1)α+1 −
+∞∑
n=0

(fk|ψn)
2

||ψn||2α
=

Γ(α+ 1)

(2k+ 1)α+1 − Γ(α+ 1)

(2k+ 1)α+1 = 0 et on a bien la limite

attendue, lim
N→+∞

||fk − πN(fk)||α = 0.

16 D’après la question précédente, pour tout k ∈ N, pour tout ε > 0, il existe N0 ∈ N tel que pour tout N > N0,

on a ||fk − πN(fk)||α 6 ε. En particulier, en prenant N = N0, on a la majoration ||fk − πN0
(fk)||α 6 ε, et

πN0
(fk) ∈ VN0

= Vect(ψ0, · · · , ψN0
) ⊂ P comme espace vectoriel engendré par des éléments de P. Ainsi,

p = πN0
(fk) convient et vérifie p ∈ P et ||fk − p||α 6 ε.

17 Soit g : [0; 1] → R définie par g(t) = f(− ln(t)) si t ∈]0; 1] et g(0) = 0. Alors, g est continue sur ]0; 1]

par opérations sur les fonctions continues. De plus, lim
t→0+

g(t) = lim
x→+∞

f(x) = 0 par composée puisque

lim
t→0+

(− ln(t)) = +∞ par hypothèse sur f, ce qui fait que lim
t→0+

g(t) = g(0) = 0. g est donc continue sur

le segment [0; 1]. Alors, d’après le théorème admis, il existe une fonction polynomiale p : t 7→
n∑

k=0

λkt
k

telle que pour tout t ∈ [0; 1], on ait |g(t) − p(t)| 6 ε. On a alors, pour tout x > 0, comme e−x ∈]0; 1],∣∣∣∣f(x)− n∑
k=0

λkfk(x)

∣∣∣∣ = ∣∣∣∣f(− ln(e−x))−
n∑

k=0

λk(e
−x)k

∣∣∣∣ = |g(e−x)− p(e−x)| 6 ε :

(
f(x)−

n∑
k=0

λkfk(x)

)2

6 ε2.

On a donc, pour tout x > 0, 0 6 xαe−x

(
f(x)−

n∑
k=0

λkfk(x)

)2

6 xαe−xε2 donc, par positivité de l’intégrale



convergente (avec 0 6 +∞), on a

0 6
∫ +∞

0
xαe−x

(
f(x)−

n∑
k=0

λkfk(x)

)2

dx =

∣∣∣∣∣∣∣∣f− n∑
k=0

λkfk

∣∣∣∣∣∣∣∣2
α

6
∫ +∞

0
xαe−xε2 = ε2Γ(α+ 1).

En remplaçant ε par ε√
Γ(α+ 1)

dans le théorème admis,

∣∣∣∣∣∣∣∣f− n∑
k=0

λkfk

∣∣∣∣∣∣∣∣2
α

6 ε2 et

∣∣∣∣∣∣∣∣f− n∑
k=0

λkfk

∣∣∣∣∣∣∣∣
α

6 ε.

18 Soit f vérifiant les hypothèses et ε > 0. D’après la question précédente, il existe n ∈ N et (λk)06k6n ∈ Rn+1

tels que

∣∣∣∣∣∣∣∣f− n∑
k=0

λkfk

∣∣∣∣∣∣∣∣
α

6 ε

2
. De plus, pour tout k ∈ [[0;n]], d’après la question 16, il existe pk ∈ P tel que

||fk − pk||α 6 ε

2(n+ 1)(|λk|+ 1)
, et on a alors∣∣∣∣∣∣∣∣f− n∑

k=0

λkpk

∣∣∣∣∣∣∣∣
α

=

∣∣∣∣∣∣∣∣f− n∑
k=0

λkfk +
n∑

k=0

λk(fk − pk)

∣∣∣∣∣∣∣∣
α

6
∣∣∣∣∣∣∣∣f− n∑

k=0

λkfk

∣∣∣∣∣∣∣∣
α

+
n∑

k=0

|λk| ||fk − pk||α (inégalité triangulaire)

6 ε

2
+

n∑
k=0

|λk|
(|λk|+ 1)

ε

2(n+ 1)
6 ε

2
+

n∑
k=0

ε

2(n+ 1)
= ε

2
+ ε

2
= ε.

En posant p =
n∑

k=0

λkpk ∈ P, on a donc p ∈ P et ||f− p||α 6 ε.

19 Soit f : x ∈ [0; +∞[ 7→ h(
√
x)ex/2. La fonction f est continue sur R+ par opérations et a une limite nulle en

+∞ (car elle est nulle sur ]A2; +∞[) donc, d’après la question 18, pour tout α > −1, il existe p ∈ P telle

que ||f− p||α 6 √
ε. Or

||f− p||2α =
∫ +∞

0
xαe−x(f(x)− p(x))2dx

=
∫ +∞

0
xα(f(x)e−x/2 − p(x)e−x/2)2dx

=
∫ +∞

0
xα(h(

√
x)− p(x)e−x/2)2dx

=
∫ +∞

0
t2α(h(t)− p(t2)e−t2/2)22tdt

en posant le changement de variable x = t2 = φ(t) avec φ qui est une bijection strictement croissante et

de classe C1 de R∗
+ dans R∗

+. Alors, en prenant α = −1
2
(et le p correspondant à cette valeur de α) et

q : t ∈ R 7→ p(t2) qui est une fonction polynomiale paire, on a

||f− p||2−1/2 =
∫ +∞

0
t2α(h(t)− p(t2)e−t2/2)22tdt

= 2

∫ +∞

0
(h(t)− q(t)e−t2/2)2dt

=
∫ +∞

−∞

(
h(x)− q(x)e

−x2

2

)2
dx

par parité de la fonction t 7→ (h(t) − q(t)e−t2/2)2. Ainsi, si h : R → R est une fonction continue, paire et

nulle en dehors d’un segment [−A;A] (où A > 0) et si ε est un réel strictement positif, il existe une fonction

polynomiale q : R → R telle que
∫ +∞

−∞

(
h(x)− q(x)e

−x2

2

)2
dx = ||f− p||2−1/2 6 ε.

On peut montrer que le résultat de la dernière question est en réalité valable pour toute fonction h : R → R
continue et de carré intégrable sur R.
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1 La fonction h : t 7→ e−t
√
t

est continue sur R∗
+ par théorèmes généraux. De plus, h(t) = e−t

√
t
∼
0

1√
t
donc, par

comparaison aux intégrales de Riemann, h est intégrable sur ]0; 1]. On a aussi h(t) = e−t
√
t

=
+∞

o

(
1

t2

)
par

croissances comparées car lim
t→+∞

t3/2e−t = 0 donc h est intégrable sur [1; +∞[ encore par comparaison aux

intégrales de Riemann. Enfin, h : t 7→ e−t
√
t
est intégrable sur R∗

+ donc I =
∫ +∞

0
h(t)dt existe.

2.1 La fonction φ est continue sur R∗
+, φ(t)=

0

1√
t
et φ(t) ∼

+∞
1

t3/2
donc, par comparaison aux intégrales de

Riemann, φ est à la fois intégrable sur ]0; 1] et sur [1; +∞[ donc φ est intégrable sur R∗
+.

2.2 Posons f : (x, t) 7→ e−x(1+t)

(1+ t)
√
t
:

(H1) pour tout t > 0, la fonction x 7→ f(x, t) est continue sur R+.

(H2) pour tout x > 0, la fonction t 7→ f(x, t) est continue par morceaux sur R∗
+ (et même continue).

(H3) pour t > 0 et x > 0, |f(x, t)| = f(x, t) 6 φ(t) car e−xt 6 1 et φ est intégrable sur R∗
+ d’après 2.1.

Par le théorème de continuité sous le signe somme, g est continue sur R+.

Par linéarité de l’intégrale, ∀x > 0, g(x) = e−x
∫ +∞

0

e−xt

(1+ t)
√
t
dt donc, comme φ est intégrable sur R∗

+, on

obtient 0 6 g(x) 6 e−x
∫ +∞

0
φ(t)dt. Par encadrement, comme lim

x→+∞
e−x = 0, lim

x→+∞
g(x) = 0 .

2.3 Toujours avec la fonction f : (x, t) 7→ e−x(1+t)

(1+ t)
√
t
:

(H1) pour tout t > 0, la fonction x 7→ f(x, t) est de classe C1 sur R∗
+.

(H2) pour tout x > 0, la fonction t 7→ f(x, t) est continue et intégrable sur R∗
+ (vu en 2.2).

(H3) pour tout x > 0, t 7→ ∂f
∂x

(x, t) = −e
−x(1+t)
√
t

est continue par morceaux sur R∗
+ (et même continue).

(H4) si [a; b] ⊂ R∗
+, pour x ∈ [a, b] et t > 0, on a

∣∣∣ ∂f∂x (x, t)∣∣∣ = e−x(1+t)
√
t

6 e−a(1+t)
√
t

= ψa(t). De plus, ψ

est continue par morceaux et intégrable sur R∗
+ car ψa(t)∼

0

e−a
√
t

et ψa(t) =
+∞

o

(
1

t2

)
.

Par le théorème de dérivation sous le signe somme, g est C1 sur R∗
+ et g′(x) = −

∫ +∞

0

e−x(1+t)
√
t

dt.

On a alors g′(x) = −e−x
∫ +∞

0

e−(xt)
√
t
dt et, en posant u = xt, comme x > 0, u 7→ u

x
est de classe C1, bijective

et strictement croissante de R∗
+ sur R∗

+ et g′(x) = −e−x
∫ +∞

0

e−u√
u/x

du

x
donc g′(x) = −I× e−x

√
x
.



3 θ : t 7→ Arctan(
√
t) est dérivable sur R∗

+ et ∀t > 0, θ′(t) = 1

2
√
t
× 1

1+ (
√
t)2

= 1

2(1+ t)
√
t
=
φ(t)
2

. On en

déduit g(0) =
∫ +∞

0
φ(t)dt =

[
2Arctan(

√
t )
]+∞

0
donc g(0) = π. On pouvait aussi poser t = u2 = ψ(u)

avec ψ qui est C1, bijective et strictement croissante de R∗
+ dans R∗

+ pour avoir, par changement de variable,

g(0) =
∫ +∞

0
φ(t)dt =

∫ +∞

0
2uφ(u2)du =

∫ +∞

0

2u

u(1+ u2)
du =

[
2Arctan(u)

]+∞
0

= π.

Comme g est une primitive de g′ et que g admet des limites finies en 0 et +∞, d’après le cours,
∫ +∞

0
g′(t)dt

converge et
∫ +∞

0
g′(t)dt =

[
g(t)

]+∞
0

= lim
t→+∞

g(t)− g(0) donc
∫ +∞

0
g′(t)dt = −π d’après 2.2.

Avec l’expression de g′ obtenue en 2.3, par linéarité de l’intégrale,
∫ +∞

0
g′(t)dt = −I

∫ +∞

0

e−t
√
t
dt = −I2.

On en déduit I2 = π et comme t 7→ e−t
√
t
est positive sur R∗

+, on a I > 0 puis I =
√
π.� �

PARTIE 2 : ÉTUDE DE F� �
4 Pour tout réel x ∈ R, la suite un = x2n

(n!)2
= x2n

n!
× 1

n!
=
+∞

o

(
1

n!

)
car lim

n→+∞
x2n

n!
= 0 par croissances

comparées. Or la série
∑
n>0

1

n!
converge donc, par comparaison,

∑
n>0

x2n

(n!)2
converge. On aurait aussi pu,

pour x ̸= 0, écrire
∣∣∣un+1

un

∣∣∣ = x2

n+ 1
−→

n→+∞
ℓ = 0 < 1 donc, par critère de d’Alembert,

∑
n>0

x2n

(n!)2
converge.

Ainsi, F(x) est défini pour tout x ∈ R donc DF = R.

5.1 On raisonne par récurrence :

• On a bien 40

1!
= 1 6 1

(0!)2
= 1 6 40

(2.0)!
= 1 donc l’encadrement est vrai pour n = 0.

• Soit n ∈ N tel que 4n

(2n+ 1)!
6 1

(n!)2
6 4n

(2n)!
, alors, par hypothèse de récurrence, on a l’inégalité

4n+1

(2n+ 3)!
= 4

(2n+ 3)(2n+ 2)
× 4n

(2n+ 1)!
6 4

(2(n+ 1))2
× 1

(n!)2
= 1

(n+ 1)!2
et, de l’autre côté, il

vient 4n+1

(2n+ 2)!
= 4

(2n+ 1)(2n+ 2)
× 4n

(2n)!
> 4

(2(n+ 1))2
× 1

(n!)2
= 1

(n+ 1)!2
.

Par principe de récurrence, ∀n ∈ N, 4n

(2n+ 1)!
6 1

(n!)2
6 4n

(2n)!
.

5.2 Pour x > 0, on a donc 1

2x
× (2x)2n+1

(2n+ 1)!
=

(2x)2n

2(2n+ 1)!
6 x2n

(n!)2
6 (2x)2n

(2n)!
en multipliant l’encadrement de 5.1

par x2n > 0. En sommant ces inégalités et avec les développements en série entière classiques des fonctions

sh et ch valables sur R, on en déduit l’encadrement ∀x > 0, sh(2x)
2x

6 F(x) 6 ch(2x). Or
sh(2x)
2x

∼
+∞

e2x

4x
et

lim
x→+∞

e2x

4x
= +∞ par croissances comparées donc, par minoration, on obtient la limite lim

x→+∞
F(x) = +∞.

6.1 On sait d’après le cours que ∀u ∈ R, eu =
+∞∑
n=0

un

n!
. En prenant u = x cos(t) ∈ R dans ce développement en

série entière, on a donc ∀x ∈ R, ∀t ∈ [0;π], exp(2x cos(t)) =
+∞∑
n=0

2n cos(t)n

n!
xn.



6.2 On pourrait utiliser le théorème d’intégration terme à terme du chapitre 6mais comme [0;π] est un segment....

on pose, pour n ∈ N et x ∈ R, la fonction vn : t 7→ 2n cos(t)n

n!
xn :

(H1) Les fonctions vn sont toutes continues sur le segment [0;π] par opérations.

(H2) Pour n ∈ N et t ∈ [0;π] on a |vn(t)| =
2n| cos(t)|n

n!
xn 6 2n|x|n

n!
car | cos(t)| 6 1 donc vn est bornée

sur [0;π] avec ||vn||∞,[0;π] 6
2n|x|n
n!

et la série
∑
n>0

2n|x|n
n!

converge d’après le cours (sa somme

vaut exp(2|x|)). Ainsi, la série
∑
n>0

vn converge normalement sur [0;π] vers x 7→ exp(2x cos(t)).

Par le théorème d’intégration terme à terme sur un segment,
∫ π

0
exp(2x cos(t))dt =

+∞∑
n=0

∫ π

0
vn(t)dt. Mais

comme
∫ π

0
vn(t)dt = 2nxn

n!
wn par linéarité de l’intégrale, d’après l’énoncé, on a

∫ π

0
v2n+1(t)dt = 0 et∫ π

0
v2n(t)dt =

22nx2n

(2n)!
× π(2n)!

4n(n!)2
donc

∫ π

0
v2n(t)dt = π x

2n

(n!)2
. Après avoir retiré les termes nuls d’indices

impairs, il reste
∫ π

0
exp(2x cos(t))dt = π

+∞∑
n=0

x2n

(n!)2
= π F(x) donc F(x) = 1

π

∫ π

0
exp(2x cos(t))dt.

7 Pour t ∈
[
π

2
;π
]
= I et x ∈ R+, on pose a(x, t) = exp(2x cos(t)) de sorte que f1(t) =

∫ π

π/2
a(x, t)dt qui existe

car t 7→ a(x, t) est continue sur le segment
[
π

2
;π
]
:

(H1) Si t ∈
[
π

2
;π
]
, comme cos(t) < 0 si t > π

2
et cos

(
π

2

)
= 0, on a lim

x→+∞
a(x, t) = k(t) avec k

(
π

2

)
= 1

et k(t) = 0 si t ∈
]
π

2
;π
]
.

(H2) Pour tout x ∈ R+, t 7→ a(x, t) est continue sur I et t 7→ k(t) est continue par morceaux sur I.

(H3) Pour x ∈ R+ et t ∈ I, |a(x, t)| = exp(2x cos t) 6 1 = φ(t) car 2x cos(t) 6 0 et la fonction constante

φ : t 7→ 1 est continue et intégrable sur le segment I.

Par le théorème de convergence dominée à paramètre continu, on a donc lim
x→+∞

f1(x) =
∫ π

π/2
k(t)dt = 0.

8.1 Pour x > 0, f2(x) est bien défini car la fonction t 7→ exp(2x cos(t)) est continue sur le segment
[
0; π
2

]
. Avec

l’indication de l’énoncé, on pose t = Arccos

(
1− u

2x

)
= φ(u) (ce qui revient à u = 2x(1− cos(t))) avec φ qui

est de classe C1, bijective et strictement croissante de ]0; 2x] dans
]
0; π
2

]
donc, par changement de variable,

comme φ′(u) =
(
− 1

2x

)
× −1√

1−
(
1− u

2x

)2 = 1

2
√
x

√
u− u2

4x

, on obtient f2(x) =
∫ 2x

0

e2x−u

2
√
x

√
u− u2

4x

du donc,

par linéarité, une autre expression de f2(x) : f2(x) =
e2x

2
√
x

∫ 2x

0

e−u√
u− u2

4x

du.

8.2 Si x > 0 et u ∈ [0; 2x], on a u− u2

4x
− u

2
= u

2

(
1− u

2x

)
> 0 puisque u ∈ [0; 2x] d’où l’inégalité u− u2

4x
> u

2
.

On détermine la limite quand x tend vers +∞ de J(x) = 2
√
xe−2xf2(x) =

∫ 2x

0

e−u√
u− u2

4x

du d’après 8.1.



On écrit plutôt J(x) =
∫ +∞

0
b(x, u)du en posant b(x, u) = e−u√

u− u2

4x

si u ∈]0; 2x] et b(x, u) = 0 si u > 2x :

(H1) Pour u ∈ R∗
+, comme b(x, u) = e−u√

u− u2

4x

dès que x > u

2
, on a lim

x→+∞
b(x, u) = e−u

√
u

= h(u).

(H2) u 7→ b(x, u) est continue par morceaux sur R∗
+ pour tout x ∈ R∗

+ et h est continue sur R∗
+.

(H3) Si x ∈ R∗
+ et u ∈]0, 2x] alors |b(x, u)| = e−u√

u− u2

4x

6 e−u√
u/2

=
√
2h(u) d’après l’inégalité ci-dessus

et, si u > 2x, |b(x, u)| = 0 6
√
2h(u) car h(u) > 0. On a donc ∀x > 0, ∀u > 0, |b(x, u)| 6

√
2h(u)

et h est continue et intégrable sur R∗
+ avec la question 1.

Par le théorème de convergence dominée à paramètre continu, lim
x→+∞

J(x) =
∫ +∞

0
h(u)du =

√
π d’après la

partie 1 ce qui prouve que f2(x) ∼
+∞

√
πe2x

2
√
x

.

9 Avec la question 6.2 et par Chasles, on a ∀x > 0, F(x) = 1

π

(
f1(x) + f2(x)

)
or lim

x→+∞
f1(x) = 0 avec 7

et lim
x→+∞

f2(x) = +∞ avec 8.2 car lim
x→+∞

√
πe2x

2
√
x

= +∞ par croissances comparées. Ainsi, par somme, on

obtient F(x) ∼
+∞

f2(x)
π

car lim
x→+∞

f1(x)
f2(x)

= 0 donc, toujours avec 8.2, F(x) ∼
+∞

e2x

2
√
πx

.

� �
PARTIE 3 : TRANSFORMÉES DE LAPLACE� �

10.1 La fonction gx : t 7→ et(2−x)
√
t

est continue sur R∗
+ et intégrable sur ]0; 1] par comparaison aux intégrales

de Riemann pour tout x ∈ R car gx(t)∼
0

1√
t
. De plus, si x > 2, alors 2 − x < 0 donc gx(t) =

+∞
o

(
1

t2

)
par

croissances comparées donc gx est intégrable sur [1; +∞[ par comparaison aux intégrales de Riemann. Par

contre, si x 6 2, ∀t ∈ R∗
+,

et(2−x)
√
t

> 1√
t
> 0 donc, comme t 7→ 1√

t
n’est pas intégrable sur [1; +∞[ par

Riemann, par minoration, gx n’est pas intégrable sur [1; +∞[. Ainsi, gx est intégrable sur [1; +∞[ si et

seulement si x > 2. Par conséquent, gx est intégrable sur R∗
+ si et seulement si x > 2. Comme gx est une

fonction positive sur R∗
+, gx intégrable sur R∗

+ si et seulement si
∫ +∞

0
gx(t)dt converge. Ainsi, le domaine

de définition DLG
de LG vaut ]2; +∞[ et LG(x) existe si et seulement si x > 2.

10.2 Si x > 2, comme la fonction φ : u 7→ u

x− 2
est de classe C1, bijective et strictement croissante de R∗

+

dans R∗
+, par le changement de variable t = φ(u) = u

x− 2
, on a LG(x) =

1

2
√
π

∫ +∞

0

e−u√
u/(x− 2)

du

x− 2
donc

LG(x) =
1

2
√
π(x− 2)

∫ +∞

0

e−u
√
u
du = I

2
√
π(x− 2)

et, avec la partie 1, LG(x) =
1

2
√
x− 2

pour x > 2.

11.1 Pour tout réel x, la fonction fx : t 7→ F(t)e−xt est continue sur R+ par opérations car F l’est. Comme

F(t) ∼
+∞

G(t) = e2t

2
√
πt

, on a fx(t) ∼
+∞

gx(t) donc, puisque gx est intégrable sur [1; +∞[ si et seulement si x > 2



d’après 10.1, par comparaison, fx est intégrable sur [1; +∞[ si et seulement si x > 2. Comme fx est positive

sur R+, fx est intégrable sur R+ si et seulement si x > 2. Comme fx est positive sur R+, l’intégrabilité de

fx sur R+ équivaut à la convergence de
∫ +∞

0
fx.

Par conséquent, LF(x) existe si et seulement si x > 2.

11.2 Pour n ∈ N, la fonction hn : t 7→ tne−xt est continue sur R+ et hn(t) = tne−xt =
+∞

o

(
1

t2

)
par croissances

comparées car x > 0 donc hn est intégrable sur R+ par comparaison aux intégrales de Riemann. Ainsi,

l’intégrale In =
∫ +∞

0
tne−xtdt existe pour tout n ∈ N. Pour n ∈ N∗ et x > 0, les fonctions un : t 7→ tn

et v : t 7→ −1
x
e−xt sont de classe C1 sur R+ et lim

t→+∞
un(t)v(t) = 0 = un(0)v(0) par croissances comparées

donc, par intégration par parties, In =
∫ +∞

0
tne−xtdt =

[
− 1

x
tne−xt

]+∞

0
+ n

x

∫ +∞

0
tn−1e−xtdt = n

x
In−1.

Initialisation : I0 =
∫ +∞

0
t0e−xtdt =

∫ +∞

0
e−xtdt =

[
− 1

x
e−xt

]+∞

0
= 1

x
= 0!
x0+1 .

Hérédité : soit n ∈ N tel que In = n!
xn+1 , par hypothèse de récurrence et la relation trouvée ci-dessus, on a

In+1 = n+ 1

x
In = n+ 1

x
× n!
xn+1 =

(n+ 1)!

xn+2 .

Par principe de récurrence, on a bien établi que ∀n ∈ N, ∀x > 0, In =
∫ +∞

0
tne−xtdt = n!

xn+1 .

11.3 Si x > 2 et t ∈ R+, on a F(t)e−xt =
+∞∑
n=0

t2n

(n!)2
e−xt par définition de F(t). On a donc fx(t) =

+∞∑
n=0

an(t)

pour tout t ∈ R+ en posant an(t) =
t2n

(n!)2
e−xt (pour x > 2 fixé) :

(H1) La série de fonctions
∑
n>0

an converge simplement sur R+ vers fx avec ce qui précède.

(H2) Les fonctions an et la fonction fx sont continues sur R+.

(H3) Les fonctions an sont intégrables sur R+ d’après 11.2.

(H4) ∀n ∈ N,
∫ +∞

0
|an(t)|dt = 1

(n!)2

∫ +∞

0
t2ne−xtdt = I2n

(n!)2
=

(2n)!

(n!)2x2n+1 = αn > 0 avec 11.2 et

αn+1

αn

=
(2n+ 2)(2n+ 1)

(n+ 1)2x2
∼
+∞

4

x2
donc lim

n→+∞
αn+1

αn

= 4

x2
< 1 car x > 2 d’où la convergence de la

série numérique
∑
n>0

∫ +∞

0
|fn(t)|dt par le critère de d’Alembert.

Par le théorème d’intégration terme à terme, LF(x) =
+∞∑
n=0

∫ +∞

0

t2n

(n!)2
e−xtdt =

+∞∑
n=0

(2n)!

(n!)2x2n+1 si x > 2.

11.4 Si x > 2 alors
∣∣∣ 1
2x

∣∣∣ < 1 et, d’après l’énoncé, LF(x) =
+∞∑
n=0

(2n)!

(n!)2x2n+1 =
+∞∑
n=0

(2n)!

4n(n!)2
× 4n

x2n+1 donc

LF(x) =
1

x

+∞∑
n=0

(2n)!

4n(n!)2
×
(
4

x2

)n
= 1

x
× 1√

1− (4/x2)
avec l’énoncé d’où LF(x) =

1√
x2 − 4

si x > 2.

12 Avec 10.2 et 11.4, si x > 2,
LF(x)
LG(x)

= 2
√
x− 2√
x2 − 4

= 2√
x+ 2

et lim
x→2+

2√
x+ 2

= 2√
4
= 1 donc LF(x) ∼

2+
LG(x).



� �
PARTIE 4 : FONCTIONS ÉQUIVALENTES� �

13.1 Les fonctions d1 : t 7→ h1(t)e
−xt et d2 : t 7→ h2(t)e

−xt sont continues par morceaux sur R∗
+ par opérations

car h1 et h2 le sont. De plus, pour i ∈ {1, 2}, di(t) = hi(t)e
−xt ∼

0
hi(t) car lim

t→0+
e−xt = 1 donc di est

intégrable sur ]0; 1] par comparaison car hi l’est par hypothèse. Enfin d1(t) = h1(t)e
−xt ∼

+∞
h2(t)e

−xt = d2(t)

car h1(t) ∼
+∞

h2(t) par hypothèse donc, par comparaison, d1 est intégrable sur [1; +∞[ si et seulement si la

fonction d2 est intégrable sur [1; +∞[. En regroupant les informations, la fonction d1 est intégrable sur

R∗
+ =]0; 1] ∪ [1; +∞[ si et seulement d2 est intégrable sur R∗

+. Comme h1 et h2 sont positives sur R∗
+

par hypothèse, les fonctions d1 et d2 sont aussi positives sur R∗
+ donc la convergence de

∫ +∞

0
hi(t)e

−xtdt

équivaut à l’intégrabilité de di sur R∗
+. Par conséquent, on peut conclure que l’existence de L1(x) est

équivalent à celle de L2(x) donc L1 et L2 ont le même ensemble de définition D.

13.2 Soit x0 ∈ D (qui existe car D ̸= ∅ par hypothèse) et x > x0 alors ∀t > 0, 0 6 hi(t)e
−xt 6 hi(t)e

−x0t car

hi(t) > 0 et exp croissante donc, par théorème de comparaison, la fonction t 7→ hi(t)e
−xt est intégrable sur

R∗
+ car t 7→ hi(t)e

−x0t l’est et on a x ∈ D. Ainsi, [x0; +∞[⊂ D si x0 ∈ D. Traitons plusieurs cas :

(1) D est minoré et on sait dans ce cas que α = Inf(D) ∈ R existe :

• Si α ∈ D, alors en prenant x0 = α ci-dessus, on vient de voir que [α; +∞[⊂ D. Mais comme

α est la borne inférieure de D, donc un minorant de D, on a aussi D ⊂ [α; +∞[ et, par double

inclusion, on a D = [α; +∞[ avec α =Min(D) ∈ R.

• Si α /∈ D, encore une fois, comme α est un minorant de D, on a D ⊂ [α; +∞[. Mais comme

α /∈ D, on a même D ⊂]α; +∞[. Par propriété de la borne inférieure, si x > α, il existe un

x0 ∈ D tel que α < x0 < x = α+ ε et on a x ∈ D d’après ce qui précède donc ]α; +∞[⊂ D. Par

double inclusion, on a bien D =]α; +∞[ avec α = Inf(D) ∈ R.

(2) D n’est pas minoré donc, pour tout x ∈ R, il existe un x0 ∈ D tel que x0 < x et ce qui précède montre

alors que [x0; +∞[⊂ D donc que x ∈ D. Ainsi, D = R =]−∞; +∞[ (α = −∞).

Dans les trois cas, si D ̸= ∅, D est une demi-droite de la forme [α; +∞[ ou ]α; +∞[.

14.1 Si x < y sont dans D alors ∀t > 0, 0 6 h1(t)e
−yt 6 h1(t)e

−xt par croissance de l’exponentielle et positivité

de h1 sur R∗
+. Ainsi, par croissance de l’intégrale, on a 0 6

∫ +∞

0
h1(t)e

−ytdt 6
∫ +∞

0
h1(t)e

−xtdt (tout

converge), donc 0 6 L1(y) 6 L1(x), c’est-à-dire que L1 est positive et croissante sur D.

14.2 Pour x > α, on a x ∈ D d’après 13.2 donc
∫ +∞

0
h1(t)e

−xtdt converge et, comme ∀t > 0, h1(t)e−xt > 0, on

a
∫ +∞

0
h1(t)e

−xtdt =
∫ A

0
h1(t)e

−xtdt +
∫ +∞

A
h1(t)e

−xtdt par Chasles avec
∫ +∞

A
h1(t)e

−xtdt > 0 donc∫ A

0
h1(t)e

−xtdt 6
∫ +∞

0
h1(t)e

−xtdt = L1(x) 6M (I) pour x > α.



Pour A > 0 fixé et tout x ∈ R, l’application e1 : t 7→ h1(t)e
−xt est continue sur ]0;A] avec e1(t)∼

0
h1(t) donc

e1 est intégrable sur ]0;A] par comparaison car h1 l’est par hypothèse. Ainsi, q : x 7→
∫ A

0
h1(t)e

−xtdt est

définie sur R. Posons s(x, t) = h1(t)e
−xt de sorte que ∀x ∈ R, q(x) =

∫ A

0
s(x, t)dt :

(H1) Pour tout t ∈]0;A], la fonction x 7→ s(x, t) est continue sur R par opérations.

(H2) Pour tout x ∈ R, la fonction t 7→ s(x, t) est continue par morceaux sur ]0;A].

(H3) Soit [a; b] ⊂ R, ∀x ∈ [a; b], ∀t ∈]0;A], |s(x, t)| = |h1(t)e−xt| = h1(t)e
−xt 6 h1(t)e

−at = φa(t) et

φa est continue et intégrable par comparaison sur ]0;A] car h1 l’est.

Par le théorème de continuité sous le signe somme, la fonction q est continue sur R donc notamment en α et

on a donc lim
x→α+

q(x) = q(α). Il suffit donc de passer à la limite (qui existe donc) dans l’inégalité large (I), ce

qui donne
∫ A

0
h1(t)e

−αtdt = q(α) = lim
x→α+

q(x) 6M car ∀x > α, q(x) 6M, d’où
∫ A

0
h1(t)e

−αtdt 6M.

14.3 On vient de prouver que l’application A 7→
∫ A

0
h1(t)e

−αtdt est majorée sur R∗
+. Comme la fonction

t 7→ h1(t)e
−αt est continue par morceaux et positive sur R∗

+, cela implique d’après le cours l’intégrabilité

de t 7→ h1(t)e
−αt sur R∗

+ ce qui montre que α ∈ D ce qui est contraire à l’hypothèse faite. On conclut

ce raisonnement par l’absurde : L1 n’est donc pas majorée sur D. Mais comme L1 est décroissante d’après

14.1, par le théorème de la limite monotone, on a lim
x→α+

L1(x) = +∞.

15.1 Soit x > α, toutes les intégrales qui suivent sont convergentes (mêmes justifications). Par Chasles, on a

|L1(x) − L2(x)| =
∣∣∣∫ +∞

0
(h1(t) − h2(t))e

−xtdt

∣∣∣ = ∣∣∣∫ B

0
(h1(t) − h2(t))e

−xtdt +
∫ +∞

B
(h1(t) − h2(t))e

−xtdt

∣∣∣.
Ainsi, |L1(x) − L2(x)| 6

∫ B

0
|h1(t) − h2(t)|e−xtdt +

∫ +∞

B
|h1(t) − h2(t)|e−xtdt par inégalité triangulaire

sur les réels et les intégrales. Ainsi, |L1(x) − L2(x)| 6
∫ B

0
|h1(t) − h2(t)|e−αtdt +

∫ +∞

B
εh1(t)e

−xtdt par

l’hypothèse faite dans l’énoncé et car x > α donc ∀t ∈]0;B], e−xt 6 e−αt. Ainsi, par définition de L1(x) et

car t 7→ h1(t)e
−xt est positive sur R∗

+, on obtient |L1(x)− L2(x)| 6
∫ B

0
|h1(t)− h2(t)|e−αtdt+ εL1(x).

15.2 B étant fixé,
∫ B

0
|h1(t) − h2(t)|e−αtdt est une constante et comme lim

x→α
L1(x) = +∞ par hypothèse, il

existe un réel r > 0 tel que, pour 0 < x − α < r, on ait
∫ B

0
|h1(t) − h2(t)|e−αtdt 6 εL1(x). Ainsi on a

|L1(x)−L2(x)| 6 2εL1(x) pour 0 < x−α < r, ce qui prouve (définition de négligeable, ε > 0 étant quelconque)

que L1(x)− L2(x) =
x→α+

o(L1(x)) donc que L1(x) ∼
x→α+

L2(x).


