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Le produit scalaire de deux vecteurs u et v d’un espace préhilbertien sera noté (u|v).
Définition : pour n vecteurs v1, · · · , vn d’un espace préhilbertien réel H, on appelle matrice de Gram des

vecteurs v1, · · · , vn, la matrice G(v1, · · · , vn) =
(
gi,j

)
16i,j6n

de Mn(R) où gi,j = (vi|vj) pour (i, j) ∈ [[1;n]]2.

Pour les calculs de déterminant, lorsque vous utilisez des manipulations sur les lignes ou les colonnes, il vous

est demandé d’indiquer précisément quelles manipulations vous effectuez.� �
PARTIE 1 : UN COURT EXEMPLE� �

On considère les trois vecteurs u =

 1

0

−1

, v =

 a

1− a

0

 et w =

 1

0

b

 de R3 et les deux réels a et b.

L’espace R3 est muni de son produit scalaire canonique. On note Bc la base canonique de R3.

1.1 Écrire la matrice de Gram G(u, v, w) des vecteurs u, v, w.

1.2 Des implications :

1.2.1 Calculer det
(
MatBc

(u, v, w)
)
, où MatBc

(u, v, w) est la matrice des vecteurs u, v, w dans Bc.

1.2.2 En déduire que si la famille (u, v, w) est liée alors det(G(u, v, w)) = 0.

1.2.3 Montrer que det(G(u, v, w)) > 0 et étudier la réciproque de la question précédente.� �
PARTIE 2 : ÉQUIVALENCE� �

2.1 Condition de nullité : soit n ∈ N∗ et C = (ci,j)16i,j6n une matrice carrée de Mn(R). Pour tout entier

i ∈ [[1;n]], on note Xi la matrice colonne de Mn,1(R) dont tous les coefficients sont nuls, sauf le coefficient

de la ligne i qui vaut 1.

2.1.1 Pour (i, j) ∈ [[1;n]]2, calculer le produit XT
i CXj.

2.1.2 En déduire que C = 0 si et seulement si pour tout couple (X, Y) de Mn,1(R)2 on a XTCY = 0.

Soit E un espace euclidien de dimension n et soit B = (e1, · · · , en) une base quelconque de E. Soit la matrice

de Gram des vecteurs e1, · · · , en notée A = G(e1, · · · , en). Pour tout vecteur u de E, on note avec la même

lettre majuscule U la matrice colonne des composantes du vecteur u relativement à la base B.

2.2 Pour tout couple (x, y) de vecteurs de E, justifier l’égalité (x|y) = XTAY.

Soit B′ = (e′1, · · · , e′n) une base orthonormale de E. On note P la matrice de passage de B à B′.

2.3 Condition suffisante : pour tout vecteur u de E, on note U′ la matrice colonne des composantes du vecteur

u relativement à la base B′.

2.3.1 Que vaut (x|y) en fonction de X′ et Y′ si (x, y) ∈ E2 ?

2.3.2 Soit x un vecteur de E. Rappeler la relation entre les matrices X, X′ et P.

2.3.3 En déduire que PTAP = In.



2.3.4 Montrer que la matrice A est inversible et que det(A) > 0.

2.3.5 Déduire des résultats précédents que si (ε1, · · · , εp) est une famille libre de vecteurs d’un espace

préhilbertien réel, la matrice B = G(ε1, · · · , εp) de Mp(R) vérifie det(B) > 0.

2.4 Condition nécessaire : dans un espace préhilbertien réel H, on considère n vecteurs quelconques u1, · · · , un,

avec n > 1. Soit M = G(u1, · · · , un). À X =

 x1
...
xn

 de Mn,1(R), on associe le vecteur v =
n∑

i=1

xiui de H.

2.4.1 Exprimer les coefficients de la matrice MX en fonction des produits scalaires (ui|v).
2.4.2 En déduire l’égalité XTMX = ||v||2 où ||v|| est la norme euclidienne du vecteur v.

2.4.3 Montrer que MX = 0 si et seulement si v est le vecteur nul.

2.4.4 On suppose queM est inversible, déduire de la question précédente que la famille (u1, · · · , un) est libre.

2.5 Produit scalaire constant : dans cette question suppose n > 2 et on considère n vecteurs unitaires u1, · · · , un
d’un espace préhilbertien H tels qu’il existe un réel α pour lequel on a ∀(i, j) ∈ [[1;n]]2, i ̸= j =⇒ (ui|uj) = α.

On note à nouveau M la matrice M = G(u1, · · · , un).
2.5.1 Justifier que |α| 6 1.

2.5.2 Calculer rg
(
M− (1− α)In

)
et en déduire que χM = (X− 1+ α)n−1(X− 1− (n− 1)α).

2.5.3 Soit X un vecteur propre de M associé à la valeur propre λ = 1+ (n− 1)α. Montrer que α > − 1

n− 1
.

2.5.4 On suppose cette fois que α = − 1

n− 1
. Quelle est la valeur du vecteur v =

n∑
i=1

ui ?� �
PARTIE 3 : DISTANCE À UN SOUS-ESPACE� �

On considère une famille (v1, · · · , vn) d’un espace préhilbertien réel H avec n > 2.

3.1 Opérations sur les vecteurs d’une matrice de Gram :

3.1.1 Exprimer det
(
G(v1, · · · , vn−1, λvn)

)
en fonction de λ ∈ R et de det

(
G(v1, · · · , vn−1, vn)

)
.

3.1.2 Exprimer det
(
G(v1, · · · , vn−1, vn + λv1)

)
en fonction de det

(
G(v1, · · · , vn)

)
.

3.2 Application à la distance : soit F = Vect(v1, · · · , vn) le sous-espace vectoriel de H engendré par v1, · · · , vn.

3.2.1 Soit w ∈ F⊥. Exprimer det
(
G(v1, · · · , vn, w)

)
en fonction de w et de det

(
G(v1, · · · , vn)

)
.

3.2.2 Soit v ∈ H, on note d(v, F) la distance du vecteur v au sous-espace vectoriel F. Montrer l’égalité

det
(
G(v1, · · · , vn, v)

)
=

(
d(v, F)

)2
det

(
G(v1, · · · , vn)

)
.

3.2.3 Calculer d(w, F) avec F = Vect(u, v), où u, v et w sont les vecteurs définis dans la partie 1.
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On rappelle la décomposition en série entière de la fonction exponentielle sur C :

∀z ∈ C, ez =
+∞∑
n=0

zn

n!
.

� �
PARTIE 1 : ÉTUDE DE DEUX FONCTIONS� �

1.1 Justifier que la fonction t 7→ e−t2 est intégrable sur [0; +∞[.

Dans la suite du problème, on admettra que la valeur de cette intégrale est
∫ +∞

0
e−t2dt =

√
π

2
.

1.2 Étude de la fonction h : par une première méthode

1.2.1 Justifier, pour tout réel b, que t 7→ cos(2bt) exp(−t2) est intégrable sur R+.

On définit donc la fonction h : R → R par

∀b ∈ R, h(b) =
∫ +∞

0
cos(2bt) exp(−t2)dt.

1.2.2 Pour tout n ∈ N, justifier l’existence de In
∫ +∞

0
t2ne−t2dt et déterminer une relation entre In et In+1.

1.2.3 En déduire que, pour n ∈ N, on a In =
(2n)!

22n(n!)
×

√
π

2
.

1.2.4 Pour b ∈ R fixé, en utilisant cos(2bt) = Re
(
e2ibt

)
, justifier que, pour tout t ∈ R+, on a

cos(2bt) =
+∞∑
n=0

(−1)n 4
nb2n

(2n)!
t2n.

1.2.5 En déduire une expression de h(b) à l’aide de la somme d’une série, puis que

h(b) =

√
π

2
e−b2

.

1.3 Étude de la fonction h : par une seconde méthode, soit f : R×R+ → R définie par f(b, t) = cos(2bt) exp(−t2).
On admet juste ici, comme montré en question 1.2.1, que t 7→ f(b, t) est intégrable sur R+ pour tout réel b.

1.3.1 Montrer que h est de classe C1 sur R et donner une expression de h′(b) sous forme intégrale.

1.3.2 En déduire que ∀b ∈ R, h′(b) + 2bh(b) = 0.

1.3.3 Établir comme en question 1.2.5 que ∀b ∈ R, h(b) =
√
π

2
e−b2

.



1.4 Étude de la fonction φ :

1.4.1 Montrer que l’on définit une fonction φ paire et continue sur R en posant :

∀x ∈ R, φ(x) =
∫ +∞

0
exp

(
−t2 − x2

t2

)
dt.

1.4.2 Montrer que φ est de classe C1 sur ]0; +∞[.

1.4.3 Déterminer une constante α telle que pour tout x ∈]0; +∞[ on ait :

φ′(x) = αφ(x).

Indication : on pourra utiliser un changement de variable.

1.4.4 Expliciter φ(x) pour x ∈]0; +∞[, puis pour x ∈ R.� �
PARTIE 2 : TRANSFORMÉE DE FOURIER� �

2.1 Étude de la fonction ψ :

2.1.1 Vérifier que l’on définit une fonction ψ, continue sur R, paire en posant

∀a ∈ R, ψ(a) =
∫ +∞

0

cos(2at)

1+ t2
dt.

2.1.2 Calculer ψ(0).

Soit p ∈ N∗ et jp la fonction définie sur R par :

∀x ∈ R, jp(x) =
1− exp(−p2(1+ x2))

2(1+ x2)
.

Dans la suite de cette partie, on fixe un réel a.

On pose alors un,p =
∫ n

0
jp(x) cos(2ax)dx avec n ∈ N∗ et p ∈ N∗.

2.2 Justifier l’existence de lim
p→+∞

un,p et l’expliciter sous forme d’une intégrale.

2.3 Convergence simple : soit n ∈ N∗ et kn : R+ → R définie par kn(y) =
∫ n

0
y exp(−y2x2) cos(2ax)dx.

2.3.1 Soit n ∈ N∗ fixé, montrer que kn est une fonction continue sur R+.

2.3.2 Montrer que (kn)n∈N∗ est une suite de fonctions qui converge simplement sur R+ vers une fonction k

que l’on explicitera.

2.4 Justifier l’intégrabilité sur [0; +∞[ de la fonction y 7→ kn(y) exp(−y2).

2.5 Vérifier que jp(x) =
∫ p

0
ye−(1+x2)y2

dy si p ∈ N∗.

On admet alors la possibilité de permuter les deux intégrales (Fubini), c’est-à-dire que, pour (n, p) ∈ (N∗)2 :

un,p =
∫ n

0

(∫ p

0
ye−(1+x2)y2

cos(2ax)dy

)
dx =

∫ p

0

(∫ n

0
y cos(2ax)e−(1+x2)y2

dx

)
dy.

2.6 Calculer ψ(a).


