
� �
DS 5.1 : MINES 2 PC 2020

PSI 1 2025/2026 samedi 17 janvier 2026� �
L’objectif du problème est d’établir, par des méthodes euclidiennes, des théorèmes d’approximation par des

polynômes ou des exponentielles-polynômes de certaines fonctions définies sur [0; +∞[ ou sur R.

On note C0([0; +∞[, R) l’espace vectoriel contenant les fonctions continues de R+ dans R.
Étant donné un intervalle I de R, on appelle fonction polynomiale sur I toute fonction de la forme f : I→ R
telle que ∀x ∈ I, f(x) =

n∑
k=0

λkx
k, où n est un entier naturel et λ0, . . . , λn des nombres réels.

Pour x > 0, on définit (on admet son existence) le réel strictement positif Γ(x) =
∫ +∞

0
tx−1e−tdt. Ceci

définit donc Γ : R∗
+ → R∗

+ (fonction Gamma d’Euler), qui vérifie classiquement ∀x > 0, Γ(x+ 1) = xΓ(x).

Soit α un réel strictement supérieur à −1. Pour tout n ∈ N, on pose an =
Γ(n+ α+ 1)

n!
qui est bien défini

car n+ α+ 1 > 0. On admet que
+∞∑
n=0

anx
n =

Γ(α+ 1)

(1− x)α+1 pour tout réel x ∈]− 1; 1[ (1).

� �
PARTIE 1 : PROJECTIONS ORTHOGONALES� �

Dans cette partie, E désigne un espace préhilbertien réel, pas forcément de dimension finie, muni d’un produit

scalaire ( . | . ). On note ||.|| la norme associée à ce produit scalaire, définie par ||x|| = (x|x)1/2 si x ∈ E.
Soit F un sous-espace vectoriel de E différent de {0E} et de dimension finie.

Soit B = (e1, · · · , en) une base orthonormale de F.

1 Soit x un vecteur de E, montrer que x−
n∑

i=1

(x|ei)ei ∈ F⊥. En déduire que E = F⊕ F⊥.

2 Donner la définition de la projection orthogonale πF sur F. Pour x ∈ E, décomposer πF(x) dans la base B.

3 Montrer que, pour x ∈ E, on a ||x− πF(x)||2 = ||x||2 −
n∑

i=1

(x|ei)2.� �
PARTIE 2 : POLYNÔMES DE LAGUERRE� �

Dans cette partie, on fixe un réel α > −1, et on note Eα l’ensemble des fonctions continues f : [0; +∞[→ R
telles que l’intégrale

∫ +∞

0
xαe−xf(x)2dx est convergente.

4 Montrer que, pour tout (a, b) ∈ R2, |ab| 6 a2 + b2

2
.

5 En déduire que, si f et g sont deux éléments de Eα, l’intégrale
∫ +∞

0
xαe−xf(x)g(x)dx est convergente.

6 En déduire que Eα est un sous-espace vectoriel de C0([0; +∞[, R).

7 Montrer que toute fonction polynomiale sur [0; +∞[ est élément de Eα.

Pour tout n ∈ N, on définit les fonctions : φn :]0; +∞[→ R et ψn : ]0; +∞[→ R par φn(x) = xn+αe−x et

ψn(x) = x−αexφ
(n)
n (x) où la notation φ

(n)
n désigne la dérivée d’ordre n de φn (avec la convention φ

(0)
0 = φ0).

8 Calculer ψ0, ψ1 et ψ2.



9 Pour tout n ∈ N, montrer que la fonction ψn est polynomiale. Préciser son degré et son coefficient dominant.

Dans la suite, on identifie ψn à son unique prolongement continu à [0; +∞[, qui est une fonction
polynomiale sur [0; +∞[. Cela permet désormais de considérer ψn comme un élément de Eα.

Pour tout (f, g) ∈ E2α, on pose (f|g) =
∫ +∞

0
xαe−xf(x)g(x)dx.

10 Montrer que ( . | . ) définit un produit scalaire sur Eα.

Dans la suite, on note || . ||α la norme associée à ( . | . ) : ||f||α =

(∫ +∞

0
xαe−xf(x)2dx

)1/2

pour tout f ∈ Eα.

11 Soit un entier n > 1. Pour tout entier k ∈ [[0;n−1]], établir que lim
x→0+

φ
(k)
n (x) = 0 et que φ

(k)
n (x) =

+∞
o
(
e−x/2

)
.

12 Soit m et n deux entiers naturels. Montrer que (ψm|ψn) = (−1)n
∫ +∞

0
ψ
(n)
m (x)φn(x)dx.

En déduire que la famille (ψn)n∈N est orthogonale pour le produit scalaire ( . | . ).

13 Montrer que, pour tout n ∈ N, on a ||ψn||2α = n! Γ(n+ α+ 1).� �
PARTIE 3 : APPROXIMATION� �

On conserve les hypothèses et notations de la partie 2. Pour tout entier naturel k, on définit la fonction

fk : [0,+∞[→ R par fk(x) = e−kx, qui est élément de Eα (on ne demande pas de le vérifier).

Pour tout N ∈ N, on note VN le sous-espace vectoriel de Eα engendré par la famille finie (ψ0, · · · , ψN), et

on note πN la projection orthogonale de Eα sur VN.

14 Soit k ∈ N. Montrer l’existence de la somme
+∞∑
n=0

(fk|ψn)
2

||ψn||2α
, et calculer sa valeur.

Indication : on pourra employer la même méthode qu’en question 12 pour calculer (fk|ψn)
2 sans détailler

la récurrence et utiliser la relation (1) donnée dans l’énoncé.

15 En déduire que, pour tout k ∈ N, on a lim
N→+∞

||fk − πN(fk)||α = 0.

Dans toute la suite, on note P le sous-espace vectoriel de Eα constitué des fonctions polynomiales.

16 Montrer que, pour tout k ∈ N et tout ε > 0, il existe p ∈ P telle que ||fk − p||α 6 ε.

Soit f : [0; +∞[→ R continue telle que lim
x→+∞

f(x) = 0. On admet (facile à vérifier) que f ∈ Eα.

17 Montrer que, pour tout ε > 0, il existe n ∈ N ainsi que des réels λ0, · · · , λn tels que

∣∣∣∣∣∣∣∣f− n∑
k=0

λkfk

∣∣∣∣∣∣∣∣
α

6 ε.

Indication : on pourra utiliser la fonction g : [0; 1] → R telle que g(t) = f(− ln(t)) si t < 0 et g(0) = 0 et le

résultat admis suivant dû à Weierstass : si φ : [0; 1] → R est une fonction continue, alors, pour tout ε > 0,

il existe une fonction polynomiale p : [0; 1] → R telle que ∀t ∈ [0; 1], |φ(t)− p(t)| 6 ε.

18 Montrer que, pour tout ε > 0, il existe p ∈ P telle que ||f− p||α 6 ε.

19 Soit h : R → R une fonction continue, paire et nulle en dehors d’un segment [−A;A] (où A > 0). Montrer

que, pour tout ε > 0, il existe une fonction polynomiale q : R → R telle que
∫ +∞

−∞

(
h(x)−q(x)e

−x2

2

)2

dx 6 ε.

Indication : on pourra utiliser la question 18 avec f : [0; +∞[→ R telle que f(x) = h(
√
x )e

x
2 et α bien choisi.
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On rappelle que ∀y ∈ R, ch(y) =
+∞∑
n=0

y2n

(2n)!
et sh(y) =

+∞∑
n=0

y2n+1

(2n+ 1)!
et ∀u ∈]−1; 1[, 1√

1− u
=

+∞∑
n=0

(2n)!un

4n(n!)2
.

Si n ∈ N, on rappelle w2n =
∫ π

0
cos2n(t)dt =

(2n)!π

4n(n!)2
et w2n+1 =

∫ π

0
cos2n+1(t)dt = 0 (Wallis).

Pour x ∈ R, en cas de convergence, on pose F(x) =
+∞∑
n=0

x2n

(n!)2
.� �

PARTIE 1 : CALCUL D’UNE INTÉGRALE� �
Pour x ∈ R, lorsque l’intégrale existe, on pose g(x) =

∫ +∞

0

e−x(1+t)

(1+ t)
√
t
dt.

1 Justifier l’existence de I =
∫ +∞

0

e−t
√
t
dt.

2 Étude de g :

2.1 Justifier que la fonction φ : t 7→ 1

(1+ t)
√
t
est intégrable sur R∗

+.

2.2 En déduire que la fonction g est continue sur R+. Montrer que lim
x→+∞

g(x) = 0.

2.3 Montrer que g est de classe C1 sur R∗
+ et que ∀x > 0, g′(x) = −I× e−x

√
x
.

3 Justifier l’existence de l’intégrale
∫ +∞

0
g′(t)dt et déterminer sa valeur. En déduire que I =

√
π.� �

PARTIE 2 : ÉTUDE DE F� �
4 Déterminer les valeurs de x pour lesquelles

∑
n>0

x2n

(n!)2
converge, c’est-à-dire le domaine de définition de F.

5 Encadrement de F sur R∗
+

5.1 Montrer que, pour tout n ∈ N, on a l’encadrement 4n

(2n+ 1)!
6 1

(n!)2
6 4n

(2n)!
.

5.2 En déduire que ∀x ∈ R∗
+,

sh(2x)
2x

6 F(x) 6 ch(2x). Quelle est la limite de F en +∞ ?

6 Une expression intégrale de F

6.1 Pour t ∈ [0 ;π] fixé, donner sans preuve le développement en série entière x 7→ exp(2x cos(t)).

6.2 En déduire la relation ∀x ∈ R, F(x) = 1

π

∫ π

0
exp(2x cos(t))dt.

7 On pose f1(x) =
∫ π

π/2
exp(2x cos(t))dt. Trouver lim

x→+∞
f1(x) par convergence dominée à paramètre continu.

8 Équivalent : on définit, pour x réel, f2(x) =
∫ π/2

0
exp(2x cos(t))dt.

8.1 Transformer, pour x > 0, l’intégrale définissant f2(x) avec le changement de variable u = 2x(1− cos t).

8.2 Vérifier que, si x > 0 et u ∈ [0 ; 2x], alors u− u2

4x
> u

2
et en déduire un équivalent de f2 en +∞.

9 Conclure que F(x) ∼
+∞

e2x

2
√
πx

.



� �
PARTIE 3 : TRANSFORMÉES DE LAPLACE� �

Si f est une fonction continue par morceaux sur R∗
+, intégrable sur ]0; 1], on définit sa transformée de

Laplace Lf, lorsque l’intégrale converge, par la relation Lf(x) =
∫ +∞

0
f(t)e−xtdt.

Posons G : x 7→ e2x

2
√
πx

et LF(x) =
∫ +∞

0
F(t)e−xtdt et LG(x) =

1

2
√
π

∫ +∞

0

et(2−x)
√
t

dt.

10 Calcul de LG(x)

10.1 Justifier que LG(x) existe si et seulement si x > 2.

10.2 En posant u = (x− 2)t et avec la valeur de I de la partie 1, déterminer, pour x > 2, la valeur de LG(x).

11 Calcul de LF(x) : on rappelle que F est définie par F(x) =
+∞∑
n=0

x2n

(n!)2
.

11.1 Déterminer le domaine de définition de LF. Indication : utiliser le résultat final de la partie 3.

11.2 Pour x > 0 et n ∈ N, justifier l’existence de
∫ +∞

0
tne−xtdt et montrer que

∫ +∞

0
tne−xtdt = n!

xn+1 .

11.3 Déterminer l’expression, pour x > 2, de LF(x) sous la forme de la somme d’une série.

11.4 En déduire une expression “simple” de LF(x), pour x > 2.

12 A-t-on LF et LG équivalentes en 2+ ?� �
PARTIE 4 : FONCTIONS ÉQUIVALENTES� �

Dans cette partie, on considère deux fonctions h1 et h2 positives, continues par morceaux sur R∗
+ et

intégrables sur ]0; 1] telles que h1(x) ∼
+∞

h2(x) et lim
x→+∞

h1(x) = lim
x→+∞

h2(x) = +∞.

Pour simplifier les notations, on notera L1(x) =
∫ +∞

0
h1(t)e

−xtdt et L2(x) =
∫ +∞

0
h2(t)e

−xtdt.

13 Domaines de définition

13.1 Montrer que L1 et L2 possèdent le même domaine de définition, que l’on notera D par la suite.

13.2 On suppose D non vide. Montrer que D est une demie-droite de la forme ]α; +∞[ (avec α = −∞
éventuellement dans ce cas) ou [α; +∞[ (et α ∈ R dans ce cas).

On supposera dorénavant que D ̸= ∅ et que D =]α; +∞[ avec éventuellement α = −∞.

14 Limites en α

14.1 Justifier que L1 est décroissante et positive sur D.

14.2 On suppose que L1 est majorée sur D, il existe donc M > 0 tel que ∀x ∈ D, L1(x) 6 M. Soit A > 0,

montrer que ∀x > α,
∫ A

0
h1(t)e

−xtdt 6M et en déduire que
∫ A

0
h1(t)e

−αtdt 6M.

14.3 En déduire une contradiction et déterminer la limite de L1(x) quand x tend vers α.

15 Comparaison de L1 et L2 : soit ε > 0 fixé, il existe donc B > 0 tel que ∀t > B, |h1(t)− h2(t)| 6 εh1(t).

15.1 Montrer que, pour x > α, on a |L1(x)− L2(x)| 6
(∫ B

0
|h1(t)− h2(t)|e−αtdt

)
+ εL1(x).

15.2 En déduire que L1 et L2 sont équivalentes en α+.


