[=) [ [=

[=]

EINCINE]

DS 5.1 : MINES 2 PC 2020

PSI 1 2025/2026 samedi 17 janvier 2026

L’objectif du probléme est d’établir, par des méthodes euclidiennes, des théorémes d’approrimation par des

polynémes ou des exponentielles-polynomes de certaines fonctions définies sur [0;+o0[ ou sur R.

On note CO([0; +oo[, R) l'espace vectoriel contenant les fonctions continues de Ry dans R.

Etant donné un intervalle 1 de R, on appelle fonction polynomiale sur 1 toute fonction de la forme f: 1 — R

n
telle que Vx € 1, f(x) = Y. AxX, ot n est un entier naturel et Ao, ..., An des nombres réels.
k=0

—+oo
Pour x > 0, on définit (on admet son existence) le réel strictement positif T'(x) = fo " Tetdt. Ceci

définit donc ' : R — R% (fonction Gamma d’EULER), qui vérifie classiquement ¥x > 0, I'(x +1) = xI'(x).

Soit o un réel strictement supérieur ¢ —1. Pour tout n € N, on pose an, = 1—‘(“4—7?—’_1) qui est bien défini
nl
—+o0
carn+oa+1>0. On admet que Y, anx™ = % pour tout réel x €] —1;1[  (1).
n=0 - X

(PARTIE 1 : PROJECTIONS ORTHOGONALES|

Dans cette partie, E désigne un espace préhilbertien réel, pas forcément de dimension finie, muni d’un produit
scalaire (.|.). On note ||.|| la norme associée a ce produit scalaire, définie par ||x|| = (x|x)'/? six € E.
Soit F un sous-espace vectoriel de E différent de {Or} et de dimension finie.

Soit B = (e1,- -+, en) une base orthonormale de F.
n

Soit x un vecteur de E, montrer que x — Y. (x|ei)ei € F*. En déduire que E = F @ F-.
i=1

Donner la définition de la projection orthogonale 7tp sur F. Pour x € E, décomposer np(x) dans la base B.

n
Montrer que, pour x € E, on a ||x — 7 (x)[|* = [|[x||* — 3 (x]ei)?.
i=1

[PARTIE 2 : POLYNOMES DE LAGUERRE]

Dans cette partie, on fize un réel o« > —1, et on note Ey ’ensemble des fonctions continues f : [0;+o0o[— R

Y45 Foo X ,—X 2
telles que l'intégrale fo x%e *f(x)“dx est convergente.

a2+b2.

Montrer que, pour tout (a,b) € R?, |ab| < 5

—+o0
En déduire que, si f et g sont deux éléments de E, l'intégrale fo x%e *f(x)g(x)dx est convergente.
En déduire que E, est un sous-espace vectoriel de C°([0; +oo], R).

Montrer que toute fonction polynomiale sur [0; +o0o[ est élément de E.

Pour tout n € N, on définit les fonctions : @y :)0;+00[— R et Yy : ]0; +oo[— R par ¢n(x) = x"T%e ™ et

Pn(x) = x“"e"cp%n) (x) ot la notation cp%n) désigne la dérivée d’ordren de @y, (avec la convention (péo) = @o).

Calculer Vg, P et ;.



@ Pour tout n € N, montrer que la fonction {, est polynomiale. Préciser son degré et son coefficient dominant.

Dans la suite, on identifie 1, & son unique prolongement continu a [0; +cco[, qui est une fonction
polynomiale sur [0; +00[. Cela permet désormais de considérer {,, comme un élément de E.

+
Pour tout (f,g) € E2, on pose (f|g) = f =

o x%e *f(x)g(x)dx.

Montrer que (.|.) définit un produit scalaire sur E.

1/2
+
Dans la suite, on note || .||« la norme associée a (.|.) : ||f||a = (fo ~ x"‘e"f(x)zdx) pour tout f € Eq.

Soit un entier n > 1. Pour tout entier k € [[0;n—1], établir que 111?)1+ o (x) =0 et que ol (x) = o(e™/?).
X—

—+oo
“+oo
Soit m et n deux entiers naturels. Montrer que (Vi [Phn) = (—1)™ fo P (x)on(x)dx.

En déduire que la famille (Y )nen est orthogonale pour le produit scalaire (. |.).

Montrer que, pour tout n € N, on a |[bn||2 =n!T(n + a+1).

(PARTIE 3 : APPROXIMATION]

On conserve les hypothéses et notations de la partie 2. Pour tout entier naturel k, on définit la fonction

fi 1 [0, +0o[— R par fi(x) = e, qui est élément de Eo (on ne demande pas de le vérifier).
Pour tout N € N, on note VN le sous-espace vectoriel de Ey engendré par la famille finie (Vo,---,bN), et

on note N la projection orthogonale de Ey sur V.

| . £ (ln)?
Soit k € N. Montrer I’existence de la somme ) W, et calculer sa valeur.
n=0 nila

Indication : on pourra employer la méme méthode qu’en question 12 pour calculer (fi|(,)? sans détailler

la récurrence et utiliser la relation (1) donnée dans I’énoncé.
En déduire que, pour tout k € Ny on a lim |[[fx — nin(fx)||a = O.
N— 400
Dans toute la suite, on note P le sous-espace vectoriel de Eo constitué des fonctions polynomiales.
Montrer que, pour tout k € N et tout ¢ > 0, il existe p € P telle que ||fx — p||« < e.

Soit £ : [0;+00[— R continue telle que 1111 f(x) = 0. On admet (facile a vérifier) que f € Eq.
X—+00

Montrer que, pour tout ¢ > 0, il existe n € N ainsi que des réels Ag, - - -, Ay, tels que <e.

n
f— E A fx
k=0 «
Indication : on pourra utiliser la fonction g : [0;1] — R telle que g(t) = f(—In(t)) sit < 0 et g(0) =0 et le

résultat admis suivant dti & WEIERSTASS : si ¢ : [0;1] — R est une fonction continue, alors, pour tout € > 0,

il existe une fonction polynomiale p : [0;1] — R telle que Vt € [0;1], |o(t) —p(t)| < e.

Montrer que, pour tout ¢ > 0, il existe p € P telle que ||f — p||« < €.

Soit h: R — R une fonction continue, paire et nulle en dehors d’un segment [—A; A] (ot A > 0). Montrer

(h(x)fq(x)eT)de <e.
e

Indication : on pourra utiliser la question 18 avec f : [0; +00[— R telle que f(x) = h(y/x)

—+oo
que, pour tout ¢ > 0, il existe une fonction polynomiale q : R — R telle que f

et « bien choisi.
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“+oo 2n “+oo 2n+1 +oo Zn)!un
0] I Ve R, ch(y) = 5% X ersh(y) = 5 2 civue]—1:1], L = 5 { .
n rappetie que vy ¢ (U) ngo (2‘[1)! ers (U) ngo (2n+ ]); ervu ] [ \/] — = 4“(11!)2

; _ & 2n — (2‘[1)!7‘( — & 2n+1 _
Sin € N, on rappelle wan fo cos“™(t)dt I ()2 et Wan 41 fo cos (t)dt =0 (WALLIS).
400 2n
Pour x € R, en cas de convergence, on pose F(x) = x .
n=0 (TL')

[PARTIE 1 : CALCUL D'UNE INTEGRALE

o . +oo ,—x(14t)
Pour x € R, lorsque l'intégrale existe, on pose g(x) = f

£ at
o (14 t)ve
oo —t
Justifier 'existence de 1 = f - € _dt.

o Wt
Etude de g:

2.1| Justifier que la fonction ¢ : t — 1 est intégrable sur R* .
q ¢ (] + t)\/{ g +

En déduire que la fonction g est continue sur R;. Montrer que lhll g(x) = 0.
X—+00

—X

Montrer que g est de classe C! sur R et que Vx > 0,¢'(x) = —I x e\f'
x

+
Justifier I'existence de I'intégrale fo ~ g’'(t)dt et déterminer sa valeur. En déduire que I = /7.

[PARTIE 2 : ETUDE DE F|

2n
Déterminer les valeurs de x pour lesquelles > (Xﬁ converge, c’est-a-dire le domaine de définition de F.
n>0 n.

Encadrement de F sur R’
4m 1 4m
< < .
(2n+1)! T (nh? T (2n)!

< F(x) < ch(2x). Quelle est la limite de F en +o00 ?

Montrer que, pour tout n € N, on a ’encadrement

sh(2x)
2x

En déduire que Vx € R?,

@ Une expression intégrale de F

Pour t € [0;7] fixé, donner sans preuve le développement en série entiere x — exp(2x cos(t)).
o . 1 ("
, :
En déduire la relation ¥x € R, F(x) = fo exp(2x cos(t))dt
T

s
On pose f1(x) = f exp(2x cos(t))dt. Trouver lim f;(x) par convergence dominée & parameétre continu.
/2 xX— 400
, /2
Equivalent : on définit, pour x réel, f2(x) = fo exp(2x cos(t))dt.
Transformer, pour x > 0, I'intégrale définissant f,(x) avec le changement de variable u = 2x(1 — cos t).

x)
2
Vérifier que, si x > 0 et u € [0;2x], alors u — ZL— > % et en déduire un équivalent de f, en +oo.
X

2
El Conclure que F(x) s Zi/;%.




[PARTIE 3 : TRANSFORMEES DE LAPLACE

*

Si f est une fonction continue par morceaux sur R, intégrable sur 0;1], on définit sa transformée de

+oo
LAPLACE Ly, lorsque l'intégrale converge, par la relation L¢(x) = fo f(t)e *tdt.

2x +
Posons G : x — —5— et Lg(x) = j; > F(t)e 'dt et Lg(x

2y/mx
Calcul de Lg(x)
Justifier que Lg(x) existe si et seulement si x > 2.
En posant u = (x — 2)t et avec la valeur de I de la partie 1, déterminer, pour x > 2, la valeur de Lg(x).

dt.

o -I —+oo et(fo)
)= 2/ fo Vit

+oo 2
Calcul de Lg(x) : on rappelle que F est définie par F(x) = > (X ';2_
n=0 .

Déterminer le domaine de définition de Ly. Indication : utiliser le résultat final de la partie 3.

S . +oo +oo n!
Pour x > 0 et n € N, justifier I'existence de fo t"e~*tdt et montrer que ‘[;) the tdt = b
X

Déterminer I’expression, pour x > 2, de L¢(x) sous la forme de la somme d’une série.

En déduire une expression “simple” de Lg(x), pour x > 2.

A-t-on Lf et Lg équivalentes en 27 ?

[PARTIE 4 : FONCTIONS EQUIVALENTES]

Dans cette partie, on considére deux fonctions hy et hy positives, continues par morceaus Sur R% et

intégrables sur ]0;1] telles que hi(x) ol hy(x) et xBToo hy(x) = XBT& hz(x) = +o00.

+ +
Pour simplifier les notations, on notera Lq(x) = f = hy(t)e™™tdt et Lo(x) = f =

—xt
o . M2 (t)e *tdt.

Domaines de définition

Montrer que Ly et L, possedent le méme domaine de définition, que ’on notera D par la suite.

On suppose D non vide. Montrer que D est une demie-droite de la forme ]o; +00[ (avec o« = —o0
éventuellement dans ce cas) ou [«; +00[ (et « € R dans ce cas).

On supposera dorénavant que D # ) et que D =]o; +00[ avec éventuellement o« = —o0.

Limites en «
Justifier que Ly est décroissante et positive sur D.
On suppose que Ly est majorée sur D, il existe donc M > 0 tel que Vx € D, Lj(x) < M. Soit A > 0,

montrer que Vx > «, fOA hi(t)e *'dt < M et en déduire que J;A hy(t)e™*tdt < M.
En déduire une contradiction et déterminer la limite de L;(x) quand x tend vers o.
Comparaison de Ly et L, : soit ¢ > 0 fixé, il existe donc B > 0 tel que ¥t > B, |hy(t) — ha(t)] < ehq(t).
Montrer que, pour x > «, on a |Lj(x) — La(x)] < (fOB [hi(t) — hz(t)|e—‘xtdt) +elq(x).
En déduire que Ly et L, sont équivalentes en «*.



