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. / X4n , . . P
Pour x € R, par croissances comparées, on a ( ) bornée si et seulement si |x| < 1. Ainsi, par
dn+1/neN
définition d d Rde 3 R—1.P 41,y 1
éfinition du rayon de convergence e ,on aR=1. Pour x = £1, =
Y & Eodn ot Eodnt1 Sedn+l
+o0 4n
diverge par comparaison & la série harmonique. Posons g : x — > 4" 7 le domaine de définition de
n=0 N
+00  4n+1 . R
g est donc Dg =] — 1;1[. Pour x €] — 1;1], f(x) = xg(x) = X et on sait d’aprés le cours que f
+o0 1
est de classe C® sur | — 1;1[ avec f'(x) = Y x*" = s Comme 1 —x* = (1 —x)(1 +x)(1 — x?),
n=0 - X
. el /12 . 1 1 o a b cx +d . .
la décomposition en éléments simples de est = + + . En identifiant par
P P 1—x 1—x T—x  T4x 14%x° P

1 1 A 1 1 1 1
le, on t —b=1c=0etd=1. Ainsi,Vx€]-1;1 - .
exemple, on trouve a 1 C e 5+ Alnsi, W ] B — 4(17x)+4(1+x)+2(1+x2)
_ _ !/
Ainsi f'(x) = tn(1 +x) 1 tn(1 = x) + Arct;m(x)] , comme f(0) = 0, en intégrant, sur l'intervalle | — 1; 1],
on aVx €] — 1:1], f(x) = In(1+x) ;171(1 —x) n Arct;n(x).

(] —|—x) n Arctan(x)'

On en conclut que g(0) =1 et que Vx €] — 1;0[U]0; 1], g(x) = 1 in . 5
—x x

4x

a. Sion avait lim sin(n®) = 0, on aurait alors lim sin((n + 1)) = 0. Mais comme on sait que
n

—+o0 n—-4o0o
sin((n +1)8) = sin(0) cos(nd) + cos(0) sin(nd), on a sin(0) cos(nd) = sin((n + 1)0) — cos(0) sin(nd) donc
m cos(nf) =0. On

|55
n—-+oo

HT sin(0) cos(n®) = 0. Mais comme sin(8) # 0 puisque 6 €]0;n[ par hypothese,

n——+oo

aurait alors liT (sin?(n6) +cos?(nd)) = 02402 = 0 ce qui est impossible puisque sin?(n6)+cos?(no) = 1.
n—+oo

On conclut ce raisonnement par 'absurde : la suite (sin(n8))nen ne tend pas vers 0.

D’apres la question a., Y sin(n®)1™ diverge grossiérement, comme Y sin(nd)z"™ diverge pour z = 1, on

n=0 n>0
a donc R < 1. De plus, comme |sin(n0)| < 1 et que le rayon de convergence de > z™ vaut 1, on déduit du
n>0
cours que R > 1. Au final, R = 1.
b. Si|z] =1, on a |sin(nB)z"| = |sin(nd)| d’ott Y sin(nd)z™ diverge grossierement avec a..
n>0
. +oo +oo in® _ _—inod
c. Silz| <1, Y sin(n@)z™ converge absolument car R =1 et S(z) = ) sin(n)z" = >, &—& "
n>0 n=0 n=0 2i

+oo . +oo .
par la formule d’EULER classique puis S(z) = %( 3 (zet) — 32 (ze‘te)“> avec DE MOIVRE donc on
1\ n=0 n=0

i0 -0 .
: _ 1 ( 1 1 )_ (e —e ")z . zsin(0)
obtient S(z) = —— — — — | = i . = )
() 2i\1 —ze® 1 —ze® 2i(1 — (e + e )z +2%) 1 —2zcos(8) +2°
> 1 converge car, par croissances comparées, N - o(i) et que la série exponentielle converge.
nso (3n)! (3n)! 400 \nl!
= 7 e 4! ) e = 7
Comme nZ::o )l =ch(1) = 5 et qu'on utilise U, = {1,—1} pour le calcul de nZ::o ar on peut
+o0 1
penser & utiliser les racines troisitmes de 1'unité pour le calcul de Sp = > o Comme on sait que



Vre C. o — S5 2" déin el = §% 1 P =1y :
z € e* = £ onadéjae = + + once =Sp+S;+Syen
RPN el = Gl T G T Gt o) oSS
+oo 1 +oo 1
osant S1 = ——— et Sy, = —_—.
P 1S X G 52T X Gaa)

= So +3jS1 +j%S, car j> = 1. De

M j +oo ﬁ +oo j3n +oo j3n+1 +oo j3n+2
ais on a aussi & = = + +
z_:o n! n;o (31’1)' nz::() (3T1. + ])' n=0 (3T1. + 2)'

+oo .2n +oo .6Mn +oo  .em+2 +oo j6n+4

plus, & = 3> Lo =5 14 5

j o .2 . 4 .
+ =So0+3°S71 +jS, car =.
ol T Gl T Gl T B o TS sz eyt =]

Cela donne un systéme trois équations/trois inconnues mais, comme on sait que 1+ j +j% = 0, il suffit de

. .2 =1 iV3 -1 —iV3
e+€]+€] :€+€2€2 +e2e 2

. . . . 2
sommer ces trois relations pour avoir 3So = e+¢’ +e’ donc Sp =

. 1 ,\[3 v . 1 1( 2 (\/?))) ~ 1.168
car):—erl—:].A1ns1,So: 50(3 )!—*3 eJr*\/ECOS 72 y .

De méme, on aurait 3S; = e + j%el —|—jej2 et 35, = e+ je —l—jzejz.

a. On note Sy, 'ensemble de toutes les permutations de [[1;n]. On sait que card (S) = n!. On partitionne

(ou plutét on partage) Sn selon le nombre de points fixes des permutations. Notons donc Sy 1'ensemble
n

des permutations de S qui ont exactement k points fixes. Alors S, = U Sn,k (réunion disjointe) avec
k=0
Snn—1 = 0 car si une permutation a au moins n — 1 points fixes, c’est forcément I'identité donc elle a en fait

n n
n points fixes. On a donc ¥Vn > 1, card (Sn) =nl = > An(k) = > card (Sn,k).
k=0 k=0

n
Pour dénombrer Sy, i, on choisit les k points fixes parmi les éléments de [1;n] ce qui fait (k) choix ; ensuite

on choisit une permutation des n — k éléments restants sans point fixe, elles sont au nombre de A,,_(0) par

définition (le nombre de dérangements, c’est le nom des permutations de Sy o, ne dépend que du nombre

d’éléments de I’ensemble qu’on “dérange”). On obtient donc card (Sn,k) = An(k) = (2) An—x(0).

0 0
Pour n =0, on a 0! = Ap(0) = > Ao(k) =1 par convention et Ay(0) = <
k=0

O) Ao—0(0) = 1 donc les formules

sont valables aussi pour n = 0.

b. Comme Sy, 0 C Sn,ona0 < An(0) < nldonc0 < A“('O) < 1. On sait d’apres le cours que le rayon R de la
n.

- . An(0 ‘s N .
série entiere Y #zn est alors supérieur & celui de Y z"™. Comme ) z" est de rayon de convergence
n>0 n. n>0 n>0

+oo
1,onaR>1donc f(z) = > A“(lo)z“ converge si |z| < 1.
n=0 M-

c. Comme le rayon de convergence de la série exponentielle est égal & +00, si |z| < 1, par produit de CAUCHY

- T, X AL(0) =& AL k(0)
de deux séries absolument convergentes, e*f(z) = ( > 7)( > “7'2“) = > ( > %)z“. Or

o~ Ani(0) _ 1§~ (7 X o +o0 N
Rl = Y An—k(0) =1 d’apreés a.. Ainsi, e*f(z) = >, z™ = ——. A nouveau, le rayon
k=0 k! (n - k,)' n! k=0 k n=0 1—2z

de convergence de > z™ vaut 1 et d’apres le cours sur le rayon de convergence d’un produit de CAUCHY de
n>0
deux séries entieres, 1 > Min(R, +00) ce qui donne R < 1 et, au final, R = 1.
-z
€ . On effectue encore un produit de CAUCHY et si |z| < 1, il vient &
—z

De plus, si |z| < 1, on a f(z) = ]

- (5T EDME (AT ) A 5 (5D e
nouveau par produit de CAUCHY, f(z) = ( > ' ) =Y — )z donc, par unicité
n=o ™ n=0 n=o0 ‘k=o K



(=1
Kl

n
des coefficients d’une série entiere de rayon non nul, on avn € N; A (0) =n! >

n (_1\k
d. Avec ces notations de I’énoncé, p, = A“('O) donc pn = > ( ]3') qui est la somme partielle de la série

exponentielle associée & e~!. Par conséquent, lim pn = 1. 0, 36.
n—+oo e

2 2
Pour tout entier naturel n, posons u,, = In” + ,51“ +3 o =0 (%) par croissances comparées donc,
2 +oo 2 +oo \n

par comparaison & une série de RIEMANN, comme 2 > 1, la série ) u, converge.
n>0

Pour calculer la somme de cette série numérique, posons an = 2n? + 5n + 3 et considérons la série entiere

>~ anx™. Toujours par croissances comparées, (anx™)n>o0 est bornée si et seulement si |x| < 1 donc, par
n>0

définition, le rayon de cette série entieére vaut R = 1. Pour x €] —1;1[, comme an =2(n+1)(n+2) — (n+1),

+o0 +o0 +oo
onaf(x)= > anx" =253 (n+1)(n+2)x"— > (n+1)x™ (les deux séries convergent puisque les deux
n=0 n=0

n=0
rayons valent encore 1). On reconnait les dérivées de la série géométrique, Vx €] — 1;1[, > x™ = 11?
+oo N 1 ! 1 iy n 1 " 2
donc nz::o(n + 1) = (] 7X> = 0= et nz::O(n + 1)+ 2™ = (1 7)() = (L de sorte que
oo
1) = (2 — i = e A, B (1) - 2O -
a. Si, pour n € N; on pose ap, = (—1)™, le rayon de convergence de la série entiere > anx™ vaut R =1 et
+oo n2e
sa fonction somme f : x — nzz:o(—l)“x“ = —1|—x est majorée par 1 sur [0;1].

b. L’hypothese se traduit par a, = 0(l) donc lim a,, = 0. Ainsi, la suite (an)nen est bornée donc,
“+o00 n n—-4oo

pour tout réel r €]0;1], la suite (ant™)nen lest aussi done, par définition, le rayon de convergence R de

+oo
> anx™ vérifie donc R > 1. Ainsi, la fonction somme f : x — Y anx™ est définie sur | — 1; 1] au minimum.

n=0 n=0
Soit ¢ > 0, il existe un rang ng tel que ¥n > no, |nan| < % Par conséquent, si n > ng et x €]0; 1], il vient
no—1 no—1 “+o0 no—1 —+o00 n
[f(x)] = ‘ Z anx™ + Z anx™ < Y Jan XM+ Y Janx™ < YD Jan|x™+ £ YD X~ par inégalité
n=ngp n=0 n=ng n=0 zn ne N
no—1 no—1 n +o00 n
triangulaire. On en déduit la majoration [f(x)| < > |anx™ — £ x4 Z X De plus, comme
n=0 2 n=1 M n=1 T
110—1 no—1 n
Qeix Y |an|x“—§ >~ X est polynomiale donc continue en 1, elle est bornée et on a @(x) = o(In(1—x))
n=0 n=1 M
car lh}l In(1—x) = —oo. Il existe donc « > 0 tel que Vx € [1—a; 1], |@(x)| < §| In(1—x)|. En combinant ces
x—1—
+00 n
deux renseignements, Vx € [1—o; 1, [f(x)| < e/ tn(1 —x)| car on sait que In(1 —x) = — > X six €] - 1;1[.
n=1 T

Ainsi, Ve > 0, o >0, Vx € [1 — a; 1], [f(x)| < e|tn(1 —x)|. Ceci justifie bien que f(x) = o(In(1 —x)).

1
1T+x

sur | — 1; 1] et vérifie bien g(x) = o(In(1—x)) car g est bornée sur [0; 1] et Jim In(1 —x) = —oo. Pourtant,

c. Avec l'exemple de la question a., si on pose by = (—1)™, la fonction somme g : x — est bien définie

la suite (nby )nen ne tend pas vers 0. La réciproque espérée est donc fausse.

Méme si on impose que tous les by, sont positifs, il suffit de prendre b,, = 1
n

si n est une puissance de 2 et



21’1 n
bn = 0 sinon. Alors, Y. X est de rayon de convergence 1 car (X—n) est bornée si et seulement si
n>0 2 2™ Jnen
+oo 2“ +o0o 1
|x| < 1 par croissances comparées. En notant g : x — Z L on a Vx € [-1;1], |g(x)| < Zo = 2 donc
n—=
g est bornée sur [—1;1] et g(x ) o(In(1 —x)) méme si (nbn)neN ne tend pas vers 0 puisque 2™bon = 1.

Conclusion : si, au voisinage de 17, f(x) = o( In(1— x)), on ne peut pas conclure que (nan )nen tend vers 0.

a. Posons a, — <2n> - 0 pour n € N, alors Sntl — (2n+2)!(n)* _ (2n+2)2n+1) _ 22n+1)
n

an @)+ 1)) (n+1)? nt

2n
donc lim 42t — 4. D’apres D’ ALEMBERT, le rayon de convergence R de 37 X" vaut R = 1.

avec 1’équivalent de STIRLING donc, par

n\ (2n)! Vam(2n)2 e
X = ~ ~
4™(n!)? +oo 4™ (2mn)n?e?™ +oo \/mm

n
comparaison aux séries de RIEMANN, Y an (JI) diverge.
n=0

Six:él‘, anx“:(

n

n+1

Six = —-, la série Z anx™ est alternée et ’ “Hxn ’ = 2(2n +1) =int2 d’apres a. donc la suite

anx est décroissante et tend vers 0 puisqu’on vient de voir que |an,x™ ——. Ainsi, par le critere

n neN t dé te et tend 0 td \/7 Ai 1 ite
n
spécial des séries alternées, > an( — l) converge.
n>0 4

L’ensemble de définition de f est donc [ — All éll [

b. On a vu en question a. que Vn € N, (n+1)an4+1 =2(2n+ 1)a,. En multipliant par x™ et en sommant,

] ] +oo +oo +oo —+oo
on a donc Vx € ] - - 7{ S (4 Danpix™ = 3 2204 anx™ = 4x > nanx™ ' +2 3 anx™ et on
474 n=0 n=0 n=1 n=0

reconnait, puisqu’on est dans 'intervalle ouvert de convergence, f'(x) = 4xf’(x)+2f(x) ou (1 —4x)f'(x) = 2f(x)

donc f est solution sur} - Z 2 [ de (E) : (1—4x)y' —2y=0.
c. On résout classiquement cette équation différentielle linéaire homogene normalisée (E) d’ordre 1 et,
comme une primitive de a : x ] 24 est A @ x — —%111(1 — 4x) et puisque f(0) = ap = 1, on a
— 4x
— In(1—-4x)
vxe]_ll[ f(x :ef:7] .
gigl ) V1 — 4x

a. On calcule ay = a1 +ap =2, a3 = az +2a1 =4, ag = a3 +3a; = 10, a5 = a4 + 4az = 26 et on peut
conjecturer que Vn € N*, 0 < a, <2(n —1)!. On vient de faire l'initialisation.
Soit n > 1 tel que 0 < ant1 < 2nlet 0 € an < 2(n — 1)l comme any2 = ant1 + (0 + 1)an, on a
O+(n+No<anp <2 +2n+ ) —-D'=2n-NDn+n+1)<2n—1!nn+1)) =2(n+1)! car

<
n+ 1 < n? puisque n > 1. Par principe de récurrence double, on a Vn > 1, 0 < an, < 2(n — 1)!. Ainsi, pour

>1,0< <2 donc, par encadrement, (—) converge vers 0.
n! n n!/nenN
Comme la suite (a—n‘> tend vers 0, elle est bornée, donc par définition du rayon de convergence d’une
n./neN

série entiere, on a R > 1.

b. Les dérivations qui suivent sont valides sur l'intervalle ouvert de convergence. Pour x €] — R;R[, on

+oo +oo too too
a fi(x) = 3 Mnyn-l — $ Gndlyn o ¢7(x) = 5 Bndlyn-1 — 5™ Gni2,n 0 Op pour n € N,
! ! ! !
n=1 T n=0 ™ n=1 n: n=0 T



ang2x™ _ anpx” (4 Danx™ 400 Z a“+zx Z anHX +ZO:O (nFDanx™ ) ommant co qui
n

n! n! n!

revient a f'(x) = f'(x) + Z nan'x + Z aTTLlX = f'(x) + xf'(x) + f(x). Par conséquent, f est solution sur
] — R; R[ de l’équation dlfferentlelle () : y —(1+x)y —y=0.

c. D’apres la question précédente, on a f”/(x) — (1+x)f' (x) — f(x) = (f'(x) — (1+x)f(x))’ = 0. Comme | —R; R|
est un intervalle et que f'(0) — (1 4+ 0)f(0) = a1 — ap = 0, on a donc Vx €] — R;R[, f'(x) — (1 +x)f(x) = 0.
On en déduit en intégrant cette équation différentielle linéaire du premier ordre mise sous forme normalisée
sans second membre, comme une primitive de x — 1+ x est x — x + % sur Uintervalle | — R; R[, que l'on a

2

Vx €] — R;R[, f(x) = T puisque f(0) =ap =1.

“+o0 “+o00
Alors Vx €] — R;R[, f(x) = (Z 1y ) X (Z L2 ) Ces deux séries ont pour rayon +oo donc on peut

o il 0312
+oo |
effectuer le produit de CAUCHY et obtenir f(x) = Y. ( .'1.1"].)%‘. En identifiant (par unicité) les
n=0 “i42j=n iljl2
coefficients entre les deux expressions de f(x) sous forme de série entiere, Vn € N, 9 — 1 donc
nl 5t il 12
[n/2] |
an= > Puisque 2j <n et i =n —2j, on a la formule ap = Y, ———
i+2j=n 1' '2] j=0 (TL - 2)) '2]

Pour information : on considere ’ensemble 1, des permutations o de [[1;n] qui sont des involutions, c’est-a-
dire qui vérifient 000 = id [1,n] ; et on pose by, = card (I). Alors, pour n > 1, on partitionne les involutions
o de [[1;n + 2] en deux catégories :
- celles pour lesquelles o(n +2) =n + 2 sont au nombre de by 17 car il n’y a pas de choix a faire pour
o(n + 2) qu’on impose égal & n + 2, ensuite ¢ induit alors sur [1;n + 1] une involution de [1;n + 1].
- celles telles que o(n +2) = k # n + 2 sont au nombre de (n + 1)by, car pour les choisir de maniere
bijective, il y a n + 1 choix pour 'entier k qui est I'image de n + 2 par o et, une fois ce choix effectué,
cela implique que o(k) = o(o(n 4+ 2)) = n + 2 car o doit étre une involution, et on a alors by choix
pour finir de déterminer o qui doit induire sur [1;n + 1] \ {k} une involution de cet ensemble.
Cette partition implique la relation by, 42 = b1+ (n+1)by pourn > 1 et, comme by =2 = 141.1 = b;+1.bg
en prenant comme convention que bp = 1, on a bien Vn > 0, bp42 = b1 + (n + 1)bn. On montre alors
par une récurrence double que Vn € N, a,, = by,.
On peut alors expliquer la relation (R) de maniére combinatoire, en constatant qu’une involution o de [[1;n]]
est une application telle que pour tout entier x entre 1 et n, et on a deux choix :
e 50it o(x) = x et x est appelé un point fixe de o.
e s0it o(x) =y # x et alors, comme o2 = id [1,], on a forcément o(y) = x.

Ainsi, si 0 € Ay, le nombre f de points fixes de o a la méme parité que n de sorte qu’il existe 2j entiers de
[n/2]

[1;1] qui ne sont pas fixes par ¢ avec f =n —2j avec 0 <j < {;J . On peut donc écrire A, = U An,j Ol
j=0

Anj = {0 € Ay | 0 admet f =n — 2j points fixes}.

Pour construire une involution o de A, j :



e on choisit les n — 2j éléments de [[1;n] qui sont fixes par o : " 2) = (; choix.
n—2s )

e on choisit 'image y du plus petit élément x qui reste : (2j — 1) choix (et alors o(x) =y et o(y) = x).

e on choisit I'image t du plus petit élément z qui reste : (2j — 3) choix etc...

! 2j)!
Ainsi card (An ;) = (n) X(2j—1)x(2j—=3)x---x3x1 = n — X ( .J) en multipliant en haut et en bas
2 (m—=2)!(25)! 25!
ln/2] ln/2] |
par les termes pairs qui manquent. On retrouve bien I, = card (An) = Y. card(Anj) = > %
=0 j=o (n—2j)12j!
a. Soit (an)nen une suite complexe, le rayon de convergence de la série entiere > anx™ vaut par définition

n=0

R = Sup ({x € Ry | (anx™)n>o0 est bornée}) avec par convention R = +o0o0 si cet ensemble n’est pas majoré.

n n
b. Pourn € Nett e [0;1], on a % < . j_tz < t" donc, par croissance de l'intégrale, on a l’encadrement

1

n 1
0 < o t?dt = 2(71]7—}—1) < ap < %_’_1 = fo t"dt (1). Comme le rayon de convergence des deux séries

n n
> ﬁ et Y % vaut classiquement 1, on peut conclure d’apres le cours que R = 1. Par croissance
n>0 n n>0 n

e . gt
de lintégrale, sin € N, vVt € [0;1], 0 <

t
T4+t 14+ t°
décroissante. De plus, I'encadrement (1) montre que liT an = 0. Par critere spécial des séries alternées,
n——+oo

> < donc 0 < any1 < an et la suite (an)nen est

la série > an(—1)" converge alors que la série Y an diverge par minoration puisque an > S
n>0 n=0 Z(T‘L + 1)
1 =
que la série harmonique ) —— diverge. Ainsi, le domaine de définition de x — > anx™ est [—1;1].
n>o n=0
c. Dans la relation (R) : 1 —_—@a 4 bt ¢ Hourx#0, on multiplie par 1—xt et on
(®) O—x)0+th) T-xt 1+ 1+&7 7 prep
2
prend t = 1 et on trouve a = ] _T_ ~. Dans (R), on multiplie par 1 +1t2 et on prend t = i pour avoir ] ! — =
x X —ix
1+ bﬁ = bi+c donc, comme b et ¢ sont réels,onab = —*—~ et c = 172 On peut aussi bien stir procéder
1T+x 1+x 1+ x
1 x? xt 1

par identification. Alors, Vt € [0;1], +

T—x0+8) 0900 090+ 0D+

et cette relation marche encore pour x = 0.

n,n
1X+tt2 converge normalement sur [0;1] car

d. Pour |x| < 1, la série de fonctions (un)neny ol un(t) =

[[unfoo,j0:17 < [X[™ et que la série géométrique » [x|™ converge car |x| < 1 donc on peut intervertir série et
n=0
intégrale sur le segment [0; 1], puisque les fonctions w,, sont toutes continues sur [0; 1], pour avoir la relation

Vx €] — 1;1], S(x) = :Zj) (f(; un(t)dt> = L/;; (:X:Zun(t))dt = j: U—)(’;)iﬁ car :X:Z(Xt)n = _1

1 1 1
: t 1. D’ p . v c _1’1 , S — X xdt X tdt 1 dt
puisque |xt| < apres c., Vx €] [, S(x) ]+X2fo 1—xt+1+x2f0 ]—|—t2+1—|—x2f0 T+

par linéarité de I'intégrale donc S(x) = ] —: s [= (1 = xt)]} + ——2—5-[In(1 +t2)]} + . _: > [Arctan(t)]]
x x

2(14x%)

xt

_ —AxIn(l —x) + 2xIn(2) + =«
4(1 +x%) '

e. Les fonctions vy : x — unx™ sont toutes continues sur [—1;0] et, pour x € [—1;0], la série > unx™ est

n=0
alternée et la suite (Jvn(x)|)n>o0 est décroissante et tend vers 0 car (un)n>o est décroissante, tend vers 0 et
+oo
|x| < 1. Ainsi, par le critére spécial des séries alternées, on a [Rn(x)| = | > vi(x)| < [vas1 (%) € unt1
k=n-+1

donc ||Rn||so,[=1;0] < Un1 ce qui montre par encadrement que Um  [|Rn|[oo,[—1;0] = 0 €t que la série ) vy

=15 n—+oo o n>o0

et on obtient donc S(x)



converge uniformément vers S sur [—1;0]. Par théoréme, on a donc la continuité de S sur [—1; 0] ce qui montre

+o00
que S(=1) = 3 (=1)Mup = lim S() = M2 L
n=0 x——1+ 2 8

16.10a. f: t— @ est continue sur | — oo; 1] en la prolongeant par continuité en 0 avec f(0) = —1 puisque

In(1—1t) vt Fest donc la primitive de —f qui s’annule en 0 donc F est au moins définie sur | — co; 1.

Six=1,f(t) ~In(1 —t) = ( 1 ) donc f est intégrable sur [0;1] et F(1) existe par comparaison aux
X (t) 7~ ( ) - o V-t g [0;1] (1) P p
intégrales de RIEMANN. Par conséquent, le domaine définition de F est D =] — oo; 1].
+oo —1
b. D’apres le cours, Vt €] —1;1], In(1—t) = Z " donc —f(t) = > e (marche aussi si t = 0). Pour
n

n=1

x €] = 1;1], en intégrant terme a terme sur le segment [oAZ] inclus dans l'intervalle ouvert de convergence,
+o0 n

il vient F(x) = f (—f(t))at = f Z —dt = Z f —dt = > %5 = S(x). Par définition de la
n=1T

convergence d’une intégrale, F(1) = hql F(x). En posant uy : x — T;, on a ||un||so,jo;1] = =7 donc Y- un
x—= 1= n>1

converge normalement sur [0;1] et, puisque toutes les w1, sont continues sur [0;1], S est continue sur [0;1]
2 +oo

donc F(1) = Um F(x) = Um S(x) = S(1) = Z-. On a bien Vx € [0;1], F(x) =S(x) = %

x—1- x—1- 6 n

n=1

2
c. Soit G :]0; 1[— R définie par G(x) = % — In(x) In(1 — x). Par opérations, la fonction G est dérivable sur

10; 1[. De plus, la fonction F est dérivable sur |0; 1] avec F/(x) = (=% donc, pour x €]0; 1], on a la relation
X
(F(x) + F(1 =) ~ G(9)) = F(x) = F(1 —x) = 6/(0) = - 2=, 1 21 =), (=) I
x —x x —x

avec ’abus de notation usuel. Ainsi, la fonction x — F(x) 4+ F(1 —x) — G(x) est constante sur I'intervalle ]0; 1[.

2
Ona Um (F(x)+F(1 —x) —G(x)) = F(0) + F(1) = & = 0 d’aprés b. et car lim In(x)In(1 —x) = 0 puisque
x—0+ 6 x—0+
2
In(1 —x) < —xet li%lerln(x) =0, donc Vx €]0; 1[, F(x) +F(1 —x) = % —n(x) In(1 —x).
xX—

16.11 ] a. Par construction, Vn € N, a, > 0, ainsi,

D’ALEMBERT, le rayon R de la série entiere Y anx™ vaut R = % =1.

a a RN
n+l ‘ —Mn+1 _ _nAld — ¢ =1 donc, par critére de
an

an x+n—+1n-+oc0

n=0
n n—1 1
b. Onavy—vn_1 = ( E In (1+ﬁ)>—aln(n)—(( E In (H—%))—ocln(n—ﬁ) =1n (H—ﬁ)—ocln ( ——)
= n n
pour tout entier n > 2 donc v, —vp_1 = & + O( ] ) + oc( 1 + O(%)) = O(%) Par comparaison
+oo n n +o0
aux séries de RIEMANN, Y (viy —vn_1) converge absolument donc converge.

n>2
Par dualité suite-série, grace & la question précédente, la suite (vn)n>1 converge vers un réel «. Or Vn €

n —Vn
N*, vn = ln( I1 ki}(oc)) —n(n%) = —n(n%ayn) donc a, = &5~. Mais lim e V" =A =e % > 0 par
k=1 n

n—-+oo
A

continuité de ’exponentielle donc an, fodier-2

o n
c. En 1: d’apres c., comme ap ol Tz\—(x et que les a,, sont positifs, la série > a, converge si et seulement
n=0

si la série > % converge. Par critere de RIEMANN, > ay converge si et seulement si o > 1.

n=0 n n>0
En —1: lasérie Y an est alternée et la suite (Jan|)n>o tend vers 0 car an, ~ % et « > 0. De plus, comme
n=0 +oomn
|an+1| _Ont1 . _n+1

= < 1, la suite (Jan|)n>0 est aussi décroissante. Ainsi, par le critere spécial des
lan| an at+n+1



séries alternées, la série > (—1)™an converge pour toutes les valeur de « > 0.
n=0

16.12] a. La fonction f : t — 3111(‘5) est continue sur R* par opérations et elle se prolonge par continuité en

0 en posant f(0) = 1 car sin(t) f(\;t. Ainsi, f est continue sur R donc en particulier sur Ry. De plus, en

posant u:t — % et vt —cos(t), les fonctions u et v sont de classe C' sur [1;+oo[ et tliT u(t)v(t) = 0.
—>+00

% sin(t)
t

+ + +
Ainsi, I'intégrale f1 dt = f1 oou(t)v’(t)dt est de méme nature que f1 OOu’(t)v(t)dt7 c’est-a-dire

+o0 cos(t e . s
que f1 %dt. Or cette derniére intégrale converge absolument par comparaison aux intégrales de

RIEMANN, donc elle converge, car g : t — C%Z(t) est continue sur [1;+oo[ et que g(t) = O(t]—z) Ainsi,
o0

+oo sin(t oo sin(t :
fl %dt converge donc fo %dt converge aussi.

b. On vient de voir que la fonction f est continue sur R ce qui montre, par le théoreme fondamental de

I'intégration, que F est bien définie sur R en tant que primitive de f qui s’annule en 0. De plus, on sait que
+o0 (_1)kt2k+1 sin(t) +o00 (_1)kt2k

YVt € R, sin(t) = > TR Ainsi, Vt € R*, f(t) = — = > K et cette formule marche
k=0 : k=0 :

i t—0cart = EDEY ¢ 1 d de 3 (1 R =+ t

aussi pour t =0 car 1 = ot omme le rayon de convergence de 2 Gkt vaut R = 400, on peu

intégrer terme & terme sur [0;x] qui est inclus dans Uintervalle ouvert de convergence R =] — co; +00o[ pour

avoir ¥x € R, F(x) = fox f(t)dt = fx (Jrzojo M)dt _ Jrzo:o (—1)kx2k+1

o L& 2k +1)! o @+ 1.2+ 1)

c. Pour x € R, la fonction hy : t — exp(—xe™ ') est continue sur le segment | = [O; 721} donc l'intégrale

/2 . . . +oo " .
I(x) = f exp(—xe”'')dt existe. On sait que Vz € C, e* = > %5 donc, en prenant z = —xe™ ", on

0 n=0 -

X +o0o0 (_1yn,n_ —int _1\yn,n_ —int

obtient YVt € J, exp(—xe™ ') = > (Ux—'e. Pour n € N, posons h;, : t — (1)x—'e.
n! n!

n=0
x| x| . . Ix|™ -
Comme Vt € ], |hn(t)| = ‘=, on a ||hn||eo,; = =7 et la série exponentielle ) ‘= converge donc la série
nl ’ n! nso M
de fonctions > h, converge normalement vers h sur le segment J. Comme toutes les h,, et h sont continues

n=0

PU s . N oo pm/2 (—q)xem M
sur J, le théoréme d’intégration terme & terme sur segment montre que I(x) = 3 f ~———dt.

= Jo n!
/2 (1N —int /2
Pour n € N, posons l'intégrale L,, = f Mdt. On a le cas particulier Ly = f ldt =1
0 n! 0 2

— 1)y /2 . 1\ 1 —int /2 — 1) —inm/2
M‘f e_mtdt:&[ei]f _(=D™ « € -1

et, pour n € N*, il vient L,, = - -
n! 0 n! —inlJo n! —1in

. +oo e—inm/2 4 . .
Comme on sait que Re (I(x)) = > Re(L,) et que Re (7> =0sin > 2 est pair et que 'on a
n=0 —m

e—in/2 _ g e t@ADT/2 gy (=K nair
Re (7) = Re ( TerE) ) =+ sin = 2k+1 > 1 est impair, il ne reste dans la formule
—in —1

. d R . +oo (_])2k+1X2k+1 (_])k . +oo (_])kXZkJrl
- I = = = = — .
ci-dessus que Re (I(x)) = 5+ 2, “—5 =7y, HrT 2 = k)T

m/

/2 . 2 .
d. Par inégalité triangulaire sur les intégrales, |I(x)| = ‘fo exp(—xe*‘t)dt‘ < fo | exp(—xe~'t)|dt. Or

exp(—xe*it) — e—xcos(t)pixsin(t) qonc |exp(fxe*it)| — e—xcos(t)



Méthode 1 : la fonction cos est concave sur | car cos” = —cos < 0 sur J donc Vt € ], cos(t) > 1— 2t Ainsi,
m

/2 . /2
e X cos(t) < emXe2XY/T donc Vx > 0, fo |exp(—xe )|dt < e j; e?Xt/7dqt. On en déduit donc que

T2 meX(eX—1) _n(1—e¥) Comme 1im T =€)
0 2x 2x ' X—>+00 2x

|I(X)| < e~ X |:£82xt/7t}

= 0, par encadrement,
2x

. .. /2 .
on obtient la limite lim f exp(—xe~t)dt = 0.
x—+o00 J 0

. /2
Méthode 2 : soit g : R x [O; % [ — R définie par g(x,t) = exp(—xe™ ') de sorte que I(x) = fon g(x,t)dt.

Hj) pour tout t € J,ona lim x,t) =0 = a(t) car cos(t) > 0.
9
xX—+00

(H2) pour tout x € R, les fonctions hy : t — g(x,t) et a sont continues sur [0; % [

(H3) pour (x,t) € R x [0; % {, on a |g(x,t)] <1 = o¢(t) et @ est continue et intégrable sur {O; % [

/2
D’apres le théoreme de convergence dominée & parametre continu, on a 1111 I(x) = fo a(t)dt = 0.
X—+00

D’apres les questions précédentes, on a Vx € R, Re(I(x)) = T — F(x). Comme lim I(x) = 0, on a aussi

2 X—+o00
lim Re(I(x)) = lim (E - F(x)) = 0. Ceci assure 'existence d’une limite finie de F en +o0 et sa valeur
X—r—+00 X—+00 2
400 ¢i
) T sin(t) o @
xETmF(X) =3 qu'on note fo . dt = ) (intégrale de DIRICHLET).
(n+2) anti (m+2)(n+3)2" ]
16.13) P = Dln+2) tout n € N, de sort nil ~t=1
- 0SONS an o pour tout n , de sorte que . T2 % 3

donc, d’apres le cours et la regle de D’ ALEMBERT, R = % =2.

+o0 too
Posons, pour x €]—2;2], f(x) = ) MWX“ etgx) = > Q =—1,=
n=0 2 n=0 2 1—- 2—x

(série géométrique).

2
On peut dériver terme & terme & Pintérieur de l'intervalle ouvert de convergence, c’est-a-dire | — 2;2[, pour

. X (n4+1)x™ 2 . X+ 1)+ 2)x™ 4
avoir Vx €] — 2;2[, ¢ = = uis g” = = .
x ] [’ 9 (X) nZ::O 2n+1 (2 _ X)Z p 9 (X) nX::O 2n+2 (2 _ X)3
+oo
En prenant x = 1 dans cette derniére relation, on a directement g”(1) = > % = 4 donc

n=0

Jrzojo m+1)(n+2)

n

=4 x2%=1s.

n=0

16.14 | La fonction f est définie sur R* ou elle est de classe C*° par opérations.

2
Comme on sait que cos(x) =1 — %~ + o(x?), on a f(x) = L o(1) donc lim f(x) = 1 et on peut prolonger f
0 2 02 x—0 2

par continuité en 0 en posant f(0) = % la fonction f ainsi prolongée est maintenant continue sur R.

XZ

B 1—cos(x) — —
Pour x # 0, on a f(x) — £(0) = 3 2 mais on sait aussi que cos(x) §1 —

x—0 X
) = 10) _ o(1) et on a donc lim ) ~1(0)
x—0 o x=>0 x—20
car f est paire donc f (quand elle existe) est impaire.
x% sin(x) — 2x(1 — cos(x)) _ xsin(x) = 2(1 — cos(x))

X X3
2
?x(x—&—o(xz)) —2(1 — <1 - X?—Fo(xs))) f(\)sz —x?40(x3) = o(x) donc f'(x) = o(1)
ce qui montre que lin}) '(x) = 0 = f/(0) donc que ' est continue en 0. Ainsi, f est de classe C' sur R.
X—

2
% + 0(x3) ce qui donne

= 0 donc f est dérivable sur R et on a f'(0) = 0 ce qui logique

Pour x # 0, on a f'(x) =

mais on a le développement

limité x sin(x) —2(1—cos(x))



“+o00 (_1 )n 2n
Mais on sait que cos est développable en série entiere sur R avec Vx € R, cos(x) = >
n=

o (2n)!
* 1 —COS(X) _ oo (_])“+1X2n +oo ( ])nJr] 2n-2 400 (_kazk
XER,onaf(X)—T—Qn:]W—HX;T ;W

(0% _ (1) ,
= — donc on retrouve la valeur de f(0) trouvée
c2k+2)! T 20+2)! 2

. Ainsi, pour

En prenant

M

400
x = 0 dans cette somme, on obtient Z
100 (L1)ky2k

kgo (2k +2)!

ci-dessus. Par conséquent, f est en fait développable en série entiere sur R avec Vx € R, f(x) =

et f est donc de classe C* sur sont intervalle ouvert de convergence R.

16.15]a. Si R =0, il n’y a rien & démontrer car | — R; R est vide.

SiR > 0, par produit de CAUCHY, comme Y anx™ est de rayon R donc que Y anx™ converge absolument pour

+o0 too
x €] — R; R par le lemme d’ABEL, S(x)? = Y. < Z QO — k) = a} +2apa1x + Y, anx™ par hypothese,
n=0 n=2

ce qui donne S(x)? = $(x) — x ou encore S(x) = x + S(x)?.
b. A nouveau, si R =0, il n’y a pas d’expression de S(x) & trouver car | — R; R[ est vide.

Sinon, pour x €] — R;R[, S(x)? — S(x) +x = 0 donc S(x) est une racine réelle du polynéme P = X2 — X + x.
Comme le discriminant A, du polyndéme Py vaut Ay, = 1 —4x, et que S(x) est un réel par construction, on

a forcément 1 —4x > 0 donc R < }1 et Vx €] — R;R[, S(x) = % ou S(x) = 1Vl =dx ”2]_4)( Comme

f:x > 2S(x) — 1 est développable en série entiere sur | — R; R[, elle y est continue et on sait d’apres ce qui
précede que Vx €] — R;R[, f(x) = ++/1T — 4x. La continuité de f et le fait que f ne s’annule pas sur | — R; R|

montre que l'on a soit ¥x €] — R;R[, f(x) = /1 — 4x soit Vx €] — R;R[, f(x) = —+/1 — 4x. Mais comme f vaut

—1 en 0, elle est négative sur | — R; R et on a donc Vx €] — R;R[, f(x) = —y/1 —4x donc S(x) = 1=V1=dx ”2]_4X

%;%[caru»% V1 —ulest

/ —+o0

sur | —1; 1[. Ainsi, il existe une suite (bn )neny € RY telle que Vx € } —JI éll{ T(x) = # = > bax™
n=0

Onabiensﬁere}—él1 H T(x)2=T(x)+x = 1o2vi =t (T=4) 1 V21 —4X 4 x = 0. En effectuant

un produit de CAUCHY sur } — {, et en identifiant les coefficients (les calculs ont déja été faits ci-dessus),

D’apres le cours, on sait que x — /1 — 4x est développable en série entiere sur } -

1.1
44
on trouve que vo =T(0) =0, vi =T (0) =T et Yn > 2, by = Z bxbn_k. Ainsi, les deux suites (an)nen

k=0
et (bn)nen vérifient les mémes conditions initiales et la méme relation de récurrence donc, par récurrence

forte, on en déduit que Vn € N, a,, = by. Ainsi, Y. byx™ est bien de rayon R = éll comme Y. bpx™.

n>0 n>0

n—1 1,
c. D’apres le cours Vu €] — 131, V14+u =1+ Z (=)™ Ol

= (on le retrouve assez vite avec le
= (2n = 1)(nh)A4m

1.1 2k
développement en série entiere de (14x)* pour o = 7) donc Vx € } 5= [, Vi—dx=1-Y ————
4’4 =1 (n—=1)(nl)
. 1= T 2n)lx™ 1
ce qui montre que V E}—l;l[s = 1=VIl—ax (— Comme R = - > 0 et que
d due vx ;g 5K 2 z 2(2n — 1)(nl)? 4 d

+oo
Vx €] —R;R[, S(x) = Z anx™ = > (2n)h -, par unicité des coefficients d’une fonction développable

n=12(2n —1)(n) ( )
(2n)! _ (2)@n-=-2)! g1 (2n=2 .

en série entiere, on a on le savait déja) et Yn > 1 = = =
n série entiere, on a ap (on le savait déja) et Yn > 1, an n—)E 2 (=) m\n—1

Il vient ag =0, a1 =1,a2 =1,a3 =2, a4 =5, a5 = 14, ag =42 : ce sont les nombres de CATALAN.




