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16.1� �Pour x ∈ R, par croissances comparées, on a

(
x4n

4n+ 1

)
n∈N

bornée si et seulement si |x| 6 1. Ainsi, par

définition du rayon de convergence R de
∑
n>0

x4n

4n+ 1
, on a R = 1. Pour x = ±1,

∑
n>0

x4n

4n+ 1
=
∑
n>0

1

4n+ 1

diverge par comparaison à la série harmonique. Posons g : x 7→
+∞∑
n=0

x4n

4n+ 1
, le domaine de définition de

g est donc Dg =] − 1; 1[. Pour x ∈] − 1; 1[, f(x) = xg(x) =
+∞∑
n=0

x4n+1

4n+ 1
et on sait d’après le cours que f

est de classe C∞ sur ] − 1; 1[ avec f′(x) =
+∞∑
n=0

x4n = 1

1− x4
. Comme 1 − x4 = (1 − x)(1 + x)(1 − x2),

la décomposition en éléments simples de 1

1− x4
est 1

1− x4
= a

1− x
+ b

1+ x
+ cx+ d

1+ x2
. En identifiant par

exemple, on trouve a = b = 1

4
, c = 0 et d = 1

2
. Ainsi, ∀x ∈]−1; 1[, 1

1− x4
= 1

4(1− x)
+ 1

4(1+ x)
+ 1

2(1+ x2)
.

Ainsi f′(x) =
[
ln(1+ x)− ln(1− x)

4
+

Arctan(x)
2

]′
, comme f(0) = 0, en intégrant, sur l’intervalle ] − 1; 1[,

on a ∀x ∈]− 1; 1[, f(x) =
ln(1+ x)− ln(1− x)

4
+

Arctan(x)
2

.

On en conclut que g(0) = 1 et que ∀x ∈]− 1; 0[∪]0; 1[, g(x) = 1

4x
ln

(
1+ x

1− x

)
+

Arctan(x)
2x

.� �
16.2� �a. Si on avait lim

n→+∞
sin(nθ) = 0, on aurait alors lim

n→+∞
sin((n + 1)θ) = 0. Mais comme on sait que

sin((n + 1)θ) = sin(θ) cos(nθ) + cos(θ) sin(nθ), on a sin(θ) cos(nθ) = sin((n + 1)θ) − cos(θ) sin(nθ) donc

lim
n→+∞

sin(θ) cos(nθ) = 0. Mais comme sin(θ) ̸= 0 puisque θ ∈]0;π[ par hypothèse, lim
n→+∞

cos(nθ) = 0. On

aurait alors lim
n→+∞

(sin2(nθ)+cos2(nθ)) = 02+02 = 0 ce qui est impossible puisque sin2(nθ)+cos2(nθ) = 1.

On conclut ce raisonnement par l’absurde : la suite (sin(nθ))n∈N ne tend pas vers 0.

D’après la question a.,
∑
n>0

sin(nθ) 1n diverge grossièrement, comme
∑
n>0

sin(nθ)zn diverge pour z = 1, on

a donc R 6 1. De plus, comme | sin(nθ)| 6 1 et que le rayon de convergence de
∑
n>0

zn vaut 1, on déduit du

cours que R > 1. Au final, R = 1.

b. Si |z| = 1, on a | sin(nθ)zn| = | sin(nθ)| d’où
∑
n>0

sin(nθ)zn diverge grossièrement avec a..

c. Si |z| < 1,
∑
n>0

sin(nθ)zn converge absolument car R = 1 et S(z) =
+∞∑
n=0

sin(nθ)zn =
+∞∑
n=0

einθ − e−inθ

2i
zn

par la formule d’Euler classique puis S(z) = 1

2i

( +∞∑
n=0

(zeiθ)n −
+∞∑
n=0

(ze−iθ)n
)

avec de Moivre donc on

obtient S(z) = 1

2i

(
1

1− zeiθ
− 1

1− ze−iθ

)
=

(eiθ − e−iθ)z

2i(1− (eiθ + e−iθ)z+ z2)
=

z sin(θ)

1− 2z cos(θ) + z2
.� �

16.3� �∑
n>0

1

(3n)!
converge car, par croissances comparées, 1

(3n)!
=
+∞

o

(
1

n!

)
et que la série exponentielle converge.

Comme
+∞∑
n=0

1

(2n)!
= ch (1) = e1 + e−1

2
et qu’on utilise U2 = {1,−1} pour le calcul de

+∞∑
n=0

1

(2n)!
, on peut

penser à utiliser les racines troisièmes de l’unité pour le calcul de S0 =
+∞∑
n=0

1

(3n)!
. Comme on sait que



∀z ∈ C, ez =
+∞∑
n=0

zn

n!
, on a déjà e1 =

+∞∑
n=0

1

(3n)!
+

+∞∑
n=0

1

(3n+ 1)!
+

+∞∑
n=0

1

(3n+ 2)!
donc e1 = S0 + S1 + S2 en

posant S1 =
+∞∑
n=0

1

(3n+ 1)!
et S2 =

+∞∑
n=0

1

(3n+ 2)!
.

Mais on a aussi ej =
+∞∑
n=0

jn

n!
=

+∞∑
n=0

j3n

(3n)!
+

+∞∑
n=0

j3n+1

(3n+ 1)!
+

+∞∑
n=0

j3n+2

(3n+ 2)!
= S0 + jS1 + j2S2 car j3 = 1. De

plus, ej
2

=
+∞∑
n=0

j2n

n!
=

+∞∑
n=0

j6n

(3n)!
+

+∞∑
n=0

j6n+2

(3n+ 1)!
+

+∞∑
n=0

j6n+4

(3n+ 2)!
= S0 + j2S1 + jS2 car j4 = j.

Cela donne un système trois équations/trois inconnues mais, comme on sait que 1 + j + j2 = 0, il suffit de

sommer ces trois relations pour avoir 3S0 = e+ej+ej
2

donc S0 = e+ ej + ej
2

3
= e+ e

−1
2 e

i
√
3

2 + e
−1
2 e

−i
√
3

2

3

car j = −1

2
+ i

√
3

2
= j2. Ainsi, S0 =

+∞∑
n=0

1

(3n)!
= 1

3

(
e+ 2√

e
cos

(√
3

2

))
∼ 1, 168.

De même, on aurait 3S1 = e+ j2ej + jej
2

et 3S2 = e+ jej + j2ej
2

.� �
16.4� �a. On note Sn l’ensemble de toutes les permutations de [[1;n]]. On sait que card (Sn) = n!. On partitionne

(ou plutôt on partage) Sn selon le nombre de points fixes des permutations. Notons donc Sn,k l’ensemble

des permutations de Sn qui ont exactement k points fixes. Alors Sn =
n∪

k=0

Sn,k (réunion disjointe) avec

Sn,n−1 = ∅ car si une permutation a au moins n− 1 points fixes, c’est forcément l’identité donc elle a en fait

n points fixes. On a donc ∀n > 1, card (Sn) = n! =
n∑

k=0

An(k) =
n∑

k=0

card (Sn,k).

Pour dénombrer Sn,k, on choisit les k points fixes parmi les éléments de [[1;n]] ce qui fait

(
n

k

)
choix ; ensuite

on choisit une permutation des n− k éléments restants sans point fixe, elles sont au nombre de An−k(0) par

définition (le nombre de dérangements, c’est le nom des permutations de Sn,0, ne dépend que du nombre

d’éléments de l’ensemble qu’on “dérange”). On obtient donc card (Sn,k) = An(k) =

(
n

k

)
An−k(0).

Pour n = 0, on a 0! = A0(0) =
0∑

k=0

A0(k) = 1 par convention et A0(0) =

(
0

0

)
A0−0(0) = 1 donc les formules

sont valables aussi pour n = 0.

b. Comme Sn,0 ⊂ Sn, on a 0 6 An(0) 6 n! donc 0 6 An(0)
n!

6 1. On sait d’après le cours que le rayon R de la

série entière
∑
n>0

An(0)
n!

zn est alors supérieur à celui de
∑
n>0

zn. Comme
∑
n>0

zn est de rayon de convergence

1, on a R > 1 donc f(z) =
+∞∑
n=0

An(0)
n!

zn converge si |z| < 1.

c. Comme le rayon de convergence de la série exponentielle est égal à +∞, si |z| < 1, par produit de Cauchy

de deux séries absolument convergentes, ezf(z) =
( +∞∑

n=0

zn

n!

)( +∞∑
n=0

An(0)
n!

zn
)
=

+∞∑
n=0

( n∑
k=0

An−k(0)
k!(n− k)!

)
zn. Or

n∑
k=0

An−k(0)
k!(n− k)!

= 1

n!

n∑
k=0

(
n

k

)
An−k(0) = 1 d’après a.. Ainsi, ezf(z) =

+∞∑
n=0

zn = 1

1− z
. À nouveau, le rayon

de convergence de
∑
n>0

zn vaut 1 et d’après le cours sur le rayon de convergence d’un produit de Cauchy de

deux séries entières, 1 > Min(R,+∞) ce qui donne R 6 1 et, au final, R = 1.

De plus, si |z| < 1, on a f(z) = e−z

1− z
. On effectue encore un produit de Cauchy et si |z| < 1, il vient à

nouveau par produit de Cauchy, f(z) =
( +∞∑

n=0

(−1)nzn

n!

)( +∞∑
n=0

zn
)
=

+∞∑
n=0

( n∑
k=0

(−1)k

k!

)
zn donc, par unicité



des coefficients d’une série entière de rayon non nul, on a ∀n ∈ N, An(0) = n!
n∑

k=0

(−1)k

k!
.

d. Avec ces notations de l’énoncé, pn =
An(0)
n!

donc pn =
n∑

k=0

(−1)k

k!
qui est la somme partielle de la série

exponentielle associée à e−1. Par conséquent, lim
n→+∞

pn = 1

e
∼ 0, 36.� �

16.5� �Pour tout entier naturel n, posons un = 2n2 + 5n+ 3

2n
∼
+∞

n2

2n−1 =
+∞

o

(
1

n2

)
par croissances comparées donc,

par comparaison à une série de Riemann, comme 2 > 1, la série
∑
n>0

un converge.

Pour calculer la somme de cette série numérique, posons an = 2n2 + 5n + 3 et considérons la série entière∑
n>0

anx
n. Toujours par croissances comparées, (anx

n)n>0 est bornée si et seulement si |x| < 1 donc, par

définition, le rayon de cette série entière vaut R = 1. Pour x ∈]− 1; 1[, comme an = 2(n+ 1)(n+ 2)− (n+ 1),

on a f(x) =
+∞∑
n=0

anx
n = 2

+∞∑
n=0

(n + 1)(n + 2)xn −
+∞∑
n=0

(n + 1)xn (les deux séries convergent puisque les deux

rayons valent encore 1). On reconnâıt les dérivées de la série géométrique, ∀x ∈] − 1; 1[,
+∞∑
n=0

xn = 1

1− x

donc
+∞∑
n=0

(n + 1)xn =
(

1

1− x

)′
= 1

(1− x)2
et

+∞∑
n=0

(n + 1)(n + 2)xn =
(

1

1− x

)′′
= 2

(1− x)3
de sorte que

f(x) = 4

(1− x)3
− 1

(1− x)2
= 3+ x

(1− x)3
. Ainsi,

+∞∑
n=0

2n2 + 5n+ 3

2n
= f

(
1

2

)
=

3+ (1/2)

(1− (1/2))3
= 28.� �

16.6� �a. Si, pour n ∈ N, on pose an = (−1)n, le rayon de convergence de la série entière
∑
n>0

anx
n vaut R = 1 et

sa fonction somme f : x 7→
+∞∑
n=0

(−1)nxn = 1

1+ x
est majorée par 1 sur [0; 1[.

b. L’hypothèse se traduit par an =
+∞

o

(
1

n

)
donc lim

n→+∞
an = 0. Ainsi, la suite (an)n∈N est bornée donc,

pour tout réel r ∈]0; 1], la suite (anr
n)n∈N l’est aussi donc, par définition, le rayon de convergence R de∑

n>0

anx
n vérifie donc R > 1. Ainsi, la fonction somme f : x 7→

+∞∑
n=0

anx
n est définie sur ]− 1; 1[ au minimum.

Soit ε > 0, il existe un rang n0 tel que ∀n > n0, |nan| 6 ε

2
. Par conséquent, si n > n0 et x ∈]0; 1[, il vient∣∣f(x)∣∣ = ∣∣∣n0−1∑

n=0

anx
n +

+∞∑
n=n0

anx
n
∣∣∣ 6 n0−1∑

n=0

|an|xn +
+∞∑

n=n0

|an|xn 6
n0−1∑
n=0

|an|xn + ε

2

+∞∑
n=n0

xn

n
par inégalité

triangulaire. On en déduit la majoration
∣∣f(x)∣∣ 6 n0−1∑

n=0

|an|xn − ε

2

n0−1∑
n=1

xn

n
+ ε

2

+∞∑
n=1

xn

n
. De plus, comme

φ : x 7→
n0−1∑
n=0

|an|xn− ε

2

n0−1∑
n=1

xn

n
est polynomiale donc continue en 1, elle est bornée et on a φ(x)=

1
o(ln(1−x))

car lim
x→1−

ln(1−x) = −∞. Il existe donc α > 0 tel que ∀x ∈ [1−α; 1[, |φ(x)| 6 ε

2
| ln(1−x)|. En combinant ces

deux renseignements, ∀x ∈ [1−α; 1[,
∣∣f(x)∣∣ 6 ε| ln(1− x)| car on sait que ln(1− x) = −

+∞∑
n=1

xn

n
si x ∈]− 1; 1[.

Ainsi, ∀ε > 0, ∃α > 0, ∀x ∈ [1− α; 1[,
∣∣f(x)∣∣ 6 ε| ln(1− x)|. Ceci justifie bien que f(x) =

1−
o(ln(1− x)).

c. Avec l’exemple de la question a., si on pose bn = (−1)n, la fonction somme g : x 7→ 1

1+ x
est bien définie

sur ]− 1; 1[ et vérifie bien g(x) =
1−

o
(
ln(1− x)

)
car g est bornée sur [0; 1[ et lim

x→1−
ln(1− x) = −∞. Pourtant,

la suite (nbn)n∈N ne tend pas vers 0. La réciproque espérée est donc fausse.

Même si on impose que tous les bn sont positifs, il suffit de prendre bn = 1

n
si n est une puissance de 2 et



bn = 0 sinon. Alors,
∑
n>0

x2
n

2n
est de rayon de convergence 1 car

(
x2

n

2n

)
n∈N

est bornée si et seulement si

|x| 6 1 par croissances comparées. En notant g : x 7→
+∞∑
n=0

x2
n

2n
, on a ∀x ∈ [−1; 1], |g(x)| 6

+∞∑
n=0

1

2n
= 2 donc

g est bornée sur [−1; 1] et g(x) =
1−

o
(
ln(1− x)

)
même si (nbn)n∈N ne tend pas vers 0 puisque 2nb2n = 1.

Conclusion : si, au voisinage de 1−, f(x) =
1−

o
(
ln(1− x)

)
, on ne peut pas conclure que (nan)n∈N tend vers 0.� �

16.7� �a. Posons an =

(
2n

n

)
> 0 pour n ∈ N, alors an+1

an

=
(2n+ 2)!(n!)2

(2n)!((n+ 1)!)2
=

(2n+ 2)(2n+ 1)

(n+ 1)2
=

2(2n+ 1)
n+ 1

donc lim
n→+∞

an+1

an

= 4. D’après d’Alembert, le rayon de convergence R de
∑
n>0

(
2n

n

)
xn vaut R = 1

4
.

Si x = 1

4
, anx

n =

(
2n

n

)
xn =

(2n)!

4n(n!)2
∼
+∞

√
4πn(2n)2ne2n

4n(2πn)n2ne2n
∼
+∞

1√
πn

avec l’équivalent de Stirling donc, par

comparaison aux séries de Riemann,
∑
n>0

an

(
1

4

)n
diverge.

Si x = −1

4
, la série

∑
n>0

anx
n est alternée et

∣∣∣an+1x
n+1

anx
n

∣∣∣ = 2(2n+ 1)
4(n+ 1)

= 4n+ 2

4n+ 4
< 1 d’après a. donc la suite(

|anx
n|
)
n∈N est décroissante et tend vers 0 puisqu’on vient de voir que |anx

n| ∼
+∞

1√
πn

. Ainsi, par le critère

spécial des séries alternées,
∑
n>0

an

(
− 1

4

)n
converge.

L’ensemble de définition de f est donc
[
− 1

4
; 1
4

[
.

b. On a vu en question a. que ∀n ∈ N, (n+ 1)an+1 = 2(2n+ 1)an. En multipliant par xn et en sommant,

on a donc ∀x ∈
]
− 1

4
; 1
4

[
,

+∞∑
n=0

(n + 1)an+1x
n =

+∞∑
n=0

2(2n + 1)anx
n = 4x

+∞∑
n=1

nanx
n−1 + 2

+∞∑
n=0

anx
n et on

reconnâıt, puisqu’on est dans l’intervalle ouvert de convergence, f′(x) = 4xf′(x)+2f(x) ou (1−4x)f′(x) = 2f(x)

donc f est solution sur
]
− 1

4
; 1
4

[
de (E) : (1− 4x)y′ − 2y = 0.

c. On résout classiquement cette équation différentielle linéaire homogène normalisée (E) d’ordre 1 et,

comme une primitive de a : x 7→ 2

1− 4x
est A : x 7→ −1

2
ln(1 − 4x) et puisque f(0) = a0 = 1, on a

∀x ∈
]
− 1

4
; 1
4

[
, f(x) = e

− ln(1−4x)
2 = 1√

1− 4x
.� �

16.8� �a. On calcule a2 = a1 + a0 = 2, a3 = a2 + 2a1 = 4, a4 = a3 + 3a2 = 10, a5 = a4 + 4a3 = 26 et on peut

conjecturer que ∀n ∈ N∗, 0 6 an 6 2(n− 1)!. On vient de faire l’initialisation.

Soit n > 1 tel que 0 6 an+1 6 2n! et 0 6 an 6 2(n − 1)!, comme an+2 = an+1 + (n + 1)an, on a

0 + (n + 1).0 6 an+2 6 2n! + 2(n + 1)(n − 1)! = 2(n − 1)!(n + n + 1) 6 2(n − 1)!(n(n + 1)) = 2(n + 1)! car

n+ 1 6 n2 puisque n > 1. Par principe de récurrence double, on a ∀n > 1, 0 6 an 6 2(n− 1)!. Ainsi, pour

n > 1, 0 6 an

n!
6 2

n
donc, par encadrement,

(
an

n!

)
n∈N

converge vers 0.

Comme la suite
(
an

n!

)
n∈N

tend vers 0, elle est bornée, donc par définition du rayon de convergence d’une

série entière, on a R > 1.

b. Les dérivations qui suivent sont valides sur l’intervalle ouvert de convergence. Pour x ∈] − R;R[, on

a f′(x) =
+∞∑
n=1

nan

n!
xn−1 =

+∞∑
n=0

an+1

n!
xn et f′′(x) =

+∞∑
n=1

nan+1

n!
xn−1 =

+∞∑
n=0

an+2

n!
xn. Or, pour n ∈ N,



an+2x
n

n!
=

an+1x
n

n!
+

(n+ 1)anx
n

n!
donc

+∞∑
n=0

an+2x
n

n!
=

+∞∑
n=0

an+1x
n

n!
+

+∞∑
n=0

(n+ 1)anx
n

n!
en sommant ce qui

revient à f′′(x) = f′(x) +
+∞∑
n=0

nanx
n

n!
+

+∞∑
n=0

anx
n

n!
= f′(x) + xf′(x) + f(x). Par conséquent, f est solution sur

]− R;R[ de l’équation différentielle (E) : y′′ − (1+ x)y′ − y = 0.

c. D’après la question précédente, on a f′′(x)− (1+x)f′(x)− f(x) = (f′(x)− (1+x)f(x))′ = 0. Comme ]−R;R[

est un intervalle et que f′(0) − (1 + 0)f(0) = a1 − a0 = 0, on a donc ∀x ∈] − R;R[, f′(x) − (1 + x)f(x) = 0.

On en déduit en intégrant cette équation différentielle linéaire du premier ordre mise sous forme normalisée

sans second membre, comme une primitive de x 7→ 1+ x est x 7→ x+ x2

2
sur l’intervalle ]− R;R[, que l’on a

∀x ∈]− R;R[, f(x) = e
x+x2

2 puisque f(0) = a0 = 1.

Alors ∀x ∈] − R;R[, f(x) =

(
+∞∑
i=0

1

i!
xi

)
×

(
+∞∑
j=0

1

j!2j
x2j

)
. Ces deux séries ont pour rayon +∞ donc on peut

effectuer le produit de Cauchy et obtenir f(x) =
+∞∑
n=0

( ∑
i+2j=n

n!
i!j!2j

)
xn. En identifiant (par unicité) les

coefficients entre les deux expressions de f(x) sous forme de série entière, ∀n ∈ N,
an

n!
=

∑
i+2j=n

1

i!j!2j
donc

an =
∑

i+2j=n

n!
i!j!2j

. Puisque 2j 6 n et i = n− 2j, on a la formule an =
⌊n/2⌋∑
j=0

n!
(n− 2j)!j!2j

.

Pour information : on considère l’ensemble In des permutations σ de [[1;n]] qui sont des involutions, c’est-à-

dire qui vérifient σ◦σ = id [[1;n]] ; et on pose bn = card (In). Alors, pour n > 1, on partitionne les involutions

σ de [[1;n+ 2]] en deux catégories :

- celles pour lesquelles σ(n+ 2) = n+ 2 sont au nombre de bn+1 car il n’y a pas de choix à faire pour

σ(n+ 2) qu’on impose égal à n+ 2, ensuite σ induit alors sur [[1;n+ 1]] une involution de [[1;n+ 1]].

- celles telles que σ(n + 2) = k ̸= n + 2 sont au nombre de (n + 1)bn car pour les choisir de manière

bijective, il y a n+ 1 choix pour l’entier k qui est l’image de n+ 2 par σ et, une fois ce choix effectué,

cela implique que σ(k) = σ(σ(n + 2)) = n + 2 car σ doit être une involution, et on a alors bn choix

pour finir de déterminer σ qui doit induire sur [[1;n+ 1]] \ {k} une involution de cet ensemble.

Cette partition implique la relation bn+2 = bn+1+(n+1)bn pour n > 1 et, comme b2 = 2 = 1+1.1 = b1+1.b0

en prenant comme convention que b0 = 1, on a bien ∀n > 0, bn+2 = bn+1 + (n + 1)bn. On montre alors

par une récurrence double que ∀n ∈ N, an = bn.

On peut alors expliquer la relation (R) de manière combinatoire, en constatant qu’une involution σ de [[1;n]]

est une application telle que pour tout entier x entre 1 et n, et on a deux choix :

• soit σ(x) = x et x est appelé un point fixe de σ.

• soit σ(x) = y ̸= x et alors, comme σ2 = id [[1;n]], on a forcément σ(y) = x.

Ainsi, si σ ∈ An, le nombre f de points fixes de σ a la même parité que n de sorte qu’il existe 2j entiers de

[[1;n]] qui ne sont pas fixes par σ avec f = n− 2j avec 0 6 j 6
⌊
n

2

⌋
. On peut donc écrire An =

⌊n/2⌋∪
j=0

An,j où

An,j = {σ ∈ An | σ admet f = n− 2j points fixes}.

Pour construire une involution σ de An,j :



• on choisit les n− 2j éléments de [[1;n]] qui sont fixes par σ :

(
n

n− 2j

)
=

(
n

2j

)
choix.

• on choisit l’image y du plus petit élément x qui reste : (2j− 1) choix (et alors σ(x) = y et σ(y) = x).

• on choisit l’image t du plus petit élément z qui reste : (2j− 3) choix etc...

Ainsi card (An,j) =

(
n

2j

)
×(2j−1)×(2j−3)×· · ·×3×1 =

n!

(n− 2j)!(2j)!
× (2j)!

2jj!
en multipliant en haut et en bas

par les termes pairs qui manquent. On retrouve bien In = card (An) =
⌊n/2⌋∑
j=0

card (An,j) =
⌊n/2⌋∑
j=0

n!
(n− 2j)!2jj!

.� �
16.9� �a. Soit (an)n∈N une suite complexe, le rayon de convergence de la série entière

∑
n>0

anx
n vaut par définition

R = Sup

({
x ∈ R+ | (anx

n)n>0 est bornée
})

avec par convention R = +∞ si cet ensemble n’est pas majoré.

b. Pour n ∈ N et t ∈ [0; 1], on a tn

2
6 tn

1+ t2
6 tn donc, par croissance de l’intégrale, on a l’encadrement

0 6
∫ 1

0

tn

2
dt = 1

2(n+ 1)
6 an 6 1

n+ 1
=
∫ 1

0
tndt (1). Comme le rayon de convergence des deux séries∑

n>0

xn

2(n+ 1)
et
∑
n>0

xn

n+ 1
vaut classiquement 1, on peut conclure d’après le cours que R = 1. Par croissance

de l’intégrale, si n ∈ N, ∀t ∈ [0; 1], 0 6 tn+1

1+ t2
6 tn

1+ t2
donc 0 6 an+1 6 an et la suite (an)n∈N est

décroissante. De plus, l’encadrement (1) montre que lim
n→+∞

an = 0. Par critère spécial des séries alternées,

la série
∑
n>0

an(−1)n converge alors que la série
∑
n>0

an diverge par minoration puisque an > 1

2(n+ 1)
et

que la série harmonique
∑
n>0

1

n+ 1
diverge. Ainsi, le domaine de définition de x 7→

+∞∑
n=0

anx
n est [−1; 1[.

c. Dans la relation (R) : 1

(1− xt)(1+ t2)
= a

1− xt
+ bt

1+ t2
+ c

1+ t2
, pour x ̸= 0, on multiplie par 1−xt et on

prend t = 1

x
et on trouve a = x2

1+ x2
. Dans (R), on multiplie par 1+ t2 et on prend t = i pour avoir 1

1− ix
=

1+ ix

1+ x2
= bi+c donc, comme b et c sont réels, on a b = x

1+ x2
et c = 1

1+ x2
. On peut aussi bien sûr procéder

par identification. Alors, ∀t ∈ [0 ; 1], 1

(1− xt)(1+ t2)
= x2

(1+ x2)(1− xt)
+ xt

(1+ x2)(1+ t2)
+ 1

(1+ x2)(1+ t2)
et cette relation marche encore pour x = 0.

d. Pour |x| < 1, la série de fonctions (un)n∈N où un(t) = xntn

1+ t2
converge normalement sur [0; 1] car

||un||∞,[0;1] 6 |x|n et que la série géométrique
∑
n>0

|x|n converge car |x| < 1 donc on peut intervertir série et

intégrale sur le segment [0; 1], puisque les fonctions un sont toutes continues sur [0; 1], pour avoir la relation

∀x ∈] − 1; 1[, S(x) =
+∞∑
n=0

(∫ 1

0
un(t)dt

)
=
∫ 1

0

( +∞∑
n=0

un(t)
)
dt =

∫ 1

0

dt

(1− xt)(1+ t2)
car

+∞∑
n=0

(xt)n = 1

1− xt

puisque |xt| < 1. D’après c., ∀x ∈] − 1; 1[, S(x) = x

1+ x2

∫ 1

0

xdt

1− xt
+ x

1+ x2

∫ 1

0

tdt

1+ t2
+ 1

1+ x2

∫ 1

0

dt

1+ t2

par linéarité de l’intégrale donc S(x) = x

1+ x2
[− ln(1 − xt)]10 + x

2(1+ x2)
[ln(1 + t2)]10 + 1

1+ x2
[Arctan(t)]10

et on obtient donc S(x) =
−4x ln(1− x) + 2x ln(2) + π

4(1+ x2)
.

e. Les fonctions vn : x 7→ unx
n sont toutes continues sur [−1; 0] et, pour x ∈ [−1; 0], la série

∑
n>0

unx
n est

alternée et la suite (|vn(x)|)n>0 est décroissante et tend vers 0 car (un)n>0 est décroissante, tend vers 0 et

|x| 6 1. Ainsi, par le critère spécial des séries alternées, on a |Rn(x)| =
∣∣∣ +∞∑
k=n+1

vk(x)
∣∣∣ 6 |vn+1(x)| 6 un+1

donc ||Rn||∞,[−1;0] 6 un+1 ce qui montre par encadrement que lim
n→+∞

||Rn||∞,[−1;0] = 0 et que la série
∑
n>0

vn



converge uniformément vers S sur [−1; 0]. Par théorème, on a donc la continuité de S sur [−1; 0] ce qui montre

que S(−1) =
+∞∑
n=0

(−1)nun = lim
x→−1+

S(x) =
ln(2)
2

+ π

8
.� �

16.10� �a. f : t 7→ ln(1− t)
t

est continue sur ]−∞; 1[ en la prolongeant par continuité en 0 avec f(0) = −1 puisque

ln(1− t)∼
0
−t. F est donc la primitive de −f qui s’annule en 0 donc F est au moins définie sur ]−∞; 1[.

Si x = 1, f(t) ∼
1−

ln(1 − t) =
1−

o

(
1√
1− t

)
donc f est intégrable sur [0; 1[ et F(1) existe par comparaison aux

intégrales de Riemann. Par conséquent, le domaine définition de F est D =]−∞; 1].

b. D’après le cours, ∀t ∈]− 1; 1[, ln(1− t) = −
+∞∑
n=1

tn

n
donc −f(t) =

+∞∑
n=1

tn−1

n
(marche aussi si t = 0). Pour

x ∈] − 1; 1[, en intégrant terme à terme sur le segment ˜[0; x] inclus dans l’intervalle ouvert de convergence,

il vient F(x) =
∫ x

0
(−f(t))dt =

∫ x

0

+∞∑
n=1

tn−1

n
dt =

+∞∑
n=1

∫ x

0

tn−1

n
dt =

+∞∑
n=1

xn

n2 = S(x). Par définition de la

convergence d’une intégrale, F(1) = lim
x→1−

F(x). En posant un : x 7→ xn

n2 , on a ||un||∞,[0;1] =
1

n2 donc
∑
n>1

un

converge normalement sur [0; 1] et, puisque toutes les un sont continues sur [0; 1], S est continue sur [0; 1]

donc F(1) = lim
x→1−

F(x) = lim
x→1−

S(x) = S(1) = π2

6
. On a bien ∀x ∈ [0; 1], F(x) = S(x) =

+∞∑
n=1

xn

n2 .

c. Soit G :]0; 1[→ R définie par G(x) = π2

6
− ln(x) ln(1− x). Par opérations, la fonction G est dérivable sur

]0; 1[. De plus, la fonction F est dérivable sur ]0; 1[ avec F′(x) = − ln(1− x)
x

donc, pour x ∈]0; 1[, on a la relation

(F(x) + F(1− x)−G(x))′ = F′(x)− F′(1− x)−G′(x) = − ln(1− x)
x

+
ln(1− (1− x))

1− x
+

ln(1− x)
x

− ln(x)
1− x

= 0

avec l’abus de notation usuel. Ainsi, la fonction x 7→ F(x)+ F(1−x)−G(x) est constante sur l’intervalle ]0; 1[.

On a lim
x→0+

(F(x) + F(1− x)−G(x)) = F(0) + F(1)− π2

6
= 0 d’après b. et car lim

x→0+
ln(x) ln(1− x) = 0 puisque

ln(1− x)=
0
−x et lim

x→0+
x ln(x) = 0, donc ∀x ∈]0; 1[, F(x) + F(1− x) = π2

6
− ln(x) ln(1− x).� �

16.11� �a. Par construction, ∀n ∈ N, an > 0, ainsi,
∣∣∣an+1

an

∣∣∣ = an+1

an

= n+ 1

α+ n+ 1
−→

n→+∞
ℓ = 1 donc, par critère de

d’Alembert, le rayon R de la série entière
∑
n>0

anx
n vaut R = 1

ℓ
= 1.

b. On a vn−vn−1 =
( n∑

k=1

ln

(
1+α

k

))
−α ln(n)−

((n−1∑
k=1

ln

(
1+α

k

))
−α ln(n−1)

)
= ln

(
1+α

n

)
−α ln

(
1− 1

n

)
pour tout entier n > 2 donc vn − vn−1 =

+∞
α

n
+ O

(
1

n2

)
+ α

(
− 1

n
+ O

(
1

n2

))
=
+∞

O

(
1

n2

)
. Par comparaison

aux séries de Riemann,
∑
n>2

(vn − vn−1) converge absolument donc converge.

Par dualité suite-série, grâce à la question précédente, la suite (vn)n>1 converge vers un réel α. Or ∀n ∈

N∗, vn = ln

( n∏
k=1

k+ α

k

))
− ln(nα) = − ln(nαan) donc an = e−vn

nα . Mais lim
n→+∞

e−vn = λ = e−α > 0 par

continuité de l’exponentielle donc an ∼
+∞

λ

nα .

c. En 1 : d’après c., comme an ∼
+∞

λ

nα et que les an sont positifs, la série
∑
n>0

an converge si et seulement

si la série
∑
n>0

1

nα converge. Par critère de Riemann,
∑
n>0

an converge si et seulement si α > 1.

En −1 : la série
∑
n>0

an est alternée et la suite (|an|)n>0 tend vers 0 car an ∼
+∞

λ

nα et α > 0. De plus, comme

|an+1|
|an|

=
an+1

an

= n+ 1

α+ n+ 1
< 1, la suite (|an|)n>0 est aussi décroissante. Ainsi, par le critère spécial des



séries alternées, la série
∑
n>0

(−1)nan converge pour toutes les valeur de α > 0.

� �
16.12� �a. La fonction f : t 7→ sin(t)

t
est continue sur R∗ par opérations et elle se prolonge par continuité en

0 en posant f(0) = 1 car sin(t)∼
0
t. Ainsi, f est continue sur R donc en particulier sur R+. De plus, en

posant u : t → 1

t
et v : t 7→ − cos(t), les fonctions u et v sont de classe C1 sur [1; +∞[ et lim

t→+∞
u(t)v(t) = 0.

Ainsi, l’intégrale
∫ +∞

1

sin(t)
t

dt =
∫ +∞

1
u(t)v′(t)dt est de même nature que

∫ +∞

1
u′(t)v(t)dt, c’est-à-dire

que
∫ +∞

1

cos(t)

t2
dt. Or cette dernière intégrale converge absolument par comparaison aux intégrales de

Riemann, donc elle converge, car g : t 7→ cos(t)

t2
est continue sur [1; +∞[ et que g(t) =

+∞
O

(
1

t2

)
. Ainsi,∫ +∞

1

sin(t)
t

dt converge donc
∫ +∞

0

sin(t)
t

dt converge aussi.

b. On vient de voir que la fonction f est continue sur R ce qui montre, par le théorème fondamental de

l’intégration, que F est bien définie sur R en tant que primitive de f qui s’annule en 0. De plus, on sait que

∀t ∈ R, sin(t) =
+∞∑
k=0

(−1)kt2k+1

(2k+ 1)!
. Ainsi, ∀t ∈ R∗, f(t) =

sin(t)
t

=
+∞∑
k=0

(−1)kt2k

(2k+ 1)!
et cette formule marche

aussi pour t = 0 car 1 =
(−1)0t2.0

(2.0+ 1)!
. Comme le rayon de convergence de

∑
k>0

(−1)kt2k

(2k+ 1)!
vaut R = +∞, on peut

intégrer terme à terme sur ˜[0; x] qui est inclus dans l’intervalle ouvert de convergence R =]−∞; +∞[ pour

avoir ∀x ∈ R, F(x) =
∫ x

0
f(t)dt =

∫ x

0

( +∞∑
k=0

(−1)kt2k

(2k+ 1)!

)
dt =

+∞∑
k=0

(−1)kx2k+1

(2k+ 1).(2k+ 1)!
.

c. Pour x ∈ R, la fonction hx : t 7→ exp(−xe−it) est continue sur le segment J =
[
0; π

2

]
donc l’intégrale

I(x) =
∫ π/2

0
exp(−xe−it)dt existe. On sait que ∀z ∈ C, ez =

+∞∑
n=0

zn

n!
donc, en prenant z = −xe−it, on

obtient ∀t ∈ J, exp(−xe−it) =
+∞∑
n=0

(−1)nxne−int

n!
. Pour n ∈ N, posons hn : t 7→ (−1)nxne−int

n!
.

Comme ∀t ∈ J, |hn(t)| =
|x|n
n!

, on a ||hn||∞,J =
|x|n
n!

et la série exponentielle
∑
n>0

|x|n
n!

converge donc la série

de fonctions
∑
n>0

hn converge normalement vers h sur le segment J. Comme toutes les hn et h sont continues

sur J, le théorème d’intégration terme à terme sur segment montre que I(x) =
+∞∑
n=0

∫ π/2

0

(−1)nxne−int

n!
dt.

Pour n ∈ N, posons l’intégrale Ln =
∫ π/2

0

(−1)nxne−int

n!
dt. On a le cas particulier L0 =

∫ π/2

0
1.dt = π

2

et, pour n ∈ N∗, il vient Ln =
(−1)nxn

n!

∫ π/2

0
e−intdt =

(−1)nxn

n!

[
e−int

− in

]∫ π/2

0
=

(−1)nxn

n!
× e−inπ/2 − 1

− in
.

Comme on sait que Re (I(x)) =
+∞∑
n=0

Re (Ln) et que Re
(
e−inπ/2 − 1

− in

)
= 0 si n > 2 est pair et que l’on a

Re
(
e−inπ/2 − 1

− in

)
= Re

(
e−i(2k+1)π/2 − 1

− i(2k+ 1)

)
=

(−1)k

2k+ 1
si n = 2k+1 > 1 est impair, il ne reste dans la formule

ci-dessus que Re (I(x)) = π

2
+

+∞∑
k=0

(−1)2k+1x2k+1

(2k+ 1)!
× (−1)k

2k+ 1
= π

2
−

+∞∑
k=0

(−1)kx2k+1

(2k+ 1).(2k+ 1)!
.

d. Par inégalité triangulaire sur les intégrales, |I(x)| =
∣∣∣∫ π/2

0
exp(−xe−it)dt

∣∣∣ 6 ∫ π/2

0
| exp(−xe−it)|dt. Or

exp(−xe−it) = e−x cos(t)eix sin(t) donc | exp(−xe−it)| = e−x cos(t).



Méthode 1 : la fonction cos est concave sur J car cos′′ = − cos 6 0 sur J donc ∀t ∈ J, cos(t) > 1− 2t

π
. Ainsi,

e−x cos(t) 6 e−xe2xt/π donc ∀x > 0,

∫ π/2

0
| exp(−xe−it)|dt 6 e−x

∫ π/2

0
e2xt/πdt. On en déduit donc que

|I(x)| 6 e−x
[
π

2x
e2xt/π

]π/2
0

=
πe−x(ex − 1)

2x
=

π(1− e−x)
2x

. Comme lim
x→+∞

π(1− e−x)
2x

= 0, par encadrement,

on obtient la limite lim
x→+∞

∫ π/2

0
exp(−xe−it)dt = 0.

Méthode 2 : soit g : R×
[
0; π

2

[
→ R définie par g(x, t) = exp(−xe−it) de sorte que I(x) =

∫ π/2

0
g(x, t)dt.

(H1) pour tout t ∈ J, on a lim
x→+∞

g(x, t) = 0 = a(t) car cos(t) > 0.

(H2) pour tout x ∈ R, les fonctions hx : t 7→ g(x, t) et a sont continues sur
[
0; π

2

[
.

(H3) pour (x, t) ∈ R×
[
0; π

2

[
, on a |g(x, t)| 6 1 = φ(t) et φ est continue et intégrable sur

[
0; π

2

[
.

D’après le théorème de convergence dominée à paramètre continu, on a lim
x→+∞

I(x) =
∫ π/2

0
a(t)dt = 0.

D’après les questions précédentes, on a ∀x ∈ R, Re (I(x)) = π

2
− F(x). Comme lim

x→+∞
I(x) = 0, on a aussi

lim
x→+∞

Re (I(x)) = lim
x→+∞

(
π

2
− F(x)

)
= 0. Ceci assure l’existence d’une limite finie de F en +∞ et sa valeur

lim
x→+∞

F(x) = π

2
qu’on note

∫ +∞

0

sin(t)
t

dt = π

2
(intégrale de Dirichlet).� �

16.13� �Posons an =
(n+ 1)(n+ 2)

2n
> 0 pour tout n ∈ N, de sorte que

an+1

an

=
(n+ 2)(n+ 3)2n

(n+ 1)(n+ 2)2n+1 ∼
+∞

ℓ = 1

2

donc, d’après le cours et la règle de d’Alembert, R = 1

ℓ
= 2.

Posons, pour x ∈]−2; 2[, f(x) =
+∞∑
n=0

(n+ 1)(n+ 2)
2n

xn et g(x) =
+∞∑
n=0

xn

2n
= 1

1− x

2

= 2

2− x
(série géométrique).

On peut dériver terme à terme à l’intérieur de l’intervalle ouvert de convergence, c’est-à-dire ] − 2; 2[, pour

avoir ∀x ∈] − 2; 2[, g′(x) =
+∞∑
n=0

(n+ 1)xn

2n+1 = 2

(2− x)2
puis g′′(x) =

+∞∑
n=0

(n+ 1)(n+ 2)xn

2n+2 = 4

(2− x)3
.

En prenant x = 1 dans cette dernière relation, on a directement g′′(1) =
+∞∑
n=0

(n+ 1)(n+ 2)

2n+2 = 4 donc

+∞∑
n=0

(n+ 1)(n+ 2)
2n

= 4× 22 = 16.� �
16.14� �La fonction f est définie sur R∗ où elle est de classe C∞ par opérations.

Comme on sait que cos(x)=
0
1 − x2

2
+ o(x2), on a f(x)=

0

1

2
+ o(1) donc lim

x→0
f(x) = 1

2
et on peut prolonger f

par continuité en 0 en posant f(0) = 1

2
. la fonction f ainsi prolongée est maintenant continue sur R.

Pour x ̸= 0, on a
f(x)− f(0)

x− 0
=

1− cos(x)− x2

2

x3
mais on sait aussi que cos(x)=

0
1− x2

2
+ o(x3) ce qui donne

f(x)− f(0)
x− 0

=
0
o(1) et on a donc lim

x→0

f(x)− f(0)
x− 0

= 0 donc f est dérivable sur R et on a f′(0) = 0 ce qui logique

car f est paire donc f′ (quand elle existe) est impaire.

Pour x ̸= 0, on a f′(x) =
x2 sin(x)− 2x(1− cos(x))

x4
=

x sin(x)− 2(1− cos(x))

x3
mais on a le développement

limité x sin(x)−2(1−cos(x))=
0
x(x+o(x2))−2

(
1−
(
1− x2

2
+o(x3)

))
∼
0
x2−x2+o(x3)=

0
o(x) donc f′(x)=

0
o(1)

ce qui montre que lim
x→0

f′(x) = 0 = f′(0) donc que f′ est continue en 0. Ainsi, f est de classe C1 sur R.



Mais on sait que cos est développable en série entière sur R avec ∀x ∈ R, cos(x) =
+∞∑
n=0

(−1)nx2n

(2n)!
. Ainsi, pour

x ∈ R∗, on a f(x) =
1− cos(x)

x2
= 1

x2

+∞∑
n=1

(−1)n+1x2n

(2n)!
=

+∞∑
n=1

(−1)n+1x2n−2

(2n)!
=

+∞∑
k=0

(−1)kx2k

(2k+ 2)!
. En prenant

x = 0 dans cette somme, on obtient
+∞∑
k=0

(−1)k02k

(2k+ 2)!
=

(−1)0

(2.0+ 2)!
= 1

2
donc on retrouve la valeur de f(0) trouvée

ci-dessus. Par conséquent, f est en fait développable en série entière sur R avec ∀x ∈ R, f(x) =
+∞∑
k=0

(−1)kx2k

(2k+ 2)!
et f est donc de classe C∞ sur sont intervalle ouvert de convergence R.� �

16.15� �a. Si R = 0, il n’y a rien à démontrer car ]− R;R[ est vide.

Si R > 0, par produit de Cauchy, comme
∑

anx
n est de rayon R donc que

∑
anx

n converge absolument pour

x ∈]− R;R[ par le lemme d’Abel, S(x)2 =
+∞∑
n=0

( n∑
k=0

akan−k

)
xn = a2

0 + 2a0a1x+
+∞∑
n=2

anx
n par hypothèse,

ce qui donne S(x)2 = S(x)− x ou encore S(x) = x+ S(x)2.

b. À nouveau, si R = 0, il n’y a pas d’expression de S(x) à trouver car ]− R;R[ est vide.

Sinon, pour x ∈]− R;R[, S(x)2 − S(x) + x = 0 donc S(x) est une racine réelle du polynôme Px = X2 − X+ x.

Comme le discriminant ∆x du polynôme Px vaut ∆x = 1 − 4x, et que S(x) est un réel par construction, on

a forcément 1 − 4x > 0 donc R 6 1

4
et ∀x ∈] − R;R[, S(x) = 1−

√
1− 4x

2
ou S(x) = 1+

√
1− 4x

2
. Comme

f : x 7→ 2S(x) − 1 est développable en série entière sur ] − R;R[, elle y est continue et on sait d’après ce qui

précède que ∀x ∈] − R;R[, f(x) = ±
√
1− 4x. La continuité de f et le fait que f ne s’annule pas sur ] − R;R[

montre que l’on a soit ∀x ∈]− R;R[, f(x) =
√
1− 4x soit ∀x ∈]− R;R[, f(x) = −

√
1− 4x. Mais comme f vaut

−1 en 0, elle est négative sur ]− R;R[ et on a donc ∀x ∈]− R;R[, f(x) = −
√
1− 4x donc S(x) = 1−

√
1− 4x

2
.

D’après le cours, on sait que x 7→
√
1− 4x est développable en série entière sur

]
− 1

4
; 1
4

[
car u 7→

√
1− u l’est

sur ]−1; 1[. Ainsi, il existe une suite (bn)n∈N ∈ RN telle que ∀x ∈
]
− 1

4
; 1
4

[
, T(x) = 1−

√
1− 4x

2
=

+∞∑
n=0

bnx
n.

On a bien sûr ∀x ∈
]
− 1

4
; 1
4

[
, T(x)2−T(x)+x =

1− 2
√
1− 4x+ (1− 4x)

4
− 1−

√
1− 4x

2
+x = 0. En effectuant

un produit de Cauchy sur
]
− 1

4
; 1
4

[
, et en identifiant les coefficients (les calculs ont déjà été faits ci-dessus),

on trouve que v0 = T(0) = 0, v1 = T ′(0) = 1 et ∀n > 2, bn+1 =
n∑

k=0

bkbn−k. Ainsi, les deux suites (an)n∈N

et (bn)n∈N vérifient les mêmes conditions initiales et la même relation de récurrence donc, par récurrence

forte, on en déduit que ∀n ∈ N, an = bn. Ainsi,
∑
n>0

bnx
n est bien de rayon R = 1

4
comme

∑
n>0

bnx
n.

c. D’après le cours ∀u ∈] − 1; 1[,
√
1+ u = 1 +

+∞∑
n=1

(−1)n−1(2n)!un

(2n− 1)(n!)24n
(on le retrouve assez vite avec le

développement en série entière de (1+x)α pour α = 1

2
) donc ∀x ∈

]
− 1

4
; 1
4

[
,
√
1− 4x = 1−

+∞∑
n=1

(2n)!xn

(2n− 1)(n!)2

ce qui montre que ∀x ∈
]
− 1

4
; 1
4

[
, S(x) = 1−

√
1− 4x

2
=

+∞∑
n=1

(2n)!xn

2(2n− 1)(n!)2
. Comme R = 1

4
> 0 et que

∀x ∈]−R;R[, S(x) =
+∞∑
n=0

anx
n =

+∞∑
n=1

(2n)!xn

2(2n− 1)(n!)2
, par unicité des coefficients d’une fonction développable

en série entière, on a a0 (on le savait déjà) et ∀n > 1, an =
(2n)!

2(2n− 1)(n!)2
=

(2n)(2n− 2)!

2n2((n− 1)!)2
= 1

n

(
2n− 2

n− 1

)
.

Il vient a0 = 0, a1 = 1, a2 = 1, a3 = 2, a4 = 5, a5 = 14, a6 = 42 : ce sont les nombres de Catalan.


