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1 Caractérisation séquentielle : soit f : R → R, a ∈ R et (un)n∈N une suite réelle qui tend vers a

1.1 f continue en a =⇒ lim
n→+∞

f(un) = f(a) 1.3 Si f monotone : f continue en a =⇒ lim
n→+∞

f(un) = f(a)

1.2 f continue en a ⇐= lim
n→+∞

f(un) = f(a) 1.4 Si f monotone : f continue en a ⇐= lim
n→+∞

f(un) = f(a)

2 Majoration, minoration : soit
∑
n>0

anz
n une série entière de rayon R > 0, r ∈ R∗

+ et z0 ∈ C

2.1 ((anz
n
0 )n∈N tend vers 0) ⇐⇒ |z0| < R 2.3 r > R ⇐⇒

∑
n>0

anr
n DVG

2.2 ((anz
n
0 )n∈N non bornée) =⇒ |z0| > R 2.4 r < R =⇒

∑
n>0

anr
n CVA

3 Comparaison : soit
∑
n>0

anz
n de rayon R on suppose que ∀n ∈ N, an > 0

3.1 an =
+∞

O(2n) =⇒ R > 1

2
3.3 (an)n∈N décroissante =⇒ R > 1

3.2 lim
n→+∞

an = 0 =⇒ R > 1 3.4 lim
n→+∞

an+1

an

= 1

R

4 Série entière et régularité : soit (an)n∈N ∈ CN et
∑
n>0

anx
n une série entière de la variable réelle de rayon de

convergence R = 1 telle que
∑
n>0

an et
∑
n>0

(−1)nan convergent, et f sa fonction somme

4.1 f est de classe C∞ sur [−1; 1] 4.3 ∀x ∈]− R;R[, f′′(x) =
+∞∑
n=2

n(n+ 1)anx
n−2

4.2 f est de classe C∞ sur ]− 1; 1[ 4.4 ∀x ∈]0;R[,
∫ x

−x
f(t)dt =

+∞∑
n=0

2a2n

2n+ 1
x2n+1

Définition Définir le rayon de convergence d’une série entière.

Preuve Soit
∑
n>0

anz
n et

∑
n>0

bnz
n deux séries entières à coefficients complexes de rayons de convergence

respectifs Ra et Rb. On suppose que ∀n ∈ N, |an| 6 |bn|. Montrer alors que Rb 6 Ra.

Exercice 1 Soit f :] − 1; 1[→ R définie par f(x) = 1

2
ln

(
1+ x

1− x

)
. Calculer f′(x) et en déduire une suite

(an)n∈N telle que ∀x ∈]− 1; 1[, f(x) =
+∞∑
n=0

anx
n.

Exercice 2 On considère
∑
n>0

nn

n!
xn dont on note R le rayon de convergence. On note an = nn

n!
.

a. Déterminer avec d’Alembert la valeur de R.

b. Donner de domaine de définition de f : x 7→
+∞∑
n=0

anx
n.



DEVOIR 17 NOM : PRÉNOM :

QCM Répondre dans le tableau ci-dessous au QCM : mettre une croix dans la case de la ligne i colonne j

revient à déclarer la question i.j vraie. Ne rien mettre revient à la déclarer fausse.

i · j 1 2 3 4 Fautes

1

2

3

4

Définition

Preuve

Exercice 1



Exercice 2



DEVOIR 17 NOM : COCO PRÉNOM : SINUS

i · j 1 2 3 4 Fautes

1 X X

2 X X

3 X X

4 X X

1.1 Vrai : caractérisation séquentielle pour une suite 1.2 Faux : il faudrait que ce soit vrai pour toutes les
suites qui tendent vers a 1.3 Vrai : la monotonie ne change rien 1.4 Faux : si la suite tend vers a+, on n’a

que la continuité à droite en a. Par exemple f = ⌊ ⌋, a = 0 et un = 1

n+ 1
pourtant f n’est pas continue en 0.

2.1 Faux : juste une implication
∑
n>1

zn

n
de rayon R = 1, z0 = 1 et

(
1

n

)
n>1

tend vers 0 2.2 Vrai : du cours

2.3 Faux : juste une implication ;
∑

zn est de rayon R = 1 et
∑

1 DVG 2.4 Vrai : théorème du cours.

3.1 Vrai : la rayon de
∑
n>0

2nzn vaut 1

2
3.2 Faux : an = 1

n+ 1
et le rayon de

∑
n>0

zn

n+ 1
vaut 1 3.3 Vrai :

alors an =
+∞

O(1) et le rayon de
∑
n>0

zn vaut 1 3.4 Faux : aucune raison que la suite
(
an+1

an

)
n>0

converge.

4.1 Faux : f n’est a priori que continue sur [−R;R] par convergence normale (prendre an = 1

(n+ 1)2
) 4.2

Vrai : cours 4.3 Faux c’est n(n−1)anx
n−2 4.4 Vrai : par convergence normale sur [−x; x], on peut intégrer

terme à terme et les monômes impairs ont une intégrale nulle.

Définition Soit (an)n∈N ∈ KN une suite de scalaire, on définit E =
{
ρ ∈ R+ | (anρ

n)n∈N est bornée
}
. Le

rayon de convergence de la série entière
∑

anz
n est R = Sup(E) ∈ R+

Preuve Soit r ∈ Eb =
{
ρ ∈ R+ | (bnρn)n∈N est bornée

}
alors (bnr

n)n∈N est bornée par définition. Ainsi,

∃M > 0, ∀n ∈ N, |bn|rn 6 M. A fortiori (anr
n)n∈N est bornée car ∀n ∈ N, |an|rn 6 |bn|rn 6 M. Par

conséquent, Eb ⊂ Ea =
{
r ∈ R+ | (anr

n)n∈N est bornée
}
donc Ra = Sup(Ea) > Sup(Eb) = Rb.

Exercice 1 La fonction f est dérivable sur ] − 1; 1[ par théorèmes généraux car ∀x ∈] − 1; 1[, 1+ x

1− x
> 0.

Comme f(x) = 1

2

(
ln(1 + x) − ln(1 − x)

)
, On calcule f′(x) = 1

2

(
1

1+ x
+ 1

1− x

)
= 1

1− x2
=

+∞∑
n=0

x2n = g(x)

pour x ∈] − 1; 1[ (série géométrique). Comme le rayon de
∑

x2n vaut R = 1, d’après le cours, on peut
primitiver terme à terme l’expression de g(x) pour avoir celle de G(x) où G est la primitive qui s’annule en

0 de g sur ]− 1; 1[. Ainsi, comme G = f car f(0) = 0, on a ∀x ∈]− 1; 1[, f(x) = G(x) =
+∞∑
n=0

x2n+1

2n+ 1
.

Exercice 2

∣∣∣an+1

an

∣∣∣ =
an+1

an

∼
+∞

en+1
√
2πn

en
√

2π(n+ 1)
= e

√
n

n+ 1
car, d’après Stirling, on a nn

n!
∼
+∞

en√
2πn

.

Ainsi, lim
n→+∞

∣∣∣an+1

an

∣∣∣ = e d’où, d’après le cours, R = 1

e
.

b. D’après le cours, ]− 1/e; 1/e[⊂ Df ⊂ [−1/e; 1/e]. On a Df = [−1/e; 1/e[ car :

• Si x = 1/e, ∀n ∈ N, nn

n!
(1/e)n ∼

+∞
1√
2πn

> 0 donc
∑
n>0

an(1/e)
n diverge par Riemann.

• Si x = −1/e,
∑
n>0

nn

n!
(−1/e)n est alternée et, si un = nn

n!
(1/e)n, on a un ∼

+∞
1√
2πn

donc lim
n→+∞

un = 0.

De plus, u1

u0

= 1 et ∀n > 1,
un+1

un

=
(n+ 1)n+1n!en

nn(n+ 1)!en+1 = 1

e

(
1 + 1

n

)n

= exp

(
n ln

(
1 + 1

n

)
− 1

)
. Comme

ln
(
1 + 1

n

)
6 1

n
par concavité de ln sur ] − 1; +∞[, on a

un+1

un

6 1 donc (un)n>0 est décroissante. Par le

critère spécial des séries alternées,
∑
n>0

nn

n!
(−1/e)n converge.

Le domaine de définition de f est donc [−1/e; 1/e[.


