
ÉNONCÉS EXERCICES CORRIGÉS 10
SÉRIES ENTIÈRES

� �
10.1 Rayon et expression� �� �

10.1� �Mines MP Rayon de convergence et somme de
+∞∑
n=0

x2n+1

3n+ 2
.� �

10.2� �Soit f : x 7→
+∞∑
n=2

(−1)n

n(n− 1)
xn.

a. Déterminer l’intervalle de convergence de f.
b. Exprimer la fonction f à l’aide des fonctions usuelles sur ]− 1; 1[.
c. Calculer f(1) et f(−1).� �

10.3� �Soit la suite (an)n∈N définie par a0 = a1 = 1 et ∀n ∈ N, an+2 = 2an+1 + an.

Déterminer le rayon de la série entière
∑
n>0

anx
n et déterminer la somme de la série.� �

10.4� �Soit 0 < a < b et (an)n∈N définie par ∀n ∈ N, a2n = an et a2n+1 = bn.

Déterminer le rayon de la série entière
∑
n>0

anx
n et déterminer la somme de la série.� �

10.5� �Déterminer le rayon et la somme de la série entière
∑
n>0

n+ 3

2n+ 1
xn.� �

10.6� �Centrale PSI 2012 Déterminer le rayon de convergence de la série entière
∑
n>0

n2 + n3

2n + 3n
x2n+1.� �

10.7� �Centrale PSI 2012

Pour un entier n ∈ N, on pose an = n+ 1− 1

n!
. On va ici étudier la série entière

∑
n>0

anz
n.

a. Déterminer son rayon R et faire l’étude de la convergence aux bornes de l’intervalle de convergence.
b. Donner une expression simple de f(x) (la fonction somme de cette série entière) pour x ∈]− R ;R[.
c. En déduire des équivalents de f(x) quand x 7→ −R+ et quand x 7→ R−.� �

10.8� �Centrale PSI 2012 Déterminer le rayon de convergence R et calculer la somme des séries entières suivantes

pour x ∈]− R;R[ :
∑
n>0

n2(−1)nx2n+1 et
∑
n>2

xn

n2 − 1
.

� �
10.9� �Centrale PSI 2012 On pose, pour p ∈ N et x ∈ R et lorsque la série converge : fp(x) =

+∞∑
n=1

npxn.

a. Déterminer le domaine de définition de fp et donner des expressions simples de f0 et f1.
b. Montrer que les fp sont dérivables sur leur domaine de définition et établir une relation entre f′p et fp+1.
c. Donner un équivalent de fp(x) quand x tend vers 1 par valeurs inférieures.
d. Que dire de fp(x) quand x tend vers −1 par valeurs supérieures ?� �

10.10� �Pour x réel, on pose f(x) =
+∞∑
n=1

xn√
n
.

a. Déterminer le rayon de convergence R de la série entière définissant f.
b. Étudier la convergence de la série entière en R et en −R.
c. Établir la continuité de f en −R.
d. Déterminer la limite de f en R.
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� �
10.11� �Compléments OdlT 2016/2017 Mines-Télécom PSI planche 554I

Rayon de convergence et somme de
∑
n>1

(−1)nx2n+1

3n−1(2n+ 1)
.

� �
10.2 Théorie� �

� �
10.12� �Soit (an)n∈N une suite de réels tous non nuls.

Quelle relation lie les rayons de convergence des séries entières
∑
n>0

anz
n et

∑
n>0

1

an

zn.

� �
10.13� �Soit ∑

n∈N
anz

n une série entière de rayon de convergence R.

Déterminer le rayon de convergence de
∑
n∈N

a2
nz

n.

� �
10.14� �Soit ∑

n∈N
anz

n une série entière de rayon de convergence R.

On pose bn = an

1+ |an|
et on note R′ le rayon de convergence de

∑
n∈N

bnz
n.

a. Montrer que R′ > Max(1, R).

b. Établir que si R′ > 1 alors R′ = R.

c. Exprimer alors R′ en fonction de R.� �
10.15� �Soit (an)n∈N ∈ (R∗

+)
N, on pose Sn =

n∑
k=0

ak et on suppose lim
n→+∞

Sn = +∞ et lim
n→+∞

an

Sn
= 0. Déterminer

le rayon de convergence des séries entières
∑
n>0

anx
n et

∑
n>0

Snx
n puis former une relation entre leur somme.

� �
10.16� �Classique mais hors programme ! Soit une série entière

∑
n>0

anz
n de rayon R tel que 0 < R < +∞ et qui

vérifie
∑
n>0

anR
n converge, alors lim

t→R−

+∞∑
n=0

ant
n =

+∞∑
n=0

anR
n.

� �
10.3 Relations avec l’intégrale� �� �

10.17� �Pour n ∈ N, on pose an =
∫ 1

0

tn

1+ t2
dt. Soit

∑
n>0

anz
n de rayon de convergence R et à sa somme notée f.

a. Déterminer le rayon R et faire l’étude de la convergence de f(x) aux bornes de l’intervalle de convergence.

b. Montrer que : ∀x ∈]− R ;R[, f(x) =
∫ 1

0

dt

(1− xt)(1+ t2)
.

c. Pour x ∈]−R ; 0[∪]0 ;R[, trouver a, b et c tels que : ∀t ∈ [0 ; 1], 1

(1− xt)(1+ t2)
= a

1− xt
+ bt

1+ t2
+ c

1+ t2
.

En déduire une expression compacte de f(x). Que vaut donc
+∞∑
n=0

(−1)nan ?

d. Pour n ∈ N, calculer an+2 + an.

En déduire une expression de a2n sous forme de somme ; puis π

4
comme somme de série.
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� �
10.18� �Centrale PSI 2012 Pour un entier n ∈ N, on définit an =

∫ 1

0

(
1+ t2

2

)n

dt.

a. Déterminer la nature des séries
∑
n>0

an et
∑
n>0

(−1)nan.

b. Quel est le rayon de convergence R de la série entière
∑
n>0

anz
n ?

c. Pour x ∈]− R ;R[, exprimer f(x) =
+∞∑
n=0

anx
n sous forme d’une seule intégrale.

En déduire une expression compacte de f(x) si x ∈]− R ; 0[.

d. Montrer que la convergence de
∑
n>0

anx
n vers f est uniforme sur [−R ; 0]. En déduire f(−R).

� �
10.19� �Développer en série entière la fonction x 7→

∫ 2x

x
e−t2dt.

� �
10.20� �Développer en série entière la fonction x 7→

∫ x

0
ln

(
t2 − 5

2
t+ 1

)
dt

t
.

� �
10.21� �Calculer ∫ 1

0
ln(t) ln(1− t)dt.

� �
10.22� �Montrer que

∫ 1

0

Arctan x

x
dx =

+∞∑
n=0

(−1)n

(2n+ 1)2
(nombre de Catalan).

� �
10.23� �Mines PSI 2008 d’après RMS Soit f : t ∈]− 1; 1[ 7→ 1

t
ln

(
1− t

1+ t

)
.

Montrer que f est intégrable sur ]− 1; 1[ et calculer
∫ 1

−1
f(t)dt.

� �
10.4 Équation différentielle� �

� �
10.24� �Soit f définie sur ]− 1; 1[ par f(x) = Arcsin x√

1− x2

a. Justifier que f est développable en série entière sur ]− 1; 1[.

b. Montrer que f est solution de l’équation différentielle (1− x2)y′ − xy = 1.

c. Déterminer le développement en série entière de f sur ]− 1; 1[.� �
10.25� �On considère l’équation différentielle suivante : (E) : 4xy′′ + 2y′ − y = 0.

a. Rechercher une solution φ de (E) développable en série entière. Préciser son rayon de convergence R.

Exprimer φ avec les fonctions usuelles.

b. Résoudre l’équation (E) sur les intervalles I =]−∞; 0[, puis sur J =]0; +∞[.

c. Déduire des questions a. et b. l’ensemble des solutions de (E) sur R.� �
10.26� �On considère l’équation différentielle suivante : (E) : xy′′ + 2y′ − xy = 0.

a. Rechercher une solution φ de (E) développable en série entière. Préciser son rayon de convergence R.

Exprimer φ avec les fonctions usuelles.

b. Résoudre l’équation (E) sur les intervalles I =]−∞; 0[, puis sur J =]0; +∞[.

c. Déduire des questions a. et b. l’ensemble des solutions de (E) sur R.

3



� �
10.5 Produit de Cauchy et dénombrement� �� �

10.27� �Nombres d’Euler et de Bernoulli

Soit n un entier, le nombre de permutations up-down σ de [[1;n]], c’est-à-dire les permutations σ telles que
σ(1) < σ(2) > σ(3) < .....σ(n) est noté an si n est pair (nombre d’Euler appelés aussi ”secant numbers” ou
zig numbers) et bn si n est impair (nombre de Bernoulli aussi appelés ”tangent numbers” ou zag numbers).
On pose an = 0 si n est impair et bn = 0 si n est pair et on prend a0 = 1 par convention.
a. Déterminer les valeurs de b1, a2, b3, a4 et b5.

On considère
∑
n∈N

an

n!
xn et

∑
n∈N

bn
n!

xn et les fonctions somme a et b respectives (là où les séries convergent).

b. Que peut-on dire des rayons de convergence respectifs Ra et Rb des deux séries entières précédentes ?

c. Montrer que si n est pair : bn+1 =
n∑

k=0

(
n

k

)
bkbn−k. Trouver une relation donnant an+1 si n est impair.

d. En déduire une équation différentielle vérifiée par la fonction b sur ]− Rb;Rb[. Que vaut donc b ?

e. Pour x ∈
]
0; π

2

[
, écrire la formule de Taylor reste intégral appliquée à la fonction tangente entre 0 et

x. En déduire la valeur exacte de Rb.

f. Trouver une relation simple entre a et b pour en déduire a. Justifier que les dérivées successives de a sont

positives sur
]
0; π

2

[
, en déduire le rayon Ra.� �

10.28� �Centrale PSI 2011 d’après RMS

Une involution d’un ensemble X est une application de X dans lui-même telle que f ◦ f = idX.
Pour n ∈ N∗, on note In le nombre d’involutions de [[1;n]] : I1 = 1, I2 = 2 (l’identité et une transposition)
et I3 = 4 (l’identité et trois transpositions) par exemple. On convient que I0 = 1.
a. Montrer que : ∀n ∈ N, In+2 = In+1 + (n+ 1)In.

Que peut-on en déduire sur le rayon R de la série entière
∑
n∈N

In
n!

zn. On note S sa somme.

b. Établir que ∀x ∈]− R ;R[, S′(x) = (1+ x)S(x) et en déduire une expression simple de S(x).
c. Déterminer enfin une expression de In sous forme de somme.� �

10.29� �Montrer que : ∀m ∈ N, ∀x ∈]− 1; 1[,
+∞∑
k=m

(
k

m

)
xk−m =

1

(1− x)m+1
.� �

10.30� �On note N(n, p) le nombre de permutations de [[1;n]] qui ont exactement p points fixes.

On pose en particulier D(n) = N(n, 0), puis f(x) =
+∞∑
n=0

D(n)
n!

xn.

a. Relier N(n, p) et D(n− p).
b. Justifier la définition de f sur ]− 1; 1[ puis calculer f. En déduire N(n, p).

c. Étudier la limite de la suite
(

1

n!
N(n, p)

)
n∈N

.� �
10.31� �Centrale PSI 2012 Pour n ∈ N, on note an le nombre de façons d’écrire n comme somme de 2 carrés

(d’entiers naturels), ou encore an = card
({

(p, q) ∈ N2
∣∣∣ p2 + q2 = n

})
. On définit bn qui vaut 1 si n est

un carré (d’entier) et 0 sinon. Ainsi a3 = 0, a25 = 4 car 25 = 52 + 02 = 42 + 32 = 32 + 42 = 02 + 52 ; b2 = 0

et b9 = 1. On rappelle que
∫ +∞

0
e−u2

du =

√
π

2
et on considère les 2 séries entières

∑
n>0

anz
n et

∑
n>0

bnz
n

de rayons de convergence respectifs R et R′ et de fonctions somme respectives f et g.
a. Déterminer R′ et majorer R. Trouver une relation entre f(x) et g(x) pour x assez petit. En déduire R.

b. Justifier que, pour x ∈]0 ; 1[, la fonction hx : t → xt
2

est intégrable sur R∗
+.

c. En déduire un équivalent de g(x) quand x tend vers R−. Puis un équivalent de f(x) quand x → R−.
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� �
10.32� �Soit, pour n ∈ N∗, Cn le nombre de parenthésages distincts d’un mot à n éléments : Cn est le n-ième

nombre de Catalan. Par exemple : (∗∗)((∗∗)∗) est un des parenthésages corrects compté dans C5, il s’agit

des parenthésages donnant un sens à un “produit” de n termes avec une loi non associative.

Par exemple, 2 puissance 3 puissance 2 n’a pas de sens mais 2(3
2) = 29 = 512 ̸= 64 = 82 = (23)2.

Pour trois éléments, il n’y a que les parenthésages (∗∗)∗ et ∗(∗∗) donc C3 = 2. Pour quatre éléments,

∗(∗(∗∗)), ∗(∗(∗∗)), (∗∗)(∗∗), (∗(∗∗))∗ et ((∗∗)∗)∗ sont les seuls parenthésages possibles donc C4 = 5.

a. Soit n > 2, montrer que Cn =
n∑

k=0

CkCn−k avec C0 et C1 à définir.

b. Si
∑
n>0

Cnx
n admet un rayon de convergence R > 0, trouver une relation, pour x ∈]− R;R[, entre C(x)2 et

C(x). En déduire alors une expression de C(x) pour x assez petit en valeur absolue.

c. En déduire, pour tout n ∈ N∗, une expression de Cn à l’aide d’un coefficient binomial.

� �
10.6 Développement en série entière� �� �

10.33� �Soit α ∈ R∗
+ et f :]− α, α[→ R paire ou impaire de classe C∞ telle que : ∀n ∈ N, ∀x ∈]0 ;α[, f(n)(x) > 0.

a. Dans la formule de Taylor avec reste intégral, pour x ∈ [0 ;α[ et n ∈ N, rappeler les valeurs des

coefficients ak et du reste Rn(x) dans : f(x) =
( n∑

k=0

akx
k
)
+ Rn(x).

b. Établir que si 0 6 x < y < α, on a
Rn(x)

xn+1 6 Rn(y)

yn+1 . En déduire que lim
n→+∞

Rn(x) = 0.

c. Montrer alors que f est développable en série entière sur ]− α ;α[.� �
10.34� �Former le développement en série entière en 0 de x 7→ sh (Arcsin x).� �
10.35� �Centrale PSI 2013

a. Rappeler le développement en série entière de la fonction f : x 7→ (1 + x)
−1
2 sur ] − 1; 1[ sous la forme

+∞∑
n=0

anx
n en trouvant une expression de an qui utilise des factorielles.

b. Donner le rayon de convergence R de la série entière
∑
n>0

(2n+ 1)!

(n!)2
x2n et donner une expression simple

de sa somme pour x ∈]− R;R[. Quelle est la nature de cette série quand x = ±R ?� �
10.36� �CCP PSI 2013 Gérémy Soit φ(x) =

+∞∑
n=2

xn+1

n2 − 1
.

a. Trouver le domaine de définition D de φ.

b. Expliciter φ(x) pour tout x ∈ D.� �
10.37� �Centrale PSI 2013 Soit la suite (un)n∈N définie par u0 = 1

2
et ∀n ∈ N, un+1 = 1+ 2un − 1

n+ 1
.

a. Montrer que : ∀n ∈ N∗, 1 6 un 6 2. Trouver trois réels a, b, c tels que un =
∞

a+ b

n
+ c

n2 + o

(
1

n2

)
.

b. Déterminer le rayon R de
∑
n>0

unx
n. Montrer que sa somme S :]−R;R[→ R vérifie (E) : y′ = 2y+ x

(1− x)2
.

c. Donner un développement asymptotique à deux termes de S(x) quand x tend vers 1−.
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� �
10.38� �Centrale PSI 2012 Soit α et λ deux réels avec λ ∈]− 1; 1[, on note E l’ensemble des fonctions de classe C1

sur R telles que : ∀x ∈ R, f′(x) = αf(x) + f(λx).
a. Montrer que E ⊂ C∞(R, R).
b. Déterminer un élément développable en série entière de E (autre que la fonction nulle).
c. Soit f ∈ E tel que f(0) = 0. Montrer que f = 0.
d. Déterminer entièrement E.� �

10.39� �Centrale PSI 2012 On pose, lorsque ceci a un sens : f(x) =
+∞∑
n=1

(−1)n−1

x+ n
.

a. Établir que f est de classe C∞ sur ]− 1 ; +∞[ en donnant ses dérivées sous forme de série de fonctions.
b. Prouver que f est développable en série entière et donner son développement.
c. Déterminer des équivalents de f(x) quand x 7→ −1+ et quand x 7→ +∞.� �

10.40� �Domaine de définition et étude aux bornes de
+∞∑
n=1

ln

(
1+ 1

n

)
xn.� �

10.41� �Montrer
∫ 1

0

ln(1+ x)
x

dx =
+∞∑
n=1

(−1)n−1

n2 = π2

12
.

� �
10.7 Exercices aux oraux des étudiants de PSI1� �� �

10.42� �Centrale PSI 2014 Servane

a. Soit P ∈ R[X], quel est le rayon de convergence de la série entière
∑
n>0

P(n)
n!

zn ?

b. Dorénavant, P ∈ Z[X], exprimer
+∞∑
n=0

P(n)
n!

sous la forme N× e avec N ∈ Z.� �
10.43� �Centrale Maths1 PSI 2015 Mathieu Gaultier

Soit R > 0 le rayon de la série
∑
n>0

anx
n. On suppose que

∑
n>0

|an|Rn converge. On pose f(x) =
+∞∑
n=0

anx
n.

a. Montrer que f est continue en R.

b. On pose f(x) = 1

x
ln

∣∣∣1− x

1+ x

∣∣∣. Montrer que
∫ 1

0
f(t)dt existe et l’exprimer sous la forme d’une série.

c. Calculer
∫ +∞

0
f(t)dt (on admet que

+∞∑
n=0

1

(2n+ 1)2
= π2

8
).� �

10.44� �Centrale Maths1 PSI 2015 Clément Suberchicot

On pose an =
n∑

k=0

(−1)k

k+ 1
et f(x) =

+∞∑
n=0

anx
n

n!
.

a. Rayon de convergence de cette série entière.

b. Sachant que 1

k+ 1
=
∫ 1

0
tkdt, calculer lim

n→+∞
an.

c. On pose g(x) = e−xf(x). Calculer lim
x→+∞

g(x).� �
10.45� �Mines PSI 2015 Jean-Raphaël Biehler

Soit la série suivante
∑
n>0

(−1)n

4n+ 1
. Montrer qu’elle converge et la calculer.
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� �
10.46� �Mines PSI 2015 Bastien Chevallier

a. Résoudre (E) : ln(x)y′ + y

x
= 1 sur ]0; 1[ et sur ]1; +∞[.

b. On définit g par ∀x ∈]− 1; +∞[\{0}, g(x) =
ln(1+ x)

x
.

Montrer que g est de classe C∞ sur ]− 1; +∞[.
c. Déduire que (E) possède une solution de classe C∞ sur ]0; +∞[.� �

10.47� �Petites Mines PSI 2015 Marie Trarieux

On considère la série entière
∑
n>0

n

(2n+ 1)!
xn.

a. Déterminer son rayon de convergence.

b. Rappeler le développement en série entière de sh (y) et sin(y).

c. Calculer Φ(x) =
+∞∑
n=0

xn

(2n+ 1)!
.

d. Déterminer la somme de la série de départ.� �
10.48� �Centrale Maths1 PSI 2016 Charly Castes

On note, pour n > 1 et p ∈ [[0;n]], l’entier An,p égal au nombre de permutations de [[1;n]] qui possèdent
exactement p points invariants.
a. Trouver une relation entre An,p et An−p,0.

b. Montrer que le rayon de
∑
n>0

An,0x
n

n!
est supérieur ou égal à 1.

c. Calculer
n∑

p=0

An,p et en déduire la valeur de f(x) =
+∞∑
n=0

An,0x
n

n!
.

d. En déduire une expression de An,p pour tout p 6 n.� �
10.49� �Centrale Maths1 PSI 2016 Hugo Saint-Vignes

Soit la suite (an)n>0 définie par a0 = 1 et an = 1

n!

∫ 1

0

n−1∏
k=0

(t− k)dt si n > 1.

On considère la série entière
∑
n>0

anx
n de somme S(x) =

+∞∑
n=0

anx
n.

a. Montrer que son rayon de convergence R vérifie R > 1.
b. Soit x ∈]− 1; 1[, calculer S(x).
c. Montrer que R = 1.� �

10.50� �Centrale Maths1 PSI 2016 Théo Taupiac

Pour α ∈]− 1; 1[, on pose I(α) =
∫ π

0

ln(1+ α cos(x))
cos(x)

dx.

a. Montrer que I est de classe C1 sur ]− 1; 1[ et calculer I′(α).

Indication : on donne cos(x) = 1− t2

1+ t2
si t = tan

(
x

2

)
.

b. En déduire une expression simple I(α) pour α ∈]− 1; 1[.
c. Montrer que I est développable en série entière avec un rayon égal à 1.� �

10.51� �Mines PSI 2016 Antoine Badet II

Soit p ∈ N et fp : x 7→ 1

(1− x)p
.

a. Donner le développement en série entière de fp au voisinage de 0.

b. En déduire la valeur de
n∑

k=0

(
p+ k

k

)
.
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� �
10.52� �Mines PSI 2016 Owain Biddulph I

Nature et somme de
∑
n>0

x4n

4n+ 1
.

� �
10.53� �Mines PSI 2016 Adrien Boudy I

On appelle involution d’un ensemble E toute application f : E → E telle que f ◦ f = id E. Soit n ∈ N∗, on

note An l’ensemble des involutions de l’ensemble [[1;n]] et In = card (An) avec la convention I0 = 1.

a. Montrer que ∀n ∈ N, In+2 = In+1 + (n+ 1)In.

b. Montrer que le rayon de convergence R de
∑
n>0

In
n!

xn vérifie R > 1.

On définit φ :]− 1; 1[→ R par φ(x) =
+∞∑
n=0

In
n!

xn.

c. Montrer que ∀x ∈]− 1; 1[, φ′(x) = (1+ x)φ(x).

d. En déduire une expression simple de φ(x) à l’aide de fonctions usuelles.

e. En déduire une expression de In sous forme de somme.� �
10.54� �Mines PSI 2016 Samy Essabar II

On pose, pour n ∈ N, le réel un =
∫ π/4

0
tann(x)dx.

a. Donner la nature de
∑
n>0

(−1)nun.

b. Déterminer une relation entre un+2 et un. En déduire le rayon R de convergence de
∑
n>0

unz
n.

c. Déterminer le rayon R′ de convergence de
∑
n>0

unz
n2

.

d. Calculer f(x) =
+∞∑
n=0

unx
n pour x ∈]1; 1[.

e. Trouver une valeur exacte de
+∞∑
n=0

(−1)nun.� �
10.55� �E3A PSI 2016 Antoine Badet II

On pose Wn =
∫ π/2

0
cosn(t)dt pour tout entier n ∈ N.

a. Rayon de convergence R de
∑
n>0

Wnx
n ?

b. Cas x = R ? Cas x = −R ?

c. Calcul de
+∞∑
n=0

Wnx
n pour x ∈]− R;R[.

� �
10.56� �Centrale Maths1 PSI 2017 Bastien Lamagnère

Soit θ ∈]0;π[.
a. Montrer que la suite (sin(nθ))n∈N ne tend pas vers 0.

b. Quel est le rayon R de la série entière
∑
n>0

sin(nθ)zn.

c. Soit z ∈ C tel que |z| = R. Y a-t-il convergence de
∑
n>0

sin(nθ)zn ?

d. Soit z ∈ C tel que |z| < R, calculer
+∞∑
n=0

sin(nθ)zn.
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� �
10.57� �Centrale Maths1 PSI 2017 Antoine Romero-Romero

On considère la suite (an)n>0 définie par a0 = 1 et ∀n > 1, an = −1

2

n∑
k=1

an−k

k!
.

a. Montrer que le rayon R de la série entière
∑
n>0

anz
n vérifie R > 1. On note S la somme de cette série.

b. Montrer que si |z| < R, on a S(z) = 2

ez + 1
.

c. Montrer que ∀x ∈
]
− R

2
; R
2

[
, i tan(x) = 1− S(2ix).

d. Montrer que R = π.� �
10.58� �Mines PSI 2017 Vincent Bouget II

Calculer
+∞∑
n=0

1

(3n)!
.� �

10.59� �Mines PSI 2017 Joseph Dumoulin II

Soit an = ln

(√
n+ (−1)n√

n+ 1

)
pour n > 2.

a. Déterminer le rayon de convergence de
∑
n>2

anx
n. On note S sa somme.

b. Déterminer l’intervalle de convergence de S.� �
10.60� �Mines PSI 2016 et 2017 Émilien Ouzeri II et Elliott Jean-François I

Soit S(x) =
+∞∑
n=0

(2n+ 1)!

(n!)2
x2n.

a. Déterminer le rayon de convergence R cette série entière.
b. Exprimer S(x) à l’aide des fonctions usuelles.� �

10.61� �Mines PSI 2017 Vincent Meslier III

Soit f(x) =
+∞∑
n=1

xn

n(n+ 1)(2n+ 1)
. Donner Df et exprimer f(x) avec des fonctions usuelles.� �

10.62� �Mines PSI 2017 Antoine Romero-Romero II

On considère la série entière suivante :
∑
n>1

ln(n)xn. On note S sa somme.

a. Calculer le rayon de convergence R de cette série entière.
b. Calculer lim

x→R−
S(x).

c. Trouver un équivalent de S(x) quand x tend vers R−.� �
10.63� �ENS Cachan PSI 2015 et Mines PSI 2017 Jean-Baptiste Biehler et Roland Tournade II

On pose A0(0) = 1 par convention et, pour n > 0 et k ∈ [[0;n]], on note An(k) le nombre des permutations
de [[1;n]] laissant exactement k éléments invariants.

a. Montrer que An(k) =

(
n

k

)
An−k(0), et que n! =

n∑
k=0

An(k).

b. Soit f(z) =
+∞∑
n=0

An(0)
n!

zn, montrer que f(z) existe si |z| < 1.

c. Montrer que ezf(z) = 1

1− z
, en déduire le rayon de convergence de

∑
n>0

An(0)
n!

zn et la valeur de An(0).

d. On a un sac de n boules numérotées de 1 à n. On tire les boules une par une, et on les range dans l’ordre

de tirage dans une boite compartimentée dont les compartiments sont numérotés de 1 à n (la première boule

dans le compartiment 1, la deuxième dans le compartiment 2, etc...). On note pn la probabilité qu’aucune
boule ne se trouve dans le compartiment portant son numéro. Calculer lim

n→+∞
pn.
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� �
10.64� �CCP PSI 2017 Manon Bové I et Alexis Trubert I

On pose g(x) =
∫ 1

0

ln(1+ xt)
t

dt.

a. Montrer que ]− 1; 1[ est inclus dans le domaine de définition de g.

b. Trouver un développement en série entière de g(x) sur ]− 1; 1[.

c. Montrer que g est de classe C1 sur ]0; 1[ et calculer g′(x).

d. Montrer que g est de classe C1 sur ]0; 1[ et calculer g′(x) par une méthode différente.� �
10.65� �CCP PSI 2017 Alexandre Chamley II et Elliott Jean-François II

a. Montrer que ∀n ∈ N∗, ∃!xn ∈ R+, e−xn + xn = n.

b. Montrer que ∀n ∈ N∗, xn ∈ [n− 1;n].

c. On pose an = n− xn. Étudier la série entière
∑
n>1

anx
n. On notera R son rayon.

� �
10.66� �E3A PSI 2017 Claire Raulin

On s’intéresse à la série entière
∑
n>0

xn

4n+ 1
et on note S sa somme.

a. Déterminer son rayon de convergence R et son intervalle de convergence.

b. Montrer que S(−1) =
∫ 1

0

dt

1+ t4
= I.

c. Décomposer le polynôme 1+ X4 dans R[X], puis la fraction rationnelle 1

1+ X4 dans R(X).

d. En déduire la valeur exacte de S(−1).� �
10.67� �ENS Ulm/Cachan PSI 2018 Gauthier Crosio et Nicolas Ziegler I

Soit (an)n∈N définie par a0 = 1 et ∀n ∈ N, an+1 = 1

n+ 1

n∑
k=0

ak

n− k+ 2
.

L’objectif est de calculer L = lim
n→∞

n∑
k=0

ak

2k
. Pour cela, on pose f(x) =

+∞∑
n=0

anx
n.

a. Montrer que le rayon de convergence de
∑
n>0

anx
n est supérieur ou égal à 1.

b. Montrer que L existe et est finie.

c. Montrer que ∀x ∈]− 1; 1[, f′(x) = f(x)
+∞∑
n=0

bnx
n avec

∑
n>0

bnx
n dont on précisera coefficients et rayon.

d. Déterminer ln(f(x)) pour x ∈]0; 1[. En déduire la valeur de L.� �
10.68� �Centrale Maths1 PSI 2018 Oihana Piquet

Soit une suite réelle (xn)n∈N telle que lim
n→+∞

xn = 0. Pour tout n ∈ N, on pose yn = x2n + x2n+1.

a. Montrer que
∑
n>0

xn et
∑
n>0

yn sont de même nature.

Soit, pour tout n ∈ N∗, le réel an = 1

2n(2n+ 1)
et f(x) =

+∞∑
n=1

anx
n.

b. Déterminer le domaine de définition D de f.

c. Calculer f(x) pour x ∈ R∗
+ ∩D.

d. En déduire que ln(2) =
+∞∑
n=1

(−1)n−1

n
.
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� �
10.69� �Centrale Maths1 PSI 2018 Antoine Secher

Soit a > 0, J =]− a;a[ et h : J → R une fonction (im)paire de classe C∞ telle que ∀n ∈ N, h(n) est positive

sur [0 ;a[. On pose, pour tout entier N ∈ N et tout réel x ∈ J, le reste RN(x) = h(x)−
N∑

n=0

h(n)(0)
n!

xn.

a. Écrire RN(x) à l’aide d’une intégrale.

b. En déduire que ∀(x, y) ∈ R2, 0 < x < y < a =⇒ 0 6 RN(x) 6
(
x

y

)N+1

RN(y).

c. Conclure que h est sur J égale à la somme de sa série de Taylor en 0.

d. Que peut-on dire de tan sur
]
− π

2
; π
2

[
?

Question de cours : quels sont les différents modes de convergence d’une série entière ?� �
10.70� �Mines PSI 2018 Jean Boudou I

Soit h : R∗ → R définie par h(x) =
Arctan(x)

x
.

a. La fonction h est-elle prolongeable par continuité en 0 ?

b. Montrer que h est développable en série entière (on notera R le rayon de ce développement ).

c. Montrer que la décomposition de h en série entière est valable sur [−R;R].

On pose, pour x ̸= 0, f(x) = 1

x

∫ x

0
h(t)dt.

d. f est-elle prolongeable par continuité en 0 ?

e. La fonction f est-elle de classe C1 sur R ?

f. f est-elle développable en série entière sur [−R;R] ?� �
10.71� �Mines PSI 2018 Julien Langlais II

Soit a ∈]− 1; 1[ et, pour tout n ∈ N, la fonction fn : R → R définie par fn(x) = sin(anx).

En cas de convergence, on pose Fa(x) =
+∞∑
n=0

fn(x).

Montrer que Fa est définie et développable en série entière au voisinage de 0 et donner le rayon de convergence.

Indication : on pourra montrer d’abord que Fa est de classe C1 sur R.� �
10.72� �CCP PSI 2018 Gauthier Crosio I

Soit
∑
n>0

an une série complexe absolument convergente.

a. Déterminer le rayon de convergence de
∑
n>0

anx
n

n!
. On pose f(x) =

+∞∑
n=0

anx
n

n!
.

b. Montrer que
∫ +∞

0
f(t)e−tdt =

+∞∑
n=0

an.� �
10.73� �CCP PSI 2018 Lucie Jandet I

Déterminer le rayon de convergence et la somme de la série entière
∑
n>0

n(−1)nxn.

� �
10.74� �CCP PSI 2018 Raphaël Pobeda I

Soit θ ∈]0;π[ et f : R → R définie par f(x) = 1

1+ 2x cos(θ) + x2
.

a. Déterminer les deux racines z1 et z2 de X2 + 2 cos(θ)X+ 1.

b. Trouver deux complexes a et b (dépendant de θ) tels que ∀x ∈ R, f(x) = a

x− z1
+ b

x− z2
.

c. En déduire que f est DSE. Vous déterminerez le rayon de cette série et l’expression de ses coefficients.
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� �
10.75� �CCP PSI 2018 Titouan Sancier II

Montrer que
∑
n>0

2n2 + 3n+ 1

2n+1 converge et calculer sa somme.

� �
10.76� �E3A PSI 2018 Martin Monsel

On pose, sous réserve de convergence, F(x) =
∫ 3x

x

cos(t)
t

dt.

a. Justifier que F est bien définie sur R∗. Que dire de sa parité ?

b. Montrer que F admet une limite finie en 0 à l’aide d’un développement limité.

Montrer que F ainsi prolongée est dérivable en 0.

c. Déterminer les limites de F en ±∞.

d. Donner le développement en série entière de F. Quel est le rayon de convergence de cette série ?� �
10.77� �ENS Cachan PSI 2019 (OdlT 2019/2020 X-ENS PSI planche 36II) Victor Margueritte II

Soit une suite (an)n∈N telle que lim
n→+∞

nan = 0.

On définit, pour x ∈]− 1; 1[, le réel f(x) =
+∞∑
n=0

anx
n et on suppose que f admet une limite finie en 1.

a. Montrer que ∀i ∈ N, ∀n ∈ N∗, 1− i

n
6

(
1− 1

n

)i

.

b. En déduire que lim
n→+∞

(( n∑
i=0

ai

)
− f

(
1− 1

n

))
= 0.

c. En déduire l’existence et la valeur de
+∞∑
n=0

an.� �
10.78� �Centrale Maths1 PSI 2019 Maël Classeau

On définit F : x 7→
∫ 1

0

tx

1+ t
dt.

a. Déterminer l’ensemble de définition D de F.

b. Montrer que F est de classe C∞ sur D.

c. Montrer que F est développable en série entière et donner le rayon de convergence de ce développement.

Question de cours : critère de d’Alembert pour les séries numériques.� �
10.79� �Mines PSI 2019 Thomas Crété I

a. Déterminer le rayon de convergence R de la série entière
∑
n>1

n(−1)nxn.

b. Pour x ∈]− R;R[, calculer
+∞∑
n=1

n(−1)nxn.� �
10.80� �Mines PSI 2019 Pierre Fabre I

Soit λ ∈]− 1; 1[ et l’équation (E) : f′(x) = f(x) + f(λx).

a. Montrer que si f : R → R est solution de (E) sur R, alors f est de classe C∞ sur R. Justifier aussi qu’elle
est développable en série entière avec un rayon R = +∞.

b. Résoudre entièrement (E).
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� �
10.81� �Mines PSI 2019 Florian Guyomard II

Pour x ∈ R, on pose F(x) =
∫ +∞

0
sh (xt)e−t2dt.

a. Justifier l’existence de F.

b. Montrer que F est développable en série entière sur R et expliciter son développement.� �
10.82� �CCP PSI 2019 Benôıt Le Morvan II

Soit les trois suites réelles (un)n>1, (vn)n>1 et (wn)n>1 définies par les relations suivantes :

∀n ∈ N∗, un =
+∞∑

k=n+1

(−1)k+1

√
k

, vn =
(−1)n

n
un et wn =

(−1)n

n

n∑
k=1

(−1)k+1

√
k

.

a. Justifier que (un)n>1 est bien définie et qu’elle tend vers 0.

b. Justifier que
∑
n>1

vn converge.

c. Quelle est la nature de la série
∑
n>1

wn ?

d. Quel est le rayon de convergence de
∑
n>1

wnx
n ?

� �
10.83� �X PSI 2020 Matthieu Darius I

Soit (an)n∈N une suite composée de 1 et de −1. On définit la fonction f par f(x) =
+∞∑
n=0

an

n!
xn.

a. Déterminer le rayon de convergence de
∑
n>0

an

n!
xn.

b. On suppose que ∀x > 0, ∀n ∈ N, |f(n)(x)| 6 1. Que peut-on dire de la suite (an)n>0 ?� �
10.84� �X PSI 2021 Julien Gombert II

Soit E =
{
(un)n∈N ∈ CN

∣∣ ∑
n>0

|un| converge et ∀k > 1,
+∞∑
n=0

un2
−kn = 0

}
.

Chercher les suites (un)n∈N de E.� �
10.85� �Mines PSI 2021 Clotilde Cantini II

Déterminer le rayon de convergence et la somme de la série entière
∑
n>0

(−1)nxn

3n+ 1
.

� �
10.86� �Mines PSI 2021 Robin De Truchis II

Soit a ∈ R et (un)n∈N∗ définie par u1 = a et ∀n ∈ N∗, un+1 = un

n+ 1
+1. Pour n > 1, on pose sn =

n∑
k=1

k!
n!

.

a. Supposons que la suite (un)n>1 converge pour un réel a, montrer alors que la suite (un)n>1 converge

pour tout valeur de a vers une limite à déterminer.

b. Montrer que la suite (un)n>1 converge pour a = 1.

c. Montrer que (sn)n>1 converge.

d. Déterminer le rayon et la somme de la série entière
∑
n>1

snx
n.
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� �
10.87� �Mines PSI 2021 Alexandre Marque I

On appelle involution d’un ensemble E toute application f : E → E telle que f ◦ f = id E. Soit n ∈ N∗, on

note An l’ensemble des involutions de l’ensemble [[1;n]] et In = card (An) avec la convention I0 = 1.

a. Montrer que ∀n ∈ N, In+2 = In+1 + (n+ 1)In.

b. Montrer que le rayon de convergence R de
∑
n>0

In
n!

xn vérifie R > 1.

On définit φ :]− 1; 1[→ R par φ(x) =
+∞∑
n=0

In
n!

xn.

c. Montrer que ∀x ∈]− 1; 1[, φ′(x) = (1+ x)φ(x).

d. En déduire une expression simple de φ(x) à l’aide de fonctions usuelles.

e. En déduire une expression de In sous forme de somme.� �
10.88� �Mines PSI 2021 Raffi Sarkissian II

Soit f : x 7→
∫ +∞

0

dt

x+ et
.

a. Trouver α > 0 maximal tel que f soit définie sur ]− α;α[.

b. Montrer que f est développable en série entière et en déduire une expression simplifiée de f.� �
10.89� �Mines PSI 2021 Antonio Treilhou II

Soit f : R∗
+ → R définie par f(x) = 1√

x3 + x
.

a. Montrer que
∫ +∞

0
f(x)dx converge.

b. Montrer que
∫ +∞

0
f(x)dx = 2

∫ 1

0
f(x)dx.

c. Donner le développement en série entière de u 7→ 1√
1+ u4

.

d. Majorer le reste de la série entière de la question précédente.

e. En déduire que
∫ +∞

0
f(x)dx = 4

+∞∑
n=0

(−1)n(2n)!

22n(n!)2(4n+ 1)
.

� �
10.90� �CCINP PSI 2021 Clément Lérou I

Soit F : x 7→ −
∫ x

0

ln(1− t)
t

dt et S : x 7→
+∞∑
n=1

xn

n2 . On rappelle que ζ(2) =
+∞∑
n=1

1

n2 = π2

6
.

a. Déterminer le domaine de définition D de F.

b. Montrer que ∀x ∈ [−1; 1], F(x) = S(x).

c. Montrer que ∀x ∈]0; 1[, F(x) + F(1− x) = π2

6
− ln(x) ln(1− x).

� �
10.91� �X PSI 2022 Olivier Courmont III

Justifier la convergence de
∑
n>0

2n2 + 5n+ 3

2n
et calculer sa somme.

14



� �
10.92� �Centrale Maths1 PSI 2022 Marius Desvalois et Thibault Sourdeval

Soit (an)n∈N une suite réelle bornée. On note R le rayon de convergence de
∑
n>0

anx
n.

En cas de convergence, pour x ∈ R, on pose f(x) =
+∞∑
n=0

an

n!
xn et S(x) =

+∞∑
n=0

anx
n.

a. Montrer que le rayon de convergence de la série
∑
n>0

an

n!
xn vaut +∞.

b. Trouver une suite réelle bornée (an)n∈N telle que :

• R = 2 et
∑
n>0

an converge.

• R = 1 et
∑
n>0

an diverge.

• R = 1 et
∑
n>0

an converge.

c. Montrer que R > 1.

d. Soit k ∈ N, montrer la convergence de
∫ +∞

0
xke−xdx et calculer sa valeur.

e. Pour t > 1, montrer l’existence de g(t) =
∫ +∞

0
e−xtf(x)dx et trouver une relation entre g(t) et S

(
1

t

)
.� �

10.93� �Centrale Maths1 PSI 2022 Achille Domens

On pose F(0) = 0 et, pour x ∈ R, en cas de convergence, F(x) =
∫ x

0

sin(t)
t

dt.

a. Montrer que F est définie et développable en série entière sur R. Donner son développement.

b. Soit x ∈ R, montrer que Re
(∫ π/2

0
exp(−xe−it)dt

)
= π

2
−

+∞∑
k=0

(−1)kx2k+1

(2k+ 1).(2k+ 1)!
.

c. Déterminer lim
x→+∞

∫ π/2

0
exp(−xe−it)dt et en déduire l’existence et la valeur de la limite de F en +∞.� �

10.94� �Centrale Maths1 PSI 2022 Paul Lafon

a. Donner un exemple de série entière de rayon 1 et dont la fonction somme est majorée sur [0; 1[.

Soit une suite réelle (an)n∈N telle que lim
n→+∞

nan = 0 et f : x 7→
+∞∑
n=0

anx
n.

b. Montrer que f est définie sur ]− 1; 1[.

c. Montrer que f(x) =
1−

o
(
ln(1− x)

)
.

d. Soit une suite réelle (bn)n∈N telle que g : x 7→
+∞∑
n=0

bnx
n est définie sur ] − 1; 1[ et g(x) =

1−
o
(
ln(1 − x)

)
.

La suite (nbn)n∈N tend-elle vers 0 ? Indication : reprendre la question a..� �
10.95� �Centrale Maths1 PSI 2022 Peio Lanot

Soit A ∈ R∗
+ ∪ {+∞}, f : I =]− A;A[→ R de classe C∞ telle que ∀n ∈ N, ∀x ∈]− A;A[, f(n)(x) > 0.

a. Montrer que f est développable en série entière sur I. Indication : on pourra utiliser la formule de Taylor

reste intégral sur les intervalles ]− A; 0[ et ]0;A[.

b. Montrer que g = ef est aussi développable en série entière sur I.

c. Montrer que tan est développable en série entière sur
]
− π

2
; π
2

[
.� �

10.96� �Mines PSI 2022 Olivier Baesen I

Soit α ∈ R∗
+ et fα : x 7→ ln

(√
x2 − 2ch (α)x+ 1

)
.

a. Déterminer l’ensemble de définition de fα.

b. Déterminer le développement en série entière de fα au voisinage de 0.
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� �
10.97� �Mines PSI 2022 Lola Belle Wangue I

Soit a ∈]0; 1[ et f : R → R dérivable telle que ∀x ∈ R, f′(x) = f(ax).

a. Montrer que f est de classe C∞ sur R. Calculer f(n)(x) pour n ∈ N et x ∈ R.

b. Montrer que f est égale à sa série de Taylor sur R.

c. Déterminer toutes les fonctions g : R → R dérivables telles que ∀x ∈ R, g′(x) = g(ax).� �
10.98� �Mines PSI 2022 Peio Lanot II

a. Déterminer le rayon de convergence R de la série entière
∑
n>0

(
2n

n

)
xn.

b. Déterminer l’ensemble de définition de la fonction f : x 7→
+∞∑
n=0

(
2n

n

)
xn.

c. Montrer que f est solution d’une équation différentielle (E).

d. Résoudre (E) et en déduire une expression simple de f(x).� �
10.99� �Mines PSI 2022 Camille Pucheu II

Soit la suite (an)n∈N définie par a0 = a1 = 1 et ∀n ∈ N, an+2 = an+1 + (n+ 1)an.

a. Montrer que la suite
(
an

n!

)
n∈N

converge.

b. Qu’en déduire sur le rayon de convergence R de la série entière
∑
n>0

an

n!
xn ?

On pose dans la suite de l’exercice la fonction somme f : x 7→
+∞∑
n=0

an

n!
xn.

c. Trouver l’expression de f′′(x) en fonction de f′(x) et de f(x) pour x ∈]− R;R[.

d. En déduire une expression de an sous forme de somme.� �
10.100� �Mines PSI 2022 Matis Viozelange I

Soit λ ∈]− 1; 1[, on s’intéresse à l’équation (E) : f′(x) = f(x) + f(λx) sur R.

a. Soit f une solution de (E) sur R, montrer que f est de classe C∞ sur R.

b. Montrer que si f est solution de (E) sur R, alors f est développable en série entière sur R.

c. Trouver toutes les solutions de (E) sur R.� �
10.101� �CCINP PSI 2022 Marius Desvalois II

Pour n ∈ N, on pose un =
∫ 1

0

tn

1+ t2
dt. On pose S(x) =

+∞∑
n=0

unx
n pour x ∈ R sous réserve de convergence.

a. Donner la définition du rayon de convergence d’une série entière.

b. Déterminer le rayon de convergence R de la série entière
∑
n>0

unx
n.

c. Pour x ∈]− R;R[, trouver a, b et c tels que : ∀t ∈ [0 ; 1], 1

(1− xt)(1+ t2)
= a

1− xt
+ bt

1+ t2
+ c

1+ t2
.

d. En déduire une expression compacte de S(x) pour x ∈]− R;R[.

e. Montrer que S est continue sur [−1; 0] et en déduire S(−1).
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� �
10.102� �CCINP PSI 2022 Léo Ducos-Tourenne I et Anatole Rousset I

Pour x ∈ R, en cas de convergence, on pose f(x) =
+∞∑
n=0

xn
2

. On admet que
∫ +∞

−∞
e−y2

dy =
√
π.

a. Donner le domaine de définition I de f.

b. Donner le domaine de dérivabilité de f.

c. Trouver un équivalent de f en 1−.

d. (rajoutée, Centrale 2012) Pour n ∈ N, on note an le nombre de façons d’écrire n comme somme de 2

carrés (d’entiers naturels), ou encore an = card
({

(p, q) ∈ N2
∣∣∣ p2+q2 = n

})
. Déterminer, pour x ∈ I, une

relation entre f(x) et g(x) =
+∞∑
n=0

anx
n. En déduire le rayon R′ de

∑
n>0

anx
n.

� �
10.103� �CCINP PSI 2022 Colin Herviou-Laborde I

On définit (un)n∈N par u0 = 3 et ∀n ∈ N, un+1 =
n∑

k=0

(
n

k

)
ukun−k.

Pour x ∈ R, en cas de convergence, on pose f(x) =
+∞∑
n=0

un

n!
xn.

a. Établir que ∀n ∈ N, 0 6 un

n!
6 4n+1.

b. Montrer que f est définie sur I =
]
− 1

4
; 1
4

[
.

c. Prouver que f est solution de (E) : y′ = y2 sur I.

d. En déduire la valeur de un pour tout entier naturel n.� �
10.104� �CCINP PSI 2022 Paul Mayé I

Soit F : x 7→ −
∫ x

0

ln(1− t)
t

dt. On rappelle que ζ(2) =
+∞∑
n=1

1

n2 = π2

6
.

a. Déterminer le domaine de définition D de F.

b. Montrer que ∀x ∈ [0; 1], F(x) =
+∞∑
n=1

xn

n2 .

c. Montrer que ∀x ∈]0; 1[, F(x) + F(1− x) = π2

6
− ln(x) ln(1− x).� �

10.105� �Centrale Maths1 PSI 2023 Paul Bats

On définit la fonction f : I =
]
− π

2
; π
2

[
→ R par f(x) =

sin(x) + 1

cos(x)
.

a. Pour tout n ∈ N, montrer qu’il existe un polynôme Pn ∈ N[X] tel que ∀x ∈ I, f(n)(x) =
Pn(sin(x))

cosn+1(x)
.

b. Montrer que la série de Taylor de f converge sur I.

c. Montrer que f est développable en série entière sur I.

Questions de cours :

• Donner le développement en série entière de Arctan.

• Donner la formule de Taylor reste intégral.

• Soit f : R3 → R de classe C1 et g : t 7→ f
(
cos(t), Arctan(t), 2t

)
. Calculer g′(t).

• Rappeler le théorème des valeurs intermédiaires.
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� �
10.106� �Centrale Maths1 PSI 2023 Mathys Bureau et Pierre Dobeli

Pour x ∈ R, en cas de convergence, on pose f(x) =
∫ +∞

0

tx

1+ t2
dt.

a. Déterminer le domaine de définition D de f.

b. Pour x ∈ D, on pose g(x) =
∫ +∞

1

tx

1+ t2
dt. Montrer que g est développable en série entière sur D.

c. Montrer que f est développable en série entière sur D.� �
10.107� �Centrale Maths1 PSI 2023 Fares Kerautret

Soit (an)n∈N ∈ CN telle que la série entière
∑
n>0

anz
n ait un rayon de convergence R = +∞.

On définit alors l’application f : C → C par f(z) =
+∞∑
n=0

anz
n.

a. Montrer que ∀r > 0, ∀p ∈ N,

∫ 2π

0
f
(
reit

)
e−iptdt = 2π apr

p.

b. Si f est bornée sur C, montrer que ∃M ∈ R+, ∀r > 0, ∀p ∈ N, |ap| 6 M

rp
. En déduire que f est constante.

c. S’il existe q ∈ N∗ et (α, β) ∈ (R∗
+)

2 tels que ∀z ∈ C, |f(z)| 6 α|z|q + β, montrer que f est polynomiale.

d. Si ∀z ∈ C, |f(z)| 6 eRe (z), montrer qu’il existe k ∈ C tel que ∀z ∈ C, f(z) = kez.� �
10.108� �Mines PSI 2023 Raphaël Déniel I

Pour x ∈ R, en cas de convergence, on pose S(x) =
+∞∑
n=1

(−1)n+1x2n+1

n(2n+ 1)
.

a. Déterminer le rayon de convergence R de la série entière
∑
n>1

(−1)n+1x2n+1

n(2n+ 1)
.

b. S(R) et S(−R) sont-ils définis ? Quel est donc le domaine I de définition de S ?

c. D’après le cours, la fonction S est continue sur quel intervalle au moins ?

d. S est-elle continue sur I ?

e. Calculer S(x) pour x ∈]− R;R[ à l’aide de fonctions usuelles.

f. Calculer a =
+∞∑
n=1

(−1)n+1

n(2n+ 1)
. Quel est le signe de a ? Était-ce prévisible ?

� �
10.109� �Mines PSI 2023 Juan Dupierris I

On définit (an)n∈N par a0 = 1 et ∀n ∈ N, an+1 =
n∑

k=0

(
n

k

)
akan−k.

Pour x ∈ R, en cas de convergence, on pose f(x) =
+∞∑
n=0

an

n!
xn.

a. Montrer que le rayon de convergence R de
∑
n>0

an

n!
xn vérifie R > 1.

b. Décomposer f2 en série entière.

c. En déduire la valeur de f et des an pour tout entier naturel n.
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� �
10.110� �Mines PSI 2023 Arthur Melnitchenko II

Soit (un)n∈N définie par u0 = 1 et ∀n > 0, un+1 = un +
(−1)n+1

(n+ 1)!
+

n∑
k=0

(−1)k

k!
.

On admet le résultat (C), pour une suite réelle (un)n∈N, si lim
n→+∞

un = ℓ ̸= 0, alors
n−1∑
k=0

uk ∼
+∞

nℓ.

a. Déterminer un équivalent de un et en déduire le rayon de convergence R de
∑
n>0

unx
n.

b. Calculer f(x) =
+∞∑
n=0

unx
n.

c. Montrer le résultat (C).� �
10.111� �Mines PSI 2023 Paul Picard II

Pour n > 1, on pose an =
∫ +∞

n

th (t)

t2
dt. On note f(x) =

+∞∑
n=1

anx
n s’il y a convergence.

a. Déterminer le rayon de convergence R de la série entière
∑
n>1

anx
n.

b. f est-elle continue en −1 ?

c. Montrer que f(x) ∼
1−

− ln(1− x).� �
10.112� �Mines PSI 2023 Elae Terrien I

Pour n ∈ N∗, on note vn le nombre de n-uplets (a1, · · · , an) tels que :

• ∀k ∈ [[1;n]], ak = ±1.

•
n∑

k=1

ak = 0.

• ∀p ∈ [[1;n]],
p∑

k=1

ak > 0.

a. Justifier que v2n+1 = 0 pour tout entier n ∈ N.

Par convention, on pose v0 = u0 = 1. On note, pour tout entier n ∈ N∗, un = v2n.

b. Calculer u1, u2, u3.

c. Trouver, pour n ∈ N, une relation liant un+1, un, · · · , u1, u0.

d. En s’intéressant à
∑
n>0

unx
n, trouver une expression simple de un.

� �
10.113� �CCINP PSI 2023 Rémi Darrieumerle I et Chloé Vagner I

En cas de convergence, pour x ∈ R, on pose f(x) =
+∞∑
n=0

xn
2

. On admet que
∫ +∞

0
e−t2dt =

√
π

2
.

a. Déterminer le domaine de définition de f.

b. Montrer que f est continue sur son ensemble de définition.

c. Déterminer un équivalent de f en 1−.
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� �
10.114� �Centrale Maths1 PSI 2024 Émile Gauvrit

Soit α ∈ R∗
+, (an)n>0 et (vn)n>1 définies par an = n!

n∏
k=1

(α+ k)

et vn =
( n∑

k=1

ln

(
1+ α

k

))
− α ln(n).

a. Déterminer le rayon de convergence R de la série entière
∑
n>0

anx
n.

b. Montrer que
∑
n>2

(vn − vn−1) converge.

c. En déduire l’existence de λ > 0 tel que an ∼
+∞

λ

nα .

d. Étudier la convergence de
∑
n>0

anx
n pour x = ±R.

� �
10.115� �Centrale Maths1 PSI 2024 Lucie Girard

Pour n ∈ N, on pose un =
(−1)n

2n+ 1
. On note S =

+∞∑
n=0

un.

a. Montrer la convergence de
∑
n>0

un, c’est-à-dire l’existence du réel S.

b. Quel est le domaine de définition D de la fonction I : x 7→
+∞∑
n=0

unx
n+1 ?

c. Donner une expression simple de I(x) pour certains x et en déduire la valeur de S.

d. Calcul de
∫ 1

0
I(x)dx de deux manières différentes.

� �
10.116� �Centrale Maths1 PSI 2024 Mathias Pisch

a. Montrer la convergence de
∫ +∞

0

sin(t)
t

dt.

Soit F : R → R définie par F(x) =
∫ x

0

sin(t)
t

dt si x ̸= 0 et F(0) = 0.

b. Montrer que F est définie et développable en série entière sur R. Donner son développement.

c. Soit x ∈ R, montrer que Re
(∫ π/2

0
exp(−xe−it)dt

)
= π

2
−

+∞∑
k=0

(−1)kx2k+1

(2k+ 1).(2k+ 1)!
.

d. Déterminer lim
x→+∞

∫ π/2

0
exp(−xe−it)dt et en déduire l’existence et la valeur de la limite de F en +∞.

� �
10.117� �Mines PSI 2024 Yasmine Azzaoui I

Déterminer le rayon de convergence R de la série entière
∑
n>0

(n+ 1)(n+ 2)
2n

xn. Calculer
+∞∑
n=0

(n+ 1)(n+ 2)
2n

.

� �
10.118� �Mines PSI 2024 Edward Bauduin II

a. Montrer que la fonction f : x 7→ 1

cos(x)
est développable en série entière au voisinage de 0.

b. Que dire du rayon de convergence du développement de la question précédente ?
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� �
10.119� �Mines PSI 2024 Axel Corbière I

On appelle involution d’un ensemble E toute application f : E → E telle que f ◦ f = id E. Soit n ∈ N∗, on

note An l’ensemble des involutions de l’ensemble [[1;n]] et In = card (An) avec la convention I0 = 1.

a. Montrer que ∀n ∈ N, In+2 = In+1 + (n+ 1)In.

b. Montrer que le rayon de convergence R de
∑
n>0

In
n!

xn vérifie R > 1.

On définit φ :]− 1; 1[→ R par φ(x) =
+∞∑
n=0

In
n!

xn.

c. Montrer que ∀x ∈]− 1; 1[, φ′(x) = (1+ x)φ(x).

d. En déduire une expression simple de φ(x) à l’aide de fonctions usuelles.

e. En déduire une expression de In sous forme de somme.� �
10.120� �Mines PSI 2024 Valentine Girard I

Soit n ∈ N∗, on considère un carré quadrillé avec (n+ 1)2 points numérotées (x, y) ∈ [[0;n]]2. On cherche à

aller de (0, 0) à (n, n) avec pour seuls déplacement autorisés les mouvements (0, 1) et (1, 0) (vers la droite ou

vers en haut).

a. Déterminer le nombre cn de chemins possibles (avec ces contraintes) pour aller de (0, 0) à (n, n).

On note dn le nombre de chemins qui vont de (0, 0) à (n, n) (avec ces contraintes) mais en restant toujours

au-dessus (au sens large) de la diagonale x = y. Par convention, on pose d0 = 1. En cas de convergence,

pour x ∈ R, on pose f(x) =
+∞∑
n=0

dnx
n.

b. Calculer d1, d2, d3.

c. Montrer que ∀n ∈ N, dn+1 =
n∑

k=0

dkdn−k.

d. Justifier que 0 6 dn 6
(
2n

n

)
. Minorer le rayon de convergence R de la série entière

∑
n>0

dnx
n.

e. Donner une relation entre xf(x)2 et f(x) pour x ∈]− R;R[.

f. En déduire une expression de f(x) à l’aide de fonctions usuelles. Que vaut R ?

g. Donner une expression de dn en fonction de n.

h. Si tous les chemins allant de (0, 0) à (n, n) sont équiprobables, quelle est la probabilité pn qu’un chemin

reste au-dessus de la diagonale ?� �
10.121� �CCINP PSI 2024 Clément Lacoste I

Soit la suite (an)n∈N définie par a0 = 1, a1 = 3 et ∀n > 2, an = 3an−1 − 2an−2.

a. Trouver une expression de an en fonction de n.

b. Montrer que ∀n ∈ N, |an| 6 4n.

c. En déduire une inégalité concernant le rayon de convergence R de la série entière
∑
n>0

anx
n.

d. Montrer que pour des x convenables, on a
+∞∑
n=0

anx
n = 1

2x2 − 3x+ 1
.

e. Donner une autre expression de an et la valeur de R.
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� �
10.122� �Mines-Télécom PSI 2024 Émile Gauvrit II

Soit la fonction f définie par f(x) =
1− cos(x)

x2
.

Sur quelle domaine peut-on prolonger f ? f est-elle continue, dérivable, de classe C1 ? De classe C∞ ?� �
10.123� �Mines-Télécom PSI 2024 Eva Rojo I

Soit la suite (an)n∈N définie par a0 = 0, a1 = 1 et ∀n > 2, an =
n∑

k=0

akan−k. On note S(x) =
+∞∑
n=0

anx
n et

R le rayon de convergence de la série entière
∑
n>0

anx
n.

a. Montrer que ∀x ∈]− R;R[, S(x) = x+ S(x)2.

b. En déduire S(x) pour x ∈]− R;R[ et la valeur de R.

c. Montrer que ∀n > 1, an = 1

n

(
2n− 2

n− 1

)
.

� �
10.8 Officiel de la Taupe� �� �

10.124� �OdlT 2012/2013 Centrale PSI planche 130

Ensemble de définition D de S(x) =
+∞∑
k=1

xk

k2
?

Montrer que S est bijective de D ∩ R+ dans [0;A] où A est un réel qu’on ne cherchera pas à calculer.

Montrer que l’équation (En) :
n∑

k=1

xk

k2
= a (a > 0, n ∈ N∗) admet une unique solution notée xn dans R.

Montrer que (xn)n∈N est convergente, et déterminer sa limite.� �
10.125� �OdlT 2012/2013 ENTPE/EIVP PSI planche 247III

Déterminer la somme de la série de terme général un = 1

2nn(2n− 1)
.

En plus : on pourra en profiter pour calculer
+∞∑
n=1

(−1)n

n(2n− 1)
et

+∞∑
n=1

1

n(2n− 1)
.� �

10.126� �OdlT 2012/2013 ENTPE/EIVP PSI planche 248II

On donne une série entière
∑
n>0

anx
n de rayon de convergence R > 0 et on note f sa fonction somme.

Soit P ∈ R[X] de degré p > 1. On s’intéresse à la série
∑
n>0

P(n)anx
n dont on note R′ le rayon de convergence

et g la fonction somme. Montrer que, pour n assez grand, on a |P(n)| > 1. Qu’en déduit-on pour R′ ?

Montrer que
(
1, X, X(X− 1), · · · , X(X− 1) · · · (X− p+ 1)

)
est une base de Rp[X].

En déduire que R = R′ et exprimer g(x) en fonction des dérivées de f.

Donner le rayon de convergence et calculer la somme de
∑
n>0

n22n + 2n

n!
xn.

� �
10.127� �OdlT 2014/2015 Mines PSI planche 158II

Convergence et somme de
∑
n>0

n2 − 1

n+ 2
xn.

22



� �
10.128� �OdlT 2014/2015 Mines PSI planche 166II

a. Montrer que si f : R → R est solution de (E) : f′(x) = f(x) + f(λx) avec λ ∈]− 1; 1[, alors f est de classe

C∞ et développable en série entière sur R.
b. Donner toutes les solutions de (E).

c. Montrer que
( n∏

k=0

(1+ λk)
)
n∈N

possède une limite non nulle K(λ).

d. Montrer qu’une solution f non nulle de (E) vérifie f(x) ∼
+∞

K(λ)f(0)eλx.� �
10.129� �OdlT 2014/2015 Mines PSI planche 169I

a. Ensemble de définition de f(x) =
∫ x

0

ln(|1− y|)
y

dy.

b. f admet-elle un développement en série entière au voisinage de 0 ? Calculer f(1).� �
10.130� �OdlT 2014/2015 Centrale PSI planche 228II

a. Montrer que Arcsin est développable en série entière sur un intervalle ]− a;a[ et donner cette série.

b. Montrer que f : t 7→ (Arcsin(t))2 est développable en série entière sur ]− a;a[.

c. Trouver une équation différentielle vérifiée par f′ et en déduire ce développement.� �
10.131� �OdlT 2014/2015 Centrale PSI planche 236I

a. Montrer que
n∑

k=1

xk

k
= 1 admet une unique solution xn sur R+.

b. Montrer que (xn)n>1 converge et trouver sa limite.� �
10.132� �OdlT 2014/2015 CCP PSI planche 279II

Montrer que f définie par f(x) =
1− cos(x)

x2
si x ̸= 0 et f(0) = 1

2
est continue sur R.

Montrer qu’elle est de classe C∞ et calculer f(n)(0) en fonction de n.� �
10.133� �OdlT 2014/2015 CCP PSI planche 285I

a. Développement en série entière de ln(1− x).

b. Étudier
∑
n>0

(
x2n+1

2n+ 1
− xn+1

2n+ 2

)
.

� �
10.134� �OdlT 2014/2015 CCP PSI planche 290II

a. Trouver une série entière f non nulle solution de (E) : xy′′(x) + (1+ x)y′ − py = 0 avec p ∈ R.
Quel est son rayon de convergence ?

b. Si p ∈ N, montrer qu’un polynôme, dont on précisera le degré, est solution de (E).� �
10.135� �OdlT 2015/2016 Mines PSI planche 131II

Rayon de convergence de
∑
n>0

(−1)nxn et calcul de la limite en 1 de sa somme.

Soit une suite réelle (bn) telle que
∑
n>0

bn converge ; que dire du rayon de convergence de
∑
n>0

bnx
n ?

On le suppose égal à 1 ; montrer que f : x 7→
+∞∑
n=0

bnx
n est continue en 1.� �

10.136� �OdlT 2015/2016 Mines PSI planche 132I Nature et somme de
∑
n>0

xn

3n+ 2
.
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� �
10.137� �OdlT 2015/2016 Centrale PSI planche 177

On donne une suite (an)n>0 réelle telle que (nan)n>0 tende vers 0.

Montrer que
∑
n>0

anx
n a un rayon de convergence au moins égal à 1. On note f(x) =

+∞∑
n=0

anx
n.

Montrer que f(x) =
1−

o
(
ln(1− x)

)
. Réciproquement, si f(x) =

1−
o
(
ln(1− x)

)
, (nan)n>0 tend-elle vers 0 ?� �

10.138� �OdlT 2015/2016 Centrale PSI planche 190

On suppose
∑
n>0

anx
n de rayon de convergence R non nul, et telle que

∑
n>0

|an|Rn converge.

Montrer que f : x 7→
+∞∑
n=0

anx
n est continue en R.

Soit f(t) = 1

t
ln

∣∣∣1− t

1+ t

∣∣∣ ; justifier l’existence de
∫ 1

0
f(t)dt et l’exprimer à l’aide d’une série.

Justifier que
∫ +∞

0
f(t)dt converge et la calculer sachant que

+∞∑
n=0

1

(2n+ 1)2
= π2

8
.� �

10.139� �OdlT 2015/2016 ENSEA planche 281I

Montrer que si un(t) =
(−1)ntn√

1+ n2
, la série de fonctions

∑
n>0

un converge normalement sur tout segment

de [0; 1[. Que peut-on en déduire pour sa somme f ? Quelle est la nature de la suite de terme général

vn =
∫ 1

0
un(t)dt ? Montrer que

∑
n>0

vn converge.� �
10.140� �OdlT 2016/2017 Mines PSI planche 104II

Si R est le rayon de convergence de f(x) =
+∞∑
n=0

bnx
n, quel est le mode de convergence de f sur ]− R;R[ ?

On note pn le nombre de partitions de [[1;n]] (rappel : {U1, . . . , Up} est une partition de [[1;n]] si et seulement

si les Uk sont deux à deux disjointes, non vides, et si leur réunion vaut [[1;n]]). On pose p0 = 1. Montrer

que pn+1 =
n∑

k=0

(
n

k

)
pk. On pose f(x) =

+∞∑
n=0

pn
n!

xn ; montrer que f a un rayon R > 1 puis calculer f(x).� �
10.141� �OdlT 2016/2017 Mines PSI planche 110I

On note Dn le nombre de permutations sans point fixe de {1, . . . , n} avec D0 = 1 par convention.

Montrer que
n∑

k=0

(
n

k

)
Dk = n! . Montrer que

∑
n>0

Dn

n!
xn a un rayon de convergence au moins égal à 1.

On note S sa somme sur ]− 1; 1[ ; calculer T(x) = exS(x) et en déduire une expression de Dn.� �
10.142� �OdlT 2016/2017 CCP PSI planche 204I

Déterminer la limite de la suite de terme général an =
∫ 1

0

(
1+ t2

2

)n

dt.

Montrer que ∀n ∈ N, an > 1

1+ n
. Rayon de convergence R et domaine de définition de

∑
n>0

anx
n.� �

10.143� �OdlT 2016/2017 CCP PSI planche 210I

Montrer que
∑
n>0

2n2 + 3n+ 1

2n+1 converge et calculer sa somme.� �
10.144� �OdlT 2016/2017 CCP PSI planche 211I

Nature et somme de la série
∑
n>0

n(−1)nxn.

24



� �
10.145� �OdlT 2016/2017 EIVP PSI planche 245I

Développement en série entière de 1√
1− x

; en déduire celui de 1

(1− x)3/2
.

Montrer que
n∑

k=0

1

4k

(
2k

k

)
=

2n+ 1

4n

(
2n

n

)
à l’aide d’un produit de Cauchy.� �

10.146� �OdlT 2017/2018 Mines PSI planche 112I

Domaine de définition de f : x 7→
∫ x

0

ln |1− t|
t

dt. f est-elle développable en série entière au voisinage de 0 ?

Quel est alors son rayon de convergence ? Calculer f(1).� �
10.147� �OdlT 2017/2018 Mines PSI planche 115II

On note pn le nombre de partitions de {1, . . . , n} (rappel : {U1, . . . , Up} est une partition de [[1;n]] si et

seulement si les Uk sont deux à deux disjointes, non vides, et si leur réunion vaut [[1;n]]).

Montrer que pn+1 =
n∑

k=0

(
n

k

)
pk et calculer f(x) =

+∞∑
n=0

pn
n!

xn.� �
10.148� �OdlT 2017/2018 Mines PSI planche 117I

Rayon de convergence et somme de
∑
n>0

xn

3n+ 2
.� �

10.149� �OdlT 2017/2018 Centrale PSI planche 175

On donne u0 = 1,
un+1

un

= n+ a

n+ b
où a et b sont deux réels strictement positifs, et on pose vn = ln(nb−aun).

Montrer la convergence de
∑
n>0

(vn+1 − vn) et en déduire une condition sur a et b pour que
∑
n>0

un converge.

Cette condition étant vérifiée, on note f(x) =
+∞∑
n=0

unx
n, donner le domaine de définition de f et calculer f(1).� �

10.150� �OdlT 2017/2018 CCP PSI planche 216I

Rayon de convergence et somme de
∑
n>0

sin
(
nπ

3

)
xn.� �

10.151� �Compléments OdlT 2017/2018 CCP PSI planche 443I

a. Montrer que la suite de terme général an =
∫ 1

0

(
1+ t2

2

)n
dt est convergente et calculer sa limite.

b. Montrer que
∑
n>0

(−1)nan est convergente.

c. Montrer que an > 1

n+ 1
et en déduire le rayon de convergence R de

∑
n>0

anx
n.

d. Déterminer f(x) =
+∞∑
n=0

anx
n en fonction des fonctions usuelles.

e. En déduire la valeur exacte de f(−1) =
+∞∑
n=0

(−1)nan.
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