
SOLUTIONS EXERCICES CORRIGÉS 10
SÉRIES ENTIÈRES

� �
10.1 Rayon et expression� �

� �
10.1� �R = 1, règle de d’Alembert appliquée aux séries numériques : lim

n→+∞
(3n+ 2)|x|2n+3

(3n+ 5)|x|2n+1 = |x|2.

La fonction somme est notée S, elle est impaire et pour x ∈ [0; 1[,
√
xS(x3/2) =

+∞∑
n=0

x3n+2

3n+ 2
= g(x). On dérive

et on obtient ∀x ∈]−1; 1[, g′(x) =
+∞∑
n=0

x3n+1 = x

1− x3
qu’on primitive en décomposant en éléments simples :

g′(x) = 1

3

(
1

1− x
+ x− 1

1+ x+ x2

)
. On intègre en écrivant g′(x) = 1

3(1− x)
+

(2x+ 1)

6(1+ x+ x2)
− 1

2(1+ x+ x2)

donc comme g(0) = 0, il vient g(x) = −1

3
ln(1− x) + 1

6
ln(1+ x+ x2)− 1√

3

[
Arctan

(
2x+ 1√

3

)
− π

6

]
. Il suffit

donc d’écrire que pour x ∈ [0; 1[, S(x) = 1

x1/3
g(x2/3) et c’est fait.

� �
10.2� �a. Le rayon de convergence est R = 1 par la règle de d’Alembert, il y a convergence en 1 et en −1 par le

critère de Riemann donc l’intervalle de convergence est [−1; 1].

b. On a ∀x ∈] − 1; 1[, f(x) =
+∞∑
n=2

(−1)n

n(n− 1)
xn =

+∞∑
n=2

(−1)n
(

1

n− 1
− 1

n

)
xn = x ln(1 + x) +

(
ln(1 + x) − x

)
.

On aurait aussi pu obtenir cette formule en prenant la dérivée de f et en intégrant ensuite.

c. Comme il y a convergence normale sur [−1; 1] car ||un||∞ = 1

n(n− 1)
en posant un(x) =

(−1)n

n(n− 1)
xn, on

a f(1) = lim
x→1−

f(x) = 2 ln(2)− 1 et f(−1) = lim
x→−1+

f(x) = 1.

� �
10.3� �On pose l’équation caractéristique de cette récurrence linéaire : z2−2z−1 = 0 dont les solutions sont

√
2+1

et
√
2 − 1. Après des calculs classiques : ∀n ∈ N, an = 1

2

(
(
√
2 + 1)n + (

√
2 − 1)n

)
∼
∞

1

2
(
√
2 + 1)n donc le

rayon est celui de
∑
n>0

(
√
2+ 1)nxn et donc R = 1√

2+ 1
=

√
2− 1.

Ensuite, en notant f(x) =
+∞∑
n=0

anx
n pour x ∈]− R;R[, on a

+∞∑
n=0

(an+2 − 2an+1 − an)x
n+2 = 0 ce qui donne

(f(x)− a1x− a0)− 2x(f(x)− a0)− x2f(x) = 0 et donc f(x) = x− 1

x2 + 2x− 1
.

� �
10.4� �Si r > 0, on a (a2nr

2n)n∈N bornée si et seulement si r 6 1√
a

et (a2n+1r
2n+1)n∈N bornée si et seulement

si r 6 1√
b
. Comme (anr

n)n∈N est bornée si et seulement si (a2nr
2n)n∈N et (a2n+1r

2n+1)n∈N le sont :

R = 1√
b
. Alors ∀x ∈]− R;R[,

+∞∑
n=0

anx
n =

+∞∑
n=0

(ax2)n + x
+∞∑
n=0

(bx2)n = 1

1− ax2
+ x

1− bx2
.
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� �
10.5� �Le rayon est classiquement R = 1. Pour calculer la somme de la série, il suffit de décomposer en éléments

simples : n+ 3

2n+ 1
= 1

2

2n+ 1+ 5

2n+ 1
= 1

2
+ 5

2

1

2n+ 1
. On distingue ensuite x > 0 ou x < 0.

Si x > 0, on pose x = y2 et f(x) =
+∞∑
n=0

n+ 3

2n+ 1
y2n = 1

2

+∞∑
n=0

y2n + 5

2

+∞∑
n=0

y2n

2n+ 1
= 1

2(1− y2)
+ 5

2y
Argth (y).

∀x ∈ [0; 1[, f(x) = 1

2(1− x)
+ 5

2
√
x
Argth (

√
x). De même : ∀x ∈]−1; 0], f(x) = 1

2(1− x)
+ 5

2
√
−x

Arctan(
√
−x).� �

10.6� �Par croissance comparée,
(
n2 + n3

2n + 3n
x2n+1

)
n∈N

bornée si et seulement si |x| <
√
3 : R =

√
3.� �

10.7� �a. R = 1. Comme (an)n∈N n’est pas bornée, la somme de la série en tout point du cercle de centre 0 et de

rayon 1 donc a fortiori aux bornes de l’intervalle ]− 1 ; 1[

b. On trouve classiquement : f(x) = 1

(1− x)2
− ex.

c. On trouve lim
x→−1+

f(x) = 1

4
− 1

e
alors que f diverge en −1 ; et f(x) ∼

1−

1

(1− x)2
.� �

10.8� �Les deux séries entières sont classiquement de rayon 1, divergence en ±1 pour la première car le terme

général ne tend pas vers 0 et convergence en ±1 pour la seconde avec le critère de Riemann.

∀y ∈]−1; 1[, F(y) =
+∞∑
n=0

n2yn =
+∞∑
n=0

(n+2)(n+1)yn−3
+∞∑
n=0

(n+1)yn+
+∞∑
n=0

yn et en reconnaissant les dérivées

de la série géométrique :
+∞∑
n=0

n2yn =
(

1

1− y

)′′
− 3

(
1

1− y

)′
+ 1

1− y
=

2− 3(1− y) + (1− y)2

(1− y)3
= y2 + y

(1− y)3
.

Ainsi : ∀x ∈]− 1; 1[, f(x) =
+∞∑
n=0

n2(−1)nx2n+1 = xF(−x2) = x5 − x3

(1+ x2)3
.

∀x ∈]− 1; 1[\{0}, g(x) =
+∞∑
n=2

xn

n2 − 1
= 1

2

+∞∑
n=2

xn

n− 1
− 1

2

+∞∑
n=2

xn

n+ 1
= −x

2
ln(1− x)+ 1

2x

(
ln(1− x)+ x+ x2

2

)
.� �

10.9� �a. Le rayon de convergence de ces séries entières est Rp = 1 et il y a divergence en 1 et en −1.

b. Les fp sont de classe C∞ (et dérivables terme à terme) sur l’intervalle ouvert de convergence donc :

∀x ∈]− 1; 1[, xf′p(x) = x
+∞∑
n=1

np+1xn−1 = fp+1(x).

c. On voit par récurrence sur p que fp a, sur D, une expression du type : fp(x) =
p!

(1− x)p+1 +
p∑

j=1

aj(p)

(1− x)j
.

C’est vrai pour p = 0, 1 et si ça l’est pour un entier p, fp+1(x) = xf′p(x) =
(p+ 1)!x

(1− x)p+2 + x
p∑

j=1

jaj(p)

(1− x)j+1 qui

se met sous la bonne forme en écrivant x = x− 1+ 1. on a donc fp(x)∼∞
p!

(1− x)p+1 .

d. D’après la formule précédente, fp(x) admet une limite finie quand x tend vers −1+.� �
10.10� �a. Par la règle de d’Alembert par exemple, on trouve R = 1.

b. Il y a convergence en −1 d’après le CSSA, et divergence en 1 d’après le critère de Riemann.

c. Sur [−1; 0], on a |Rn(x)| 6 |un+1(x)| =
|x|n+1

√
n+ 1

qui tend vers 0 donc il y a convergence uniforme de la

série sur [−1; 0] donc continuité en −1.

d. Pour n > 1, on a
√
n 6 n donc pour x ∈ [0; 1], f(x) >

+∞∑
n=1

xn

n
= − ln(1− x) donc lim

x→1−
f(x) = +∞.� �

10.11� �Le rayon vaut R =
√
3 avec d’Alembert.

On reconnâıt la série entière de la fonction Arctan et f(x) = 3
√
3Arctan

(
x√
3

)
.
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� �
10.2 Théorie� �

� �
10.12� �Notons R le rayon de

∑
n>0

anz
n et R′ celui de

∑
n>0

1

an

zn.

Si R > 0 et 0 < r < R, on a lim
n→+∞

anr
n = 0 donc lim

n→+∞
1

anr
n = +∞ et ainsi ( 1

an

r′n)n∈N ne tend pas vers

0 avec r′ = 1

r
donc 1

r
> R′. Ainsi 1

r
> 1

R
=⇒ 1

r
> R′ ; ceci étant vrai pour tout r vérifiant cette condition :

1

R
> R′ donc RR′ 6 1. C’est a fortiori vrai si R = 0. Dans tous les cas RR′ 6 1.� �

10.13� �Notons R′ le rayon de convergence de
∑
n∈N

a2
nz

n. Si R = 0 alors (an(
√
r)n)n∈N est non bornée pour tout

r ∈ R∗
+ donc a fortiori (a2

nr
n)n∈N et ainsi R′ = 0. Réciproquement, si R′ = 0 alors (a2

nr
2n)n∈N est non

bornée pour tout r ∈ R∗
+ donc a fortiori (anr

n)n∈N et ainsi R = 0.

Si R > 0 et 0 < r < R ⇐⇒ 0 < r2 < R2, alors (anr
n)n∈N est bornée donc a fortiori (a2

nr
2n)n∈N donc r2 6 R′.

ceci implique R2 6 R′ (puisque c’est vrai pour tout r2 ∈]0;R2[). Réciproquement, si R′ > 0 et 0 < r′ < R′, on

a (a2
nr

′n)n∈N bornée donc (|an(
√
r′
n
)n∈N aussi ce qui implique

√
r′ 6 R ⇐⇒ r′ 6 R2 d’où R′ 6 R2.

Ainsi dans tous les cas, on a R′ = R2.� �
10.14� �a. ∀n ∈ N, ∥bn| 6 1 et

∑
n>0

zn est de rayon de convergence 1 donc R′ > 1.

De plus ∀n ∈ N, ∥bn| 6 |an| et
∑
n>0

anz
n est de rayon de convergence R donc R′ > R. Ainsi R′ > Max(1, R).

b. Si R′ > 1, on a
∑
n>0

bn qui converge donc lim
n→+∞

bn = 0 et comme |bn| =
|an|

1+ |an|
⇐⇒ |an| =

|bn|
1− |bn|

dès que n est suffisamment grand donc |an| ∼∞ |bn| donc R = R′.

c. Si R′ = 1, on a R 6 1 d’après a. donc R′ = Max(1, R). D’après b., dans tous les cas : R′ = Max(1, R).� �
10.15� �On note R le rayon de

∑
n>0

anx
n et R′ celui de

∑
n>0

Snx
n. Comme an 6 Sn, on a R′ 6 R. Comme

lim
n→+∞

Sn = +∞, la série
∑
n>0

anx
n diverge en 1 donc R 6 1. De plus, ∀n ∈ N,

Sn+1

Sn
= 1+ an

Sn
tend vers 1,

donc R′ = 1 d’après la règle de d’Alembert. Ainsi : R = R′ = 1.

∀x ∈]−1; 1[,
( +∞∑

n=0

anx
n
)( +∞∑

n=0

xn
)
=
( +∞∑

n=0

Snx
n
)
par produit deCauchy de séries absolument convergentes

donc en notant f(x) =
+∞∑
n=0

anx
n et g(x) =

+∞∑
n=0

Snx
n, on a (1− x)f(x) = g(x).� �

10.16� �Soit x ∈ [0;R[, posons S(x) =
+∞∑
n=0

anx
n, alors si f(x) =

+∞∑
n=0

anR
nxn, on a f de rayon 1 et la relation :

∀x ∈ [0; 1[, f(x) = S(Rx). Cela nous permet de nous ramener à R = 1.

On reprend donc S(x) =
+∞∑
n=0

anx
n avec R = 1 et on pose Rn =

+∞∑
k=n+1

ak (convergence par hypothèse). En

posant S =
+∞∑
n=0

an la somme de série, on a ∀n ∈ N, an = Rn−1 − Rn avec R−1 = S. On effectue une

transformation d’Abel : S(x) =
+∞∑
n=0

anx
n = S −

+∞∑
n=0

Rn(x
n − xn+1) après calculs. Puisque lim

n→+∞
Rn = 0,

pour un ε > 0, il existe n0 ∈ N tel que ∀n > n0, |Rn| 6 ε

2
. Or x 7→

n0∑
n=0

Rn(x
n − xn+1) est continue en 1 et

vaut 0 en 1, il existe ∃α > 0 tel que ∀x ∈ [1−α; 1],
∣∣∣ n0∑
n=0

Rn(x
n−xn+1)

∣∣∣ 6 ε

2
. Ainsi, ∀n > n0, ∀x ∈ [1−α; 1] :

3



|S(x)− S(1)| = |S(x)− S| =
∣∣∣ +∞∑
n=0

Rn(x
n − xn+1)

∣∣∣ 6 ∣∣∣ n0∑
n=0

Rn(x
n − xn+1)

∣∣∣+ ∣∣∣ +∞∑
n=n0+1

Rn(x
n − xn+1)

∣∣∣ 6 ε

2
+ ε

2

car ∀x ∈ [0; 1], 0 6 xn− xn+1 6 1 donc
∣∣∣ +∞∑
n=n0+1

Rn(x
n− xn+1)

∣∣∣ 6 ε

2

+∞∑
n=n0+1

(xn− xn+1) = ε

2
xn0+1 6 ε

2
. On

conclut bien que, puisque ∀ε > 0, ∃α > 0, ∀x ∈ [1− α; 1], |Sx)− S(1)| 6 ε, on a lim
t→R−

+∞∑
n=0

ant
n =

+∞∑
n=0

anR
n.

� �
10.3 Relations avec l’intégrale� �� �

10.17� �a. On a : ∀t ∈ [0 ; 1], tn

2
6 tn

1+ t2
6 tn donc 1

2(n+ 1)
6 an 6 1

n+ 1
d’où R = 1. Comme (an)n∈N est

clairement décroissante, on a convergence en −1 mais pas en 1.

b. Pour |x| < 1, la série de fonctions (un)n∈N où un(t) = xntn

1+ t2
converge normalement sur [0 ; 1] car

||un||∞ 6 |x|n donc on peut intervertir série et intégrale pour avoir la relation souhaitée.

c. On trouve a = x2

1+ x2
, b = x

1+ x2
et c = 1

1+ x2
. On intègre alors pour avoir la relation suivante :

f(x) =
[
− x

1+ x2
ln(1− xt) + x

2(1+ x2)
ln(1+ t2) + 1

1+ x2
Arctan(t)

]1
0
=

−4x ln(1− x) + 2x ln(2) + π

4(1+ x2)
.

Ainsi f(−1) =
+∞∑
n=0

(−1)nan = lim
x→−1+

f(x) =
ln(2)
2

+ π

8
par convergence uniforme sur [−1 ; 0].

d. an+2 + an = 1

n+ 1
donc a2n = (−1)n

(
π

4
−

n∑
k=1

(−1)k−1

2k− 1

)
. Comme lim

n→+∞
an = 0, π

4
=

+∞∑
k=1

(−1)k−1

2k− 1
.� �

10.18� �a. On va trouver un encadrement de an pour répondre à ces deux questions. Pour t ∈ [0; 1], classiquement,

0 6 t 6 1+ t2

2
6 1+ t

2
6 1 car (t − 1)2 > 0 et t2 6 t. En élevant ces inégalités à la puissance n et en les

intégrant sur [0; 1],
∫ 1

0
tndt =

[
tn+1

n+ 1

]1
0
= 1

n+ 1
6 an 6 1

n+ 1

(
2− 1

2n

)
=
[
(1+ t)n+1

2n(n+ 1)

]1
0
=
∫ 1

0

(
1+ t

2

)n
dt

ce qui donne plus simplement l’encadrement 1

n+ 1
6 an 6 2

n+ 1
.

• Ainsi an > 1

n+ 1
et la série harmonique

∑
n>0

1

n+ 1
diverge donc

∑
n>0

an diverge par comparaison.

• Comme ∀t ∈ [0; 1], 1+ t2

2
∈ [0; 1], on a ∀n ∈ N,

(
1+ t2

2

)n+1

6
(
1+ t2

2

)n
ce qui montre par croissance

de l’intégrale que an+1 6 an. Ainsi, la suite (an)n∈N est décroissante et elle tend vers 0 par encadrement

car 0 6 an 6 1

2n+ 1
donc

∑
n>0

(−1)nan converge par le critère spécial des séries alternées.

b. La série
∑
n>0

an diverge d’après a. donc R 6 1. De plus, la série
∑
n>0

(−1)nan converge d’après a. donc

R > 1. Ainsi, R = 1 et l’intervalle de convergence est [−1 ; 1[ d’après la question a..

c. Pour x ∈] − 1; 1[, en posant un(t) = xn
(
1+ t2

2

)n
, comme la fonction |un| est croissante sur [0; 1], on a

||un||∞,[0;1] = |un(1)| = |x|n et la série géométrique
∑
n>0

|x|n converge puisque |x| < 1. Par conséquent, la série

∑
n>0

un converge normalement sur le segment [0; 1] donc, par un théorème du cours et car
∣∣∣x(1+ t2)

2

∣∣∣ < 1 pour

t ∈ [0; 1], f(x) =
+∞∑
n=0

∫ 1

0

(
x(1+ t2)

2

)n
dt =

∫ 1

0

( +∞∑
n=0

(
x(1+ t2)

2

)n)
dt =

∫ 1

0

2dt

2− x− xt2
. Pour x ∈] − 1 ; 0[,

on a donc f(x) = 2

2− x

∫ 1

0

1

1+
−x

2−x
t2

dt = 2

2− x

√
2− x

− x

∫ 1

0

√
−x

2−x

1+
−x

2−x
t2

dt car −x

2− x
> 0. Ainsi, on conclut
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classiquement que f(x) =
[

2√
−x(2− x)

Arctan

(√
−x

2− x
t

)]1
0
= 2√

−x(2− x)
Arctan

(√
−x

2− x

)
.

d. Avec les mêmes notations, si x ∈ [−1; 0] (on a vu la convergence de
∑
n>0

(−1)nan en question a.) la suite

(an(−x)n)n>0 est décroissante et tend vers 0 donc la série alternée
∑
n>0

(−1)nan(−x)n converge par le critère

spécial et on peut majorer |Rn(x)| =
∣∣∣ ∞∑
k=n+1

akx
k
∣∣∣ 6 an+1|x|n+1 6 an+1. Ainsi, ||Rn||∞,[−1;0] 6 an+1 or

on sait que lim
n→+∞

an = 0 donc lim
n→+∞

||Rn||∞,[−1;0] = 0 par encadrement et on a convergence uniforme de∑
n>0

un sur [−1; 0]. Alors, f est continue sur [−1; 0] car toutes les fonctions un sont continues sur [−1; 0] et

f(−1) =
+∞∑
n=0

(−1)nan = lim
x→−1+

f(x) = lim
x→−1+

2√
−x(2− x)

Arctan

(√
−x

2− x

)
= π

3
√
3
car Arctan

(
1√
3

)
= π

6
.� �

10.19� �Comme t 7→ e−t2 est de classe C∞ sur R, la fonction f : x 7→
∫ 2x

x
e−t2dt l’est aussi. Or, pour tout réel x,

f′(x) = 2e−4x2 − e−x2

qu’on sait développer en série entière avec le développement de la série exponentielle :

∀x ∈ R, f′(x) = 2
+∞∑
n=0

(−1)n4nx2n

n!
−

+∞∑
n=0

(−1)nx2n

n!
=

+∞∑
n=0

(−1)n(22n+1 − 1)x2n

n!
. Comme le rayon de la

série entière décrivant f′(x) est R+∞, celui de la série primitive est aussi R = +∞ et on a donc en intégrant

terme à terme : ∀x ∈ R, f(x) =
+∞∑
n=0

(−1)n(22n+1 − 1)x2n+1

n!(2n+ 1)
car f(0) = 0.� �

10.20� �t2 − 5

2
t + 1 = (t − 2)

(
t − 1

2

)
= (1 − 2t)

(
1 − t

2

)
donc f est définie et C∞ sur

]
− ∞; 1

2

[
. On dérive :

∀x ∈
]
−∞; 1

2

[
, f′(x) = 1

x
ln(1−2x)+1

x
ln

(
1− t

2

)
= −

+∞∑
n=1

(
2n

n
− 1

2nn

)
xn−1. Le rayon de cette série est R = 1

2
,

et le rayon de la série primitive est le même donc f est DSE sur
]
− 1

2
; 1
2

[
où f(x) = −

+∞∑
n=1

(
2n

n2 − 1

2nn2

)
xn.� �

10.21� �∀t ∈]0; 1[, ln(1 − t) ln(t) = −
+∞∑
n=1

tn ln(t)
n

en développant en série entière ln(1 − t). Si fn(t) =
tn ln(t)

n
,

on a bien les (fn)n∈N continues et intégrables sur ]0; 1[,
∑
n>1

fn converge simplement sur ]0; 1[ vers une

fonction continue et
∫
]0;1[

fn =
[
tn ln(t)
n(n+ 1)

]1
0
−
∫ 1

0

tn

n(n+ 1)
dt = − 1

n(n+ 1)2
. Comme

∑
n>1

∫ 1

0
|fn| converge,

par le TITT :
∫ 1

0
ln(t) ln(1 − t)dt = −

∫ 1

0

+∞∑
n=1

tn ln(t)
n

dt = −
+∞∑
n=1

∫ 1

0

tn ln(t)
n

dt =
+∞∑
n=1

1

n(n+ 1)2
. Ainsi∫ 1

0
ln(t) ln(1− t)dt = lim

n→+∞

n∑
k=1

(
1

k
− 1

k+ 1
− 1

(k+ 1)2

)
= lim

n→+∞

(
1− 1

n+ 1
−

n∑
k=1

1

(k+ 1)2

)
= 2− π2

6
.� �

10.22� �On a ∀x ∈ [0; 1], Arctan x

x
=

+∞∑
n=0

(−1)nx2n

2n+ 1
. On majore le reste de cette série par le CSSA, ce qui donne :

∀x ∈ [0; 1], |Rn(x)| =
∣∣∣ +∞∑
k=n+1

(−1)kx2k

2k+ 1

∣∣∣ 6 x2n+2

2n+ 3
6 1

2n+ 3
donc la convergence est uniforme sur [0; 1]. On

peut donc intervertir et
∫ 1

0

Arctan x

x
dx =

∫ 1

0

+∞∑
n=0

(−1)nx2n

2n+ 1
dx =

+∞∑
n=0

∫ 1

0

(−1)nx2n

2n+ 1
dx =

+∞∑
n=0

(−1)n

(2n+ 1)2
.� �

10.23� �La fonction f est prolongeable par continuité (faire un DL) en 0 en posant f(0) = −2, elle est continue et

strictement négative sur ]− 1; 1[. On a f(t)∼
1
ln(1− t) or ln est intégrable sur ]0; 1] donc t 7→ ln(1− t) l’est

sur [0; 1[. De même f(t) ∼
−1

ln(1+ t) or ln est intégrable sur ]0; 1] donc t 7→ ln(1+ t) l’est sur ]− 1; 0]. Ainsi

f est intégrable sur ] − 1; 1[. Ensuite, on constate que f(t) = −2
Argth (t)

t
si t ̸= 0 et f(0) = −2 donc f est

développable en série entière en ∀t ∈]− 1; 1[, f(t) = −2
+∞∑
n=0

t2n

2n+ 1
. Soit F la primitive de f qui s’annule en
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0, on a ∀t ∈]− 1; 1[, F(t) = −2
+∞∑
n=0

t2n+1

(2n+ 1)2
.

L’intégrale à calculer vaut lim
t→1−

F(t) − lim
t→−1+

F(t) = 2 lim
t→1−

F(t) = −4
+∞∑
n=0

1

(2n+ 1)2
(par imparité de F et

convergence normale sur [−1; 1] de la série associée). Alors
∫ 1

−1
f(t)dt = −π2

2
.

� �
10.4 Équation différentielle� �� �

10.24� �a. On sait que x 7→ Arcsin(x) et x 7→ 1√
1− x2

sont DSE avec un rayon 1 donc f est aussi DSE avec un

rayon au moins égal à 1 par produit de Cauchy.
b. On dérive f et on trouve ∀x ∈]− 1; 1[, (1− x2)f′(x)− xf(x) = 1 par calculs.

c. On note ∀x ∈] − 1; 1[, f(x) =
+∞∑
n=0

anx
2n+1 ce développement en série entière car f est impaire. Alors on

a : ∀x ∈] − 1; 1[, f′(x) =
+∞∑
n=0

(2n + 1)anx
2n =

+∞∑
n=1

(2n − 1)an−1x
2n−2 donc x2f′(x) =

+∞∑
n=1

(2n − 1)an−1x
2n

et xf(x) =
+∞∑
n=0

anx
2n+2 =

+∞∑
n=1

an−1x
2n d’où, en remplaçant dans l’équation différentielle, on obtient :

a1 +
+∞∑
n=1

((2n + 1)an − (2n − 1)an−1 − an−1)x
2n = 1 donc a1 = 1 et ∀n ∈ N∗, an = 2n

2n+ 1
an−1. Par

récurrence, on trouve : ∀n ∈ N∗, an =
22n(n!)2

(2n+ 1)!
et on vérifie que lim

n→+∞
an+1

an

= 1 donc f est bien DSE

avec un rayon R = 1 et on a ∀x ∈]− 1; 1[, f(x) =
+∞∑
n=0

22n(n!)2x2n+1

(2n+ 1)!
.� �

10.25� �a. Par la méthode classique, on montre que si φ est DSE et solution de (E), alors elle est proportionnelle à

+∞∑
n=0

xn

(2n)!
. D’après d’Alembert, le rayon de cette série entière est R = +∞. On a clairement, φ(x) = ch (

√
x)

si x > 0, φ(0) = 1 et φ(x) = cos(
√
−x) si x < 0. En remontant les calculs sur les coefficients de la série

entière, on constate que φ est bien solution DSE de (E) sur R.

b. Par la méthode Lagrange, on pose z = ych (
√
x) et on parvient à l’équation z′′ +

(
th (

√
x)√

x
+ 1

2x

)
z′ = 0.

On intègre en reconnaissant les primitives et on obtient z′ = K1√
x(ch (

√
x))2

donc z = 2K1th (
√
x) + K2 donc

y = A1ch (
√
x) + A2sh (

√
x). Du côté négatif et on obtient y = B1 cos(

√
−x) + B2 sin(

√
−x).

c. Pour un prolongement C1 en 0 : A2 = B2 = 0 et A1 = B1 en utilisant les développements limités.� �
10.26� �a. Par la méthode classique, on montre que si φ est DSE et solution de (E), alors elle est proportionnelle

à
+∞∑
n=0

xn

(2n+ 1)!
. D’après d’Alembert, le rayon de cette série entière est R = +∞. On a clairement,

φ(x) =
sh (x)

x
si x ̸= 0, φ(0) = 1. En remontant les calculs sur les coefficients de la série entière, on constate

que φ est bien solution DSE de (E) sur R.
b. Par la méthode Lagrange, on pose z = yφ(x) et on parvient à l’équation z′′+ coth(x)z′ = 0. On intègre

en reconnaissant les primitives et on obtient z′ = K1

sh (x)2
donc z = −K1 coth(x) + K2 et alors cela donne

y = A1
ch (x)

x
+ A2

sh (x)
x

(sur R∗
+ ou R∗

−).

c. Par un prolongement C1 en 0 : A1 = B1 = 0 et A2 = B2 en utilisant les développements limités.
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� �
10.5 Produit de Cauchy et dénombrement� �� �

10.27� �a. On a b1 = 1, a2 = 1, b3 = 2, a4 = 5 et b5 = 16 en les écrivant toutes ces permutations zig-zag sous la

forme de liste (σ(1), σ(2), · · · , σ(n)). Par exemple a4 = 5 car les seules permutations zig-zag pour n = 4 sont
(1, 3, 2, 4), (1, 4, 2, 3), (2, 3, 1, 4), (2, 4, 1, 3), (3, 4, 1, 2).

b. Comme an 6 n! et bn 6 n!, on a 0 6 an

n!
6 1 et 0 6 bn

n!
6 1 donc les rayons vérifient Ra > 1 et Rb > 1.

c. Soit n > 2 pair, on compte le nombre de permutations up-down de [[1;n + 1]] pour lesquelles la position
de n + 1 (le plus grand élément) dans la liste est 2k (forcément une position paire 2 6 2k 6 n puisque ça
monte et ça descend) :

• il faut d’abord choisir les 2k− 1 entiers parmi les n entiers de [[1;n]] qui sont avant n+ 1 dans la liste :

cela fait

(
n

2k− 1

)
choix.

• ensuite il faut choisir la permutation up-down qui contient ces 2k − 1 éléments : cela fait b2k−1 choix
(ce nombre ne dépend que du nombre d’éléments et pas des éléments eux-mêmes).
• ensuite il faut choisir la permutation up-down qui contient les n − 2k + 1 entiers qui sont après n + 1

(pas besoin de choisir ces entiers, ce sont ceux qui restent) : cela fait bn−2k+1 choix.

Comme on obtient une partition des permutations up-down quand on fait varier l’entier 2k entre 2 et n, on

obtient : bn+1 =
∑

262k6n

(
n

2k− 1

)
b2k−1bn−2k+1 ; mais avec les conventions : bn+1 =

n∑
k=0

(
n

k

)
bkbn−k.

Soit n > 3 impair, on compte le nombre de permutations up-down de [[1;n + 1]] pour lesquelles la position
de n+ 1 dans la liste est 2k :

• choisir les 2k− 1 entiers dans [[1;n]] qui sont avant n+ 1 dans la liste : cela fait

(
n

2k− 1

)
choix.

• ensuite il faut choisir la permutation up-down qui contient ces 2k− 1 éléments : cela fait b2k−1 choix.
• ensuite il faut choisir la permutation up-down qui contient les n − 2k + 1 entiers qui sont après n + 1

(pas besoin de choisir ces entiers, ce sont ceux qui restent) : cela fait an−2k+1 choix.

De nouveau, an+1 =
∑

262k6n

(
n

2k− 1

)
b2k−1an−2k+1 qui se transforme avec les conventions et le changement

d’indices k = n− j en la formule plus homogène an+1 =
n∑

k=0

(
n

k

)
bkan−k =

n∑
j=0

(
n

j

)
ajbn−j.

d. ∀x ∈] − Rb;Rb[, b(x)2 =

(
+∞∑
i=0

bi
i!
xi

)
×

(
+∞∑
j=0

bj

j!
xj

)
=

+∞∑
n=0

( ∑
i+j=n

bi
i!

bj

j!

)
xn ce qui nous donne aussi

b2(x) =
+∞∑
n=0

(
n∑

k=0

bk
k!

bn−k

(n− k)!

)
xn =

+∞∑
n=0

(
n∑

k=0

(
n

k

)
bkbn−k

)
xn

n!
.

∀x ∈]− Rb;Rb[, b(x)2 =
+∞∑
n=0

(
n∑

k=0

(
n

k

)
bkbn−k

)
xn

n!
=

+∞∑
n=2

bn+1

n!
xn = b′(x)− 1.

∀x ∈]− Rb;Rb[,
b′(x)

1+ b(x)2
= 1 donc x 7→ Arctan(b(x))− x est constante sur cet intervalle et comme on a la

condition initiale b(0) = 0 il vient : b(x) = tan(x).

e. Comme tan est DSE sur ]−1; 1[ au moins, elle est égale à sa série de Taylor donc b2n+1 =
tan(2n+1)(0)
(2n+ 1)!

.

Si x ∈
]
0; π

2

[
, on a tan(x) =

n∑
k=0

b2k+1x
2k+1 + 1

(2n+ 1)!

∫ x

0
(x − t)2n+1 tan(2n+2)(t)dt mais comme on

sait que tan′ = 1 + tan2, on montre par une récurrence facile que tan(k) est positive sur
]
0; π

2

[
ainsi

n∑
k=0

b2k+1x
2k+1 6 tan(x) donc

∑
k>0

b2k+1x
2k+1 est convergente et on a Rb > π

2
. Comme la fonction tan

n’admet pas de limite finie en π

2
, on a aussi Rb 6 π

2
ce qui donne au final : Rb = π

2
.
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On a donc par imparité de tan : ∀x ∈
]
− π

2
; π
2

[
,

+∞∑
n=0

b2n+1x
2n+1 = tan(x).

f. Si R = Min(Ra, Rb), ∀x ∈]− R;R[, a(x)b(x) =
+∞∑
n=0

(
n∑

k=0

(
n

k

)
akbn−k

)
xn

n!
=

+∞∑
n=1

an+1

n!
xn = a′(x).

Alors a′(x) =
sin(x)
cos(x)

a(x) qui est une équation linéaire homogène du premier ordre ; comme x 7→ ln(| cos(x)|)

est une primitive de x 7→ tan(x) et que a(0) = 1 il vient : a(x) = 1

cos(x)
.

Comme avant on montre par récurrence avec la formule
(

1

cos

)′
= tan×

(
1

cos

)
que les dérivées successives

de 1

cos
sont positives donc que Ra = π

2
. Par parité de 1

cos
: ∀x ∈

]
− π

2
; π
2

[
,

+∞∑
n=0

a2n

(2n)!
x2n = 1

cos(x)
.

Une formule simple relie ces nombres tangents aux valeurs de la fonction zeta de Riemann en les nombres

entiers : ∀n ∈ N∗, ζ(2n) =
+∞∑
k=1

1

k2n
=

b2n−1

2(4n − 1)(2n− 1)!
π2n de sorte qu’on a les jolies relations :

ζ(2) = π2

6
, ζ(4) = 2

2(16− 1)3!
π4 = π4

90
, ζ(6) = 16

2(64− 1)5!
π6 = π6

945
, ζ(8) = 272

2(256− 1)7!
π6 = π8

9450
.

Comme on sait que lim
n→+∞

ζ(2n) = 1, on a l’équivalent : b2n−1 ∼∞
(
4

π2

)n
(2n− 1)!.� �

10.28� �a. On sépare les involutions de [[1;n + 2]] : celles qui fixent n + 2 au nombre de In+1 (une involution de

[[1;n + 1]] induite) et celles qui ne fixent pas n + 2 (qui l’échange avec k (n + 1 choix) ce qui induit une

involution de [[1;n+ 1]] \ {k}). Comme In 6 n!, on a R > 1.

c. ∀x ∈]−1 ; 1[, (1+x)S(x) =
+∞∑
n=0

In
n!

xn+
+∞∑
n=1

In−1

(n− 1)!
xn = 1+

+∞∑
n=1

In + nIn−1

n!
xn = 1+

+∞∑
n=1

In+1

n!
xn = S′(x).

On en déduit, puisque S(0) = 1 et en intégrant l’équation différentielle, que ∀x ∈]− 1 ; 1[, S(x) = e
x+x2

2 .

d. Alors S(x) =

(
+∞∑
k=0

1

k!
xk

)
×

(
+∞∑
j=0

1

j!2j
x2j

)
et comme R > 0 : In =

∑
i+2j=n

n!
i!j!2j

, I2n =
n∑

j=0

(2n)!

(2n− 2j)!j!2j
.� �

10.29� �Ces séries sont absolument convergentes : en effet, si x ∈] − 1; 0[∩ ]0; 1[, en notant uk =

(
k

m

)
xk−m, on a

∀k > m,

∣∣∣uk+1

uk

∣∣∣ = k

k−m+ 1
|x| → |x| < 1 et on utilise la règle de d’Alembert.

Pour m = 0 et x ∈] − 1; 1[, il s’agit d’une simple série géométrique absolument convergente de raison x tel

que |x| < 1 donc
+∞∑
k=0

xk = 1

1− x
= 1

(1− x)0+1 : c’est bon pour l’initialisation !

Soit m > 0, supposons que ∀x ∈] − 1; 1[,
+∞∑
k=m

(
k

m

)
xk−m =

1

(1− x)m+1
. Comme les séries

∑
n>0

(
n+m

m

)
xn

et
∑
k>0

xk convergent absolument, on peut utiliser le théorème sur le produit de Cauchy de telles séries.

On obtient la convergence absolue (mais on le savait déjà) de
∑
n>0

( n∑
j=0

(
j+m

m

))
xn avec la formule :

∀x ∈]− 1; 1[,
+∞∑
n=0

( n∑
j=0

(
j+m

m

))
xn =

( ∑
n>0

(
n+m

m

)
xn

)(
+∞∑
n=0

xn

)
.

Il suffit alors de se rappeler que, par récurrence, on montre
n∑

j=0

(
j+m

m

)
=

(
n+m+ 1

m+ 1

)
pour obtenir

+∞∑
n=0

(
n+m+ 1

m+ 1

)
xn =

+∞∑
k=m+1

(
k

m+ 1

)
xk−m−1 =

1

(1− x)m+2
et avoir l’hérédité.

Par principe de récurrence, on a bien ∀m ∈ N, ∀x ∈]− 1; 1[,
+∞∑
k=m

(
k

m

)
xk−m =

1

(1− x)m+1
.
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� �
10.30� �a. On choisit les p qui ne bougent pas et on dérange le reste : N(n, p) =

(
n

p

)
D(n− p).

b. D(n) 6 n! donc R > 1 car
D(n)
n!

6 1. Comme
n∑

p=0

N(n, p) = n!, on a
n∑

p=0

D(n− p)
(n− p)!

× 1

p!
= 1. Ainsi, par

produit de Cauchy car le rayon de
∑
n>0

xn

n!
est infini : exf(x) = 1

1− x
donc f(x) = e−x

1− x
et en développant

le produit de Cauchy :
D(n)
n!

=
n∑

k=0

(−1)k

k!
∼ 1

e
.

c. Il vient simplement : lim
n→+∞

1

n!
N(n, p) = 1

e.p!� �
10.31� �a. Par construction, ∀n ∈ N, |bn| 6 1 donc le rayon R′ est supérieur à celui de la série

∑
n>0

xn, ce qui

prouve que R′ > 1. De plus, la suite (bn)n>0 ne tend pas vers 0 donc la série
∑
n>0

bn diverge donc R′ 6 1 car∑
n>1

bnx
n diverge pour x = 1. Par conséquent, R′ = 1.

Comme il existe une infinité de termes de la suite (an)n∈N qui sont supérieurs ou égaux à 1 (il y a une

infinité de carrés parfaits), on en déduit que la série
∑
n>0

an diverge, ce qui prouve que R 6 1. Comme

an = card {k ∈ [[0; ⌊
√
n⌋]] | n− k2 est un carré parfait}, on a an 6 √

n+ 1 6 n+ 1 et comme la série entière∑
n>0

(n+ 1)xn est de rayon 1, on a R > 1. Par conséquent, R = 1.

Pour n ∈ N, an =
∑

(u,v)∈[[0;⌊√n⌋]]2
u2+v2=n

1 =
∑

(i,j)∈[[0;n]]
i+j=n

bibj (en posant i = u2 et j = v2) par définition des bn. Par

exemple, a5 = b0b5 + b1b4 + b2b3 + b3b2 + b4b1 + b5b0 = 2 car b2 = b3 = b5 = 0 et b0 = b1 = b4 = 1

ce qui correspond aux deux écritures 5 = 1 + 4(= 12 + 22 = 22 + 11 =)4 + 1. Par produit de Cauchy de

deux séries entières, pour x ∈] − R′;R′[=] − 1; 1[, on a g(x)2 =
( +∞∑

n=0

bnx
n
)( +∞∑

n=0

bnx
n
)

=
+∞∑
n=0

cnx
n avec

cn =
n∑

k=0

bkbn−k =
∑

(i,j)∈[[0;n]]2

i+j=n

bibj = an. Ainsi, g(x)2 = f(x) ce qui prouve que
∑
n>0

anx
n converge pour

x ∈]− 1; 1[ (on déduit de ce calcul, indépendamment de ce qui précède, que R > 1).

b. Si x ∈]0; 1[, hx : t 7→ xt
2

= et
2 ln(x) est continue sur R+ et on a hx(t) = et

2 ln(x) =
+∞

o

(
1

t2

)
car ln(x) < 0

donc hx est intégrable sur R+ par comparaison aux intégrales de Riemann.

c. En posant t = u√
− ln(x)

= φ(u), φ étant une bijection strictement croissante de classe C1 de R+ dans

R+, par changement de variable
∫ +∞

0
x−t2dt =

∫ +∞

0
et

2 ln(x)dt = 1√
− ln(x)

∫ +∞

0
e−u2

du = 1

2

√
−π

ln(x)
.

Comme la fonction hx est décroissante sur R+, on a ∀k > 1,

∫ k+1

k
hx(t)dt 6 xk

2

= hx(k) 6
∫ k

k−1
hx(t)dt.

On somme pour k allant de 1 à +∞ (tout converge) donc
∫ +∞

0
xt

2

dt 6 g(x) 6
∫ +∞

0
xt

2

dt+ hx(0). Ainsi :

g(x) ∼
1−

1

2

√
−π

ln(x)
d’où l’on déduit que f(x) ∼

1−

−π

4 ln(x)
car f(x) = g(x)2.� �

10.32� �a. Il est clair que C2 = 1 et on a déjà vu que dans l’énoncé que C3 = 2, C4 = 5. Pour k ∈ [[1;n − 1]],

le nombre de parenthésages d’un mot à n éléments qui scindent les n éléments en k à gauche et n − k

à droite (pour la dernière évaluation) vaut CkCn−k en prenant C1 = 1 (pas le choix pour “arranger” un

terme). Comme un parenthésage correct doit couper les n éléments en deux parties non vides, on obtient,
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en effectuant une partition, la relation de récurrence : Cn =
n−1∑
k=1

CkCn−k =
n∑

k=0

CkCn−k avec C0 = 0.

b. Pour x ∈] − R;R[, on C(x)2 =
+∞∑
n=0

( n∑
k=0

CkCn−k

)
xn =

+∞∑
n=2

Cnx
n = C(x) − C1x − C0 = C(x) − x. Ainsi

C(x) est racine du polynôme X2 − X+ x dont le discriminant vaut ∆ = 1− 4x > 0 puisque C(x) est réel. En

posant R′ = Min

(
R, 1

4

)
> 0, on a donc ∀x ∈]− R′;R′[, C(x) = 1±

√
1− 4x

2
. En posant f(x) =

2C(x)− 1√
1− 4x

, la

fonction f est continue sur ]− R′;R′[ par opérations et on a f(x)2 = 1 par calculs, ainsi f est constante valant

1 ou −1 sur cet intervalle. Comme f(0) = −1, on a ∀x ∈]− R′;R′[, f(x) = −1 donc C(x) = 1−
√
1− 4x

2
.

c. Réciproquement, soit D :
]
− 1

4
; 1
4

[
→ R définie par D(x) = 1−

√
1− 4x

2
. D est développable en série

entière sur
]
− 1

4
; 1
4

[
et D(x) = −1

2

+∞∑
n=1

(−1)n−1(2n)!

4n(n!)2(2n− 1)
(−4)nxn =

+∞∑
n=1

(2n)!

2(n!)2(2n− 1)
xn =

+∞∑
n=1

Dnx
n d’après

le cours. Mais comme D(x)2−D(x)+x = 0, par produit de Cauchy, on a aussi (on en vient) D0 = 0, D1 = 1

et ∀n > 2, Dn =
n∑

k=0

DkDn−k. Comme les suites (Cn)n∈N et (Dn)n∈N vérifient les mêmes conditions initiales

et la même relation de récurrence, elles sont égales : ∀n > 1, Cn = Dn =
(2n)!

2(n!)2(2n− 1)
=

(
2n

n

)
2(2n− 1)

.

� �
10.6 Développement en série entière� �� �

10.33� �a. On a ak =
f(k)(0)

k!
et Rn(x) =

∫ x

0

(x− t)n

n!
f(n+1)(t)dt.

b.
Rn(x)

xn+1 =
∫ x

0

(
1− t

x

)n
n!

f(n+1)(t)dt <

∫ y

0

(
1− t

y

)n
n!

f(n+1)(t)dt car 1 − t

x
6 1 − t

y
pour t ∈ [0 ; x] et que

f(n+1)(t) > 0. On a donc Rn(x) 6 xn+1

yn+1 Rn(y) et on conclut par encadrement (x fixé).

c. Ce qui précède prouve que f est développable en série entière sur [0 ;α[ mais comme f est paire ou impaire,
elle l’est sur ]− α ;α[.� �

10.34� �Posons f : x 7→ sh (Arcsin x), en dérivant sur ] − 1; 1[, on trouve que f vérifie l’équation différentielle

(E) : (1− x2)y′′ − xy′ − y = 0 avec les conditions initiales y(0) = 0 et y′(0) = 1.

Si f est DSE sur ] − R;R[ avec 0 < R 6 1, alors on aurait (an)n∈N telle que ∀x ∈] − R;R[, f(x) =
+∞∑
n=0

anx
n

avec a0 = 0 et a1 = 1. En remplaçant dans l’équation, on trouve que ∀n ∈ N, an+2 = n2 + 1

(n+ 2)(n+ 1)
an

d’où, par récurrence : a2p = 0 et a2p+1 = 1

(2p+ 1)!

p∏
k=1

((2p− 1)2 + 1).

Réciproquement, par d’Alembert, le rayon de cette série est bien R = 1 car si up = a2p+1x
2p+1, on a

lim
p→+∞

∣∣∣up+1

up

∣∣∣ = |x|2. En remontant les calculs précédents, la fonction : g : x 7→
+∞∑
p=0

a2p+1x
2p+1 est solution

de l’équation différentielle (E) et elle vérifie bien g(0) = 0 et g′(0) = 1 donc f = g par le théorème de

Cauchy-Lipschitz et f est bien DSE sur ]− 1; 1[ avec le développement ci-dessus.� �
10.35� �a. Les fonctions x 7→ (1+ x)α sont DSE sur ]− 1; 1[ avec ∀x ∈]− 1; 1[, (1+ x)α =

+∞∑
n=0

(
α

n

)
xn or ici α = −1

2

donc

(
α

n

)
=

(
− 1

2

)
×
(
− 3

2

)
× · · ·

(
− 2n− 1

2

)
n!

=
(−1)n(2n)!

22n(n!)2
= an.
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b. Si ∀n ∈ N, bn =
(2n+ 1)!

(n!)2
, on a ∀x ∈ R∗,

bn+1x
2n+2

bnx
2n =

(2n+ 3)(2n+ 2)

(n+ 1)2
x2 =

2(2n+ 3)
(n+ 1)

x2 → (4x2)+.

D’après D’Alembert, on a convergence si |x| < 1

2
donc R > 1

2
et divergence si |x| > 1

2
donc R 6 1

2
: R = 1

2
.

De plus, pour x ∈
]
− 1

2
; 1
2

[
, on a x(1− 4x2)

−1
2 =

∑
n>0

(2n)!

(n!)2
x2n+1 qu’on peut dériver (on le peut à l’intérieur

de l’intervalle ouvert de convergence) pour avoir la relation f(x) =
(
x(1− 4x2)

−1
2

)′
= 1

(1− 4x2)
3
2

.

• Il y a divergence quand x = ±R car
(
|bnR2n|

)
n>0

crôıt (au moins à partir d’un certain rang) d’après b..

• Ou aussi par Stirling : bn
22n

=
(2n+ 1)(2n)!

22n(n!)2
∼
+∞

(2n)(2n)2n
√
4πne2n

e2n22nn2n(2πn)
∼
+∞

2

√
n

π
qui ne tend même pas

vers 0 donc
∑
n>0

bnR
2n et

∑
n>0

(−1)nbnR
2n divergent grossièrement.� �

10.36� �a. Le rayon vaut R = 1 par les méthodes habituelles. Par Riemann, la série converge quand x = 1 et

quand x = −1 donc le domaine de définition D de φ est [−1; 1].

b. En posant un(x) =
xn+1

n2 − 1
, on a ||un||∞,[−1;1] =

1

n2 − 1
et
∑
n>2

1

n2 − 1
converge donc

∑
n>2

un CVN sur

[−1] et comme toutes les un sont continues, φ est continue sur [−1; 1].

Si x ∈] − 1; 1[, comme 1

n2 − 1
= 1

2(n− 1)
− 1

2(n+ 1)
, on a φ(x) =

+∞∑
n=2

xn+1

2(n− 1)
−

+∞∑
n=2

xn+1

2(n+ 1)
donc

φ(x) = x2

2

+∞∑
n=2

xn−1

n− 1
− 1

2

(
− x− x2

2
+

+∞∑
n=0

xn+1

n+ 1

)
= −x2

2
ln(1− x) + x

2
+ x2

4
+ 1

2
ln(1− x).

On a donc ∀x ∈]−1; 1[, φ(x) = x

2
+ x2

4
+

(1+ x)(1− x)
2

ln(1−x) et par continuité de φ sur [−1; 1], on obtient

φ(1) =
+∞∑
n=2

1

n2 − 1
= lim

x→1−
φ(x) = 3

4
et φ(−1) =

+∞∑
n=2

(−1)n+1

n2 − 1
= lim

x→−1+
φ(x) = 1

4
.� �

10.37� �a. Il s’agit d’une récurrence simple car u1 = 1, u2 = 3

2
et si 1 6 un 6 2 pour un entier n > 2, alors on a

simplement 1 6 1+ 1

n+ 1
6 un+1 6 1+ 3

n+ 1
6 2. u1 = 1, u2 = 3

2
puis hérédité simple.

On en déduit successivement que :

• lim
n→+∞

un = 1 car un = 1+
2un−1 − 1

n
et (2un−1 − 1)n>1 est bornée.

• un − 1∼
∞

1

n
car un − 1 =

2un−1 − 1

n
et (2un−1 − 1)n>1 tend vers 1.

• un =
∞

1+ 1

n
+ 2

n2 + o

(
1

n2

)
car un − 1− 1

n
= 2

un−1 − 1

n
et que un−1 − 1∼

∞
1

n− 1
∼
+∞

1

n
.

b. Le rayon R de cette série est entre ceux des séries
∑
n>0

xn et
∑
n>0

2xn donc R = 1. Ou alors un ∼
+∞

1 direct.

Pour x ∈] − 1; 1[, on a S′(x) =
+∞∑
n=0

(n + 1)un+1x
n =

+∞∑
n=0

(n + 1)xn + 2
+∞∑
n=0

unx
n −

+∞∑
n=0

xn. On reconnâıt la

série géométrique et sa dérivée donc S′(x) = 1

(1− x)2
+ 2S(x)− 1

1− x
= 2S(x) + x

(1− x)2
.

Classiquement avec variation de la constante : S(x) = 1

2
+ e2x

∫ x

0

te−2t

(1− t)2
dt et on peut aussi en déduire que

S est DSE sur ]− 1; 1[ par produit de Cauchy et intégration des fonctions DSE.

c. D’après a., comme un =
∞

a+ b

n
+O

(
1

n2

)
: ∃A > 0, ∀n > 1,

∣∣∣un−1− 1

n

∣∣∣ 6 A

n2 . En sommant ces inégalités

après les avoir multipliées par xn, on obtient : ∀x ∈]0; 1[,
∣∣∣S(x)− 1

2
− 1

1− x
+ 1+ ln(1− x)

∣∣∣ 6 A
+∞∑
n=1

xn

n2 or
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+∞∑
n=1

xn

n2 est bornée au voisinage de 1− donc S(x)− 1

1− x
+ ln(1− x) =

1−
O(1).� �

10.38� �a. f est clairement continue donc f est de classe C1, etc.. : récurrence sur la classe de f.

b. Si f est DSE (avec rayon R > 0) et solution de l’équation différentielle, alors ∀x ∈]−R;R[, f(x) =
+∞∑
n=0

anx
n.

On remplace dans l’équation et on trouve : ∀x ∈]− R;R[,
+∞∑
n=0

((n+ 1)an+1 − αan − λnan)x
n = 0 donc par

unicité des coefficients dans une série entière de rayon strictement positif : ∀n ∈ N, an+1 = α+ λn

n+ 1
an.

Réciproquement, si on définit f par f(x) =
+∞∑
n=0

anx
n avec la suite (an)n∈N vérifiant cette récurrence et par

exemple a0 = 1, on a bien R = +∞ avec d’Alembert et f est solution de l’équation en remontant les calculs.
c. Soit f ∈ E tel que f(0) = 0, alors f′(0) = αf(0) + f(0) = 0 et, plus généralement, par récurrence :
∀n ∈ N∗, f(n+1)(0) = αf(n)(0)+ λnf(n)(0) = 0. Soit a > 0, alors si on note Mp = Sup

x∈[a−;a]
|f(p)(x)|, on a avec

l’inégalité de Taylor-Lagrange : ∀n ∈ N∗, ∀x ∈ [−a;a],
∣∣∣f(x)− n∑

k=0

f(k)(0)
k!

∣∣∣ 6 an+1Mn+1

(n+ 1)!
. Mais puisque

∀n ∈ N, ∀x ∈ [−a;a], f(n+1)(x) = αf(n)(x)+λnf(n)(λx) donc Mn+1 6 (α+1)Mn et donc Mn 6 (α+1)nM0.

Ainsi : ∀n ∈ N∗, ∀x ∈ [−a;a],
∣∣∣f(x)− n∑

k=0

f(k)(0)
k!

∣∣∣ 6 an+1(α+ 1)n+1M0

(n+ 1)!
qui tend vers 0 quand n tend vers

+∞. Ainsi, f est DSE sur [−a;a] et f = 0 sur [−a;a] pour tout a > 0 : f = 0 sur R.
d. Si g est une solution quelconque de l’équation, alors posons h = g− g(0)f où f est la solution DSE de la
question b. valant 1 en 0. Comme h est de classe C∞ et vaut 0 en 0 par construction, on a h = 0 d’après la
question c. car h est solution de l’équation aussi. Ainsi g = g(0)f : E = Vect(f).� �

10.39� �a. Le critère spécial des séries alternées prouve l’existence de f(x) si x ∈]− 1 ; +∞[.

Pour β > −1 et x ∈]β ; +∞[, on a

∣∣∣∣p!(−1)n+p−1

(x+ n)p+1

∣∣∣∣ 6 p!
(n+ β)p+1 qui est le terme général d’une série

convergente d’après Riemann ; d’après le théorème de dérivation terme à terme d’une série de fonctions et
par récurrence (comme il y a convergence simple pour f) : f est de classe C∞ et on a les dérivées successives

sous forme de séries de fonctions : ∀p ∈ N, ∀x ∈]− 1 ; +∞[, f(p)(x) =
+∞∑
n=1

p!(−1)n+p−1

(x+ n)p+1 .

b. Pour x ∈]− 1 ; 1[, comme
f(k)(0)

k!
= (−1)k

+∞∑
n=1

(−1)n−1

nk+1 = ak = (−1)k 2k+1 − 2

2k+1 ζ(k+ 1) (classique), alors

pour p ∈ N :
∣∣∣f(x) − p∑

k=0

akx
k
∣∣∣ = ∣∣∣ +∞∑

n=1

(
(−1)n−1

x+ n
− (−1)n−1

n

p∑
k=0

(−1)kxk

nk

)∣∣∣ ce qui amène la majoration∣∣∣f(x) − p∑
k=0

akx
k
∣∣∣ = ∣∣∣ +∞∑

n=1

(
(−1)n−1

x+ n
− (−1)n−1 1− (−x/n)p+1

x+ n

)∣∣∣ = |x|p+1
∣∣∣ +∞∑
n=1

(−1)n−1

(x+ n)np+1

∣∣∣ 6 |x|p+1

x+ 1
d’où

la convergence vers f vers sa série de Taylor. On peut aussi utiliser Taylor reste intégral.

c. On a facilement : ∀x > −1, f(x) + f(x + 1) = 1

x+ 1
donc, comme f continue en 0 et f(0) = ln(2), on

a f(x) ∼
−1+

1

x+ 1
. De plus, f est décroissante sur ] − 1 ; +∞[ car f′(x) =

+∞∑
n=1

(−1)n

(x+ n)2
< 0 ce qui justifie

l’inégalité ∀x > 0, f(x) + f(x+ 1) = 1

x+ 1
6 2f(x) 6 1

x
= f(x) + f(x− 1) donc f(x) ∼

+∞
1

2x
.� �

10.40� �Le rayon vaut R = 1 par d’Alembert car ln

(
1 + 1

n

)
∼
+∞

1

n
. Il y a convergence en −1 par le CSSA et

divergence en 1 car alors le terme général de la série est équivalent à 1

n
. Donc convergence sur [−1; 1[. Par le

CSSA, si x ∈ [−1; 0], ∀n ∈ N∗, |Rn(x)| =
∣∣∣ +∞∑
p=n+1

ln

(
1+ 1

p

)
xp
∣∣∣ 6 ln

(
1+ 1

n+ 1

)
xn+1 6 ln

(
1+ 1

n+ 1

)
6 1

n

donc il y a convergence uniforme sur [−1; 0[ et donc continuité de la somme sur [−1; 1[.
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En 1−, on encadre ln

(
1 + 1

n

)
= − ln

(
1 − 1

n+ 1

)
> 1

n+ 1
et ln

(
1 + 1

n

)
6 1

n
; ainsi, si x ∈ [0; 1[, on a

+∞∑
n=1

xn

n+ 1
6

+∞∑
n=1

ln

(
1+ 1

n

)
xn = f(x) 6

+∞∑
n=1

xn

n+ 1
donc 1

x

(
− ln(1− x)− x

)
6 f(x) 6 − ln(1− x). En terme

d’équivalent, cela donne : f(x) ∼
1−

− ln(1− x). De plus, déjà vu cette année en TD : f(−1) = ln

(
2

π

)
.� �

10.41� �D’abord la série
∑
n>1

(−1)n−1

n2 converge car
(−1)n−1

n2 =
+∞

O

(
1

n2

)
et on utilise Riemann (2 > 1).

De plus, pour n > 1, on a
2n∑
k=1

(−1)k−1

k2
=

n∑
k=1

(
(−1)2k−2

(2k− 1)2
+

(−1)2k−1

(2k)2

)
=

n∑
k=1

1

(2k− 1)2
−

n∑
k=1

1

(2k)2
en

séparant les termes d’indice pair et ceux d’indice impair. En notant Sn =
n∑

k=1

1

k2
la somme partielle de la

série de Riemann pour α = 2, on sait que lim
n→+∞

Sn = ζ(2) = π2

6
.

Alors
2n∑
k=1

(−1)k−1

k2
=

n∑
k=1

1

(2k− 1)2
+

n∑
k=1

1

(2k)2
− 2

n∑
k=1

1

(2k)2
=

2n∑
k=1

1

k2
− 2

n∑
k=1

1

(2k)2
= S2n − 1

2
Sn qui tend

vers π2

12
en +∞. Ainsi

+∞∑
n=1

(−1)n−1

n2 = π2

12
.

Soit f définie sur [0; 1] par f(0) = 1 et f(x) =
ln(1+ x)

x
si x > 0 ; f est DSE donc continue sur [0; 1] car

∀x ∈]0; 1[, f(x) = 1

x

+∞∑
n=1

(−1)n−1

n
xn =

+∞∑
n=1

(−1)n−1

n
xn−1 (valable pour x = 0 (clair) et x = 1 (classique)).

Pour n > 1 et x ∈ [0; 1], |Rn(x)| =
∣∣∣ +∞∑
k=n+1

(−1)k−1

k
xk−1

∣∣∣ 6 xn

n+ 1
6 1

n+ 1
donc ||Rn||∞,[0;1] 6 1

n+ 1
→ 0

ce qui garantit la convergence uniforme de la série de fonctions sur [0; 1] donc la continuité de f sur [0; 1] (et
la formule pour x = 1 aussi d’ailleurs). Par convergence uniforme sur un segment, on peut intégrer terme à

terme :
∫ 1

0

ln(1+ x)
x

dx =
∫ 1

0

( +∞∑
n=1

(−1)n−1

n
xn−1

)
dx =

+∞∑
n=1

(∫ 1

0

(−1)n−1

n
xn−1dx

)
=

+∞∑
n=1

(−1)n−1

n2 = π2

12
.

� �
10.7 Exercices aux oraux des étudiants de PSI1� �� �

10.42� �a. Pour ρ > 0, si P est de degré d, la suite
(
P(n)ρn

n!

)
n∈N

tend vers 0 par croissance comparée car

P(n) =
+∞

O(nd) donc P(n)ρn =
+∞

o(ρ+ 1)n) =
+∞

o(n!). Ainsi
∑
n>0

P(n)
n!

zn est de rayon R = +∞.

b. La famille
(
1, X, X(X − 1), · · · , X(X − 1) · · · (X − d + 1)

)
est une famille de polynômes de Rd[X] de degrés

échelonnés, elle est donc une base de Rd[X] grâce à la dimension.

Si deg(P) = 0, alors P = a0 ∈ Z. Si deg(P) = 1, alors P = a1X+ a0 avec a0 et a1 entiers.

Si on suppose que pour un entier d et P ∈ Z[X] de degré inférieur ou égal à d, on a P =
d∑

k=0

ak

k−1∏
i=0

(X − i)

avec a0, · · · , ad entiers, alors soit Q ∈ Z[X] de degré d + 1. On écrit Q = ad+1X
d+1 + · · · avec ad+1 ∈ Z,

alors Q− ad+1

d∏
i=0

(X− i) est un polynôme à coefficients entiers de degré inférieur à d qu’on peut écrire par

hypothèse de récurrence
d∑

k=0

ak

k−1∏
i=0

(X− i) avec des entiers a0 . . . , ad. Ainsi Q =
d+1∑
k=0

ak

k−1∏
i=0

(X− i) ce qui clôt

la récurrence.

Ainsi
+∞∑
n=0

P(n)
n!

=
+∞∑
n=0

1

n!

d∑
k=0

ak

k−1∏
i=0

(n− i) =
d∑

k=0

ak

( +∞∑
n=k

1

n!

k−1∏
i=0

(n− i)
)
=

d∑
k=0

ak

+∞∑
n=k

1

(n− k)!
(somme d’un

nombre fini de séries numériques convergentes) donc
+∞∑
n=0

P(n)
n!

=
d∑

k=0

ak

+∞∑
n=k

1

(n− k)!
=
( d∑

k=0

ak

)
e ∈ Ze.
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� �
10.43� �a. fn : x → anx

n est continue sur [0;R] et ||fn||∞,[0;R] = |an|Rn. Par hypothèse, la série
∑
n>0

|an|Rn

converge donc
∑
n>0

fn converge normalement sur [0;R] et f est donc continue sur [0;R], donc en R.

b. f est continue sur ]0; 1[. Si x ∈]0; 1[, on a f(x) = 1

x
ln

(
1− x

1+ x

)
= 1

x

(
ln(1 − x) − ln(1 + x)

)
donc

f(x) ∼
1−

ln(1 − x) ∼
1−

o

(
1√
1− x

)
et f est intégrable sur

[
1

2
; 1
[
. f(x)=

0

1

x

(
− x + o(x) − x + o(x)

)
∼
0
−2 et f

continue sur [0; 1[ en posant f(0) = −2 : f est intégrable sur
[
0; 1

2
]. Par conséquent :

∫ 1

0
f(t)dt converge.

Pour x ∈]0; 1[, f(x) = 1

x
ln

(
1− x

1+ x

)
= 1

x

(
ln(1 − x) − ln(1 + x)

)
= −2

x

+∞∑
n=0

x2n+1

2n+ 1
= −2

+∞∑
n=0

x2n

2n+ 1
. On a

donc : ∀x ∈ [0; 1[, f(x) = −2
+∞∑
n=0

x2n

2n+ 1
. Posons alors gn : x 7→ − 2x2n

2n+ 1
.

Les fonctions gn sont continues sur [0; 1[ et
∑
n>0

gn converge simplement vers f qui est continue sur [0; 1[.

De plus,
∫ 1

0
|gn| = 2

(2n+ 1)2
et
∑
n>0

2

(2n+ 1)2
converge. Par le théorème d’intégration terme à terme, on

en déduit que f est intégrable sur [0; 1[ (ce qu’on savait déjà) et que
∫ 1

0
f =

+∞∑
n=0

∫ 1

0
gn = −

+∞∑
n=0

2

(2n+ 1)2
.

c. Comme ζ(2) = π2

6
, en séparant les termes pairs et impairs, on montre que

+∞∑
n=0

1

(2n+ 1)2
= π2

8
. Pour

x > 1, f(x) = 1

x
ln

(
x− 1

1+ x

)
= 1

x

(
ln(x−1)−ln(1+x)

)
donc f(x) ∼

1+
ln(x−1) ∼

1+
o

(
1√
x− 1

)
donc f est intégrable

sur ]1; 2]. f(x) = 1

x

(
ln

(
1− 1

x

)
− ln

(
1+ 1

x

))
=
+∞

1

x

(
− 1

x
+ o

(
1

x

)
− 1

x
+ o

(
1

x

))
∼
+∞

2

x2
donc f est intégrable

sur [2; +∞[. f est donc intégrable sur ]1; +∞[ d’où sur ]0; 1[∪]1; +∞[ ce qui permet d’écrire
∫ 1

0
f(t)dt.

Dans
∫ +∞

1
f(t)dt, on effectue le changement de variable t = 1

u
= φ(u) avec φ qui est une bijection strictement

décroissante de classe C1 de ]0; 1[ dans ]1; +∞[ :
∫ +∞

1
f(t)dt =

∫ 0

1
f

(
1

u

)(
− 1

u2

)
du.

Enfin :
∫ +∞

1
f(t)dt =

∫ 0

1
u ln

( 1

u
− 1

1+
1

u

)(
− 1

u2

)
du =

∫ 1

0
f(u)du. Ainsi :

∫ +∞

0
f(t)dt = 2

∫ 1

0
f(t)dt = −π2

2
.

� �
10.44� �a. Comme la suite

(
1

n+ 1

)
n>0

est décroissante et tend vers 0, par le critère spécial des séries alternées,

la suite (an)n>0 converge donc an =
+∞

O(1). Ainsi, an

n!
=
+∞

O

(
1

n!

)
et comme le rayon de convergence de la

série
∑
n>0

xn

n!
vaut +∞, on en déduit que le rayon R de la série

∑
n>0

an

n!
xn vérifie R > +∞ donc R = +∞.

b. Avec l’énoncé, an =
n∑

k=0

(−1)k

k+ 1
=

n∑
k=0

(−1)k
∫ 1

0
tkdt =

∫ 1

0

( n∑
k=0

(−t)k
)
dt =

∫ 1

0

1− (−t)n+1

1+ t
dt par

linéarité de l’intégrale. Comme
∫ 1

0

dt

1+ t
= [ln(1 + t)]10 = ln(2), par inégalité de la moyenne, on majore

|an − ln(2)| =
∣∣∣∫ 1

0

(−t)n+1

1+ t
dt

∣∣∣ = ∫ 1

0

tn+1

1+ t
dt 6

∫ 1

0
tn+1dt = 1

n+ 2
. Par encadrement, lim

n→+∞
an = ln(2).

c. Méthode 1 : pour x ∈ R∗
+, |g(x)−ln(2)| =

∣∣∣e−x
+∞∑
n=0

an

n!
xn−e−x ln(2)

+∞∑
n=0

xn

n!

∣∣∣ = e−x
∣∣∣ +∞∑
n=0

(an − ln(2))xn

n!

∣∣∣
donc, comme |an − ln(2)| 6 1

n+ 1
d’après b., |g(x) − ln(2)| 6 e−x

+∞∑
n=0

|an − ln(2)|xn
n!

∣∣∣ 6 e−x
+∞∑
n=0

xn

(n+ 1)!
.
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Ainsi, |g(x)− ln(2)| 6 e−x

x

+∞∑
n=0

xn+1

(n+ 1)!
= 1− e−x

x
donc lim

x→+∞
g(x) = ln(2) puisque lim

x→+∞
1− e−x

x
= 0.

Méthode 2 : (méthode générale dès que la suite (an)n>0 est convergente) Écrivons an = ln(2) + rn avec

lim
n→+∞

rn = 0. Comme rn
n!

=
+∞

o

(
1

n!

)
, le rayon de

∑
n>0

rn
n!

xn vaut aussi +∞. Comme tout converge, en

notant h(x) =
+∞∑
n=0

rnx
n

n!
, puisque

+∞∑
n=0

ln(2)
n!

xn = ln(2)ex, g(x) = (ln(2)ex + h(x))e−x = ln(2) + e−xh(x).

Montrons que lim
x→+∞

e−xh(x) = 0. Soit ε > 0, il existe n0 ∈ N tel que ∀n > n0, |rn| 6 ε

2
. De plus, comme

lim
x→+∞

e−x
n0∑
n=0

rnx
n

n!
= 0 par croissances comparées car x 7→

n0∑
n=0

rnx
n

n!
est polynomiale, il existe x0 ∈ R+

tel que ∀x > x0,

∣∣∣e−x
n0∑
n=0

rnx
n

n!

∣∣∣ 6 ε

2
. Si x > x0, |e−xh(x)| 6

∣∣∣e−x
n0∑
n=0

rnx
n

n!

∣∣∣ + e−x
+∞∑

n=n0+1

|rn|xn
n!

6 ε car

+∞∑
n=n0+1

|rn|xn
n!

6 ε

2

+∞∑
n=n0+1

xn

n!
6 ε

2

+∞∑
n=0

xn

n!
= ε

2
ex d’où lim

x→+∞
e−xh(x) = 0. Par somme lim

x→+∞
g(x) = ln(2).� �

10.45� �Cette série converge par le CSSA. Il est clair que le rayon de convergence de la série entière
∑
n>0

(−1)nx4n+1

4n+ 1

est égal à R = 1. On pose donc f(x) =
+∞∑
n=0

(−1)nx4n+1

4n+ 1
pour x ∈ [−1; 1] (cil y a convergence aux bornes).

On sait que f est de classe C∞ sur ]− 1; 1[. Pour x ∈]− 1; 1[, f′(x) =
+∞∑
n=0

(−1)nx4n = 1

1+ x4
.

Comme 1 + x4 = (1 + 2x2 + x4) − 2x2 = (x2 −
√
2x + 1)(x2 +

√
2x + 1), on peut décomposer en éléments

simples cette fraction rationnelle : 1

1+ x4
=

√
2

4

(
−x+

√
2

x2 −
√
2x+ 1

+ x+
√
2

x2 +
√
2x+ 1

)
.

Ainsi : f′(x) =

√
2

8

(
−2x+

√
2

x2 −
√
2x+ 1

+ 2x+
√
2

x2 +
√
2x+ 1

)
+ 1

2

(
1

(
√
2x− 1)2 + 1

+ 1

(
√
2x+ 1)2 + 1

)
et il vient alors

f′(x) =

√
2

8

[
− ln(x2−

√
2x+ 1)+ ln(x2+

√
2x+ 1)

]′
+ 1

2
√
2

[
Arctan

(√
2x− 1

)
+Arctan

(√
2x+ 1

)]′
. Comme

f(0) = 0, on a donc en intégrant (sur un intervalle), pour un réel x dans ]− 1; 1[ :

f(x) =

√
2

8

[
− ln(x2 −

√
2x+ 1) + ln(x2 +

√
2x+ 1)

]
+ 1

2
√
2

[
Arctan

(√
2x− 1

)
+ Arctan

(√
2x+ 1

)]
.

Comme f est continue en 1 : f(1) = lim
x→1−

f(x) =

√
2

8
ln

(
2+

√
2

2−
√
2

)
+ 1

2
√
2

[
Arctan

(√
2−1

)
+Arctan

(√
2+1

)]
ce qui donne f(1) =

√
2

8
ln
(
3+ 2

√
2
)
+ 1

2
√
2

[
π

8
+ 3π

8

]
=

√
2

8
ln
(
3+ 2

√
2
)
+ π

4
√
2
.� �

10.46� �a. L’équation homogène (E0) : ln(x)y′ + y

x
= 0 a pour solutions les fonctions yλ : x 7→ λ

ln(x)
sur ]0; 1[ et

sur ]1; +∞[ avec λ ∈ R car une primitive de x 7→ 1

x ln(x)
est x 7→ ln | ln(x)|. Par variation de la constante,

on a comme solutions de (E) les fonctions yλ : x 7→ x+ λ

ln(x)
sur ]0; 1[ et sur ]1; +∞[ avec λ ∈ R.

b. g se prolonge par continuité en 0 en posant g(0) = 1. De plus, g est de classe C∞ sur ] − 1; +∞[ car

elle est développable en série entière sur ] − 1; 1[ avec g(x) =
ln(1+ x)

x
=

+∞∑
n=0

(−1)n xn

n+ 1
(vrai même pour

x = 0) et qu’elle est de classe C∞ sur R∗
+ par opérations. On constate aussi que la fonction g ne s’annule

pas sur ]− 1; +∞[ car ln ne s’annule qu’en 1 et que g(0) = 1 ̸= 0.

c. Si y est une solution de (E) sur ]0; +∞[, d’après la question a., il existe deux constantes réelles λ1 et

λ2 telles que ∀x ∈]0; 1[, y(x) = x+ λ1
ln(x)

et ∀x ∈]1; +∞[, y(x) = x+ λ2
ln(x)

. Or la continuité de y en 1 impose

λ1 = λ2 = −1. On a alors ∀x ∈]0; 1[∪]1; +∞[, y(x) = x− 1

ln(x)
= 1

g(x− 1)
. Mais comme y(1) = 1 et g(0) = 1,
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on a donc ∀x > 0, y(x) = 1

g(x− 1)
. Réciproquement, cette fonction y : x 7→ 1

g(x− 1)
est de classe C∞ sur

R∗
+ d’après la question b. et solution de (E) d’après la question a..� �

10.47� �a. La suite
(

n

(2n+ 1)!
xn
)
n∈N

est bornée pour tout réel x par croissance comparée. Ou alors, si x ̸= 0,∣∣∣ n+ 1

(2n+ 3)!
xn+1 × (2n+ 1)!

nxn

∣∣∣ = (n+ 1)|x|
n(2n+ 2)(2n+ 3)

tend vers 0 : le rayon de convergence est R = +∞.

b. On sait que : ∀y ∈ R, sin(y) =
+∞∑
n=0

(−1)ny2n+1

(2n+ 1)!
et sh (y) =

+∞∑
n=0

y2n+1

(2n+ 1)!
.

c. Le rayon de convergence de
∑
n>0

xn

(2n+ 1)!
est +∞. Pour x > 0, Φ(x) = 1√

x

+∞∑
n=0

(
√
x)2n+1

(2n+ 1)!
=

sh (
√
x)√

x

d’après b.. Par contre, si x < 0, Φ(x) = 1√
−x

+∞∑
n=0

(−1)n(
√
−x)2n+1

(2n+ 1)!
=

sin(
√
−x)√

−x
. Et Φ(0) = 1.

d. Posons f(x) =
+∞∑
n=0

n

(2n+ 1)!
xn pour x ∈ R. Par dérivation d’une série entière sur le disque ouvert de

convergence : ∀x ∈ R, xΦ′(x) = x
+∞∑
n=1

n xn−1

(2n+ 1)!
=

+∞∑
n=1

nxn

(2n+ 1)!
= f(x).

Ainsi f(0) = 0 et ∀x > 0, f(x) = x

(
sh (

√
x)√

x

)′
=

√
xch (

√
x)− sh (

√
x)

2
√
x

.

De même, ∀x < 0, f(x) = x

(
sin(

√
−x)√

−x

)′
=

√
−x cos(

√
−x)− sin(

√
−x)

2
√
−x

.� �
10.48� �a. Pour dénombrer les permutations qui ont k points fixes exactement, on choisit ces point fixes ce qui fait(

n

k

)
choix et on doit ensuite choisir une permutation des n− k éléments restants sans point fixe, au nombre

de An−k,0. On obtient donc An,k =

(
n

k

)
An−k,0.

b. Comme on a 0 6 An,0 6 n! donc 0 6 An,0

n!
6 1. Ainsi le rayon R de la série entière

∑
n>0

An,0

n!
zn est

supérieur à celui de
∑
n>0

zn. Par conséquent R > 1 donc f(z) =
+∞∑
n=0

An,0

n!
zn converge si |z| < 1.

c. On partitionne σn selon le nombre de points fixes de la permutation et on obtient n! =
n∑

k=0

An,k

sachant que An,1 = 0 clairement. Comme le rayon de la série exponentielle est égal à +∞, pour tout
complexe z tel que |z| < 1, par produit de Cauchy de deux séries entières, on obtient la relation suivante :

ezf(z) =

(
+∞∑
n=0

zn

n!

)(
+∞∑
n=0

An,0

n!
zn

)
=

+∞∑
n=0

(
n∑

k=0

An−k,0

k!(n− k)!

)
zn =

+∞∑
n=0

zn = 1

1− z
. Donc f(z) = e−z

1− z
.

Si on avait R > 1, alors le rayon de convergence de la série produit de Cauchy serait au moins égal à R

d’après le cours or il vaut 1 (série géométrique). Par l’absurde, on a donc R = 1.

d. Encore un produit de Cauchy et si |z| < 1 : f(z) =

(
+∞∑
n=0

(−1)nzn

n!

)(
+∞∑
n=0

zn

)
=

+∞∑
n=0

(
n∑

k=0

(−1)k

k!

)
zn

donc, par unicité des coefficients d’une série entière de rayon non nul : ∀n ∈ N, An,0 = n!
n∑

k=0

(−1)k

k!
.� �

10.49� �a. Par inégalité de la moyenne |an| = 1

n!

∫ 1

0
t
n−1∏
k=1

(k− t)dt 6 1

n!

∫ 1

0

n−1∏
k=1

kdt 6 1

n
dès que n > 1. Comme

le rayon de la série
∑
n>1

xn

n
est égal à 1 (série logarithmique), alors R > 1.

b. Soit x ∈]− 1; 1[, si on pose un(t) =
(n−1∏

k=0

(t− k)
)
xn

n!
, alors on a vu que si n > 2, on avait la majoration
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∀t ∈ [0; 1], |un(t)| 6 |x|n
n(n− 1)

donc la série
∑
n>0

converge normalement sur [0; 1] et on peut intervertir terme

à terme de sorte que S(x) =
+∞∑
n=0

∫ 1

0
un(t)dt =

∫ 1

0

+∞∑
n=0

(
1

n!

n−1∏
k=0

(t− k)xn
)
dt =

∫ 1

0
(1+ x)tdt (série entière à

connâıtre par cœur). Ainsi, S(x) =
[
(1+ x)t

ln(1+ x)

]1
0
= x

ln(1+ x)
.

c. Comme à la question a., on a |an| = 1

n!

∫ 1

0
t
n−1∏
k=1

(k − t)dt > 1

n!

∫ 1

0
t(1 − t)

n−1∏
k=2

(k − 1)dt = 1

4n(n− 1)
.

Comme le rayon de la série
∑
n>2

xn

4n(n− 1)
vaut aussi 1, on a bien R = 1.� �

10.50� �a. Soit f :]− 1; 1[×[0;π] → R définie par f(α, x) =
ln(1+ α cos(x))

cos(x)
avec la valeur f

(
α, π

2

)
= α qui est un

prolongement par continuité puisque lim
x→π/2

cos(x) = 0 donc, si α ̸= 1, ln(1+ α cos(x)) ∼
π/2

α cos(x).

• ∀x ∈ [0;π], α 7→ f(α, x) est de classe C1 sur ]− 1; 1[ (même si x = π

2
).

• ∀α ∈]− 1; 1[, les fonctions x 7→ f(α, x) et x 7→ ∂f
∂α

(α, x) = 1

1+ α cos(x)
sont continues donc intégrables sur

[0;π] car ∂f
∂α

(α, π/2) = 1 = 1

1+ α.0
donc ∂f

∂α
(α, x) = 1

1+ α cos(x)
est valable pour tout x ∈ [0;π].

On en déduit que I est de classe C1 sur ]− 1; 1[ et que I′(α) =
∫ π

0

dx

1+ α cos(x)
.

On pose x = 2Arctan(t) dans cette intégrale et on obtient classiquement I′(α) =
∫ +∞

0

2dt

1+ α+ (1− α)t2
.

On calcule encore et on parvient à I′(α) = 2√
1− α2

[
Arctan

(
t

√
1− α

1+ α

)]+∞

0
= π√

1− α2
.

b. Comme f(0) = 0 et que ]− 1; 1[ est un intervalle : ∀α ∈]− 1; 1[, I(α) = πArcsin(α).

c. On connâıt le DSE de α 7→ 1√
1− α2

qu’on intègre pour trouver celui de Arcsin et on a (c’est presque du

cours) : ∀α ∈] − 1; 1[, I(α) = πArcsin(α) =
+∞∑
n=0

π(2n)!

4n(n!)2(2n+ 1)
α2n+1. Le rayon de convergence de cette

série entière vaut 1 soit parce qu’on le sait, soit en utilisant comme dans le cours la règle de d’Alembert.

On aurait aussi pu faire cette question indépendamment des résultats précédents en écrivant, puisque

α cos(x) ∈]− 1; 1[ pour α ∈]− 1; 1[ et x ∈ [0;π], la relation ln(1+ α cos(x)) =
+∞∑
n=1

(−1)n+1 cosn(x)αn

n
. On a

donc I(α) =
∫ π

0

+∞∑
n=1

(−1)n+1 cosn−1(x)αn

n
dx. On pose fn(x) =

(−1)n+1 cosn−1(x)αn

n
si n > 1. Comme il

est clair que ||fn||∞,[0;π] =
|α|n
n

:
∑
n>1

|α|n
n

converge. On a donc convergence normale de
∑
n>1

fn sur le seg-

ment [0;π] donc ∀α ∈]− 1; 1[, I(α) =
+∞∑
n=1

∫ π

0
fn(x)dx =

+∞∑
n=1

Inα
n en notant In =

∫ π

0

(−1)n+1 cosn−1(x)
n

dx.

Ceci prouve que I est développable en série entière avec un rayon supérieur ou égal à 1.

Comme cos(π − x) = − cos(x), par le changement de variable x = π − t dans l’intégrale, on a I2n = 0

et I2n+1 = 2W2n

2n+ 1
où W2n =

(2n)!π

22n+1(n!)2
est la classique intégrale de Wallis. Ainsi, par Stirling ou

directement Wallis, |I2n+1| ∼
+∞

√
π

2n3/2
et le rayon de convergence vaut 1 par croissances comparées.� �

10.51� �a. ∀x ∈] − 1; 1[, f1(x) = 1

1− x
=

+∞∑
n=0

xn et on dérive p − 1 fois (on le peut terme à terme à l’intérieur

de l’intervalle ouvert de convergence), sachant que f
(p−1)
1 (x) =

(p− 1)!
(1− x)p

par une récurrence très classique :

∀x ∈]− 1; 1[,
(p− 1)!
(1− x)p

=
+∞∑
n=0

(n+ p− 1)!
n!

xn et on divise par (p− 1)! pour avoir le développement attendu :
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∀x ∈]− 1; 1[, fp(x) =
1

(1− x)p
=

+∞∑
n=0

(
n+ p− 1

p− 1

)
xn =

+∞∑
n=0

(
n+ p− 1

n

)
xn =

+∞∑
n=p−1

(
n

p− 1

)
xn−p+1.

b. Pour p > 0, il suffit d’écrire que ∀x ∈]−1; 1[, fp+2(x) = fp+1(x)×f1(x) qui s’écrit aussi d’après la question

précédente :
+∞∑
n=0

(
n+ p+ 1

p+ 1

)
xn =

( +∞∑
n=0

(
n+ p

n

)
xn
)
×
( +∞∑

n=0

xn
)
. Comme les séries intervenant dans cette

formule sont absolument convergentes, on sait que ∀x ∈]−1; 1[,
+∞∑
n=0

(
n+ p+ 1

n

)
xn =

+∞∑
n=0

( n∑
k=0

(
k+ p

k

))
xn

par produit de Cauchy. On peut identifier car le rayon commun de ces séries vaut 1 > 0 et on obtient donc

∀p ∈ N, ∀n ∈ N,
n∑

k=0

(
k+ p

k

)
=

(
n+ p+ 1

p+ 1

)
(déjà vu par ailleurs par récurrence).� �

10.52� �Pour x ∈ R, par croissances comparées, on a
(

x4n

4n+ 1

)
n∈N

bornée si et seulement si |x| 6 1. Ainsi, par

définition du rayon de convergence R de
∑
n>0

x4n

4n+ 1
, on a R = 1. Pour x = ±1,

∑
n>0

x4n

4n+ 1
=
∑
n>0

1

4n+ 1

diverge par comparaison à la série harmonique. Posons g : x 7→
+∞∑
n=0

x4n

4n+ 1
, le domaine de définition de

g est donc Dg =] − 1; 1[. Pour x ∈] − 1; 1[, f(x) = xg(x) =
+∞∑
n=0

x4n+1

4n+ 1
et on sait d’après le cours que f

est de classe C∞ sur ] − 1; 1[ avec f′(x) =
+∞∑
n=0

x4n = 1

1− x4
. Comme 1 − x4 = (1 − x)(1 + x)(1 − x2),

la décomposition en éléments simples de 1

1− x4
est 1

1− x4
= a

1− x
+ b

1+ x
+ cx+ d

1+ x2
. En identifiant par

exemple, on trouve a = b = 1

4
, c = 0 et d = 1

2
. Ainsi, ∀x ∈]−1; 1[, 1

1− x4
= 1

4(1− x)
+ 1

4(1+ x)
+ 1

2(1+ x2)
.

Ainsi f′(x) =
[
ln(1+ x)− ln(1− x)

4
+

Arctan(x)
2

]′
, comme f(0) = 0, en intégrant, sur l’intervalle ] − 1; 1[,

on a ∀x ∈]− 1; 1[, f(x) =
ln(1+ x)− ln(1− x)

4
+

Arctan(x)
2

.

On en conclut que g(0) = 1 et que ∀x ∈]− 1; 0[∪]0; 1[, g(x) = 1

4x
ln

(
1+ x

1− x

)
+

Arctan(x)
2x

.� �
10.53� �a. Pour n > 1, on partitionne les involutions σ de [[1;n+ 2]] en deux catégories :

- celles pour lesquelles σ(n + 2) = n + 2 sont au nombre de In+1 car il n’y a pas de choix à faire pour

σ(n+ 2) qu’on impose égal à n+ 2, ensuite σ induit alors sur [[1;n+ 1]] une involution de [[1;n+ 1]].

- celles telles que σ(n + 2) = k ̸= n + 2 sont au nombre de (n + 1)In car pour les choisir de manière

bijective, il y a n+ 1 choix pour l’entier k qui est l’image de n+ 2 par σ et, une fois ce choix effectué,

cela implique que σ(k) = σ(σ(n+2)) = n+2 car σ doit être une involution, et on a alors In choix pour

finir de déterminer σ qui doit induire sur [[1;n+ 1]] \ {k} une involution de cet ensemble à n éléments.

Cette partition implique la relation In+2 = In+1+(n+1)In pour n > 1 et, comme I2 = 2 = 1+1.1 = I1+1.I0

avec la convention choisie pour I0, on a bien : ∀n > 0, In+2 = In+1 + (n+ 1)In.

b. Comme les involutions sont des permutations et qu’il y a n! permutations de [[1;n]], on en déduit que

In 6 n! d’où 0 6 In
n!

6 1. Comme la série entière
∑
n>0

xn a pour rayon 1, par comparaison, on a R > 1.

c. Les calculs qui suivent sont valides car le rayon de convergence R est supérieur à 1 : pour x ∈]− 1 ; 1[, on a

(1+x)φ(x) = φ(x)+xφ(x) =
+∞∑
n=0

In
n!

xn+
+∞∑
n=1

In−1

(n− 1)!
xn = 1+

+∞∑
n=1

In + nIn−1

n!
xn = 1+

+∞∑
n=1

In+1

n!
xn = φ′(x).

d. On en déduit en intégrant l’équation différentielle linéaire du premier ordre mise sous forme normalisée
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sans second membre, comme une primitive de x 7→ 1 + x est x 7→ x + x2

2
sur l’intervalle ] − 1; 1[, que l’on a

∀x ∈]− 1 ; 1[, φ(x) = e
x+x2

2 puisque φ(0) = I0 = 1 par convention.

e. Alors ∀x ∈] − 1; 1[, φ(x) =

(
+∞∑
i=0

1

i!
xi

)
×

(
+∞∑
j=0

1

j!2j
x2j

)
. Ces deux séries ont pour rayon +∞ donc on

peut effectuer le produit de Cauchy et obtenir S(x) =
+∞∑
n=0

( ∑
i+2j=n

n!
i!j!2j

)
xn. En identifiant (par unicité)

les coefficients entre les deux expressions de S(x) sous forme de série entière, ∀n ∈ N,
In
n!

=
∑

i+2j=n

1

i!j!2j

donc In =
∑

i+2j=n

n!
i!j!2j

. Puisque 2j 6 n et i = n− 2j, on a la formule In =
⌊n/2⌋∑
j=0

n!
(n− 2j)!j!2j

.

Pour expliquer cette relation de manière combinatoire, on peut constater qu’une involution σ de [[1;n]] est

une application telle que pour tout entier x entre 1 et n, on a deux choix :

• soit σ(x) = x et x est appelé un point fixe de σ.

• soit σ(x) = y ̸= x et alors, comme σ2 = id [[1;n]], on a forcément σ(y) = x.

Ainsi, si σ ∈ An, le nombre f de points fixes de σ a la même parité que n de sorte qu’il existe 2j entiers de

[[1;n]] qui ne sont pas fixes par σ avec f = n− 2j avec 0 6 j 6
⌊
n

2

⌋
. On peut donc écrire An =

⌊n/2⌋∪
j=0

An,j où

An,j = {σ ∈ An | σ admet f = n− 2j points fixes}.

Pour construire une involution σ de An,j :

• on choisit les n− 2j éléments de [[1;n]] qui sont fixes par σ :

(
n

n− 2j

)
=

(
n

2j

)
choix.

• on choisit l’image y du plus petit élément x qui reste : (2j− 1) choix (et alors σ(x) = y et σ(y) = x).

• on choisit l’image t du plus petit élément z qui reste : (2j− 3) choix etc...

Ainsi card (An,j) =

(
n

2j

)
×(2j−1)×(2j−3)×· · ·×3×1 =

n!

(n− 2j)!(2j)!
× (2j)!

2jj!
en multipliant en haut et en bas

par les termes pairs qui manquent. On retrouve bien In = card (An) =
⌊n/2⌋∑
j=0

card (An,j) =
⌊n/2⌋∑
j=0

n!
(n− 2j)!2jj!

.� �
10.54� �a. Comme tan est strictement positive sur

]
0; π

4

[
, ∀n > 0, un > 0. De plus, ∀x ∈

]
0; π

4

[
, 0 < tan(x) < 1

donc tann+1(x) < tann(x) et un+1 < un en intégrant. La suite de fonctions (tann)n>0 converge simplement

vers la fonction nulle sur
]
0; π

4

[
et on a la domination par la fonction constante égal à 1 sur l’intervalle. Par

théorème de convergence dominée, on a lim
n→+∞

un = 0. Ainsi, par le CSSA,
∑
n>0

(−1)nun converge.

b. Comme tan′ = 1+ tan2, on a un+2+un =
∫ π/4

0
tann(x) tan′(x)dx =

[
tann+1(x)

n+ 1

]π/4
0

= 1

n+ 1
. Comme

un+2 6 un, on a 2un > un + un+2 = 1

n+ 1
. Comme la série harmonique diverge, la série

∑
n>0

un diverge

donc R 6 1. Mais
∑
n>0

(−1)nun converge donc R > 1. Enfin : R = 1.

c. À nouveau,
∑
n>0

(−1)n
2

un converge d’après a. car n2 a la même parité que n : R′ > 1.

d. Si x ∈] − 1; 1[, posons fn : t 7→ tann(t)xn, alors ||fn||∞,[0;π/4] = |x|n et
∑
n>0

|x|n converge (série

géométrique). Ainsi, par convergence normale sur un segment, on peut intervertir série et intégrale et
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avoir : f(x) =
+∞∑
n=0

∫ π/4

0
fn =

∫ π/4

0

( +∞∑
n=0

fn(t)
)
dt =

∫ π/4

0

1

1− x tan(t)
dt. On pose u = tan(t) et on a

classiquement f(x) =
∫ 1

0

du

(1− xu)(1+ u2)
=
∫ 1

0

(
x2

1+ x2
× 1

1− xu
+ x

1+ x2
× u

1+ u2 + 1

1+ x2
× 1

1+ u2

)
du

en décomposant en éléments simples.

Ainsi f(x) = 1

1+ x2

[
Arctan(u) + x

2
ln(1+ u2)− x ln(1− xu)

]1
0
=

π+ 2x ln(2)− 4x ln(1− x)

4(1+ x2)
.

e. En posant Rn(t) =
+∞∑

k=n+1

(−1)k tank(t), on a ∀t ∈
[
0; π

4

[
, 0 6 tan(t) < 1 donc |Rn(t)| 6 tann+1(t) par le

CSSA. En intégrant cette inégalité :
∣∣∣∫ π/4

0
Rn(t)dt

∣∣∣ = ∣∣∣∫ π/4

0

(
1

1+ tan(t)
−

n∑
k=0

(−1)k tank(t)
)
dt

∣∣∣ 6 un+1.

Ainsi :
∣∣∣ n∑
k=0

(−1)kuk −
∫ π/4

0

dt

1+ tan(t)

∣∣∣ 6 un+1. Comme lim
n→+∞

un+1 = 0, on en déduit, en posant à

nouveau le changement de variable u = tan(t), que
+∞∑
n=0

(−1)nun =
∫ π/4

0

dt

1+ tan(t)
=

π+ 2 ln(2)
8

∼ 0, 57.� �
10.55� �a. Il est clair que 0 6 Wn 6 π

2
donc le rayon R est supérieur à celui de la série entière

∑
n>0

πxn

2
qui vaut

clairement 1 donc R > 1. Par le changement de variable t = π

2
− θ, on trouve Wn =

∫ π/2

0
sinn(θ)dθ et on

sait, par concavité de la fonction sin sur
[
0; π

2

]
, que ∀θ ∈

[
0; π

2

]
, sin(θ) > 2θ

π
. En élevant à la puissance

n et en intégrant, on trouve Wn > π

2(n+ 1)
donc R est inférieur au rayon de la série

∑
n>0

πxn

2(n+ 1)
qui vaut

aussi classiquement 1. On a au final R = 1.

b. Par le TCD (avec domination par 1), comme lim
n→+∞

cosn(t) = 0 si t ∈
]
0; π

2

]
, on a lim

n→+i
Wn = 0. Comme

la suite (Wn)n>0 est aussi décroissante par croissance de l’intégrale,
∑
n>0

(−1)nWn converge par le CSSA.

Comme Wn > π

2(n+ 1)
et que la série harmonique diverge,

∑
n>0

Wn diverge.

c. Soit x ∈] − 1; 1[, posons fn : t → cosn(t)xn, alors ||fn||∞,[0;π/2] = |x|n donc la série
∑
n>0

fn converge

normalement sur le segment
[
0; π

2

]
vers la fonction S : t 7→ 1

1− x cos(t)
. De plus, toutes les fonctions fn

et même S sont continues sur le segment
[
0; π

2

]
, on sait que ceci implique l’intégration terme à terme (la

convergence uniforme suffirait) :
+∞∑
n=0

Wnx
n =

+∞∑
n=0

∫ π/2

0
fn(t)dt =

∫ π/2

0
S(t)dt.

On calcule cette intégrale par le changement de variable habituel issu des règles de Bioche (hors programme

néanmoins) u = tan

(
t

2

)
et on trouve

+∞∑
n=0

Wnx
n =
∫ 1

0

2du

1− x+ (1+ x)u2 qui s’intègre avec les techniques

usuelles en
+∞∑
n=0

Wnx
n =

[
2√

1− x2
Arctan

(√
1+ x

1− x
u

)]1
0
= 2√

1− x2
Arctan

(√
1+ x

1− x

)
.� �

10.56� �a. Si on avait lim
n→+∞

sin(nθ) = 0, on aurait alors lim
n→+∞

sin((n + 1)θ) = 0. Mais comme on sait que

sin((n + 1)θ) = sin(θ) cos(nθ) + cos(θ) sin(nθ), on a sin(θ) cos(nθ) = sin((n + 1)θ) − cos(θ) sin(nθ) donc

lim
n→+∞

sin(θ) cos(nθ) = 0. Mais comme sin(θ) ̸= 0 puisque θ ∈]0;π[ par hypothèse, lim
n→+∞

cos(nθ) = 0. On

aurait alors lim
n→+∞

(sin2(nθ)+cos2(nθ)) = 02+02 = 0 ce qui est impossible puisque sin2(nθ)+cos2(nθ) = 1.

On conclut ce raisonnement par l’absurde : la suite (sin(nθ))n∈N ne tend pas vers 0.

b. D’après la question a.,
∑
n>0

sin(nθ) 1n diverge grossièrement, comme
∑
n>0

sin(nθ)zn diverge pour z = 1,
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on a donc R 6 1. De plus, comme | sin(nθ)| 6 1 et que le rayon de convergence de
∑
n>0

zn vaut 1, on déduit

du cours que R > 1. Au final, R = 1.

c. Si |z| = 1, on a | sin(nθ)zn| = | sin(nθ)| d’où
∑
n>0

sin(nθ)zn diverge grossièrement avec a..

d. Si |z| < 1,
∑
n>0

sin(nθ)zn converge absolument car R = 1 et S(z) =
+∞∑
n=0

sin(nθ)zn =
+∞∑
n=0

einθ − e−inθ

2i
zn

par la formule d’Euler classique puis S(z) = 1

2i

( +∞∑
n=0

(zeiθ)n −
+∞∑
n=0

(ze−iθ)n
)

avec de Moivre donc on

obtient S(z) = 1

2i

(
1

1− zeiθ
− 1

1− ze−iθ

)
=

(eiθ − e−iθ)z

2i(1− (eiθ + e−iθ)z+ z2)
=

z sin(θ)

1− 2z cos(θ) + z2
.� �

10.57� �a. On calcule a0 = 1, a1 = −1

2
, a2 = 0, a3 = 1

24
, a4 = 0, a5 = − 1

240
. On constate que ∀n ∈ [[0; 5]], |an| 6 1.

Soit un entier n ∈ N∗ tel que ∀k ∈ [[0;n]], |ak| 6 1, alors par inégalité triangulaire, on obtient la majoration

|an+1| 6 1

2

n∑
k=1

|an−k|
k!

6 1

2

n∑
k=1

1

k!
6 e− 1

2
6 1. Par principe de récurrence, ∀n ∈ N, |an| 6 1.

Comme la suite (an)n∈N est bornée, la suite (anx
n)n∈N est bornée pour |x| 6 1 donc R > 1.

b. Soit z ∈ C tel que |z| < R, les séries
∑
n>0

anz
n et

∑
n>1

zn

n!
convergent absolument (car le rayon de la série

exponentielle vaut +∞) et on a par produit de Cauchy :
( +∞∑

n=0

anz
n
)
×
( +∞∑

n=1

zn

n!

)
=

+∞∑
n=1

( n∑
k=1

an−k

k!

)
zn

ce qui revient à S(z)(ez − 1) = −2(S(z) − 1) qui s’écrit aussi S(z)(ez + 1) = 2. Ceci prouve que ez ̸= −1 et

qu’on a la relation attendue S(z) = 2

ez + 1
. Si on avait R > π, on aurait pu prendre z = iπ dans le calcul

précédent et ceci contredirait la condition ez + 1 ̸= 0. Ainsi, R 6 π.

c. Si x ∈
]
− R

2
; R
2

[
, |2ix| < R 6 π donc, d’après la question b., S(2ix) = 2

e2ix + 1
d’où, par les formules

d’Euler, 1− S(2ix) = e2ix − 1

e2ix + 1
= i eix − e−ix

i(eix + e−ix)
= i

sin(x)
cos(x)

= i tan(x).

d. On sait déjà que R 6 π. Pour x ∈
]
− R

2
; R
2

[
, i tan(x) = 1 − S(2ix) = −

+∞∑
n=1

2ninanx
n car a0 = 1 et

|2ix| < R donc tan(x) = −
+∞∑
n=1

2nin−1anx
n. Ainsi, tan est développable en série entière sur

]
− R

2
; R
2

[
et,

par imparité de tan, on a ∀n ∈ N∗, a2n = 0.

Par conséquent, tan(x) = −
+∞∑
n=0

22n+1i2na2n+1x
2n+1 =

+∞∑
n=0

22n+1(−1)n+1a2n+1x
2n+1. On en déduit que

∀n ∈ N, 22n+1(−1)n+1a2n+1 =
tan2n+1(0)
(2n+ 1)!

. Par exemple, si n = 0, −2a1 = tan′(0) = 1.

Soit x ∈
[
0; π

2

[
et n ∈ N, on a tan(x) =

2n+1∑
k=0

tan2k+1(0)x2k+1

(2k+ 1)!
+
∫ x

0

(x− t)2n+1 tan2n+2(t)
(2n+ 1)!

dt par la formule

de Taylor reste intégral. Or, pour x ∈
]
− π

2
; π
2

[
, tan(x) = P0(tan(x)) et tan

′(x) = 1+tan2(x) = P1(tan(x))

avec P0 = X et P1 = X2 + 1. Si on suppose, pour n ∈ N∗, que tan(n)(x) = Pn(tan(x)) avec Pn un polynôme

de degré n+1 et de coefficients entiers naturels, alors tan(n+1)(x) = tan′(x)P′
n(tan(x)) = Pn+1(tan(x)) avec

Pn+1 = (1+X2)P′
n(X) qui est bien de degré n+ 2 et de coefficients entiers naturels. On conclut que principe

de récurrence que ∀n ∈ N, ∀x ∈
]
− π

2
; π
2

[
, tan(n)(x) = Pn(tan(x)) avec Pn ∈ N[X] et deg(Pn) = n+ 1.

Ainsi, ∀x ∈ [0;π/2[, ∀n ∈ N,

∫ x

0

(x− t)2n+1 tan2n+2(t)
(2n+ 1)!

> 0 donc 0 6
2n+1∑
k=0

tan2k+1(0)x2k+1

(2k+ 1)!
6 tan(x). Les
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sommes partielles de cette série numérique à termes positifs étant majorées,
∑
n>0

tan2n+1(0)
(2n+ 1)!

x2n+1 converge.

Or ∀n ∈ N, 22n+1(−1)n+1a2n+1 =
tan2n+1(0)
(2n+ 1)!

d’où la convergence de
∑
n>0

ia2n+1(2ix)
2n+1. La série∑

n>0

anz
n converge donc en 2ix pour x ∈

]
− π

2
; π
2

[
ce qui assure que R > π. Au final, R = π. La fonction

tan est développable en série entière sur
]
π

2
; π
2

[
et ∀x ∈

]
π

2
; π
2

[
, tan(x) =

+∞∑
n=0

22n+1(−1)n+1a2n+1x
2n+1.� �

10.58� �∑
n>0

1

(3n)!
converge car, par croissances comparées, 1

(3n)!
=
+∞

o

(
1

n!

)
et que la série exponentielle converge.

Comme
+∞∑
n=0

1

(2n)!
= ch (1) = e1 + e−1

2
et qu’on utilise U2 = {1,−1} pour le calcul de

+∞∑
n=0

1

(2n)!
, on peut

penser à utiliser les racines troisièmes de l’unité pour le calcul de S0 =
+∞∑
n=0

1

(3n)!
. Comme on sait que

∀z ∈ C, ez =
+∞∑
n=0

zn

n!
, on a déjà e1 =

+∞∑
n=0

1

(3n)!
+

+∞∑
n=0

1

(3n+ 1)!
+

+∞∑
n=0

1

(3n+ 2)!
donc e1 = S0 + S1 + S2 en

posant S1 =
+∞∑
n=0

1

(3n+ 1)!
et S2 =

+∞∑
n=0

1

(3n+ 2)!
.

Mais on a aussi ej =
+∞∑
n=0

jn

n!
=

+∞∑
n=0

j3n

(3n)!
+

+∞∑
n=0

j3n+1

(3n+ 1)!
+

+∞∑
n=0

j3n+2

(3n+ 2)!
= S0 + jS1 + j2S2 car j3 = 1. De

plus, ej
2

=
+∞∑
n=0

j2n

n!
=

+∞∑
n=0

j6n

(3n)!
+

+∞∑
n=0

j6n+2

(3n+ 1)!
+

+∞∑
n=0

j6n+4

(3n+ 2)!
= S0 + j2S1 + jS2 car j4 = j.

Cela donne un système trois équations/trois inconnues mais, comme on sait que 1 + j + j2 = 0, il suffit de

sommer ces trois relations pour avoir 3S0 = e+ej+ej
2

donc S0 = e+ ej + ej
2

3
= e+ e

−1
2 e

i
√
3

2 + e
−1
2 e

−i
√
3

2

3

car j = −1

2
+ i

√
3

2
= j2. Ainsi, S0 =

+∞∑
n=0

1

(3n)!
= 1

3

(
e+ 2√

e
cos

(√
3

2

))
∼ 1, 168.

De même, on aurait 3S1 = e+ j2ej + jej
2

et 3S2 = e+ jej + j2ej
2

.

� �
10.59� �a. Notons R le rayon de convergence

∑
n>0

anz
n où an = ln

(1+ (−1)n

√
n√

1+
1

n

)
= ln

(
1+

(−1)n√
n

)
− 1

2
ln

(
1+ 1

n

)
.

Or an =
+∞

(−1)n√
n

− 1

2n
− 1

2n
+O

(
1

n3/2

)
. Comme |an| ∼

+∞
1√
n
, pour z ̸= 0, on a lim

n→+∞
|an+1z

n+1|anz
n| = |z|.

Si |z| < 1, la série
∑
n>0

anz
n converge d’après d’Alembert donc R > 1.

Mais, toujours avec d’Alembert, si |z| > 1, la série
∑
n>0

anz
n diverge donc R 6 1. Ainsi, R = 1.

b.
∑
n>1

(−1)n√
n

converge par le CSSA, si un =
+∞

O

(
1

n3/2

)
, alors

∑
n>0

un converge par Riemann et enfin
∑
n>1

1

n

diverge toujours d’près Riemann. Par somme
∑
n>0

an diverge.

De plus (−1)nan =
+∞

1√
n

− (−1)n

n
+ O

(
1

n3/2

)
. À nouveau,

∑
n>1

1√
n

diverge,
∑
n>1

(−1)n

n
converge et si

un =
+∞

O

(
1

n3/2

)
, alors

∑
n>0

un. Par somme
∑
n>0

(−1)nan diverge. L’intervalle de convergence de S est ]−1; 1[.� �
10.60� �Soit an =

(2n+ 1)!

(n!)2
et x ̸= 0, alors

∣∣∣an+1x
2n+2

anx
2n

∣∣∣ = (2n+ 3)(2n+ 2)

(n+ 1)2
|x|2 donc lim

n→+∞
|an+1x

2n+2

anx
2n

∣∣∣ = 4x2.

Si |x| > 1

2
, alors

∑
n>0

anx
2n diverge grossièrement par la règle de d’Alembert donc R 6 1

2
.
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Si |x| < 1

2
, alors

∑
n>0

anx
2n converge absolument par la règle de d’Alembert donc R > 1

2
. Ainsi R = 1

2
.

Méthode 1 : pour n > 0, on a
an+1

an

=
2(2n+ 3)
n+ 1

donc (n + 1)an+1 = 2(2n + 3)an. On essaie de faire

intervenir des termes du type anx
2n (qui vont donner S(x)) ou des termes du type 2(n + 1)an+1x

2n+1 ou

2nanx
2n−1 (qui vont donner S′(x)). On écrit donc 2(n+ 1)an+1 = 8nan + 12an.

Pour x ∈
]
− 1

2
; 1
2

[
, comme tout converge :

+∞∑
n=0

2(n + 1)an+1x
2n+1 = 8

+∞∑
n=0

nanx
2n+1 + 12

+∞∑
n=0

anx
2n+1

qui s’écrit encore
+∞∑
n=0

2(n + 1)an+1x
2n+1 = 4x2

+∞∑
n=0

(2n)anx
2(n−1) + 12x

+∞∑
n=0

anx
2n. On reconnâıt enfin

S′(x) = 4x2S′(x) + 12xS(x). S est donc solution de l’équation (E) : (1− 4x2)y′ = 12xy sur
]
− 1

2
; 1
2

[
avec la

condition S(0) = 1. Comme une primitive de x 7→ 12x

1− 4x2
est la fonction x 7→ −3

2
ln(1− 4x2), on en déduit

avec la condition initiale S(0) = 1 que ∀x ∈
]
− 1

2
; 1
2

[
, S(x) = (1− 4x2)−3/2.

Méthode 2 : en notant T la primitive de S sur
]
− 1

2
; 1
2

[
qui s’annule en 0, par intégration terme à terme, on a

T(x) =
+∞∑
n=0

(2n+ 1)!

(n!)2
x2n+1

2n+ 1
=

+∞∑
n=0

(2n)!

(n!)2
x2n+1 = x

+∞∑
n=0

(2n)!

(n!)2
x2n et on reconnâıt presque un développement

classique en série entière : ∀t ∈] − 1; 1[, 1√
1+ t

=
+∞∑
n=0

(−1)n(2n)!

4n(n!)2
tn. Pour x ∈

]
− 1

2
; 1
2

[
, en posant

t = −4x2 ∈] − 1; 0] ⊂] − 1; 1[, 1√
1− 4x2

=
+∞∑
n=0

(−1)n(2n)!

4n(n!)2
(−4)nx2n =

+∞∑
n=0

(2n)!

(n!)2
x2n =

+∞∑
n=0

(
2n

n

)
x2n, ce

qui montre que T(x) = x√
1− 4x2

= x(1 − 4x2)−1/2. Il suffit de dériver pour avoir, comme par la méthode

précédente, S(x) = T ′(x) = (1− 4x2)−1/2+ 4x2x(1− 4x2)−3/2 = (1− 4x2+ 4x2)(1− 4x2)−3/2 = (1− 4x2)−3/2.� �
10.61� �Comme xn

n(n+ 1)(2n+ 1)
∼
+∞

xn

2n3 si x ̸= 0, par croissances comparées, la suite
(

xn

n(n+ 1)(2n+ 1)

)
n>1

est

bornée si et seulement si x ∈ [−1; 1] donc le rayon de convergence de cette série entière vaut R = 1. Si

x = ±1, xn

n(n+ 1)(2n+ 1)
=
+∞

O

(
1

n3

)
donc

∑
n>1

xn

n(n+ 1)(2n+ 1)
converge absolument par Riemann. Ainsi,

l’ensemble de définition de f est I = [−1; 1].

La fraction 1

n(n+ 1)(2n+ 1)
se décompose en éléments simples 1

n(n+ 1)(2n+ 1)
= a

n
+ b

n+ 1
+ c

2n+ 1
.

En réduisant au même dénominateur, a(n + 1)(2n + 1) + bn(2n + 1) + cn(n + 1) = 1 pour n ∈ N ce qui

donne, par identification, 2a + 2b + c = 3a + b + c = a − 1 = 0 donc a = 1, b = 1 et c = −4. Ainsi,

∀n ∈ N∗, 1

n(n+ 1)(2n+ 1)
= 1

n
+ 1

n+ 1
− 4

2n+ 1
. Pour tout x ∈] − 1; 1[, comme |x| < R et que les trois

séries convergent, f(x) =
+∞∑
n=1

xn

n(n+ 1)(2n+ 1)
=

+∞∑
n=1

xn

n
+

+∞∑
n=1

xn

n+ 1
− 4

+∞∑
n=1

xn

2n+ 1
.

On reconnâıt des développements en série entière classiques du cours : ∀x ∈]− 1; 1[, ln(1− x) = −
+∞∑
n=1

xn

n
et

∀x ∈]0; 1[,
+∞∑
n=1

xn

2n+ 1
= 1√

x

+∞∑
n=1

(
√
x)2n+1

2n+ 1
= 1

2
√
x

(
ln(1+

√
x)− ln(1−

√
x)− 2

√
x

)
=

Argth (
√
x)−

√
x√

x
et

∀x ∈]− 1; 0[,
+∞∑
n=1

xn

2n+ 1
= 1√

−x

+∞∑
n=1

(−1)n(
√
−x)2n+1

2n+ 1
=

Arctan(
√
−x)−

√
−x√

−x
. Ainsi, f(0) = 0 et :

• Si x ∈]0; 1[, f(x) = − ln(1− x) + 1

x

(
− ln(1− x)− x

)
− 2√

x

(
ln

(
1+

√
x

1−
√
x

)
− 2

√
x

)
.
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• Si x ∈]− 1; 0[, f(x) = − ln(1− x) + 1

x

(
− ln(1− x)− x

)
− 4√

−x

(
Arctan(

√
−x)−

√
−x

)
.

De plus, en notant un(x) =
xn

n(n+ 1)(2n+ 1)
, ||un||∞,[−1;1] =

1

n(n+ 1)(2n+ 1)
∼
+∞

1

2n3 et
∑
n>1

1

n3 converge

par Riemann donc
∑
n>0

un converge normalement sur [−1; 1] d’où la continuité de f sur le segment [−1; 1].

Pour x ∈]0; 1[, en écrivant 1 − x = (1 −
√
x)(1 +

√
x) et avec les propriétés de ln, on trouve la nouvelle

expression f(x) = 3 − (1+
√
x)2

x
ln(1 +

√
x) − (1−

√
x)2

x
ln(1 −

√
x). Puisque lim

y→0+
y2 ln(y) = 0, et comme

on sait que f(1) = lim
x→1−

f(x), on trouve f(1) = 3 − 4 ln(2) ∼ 0, 23. Pour obtenir cette valeur, en notant

Hn =
n∑

k=1

1

k
, on aurait pu transformer Sn =

n∑
k=1

1

k(k+ 1)(2k+ 1)
=

n∑
k=1

1

k
+

n∑
k=1

1

k+ 1
− 4

n∑
k=1

1

2k+ 1
ce qui

donne en rajoutant et en enlevant les termes pairs, Sn = Hn + Hn+1 − 1 − 4

( 2n+1∑
k=1

1

k
− 1

)
+ 4

n∑
k=1

1

2k
et

Sn = 3+ 4Hn − 4H2n + 1

n+ 1
− 4

2n+ 1
et on termine en sachant que Hn =

+∞
ln(n) + γ+ o(1).

De même, f(−1) = lim
x→−1+

f(x) = −1− π+ 4 = 3− π ∼ −0, 14 avec la relation ci-dessus.� �
10.62� �a. Comme lim

n→+∞
ln(n) = +∞, la série

∑
n>1

ln(n) diverge donc R 6 1 car
∑
n>1

ln(n)xn diverge pour x = 1.

Si |x| < a < 1, par croissances comparées, on a ln(n)xn =
+∞

o(an) et la série géométrique
∑
n>1

an converge

donc
∑
n>1

ln(n)xn converge par comparaison et R > 1. Ainsi R = 1.

b. Comme ∀n > 2, ln(n) > ln(2), pour x ∈ [0; 1[, ln(n)xn > ln(2)xn donc S(x) >
+∞∑
n=2

ln(2)xn =
ln(2)x2

1− x
en

sommant. Comme lim
x→1−

ln(2)x2

1− x
= +∞, on a par minoration la limite lim

x→1−
S(x) = +∞.

Une preuve plus générale en se servant seulement du fait que ∀n > 1, ln(n) > 0 et que
∑
n>1

ln(n) diverge :

toutes les x 7→ ln(n)xn sont croissantes sur [0; 1[ donc S est aussi croissante sur [0; 1[. Par le théorème de la

limite monotone, la fonction S admet donc une limite ℓ en 1− qui est finie ou qui vaut +∞.

Posons Sn : x 7→
n∑

k=1

ln(k)xk les sommes partielles qui sont polynomiales donc continues. Comme Sn 6 S sur

[0; 1[, lim
x→1

Sn(x) = Sn(1) 6 ℓ (même si cette limite est infinie). Or Sn(1) =
n∑

k=1

ln(k) donc lim
n→+∞

Sn(1) = +∞.

Ainsi l’inégalité Sn(1) 6 ℓ montre que ℓ ne peut pas être finie. Au final : lim
x→1−

S(x) = +∞.

c. Comme t 7→ 1

t
est décroissante et continue sur R∗

+, on a les inégalités ∀k > 1,

∫ k+1

k

dt

t
6 1

k
(1) et

∀k > 2, 1

k
6
∫ k

k−1

dt

t
(2). En sommant (1) pour k ∈ [[1;n]] et (2) pour k ∈ [[2;n]], on obtient l’encadrement

ln(n + 1) 6 Hn =
n∑

k=1

1

k
6 ln(n) + 1 par Chasles. En multipliant par xn pour x ∈ [0; 1[ et en sommant

ces inégalités, on trouve
+∞∑
n=1

ln(n+ 1)xn 6
+∞∑
n=1

Hnx
n 6

+∞∑
n=1

ln(n)xn +
+∞∑
n=1

xn. Or, par produit de Cauchy,

∀x ∈] − 1; 1[,
+∞∑
n=1

Hnx
n =

( +∞∑
n=1

1

n
xn
)
×
( +∞∑

n=0

xn
)

= − ln(1− x)
1− x

=
ln(1− x)
x− 1

. Ce qui donne, puisque

+∞∑
n=1

ln(n+1)xn =
S(x)
x

, l’encadrement
ln(1− x)
x− 1

− 1

1− x
6 S(x) 6 x ln(1− x)

x− 1
. Par théorème d’encadrement,

puisque
ln(1− x)
x− 1

− 1

1− x
∼
1−

x ln(1− x)
x− 1

∼
1−

ln(1− x)
x− 1

, nous avons établi que S(x) ∼
1−

ln(1− x)
x− 1

.
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� �
10.63� �a. On note Sn l’ensemble de toutes les permutations de [[1;n]]. On sait que card (Sn) = n!. On partitionne

(ou plutôt on partage) Sn selon le nombre de points fixes des permutations. Notons donc Sn,k l’ensemble

des permutations de Sn qui ont exactement k points fixes. Alors Sn =
n∪

k=0

Sn,k (réunion disjointe) avec

Sn,n−1 = ∅ car si une permutation a au moins n− 1 points fixes, c’est forcément l’identité donc elle a en fait

n points fixes. On a donc ∀n > 1, card (Sn) = n! =
n∑

k=0

An(k) =
n∑

k=0

card (Sn,k).

Pour dénombrer Sn,k, on choisit les k points fixes parmi les éléments de [[1;n]] ce qui fait

(
n

k

)
choix ; ensuite

on choisit une permutation des n− k éléments restants sans point fixe, elles sont au nombre de An−k(0) par

définition (le nombre de dérangements, c’est le nom des permutations de Sn,0, ne dépend que du nombre

d’éléments de l’ensemble qu’on “dérange”). On obtient donc card (Sn,k) = An(k) =

(
n

k

)
An−k(0).

Pour n = 0, on a 0! = A0(0) =
0∑

k=0

A0(k) = 1 par convention et A0(0) =

(
0

0

)
A0−0(0) = 1 donc les formules

sont valables aussi pour n = 0.

b. Comme Sn,0 ⊂ Sn, on a 0 6 An(0) 6 n! donc 0 6 An(0)
n!

6 1. On sait d’après le cours que le rayon R de la

série entière
∑
n>0

An(0)
n!

zn est alors supérieur à celui de
∑
n>0

zn. Comme
∑
n>0

zn est de rayon de convergence

1, on a R > 1 donc f(z) =
+∞∑
n=0

An(0)
n!

zn converge si |z| < 1.

c. Comme le rayon de convergence de la série exponentielle est égal à +∞, si |z| < 1, par produit de Cauchy

de deux séries absolument convergentes, ezf(z) =
( +∞∑

n=0

zn

n!

)( +∞∑
n=0

An(0)
n!

zn
)
=

+∞∑
n=0

( n∑
k=0

An−k(0)
k!(n− k)!

)
zn. Or

n∑
k=0

An−k(0)
k!(n− k)!

= 1

n!

n∑
k=0

(
n

k

)
An−k(0) = 1 d’après a.. Ainsi, ezf(z) =

+∞∑
n=0

zn = 1

1− z
. À nouveau, le rayon

de convergence de
∑
n>0

zn vaut 1 et d’après le cours sur le rayon de convergence d’un produit de Cauchy de

deux séries entières, 1 > Min(R,+∞) ce qui donne R 6 1 et, au final, R = 1.

De plus, si |z| < 1, on a f(z) = e−z

1− z
. On effectue encore un produit de Cauchy et si |z| < 1, il vient à

nouveau par produit de Cauchy, f(z) =
( +∞∑

n=0

(−1)nzn

n!

)( +∞∑
n=0

zn
)
=

+∞∑
n=0

( n∑
k=0

(−1)k

k!

)
zn donc, par unicité

des coefficients d’une série entière de rayon non nul, on a ∀n ∈ N, An(0) = n!
n∑

k=0

(−1)k

k!
.

d. Avec ces notations de l’énoncé, pn =
An(0)
n!

donc pn =
n∑

k=0

(−1)k

k!
qui est la somme partielle de la série

exponentielle associée à e−1. Par conséquent, lim
n→+∞

pn = 1

e
∼ 0, 36.� �

10.64� �a. Soit x ∈]−1; 1[, alors gx : t 7→ ln(1+ xt)
t

est continue sur ]0; 1] car ∀t ∈ [0; 1], 0 < 1−|x| 6 1+xt 6 1+|x|.

Si x = 0, gx est nulle sur ]0; 1] et si x ̸= 0, comme ln(1+xt)∼
0
xt, gx se prolonge par continuité en 0 en posant

gx(0) = x. Ainsi gx est intégrable sur ]0; 1] donc g(x) est bien défini. Ainsi ]− 1; 1[⊂ Dg.

b. Si |x| < 1, on a |xt| < 1 pour t ∈ [0; 1] donc ln(1+xt) =
+∞∑
n=1

(−1)n−1 x
ntn

n
. Ainsi g(x) =

∫ 1

0

( +∞∑
n=1

gn(t)
)
dt

avec gn : [0; 1] → R définie par gn(t) = (−1)n−1 x
ntn−1

n
car ∀t ∈ [0; 1], gx(t) =

+∞∑
n=1

gn(t). Comme
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||gn||∞,[0;1] =
|x|n
n

et que
∑
n>1

|x|n
n

converge car |x| < 1, la série
∑
n>1

gn converge normalement vers gx sur le

segment [0; 1] donc on peut intervertir et avoir g(x) =
+∞∑
n=1

∫ 1

0
gn(t)dt =

+∞∑
n=1

xn

n2 .

c. En tant que somme d’une série entière de rayon R = 1 (car
(
xn

n2

)
n>1

est bornée si et seulement si

|x| 6 1 par croissances comparées), la fonction g est C∞ sur l’intervalle ouvert de convergence ] − 1; 1[ et

g′(x) =
+∞∑
n=1

(−1)n−1 x
n−1

n
. On reconnâıt, pour x ∈]− 1; 0[∪]0; 1[, g′(x) =

ln(1+ x)
x

.

d. Posons f :]0; 1[×]0; 1] → R définie par f(x, t) =
ln(1+ xt)

t
de sorte que g(x) =

∫ 1

0
f(x, t)dt.

• Pour x ∈]0; 1[, t 7→ f(x, t) est de classe C1 sur ]0; 1].

• Pour t ∈]0; 1], t 7→ f(x, t) = gx(t) est continue et intégrable sur ]0; 1] (on vient de le voir). De plus,

t 7→ ∂f
∂x

(x, t) = 1

1+ xt
est continue sur ]0; 1].

• Pour (x, t) ∈]0; 1[×]0; 1],
∣∣∣ ∂f∂x (x, t)∣∣∣ 6 1 = φ(t) et φ est continue et intégrable sur ]0; 1].

Par dérivation sous le signe somme, g est C1sur ]0; 1[ et g′(x) =
∫ 1

0

dt

1+ xt
=
[
ln(1+ xt)

x

]1
0
=

ln(1+ x)
x

.

Pourtant, la meilleure méthode est, pour x ̸= 0, d’effectuer le changement de variable t = u

x
dans l’intégrale

g(x) =
∫ 1

0

ln(1+ xt)
t

dt pour avoir g(x) =
∫ x

0

ln(1+ u)
u

du et tout est limpide par le théorème fondamental

de l’intégration car u 7→ ln(1+ u)
u

est continue sur ]− 1; 1[.� �
10.65� �a. La fonction f : x 7→ x + e−x est dérivable sur R+ et f′(x) = 1 − e−x > 0 (f′ ne s’annule qu’en 0). Or

f(0) = 1 et lim
x→+∞

f(x) = +∞. Ainsi, f réalise une bijection strictement croissante de R+ dans [1; +∞[. Par

conséquent, pour tout entier n > 1, ∃!xn > 0, f(xn) = exn − xn = n. Par exemple x1 = 0.

b. Pour n > 1, comme e−n > 0, fn(xn) = n 6 fn(n) d’où xn < n par stricte croissance de f. De plus,

f(n− 1) = n− 1+ e−(n−1) 6 n car e−(n−1) 6 1. À nouveau, n− 1 6 xn. Au final, ∀n > 1, xn ∈ [n− 1;n[.

c. D’après la question précédente, ∀n > 1, 0 < an = n− xn 6 1. Comme le rayon de
∑
n>1

xn vaut 1 : R > 1.

Mieux, comme an = n− xn = e−xn , on a d’après b. l’encadrement e−n 6 an 6 e× e−n. Comme les rayons

des deux séries
∑
n>1

e−nxn et
∑
n>1

e.e−nxn valent clairement R′ = e, on a d’après le cours R = e.

ane
n = (n− xn)e

n = e−xnen = en−xn = ean . Comme an > 0, on a ean > 1 donc
∑
n>1

ane
n et

∑
n>1

an(−e)n

divergent grossièrement. L’intervalle de convergence de cette série est ]− e; e[.� �
10.66� �a. Par croissances comparées, la suite

(
xn

4n+ 1

)
n>0

est bornée si et seulement si |x| 6 1. Ainsi, R = 1.

De plus,
∑
n>0

1

4n+ 1
diverge d’après Riemann car 1

4n+ 1
∼
+∞

1

4n
et
∑
n>0

(−1)n

4n+ 1
converge par le CSSA car la

suite
(

1

4n+ 1

)
n>0

est décroissante et tend vers 0. L’intervalle de convergence de cette série vaut [−1; 1[.

b. Posons Sn =
n∑

k=0

1

4k+ 1
. Comme 1

4k+ 1
=
∫ 1

0
t4kdt pour tout k ∈ N, on a par linéarité de l’intégrale :

|Sn − I| =
∣∣∣∫ 1

0

( n∑
k=0

t4k − 1

1+ t4

)
dt

∣∣∣ = ∣∣∣∫ 1

0

(
1− (−t4)n+1

1+ t4
− 1

1+ t4

)
dt

∣∣∣ = ∫ 1

0

t4n+4

1+ t4
dt 6

∫ 1

0
t4n+4dt

donc |Sn − I| 6 1

4n+ 5
. Ainsi, lim

n→+∞
Sn = I = S(−1) =

∫ 1

0

dt

1+ t4
.

c. 1+ X4 = X4 + 2X2 + 1− 2X2 = (X2 + 1)2 − (
√
2X)2 = (X2 −

√
2X+ 1)(X2 +

√
2X+ 1).
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On sait qu’alors, il existe quatre constantes a, b, c, d telles que 1

X4 + 1
= aX+ b

X2 −
√
2X+ 1

+ cX+ d

X2 +
√
2X+ 1

.

On procède par identification et on trouve a = − 1

2
√
2
, b = 1

2
, c = 1

2
√
2
, d = 1

2
.

d. Ainsi, 1

1+ t4
= − 1

4
√
2

2t−
√
2

t2 −
√
2t+ 1

+ 1

4

1

t2 −
√
2t+ 1

+ 1

4
√
2

2t+ 2
√
2

t2 + 2
√
2t+ 1

+ 1

4

1

t2 +
√
2t+ 1

. On en déduit

classiquement que S(−1) =
[

1

4
√
2
ln

(
t2 +

√
2t+ 1

t2 −
√
2t+ 1

)
+ 1

2
√
2
Arctan(

√
2t+ 1) + 1

2
√
2
Arctan(

√
2t− 1)

]1
0
.

Il vient donc S(−1) = 1

2
√
2
ln(

√
2+ 1) + π

4
√
2
∼ 0, 867.� �

10.67� �a. On calcule les premiers termes : a0 = 1, a1 = 1

2
, a3 = 7

24
. Soit A(n) = ”∀k ∈ [[0;n]], 0 < ak 6 1”.

Initialisation : 0 < a0 = 1 6 1.

Hérédité : soit n ∈ N tel que A(n) soit vraie, alors 0 < an+1 6 1

n+ 1

n∑
k=0

1

n− k+ 2
par hypothèse, donc

0 < an+1 6 1

n+ 1

n∑
k=0

1 = n+ 1

n+ 1
= 1. Par principe de récurrence que ∀k ∈ [[0;n]], 0 < ak 6 1.

Ainsi, le rayon de convergence R de
∑
n>0

anx
n est supérieur à celui de

∑
n>0

xn, d’où R > 1.

b. Comme 1

2
∈]− 1; 1[, la série

∑
n>0

an

(
1

2

)n
converge donc L existe et L = f

(
1

2

)
.

c. f est de classe C∞ sur ] − 1; 1[. Pour x ∈] − 1; 1[, f′(x) =
+∞∑
n=0

an+1(n + 1)xn =
+∞∑
n=0

n∑
k=0

ak

n− k+ 2
xn. Or∑

n>0

1

n+ 2
xn est de rayon 1. Par produit de Cauchy, ∀x ∈]− 1; 1[, f′(x) =

( +∞∑
n=0

anx
n
)
×
( +∞∑

n=0

1

n+ 2
xn
)
.

d. Pour x ∈]0; 1[, posons g(x) =
+∞∑
n=0

1

n+ 2
xn = 1

x2

( +∞∑
n=0

1

n+ 2
xn+2

)
= − ln(1− x) + x

x2
. f est solution sur

]0; 1[ de l’équation différentielle y′ = g(x)y dont les solutions sont les fonctions x 7→ λeG(x) où λ ∈ R et G est

une primitive sur ]0; 1[ de g. On trouve par intégration par parties que G : x 7→ − ln(1− x) +
ln(1− x) + x

x

convient. De plus, comme les an sont strictement positifs, f est strictement positive sur ]0; 1[ donc λ > 0 et

ln(f(x)) = ln(λ)− ln(1− x) +
ln(1− x) + x

x
. En faisant tendre x vers 0+, on trouve que ln(λ) = 0 donc on a

la relation ∀x ∈]0; 1[, ln(f(x)) = − ln(1− x) +
ln(1− x) + x

x
.

Ainsi, ln
(
f
(
1

2

))
= ln(2) + 2

(
− ln(2) + 1

2

)
= 1− ln(2) d’où L = e1−ln(2) = e

2
∼ 1, 36.� �

10.68� �a. Posons les deux sommes partielles associées : Sn =
n∑

k=0

xk et S′n =
n∑

k=0

yk.

• Si
∑
n>0

xn converge, alors la suite (Sn)n∈N converge (vers S). Or S′n = S2n+1 donc (S′n)n∈N converge aussi

vers S en tant que suite extraite d’une suite convergente donc
∑
n>0

yn converge.

• Si
∑
n>0

yn converge, alors la suite (S′n)n∈N converge (vers S′). Or S2n+1 = S′n donc lim
n→+∞

S2n+1 = S′

et S2n = S2n+1 − x2n+1 = S′n − x2n+1 donc lim
n→+∞

S2n = S′ car lim
n→+∞

x2n+1 = 0 par hypothèse. Par

conséquent, la suite (Sn)n∈N converge vers S′ et
∑
n>0

xn converge.

Ainsi,
∑
n>0

xn et
∑
n>0

yn sont de même nature et on a
+∞∑
n=0

xn =
+∞∑
n=0

yn en cas de convergence.

b. Comme an ∼
+∞

1

4n2 , la suite (anx
n)n∈N∗ est bornée si et seulement si

(
xn

n2

)
n∈N∗

est bornée, c’est-à-dire
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si et seulement si |x| 6 1 par croissances comparées. Ainsi, le rayon de convergence de
∑
n>0

anx
n est R = 1.

De plus,
∑
n>1

an est absolument convergente par Riemann donc f est définie aussi en ±1. Le domaine de

définition D de f vaut donc D = [−1; 1].

c. Si x ∈]0; 1[, f(x) =
+∞∑
n=1

xn

2n(2n+ 1)
=

+∞∑
n=1

(
xn

2n
− xn

2n+ 1

)
=

+∞∑
n=1

xn

2n
−

+∞∑
n=1

xn

2n+ 1
(les deux séries

convergent) donc f(x) = 1

2

+∞∑
n=1

xn

n
− 1√

x

+∞∑
n=1

(
√
x)2n+1

2n+ 1
= −1

2
ln(1− x)− 1√

x

(
1

2
ln

(
1+

√
x

1−
√
x

)
−

√
x

)
.

d. Les un : x 7→ xn

2n(2n+ 1)
sont continues sur [−1; 1] et ||un||∞,[−1;1] =

1

2n(2n+ 1)
donc

∑
n>1

un converge

normalement sur [−1; 1] par Riemann. Ainsi, f est continue sur [−1; 1] donc f(1) = lim
x→1−

f(x). Comme

f(x) = 1− 1+
√
x

2
√
x

ln(1+
√
x) +

1−
√
x

2
√
x

ln(1−
√
x) car 1− x = (1−

√
x)(1+

√
x), on trouve f(1) = 1− ln(2)

par croissances comparées. Or f(1) =
+∞∑
n=1

1

2n(2n+ 1)
= −

+∞∑
n=1

(
1

2n+ 1
− 1

2n

)
= −

+∞∑
n=2

(−1)n−1

n
d’après a.

en posant xn =
(−1)n−1

n
car on a bien lim

n→+∞
xn = 0. En identifiant, on a bien ln(2) =

+∞∑
n=1

(−1)n−1

n
.� �

10.69� �a. Comme h est de classe C∞ sur J, par la formule de Taylor reste intégral, on a, pour tout entier N ∈ N

et tout réel x ∈ J, la relation RN(x) =
∫ x

0

(x− t)N

N!
h(N+1)(t)dt.

b. Si (x, y) ∈ R2 et 0 < x < y < a,
RN(x)

xN+1 = 1

N!

∫ x

0

(
1 − t

x

)N
h(N+1)(t)dt 6 1

N!

∫ y

0

(
1 − t

y

)N
h(N+1)(t)dt

car 1− t

x
6 1− t

y
pour t ∈ [0 ; x] et que h(n+1)(t) > 0. On a donc RN(x) 6 xN+1

yN+1 RN(y) =
(
x

y

)N+1

RN(y).

c. Soit y ∈]0;a[ et x ∈]0; y[, alors comme lim
N→+∞

(
x

y

)N+1

= 0, on a par encadrement lim
N→+∞

RN(x) = 0

d’après b.. Ainsi, h est développable en série entière sur [0;a[ donc sur ]− a;a[ par parité ou imparité de h.

d. La fonction tan est de classe C∞ sur
]
− π

2
; π
2

[
. tan et tan′ = 1+tan2 sont positives sur

[
0; π

2

[
. Soit n > 1

tel que ∀k ∈ [[0;n]], tan(k) est positive sur
[
0; π

2

[
. Alors, d’après la formule de Leibniz en dérivant n fois

la relation tan′ = 1 + tan2, on obtient tan(n+1) =
n∑

k=0

(
n

k

)
tan(k) tan(n−k) donc tan(n+1) est positive sur[

0; π
2

[
. Par principe de récurrence, pour tout entier n ∈ N, tan(n) est positive sur

[
0; π

2

[
. Par conséquent,

d’après la question précédente, tan est développable en série entière sur
]
− π

2
; π
2

[
.

Question de cours : la série entière
∑
n>0

anx
n de rayon R converge normalement sur tout segment inclus dans

son intervalle ouvert ] − R;R[ de convergence (si R > 0 bien sûr). Si
∑
n>0

|an| converge,
∑
n>0

anx
n converge

normalement sur [−R;R] car si un : x 7→ anx
n, on a ||un||∞,[R;R] = |an| et que

∑
n>0

an converge absolument.� �
10.70� �a. On sait que lim

x→0

Arctan(x)
x

= Arctan′(0) = 1 donc h se prolonge par continuité en 0 en posant h(0) = 1.

Comme h est continue par opérations sur R∗ car Arctan l’est, la fonction h est maintenant continue sur R.

b. On sait que, si x ∈] − 1; 1[, Arctan(x) =
+∞∑
n=0

(−1)nx2n+1

2n+ 1
donc, pour x ∈] − 1; 0[∪ ]0; 1[, on a la relation

h(x) =
+∞∑
n=0

(−1)nx2n

2n+ 1
. Cette relation est aussi vraie pour x = 0 car

(−1)0

2.0+ 1
= 1 = h(0). Ainsi, h est bien

DSE sur ]− 1; 1[ et la rayon de cette série entière est classiquement R = 1 car
(

x2n

2n+ 1

)
n∈N

est bornée si et
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seulement si |x| 6 1 par croissances comparées.

c. Comme h est paire, il suffit de vérifier que la décomposition de h en série entière est valable sur [0; 1],

c’est-à-dire en 1 puisque on vient de le voir sur [0; 1[ à la question précédente.

La série
+∞∑
n=0

(−1)n

2n+ 1
converge par le CSSA car

(
1

2n+ 1

)
n∈N

est décroissante et tend vers 0.

Posons un : x 7→ (−1)nx2n

2n+ 1
, alors pour x ∈ [0; 1], |Rn(x)| =

∣∣∣ +∞∑
k=n+1

uk(x)
∣∣∣ 6 |un+1(x)| 6 1

2n+ 3
par le CSSA

donc ||Rn||∞,[0;1] 6 1

2n+ 3
ce qui prouve la convergence uniforme de

∑
n>0

un vers h sur [0; 1]. Comme toutes

les un sont continues sur [0; 1], on a lim
x→1−

+∞∑
n=0

un(x) =
+∞∑
n=0

un(1) =
+∞∑
n=0

(−1)n

2n+ 1
. Or h est continue sur R donc

lim
x→1

h(x) = h(1) = π

4
. Puisque ∀x ∈ [0; 1[, h(x) =

+∞∑
n=0

(−1)nx2n

2n+ 1
, on trouve en identifiant π

4
=

+∞∑
n=0

(−1)n

2n+ 1
.

Ainsi, ∀x ∈ [0; 1], h(x) =
+∞∑
n=0

(−1)nx2n

2n+ 1
. Par parité, cette relation est valable sur [−1; 1].

d. La fonction H : R → R définie par H(x) =
∫ x

0
h(t)dt est la primitive qui s’annule en 0 de la fonction h

qui est continue sur R. Ainsi, H′(0) = h(0) = 1. Ceci se traduit par lim
x→0

H(x)− H(0)
x− 0

= 1 donc lim
x→0

f(x) = 1

ce qui nous permet de prolonger f par continuité en 0 en posant f(0) = 1.

e. Puisque H est de classe C1 sur R en tant que primitive de h, la fonction f est de classe C1 sur R∗ par

opérations avec f′(x) =
h(x)
x

− 1

x2

∫ x

0
h(t)dt =

xh(x)−
∫ x

0
h(t)dt

x2
= 1

x2

∫ x

0
(h(x)− h(t))dt si x ̸= 0. Comme

h est C1, h(x) − h(t) = (x − t)h′(c) par le théorème des accroissements finis et |h′(c)| 6 ||h′||
∞,[̃0;x]

= mx.

Par l’inégalité de la moyenne, |f′(x)| 6 1

x2

∣∣∣∫ x

0
|x− t|mxdt

∣∣∣ = mx

2
. Or h′ étant continue en 0 et h′(0) = 0, il

vient lim
x→0

mx = 0. Ainsi, par encadrement, lim
x→0

f′(x) = 0 donc, par le théorème de prolongement C1, f est

dérivable en 0, f′(0) = 0 et f′ est continue en 0. Par conséquent, la fonction f est bien de classe C1 sur R.

f. Comme h est DSE sur ] − 1; 1[, ∀x ∈] − 1; 1[,
∫ x

0
h(t)dt =

∫ x

0

+∞∑
n=0

(
(−1)nt2n

2n+ 1

)
dt =

+∞∑
n=0

(−1)nx2n+1

(2n+ 1)2

(intégration terme à terme). Ainsi, ∀x ∈]− 1; 1[, si x ̸= 0, f(x) =
+∞∑
n=0

(−1)nx2n

(2n+ 1)2
. Or, comme f(0) = 1, cette

relation marche aussi si x = 0 donc f est DSE sur ]− 1; 1[.� �
10.71� �Puisque la fonction sin est 1-lipschitzienne car | sin′ | = | cos | 6 1, on a ∀n ∈ N, ∀x ∈ R, |fn(x)| 6 |a|n|x|.

Comme |a| < 1, la série
∑
n>0

|an||x| converge donc, par comparaison,
∑
n>0

fn(x) converge absolument et la

série de fonctions
∑
n>0

fn converge simplement sur R. Ainsi Fa est définie sur R.

(H1) La série
∑
n>0

fn converge simplement sur R vers Fa.

(H2) Toutes les fonctions fn sont de classe C∞ sur R.
(H3) Pour p ∈ N∗, on a f

(p)
n (x) = anp sin

(
anx+ pπ

2

)
donc f

(p)
n est bornée sur R et ||f(p)n ||∞,R 6 |a|np

(on a même égalité). Or la série géométrique
∑
n>0

|a|np converge car |a| < 1, donc la série
∑
n>0

f
(p)
n

converge normalement sur R.

Par un théorème du cours, Fa est de classe C∞ et ∀p ∈ N, ∀x ∈ R, F
(p)
a (x) =

+∞∑
n=0

anp sin

(
anx + pπ

2

)
.

On en déduit que F
(p)
a (0) =

+∞∑
n=0

anp sin

(
pπ

2

)
donc F

(p)
a (0) = 0 si p est pair et, si p = 2k + 1, on trouve
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F
(2k+1)
a (0) =

+∞∑
n=0

an(2k+1) sin

(
(2k+ 1)π

2

)
=

+∞∑
n=0

(−1)kan(2k+1) =
(−1)k

1− a2k+1 .

D’après le cours, Fa est développable en série entière sur R si et seulement si le reste intégral d’ordre k, à

savoir 1

k!

∫ x

0
(x − t)kF

(k+1)
a (t)dt, tend vers 0 quand k tend vers +∞ pour tout réel x. Or, par inégalité de

la moyenne,
∣∣∣ 1
k!

∫ x

0
(x − t)kF

(k+1)
a (t)dt

∣∣∣ 6 1

k!

∣∣∣∫ x

0
|x − t|k|F(k+1)

a (t)|dt
∣∣∣. Avec l’expression de F

(k+1)
a (t) vue

avant, et |F(k+1)
a (t)| =

∣∣∣ +∞∑
n=0

an(k+1) sin

(
ant + (k + 1)π

2

)∣∣∣ 6 +∞∑
n=0

|a|n(k+1) = 1

1− |a|k+1 . On arrive donc à

la majoration
∣∣∣ 1
k!

∫ x

0
(x − t)kF

(k+1)
a (t)dt

∣∣∣ 6 1

k!(1− |a|k+1)

∣∣∣∫ x

0
|x − t|kdt

∣∣∣ = |x|k+1

(k+ 1)!(1− |a|k+1)
car, x − t

étant de signe constant sur ˜[0; x], on a
∣∣∣∫ x

0
|x− t|kdt

∣∣∣ = ∣∣∣∫ x

0
(x− t)kdt

∣∣∣ = ∣∣∣[− (x− t)k+1

k+ 1

]x
0

∣∣∣ = |x|k+1

k+ 1
. Par

croissances comparées, lim
k→+∞

|x|k+1

(k+ 1)!(1− |a|k+1)
= 0, donc Fa est bien développable en série entière sur R

et, étant égale à sa série de Fourier, on a ∀x ∈ R, Fa(x) =
+∞∑
p=0

(−1)px2p+1

(2p+ 1)!(1− a2p+1)
grâce à ce qui précède.

Comme la fonction sin est développable en série entière sur R, Fa(x) =
+∞∑
n=0

( +∞∑
k=0

(−1)kan(2k+1)x2k+1

(2k+ 1)!

)
.

Or la famille
(
(−1)kan(2k+1)x2k+1

(2k+ 1)!

)
(n,k)∈N2

est sommable car, par sommation par paquets, on a le calcul∑
(n,k)∈N2

|a|n(2k+1)|x|2k+1

(2k+ 1)!
=
∑
k∈N

( ∑
n∈N

|a|n(2k+1)|x|2k+1

(2k+ 1)!

)
=
∑
k∈N

|x|2k+1

(2k+ 1)!(1− |a|2k+1)
< +∞ car si x ̸= 0,

|x|2k+1

(2k+ 1)!(1− |a|2k+1)
∼
+∞

|x|2k+1

(2k+ 1)!
et que

∑
k∈N

|x|2k+1

(2k+ 1)!
= sh (|x|) < +∞. Ainsi, pour x ∈ R, on peut

développer en série entière Fa(x) =
+∞∑
k=0

(−1)k
( +∞∑

n=0

an(2k+1)
)

x2k+1

(2k+ 1)!
=

+∞∑
k=0

(−1)kx2k+1

(2k+ 1)!(1− a2k+1)
.� �

10.72� �a. Soit x ∈ R, comme
∑
n>0

an converge, (an)n∈N tend vers 0 donc anx
n

n!
=
+∞

o

(
xn

n!

)
. Or, par croissances

comparées, lim
n→+∞

xn

n!
= 0 donc lim

n→+∞
anx

n

n!
= 0 et le rayon de convergence de

∑
n>0

anx
n

n!
est donc R = +∞.

b. La fonction g : t 7→ f(t)e−t est continue sur R+ car f l’est en tant que somme de série entière de rayon

infini. De plus, g(t) =
+∞∑
n=0

ant
ne−t

n!
. On pose un : t 7→ ant

ne−t

n!
de sorte que

∑
n>0

un converge simplement

vers g sur R+. Les un sont continues sur R+ comme la fonction g. De plus, un est intégrable sur R+

car tne−t =
+∞

o(e−t/2). Enfin,
∫ +∞

0
|un| =

∫ +∞

0

|an|tne−t

n!
dt =

|an|
n!

Γ(n + 1) = |an| et la série
∑
n>0

|an|

converge par hypothèse. Ainsi, par le TITT, on a
∫ +∞

0
g =
∫ +∞

0
f(t)e−tdt =

+∞∑
n=0

∫ +∞

0
un =

+∞∑
n=0

an.� �
10.73� �Posons an = n(−1)n , alors 0 6 1

n
6 an 6 n (considérer n pair et n impair) et les séries entières

∑
n>1

xn

n
et∑

n>0

nxn ont classiquement pour rayon 1 car (nxn)n∈N est bornée si et seulement si |x| < 1 et
(
xn

n

)
n>1

est

bornée si et seulement si |x| 6 1. Ainsi, le rayon de convergence R de
∑
n>0

n(−1)nxn vérifie 1 > R > 1 d’après

le cours : R = 1. De plus, comme (un)n>0 n’est pas bornée, l’intervalle de convergence est ]− 1; 1[.

En séparant termes pairs et impairs, on a ∀x ∈]− 1; 1[,
+∞∑
n=0

n(−1)nxn =
+∞∑
n=0

2nx2n +
+∞∑
n=0

x2n+1

2n+ 1
.

Comme ∀x ∈] − 1; 1[,
+∞∑
n=0

xn = 1

1− x
, en dérivant et en multipliant par x :

+∞∑
n=0

nxn = x

(1− x)2
donc
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+∞∑
n=0

2nx2n = 2x2

(1− x2)2
. On sait que ∀x ∈]− 1; 1[,

+∞∑
n=1

(−1)n−1

n
xn = ln(1+ x) et que

+∞∑
n=1

1

n
xn = − ln(1− x).

En sommant : ∀x ∈]−1; 1[, 2
+∞∑
n=0

x2n+1

2n+ 1
= ln(1+x)−ln(1−x) donc

+∞∑
n=0

x2n+1

2n+ 1
= 1

2
ln

(
1+ x

1− x

)(
= Argth (x)

)
.

On pouvait aussi écrire
+∞∑
n=0

x2n+1

2n+ 1
=

+∞∑
n=1

(−1)n−1

n
xn +

+∞∑
n=1

1

2n
x2n en séparant termes d’indices pairs et

impairs et on reconnâıt
+∞∑
n=0

x2n+1

2n+ 1
= ln(1+x)−1

2
ln(1−x2) = 1

2
ln

(
(1+ x)2

1− x2

)
= 1

2
ln

(
1+ x

1− x

)(
= Argth (x)

)
.

On pouvait aussi, pour x ∈]−1; 1[, intégrer terme à terme
+∞∑
n=0

x2n+1

2n+ 1
=
∫ x

0

( +∞∑
n=0

t2n
)
dt (car ˜[0; x] est inclus

dans l’intervalle ouvert de convergence) :
+∞∑
n=0

x2n+1

2n+ 1
=
∫ x

0

ddt

1− t2
= 1

2

∫ x

0

(
1

1− t
+ 1

1+ t

)
dt = 1

2
ln

(
1+ x

1− x

)
.

Ainsi, ∀x ∈]− 1; 1[,
+∞∑
n=0

n(−1)nxn = 2x2

(1− x2)2
+ 1

2
ln

(
1+ x

1− x

)
.� �

10.74� �a. Il est archi-classique que X2 + 2 cos(θ)X+ 1 = (X− eiθ)(X− e−iθ) avec la formule d’Euler.

b. Comme les racines de X2 + 2 cos(θ)X+ 1 sont complexes non réelles, la fonction f est bien définie sur R.

Identifions : 1

1+ 2x cos(θ) + x2
= a

x− eiθ
+ b

x− e−iθ =
(a+ b)x− (ae−iθ + beiθ)

1+ 2x cos(θ) + x2
d’après la question a..

On résout le système a+ b = ae−iθ + beiθ + 1 = 0 pour avoir a = −b = 1

2i sin(θ)
. On peut donc conclure

que ∀x ∈ R, f(x) = 1

2i sin(θ)(x− eiθ)
− 1

2i sin(θ)(x− e−iθ)
.

c. Si |x| < 1, en écrivant f(x) = 1

2i sin(θ)

(
eiθ

1− xeiθ
− e−iθ

1− xe−iθ

)
, comme |xeiθ| < 1 et |xeiθ| < 1, on

trouve f(x) = 1

2i sin(θ)

+∞∑
n=0

xn(ei(n+1)θ − e−i(n+1)θ) en utilisant les séries géométriques ce qui donne le

développement f(x) =
+∞∑
n=0

sin((n+ 1)θ)
sin(θ)

xn en série entière. Si le rayon R de cette série était strictement

supérieur à 1, la série entière
∑
n>0

sin((n+ 1)θ)
sin(θ)

zn de la variable complexe aurait le même rayon donc la

fonction g : z 7→
+∞∑
n=0

sin((n+ 1)θ)
sin(θ)

zn serait continue sur B(0, R) donc en particulier en z = eiθ ce qui est

impossible puisqu’en remontant les calculs, on a g(z) = 1

2i sin(θ)(z− eiθ)
− 1

2i sin(θ)(z− e−iθ)
et g ne peut

pas être continue en eiθ. Ainsi, le rayon de
∑
n>0

sin((n+ 1)θ)
sin(θ)

xn vaut exactement R = 1.� �
10.75� �Posons un = 2n2 + 3n+ 1

2n+1 , par croissances comparées, un ∼
+∞

n2

2n
=
+∞

O

(
1

n2

)
donc

∑
n>0

un converge par

comparaison aux séries deRiemann. Soit x ∈ R∗
+, comme (2n2+3n+1)xn ∼

+∞
2n2xn, toujours par croissances

comparées, la suite
(
(2n2 + 3n+ 1)xn

)
n∈N est bornée si et seulement si |x| < 1 donc le rayon de convergence

de
∑
n>0

(2n2 + 3n+ 1)xn vaut R = 1. Posons donc ∀x ∈]− 1; 1[, f(x) =
+∞∑
n=0

(2n2 + 3n+ 1)xn.

On écrit 2n2 + 3n+ 1 = 2(n+ 2)(n+ 1)− 3(n+ 1) pour avoir f(x) = 2
+∞∑
n=0

(n+ 2)(n+ 1)xn − 3
+∞∑
n=0

(n+ 1)xn

(les deux séries convergent) donc f(x) = 2

(
1

1− x

)′′
− 3

(
1

1− x

)′
= 4

(1− x)3
− 3

(1− x)2
= 1+ 3x

(1− x)3
. Enfin,

+∞∑
n=0

un = 1

2

+∞∑
n=0

(2n2 + 3n+ 1)
(
1

2

)n
= 1

2
f

(
1

2

)
= 1

2
× 1+ (3/2)

(1/8)
= 10.
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� �
10.76� �a. Pour x ∈ R∗, la fonction f : t 7→ cos(t)

t
est continue sur le segment [̃x; 3x] donc F est bien définie sur

R∗. Comme f est impaire sur R∗, F(−x) =
∫ −3x

−x

cos(t)
t

dt =
∫ 3x

x

cos(−u)
− u

(−du) = F(x) par le changement

de variable t = −u facile à justifier. Ainsi, F est paire.

b. Comme cos(t)=
0
1 − t2

2
+ o(t2), on a f(t)=

0

1

t
− t

2
+ o(t) ce qui signifie que f(t) = 1

t
− t

2
+ tε(t) avec

lim
t→0

ε(t) = 0. Ainsi, pour tout ε > 0, il existe α < 0 tel que ∀t ∈]− α;α[\{0}, |ε(t)| 6 ε. Alors, si x ̸= 0 mais

|x| < α

3
, on a

∣∣∣∫ 3x

x
(f(t)− 1

t
− t

2
)dt
∣∣∣ 6 ∣∣∣∫ 3x

x
εtdt

∣∣∣ = 4εx2. On en déduit donc que F(x)=
0
ln(3)− 2x2 + o(x2).

On pouvait invoquer la primitivation des DL en calculant F′(x) = 3
cos(3x)

3x
− cos(x)

x
et son DL d’ordre 1.

Par conséquent, lim
x→0

F(x) = ln(3) et on peut donc prolonger F par continuité en 0 en posant F(0) = ln(3). De

plus, le DL précédent montre que F ainsi prolongée est dérivable en 0 avec F′(0) = 0.

c. Soit x > 0, par une intégration par parties facile, on obtient F(x) =
[
sin(t)

t

]3x
x

+
∫ 3x

x

sin(t)

t2
dt et∣∣∣∫ 3x

x

sin(t)

t2
dt

∣∣∣ 6 ∫ 3x

x

1

t2
dt = 1

x
− 1

3x
= 2

3x
. Comme lim

x→+∞

[
sin(t)

t

]3x
x

= 0 et lim
x→+∞

∫ 3x

x

sin(t)

t2
dt = 0 par

la majoration précédente, on a lim
x→+∞

F(x) = 0. Par parité de F, lim
x→−∞

F(x) = 0.

d. Soit x ̸= 0, alors F(x) =
∫ 3x

x

1

t
dt+
∫ 3x

x

cos(t)− 1

t
dt = ln(3) +

∫ 3x

x

cos(t)− 1

t
dt. Or t 7→ cos(t)− 1

t
est

développable en série entière avec un rayon infini et
cos(t)− 1

t
=

+∞∑
n=1

(−1)nt2n−1

(2n)!
donc, en intégrant terme

à terme, on a ∀x ̸= 0, F(x) = ln(3)+
∫ 3x

x

+∞∑
n=1

(−1)nt2n−1

(2n)!
dt = ln(3)+

+∞∑
n=1

(−1)n((3x)2n − x2n)
(2n)(2n)!

. C’est aussi

vrai si x = 0 donc F est développable en série entière sur R et ∀x ∈ R, F(x) = ln(3)+
+∞∑
n=1

(−1)n(32n − 1)
(2n)(2n)!

x2n.� �
10.77� �L’hypothèse de l’énoncé montre que an =

+∞
o

(
1

n

)
donc que an =

+∞
o(1). Comme le rayon de

∑
n>1

xn vaut 1,

le rayon R de la série entière
∑
n>0

anx
n vérifie R > 1 ce qui justifie l’existence de la fonction f sur ]− 1; 1[.

a. On constate d’abord, pour n ∈ N∗ et i ∈ N, que :

- si i > n, alors 1− i

n
6 0 6

(
1− 1

n

)i
donc 1− i

n
6
(
1− 1

n

)i
est vérifié.

- si i = 0, 1− i

n
=
(
1− 1

n

)i
= 1 donc 1− i

n
6
(
1− 1

n

)i
est à nouveau vrai.

- si i = 1, 1− i

n
= 1− 1

n
=
(
1− 1

n

)1
donc 1− i

n
6
(
1− 1

n

)i
est encore valide.

Ceci nous conduit à effectuer une récurrence sur i ∈ [[0;n]]. L’initialisation vient d’être faite.

Soit i ∈ [[1;n−1]] tel que 1− i

n
6
(
1− 1

n

)i
. Alors

(
1− 1

n

)i+1

=
(
1− 1

n

)i
×
(
1− 1

n

)
donc, puisque 1− 1

n
> 0,

l’hypothèse de récurrence montre que
(
1 − 1

n

)i+1

>
(
1 − i

n

)
×
(
1 − 1

n

)
= 1 − i+ 1

n
+ i

n2 > 1 − i+ 1

n
et

l’hérédité est établie. Par principe de récurrence, on a donc ∀i ∈ N, ∀n ∈ N∗, 1− i

n
6
(
1− 1

n

)i
.

b. Pour n > 1, en décomposant la somme et par inégalité triangulaire, comme la convergence de la série∑
n>0

ai

(
1− 1

n

)i
est absolue puisque

∣∣∣1− 1

n

∣∣∣ < R et comme f
(
1− 1

n

)
=

+∞∑
i=0

ai

(
1− 1

n

)i
=

n∑
i=0

ai

(
1− 1

n

)i
+

32



+∞∑
i=n+1

ai

(
1− 1

n

)i
, d’après la question précédente

∣∣∣( n∑
i=0

ai

)
− f
(
1− 1

n

)∣∣∣ =
∣∣∣ n∑
i=0

ai

(
1−

(
1− 1

n

)i)
+

+∞∑
i=n+1

ai

(
1− 1

n

)i∣∣∣
6 1

n

n∑
i=0

|ai|i+
+∞∑

i=n+1

|ai|
(
1− 1

n

)i
Comme la suite (i|ai|)i∈N tend vers 0 par hypothèse, le théorème de Cesaro (hors programme mais à savoir

re-démontrer) permet d’affirmer que la suite des moyennes arithmétiques
(

1

n+ 1

n∑
i=0

|ai|i
)
n∈N

tend aussi

vers 0. Or comme n+ 1 ∼
+∞

n, on a aussi lim
n→+∞

1

n

n∑
i=0

|ai|i = 0. De plus, cette même suite étant bornée, on

peut majorer ∀i > n+ 1, i|ai| 6 Sup
j>n+1

j|aj| = Mn ce qui donne

+∞∑
i=n+1

|ai|
(
1− 1

n

)i
6

+∞∑
i=n+1

Mn

i

(
1− 1

n

)i
6 Mn

n+ 1

+∞∑
i=n+1

(
1− 1

n

)i
= Mn

n+ 1

(
1− 1

n

)n+1

× 1

1−
(
1− 1

n

)
et on conclut enfin que

+∞∑
i=n+1

|ai|
(
1− 1

n

)i
6 nMn

n+ 1

(
1− 1

n

)n+1

6 Mn. Mais puisque lim
n→+∞

nan = 0, on a

aussi lim
n→+∞

Mn = 0 ce qui montre qu’on a aussi lim
n→+∞

+∞∑
i=n+1

|ai|
(
1− 1

n

)i
= 0.

Grâce à la majoration précédente, on peut conclure par encadrement que lim
n→+∞

(( n∑
i=0

ai

)
− f
(
1− 1

n

))
= 0.

c. Comme lim
n→+∞

(
1− 1

n

)
= 1 et que f admet une limite finie, disons ℓ, quand x tend vers 1, en composant

on a lim
n→+∞

f
(
1 − 1

n

)
= ℓ. En notant Sn =

n∑
i=0

ai la somme partielle de
∑
n>0

an, ce qui précède montre que

lim
n→+∞

Sn = 0+ ℓ = ℓ car Sn =
(
Sn − f

(
1− 1

n

))
+ f
(
1− 1

n

)
. Ainsi,

∑
n>0

an converge et
+∞∑
n=0

an = ℓ.� �
10.78� �a. Pour x ∈ R, gx : t 7→ tx

1+ t
est continue et positive sur ]0; 1] car gx(t) =

ex ln(t)

1+ t
. De plus, gx(t)∼

0

1

t−x

donc, par Riemann, gx est intégrable sur ]0; 1] si et seulement si −x < 1 ⇐⇒ x > −1. Ainsi, comme gx est

positive, F(x) est défini si et seulement si x > −1, d’où D =]− 1; +∞[.

b. Posons f :]− 1; +∞[×]0; 1] → R définie par f(x, t) = tx

1+ t
.

• Pour t ∈]0; 1], la fonction x 7→ f(x, t) est de classe C∞ sur ]− 1; +∞[.

• Pour x ∈]− 1; +∞[, t 7→ f(x, t) = gx(t) est continue et intégrable sur ]0; 1] (on vient de le voir).

• Pour x ∈]−1; +∞[ et n ∈ N∗, t 7→ ∂kf

∂xk
(x, t) =

(ln t)ktx

1+ t
est continue sur ]0; 1] et, si a ∈]−1; +∞[, on a

la majoration ∀x ∈ [a; +∞[, ∀t ∈]0; 1],
∣∣∣ ∂kf
∂xk

(x, t)
∣∣∣ 6 | ln t|kta

1+ t
= φa(t) avec φa continue et intégrable

sur ]0; 1] d’après Riemann car, par croissances comparées, on a φa(t)=
0
o

(
1

t
1−a
2

)
et 1− a

2
< 1.

D’après un théorème du cours, F est de classe C∞ sur ]−1; +∞[ et ∀k ∈ N, ∀x > −1, F(k)(x) =
∫ 1

0

(ln t)ktx

1+ t
dt.

c. Pour x ∈] − 1; 1[, F(x) =
∫ 1

0

tx

1+ t
dt =

∫ 1

0

(
1

1+ t

+∞∑
n=0

xn ln(t)n

n!

)
dt =

∫ 1

0

( +∞∑
n=0

xn ln(t)n

n!(1+ t)

)
dt. Pour

n ∈ N, soit fn :]0; 1] → R définie par fn(t) =
xn ln(t)n

n!(1+ t)
.
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• La série
∑
n>0

fn converge simplement vers gx sur ]0; 1] (on en vient).

• Les fonctions fn et gx sont continues sur ]0; 1]. fn est intégrable sur ]0; 1] car f0(t)=
0
o

(
1√
t

)
et

lim
t→0+

fn(t) = 0 pour n > 1 par croissances comparées.

• Pour n ∈ N,
∫ 1

0
|fn(t)|dt 6 |x|n

n!

∫ 1

0
| ln(t)|ndt. Posons Jn =

∫ 1

0
(ln(t))ndt. On effectue une

intégration par parties avec u : t 7→ t et v : t 7→ (ln(t))n, u et v sont C1 sur ]0; 1] et lim
t→0+

u(t)v(t) = 0

par croissances comparées donc Jn = [t lnn t]10 −
∫ 1

0
t.n lnn−1 t

t
dt = −nJn−1. Par une récurrence,

simple, comme J0 = 1 et J1 = [t ln(t) − t]10 = −1, on a ∀n ∈ N, Jn = (−1)nn!. On aurait aussi pu

poser le changement de variable t = φ(x) = e−x avec φ bijection strictement décroissante et de classe

C1 de R∗
+ sur ]0; 1] pour avoir, après calculs, Jn = (−1)n

∫ +∞

0
xne−xdx = (−1)nΓ(n+ 1) = (−1)nn!

(classique). Ainsi,
∫ 1

0
|fn(t)|dt 6 |x|n et

∑
n>0

|x|n car |x| < 1 (série géométrique).

Alors, F(x) =
∫ 1

0

( +∞∑
n=0

xn ln(t)n

n!(1+ t)

)
dt =

+∞∑
n=0

∫ 1

0

xn ln(t)n

n!(1+ t)
dt =

+∞∑
n=0

anx
n par le théorème d’intégration terme

à terme en posant an =
∫ 1

0

ln(t)n

n!(1+ t)
dt. Ainsi, F est développable en série entière sur ]− 1; 1[.

Méthode 1 : Comme ∀t ∈]0; 1], 1

2
6 1

1+ t
6 1 , on a

∫ 1

0

| ln(t)|n
2.n!

dt 6 |an| 6
∫ 1

0

| ln(t)|n
n!

dt et, puisque∫ 1

0
| ln(t)|ndt = n! d’après les calculs précédents, 1

2
6 |an| 6 1. Comme les rayons de convergence des séries∑

n>0

xn et
∑
n>0

xn

2
valent 1, le rayon R de

∑
n>1

anx
n vaut aussi R = 1.

Méthode 2 : D’abord a0 =
∫ 1

0

1

1+ t
dt = ln(2) et, si n > 1, on peut calculer effectivement an en écrivant

que ∀t ∈]0; 1[, 1

1+ t
=

+∞∑
k=0

(−1)ktk donc an =
∫ 1

0

( +∞∑
k=0

(−1)k
tk ln(t)n

n!

)
dt. Soit gk : t 7→ (−1)k

tk ln(t)n

n!
.

• La série
∑
k>0

gk converge simplement vers h : t 7→
+∞∑
k=0

(−1)k
tk ln(t)n

n!
sur ]0; 1] (on en vient).

• Les fonctions gk et h sont continues sur ]0; 1]. gk est intégrable sur ]0; 1] car gk se prolonge en une

fonction continue sur [0; 1] si k > 1 et g0(t)=
0
o

(
1√
t

)
.

• Pour k ∈ N,
∫ 1

0
|gk(t)|dt = 1

n!

∫ 1

0
tk| ln(t)|ndt. Posons t = e−x dans Ik =

∫ 1

0
tk lnn(t)dt et on

a Ik = (−1)n
∫ +∞

0
xne−(k+1)xdx puis x = u

k+ 1
et Ik =

(−1)n

(k+ 1)n+1

∫ +∞

0
une−udu =

(−1)nn!

(k+ 1)n+1

comme ci-dessus. On aurait pu poser Kp,n =
∫ 1

0
tp lnn(t)dt, faire des intégrations par parties. Ainsi,∫ 1

0
|gk(t)|dt = 1

(k+ 1)n+1 et
∑
k>0

1

(k+ 1)n+1 converge (série de Riemann car n+ 1 > 1).

Alors, an = (−1)n
+∞∑
k=0

(−1)k

(k+ 1)n+1 = (−1)nθ(n+ 1) par le théorème d’intégration terme à terme où θ est la

seconde fonction de Riemann : θ(α) =
+∞∑
j=1

(−1)j+1

jα
pour α > 0.

On sait que lim
α→+∞

θ(α) = 1 (classique par double limite) donc, pour x ̸= 0, lim
n→+∞

|an+1x
n+1|

|anx
n| = 1 et la

règle de d’Alembert permet de conclure que R = 1.

Question de cours : si (un) ∈ CN est une suite de complexes ne s’annulant par et si on suppose l’existence
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de ℓ = lim
n→+∞

∣∣∣un+1

un

∣∣∣ ∈ R+, alors on a deux implications qui constituent le critère de d’Alembert :

• si ℓ < 1, alors
∑
n>0

un converge absolument.

• si ℓ > 1, alors
∑
n>0

un diverge grossièrement.

• si ℓ = 1, on ne peut rien conclure comme le prouvent les séries de Riemann.� �
10.79� �a. Posons un = n(−1)n , alors 1

n
6 un 6 n et les séries entières

∑
n>1

xn

n
et
∑
n>0

nxn ont classiquement pour

rayon 1 donc le rayon de convergence de
∑
n>0

n(−1)nxn est R = 1 par encadrement.

De plus, comme (un)n>0 n’est pas bornée, les séries
∑
n>0

un et
∑
n>0

(−1)nun divergent grossièrement et

l’intervalle de convergence de
∑
n>1

n(−1)nxn est ]− 1; 1[.

b. En séparant termes pairs et impairs, on a ∀x ∈]− 1; 1[,
+∞∑
n=0

n(−1)nxn =
+∞∑
n=0

2nx2n +
+∞∑
n=0

x2n+1

2n+ 1
.

Comme ∀x ∈] − 1; 1[,
+∞∑
n=0

xn = 1

1− x
, en dérivant et en multipliant par x,

+∞∑
n=0

nxn = x

(1− x)2
donc

+∞∑
n=0

2nx2n = 2x2

(1− x2)2
car x2 ∈] − 1; 1[. On sait que ∀x ∈] − 1; 1[,

+∞∑
n=1

(−1)n−1

n
xn = ln(1 + x) et que

+∞∑
n=1

xn

n
= − ln(1 − x). En sommant, on obtient ∀x ∈] − 1; 1[, 2

+∞∑
n=0

x2n+1

2n+ 1
= ln(1 + x) − ln(1 − x) donc

+∞∑
n=0

x2n+1

2n+ 1
= 1

2
ln

(
1+ x

1− x

)(
= Argth (x)

)
. Ainsi, ∀x ∈]− 1; 1[,

+∞∑
n=0

n(−1)nxn = 2x2

(1− x2)2
+ 1

2
ln

(
1+ x

1− x

)
.� �

10.80� �a. Si f est solution de (E) sur R, alors f est au moins dérivable sur R. Mais x 7→ f(x) + f(λx) est

alors dérivable par opérations donc f′ est aussi dérivable donc f est deux fois dérivable. Par une récurrence

classique, on montre comme ceci que f est de classe C∞ sur R. En dérivant n fois la relation (E), on a

f(n+1)(x) = f(n)(x)+λnf(n)(x) (En). Soit a > 0, la fonction f(n) est continue sur le segment [−a;a] donc elle

y est bornée et on peut définir Mn = Sup
x∈[−a;a]

|f(n)(x)| = ||f(n)||∞,[−a;a]. D’après (En), comme λx ∈ [−a;a]

si x ∈ [−a;a] car |λ| < 1, on a ∀x ∈ [−a;a], |f(n+1)(x)| 6 |f(n)(x)| + |λ|n|f(n)(λx)| 6 Mn + |λ|nMn donc

Mn+1 6 (1+ λn)Mn 6 2Mn. Par une récurrence simple, on a ∀n ∈ N, Mn 6 2nM0.

Par Taylor reste intégral, ∀n ∈ N∗, ∀x ∈ [−a;a], f(x) −
n∑

k=0

f(k)(0)
k!

xk = 1

n!

∫ x

0
(x − t)nf(n+1)(t)dt donc∣∣∣f(x) − n∑

k=0

f(k)(0)
k!

xk
∣∣∣ 6 |x|n+1

n!
2nM0 6 2nan+1

n!
M0. Par croissances comparées, lim

n→+∞
2nan

n!
= 0 quel que

soit a > 0 donc ∀x ∈ R, f(x) = lim
n→+∞

n∑
k=0

f(k)(0)
k!

xk =
+∞∑
n=0

f(n)(0)
n!

xn ce qui prouve que f est développable

en série entière sur R, donc avec un rayon R = +∞.

b. Soit f solution de (E) sur R, d’après la question a., on a ∀x ∈ R, f(x) =
+∞∑
n=0

anx
n avec an =

f(n)(0)
n!

.

On a donc ∀x ∈ R, f′(x) =
+∞∑
n=0

(n + 1)an+1x
n et f(x) =

+∞∑
n=0

anλ
nxn. En remplaçant dans (E), on obtient

∀x ∈]− R;R[,
+∞∑
n=0

((n+ 1)an+1 − an − λnan)x
n = 0 donc, par unicité des coefficients dans une série entière

de rayon strictement positif : ∀n ∈ N, an+1 = 1+ λn

n+ 1
an. Par récurrence, ∀n ∈ N, an = a0

n!

n−1∏
k=0

(1+ λk).

Ainsi, ∀x ∈ R, f(x) = a0g(x) avec g(x) =
+∞∑
n=0

(n−1∏
k=0

(1+ λk)
)
xn

n!
. L’ensemble des solutions de (E) sur R est
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donc la droite vectorielle engendrée par g.� �
10.81� �a. Pour tout réel x, la fonction hx : t 7→ e−t2sh (xt) est continue sur R+ et sh (xt) = ext − e−xt

2
=
+∞

O(e|x|t)

donc e−t2sh (xt) =
+∞

O(e−t2+|x|t) =
+∞

O
(
e−t
)
car lim

t→+∞
e−t2+|x|t+t = 0 donc, par comparaison, la fonction

hx est intégrable sur R+. Par conséquent, la fonction F est bien définie sur R.

b. ∀t > 0, sh (xt) =
+∞∑
n=0

x2n+1t2n+1

(2n+ 1)!
, donc F(x) =

∫ +∞

0

( +∞∑
n=0

fn(t)
)
dt avec fn : t 7→ x2n+1t2n+1

(2n+ 1)!
e−t2 .

• La série de fonctions
∑
n>0

fn converge simplement vers hx sur R+ (on en vient).

• Les fonctions fn et la fonction hx sont continues sur R+.

• Les fonctions fn sont intégrables sur R+ car fn(t) =
+∞

O

(
1

t2

)
par croissances comparées.

• Posons In =
∫ +∞

0
t2n+1e−t2dt, en posant u : t 7→ t2n et v : t 7→ −e−t2

2
, u et v sont de classe C1 sur

R+, u(0)v(0) = lim
t→+∞

u(t)v(t) = 0 par croissances comparées donc, par intégration par parties, pour

tout n > 1, In =
∫ +∞

0
u(t)v′(t)dt = n

∫ +∞

0
t2n−1e−t2dt = nIn−1. Comme I0 =

[
− e−t2

2

]+∞

0
= 1

2
,

par récurrence, ∀n ∈ N, In = n!
2
. On aurait aussi pu poser t =

√
u = φ(u) avec φ bijection de classe

C1 strictement croissante de R∗
+ dans R∗

+ ce qui donne In = 1

2

∫ +∞

0
une−u2

du =
Γ(n+ 1)

2
= n!

2
.

Ainsi,
∫ +∞

0
|fn| =

|x|2n+1n!
2(2n+ 1)!

=
|x|2n+1

2(2n+ 1)× · · · × (n+ 1)
donc

∫ +∞

0
|fn| 6 |x|2n+1

(n+ 1)!
et la série∑

n>0

|x|2n+1

(n+ 1)!
converge (série exponentielle).

Par le théorème d’intégration terme à terme, on a donc l’intégrabilité de hx sur R+ (on le savait déjà) et

surtout le développement en série entière de F : ∀x ∈ R, F(x) =
+∞∑
n=0

∫ +∞

0
fn =

+∞∑
n=0

x2n+1n!
2(2n+ 1)!

.

On pouvait aussi dériver sous le signe somme, soit f : R× R+ → R définie par f(x, t) = e−t2sh (xt), alors :

• ∀t > 0, la fonction x 7→ f(x, t) est de classe C1 sur R.

• ∀x ∈ R, la fonction hx : t 7→ f(x, t) est continue et intégrable sur R+ (on vient de le faire).

• ∀x ∈ R, la fonction t 7→ ∂f
∂x

(x, t) = te−t2ch (xt) est continue sur R+.

• Soit a > 0, on a la majoration ∀x ∈ [−a;a], ∀t > 0,

∣∣∣ ∂f∂x (x, t)∣∣∣ 6 te−t2ch (at) = φa(t) et

φa(t) =
+∞

o
(
e−t
)
comme avant donc la fonction φa est intégrable sur R+.

On en déduit que F est de classe C1 sur R et ∀x ∈ R, F′(x) =
∫ +∞

0
te−t2ch (xt)dt. On pose u(t) = ch (xt) et

v(t) = −e−t2

2
, alors u et v sont C1 sur R+, u(0)v(0) = −1

2
et lim

t→+∞
u(t)v(t) = 0 par croissances comparées

donc, par intégration par parties, on a F′(x) =
∫ +∞

0
u(t)v′(t)dt = 1

2
+ x

2

∫ +∞

0
e−t2sh (xt)dt = 1

2
+ x

2
F(x).

Ainsi, F est la solution sur R de (E) : y′ = 1

2
+ x

2
y qui vérifie la condition de Cauchy F(0) = 0. Comme

x 7→ x2

4
est une primitive de x 7→ x

2
sur R+, on sait d’après le cours que y0 : x 7→ e

x2

4 est un vecteur directeur

de la droite des solutions de l’équation homogène (E0) : y′ = x

2
y. Par méthode de variation de la constante,

on trouve par exemple comme solution particulière de (E) la fonction yp : x 7→ 1

2
e
x2

4

∫ x

0
e
−t2

4 dt. Ainsi, il
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existe λ ∈ R tel que ∀x ∈ R, F(x) = yp + λy0. Comme F(0) = 0 = λ, ∀x ∈ R, F(x) = x 7→ 1

2
e
x2

4

∫ x

0
e
−t2

4 dt.

On peut à partir de là retrouver un développement en série entière de F par produit de Cauchy car

e
x2

4 =
+∞∑
n=0

x2n

4nn!
et
∫ x

0
e
−t2

4 dt =
∫ x

0

+∞∑
n=0

(
(−1)nt2n

4nn!

)
dt =

+∞∑
n=0

(∫ x

0

(−1)nt2n

4nn!
dt

)
=

+∞∑
n=0

(−1)nx2n+1

4nn!(2n+ 1)

en intégrant terme à terme sur [0; x] inclus dans l’intervalle ouvert de convergence R. Comme les séries

précédentes convergent absolument pour x ∈ R, en notant an = x2n

4nn!
et bn =

(−1)nx2n+1

4nn!(2n+ 1)
, par produit de

Cauchy, 2F(x) =
+∞∑
n=0

cn si cn =
n∑

k=0

an−kbk =
n∑

k=0

x2n−2k

4n−k(n− k)!

(−1)kx2k+1

4kk!(2k+ 1)
=
( n∑

k=0

(−1)k

2k+ 1

(
n

k

))
x2n+1

4nn!
.

Par unicité du développement en série entière dès lors que le rayon est strictement positif (et c’est le cas ici),

on a donc ∀n ∈ N, n!
2(2n+ 1)!

= 1

2.4nn!

n∑
k=0

(−1)k

2k+ 1

(
n

k

)
ou

n∑
k=0

(−1)k

2k+ 1

(
n

k

)
=

2.4n(n!)2

2(2n+ 1)!
=

22n−2

(2n+ 1)

(
2n

n

) .

� �
10.82� �a. La série

∑
n>1

(−1)n+1

√
n

converge clairement par le critère spécial des séries alternées donc son reste

d’ordre n noté ici un =
+∞∑

k=n+1

(−1)k+1

√
k

existe bien pour tout entier n > 1 : la suite (un)n>1 est bien définie.

Comme toute suite de restes, on a lim
n→+∞

un = 0.

b. Le critère spécial nous apprend aussi que un est du signe de son premier terme donc de (−1)n ainsi vn

est un terme positif. Enfin, on déduit encre du critère spécial des séries alternées que |un| 6 1√
n+ 1

donc

|vn| 6 1

n
√
n+ 1

=
+∞

O

(
1

n3/2

)
donc

∑
n>1

vn converge d’après Riemann.

c. En notant S =
+∞∑
k=1

(−1)k+1

√
k

et Sn =
n∑

k=1

(−1)k+1

√
k

pour n > 1, on a donc Sn = S − un ce qui donne

wn =
(−1)nS

n
− (−1)n

n
un =

(−1)nS
n

− vn. Comme la série
∑
n>1

(−1)nS
n

converge par le critère spécial des

séries alternées et que
∑
n>1

vn converge d’après la question précédente, par somme, la série
∑
n>1

wn converge.

d. Comme
∑
n>1

wn converge, le rayon R de la série entière
∑
n>1

wnx
n vérifie déjà R > 1. Mais si on regarde

ce qui se passe quand x = −1, on a wn(−1)n = S

n
− (−1)nvn. Comme la série

∑
n>1

(−1)nvn converge

puisque
∑
n>1

vn converge absolument d’après b. et que la série harmonique
∑
n>1

S

n
diverge, par somme, la

série
∑
n>1

(−1)nwn diverge. Ainsi, on a R 6 1. Au final, R = 1.� �
10.83� �a. Pour n ∈ N, comme |an| = 1, on a

∣∣∣an

n!

∣∣∣ = 1

n!
et on sait que le rayon de convergence de la série

entière (exponentielle)
∑
n>0

xn

n!
vaut +∞. Ainsi, par comparaison, le rayon de convergence de la série entière∑

n>0

an

n!
xn vautR = +∞. Ainsi, la fonction f est définie sur R.

b. Supposons que a0 = 1 (le cas a0 = −1 s’obtient en considérant −f à la place de f avec les mêmes

hypothèses sur f en remplaçant la suite (an)n∈N par la suite (−an)n∈N).

Comme f est de classe C∞ sur R, elle admet des développements limités à n’importe quel ordre qui sont

donnés d’après le théorème de Taylor-Young par ∀n ∈ N, f(x)=
0

n∑
k=0

f(k)(0)
k!

xk + o(xn). Or, d’après le
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cours, ∀n ∈ N,
an

n!
=

f(n)(0)
n!

donc an = f(n)(0). Ainsi, ∀n ∈ N, f(x)=
0

n∑
k=0

ak

k!
xk + o(xn) (ce qui est

une troncature de la série entière). De même, on sait qu’on peut dériver une série entière terme à terme :

∀m ∈ N, ∀x ∈ R, f(m)(x) =
+∞∑
n=m

an

(n−m)!
xn−m =

+∞∑
k=0

ak+m

k!
xk. Par exemple f(m)(x)=

0
am+am+1x+o(x).

• Initialisation : comme f(0) = a0 = 1, f est positive localement au voisinage de 0. Avec le développement

limité à l’ordre 1 de f au voisinage de 0, on a f(x)=
0
a0 + a1x+ o(x)=

0
1+ a1x+ o(x) donc, comme a1 ̸= 0, il

vient f(x)− 1∼
0
a1x. Si on avait a1 = 1, alors f(x)− 1∼

0
x donc f(x)− 1 serait strictement positif au voisinage

de 0+ ce qui est contraire à l’hypothèse |f(x)| = f(x) 6 1 si x > 0. On conclut ce raisonnement : a1 = −1.

• Hérédité : soit m > 1 et supposons que ∀n ∈ [[1;m]], an = (−1)n. Alors f(m)(x)=
0
am+am+1x+o(x) donc,

par continuité de f(m) en 0, f(m) est du signe de (−1)m au voisinage de 0 donc |f(m)(x)| = (−1)mf(m)(x) au

voisinage de 0. Or on a vu que f(m)(x)=
0
am + am+1x+ o(x) donc |f(m)(x)|=

0
1+ (−1)mam+1x+ o(x). Si on

avait am+1 = (−1)m, on aurait alors |f(m)(x)|=
0
1 + x + o(x) donc |f(m)(x)| − 1∼

0
x ce qui contredit encore

une fois le fait que ∀x > 0, |f(m)(x)| 6 1. Par l’absurde, on a donc prouvé que am+1 = (−1)m+1.

• Par principe de récurrence, ∀n ∈ N, an = (−1)n. Ainsi, ∀x ∈ R, f(x) =
+∞∑
n=0

(−1)nxn

n!
= e−x.

En regroupant les deux cas selon a0, si (an)n∈N ⊂ {−1, 1}N, f(x) =
+∞∑
n=0

an

n!
xn et qu’on suppose que

∀x > 0, ∀n ∈ N, |f(n)(x)| 6 1, alors (an)n∈N =
(
(−1)n

)
n∈N ou (an)n∈N =

(
(−1)n+1

)
n∈N donc f : x 7→ e−x

ou f : x 7→ −e−x.� �
10.84� �L’ensemble E contient la suite nulle et, si λ ∈ C et u = (un)n∈N et v = (vn)n∈N sont des suites de E,

comme |un + vn| 6 |un|+ |vn|, la série
∑
n>0

(un + vn) converge absolument par comparaison et, par linéarité

de la somme de séries convergentes, ∀k ∈ N∗,
+∞∑
n=0

(un + vn)2
−kn =

+∞∑
n=0

un2
−kn +

+∞∑
n=0

vn2
−kn = 0+ 0 donc

u+ v ∈ E. Ainsi, E est un sous-espace vectoriel de CN (et même de ℓ1(C)) donc E est un C-espace vectoriel.

Soit (un)n∈N de E, comme la série
∑
n>0

un converge absolument, la série entière
∑
n>0

unz
n est de rayon R > 1

car il y a convergence de
∑
n>0

unz
n au moins sur le disque Bf(0, 1) = {z ∈ C | |z| 6 1} par comparaison. Posons

f(z) =
+∞∑
n=0

unz
n quand il y a convergence. Par hypothèse, ∀k ∈ N∗, f

(
1

2k

)
= 0. Comme f est continue sur

]− 1; 1[ car elle y est développable en série entière, on a f(0) = lim
k→+∞

f

(
1

2k

)
= 0 donc f(0) = u0 = 0.

Soit un entier p ∈ N, supposons qu’on ait déjà montré que u0 = · · · = up = 0. Alors, on obtient

∀k ∈ N∗,
+∞∑
n=0

un2
−kn =

+∞∑
n=p+1

un2
−kn = 1

2k(p+1)

+∞∑
n=p+1

un2
−kn+k(p+1) = 0 donc, en changeant d’indice,

+∞∑
n=p+1

un2
−kn+k(p+1) =

+∞∑
n=0

un+p+12
−kn = 0. Par conséquent, en posant fp(z) =

+∞∑
n=0

un+p+1z
n, le rayon

de convergence de cette série entière est à nouveau supérieur ou égal à 1 car ∀z ∈ Bf(0, 1), f(z) = zpfp(z).

Ce qui précède montre que ∀k ∈ N∗, fp

(
1

2k

)
= 0 et, avec les mêmes arguments que précédemment, le terme

constant de fp est nul ce qui montre que up+1 = 0 et l’hérédité est établie.

Par principe de récurrence, ∀n ∈ N, un = 0. Ainsi, E est réduit à la suite nulle !
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� �
10.85� �Comme

(
(−1)nxn

3n+ 1

)
n∈N

est bornée si et seulement si |x| 6 1 par croissances comparées, le rayon de∑
n>0

(−1)nxn

3n+ 1
vaut R = 1. On pose f(x) =

+∞∑
n=0

(−1)nxn

3n+ 1
pour x ∈] − 1; 1]. En effet, la série

∑
n>0

(−1)nxn

3n+ 1

converge si x ∈]− 1; 1[ d’après le cours et
∑
n>0

(−1)n

3n+ 1
converge aussi par le critère spécial des séries alternées

car
(

1

3n+ 1

)
n>0

est décroissante et tend vers 0. Par contre, la série
∑
n>0

1

3n+ 1
diverge car 1

3n+ 1
∼
+∞

1

3n
et

que la série harmonique diverge. Posons g(x) = xf(x3), alors g(x) =
+∞∑
n=0

(−1)nx3n+1

3n+ 1
. Le rayon de cette série

entière est aussi 1, on sait donc que g est dérivable sur ]− 1; 1[ et que g′(x) =
+∞∑
n=0

(−1)nx3n = 1

1+ x3
. Ainsi,

puisque g(0) = 0, par le théorème fondamental de l’intégration, ∀x ∈]−1; 1[, g(x) =
∫ x

0
g′(t)dt =

∫ x

0

dt

1+ t3
.

Or, comme (1+ X3) = (1+ X)(1− X+ X2), on peut décomposer 1

1+ X3 = a

(1+ X)
+ bX+ c

1− X+ X2 avec a, b, c

des réels. En réduisant au même dénominateur, en identifiant et en résolvant le système, on trouve sans

peine 1

1+ X3 = 1

3(1+ X)
+ 2− X

3(1− X+ X2)
. Ainsi, pour x ∈]−1; 1[, en faisant apparâıtre des dérivées usuelles,

g(x) =
∫ x

0

(
1

3(1+ t)
+ 2− t

3(1− t+ t2)

)
dt = 1

3

∫ x

0

dt

1+ t
− 1

6

∫ x

0

(2t− 1)dt

1− t+ t2
+ 1

2

∫ x

0

dt

1− t+ t2
. En mettant

sous forme canonique, 1

1− t+ t2
= 2√

3

(2/
√
3)

1+
(2t−1

√
3

)2 , on a l’expression de g(x) à l’aide des fonctions usuelles

g(x) =

[
ln(1+ t)

3
− ln(1− t+ t2)

6
+

Arctan

(
2t− 1√

3

)
√
3

]x
0

= 1

6
ln

(
(1+ x)2

1− x+ x2

)
+

√
3

3
Arctan

(
2x− 1√

3

)
+

√
3π

18

car Arctan

(
1√
3

)
= π

6
. On peut maintenant revenir à l’expression de f(x).

Si x = 0, f(x) = 1. Si x ̸= 0, soit 3
√
x l’antécédent de x par la bijection y 7→ y3 de ]− 1; 1[ dans ]− 1; 1[, alors

f(x) = 1
3
√
x
g( 3

√
x) = 1

6 3
√
x
ln

(
(1+ 3

√
x)2

1− 3
√
x+ ( 3

√
x)2

)
+

√
3

3 3
√
x
Arctan

(
2 3
√
x− 1√
3

)
+

√
3π

18 3
√
x
.

Pour aller plus loin, en posant un : x 7→ (−1)nxn

3n+ 1
et Rn(x) =

+∞∑
k=n+1

uk(x) pour x ∈ [0; 1], d’après le critère

spécial des séries alternées car (|un(x)|)n∈N est décroissante et tend vers 0, |Rn(x)| 6 |un+1(x)| 6 1

3n+ 1
d’où

||Rn||∞,[0;1] 6 1

3n+ 1
ce qui prouve que lim

n→+∞
||Rn||∞,[0;1] = 0 par encadrement et la série

∑
n>0

un converge

uniformément sur [0; 1]. Comme toutes les un sont continue sur [0; 1], f est elle aussi continue sur [0; 1] donc

f(1) = lim
x→1−

f(x) = lim
x→1−

[
1

6 3
√
x
ln

(
(1+ 3

√
x)2

1− 3
√
x+ ( 3

√
x)2

)
+

√
3

3 3
√
x
Arctan

(
2 3
√
x− 1√
3

)
+

√
3π

18 3
√
x

]
=

ln(2)
3

+ π

3
√
3
.

� �
10.86� �a. Soit a ∈ R tel que (un)n∈N∗ définie par u1 = a et ∀n ∈ N∗, un+1 = un

n+ 1
+ 1 (R). On suppose que

cette suite converge vers un réel ℓ. En passant à la limite dans (R), on trouve ℓ = 0 + 1 = 1. Soit b ∈ R

et (vn)n∈N∗ définie par v1 = b et ∀n ∈ N∗, vn+1 = vn
n+ 1

+ 1. Comme ∀n ∈ N, un+1 − vn+1 = un − vn
n+ 1

,

on montre par une récurrence simple que ∀n ∈ N∗, un − vn = u1 − v1
n!

= a− b

n!
donc lim

n→+∞
(un − vn) = 0.

Ainsi, comme vn = un − (un − vn), par somme, on a lim
n→+∞

vn = 1− 0 = 1.

Si la suite (un)n>1 converge pour un réel a, alors la suite (un)n>1 converge pour toute valeur de a vers 1.
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b. On a u1 = 1, u2 = 3

2
= 1, 5 mais aussi u3 = 3

2
, u4 = 11

8
= 1, 375. Soit n > 1 tel que 1 6 un 6 2, alors

1 6 un+1 = un

n+ 1
+ 1 6 2

n+ 1
+ 1 6 2. Par principe de récurrence, ∀n > 1, un ∈ [1; 2] donc (un)n>1 est

bornée. Ainsi, comme lim
n→+∞

un

n+ 1
= 0, on a lim

n→+∞
un+1 = 1 ce qui équivaut au fait que lim

n→+∞
un = 1.

c. Soit n > 1, alors sn+1 =
n+1∑
k=1

k!
(n+ 1)!

=
(n+1∑

k=1

k!
(n+ 1)!

)
+

(n+ 1)!
(n+ 1)!

donc, comme (n+ 1)! = (n+ 1).n!, on

a sn+1 = sn
n+ 1

+ 1 avec s1 = 1. La question précédente montre que (sn)n>1 tend vers 1.

d. Comme sn ∼
+∞

1, le rayon de convergence R de
∑
n>1

snx
n est, d’après le cours, le même que celui de

∑
n>1

xn, donc R = 1. Pour x ∈]− 1; 1[, posons f(x) =
+∞∑
n=1

snx
n. La fonction f est alors dérivable sur ]− 1; 1[

et f′(x) =
+∞∑
n=0

(n + 1)sn+1x
n. Or ∀n > 1, (n + 1)sn+1 = sn + (n + 1) donc, en reportant dans l’expression

de f′(x), on a f′(x) = 1+
+∞∑
n=1

(n+ 1)sn+1x
n = 1+

+∞∑
n=1

(sn + (n+ 1))xn = 1+ f(x) +
+∞∑
n=1

(n+ 1)xn. Comme

on sait que ∀x ∈]− 1; 1[,
+∞∑
n=0

xn+1 = x

1− x
= 1

1− x
− 1, en dérivant, on a 1+

+∞∑
n=1

(n+ 1)xn = 1

(1− x)2
donc

f′(x) = f(x) + 1

(1− x)2
(E). Les solutions réelles sur ]− 1; 1[ de l’équation homogène (E0) : y′ = y sont les

fonctions y : x 7→ λex avec λ ∈ R. Par la méthode de variation de la constante, on trouve λ′(x) = e−x

(1− x)2

et on peut prendre par exemple λ(x) =
∫ x

0

e−tdt

(1− t)2
. Les solutions de (E) sur ] − 1; 1[ sont donc toutes les

fonctions y : x 7→
(
λ+
∫ x

0

e−tdt

(1− t)2

)
ex. Comme f est solution de (E) sur ]− 1; 1[ et que f(0) = 0, on a λ = 0

donc, pour tout réel x ∈]− 1; 1[, il vient f(x) = ex
∫ x

0

e−tdt

(1− t)2
.� �

10.87� �a. Pour n > 1, on partitionne les involutions σ de [[1;n+ 2]] en deux catégories :

- celles pour lesquelles σ(n + 2) = n + 2 sont au nombre de In+1 car il n’y a pas de choix à faire pour

σ(n+ 2) qu’on impose égal à n+ 2, ensuite σ induit alors sur [[1;n+ 1]] une involution de [[1;n+ 1]].

- celles telles que σ(n + 2) = k ̸= n + 2 sont au nombre de (n + 1)In car pour les choisir de manière

bijective, il y a n+ 1 choix pour l’entier k qui est l’image de n+ 2 par σ et, une fois ce choix effectué,

cela implique que σ(k) = σ(σ(n+2)) = n+2 car σ doit être une involution, et on a alors In choix pour

finir de déterminer σ qui doit induire sur [[1;n+ 1]] \ {k} une involution de cet ensemble à n éléments.

Cette partition implique la relation In+2 = In+1+(n+1)In pour n > 1 et, comme I2 = 2 = 1+1.1 = I1+1.I0

avec la convention choisie pour I0, on a bien : ∀n > 0, In+2 = In+1 + (n+ 1)In.

b. Comme les involutions sont des permutations et qu’il y a n! permutations de [[1;n]], on en déduit que

In 6 n! d’où 0 6 In
n!

6 1. Comme la série entière
∑
n>0

xn a pour rayon 1, par comparaison, on a R > 1.

c. Les calculs qui suivent sont valides car le rayon de convergence R est supérieur à 1 : pour x ∈]− 1 ; 1[, on a

(1+x)φ(x) = φ(x)+xφ(x) =
+∞∑
n=0

In
n!

xn+
+∞∑
n=1

In−1

(n− 1)!
xn = 1+

+∞∑
n=1

In + nIn−1

n!
xn = 1+

+∞∑
n=1

In+1

n!
xn = φ′(x).

d. On en déduit en intégrant l’équation différentielle linéaire du premier ordre mise sous forme normalisée

sans second membre, comme une primitive de x 7→ 1 + x est x 7→ x + x2

2
sur l’intervalle ] − 1; 1[, que l’on a
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∀x ∈]− 1 ; 1[, φ(x) = e
x+x2

2 puisque φ(0) = I0 = 1 par convention.

e. Alors ∀x ∈] − 1; 1[, φ(x) =

(
+∞∑
i=0

1

i!
xi

)
×

(
+∞∑
j=0

1

j!2j
x2j

)
. Ces deux séries ont pour rayon +∞ donc on

peut effectuer le produit de Cauchy et obtenir S(x) =
+∞∑
n=0

( ∑
i+2j=n

n!
i!j!2j

)
xn. En identifiant (par unicité)

les coefficients entre les deux expressions de S(x) sous forme de série entière, ∀n ∈ N,
In
n!

=
∑

i+2j=n

1

i!j!2j

donc In =
∑

i+2j=n

n!
i!j!2j

. Puisque 2j 6 n et i = n− 2j, on a la formule In =
⌊n/2⌋∑
j=0

n!
(n− 2j)!j!2j

.

Pour expliquer cette relation de manière combinatoire, on peut constater qu’une involution σ de [[1;n]] est

une application telle que pour tout entier x entre 1 et n, on a deux choix :

• soit σ(x) = x et x est appelé un point fixe de σ.

• soit σ(x) = y ̸= x et alors, comme σ2 = id [[1;n]], on a forcément σ(y) = x.

Ainsi, si σ ∈ An, le nombre f de points fixes de σ a la même parité que n de sorte qu’il existe 2j entiers de

[[1;n]] qui ne sont pas fixes par σ avec f = n− 2j avec 0 6 j 6
⌊
n

2

⌋
. On peut donc écrire An =

⌊n/2⌋∪
j=0

An,j où

An,j = {σ ∈ An | σ admet f = n− 2j points fixes}.

Pour construire une involution σ de An,j :

• on choisit les n− 2j éléments de [[1;n]] qui sont fixes par σ :

(
n

n− 2j

)
=

(
n

2j

)
choix.

• on choisit l’image y du plus petit élément x qui reste : (2j− 1) choix (et alors σ(x) = y et σ(y) = x).

• on choisit l’image t du plus petit élément z qui reste : (2j− 3) choix etc...

Ainsi card (An,j) =

(
n

2j

)
×(2j−1)×(2j−3)×· · ·×3×1 =

n!

(n− 2j)!(2j)!
× (2j)!

2jj!
en multipliant en haut et en bas

par les termes pairs qui manquent. On retrouve bien In = card (An) =
⌊n/2⌋∑
j=0

card (An,j) =
⌊n/2⌋∑
j=0

n!
(n− 2j)!2jj!

.� �
10.88� �a. Pour x ∈ R, fx : t 7→ 1

x+ et
est définie et continue sur R+ si x > −1 et sur [0; ln(−x)[∪ ] ln(−x);+∞[

si x 6 −1. Comme fx(t) ∼
+∞

e−t, la fonction fx est intégrable sur R+ si x > −1. De plus, f−1 est continue et

positive sur R∗
+ et f−1(t) =

1

et − 1
∼
0

1

t
donc f(−1) n’existe pas par comparaison à une intégrale de Riemann.

Comme f est définie sur ] − 1; 1[ et pas sur [−1; 1], on en déduit que le réel α > 0 maximal tel que f soit

définie sur ]− α;α[ est le réel α = 1.

b. Si x ∈] − 1; 1[, ∀t > 0, fx(t) = e−t × 1

1+ xe−t = e−t
+∞∑
n=0

(−1)nxne−nt =
+∞∑
n=0

un(t) si on définit

un(t) = (−1)nxne−(n+1)t. La série
∑
n>0

un converge simplement sur R+ d’après ce qui précède. Les un sont

continues et intégrables sur R+ car n+ 1 > 0 pour tout entier n ∈ N. La fonction fx =
+∞∑
n=0

un est continue

sur R+. De plus, pour n ∈ N,
∫ +∞

0
|un| =

|x|n
n+ 1

et
∑
n>0

|x|n
n+ 1

converge car
|x|n
n+ 1

=
+∞

o(|x|n) et que la

série géométrique
∑
n>0

|x|n converge car |x| < 1. Ainsi, si x ̸= 0, f(x) = 1

x

∑
n=0

(−1)n−1xn

n
=

ln(1+ x)
x

car on

reconnâıt le développement en série entière de x 7→ ln(1+ x) sur ]− 1; 1[. Bien sûr, f(0) = 1.
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� �
10.89� �a. La fonction f est continue sur R∗

+. On a f(x)∼
0

1

x1/2
donc f est intégrable sur ]0; 1] par Riemann (1

2
< 1).

De plus, f(x) ∼
+∞

1

x3/2
donc f est intégrable sur [1; +∞[ par Riemann (3

2
> 1). Ainsi, f est intégrable sur

R∗
+ donc l’intégrale

∫ +∞

0
f(x)dx converge.

b. Dans l’intégrale convergente
∫ +∞

1
f(x)dx, on pose x = 1

t
= φ(t) avec φ strictement décroissante, de classe

C1 et bijective de ]0; 1] dans [1; +∞[, et
∫ +∞

1
f(x)dx =

∫ 0

1
f

(
1

t

)(
− 1

t2

)
dt =

∫ 1

0

dt√
t3 + t

=
∫ 1

0
f(t)dt. Par

Chasles, on a donc
∫ +∞

0
f(x)dx =

∫ 1

0
f(x)dx+

∫ +∞

1
f(x)dx = 2

∫ 1

0
f(x)dx.

c. D’après le cours que ∀x ∈]− 1; 1[, ∀α ∈ R, (1+ x)α =
+∞∑
n=0

(
α

n

)
xn avec

(
α

n

)
=

α(α− 1) · · · (α− n+ 1)

n!
.

Si u ∈]− 1; 1[, u4 ∈ [0; 1[⊂]− 1; 1[ donc ∀u ∈ [0; 1[, 1√
1+ u4

=
+∞∑
n=0

(−1/2)(−3/2) · · · (−n+ (1/2))
n!

u4n avec

α = −1

2
. Classiquement, on factorise les 2, on multiplie au numérateur et au dénominateur par les termes

2.4. · · · .(2n), ce qui donne

(
−1/2

n

)
=

(−1)n(2n)!

22n(n!)2
et, enfin, 1√

1+ u4
=

+∞∑
n=0

(−1)n(2n)!u4n

22n(n!)2
.

d. Pour u ∈ [0; 1] et n ∈ N, posons vn(u) =
(2n)!u4n

22n(n!)2
. La suite (vk(u))k>0 est décroissante car si u ∈]0; 1],

on a
vk+1(u)
vk(u)

=
(2n+ 2)(2n+ 1)

4(n+ 1)2
u4 = 2n+ 1

2n+ 2
u4 < 1 et vn(0) = δn,0. La suite (vk(u))k>0 tend aussi vers

0 si u ∈ [0; 1[ puisque la série
∑
k>0

(−1)kvk(u) converge d’après c.. De plus, si u = 1, par Stirling, on

a vn(1) ∼
+∞

√
4πn(2n)2ne2n

22n(2πn)e2nn2n ∼
+∞

1√
πn

donc lim
n→+∞

vn(1) = 0. Ainsi,
∑
n>0

(−1)nvn(1) converge par le critère

spécial des séries alternées. La série
∑
n>0

(−1)nvn converge donc simplement sur [0; 1].

Posons maintenant Rn(u) =
+∞∑

k=n+1

(−1)kvk(u) pour u ∈ [0; 1] et n ∈ N. D’après le critère spécial des séries

alternées, |Rn(u)| 6 vn+1(u) 6 vn+1(1). Ainsi, Rn est bornée sur [0; 1] et ||Rn||∞,[0;1] 6 vn+1(1).

e. On effectue le changement de variable x = u2 = φ(u) avec φ strictement croissante, de classe C1 et

bijective de [0; 1] dans [0; 1], et on a
∫ 1

0
f(x)dx =

∫ 1

0

1√
u6 + u2

(2u)du = 2

∫ 1

0

1√
1+ u4

du.

Comme ||Rn||∞,[0;1] 6 vn+1(1) et d’après d., par encadrement, lim
n→+∞

||Rn||∞,[0;1] = 0 donc la série de

fonctions
∑
n>0

(−1)nvn converge uniformément sur le segment [0; 1] donc, comme toutes les vn sont continues

sur [0; 1], la fonction S =
+∞∑
n=0

(−1)nvn est continue sur [0; 1] (on n’en a pas besoin ici). D’après le cours,∫ 1

0

1√
1+ u4

du =
∫ 1

0
S(u)du =

+∞∑
n=0

(∫ 1

0
(−1)nvn(u)du

)
=

+∞∑
n=0

(−1)n(2n)!

22n(n!)2(4n+ 1)
car
∫ 1

0
u4ndu = 1

4n+ 1
.

D’après b., on en déduit que
∫ +∞

0
f(x)dx = 2

∫ 1

0
f(x)dx = 4

∫ 1

0

1√
1+ u4

du = 4
+∞∑
n=0

(−1)n(2n)!

22n(n!)2(4n+ 1)
.

On aurait pu montrer cette relation par le théorème d’intégration terme à terme !� �
10.90� �a. f : t 7→ ln(1− t)

t
est continue sur ]−∞; 1[ en la prolongeant par continuité en 0 avec f(0) = −1 puisque

ln(1 − t)∼
0
−t. F est donc la primitive de −f qui s’annule en 0 donc F est au moins définie sur ] − ∞; 1[.

Comme f n’est pas définie sur [1; +∞[, le domaine de définition D de F est inclus dans ]−∞; 1].
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Si x = 1, f(t) ∼
1−

ln(1 − t) =
1−

o

(
1√
1− t

)
donc f est intégrable sur [0; 1[ et F(1) existe par comparaison aux

intégrales de Riemann. Par conséquent, le domaine définition de F est D =]−∞; 1].

b. D’après le cours, ∀t ∈]− 1; 1[, ln(1− t) = −
+∞∑
n=1

tn

n
donc −f(t) =

+∞∑
n=1

tn−1

n
(marche aussi si t = 0). Pour

x ∈] − 1; 1[, en intégrant terme à terme sur le segment ˜[0; x] inclus dans l’intervalle ouvert de convergence,

il vient F(x) =
∫ x

0
(−f(t))dt =

∫ x

0

+∞∑
n=1

tn−1

n
dt =

+∞∑
n=1

∫ x

0

tn−1

n
dt =

+∞∑
n=1

xn

n2 = S(x). Par définition de la

convergence d’une intégrale, F(1) = lim
x→1−

F(x). Par continuité de F en −1, on a aussi F(−1) = lim
x→−1+

F(x).

En posant un : x 7→ xn

n2 , on a ||un||∞,[−1;1] =
1

n2 donc
∑
n>1

un converge normalement sur [−1; 1] et, puisque

toutes les un sont continues sur [−1; 1], S est continue sur [−1; 1] donc F(1) = lim
x→1−

S(x) = S(1) = π2

6
et

F(−1) = lim
x→−1+

S(x) = S(−1) = −π2

12
(classique en séparant les termes d’indices pairs et impairs).

On a bien ∀x ∈ [−1; 1], F(x) = S(x).

c. Soit G : [0; 1[→ R définie par G(x) = π2

6
− ln(x) ln(1 − x) si x ̸= 0 et G(0) = 0. Alors, par opérations

et comme ln(x) ln(1− x)∼
0
−x ln(x) et lim

x→0
x ln(x) = 0 par croissances comparées, la fonction G est continue

sur [0; 1[ et dérivable sur ]0; 1[. De plus, F est dérivable sur ]0; 1[ avec F′(x) = − ln(1− x)
x

donc, pour x ∈]0; 1[,

(F(x) + F(1− x)−G(x))′ = F′(x)− F′(1− x)−G′(x) = − ln(1− x)
x

+
ln(1− (1− x))

1− x
+

ln(1− x)
x

− ln(x)
1− x

= 0

avec l’abus de notation usuel. Ainsi, la fonction x 7→ F(x)+ F(1−x)−G(x) est constante sur l’intervalle ]0; 1[,

et en utilisant sa continuité en 0, elle vaut donc F(0) + F(1)− G(0) = F(1) = π2

6
.

On a donc la relation ∀x ∈]0; 1[, F(x) + F(1− x) = π2

6
− ln(x) ln(1− x).� �

10.91� �Pour tout entier naturel n, posons un = 2n2 + 5n+ 3

2n
∼
+∞

n2

2n−1 =
+∞

o

(
1

n2

)
par croissances comparées donc,

par comparaison à une série de Riemann, comme 2 > 1, la série
∑
n>0

un converge.

Pour calculer la somme de cette série numérique, posons an = 2n2 + 5n + 3 et considérons la série entière∑
n>0

anx
n. Toujours par croissances comparées, (anx

n)n>0 est bornée si et seulement si |x| < 1 donc, par

définition, le rayon de cette série entière vaut R = 1. Pour x ∈]− 1; 1[, comme an = 2(n+ 1)(n+ 2)− (n+ 1),

on a f(x) =
+∞∑
n=0

anx
n = 2

+∞∑
n=0

(n + 1)(n + 2)xn −
+∞∑
n=0

(n + 1)xn (les deux séries convergent puisque les deux

rayons valent encore 1). On reconnâıt les dérivées de la série géométrique, ∀x ∈] − 1; 1[,
+∞∑
n=0

xn = 1

1− x

donc
+∞∑
n=0

(n + 1)xn =
(

1

1− x

)′
= 1

(1− x)2
et

+∞∑
n=0

(n + 1)(n + 2)xn =
(

1

1− x

)′′
= 2

(1− x)3
de sorte que

f(x) = 4

(1− x)3
− 1

(1− x)2
= 3+ x

(1− x)3
. Ainsi,

+∞∑
n=0

2n2 + 5n+ 3

2n
= f

(
1

2

)
=

3+ (1/2)

(1− (1/2))3
= 28.� �

10.92� �a. Pour x ∈ R, (an)n∈N étant bornée, an

n!
xn =

+∞
O

(
xn

n!

)
donc lim

n→+∞
an

n!
xn = 0 par croissances comparées.

Ainsi,
(
an

n!
xn
)
n>0

est bornée quel que soit x donc le rayon de convergence de
∑
n>0

an

n!
xn vaut +∞.

b. Les trois suites suivantes sont bien bornées :

• Si an = 1

2n
,
∑
n>0

xn

2n
converge si et seulement si |x| < 2 donc R = 2 et la série géométrique

∑
n>0

an

43



converge car elle est de raison 1

2
∈]− 1; 1[.

• Si an = 1,
∑
n>0

xn converge si et seulement si |x| < 1 donc R = 1 et
∑
n>0

an diverge grossièrement.

• Si an = 1

(n+ 1)2
, la série

∑
n>0

xn

(n+ 1)2
converge si et seulement si |x| 6 1 donc R = 1 et la série de

Riemann
∑
n>0

an converge.

c. Pour x ∈ [−1; 1], la suite (anx
n)n>0 est bornée car |anx

n| = |an||x|n 6 |an| et que la suite (an)n>0 est

elle-même bornée. Par définition du rayon de convergence, R > 1.

d. Soit k ∈ N, la fonction fk : x 7→ xke−x est continue sur R+ et fk(x) =
+∞

o

(
1

x2

)
par croissances comparées

donc fk est intégrable sur R+ par comparaison aux intégrales de Riemann donc
∫ +∞

0
xke−xdx converge.

On pose Ik =
∫ +∞

0
xke−xdx pour k ∈ N. Pour k > 1, les fonctions u : x 7→ xk et v : x 7→ −e−x sont de classe

C1 sur R+ avec lim
x→+∞

u(x)v(x) = 0 = u(0)v(0) par croissances comparées donc, par intégration par parties,

on a Ik =
∫ +∞

0
kxk−1e−xdx = kIk−1. Par une récurrence simple, comme I0 =

∫ +∞

0
e−xdx = [−e−x]+∞

0 = 1,

on a ∀k ∈ N, Ik = k!. On pouvait aussi dire que Ik =
∫ +∞

0
xk+1−1e−xdx = Γ(k + 1) = (k + 1 − 1)! = k!

d’après le cours mais le calcul est attendu.

e. Soit t > 1, d’après a., f est définie sur R et, pour tout x ∈ R+, on a e−xtf(x) =
+∞∑
n=0

an

n!
xne−xt =

+∞∑
n=0

un(x)

en notant un(x) =
an

n!
xne−xt.

(H1) La série
∑
n>0

un converge simplement vers x 7→ e−xtf(x) sur R+ (on en vient).

(H2) Les un sont continues et intégrables sur R+ car un(x) =
+∞

o

(
1

x2

)
par croissances comparées.

(H3) x 7→ e−xtf(x) est continue sur R+ puisque f l’est en tant que somme d’une série entière de rayon +∞.

(H4) Pour n ∈ N,
∫ +∞

0
|un(x)|dx =

∫ +∞

0

|an|
n!

xne−xtdx et on pose u = xt (facile car t > 0) pour avoir∫ +∞

0
|un(x)|dx =

|an|
n!tn+1

∫ +∞

0
une−udu =

|an|
tn+1 d’après d. et

∑
n>0

|an|
tn+1 converge d’après c. car le

rayon de convergence de
∑
n>0

anx
n vérifie R > 1 et que 1

t
∈]0; 1[.

Par le théorème d’intégration terme à terme, g(t) =
∫ +∞

0
e−xtf(x)dx =

+∞∑
n=0

∫ +∞

0
un(x)dx or, avec le même

calcul que ci-dessus, on a
∫ +∞

0
un(x)dx = an

tn+1 donc ∀t > 1, g(t) =
∫ +∞

0
e−xtf(x)dx =

+∞∑
n=0

an

tn+1 = 1

t
S

(
1

t

)
.� �

10.93� �a. La fonction f : t 7→ sin(t)
t

est continue sur R∗ par opérations et elle se prolonge par continuité en 0

en posant f(0) = 1 car sin(t)∼
0
t. Ainsi, f est continue sur R ce qui montre, par le théorème fondamental

de l’intégration, que F est bien définie sur R en tant que primitive de f qui s’annule en 0. De plus, on sait

que ∀t ∈ R, sin(t) =
+∞∑
k=0

(−1)kt2k+1

(2k+ 1)!
. Ainsi, ∀t ∈ R∗, f(t) =

sin(t)
t

=
+∞∑
k=0

(−1)kt2k

(2k+ 1)!
et cette formule

marche aussi pour t = 0 car 1 =
(−1)0t2.0

(2.0+ 1)!
. Comme le rayon de convergence de

∑
k>0

(−1)kt2k

(2k+ 1)!
vaut R = +∞,

on peut intégrer terme à terme sur ˜[0; x] qui est inclus dans l’intervalle ouvert de convergence pour avoir

∀x ∈ R, F(x) =
∫ x

0
f(t)dt =

∫ x

0

( +∞∑
k=0

(−1)kt2k

(2k+ 1)!

)
dt =

+∞∑
k=0

(−1)kx2k+1

(2k+ 1).(2k+ 1)!
.
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b. Pour x ∈ R, la fonction hx : t 7→ exp(−xe−it) est continue sur le segment J =
[
0; π

2

]
donc l’intégrale

I(x) =
∫ π/2

0
exp(−xe−it)dt existe. On sait que ∀z ∈ C, ez =

+∞∑
n=0

zn

n!
donc, en prenant z = −xe−it, on

obtient ∀t ∈ J, exp(−xe−it) =
+∞∑
n=0

(−1)nxne−int

n!
. Pour n ∈ N, posons hn : t 7→ (−1)nxne−int

n!
.

Comme ∀t ∈ J, |hn(t)| =
|x|n
n!

, on a ||hn||∞,J =
|x|n
n!

et la série exponentielle
∑
n>0

|x|n
n!

converge donc la série

de fonctions
∑
n>0

hn converge normalement vers h sur le segment J. Comme toutes les hn et h sont continues

sur J, le théorème d’intégration terme à terme sur segment montre que I(x) =
+∞∑
n=0

∫ π/2

0

(−1)nxne−int

n!
dt.

Pour n ∈ N, posons l’intégrale Ln =
∫ π/2

0

(−1)nxne−int

n!
dt. On a le cas particulier L0 =

∫ π/2

0
1.dt = π

2

et, pour n ∈ N∗, il vient Ln =
(−1)nxn

n!

∫ π/2

0
e−intdt =

(−1)nxn

n!

[
e−int

− in

]∫ π/2

0
=

(−1)nxn

n!
× e−inπ/2 − 1

− in
.

Comme on sait que Re (I(x)) =
+∞∑
n=0

Re (Ln) et que Re
(
e−inπ/2 − 1

− in

)
= 0 si n > 2 est pair et que l’on a

Re
(
e−inπ/2 − 1

− in

)
= Re

(
e−i(2k+1)π/2 − 1

− i(2k+ 1)

)
=

(−1)k

2k+ 1
si n = 2k+1 > 1 est impair, il ne reste dans la formule

ci-dessus que Re (I(x)) = π

2
+

+∞∑
k=0

(−1)2k+1x2k+1

(2k+ 1)!
× (−1)k

2k+ 1
= π

2
−

+∞∑
k=0

(−1)kx2k+1

(2k+ 1).(2k+ 1)!
.

c. Par inégalité triangulaire sur les intégrales, |I(x)| =
∣∣∣∫ π/2

0
exp(−xe−it)dt

∣∣∣ 6 ∫ π/2

0
| exp(−xe−it)|dt. Or

exp(−xe−it) = e−x cos(t)eix sin(t) donc | exp(−xe−it)| = e−x cos(t).

Méthode 1 : la fonction cos est concave sur J car cos′′ = − cos 6 0 sur J donc ∀t ∈ J, cos(t) > 1− 2t

π
. Ainsi,

e−x cos(t) 6 e−xe2xt/π donc ∀x > 0,

∫ π/2

0
| exp(−xe−it)|dt 6 e−x

∫ π/2

0
e2xt/πdt. On en déduit donc que

|I(x)| 6 e−x
[
π

2x
e2xt/π

]π/2
0

=
πe−x(ex − 1)

2x
=

π(1− e−x)
2x

. Comme lim
x→+∞

π(1− e−x)
2x

= 0, par encadrement,

on obtient la limite lim
x→+∞

∫ π/2

0
exp(−xe−it)dt = 0.

Méthode 2 : soit g : R×
[
0; π

2

[
→ R définie par g(x, t) = exp(−xe−it) de sorte que I(x) =

∫ π/2

0
g(x, t)dt.

(H1) pour tout t ∈ J, on a lim
x→+∞

g(x, t) = 0 = a(t) car cos(t) > 0.

(H2) pour tout x ∈ R, les fonctions hx : t 7→ g(x, t) et a sont continues sur
[
0; π

2

[
.

(H3) pour (x, t) ∈ R×
[
0; π

2

[
, on a |g(x, t)| 6 1 = φ(t) et φ est continue et intégrable sur

[
0; π

2

[
.

D’après le théorème de convergence dominée à paramètre continu, on a lim
x→+∞

I(x) =
∫ π/2

0
a(t)dt = 0.

D’après les questions précédentes, on a ∀x ∈ R, Re (I(x)) = π

2
− F(x). Comme lim

x→+∞
I(x) = 0, on a aussi

lim
x→+∞

Re (I(x)) = lim
x→+∞

(
π

2
− F(x)

)
= 0. Ceci assure l’existence d’une limite finie de F en +∞ et sa valeur

lim
x→+∞

F(x) = π

2
qu’on note

∫ +∞

0

sin(t)
t

dt = π

2
(intégrale de Dirichlet).� �

10.94� �a. Si, pour n ∈ N, on pose an = (−1)n, le rayon de convergence de la série entière
∑
n>0

anx
n vaut R = 1

et sa fonction somme f : x 7→
+∞∑
n=0

(−1)nxn = 1

1+ x
est majorée par 1 sur [0; 1[.
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b. L’hypothèse se traduit par an =
+∞

o

(
1

n

)
donc lim

n→+∞
an = 0. Ainsi, la suite (an)n∈N est bornée donc,

pour tout réel r ∈]0; 1], la suite (anr
n)n∈N l’est aussi donc, par définition, le rayon de convergence R de∑

n>0

anx
n vérifie donc R > 1. Ainsi, la fonction somme f : x 7→

+∞∑
n=0

anx
n est définie sur ]− 1; 1[ au minimum.

c. Soit ε > 0, il existe un rang n0 tel que ∀n > n0, |nan| 6 ε

2
. Par conséquent, si n > n0 et x ∈]0; 1[, il vient∣∣f(x)∣∣ = ∣∣∣n0−1∑

n=0

anx
n +

+∞∑
n=n0

anx
n
∣∣∣ 6 n0−1∑

n=0

|an|xn +
+∞∑

n=n0

|an|xn 6
n0−1∑
n=0

|an|xn + ε

2

+∞∑
n=n0

xn

n
par inégalité

triangulaire. On en déduit la majoration
∣∣f(x)∣∣ 6 n0−1∑

n=0

|an|xn − ε

2

n0−1∑
n=1

xn

n
+ ε

2

+∞∑
n=1

xn

n
. De plus, comme

φ : x 7→
n0−1∑
n=0

|an|xn− ε

2

n0−1∑
n=1

xn

n
est polynomiale donc continue en 1, elle est bornée et on a φ(x)=

1
o(ln(1−x))

car lim
x→1−

ln(1−x) = −∞. Il existe donc α > 0 tel que ∀x ∈ [1−α; 1[, |φ(x)| 6 ε

2
| ln(1−x)|. En combinant ces

deux renseignements, ∀x ∈ [1−α; 1[,
∣∣f(x)∣∣ 6 ε| ln(1− x)| car on sait que ln(1− x) = −

+∞∑
n=1

xn

n
si x ∈]− 1; 1[.

Ainsi, ∀ε > 0, ∃α > 0, ∀x ∈ [1− α; 1[,
∣∣f(x)∣∣ 6 ε| ln(1− x)|. Ceci justifie bien que f(x) =

1−
o(ln(1− x)).

d. Avec l’exemple de la question a., si on pose bn = (−1)n, la fonction somme g : x 7→ 1

1+ x
est bien définie

sur ]− 1; 1[ et vérifie bien g(x) =
1−

o
(
ln(1− x)

)
car g est bornée sur [0; 1[ et lim

x→1−
ln(1− x) = −∞. Pourtant,

la suite (nbn)n∈N ne tend pas vers 0. La réciproque espérée est donc fausse.

Même si on impose que tous les bn sont positifs, il suffit de prendre bn = 1

n
si n est une puissance de 2 et

bn = 0 sinon. Alors,
∑
n>0

x2
n

2n
est de rayon de convergence 1 car

(
x2

n

2n

)
n∈N

est bornée si et seulement si

|x| 6 1 par croissances comparées. En notant g : x 7→
+∞∑
n=0

x2
n

2n
, on a ∀x ∈ [−1; 1], |g(x)| 6

+∞∑
n=0

1

2n
= 2 donc

g est bornée sur [−1; 1] et g(x) =
1−

o
(
ln(1− x)

)
même si (nbn)n∈N ne tend pas vers 0 puisque 2nb2n = 1.

Conclusion : si, au voisinage de 1−, f(x) =
1−

o
(
ln(1− x)

)
, on ne peut pas conclure que (nan)n∈N tend vers 0.� �

10.95� �a. Comme f est de classe C∞ sur I, ∀x ∈ I, ∀n ∈ N, f(x) =
n∑

k=0

f(k)(0)
k!

xk +
∫ x

0

(x− t)nf(n+1)(t)
n!

dt par la

formule de Taylor reste intégral. On constate que si x ∈ [0;A[, comme
∫ x

0

(x− t)nf(n+1)(t)
n!

dt > 0, on a

n∑
k=0

f(k)(0)
k!

xk 6 f(x) donc la série
∑
k>0

f(k)(0)
k!

xk est une série à termes positifs dont les sommes partielles sont

majorées donc elle est convergente et on peut en déduire que son terme général tend vers 0, ce qui montre

que lim
k→+∞

f(k)(0)
k!

xk = 0 (L). Traitons maintenant deux cas :

Si x ∈]− A; 0],
∣∣∣∫ x

0

(x− t)nf(n+1)(t)
n!

dt

∣∣∣ = ∫ 0

x

(t− x)nf(n+1)(t)
n!

dt car fn+1(t) > 0 par hypothèse.

Comme f(n+2) > 0, f(n+1) est croissante donc ∀t ∈ [x; 0], f(n+1)(t) 6 f(n+1)(0) ce qui montre que∣∣∣∫ x

0

(x− t)nf(n+1)(t)
n!

dt

∣∣∣ 6 ∫ 0

x

(t− x)nf(n+1)(0)
n!

dt =
f(n+1)(0)

n!

[
(t− x)n+1

n+ 1

]0
x
=

(−x)n+1f(n+1)(0)
(n+ 1)!

.

Mais comme −x > 0, d’après (L), on a lim
k→+∞

f(k)(0)
k!

(−x)k = 0 donc, par encadrement, on en déduit

que lim
n→+∞

∫ x

0

(x− t)nf(n+1)(t)
n!

dt = 0 et, d’après le cours, f est égale à sa série de Taylor sur ]−A; 0[.
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Si x ∈]0;A[, on prend r tel que x < r < A et, en posant t = xu = φ(u) avec φ C1 sur le segment

[0; 1], on a
∫ x

0

(x− t)nf(n+1)(t)
n!

dt =
∫ 1

0

(x− xu)nf(n+1)(xu)
n!

xdu = xn+1

n!

∫ 1

0
(1 − u)nf(n+1)(xu)du.

Comme f(n+1) est croissante car f(n+2) > 0, il vient
∫ x

0

(x− t)nf(n+1)(t)
n!

dt 6
∫ 1

0
(1−u)nf(n+1)(ru)du

car ∀u ∈ [0; 1], f(n+1)(xu) 6 f(n+1)(ru). Avec le même calcul qu’avant avec r à la place de x, on a∫ r

0

(r− t)nf(n+1)(t)
n!

dt = rn+1

n!

∫ 1

0
(1 − u)nf(n+1)(ru)du donc on obtient la majoration suivante :∫ x

0

(x− t)nf(n+1)(t)
n!

dt 6 xn+1

rn+1

∫ r

0

(r− t)nf(n+1)(t)
n!

dt = xn+1

rn+1

(
f(r) −

n∑
k=0

f(k)(0)
k!

rk

)
6 xn+1f(r)

rn+1 .

Comme lim
n→+∞

xn+1

rn+1 = 0 car 0 < x < r, on a donc lim
n→+∞

∫ x

0

(x− t)nf(n+1)(t)
n!

dt = 0 ce qui garantit

que f est égale à sa série de Taylor sur ]0;A[.

Avec ces deux cas, f est égale à sa série de Taylor sur ]−A;A[, donc f est développable en série entière sur

]− A;A[ : on dit que f est absolument monotone sur ]− A;A[ quand ∀n ∈ N, f(n) > 0 sur ]− A;A[.

b Comme f est de classe C∞ sur I et exp l’est sur R, par composition, g est de classe C∞ sur I.

Initialisation : g = ef est positive sur I, g′ = f′×ef donc g′ est positive sur I car f′ l’est et g′′ = (f′′+(f′)2)×ef

est aussi positive sur I car f′′ et (f′)2 le sont.

Hérédité : soit n > 1 tel que la fonction g(k) est positive sur I pour tout entier k ∈ [[0;n]], alors, par la formule

de Leibniz, on a g(n+1) = (g′)(n) = (f′×ef)(n) = (f′×g)(n) =
n∑

k=0

(
n

k

)
(f′)(k)g(n−k) =

n∑
k=0

(
n

k

)
f(k+1)g(n−k).

Or, par hypothèse sur f et hypothèse de récurrence, pour tout k ∈ [[0;n]], les fonctions f(k+1) et g(n−k) sont

positives sur I, donc par produit, multiplication par

(
n

k

)
> 0 et somme, la fonction g(n+1) est positive sur I.

On a bien établi par récurrence forte que ∀n ∈ N, g(n) est positive sur I.

Ainsi, les hypothèses de la question a. sont vérifiées pour g qui est donc développable en série entière sur I.

c. Pour x ∈
]
− π

2
; π
2

[
, tan(x) = P0(tan(x)) et tan′(x) = 1 + tan2(x) = P1(tan(x)) avec P0 = X et

P1 = X2 + 1. Si on suppose, pour n ∈ N∗, que tan(n)(x) = Pn(tan(x)) avec Pn un polynôme de degré n+ 1

dont les coefficients sont des entiers naturels, alors tan(n+1)(x) = tan′(x)P′
n(tan(x)) = Pn+1(tan(x)) avec

Pn+1 = (1+X2)P′
n(X) qui est bien de degré n+ 2 et de coefficients entiers naturels car si Pn =

n+1∑
k=0

akX
k, on

a Pn+1 =
n+1∑
k=1

kakX
k−1 +

n+1∑
k=0

kakX
k+1 =

n∑
k=0

(k + 1)ak+1X
k +

n+2∑
k=1

(k − 1)ak−1X
k ce qui donne l’expression

Pn+1 = (n+ 1)anX
n+1 + nan−1X

n +
( n∑

k=1

(
(k+ 1)ak+1 + (k− 1)ak−1

)
Xk
)
+ a1 qui est bien à coefficients

entiers naturels. On conclut que principe de récurrence que ∀n ∈ N, ∀x ∈
]
− π

2
; π
2

[
, tan(n)(x) = Pn(tan(x))

avec Pn ∈ N[X] et deg(Pn) = n+ 1.

Comme tan(x) > 0 pour x ∈
[
0; π

2

[
et que Pn ∈ N[X], ∀n ∈ N, x ∈

[
0; π

2

[
, tan(n)(x) = Pn(tan(x)) > 0

donc, d’après la question a., la fonction tan est développable en série entière sur
[
0; π

2

[
et on peut écrire

∀x ∈
[
0; π

2

[
, tan(x) =

+∞∑
n=0

tan(2n+1)(0)
(2n+ 1)!

x2n+1. Comme tan est impaire, ∀x ∈
]
− π

2
; 0
]
, tan(x) = − tan(−x)
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donc tan(x) = −
+∞∑
n=0

tan(2n+1)(0)
(2n+ 1)!

(−x)2n+1 =
+∞∑
n=0

tan(2n+1)(0)
(2n+ 1)!

x2n+1. Cette relation est donc vraie pour

tout x ∈
]
− π

2
; π
2

[
et tan est bien développable en série entière sur

]
− π

2
; π
2

[
.� �

10.96� �a. Comme X2 − 2ch (α)X + 1 = X2 − (eα + e−α)X + 1 = (X − eα)(X − e−α), la quantité x2 − 2ch (α)x + 1

est donc strictement positive hors du segment [e−α; eα] reliant les deux racines. Par conséquent, l’ensemble

de définition de fα est D =]−∞; e−α[∪ ]eα; +∞[.

b. La fonction fα est de classe C1 sur D par opérations. Comme fα(x) = 1

2
ln(x2 − 2ch (α)x + 1) pour

x ∈ D, on a f′α(x) =
x− ch (α)

(x− eα)(x− e−α)
=

(x/2)− (eα/2) + (x/2)− (e−α/2)
(x− eα)(x− e−α)

= − 1

2(eα − x)
− 1

2(e−α − x)

donc f′α(x) = −e−α

2
. 1

1− e−αx
− eα

2
. 1

1− eαx
. Pour tout réel x ∈] − e−α; e−α[, |e−αx| < 1 et |eαx| < 1 donc

on a f′α(x) = −e−α

2
.
+∞∑
n=0

(e−αx)n − eα

2
.
+∞∑
n=0

(eαx)n grâce aux séries géométriques. On a donc la relation

suivante, ∀x ∈]− e−α; e−α[, f′α(x) = −e−α

2
.
+∞∑
n=0

(e−αx)n − eα

2
.
+∞∑
n=0

(eαx)n qu’on peut regrouper et simplifier

en f′α(x) = −
+∞∑
n=0

e(n+1)α + e−(n+1)α

2
xn = −

+∞∑
n=0

ch ((n+ 1)α)xn. Les fonctions f′α et fα sont développables

en série entière sur ] − e−α; e−α[. En intégrant à l’intérieur de l’intervalle ouvert de convergence, comme

fα(0) = 0, on a ∀x ∈]− e−α; e−α[, fα(x) = −
+∞∑
n=0

ch ((n+ 1)α) x
n+1

n+ 1
.� �

10.97� �a. Comme f est dérivable sur R, elle y est continue. Ainsi, par composition, x 7→ f(ax) est continue sur R

donc f′ aussi ce qui montre que f est de classe C1 sur R. Si on suppose que f est de classe Cn sur R pour un

entier n > 1, alors x 7→ f(ax) est aussi de classe Cn sur R donc f′ l’est encore et f est donc de classe Cn+1

sur R. Par principe de récurrence, f est de classe Cn pour tout n ∈ N sur R donc f est de classe C∞ sur R.

Pour x ∈ R, on a f′(x) = f(ax) donc f′′(x) = af′(ax) = af(a2x). On continue, f′′′(x) = a3f′(a2x) = a3f(a3x)

et f(4)(x) = a6f′(a3x) = a6f(a4x). Supposons, pour n ∈ N, qu’on ait ∀x ∈ R, f(n)(x) = a
n(n−1)

2 f(anx).

Alors, en dérivant cette relation, on a f(n+1)(x) = a
n(n−1)

2 × anf′(anx) = a
n(n+1)

2 f(an+1x). Comme on a

f(0)(x) = f(x) = a
0(0−1)

2 f(a0x), on a montré par récurrence que ∀n ∈ N, ∀x ∈ R, f(n)(x) = a
n(n−1)

2 f(anx).

b. Pour b > 0, f étant continue sur le segment [−b; b], elle y est bornée et on peut poser Mb = ||f||∞,[−b;b].

Pour x ∈ [−b; b] et n ∈ N, on a f(x) =
n∑

k=0

f(k)(0)xk

k!
+
∫ x

0

(x− t)nf(n+1)(t)
n!

dt. Pour t ∈ ˜[0; x], comme

f(n+1)(t) = a
n(n+1)

2 f(an+1t) et que ant ∈ ˜[0; x] ⊂ [−b; b] car |a| < 1, on a |f(n+1)(t)| 6 a
n(n+1)

2 Mb.

Par inégalité triangulaire, on a
∣∣∣∫ x

0

(x− t)nf(n+1)(t)
n!

dt

∣∣∣ 6
∣∣∣∫ x

0

|x|na
n(n+1)

2 Mb

n!

∣∣∣ =
|x|n+1a

n(n+1)
2 Mb

n!

donc, comme lim
n→+∞

|x|n+1

n!
= lim

n→+∞
a
n(n+1)

2 = 0 car |a| < 1, on a ∀x ∈ [−b; b], f(x) =
+∞∑
k=0

f(k)(0)xk

k!
. Mais

ceci étant vrai pour tout b > 0 et comme f(k)(0) = a
k(k−1)

2 f(0), f est bien égale à sa série de Taylor sur R

et on a ∀x ∈ R, f(x) = f(0)
+∞∑
k=0

a
k(k−1)

2 xk

k!
.

c. Soit λ ∈ R et la fonction gλ : R → R définie par gλ(x) = λ
+∞∑
k=0

a
k(k−1)

2 xk

k!
. Si on pose ak = a

k(k−1)
2

k!
> 0,
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on a
ak+1

ak

= ak

k+ 1
donc, comme 0 < a < 1, lim

k→+∞
ak+1

ak

= 0 donc, par d’Alembert, le rayon de convergence

de la série
∑
k>0

akx
k vaut R = +∞ ce qui justifie que la fonction gλ est bien définie et de classe C∞ sur R.

De plus, ∀x ∈ R, g′λ(x) = λ
+∞∑
k=1

a
k(k−1)

2 xk−1

(k− 1)!
= λ

+∞∑
k=0

a
k(k+1)

2 xk

k!
= λ

+∞∑
k=1

a
k(k−1)

2 (ax)k

k!
= gλ(ax). Avec

ce qui précède, les fonctions g : R → R dérivables telles que ∀x ∈ R, g′(x) = g(ax) sont les fonctions

proportionnelles à g1 : x 7→
+∞∑
k=0

a
k(k−1)

2 xk

k!
, elles constituent donc la droite vectorielle Vect(g1).� �

10.98� �a. Posons an =

(
2n

n

)
> 0 pour n ∈ N, alors an+1

an

=
(2n+ 2)!(n!)2

(2n)!((n+ 1)!)2
=

(2n+ 2)(2n+ 1)

(n+ 1)2
=

2(2n+ 1)
n+ 1

donc lim
n→+∞

an+1

an

= 4. D’après d’Alembert, le rayon de convergence R de
∑
n>0

(
2n

n

)
xn vaut R = 1

4
.

b. Si x = 1

4
, anx

n =

(
2n

n

)
xn =

(2n)!

4n(n!)2
∼
+∞

√
4πn(2n)2ne2n

4n(2πn)n2ne2n
∼
+∞

1√
πn

avec l’équivalent de Stirling donc,

par comparaison aux séries de Riemann,
∑
n>0

an

(
1

4

)n
diverge.

Si x = −1

4
, la série

∑
n>0

anx
n est alternée et

∣∣∣an+1x
n+1

anx
n

∣∣∣ = 2(2n+ 1)
4(n+ 1)

= 4n+ 2

4n+ 4
< 1 d’après a. donc la suite(

|anx
n|
)
n∈N est décroissante et tend vers 0 puisqu’on vient de voir que |anx

n| ∼
+∞

1√
πn

. Ainsi, par le critère

spécial des séries alternées,
∑
n>0

an

(
− 1

4

)n
converge.

L’ensemble de définition de f est donc
[
− 1

4
; 1
4

[
.

c. On a vu en question a. que ∀n ∈ N, (n+ 1)an+1 = 2(2n+ 1)an. En multipliant par xn et en sommant,

on a donc ∀x ∈
]
− 1

4
; 1
4

[
,

+∞∑
n=0

(n + 1)an+1x
n =

+∞∑
n=0

2(2n + 1)anx
n = 4x

+∞∑
n=1

nanx
n−1 + 2

+∞∑
n=0

anx
n et on

reconnâıt, puisqu’on est dans l’intervalle ouvert de convergence, f′(x) = 4xf′(x)+2f(x) ou (1−4x)f′(x) = 2f(x)

donc f est solution sur
]
− 1

4
; 1
4

[
de (E) : (1− 4x)y′ − 2y = 0.

d. On résout classiquement cette équation différentielle linéaire homogène normalisée (E) d’ordre 1 et,

comme une primitive de a : x 7→ 2

1− 4x
est A : x 7→ −1

2
ln(1 − 4x) et puisque f(0) = a0 = 1, on a

∀x ∈
]
− 1

4
; 1
4

[
, f(x) = e

− ln(1−4x)
2 = 1√

1− 4x
.� �

10.99� �a. On calcule a2 = a1 + a0 = 2, a3 = a2 + 2a1 = 4, a4 = a3 + 3a2 = 10, a5 = a4 + 4a3 = 26 et on peut

conjecturer que ∀n ∈ N∗, 0 6 an 6 2(n− 1)!. On vient de faire l’initialisation.

Soit n > 1 tel que 0 6 an+1 6 2n! et 0 6 an 6 2(n − 1)!, comme an+2 = an+1 + (n + 1)an, on a

0 + (n + 1).0 6 an+2 6 2n! + 2(n + 1)(n − 1)! = 2(n − 1)!(n + n + 1) 6 2(n − 1)!(n(n + 1)) = 2(n + 1)! car

n+ 1 6 n2 puisque n > 1. Par principe de récurrence double, on a ∀n > 1, 0 6 an 6 2(n− 1)!. Ainsi, pour

n > 1, 0 6 an

n!
6 2

n
donc, par encadrement,

(
an

n!

)
n∈N

converge vers 0.

b. Comme la suite
(
an

n!

)
n∈N

tend vers 0, elle est bornée, donc par définition du rayon de convergence d’une

série entière, on a R > 1.

c. Les dérivations qui suivent sont valides sur l’intervalle ouvert de convergence. Pour x ∈] − R;R[, on
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a f′(x) =
+∞∑
n=1

nan

n!
xn−1 =

+∞∑
n=0

an+1

n!
xn et f′′(x) =

+∞∑
n=1

nan+1

n!
xn−1 =

+∞∑
n=0

an+2

n!
xn. Or, pour n ∈ N,

an+2x
n

n!
=

an+1x
n

n!
+

(n+ 1)anx
n

n!
donc

+∞∑
n=0

an+2x
n

n!
=

+∞∑
n=0

an+1x
n

n!
+

+∞∑
n=0

(n+ 1)anx
n

n!
en sommant ce qui

revient à f′′(x) = f′(x) +
+∞∑
n=0

nanx
n

n!
+

+∞∑
n=0

anx
n

n!
= f′(x) + xf′(x) + f(x). Par conséquent, f est solution sur

]− R;R[ de l’équation différentielle (E) : y′′ − (1+ x)y′ − y = 0.

d. D’après la question précédente, on a f′′(x)− (1+x)f′(x)− f(x) = (f′(x)− (1+x)f(x))′ = 0. Comme ]−R;R[

est un intervalle et que f′(0) − (1 + 0)f(0) = a1 − a0 = 0, on a donc ∀x ∈] − R;R[, f′(x) − (1 + x)f(x) = 0.

On en déduit en intégrant cette équation différentielle linéaire du premier ordre mise sous forme normalisée

sans second membre, comme une primitive de x 7→ 1+ x est x 7→ x+ x2

2
sur l’intervalle ]− R;R[, que l’on a

∀x ∈]− R;R[, f(x) = e
x+x2

2 puisque f(0) = a0 = 1.

Alors ∀x ∈] − R;R[, f(x) =

(
+∞∑
i=0

1

i!
xi

)
×

(
+∞∑
j=0

1

j!2j
x2j

)
. Ces deux séries ont pour rayon +∞ donc on peut

effectuer le produit de Cauchy et obtenir f(x) =
+∞∑
n=0

( ∑
i+2j=n

n!
i!j!2j

)
xn. En identifiant (par unicité) les

coefficients entre les deux expressions de f(x) sous forme de série entière, ∀n ∈ N,
an

n!
=

∑
i+2j=n

1

i!j!2j
donc

an =
∑

i+2j=n

n!
i!j!2j

. Puisque 2j 6 n et i = n− 2j, on a la formule an =
⌊n/2⌋∑
j=0

n!
(n− 2j)!j!2j

.

Pour information : on considère l’ensemble In des permutations σ de [[1;n]] qui sont des involutions, c’est-à-

dire qui vérifient σ◦σ = id [[1;n]] ; et on pose bn = card (In). Alors, pour n > 1, on partitionne les involutions

σ de [[1;n+ 2]] en deux catégories :

- celles pour lesquelles σ(n+ 2) = n+ 2 sont au nombre de bn+1 car il n’y a pas de choix à faire pour

σ(n+ 2) qu’on impose égal à n+ 2, ensuite σ induit alors sur [[1;n+ 1]] une involution de [[1;n+ 1]].

- celles telles que σ(n + 2) = k ̸= n + 2 sont au nombre de (n + 1)bn car pour les choisir de manière

bijective, il y a n+ 1 choix pour l’entier k qui est l’image de n+ 2 par σ et, une fois ce choix effectué,

cela implique que σ(k) = σ(σ(n + 2)) = n + 2 car σ doit être une involution, et on a alors bn choix

pour finir de déterminer σ qui doit induire sur [[1;n+ 1]] \ {k} une involution de cet ensemble.

Cette partition implique la relation bn+2 = bn+1+(n+1)bn pour n > 1 et, comme b2 = 2 = 1+1.1 = b1+1.b0

en prenant comme convention que b0 = 1, on a bien ∀n > 0, bn+2 = bn+1 + (n + 1)bn. On montre alors

par une récurrence double que ∀n ∈ N, an = bn.

On peut alors expliquer la relation (R) de manière combinatoire, en constatant qu’une involution σ de [[1;n]]

est une application telle que pour tout entier x entre 1 et n, et on a deux choix :

• soit σ(x) = x et x est appelé un point fixe de σ.

• soit σ(x) = y ̸= x et alors, comme σ2 = id [[1;n]], on a forcément σ(y) = x.

Ainsi, si σ ∈ An, le nombre f de points fixes de σ a la même parité que n de sorte qu’il existe 2j entiers de

[[1;n]] qui ne sont pas fixes par σ avec f = n− 2j avec 0 6 j 6
⌊
n

2

⌋
. On peut donc écrire An =

⌊n/2⌋∪
j=0

An,j où
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An,j = {σ ∈ An | σ admet f = n− 2j points fixes}.

Pour construire une involution σ de An,j :

• on choisit les n− 2j éléments de [[1;n]] qui sont fixes par σ :

(
n

n− 2j

)
=

(
n

2j

)
choix.

• on choisit l’image y du plus petit élément x qui reste : (2j− 1) choix (et alors σ(x) = y et σ(y) = x).

• on choisit l’image t du plus petit élément z qui reste : (2j− 3) choix etc...

Ainsi card (An,j) =

(
n

2j

)
×(2j−1)×(2j−3)×· · ·×3×1 =

n!

(n− 2j)!(2j)!
× (2j)!

2jj!
en multipliant en haut et en bas

par les termes pairs qui manquent. On retrouve bien In = card (An) =
⌊n/2⌋∑
j=0

card (An,j) =
⌊n/2⌋∑
j=0

n!
(n− 2j)!2jj!

.� �
10.100� �a. Initialisation : f est solution de (E) donc f est dérivable par définition donc f est de classe C0 sur R.

Hérédité : supposons, pour un entier n ∈ N, que f soit de classe Cn sur R, alors f′ : x 7→ f(x) + f(λx) est

aussi de classe Cn sur R par somme et composition. Ainsi, f est de classe Cn+1 sur R.

Par principe de récurrence, f est de classe Cn sur R pour tout entier n donc f est de classe C∞ sur R.

b. Soit f solution de (E) telle que f(0) = 0, alors f′(0) = αf(0)+f(0) = 0 et, plus généralement, par récurrence,

∀n ∈ N∗, f(n+1)(0) = αf(n)(0)+ λnf(n)(0) = 0. Soit a > 0, alors si on note Mp = Sup
x∈[a−;a]

|f(p)(x)|, on a avec

l’inégalité de Taylor-Lagrange, ∀n ∈ N∗, ∀x ∈ [−a;a],
∣∣∣f(x)− n∑

k=0

f(k)(0)
k!

∣∣∣ 6 an+1Mn+1

(n+ 1)!
. Mais puisque

∀n ∈ N, ∀x ∈ [−a;a], f(n+1)(x) = αf(n)(x)+λnf(n)(λx) on a Mn+1 6 (α+1)Mn et donc Mn 6 (α+1)nM0.

Ainsi, ∀n ∈ N∗, ∀x ∈ [−a;a],
∣∣∣f(x)− n∑

k=0

f(k)(0)
k!

∣∣∣ 6 an+1(α+ 1)n+1M0

(n+ 1)!
qui tend vers 0 quand n tend vers

+∞. Ainsi, f est développable en série entière sur [−a;a] et f = 0 sur [−a;a] pour tout a > 0 : f = 0 sur R.
c. Si f est développable en série entière (avec rayon R > 0) et solution de l’équation différentielle, alors ∀x ∈

]−R;R[, f(x) =
+∞∑
n=0

anx
n. On remplace dans l’équation et ∀x ∈]−R;R[,

+∞∑
n=0

((n+1)an+1−αan−λnan)x
n = 0

donc, par unicité des coefficients dans une série entière de rayon strictement positif, an+1 = α+ λn

n+ 1
an.

Réciproquement, si on définit f par f(x) =
+∞∑
n=0

anx
n avec la suite (an)n∈N vérifiant cette récurrence et par

exemple a0 = 1, on a bien R = +∞ avec d’Alembert car lim
n→+∞

∣∣∣an+1

an

∣∣∣ = lim
n→+∞

∣∣∣α+ λn

n+ 1

∣∣∣ = 0 et f est

solution de l’équation en remontant les calculs.

Si g est une solution quelconque de l’équation, alors posons h = g − g(0)f où f : x 7→
+∞∑
n=0

(n−1∏
k=0

α+ λk

k+ 1

)
xn

est la solution développable en série entière qu’on vient de trouver (valant 1 en 0). Comme h est de classe

C∞ et vaut 0 en 0 par construction, on a h = 0 d’après la question c. car h est solution de l’équation aussi.

Ainsi g = g(0)f. Par conséquent, E = Vect(f).� �
10.101� �a. Soit (an)n∈N une suite complexe, le rayon de convergence de la série entière

∑
n>0

anx
n vaut par

définition R = Sup

({
x ∈ R+ | (anx

n)n>0 est bornée
})

avec par convention R = +∞ si cet ensemble n’est

pas majoré.

b. Pour n ∈ N et t ∈ [0; 1], on a tn

2
6 tn

1+ t2
6 tn donc, par croissance de l’intégrale, on a l’encadrement

0 6
∫ 1

0

tn

2
dt = 1

2(n+ 1)
6 an 6 1

n+ 1
=
∫ 1

0
tndt (1). Comme le rayon de convergence des deux séries
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∑
n>0

xn

2(n+ 1)
et
∑
n>0

xn

n+ 1
vaut classiquement 1, on peut conclure d’après le cours que R = 1. Par croissance

de l’intégrale, si n ∈ N, ∀t ∈ [0; 1], 0 6 tn+1

1+ t2
6 tn

1+ t2
donc 0 6 an+1 6 an et la suite (an)n∈N est

décroissante. De plus, l’encadrement (1) montre que lim
n→+∞

an = 0. Par critère spécial des séries alternées,

la série
∑
n>0

an(−1)n converge alors que la série
∑
n>0

an diverge par minoration puisque an > 1

2(n+ 1)
et

que la série harmonique
∑
n>0

1

n+ 1
diverge. Ainsi, le domaine de définition de x 7→

+∞∑
n=0

anx
n est [−1; 1[.

c. Dans la relation (R) : 1

(1− xt)(1+ t2)
= a

1− xt
+ bt

1+ t2
+ c

1+ t2
, pour x ̸= 0, on multiplie par 1−xt et on

prend t = 1

x
et on trouve a = x2

1+ x2
. Dans (R), on multiplie par 1+ t2 et on prend t = i pour avoir 1

1− ix
=

1+ ix

1+ x2
= bi+c donc, comme b et c sont réels, on a b = x

1+ x2
et c = 1

1+ x2
. On peut aussi bien sûr procéder

par identification. Alors, ∀t ∈ [0 ; 1], 1

(1− xt)(1+ t2)
= x2

(1+ x2)(1− xt)
+ xt

(1+ x2)(1+ t2)
+ 1

(1+ x2)(1+ t2)
et cette relation marche encore pour x = 0.

d. Pour |x| < 1, la série de fonctions (un)n∈N où un(t) = xntn

1+ t2
converge normalement sur [0; 1] car

||un||∞,[0;1] 6 |x|n et que la série géométrique
∑
n>0

|x|n converge car |x| < 1 donc on peut intervertir série et

intégrale sur le segment [0; 1], puisque les fonctions un sont toutes continues sur [0; 1], pour avoir la relation

∀x ∈] − 1; 1[, S(x) =
+∞∑
n=0

(∫ 1

0
un(t)dt

)
=
∫ 1

0

( +∞∑
n=0

un(t)
)
dt =

∫ 1

0

dt

(1− xt)(1+ t2)
car

+∞∑
n=0

(xt)n = 1

1− xt

puisque |xt| < 1. D’après c., ∀x ∈] − 1; 1[, S(x) = x

1+ x2

∫ 1

0

xdt

1− xt
+ x

1+ x2

∫ 1

0

tdt

1+ t2
+ 1

1+ x2

∫ 1

0

dt

1+ t2

par linéarité de l’intégrale donc S(x) = x

1+ x2
[− ln(1 − xt)]10 + x

2(1+ x2)
[ln(1 + t2)]10 + 1

1+ x2
[Arctan(t)]10

et on obtient donc S(x) =
−4x ln(1− x) + 2x ln(2) + π

4(1+ x2)
.

e. Les fonctions vn : x 7→ unx
n sont toutes continues sur [−1; 0] et, pour x ∈ [−1; 0], la série

∑
n>0

unx
n est

alternée et la suite (|vn(x)|)n>0 est décroissante et tend vers 0 car (un)n>0 est décroissante, tend vers 0 et

|x| 6 1. Ainsi, par le critère spécial des séries alternées, on a |Rn(x)| =
∣∣∣ +∞∑
k=n+1

vk(x)
∣∣∣ 6 |vn+1(x)| 6 un+1

donc ||Rn||∞,[−1;0] 6 un+1 ce qui montre par encadrement que lim
n→+∞

||Rn||∞,[−1;0] = 0 et que la série
∑
n>0

vn

converge uniformément vers S sur [−1; 0]. Par théorème, on a donc la continuité de S sur [−1; 0] ce qui montre

que S(−1) =
+∞∑
n=0

(−1)nun = lim
x→−1+

S(x) =
ln(2)
2

+ π

8
.� �

10.102� �a. f est définie comme la somme de la série entière lacunaire
∑
n>0

bnx
n où bn = 1 si n est un carré et

bn = 0 sinon. Comme (bnx
n)n>0 est bornée si et seulement si (bn2xn

2

)n>0 = (xn
2

)n>0 l’est, c’est-à-dire si

et seulement si |x| 6 1, le rayon de convergence R de cette série entière vaut R = 1. Pour x = ±1, cette série

est grossièrement divergente donc le domaine de définition de f vaut I =]− 1; 1[.

b. En tant que somme d’une série entière de rayon 1, d’après le cours, f est de classe C∞ sur son intervalle

ouvert de convergence, donc a fortiori dérivable sur I =]− 1; 1[.

c. Comme on étudie f au voisinage de 1, on peut se contenter de prendre x ∈]0; 1[, et de poser la fonction

hx : t 7→ xt
2

= et
2 ln(x) qui est continue et intégrable sur R+ par comparaison aux intégrales de Riemann
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car hx(t) = et
2 ln(x) =

+∞
o

(
1

t2

)
par croissances comparées (ln(x) < 0).

Comme la fonction hx est décroissante sur R+, on a ∀k > 1,

∫ k+1

k
hx(t)dt 6 xk

2

= hx(k) 6
∫ k

k−1
hx(t)dt.

On somme pour k allant de 0 à +∞ à gauche et de 1 à +∞ à droite (l’intégrale et la série convergent) ce

qui donne par Chasles l’encadrement
∫ +∞

0
xt

2

dt 6 f(x) 6
∫ +∞

0
xt

2

dt+ hx(0) =
∫ +∞

0
xt

2

dt+ 1.

En posant t = u√
− ln(x)

= φ(u), φ étant une bijection strictement croissante de classe C1 de R+ dans R+,

par changement de variable, on a
∫ +∞

0
xt

2

dt =
∫ +∞

0
et

2 ln(x)dt = 1√
− ln(x)

∫ +∞

0
e−u2

du = 1

2

√
−π

ln(x)
.

Par encadrement, comme 1 =
1−

o

(√
1

− ln(x)

)
et lim

x→1−

1

2

√
−π

ln(x)
= +∞, on a l’équivalent f(x) ∼

1−

1

2

√
−π

ln(x)
.

d. Comme il existe une infinité de termes de la suite (an)n∈N qui sont supérieurs ou égaux à 1 (il y a une

infinité de carrés parfaits), on en déduit que la série
∑
n>0

an diverge, ce qui prouve que R′ 6 1. Comme

an = card {k ∈ [[0; ⌊
√
n⌋]] | n− k2 est un carré parfait}, on a an 6 ⌊

√
n⌋+ 1 6 √

n+ 1 6 n+ 1 et comme la

série entière
∑
n>0

(n+ 1)xn est de rayon 1, on a R′ > 1. Par conséquent, R′ = 1.

Pour n ∈ N, an =
∑

(u,v)∈[[0;⌊√n⌋]]2
u2+v2=n

1 =
∑

(i,j)∈[[0;n]]
i+j=n

bibj (en posant i = u2 et j = v2) par définition des bn. Par

exemple, a5 = b0b5 + b1b4 + b2b3 + b3b2 + b4b1 + b5b0 = 2 car b2 = b3 = b5 = 0 et b0 = b1 = b4 = 1

ce qui correspond aux deux écritures 5 = 1 + 4(= 12 + 22 = 22 + 11 =)4 + 1. Par produit de Cauchy de

deux séries entières, pour x ∈] − R′;R′[=] − 1; 1[, on a f(x)2 =
( +∞∑

n=0

bnx
n
)( +∞∑

n=0

bnx
n
)

=
+∞∑
n=0

cnx
n avec

cn =
n∑

k=0

bkbn−k =
∑

(i,j)∈[[0;n]]2

i+j=n

bibj = an. Ainsi, f(x)2 = g(x) ce qui prouve que
∑
n>0

anx
n converge pour

x ∈] − 1; 1[ donc que R′ > 1 indépendamment de ce qui précède. On trouve à nouveau que R′ = 1. D’après

la question c., on a même g(x) = f(x)2 ∼
1−

−π

4 ln(x)
.� �

10.103� �Déjà, la suite (un)n>0 est bien définie car u0 est donné et la relation un+1 =
n∑

k=0

(
n

k

)
ukun−k définit bien

un+1 connaissant les termes u0, · · · , un. On peut montrer facilement par récurrence que ∀n ∈ N, un ∈ N.

a. Comme u0 = 3, on a u1 = u2
0 = 9 et u2 = 2u0u1 = 54. Ainsi, on a bien 0 6 u0

0!
= 3 6 4 = 40+1,

0 6 u1

1!
= 9 6 16 = 41+1 et 0 6 u2

2!
= 27 6 64 = 43+1. Soit n > 3 tel que ∀k ∈ [[0;n]], 0 6 uk

k!
6 4k+1,

alors un+1 =
n∑

k=0

(
n

k

)
ukun−k > 0 car u0, · · · , un sont positifs. De plus, par hypothèse de récurrence,

un+1 =
n∑

k=0

(
n

k

)
ukun−k = n!

n∑
k=0

ukun−k

k!(n− k)!
6 n!

n∑
k=0

4k+14n+1−k = (n+ 1)!4n+2 donc
un+1

(n+ 1)!
6 4n+2.

Par principe de récurrence forte, on a établi que ∀n ∈ N, 0 6 un

n!
6 4n+1.

b. Comme ∀n ∈ N, 0 6 un

n!
6 4n+1 d’après a., et puisque le rayon de convergence de la série entière∑

n>0

4n+1xn vaut 1

4
car (4n+1xn)n∈N est bornée si et seulement si |x| 6 1

4
, on en déduit que le rayon R de la

série entière
∑
n>0

un

n!
xn vérifie R > 1

4
. Ainsi, la fonction f, qui est la somme de cette série entière, est bien

définie sur I =
]
− 1

4
; 1
4

[
⊂]− R;R[.
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c. On dérive terme à terme donc ∀x ∈ I, f′(x) =
+∞∑
n=1

n
un

n!
xn−1 =

+∞∑
n=0

un+1

n!
xn à l’intérieur de l’intervalle

ouvert de convergence et après changement d’indice. On a donc ∀x ∈ I, f′(x) =
+∞∑
n=0

( n∑
k=0

uk

k!
.

un−k

(n− k)!

)
xn

car

(
n

k

)
=

n!

k!(n− k)!
. On reconnâıt un produit de Cauchy, valide puisque I ⊂]−R;R[, et on a f′(x) = f(x)2.

Par conséquent, f est bien solution sur I de l’équation (E) : y′ = y2.

d. Analyse : supposons que f ne s’annule pas sur I, alors ∀x ∈ I,
f′(x)

f(x)2
= 1 ⇐⇒

(
1

f(x)
+ x

)′
= 0 donc

x 7→ 1

f(x)
+ x est constante sur l’intervalle I. Or f(0) = 3 donc ∀x ∈ I, 1

f(x)
+ x = 1

3
et f(x) = 3

1− 3x
.

Synthèse : soit g :
]
− 1

3
; 1
3

[
→ R définie par g(x) = 3

1− 3x
. g ne s’annule pas sur I, g(0) = 1

3
et

g′(x) = 9

(1− 3x)2
= g(x)2. Ainsi, f et g sont solutions du même problème de Cauchy (non linéaire

donc hors programme) et sont donc égales sur I. Si on veut rester dans le programme, on décompose

∀x ∈
]
− 1

3
; 1
3

[
, g(x) = 3

+∞∑
n=0

(3x)n =
+∞∑
n=0

3n+1xn. Posons, vn = n!3n+1 pour n ∈ N.

Par produit de Cauchy dans
]
− 1

3
; 1
3

[
, on a g′(x) =

+∞∑
n=0

(n+ 1)
vn+1

(n+ 1)!
xn =

+∞∑
n=0

( n∑
k=0

vk
k!

vn−k

(n− k)!

)
xn. Par

unicité du développement en série entière, il vient ∀n ∈ N,
vn+1

n!
=

n∑
k=0

vk
k!

vn−k

(n− k)!
= 1

n!

n∑
k=0

(
n

k

)
vkvn−k.

Par récurrence forte, on montre facilement que ∀n ∈ N, un = vn = n! 3n+1 car (un)n∈N et (vn)n∈N ont le

même premier terme et la même relation de récurrence, à savoir v0 = 3 et ∀n ∈ N, vn+1 =
n∑

k=0

(
n

k

)
vkvn−k.� �

10.104� �a. f : t 7→ ln(1− t)
t

est continue sur ]−∞; 1[ en la prolongeant par continuité en 0 avec f(0) = −1 puisque

ln(1− t)∼
0
−t. F est donc la primitive de −f qui s’annule en 0 donc F est au moins définie sur ]−∞; 1[.

Si x = 1, f(t) ∼
1−

ln(1 − t) =
1−

o

(
1√
1− t

)
donc f est intégrable sur [0; 1[ et F(1) existe par comparaison aux

intégrales de Riemann. Par conséquent, le domaine définition de F est D =]−∞; 1].

b. D’après le cours, ∀t ∈]− 1; 1[, ln(1− t) = −
+∞∑
n=1

tn

n
donc −f(t) =

+∞∑
n=1

tn−1

n
(marche aussi si t = 0). Pour

x ∈] − 1; 1[, en intégrant terme à terme sur le segment ˜[0; x] inclus dans l’intervalle ouvert de convergence,

il vient F(x) =
∫ x

0
(−f(t))dt =

∫ x

0

+∞∑
n=1

tn−1

n
dt =

+∞∑
n=1

∫ x

0

tn−1

n
dt =

+∞∑
n=1

xn

n2 = S(x). Par définition de la

convergence d’une intégrale, F(1) = lim
x→1−

F(x). En posant un : x 7→ xn

n2 , on a ||un||∞,[0;1] =
1

n2 donc
∑
n>1

un

converge normalement sur [0; 1] et, puisque toutes les un sont continues sur [0; 1], S est continue sur [0; 1]

donc F(1) = lim
x→1−

F(x) = lim
x→1−

S(x) = S(1) = π2

6
. On a bien ∀x ∈ [0; 1], F(x) = S(x) =

+∞∑
n=1

xn

n2 .

c. Soit G :]0; 1[→ R définie par G(x) = π2

6
− ln(x) ln(1− x). Par opérations, la fonction G est dérivable sur

]0; 1[. De plus, la fonction F est dérivable sur ]0; 1[ avec F′(x) = − ln(1− x)
x

donc, pour x ∈]0; 1[, on a la relation

(F(x) + F(1− x)−G(x))′ = F′(x)− F′(1− x)−G′(x) = − ln(1− x)
x

+
ln(1− (1− x))

1− x
+

ln(1− x)
x

− ln(x)
1− x

= 0

avec l’abus de notation usuel. Ainsi, la fonction x 7→ F(x)+ F(1−x)−G(x) est constante sur l’intervalle ]0; 1[.

On a lim
x→0+

(F(x) + F(1− x)−G(x)) = F(0) + F(1)− π2

6
= 0 d’après b. et car lim

x→0+
ln(x) ln(1− x) = 0 puisque

ln(1− x)=
0
−x et lim

x→0+
x ln(x) = 0, donc ∀x ∈]0; 1[, F(x) + F(1− x) = π2

6
− ln(x) ln(1− x).
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� �
10.105� �a. Initialisation : pour n = 0, ∀x ∈ I, f(0)(x) = f(x) =

P0(sin(x))

cos0+1(x)
en prenant P0 = X + 1 qui est bien à

coefficients dans N par définition de la fonction f.

Pour n = 1, en dérivant, on a f′(x) =
cos2(x) + (sin(x) + 1) sin(x)

cos2(x)
=

sin(x) + 1

cos2(x)
donc f(1)(x) =

P1(sin(x))

cos1+1(x)
avec P1 = X+ 1 à coefficients dans N et de degré n = 1 et unitaire.

Hérédité : soit n > 1 tel que ∀x ∈ I, f(n)(x) =
Pn(sin(x))

cosn+1(x)
avec Pn =

n∑
k=0

akX
k ∈ N[X] de degré n

avec an = 1. On dérive une fois de plus, toutes les fonctions étant de classe C∞ sur I, et on obtient la

relation ∀x ∈ I, f(n+1)(x) =
cos(x)P′

n(sin(x))

cosn+1(x)
+ (n + 1)

sin(x)Pn(sin(x))

cosn+2(x)
donc, après réduction au même

dénominateur, f(n+1)(x) =
cos2(x)P′

n(sin(x)) + (n+ 1) sin(x)Pn(sin(x))

cosn+2(x)
=

Pn+1(sin(x))

cosn+2(x)
si on définit le

polynôme Pn+1 = (1−X2)P′
n+(n+ 1)XPn =

n∑
k=1

kakX
k−1−

n∑
k=0

kakX
k+1+(n+ 1)

n∑
k=0

akX
k+1 qui s’arrange

en Pn+1 =
n−1∑
k=0

(k+ 1)ak+1X
k −

n+1∑
k=1

(k− 1)ak−1X
k + (n+ 1)

n+1∑
k=1

ak−1X
k, puis, en regroupant les termes, en

Pn+1 = anX
n+1 + 2an−1X

n +
(n−1∑

k=1

[(k+ 1)ak+1 + (n+ 2− k)ak−1]X
k
)
+ a1 ∈ N[X] qui est bien unitaire, de

degré n+ 1 et à coefficients dans N.

Conclusion : par principe de récurrence, ∀n ∈ N, ∃Pn ∈ N[X], ∀x ∈ I, f(n)(x) =
Pn(sin(x))

cosn+1(x)
. De plus, s’il

existait, pour n ∈ N, un autre polynôme Qn ∈ R[X] tel que ∀x ∈ I, f(n)(x) =
Qn(sin(x))

cosn+1(x)
=

Pn(sin(x))

cosn+1(x)
, on

aurait ∀x ∈ I, Pn(sin(x)) = Qn(sin(x)) donc Pn = Qn car Pn et Qn cöıncident sur ] − 1; 1[ qui est infini.

Ainsi, la suite (Pn)n∈N est unique et vérifie P0 = 1 et ∀n ∈ N, Pn+1 = (1 − X2)P′
n + (n + 1)XPn et on a

montré lors de la récurrence que ∀n ∈ N∗, Pn est de degré n et unitaire.

b. Soit x ∈ J =
[
0; π

2

[
, on a ∀n ∈ N, f(x) =

n∑
k=0

f(k)(0)xk

k!
+ 1

n!

∫ x

0
(x − t)nf(n+1)(t)dt par la formule de

Taylor reste intégral. Or ∀t ∈ [0; x] ⊂ J, on a (x− t)nf(n+1)(t) = (x− t)n
Pn+1(sin(t))

cosn+2(t)
> 0 car x− t > 0,

sin(t) > 0 donc Pn+1(sin(t)) > 0 car Pn ∈ N[X] et cos(t) > 0. Ainsi, 1

n!

∫ x

0
(x − t)nf(n+1)(t)dt > 0 donc

0 6 Sn(x) =
n∑

k=0

f(k)(0)xk

k!
6 f(x) ce qui montre que les sommes partielles de la série de Taylor de f en

x sont majorées. Comme il s’agit d’une série à termes positifs, cette série converge d’après le cours. Ceci

montre que le rayon de convergence R de la série entière
∑
n>0

f(n)(0)xn

n!
vérifie R > π

2
. D’après le cours

toujours, la série de Taylor de f converge donc sur l’intervalle ouverte de convergence ]R;R[ qui contient I.

c. Soit g : I → R telle que ∀x ∈ I, g(x) =
+∞∑
n=0

f(n)(0)xn

n!
, g est bien définie d’après la question précédente.

La fonction f est dérivable sur I et f′(x) =
sin(x) + 1

cos2(x)
=

(sin(x) + 1)2 + cos2(x)

2 cos2(x)
=

f(x)2 + 1

2
donc on obtient

∀x ∈ I, 2f′(x) = f(x)2 + 1. Par la formule de Leibniz, en écrivant (2f′(x))(n) = (f(x)2 + 1)(n) pour n ∈ N∗,

on a la relation 2f(n+1)(x) =
n∑

k=0

(
n

k

)
f(k)(x)f(n−k)(x). En particulier en prenant x = 0, on a la relation

2f(n+1)(0) = 2Pn+1(0) =
n∑

k=0

(
n

k

)
f(k)(0)f(n−k)(0) =

n∑
k=0

n!
k!(n− k)!

Pk(0)Pn−k(0) donc 2αn+1 =
n∑

k=0

αkαn−k

n+ 1

en posant αk =
Pk(0)
k!

si n > 1. On a aussi 2f′(0) = f(0)2 + 1 donc 2α1 = α2
0 + 1.
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Mais on a ∀x ∈ I, g(x) =
+∞∑
n=0

αnx
n et, par produit de Cauchy, ∀x ∈ I, g(x)2 =

+∞∑
n=0

( n∑
k=0

αkαn−k

)
xn

d’où g(x)2 = α2
0 +

+∞∑
n=1

(n+ 1)
( n∑

k=0

αkαn−k

)
xn = 1+ 2

+∞∑
n=1

(n+ 1)αn+1x
n = −1+ 2

+∞∑
n=0

(n+ 1)αn+1x
n donc

g(x)2 = −1 + 2g′(x). Les deux fonctions f et g sont donc solutions sur I de l’équation différentielle non

linéaire 2y′ = y2 + 1. Comme on n’a pas au programme de théorème de Cauchy-Lipschitz non linéaire,

on va poser les fonctions a = Arctan ◦f et b = Arctan ◦g qui sont dérivables sur I comme composées de

fonctions dérivables. ∀x ∈ I, a′(x) =
f′(x)

1+ f(x)2
= 1

2
=

g′(x)

1+ g(x)2
= b′(x) donc, comme I est un intervalle,

il existe une constante C ∈ R telle que ∀x ∈ I, a(x) = b(x) + C. Or a(0) = b(0) = Arctan(α0) =
π

4
donc

C = 0. Ainsi, ∀x ∈ I, f(x) =
+∞∑
n=0

f(n)(0)xn

n!
ce qui justifie que f est développable en série entière sur I.

De plus, si on avait R > π

2
, alors f = g serait de classe C∞ sur

[
− π

2
; π
2

]
⊂] − R;R[ donc, en particulier, f

serait continue en π

2
alors que lim

x→π/2−
f(x) = +∞. Ainsi, le rayon R de la série de Taylor de f vaut R = π

2
.

Questions de cours :

• D’après le cours, on sait que ∀x ∈]− 1; 1[, Arctan(x) =
+∞∑
n=0

(−1)nx2n+1

2n+ 1
.

• Pour une fonction f : I 7→ C de classe Cn+1 sur l’intervalle I, pour tout (a, b) ∈ I2, on a la formule

de Taylor reste intégral suivante, f(b) =
n∑

k=0

f(k)(a)(b− a)k

k!
+
∫ b

a

(b− t)nf(n+1)(t)
n!

dt.

• Soit f : R3 → R de classe C1 et g : t 7→ f
(
cos(t), Arctan(t), 2t

)
. D’après la règle de la châıne,

comme t 7→ cos(t), t 7→ Arctan(t) et t 7→ 2t sont de classe C1 sur R, g l’est aussi et

g′(t) = − sin(t) ∂f
∂x

(
cos(t), Arctan(t), 2t

)
+ 1

1+ t2
∂f
∂y

(
cos(t), Arctan(t), 2t

)
+ ln(2)2t ∂f

∂z

(
cos(t), Arctan(t), 2t

) .
• Soit f : I → R une fonction continue sur un intervalle I et (a, b) ∈ I2, alors ∀y ∈ ˜[f(a); f(b)], il existe

un réel c ∈ [̃a; b] tel que f(c) = y.� �
10.106� �a. Pour x ∈ R, soit fx : R∗

+ → R définie par fx(t) =
tx

1+ t2
qui est continue sur R∗

+. Comme fx(t)∼
0

1

t−x ,

par comparaison aux intégrales de Riemann, fx est intégrable en 0 si et seulement si −x < 1 ⇐⇒ x > −1.

De plus, fx(t) ⇐⇒ 1

t2−x donc, de même, fx est intégrable en +∞ si et seulement si 2− x > 1 ⇐⇒ x < 1.

Comme fx est positive,
∫ +∞

0
fx converge si et seulement si fx est intégrable sur R∗

+, c’est-à-dire intégrable

en 0 et en +∞. Par conséquent, le domaine de définition de f est D =]− 1; 1[.

b. Pour x ∈ D, fx est intégrable sur [1; +∞[ d’après a. et fx(t) =
tx

1+ t2
= ex ln(t)

1+ t2
=

+∞∑
n=0

(x ln(t))n

n!(1+ t2)
. Pour

n ∈ N, soit gn : [1; +∞[→ R définie par gn(t) =
(ln(t))nxn

n!(1+ t2)
de sorte que g(x) =

∫ +∞

1

( +∞∑
n=0

gn(t)
)
dt.

(H1)
∑
n>0

gn converge simplement sur [1; +∞[ vers fx (on en vient).

(H2) Les fonctions gn sont continues et intégrables sur [1; +∞[ pour n ∈ N par comparaison aux

intégrales de Riemann car gn(t) ∼
+∞

(ln(t))nxn

n!t2
=
+∞

o

(
1

t
3
2

)
par croissances comparées.
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(H3) La fonction fx est continue sur [1; +∞[.

(H4) Pour n ∈ N,
∫ +∞

1
|gn(t)|dt =

|x|n
n!

∫ +∞

1

ln(t)n

1+ t2
dt 6 |x|n

n!

∫ +∞

1

ln(t)n

t2
dt. On définit, pour

tout n ∈ N, Jn =
∫ +∞

1

ln(t)n

t2
dt et, avec u : t 7→ (ln(t))n et v : t 7→ −1

t
qui sont de classe

C1 sur [1; +∞[ avec lim
t→+∞

u(t)v(t) = 0 par croissances comparées, on obtient pour n > 1, par

intégration par parties, Jn = [u(t)v(t)]+∞
1 −

∫ +∞

1

(
1

t

)
n(ln(t))n−1

(
− 1

t

)
dt = nJn−1. Puisque

J0 =
∫ +∞

1

1

t2
dt =

[
− 1

t

]+∞

1
= 1, on a par une récurrence simple ∀n ∈ N, Jn = n!. Ainsi,∫ +∞

1
|gn(t)|dt 6 Jn|x|n

n!
= |x|n et la série géométrique

∑
n>0

|x|n converge car |x| < 1.

Par le théorème d’intégration terme à terme, g(x) =
∫ +∞

1

( +∞∑
n=0

gn(t)
)
dt =

+∞∑
n=0

∫ +∞

1
gn(t)dt =

+∞∑
n=0

anx
n

en posant an = 1

n!

∫ +∞

1

ln(t)n

1+ t2
dt donc g est développable en série entière sur ]− 1; 1[.

c. Par la relation de Chasles, ∀x ∈ D, f(x) =
∫ 1

0
fx(t)dt +

∫ +∞

1
fx(t)dt. Dans l’intégrale

∫ 1

0
fx(t)dt, on

effectue le changement de variable t = 1

u
= φ(u) avec φ qui est une bijection strictement décroissante de

classe C1 de [1; +∞[ dans ]0; 1] et on a
∫ 1

0
fx(t)dt =

∫ 1

+∞
(1/u)x

1+
1

u2

(
− 1

u2

)
du =

∫ +∞

1

u−x

1+ u2 du = g(−x).

Ainsi, f(x) = g(x) + g(−x) donc, comme g est développable en série entière sur ] − 1; 1[ d’après b., f l’est

aussi et on a ∀x ∈ D, f(x) = g(x) + g(−x) =
+∞∑
n=0

(
an + (−1)nan

)
xn =

+∞∑
n=0

2a2nx
2n. La fonction f est donc

paire sur D, ce qu’on pouvait voir directement avec le même changement de variable t = 1

u
.� �

10.107� �a. Soit r > 0 et p ∈ N, par hypothèse, on a f(reit) =
+∞∑
n=0

anr
neint car le rayon de

∑
n>0

anz
n vaut R = +∞.

Ainsi, f
(
reit

)
e−ipt =

+∞∑
n=0

anr
neinteipt =

+∞∑
n=0

anr
nei(n−p)t =

+∞∑
n=0

gn(t)dt si gn : t 7→ anr
nei(n−p)t.

On a ||gn||∞,[0;2π] = |an|rn et
∑
n>0

anr
n converge absolument par le lemme d’Abel car r < R = +∞, donc

la série de fonctions
∑
n>0

gn converge normalement sur le segment [0; 2π]. Par le théorème d’intégration

terme à terme par convergence normale sur segment,
∫ 2π

0

( +∞∑
n=0

gn(t)
)
dt =

2π∑
n=0

∫ 2π

0
gn(t)dt. Or on calcule∫ 2π

0
gn(t)dt =

[
anr

nei(n−p)t

i(n− p)

]2π
0

= 0 si n ̸= p et
∫ 2π

0
gp(t)dt = 2πapr

p.

On en déduit donc que ∀p ∈ N, ∀r > 0,

∫ 2π

0
f
(
reit

)
e−iptdt = 2π apr

p.

b. Comme f est bornée sur C, posons M = ||f||∞,C = Sup
z∈C

|f(z)| et, par inégalité triangulaire sur les

intégrales,
∣∣∣∫ 2π

0
f
(
reit

)
e−iptdt

∣∣∣ 6 ∫ 2π

0

∣∣f(reit)∣∣dt 6 2πM. D’après a., |2πapr
p| 6 2πM donc |ap| 6 M

rp
.

Comme ceci est vrai pour tout r > 0, en faisant tendre r vers +∞ dans cette inégalité pour p ∈ N∗, on a

0 6 |ap| 6 lim
r→+∞

M

rp
= 0 donc ap = 0. Ainsi, ∀z ∈ C, f(z) = a0 donc f est constante.

Bien sûr, ceci est faux si f n’est que bornée sur R comme en témoigne la fonction cos par exemple.

c. Pour un entier p > q+ 1 et un réel r > 0, toujours par inégalité triangulaire sur les intégrales, on obtient
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∣∣∣∫ 2π

0
f
(
reit

)
e−iptdt

∣∣∣ 6 ∫ 2π

0

∣∣f(reit)∣∣dt 6 ∫ 2π

0
(αrq + β)dt 6 2π(αrq + β). Ainsi, avec la question a., on a

|2π apr
p| 6 2π(αrq+β) d’où 0 6 |ap| 6 αrq−p+βr−p. Encore une fois, comme lim

r→+∞
(αrq−p+βr−p) = 0, en

passant à la limite, on a |ap| = 0 si p > q. Par conséquent, ∀z ∈ C, f(z) =
q∑

p=0

apz
p donc f est polynomiale.

d. Soit g : C → C définie par g(z) = f(z)e−z. Comme f et exp sont développables en série entière avec un

rayon +∞, par produit de Cauchy, la fonction g est elle-même développable en série entière sur C. Pour

z ∈ C, |g(z)| = |f(z)||e−z| = |f(z)|e−Re (z) 6 1 donc g est bornée sur C ce qui, avec la question b., montre

que g est constante sur C. Ainsi, il existe k ∈ C tel que ∀z ∈ C, g(z) = f(z)e−z = k d’où ∀z ∈ C, f(z) = kez.� �
10.108� �a. Pour n ∈ N∗, soit la fonction un : R → R définie par un(x) =

(−1)n+1x2n+1

n(2n+ 1)
. Pour tout réel x ∈ R∗,∣∣∣un+1(x)

un(x)

∣∣∣ = n(2n+ 1)
(n+ 1)(2n+ 3)

x2 donc lim
n→+∞

∣∣∣un+1(x)
un(x)

∣∣∣ = x2 = ℓ.

• Si |x| < 1, on a ℓ < 1 donc, par critère de d’Alembert,
∑
n>0

un(x) converge. Ainsi, R > 1.

• Si |x| > 1, on a ℓ > 1 donc, par critère de d’Alembert,
∑
n>0

un(x) diverge. Ainsi, R 6 1.

Par conséquent, le rayon de convergence de la série entière
∑
n>1

(−1)n+1x2n+1

n(2n+ 1)
vaut R = 1.

b. Comme |un(±1)| ∼
+∞

1

2n2 donc
∑
n>1

un(±1) converge absolument par comparaison aux séries de Riemann.

Le domaine I de définition de S est I = [−1; 1].

c. D’après le cours, la fonction S (somme d’une série entière) est continue (et même de classe C∞) au moins

sur l’intervalle ouvert de convergence, c’est-à-dire dans notre cas sur ]− 1; 1[.

d. Comme ∀n ∈ N∗, ||un||∞,I = |un(1)| = 1

n(2n+ 1)
∼
+∞

1

2n2 et que la série de Riemann
∑
n>1

1

n2 converge

car 2 > 1, la série
∑
n>1

un converge normalement sur I. Comme toutes les fonctions un sont continues sur I,

par théorème de continuité des séries de fonctions, la fonction S est continue sur I.

e. Pour n ∈ N∗, on a 1

n(2n+ 1)
=

(2n+ 1)− 2n

n(2n+ 1)
= 1

n
− 2

2n+ 1
et le rayon de convergence de

∑
n>1

x2n+1

n
et

∑
n>1

x2n+1

2n+ 1
vaut aussi 1 donc, pour x ∈]−1; 1[, on peut écrire S(x) =

+∞∑
n=1

(−1)n+1x2n+1

n
+2

+∞∑
n=1

(−1)nx2n+1

2n+ 1

en séparant les sommes. On reconnâıt des séries entières classiques et S(x) = x ln(1+ x2)+ 2(Arctan(x)− 1).

f. Comme la fonction S est impaire et continue sur [−1; 1] donc en 1, on a S(1) = S(−1) = lim
x→1−

S(x) donc

S(1) = lim
x→1−

(x ln(1 + x2) + 2(Arctan(x) − 1)) = ln(2) − 2 + π

2
∼ 0, 26 > 0. Pour x = ±1, la série alternée∑

n>1

(−1)n

n(2n+ 1)
converge aussi par le critère spécial des séries alternées car

(
1

n(2n+ 1)

)
n>1

est décroissante

et tend vers 0. On sait alors que sa somme S(1) est du signe de son premier terme
(−1)1+1

1(2+ 1)
> 0 donc S(1) > 0.� �

10.109� �Déjà, la suite (an)n>0 est bien définie car a0 est donné et la relation an+1 =
n∑

k=0

(
n

k

)
akan−k définit bien

an+1 connaissant les termes a0, · · · , an. On peut montrer facilement par récurrence que ∀n ∈ N, an ∈ N.
a. Initialisation : comme u0 = 1, u1 = u2

0 = 1 et u2 = 2u0u1 = 2. Ainsi, 0 6 a0

0!
= 1 6 1, 0 6 a1

1!
= 1 6 1.

Hérédité : soit n > 2 tel que ∀k ∈ [[0;n]], 0 6 ak

k!
6 1, alors an+1 =

n∑
k=0

(
n

k

)
akan−k > 0 car a0, · · · , an sont
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positifs. Par hypothèse de récurrence, an+1 =
n∑

k=0

(
n

k

)
akan−k = n!

n∑
k=0

akan−k

k!(n− k)!
6 n!

n∑
k=0

1 = (n + 1)!

donc on a bien l’inégalité
an+1

(n+ 1)!
6 1.

Conclusion : par principe de récurrence forte, on a établi que ∀n ∈ N, 0 6 an

n!
6 1.

Comme ∀n ∈ N, 0 6 an

n!
6 1, et puisque le rayon de convergence de la série entière géométrique

∑
n>0

xn

vaut 1, d’après le cours, le rayon R de la série entière
∑
n>0

an

n!
xn vérifie R > 1. Ainsi, la fonction f, qui est la

somme de cette série entière, est bien définie sur I =]− 1; 1[⊂]− R;R[.

b. On dérive terme à terme à l’intérieur de l’intervalle ouvert de convergence qui contient ] − 1; 1[ d’après

la question a. pour avoir ∀x ∈ I, f′(x) =
+∞∑
n=1

n
an

n!
xn−1 =

+∞∑
n=0

an+1

n!
xn à l’intérieur de l’intervalle ouvert

de convergence et après changement d’indice. On a donc ∀x ∈ I, f′(x) =
+∞∑
n=0

( n∑
k=0

ak

k!
.

an−k

(n− k)!

)
xn car(

n

k

)
=

n!

k!(n− k)!
. On reconnâıt un produit de Cauchy, valide puisque I ⊂] − R;R[, et on a f′(x) = f(x)2.

Par conséquent, f est bien solution sur I de l’équation (E) : y′ = y2.

c. Analyse : supposons que f ne s’annule pas sur I, alors ∀x ∈ I,
f′(x)

f(x)2
= 1 ⇐⇒

(
1

f(x)
+ x

)′
= 0 donc

x 7→ 1

f(x)
+ x est constante sur l’intervalle I. Or f(0) = 1 donc ∀x ∈ I, 1

f(x)
+ x = 1 et f(x) = 1

1− x
.

Synthèse : soit g :]− 1; 1[→ R définie par g(x) = 1

1− x
, alors g ne s’annule pas sur I, g(0) = 1 et, pour x ∈ I,

on a g′(x) = 1

(1− x)2
= g(x)2. Ainsi, f et g sont solutions du même problème de Cauchy (non linéaire donc

hors programme) et sont donc égales sur I.

Si on veut rester dans le programme, on décompose ∀x ∈]−1; 1[, g(x) =
+∞∑
n=0

xn. Posons, vn = n! pour n ∈ N

de sorte que ∀x ∈] − 1; 1[, g(x) =
+∞∑
n=0

vn
n!

xn. Par produit de Cauchy et par unicité du développement en

série entière dans ] − 1; 1[, on a g′(x) =
+∞∑
n=0

(n + 1)
vn+1

(n+ 1)!
xn =

+∞∑
n=0

( n∑
k=0

vk
k!

vn−k

(n− k)!

)
xn, il vient donc la

relation ∀n ∈ N,
vn+1

n!
=

n∑
k=0

vk
k!

vn−k

(n− k)!
= 1

n!

n∑
k=0

(
n

k

)
vkvn−k. Par récurrence forte, on montre facilement

que ∀n ∈ N, un = vn = n! car (un)n∈N et (vn)n∈N ont le même premier terme et la même relation de

récurrence, à savoir v0 = 1 et ∀n ∈ N, vn+1 =
n∑

k=0

(
n

k

)
vkvn−k.

Bien sûr, on pouvait le conjecturer en calculant quelques termes initiaux de plus et le démontrer par

récurrence forte sans passer par les séries entières.� �
10.110� �a. On sait que ∀x ∈ R, ex =

+∞∑
n=0

xn

n!
donc, comme

(−1)n+1

(n+ 1)!
+

n∑
k=0

(−1)k

k!
=

n+1∑
k=0

(−1)k

k!
, on en déduit

que lim
n→+∞

(un+1 − un) = e−1 = 1

e
. D’après (C), on a donc

n−1∑
k=0

(uk+1 − uk) = un − u0 = un − 1 ∼
+∞

nℓ par

télescopage ce qui montre que lim
n→+∞

un = +∞ donc que un − 1 ∼
+∞

un ∼
+∞

n

e
.

Comme le rayon de convergence de la série entière
∑
n>0

nxn

e
est égal à 1 car lim

n→+∞
(n+ 1)e

en
= 1 avec la règle
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de d’Alembert, le rayon de convergence R de la série entière
∑
n>0

unx
n vérifie aussi R = 1.

b. Si on note Sk =
k∑

i=0

(−1)i

i!
pour tout k ∈ N, comme ∀n ∈ N, un+1 − un = Sn+1, on a par télescopage

un − u0 =
n−1∑
k=0

(uk+1 − uk) =
n−1∑
k=0

Sk+1 =
n∑

j=1

Sj en posant j = k + 1 donc, comme S0 = 1 = u0, on obtient

∀n ∈ N, un =
n∑

k=0

Sk. Comme Sn ∼
+∞

1

e
, le rayon de convergence de la série entière

∑
n>0

Snx
n vaut 1 comme

celui de la série géométrique
∑
n>0

xn. Par produit de Cauchy, pour x dans l’intervalle ouvert de convergence

]− 1; 1[, on a
( +∞∑

n=0

Snx
n
)
×
( +∞∑

n=0

xn
)
=

+∞∑
n=0

( n∑
k=0

1.Sk

)
xn =

+∞∑
n=0

unx
n = f(x) donc

g(x)
1− x

= f(x) en posant

g(x) =
+∞∑
n=0

Snx
n. Mais, de même, pour x ∈]−1; 1[, on a

( +∞∑
n=0

(−1)n

n!
xn
)
×
( +∞∑

n=0

xn
)
=

+∞∑
n=0

( n∑
k=0

1.
(−1)k

k!

)
xn

car le rayon de convergence de
∑
n>0

(−1)n

n!
xn vaut +∞ donc e−x

1− x
= g(x). Ainsi, ∀x ∈]−1; 1[, f(x) = e−x

(1− x)2
.

c. Soit ε > 0, par convergence de (n)n∈N vers ℓ, il existe n0 ∈ N tel que ∀n > n0, |un − ℓ| 6 ε

2
. Mais

∀n > n0,

∣∣∣n−1∑
k=0

uk − nℓ

∣∣∣ = ∣∣∣n−1∑
k=0

(uk − ℓ)
∣∣∣ = ∣∣∣n0−1∑

k=0

(uk − ℓ) +
n−1∑
k=n0

(uk − ℓ)
∣∣∣ 6 ∣∣∣n0−1∑

k=0

(uk − ℓ)
∣∣∣+ n−1∑

k=n0

|uk − ℓ|

par inégalité triangulaire donc
∣∣∣n−1∑
k=0

uk − nℓ

∣∣∣ 6 A +
n−1∑
k=n0

|uk − ℓ| 6 A +
(n− n0)ε

2
6 A + nε

2
en posant

A =
∣∣∣n0−1∑

k=0

(uk − ℓ)
∣∣∣ > 0. Or il existe un entier n1 > n0 tel que ∀n > n1, A 6 nε

2
car lim

n→+∞
nε

2
= +∞ d’où

∀n > n1,

∣∣∣n−1∑
k=0

uk − nℓ

∣∣∣ 6 nε

2
+ nε

2
= nε. Ainsi,

n−1∑
k=0

uk − nℓ =
+∞

o(n) =
+∞

o(nℓ) donc
n−1∑
k=0

uk ∼
+∞

nℓ.� �
10.111� �a. La fonction g : t 7→ th (t)

t2
est continue sur [1; +∞[ et g(t) ∼

+∞
1

t2
donc la fonction g est intégrable

sur [n; +∞[ par comparaison aux intégrales de Riemann d’où l’existence de an pour tout entier n > 1.

Comme la fonction th est croissante sur R+ et lim
t→+∞

th (t) = 1, ∀t ∈ [n; +∞[, th (n) 6 th (t) 6 1 donc, par

croissance de l’intégrale, on a
∫ +∞

n

th (n)dt

t2
=
[
th (n)

t

]+
n
∞ =

th (n)
n

6 an 6 1

n
=
∫ +∞

n

dt

t2
donc an ∼

+∞
1

n
.

Classiquement, par le critère de d’Alembert par exemple, le rayon de convergence de la série entière
∑
n>1

xn

n

est égal à 1 donc, par équivalence, celui de la série entière
∑
n>1

anx
n vaut aussi R = 1.

Comme th est positive et que la suite d’intervalle
(
[n; +∞[

)
n>1

est décroissante pour l’inclusion, (an)n>1

est décroissante et tend vers 0 en tant que reste d’une intégrale convergente. Par le critère spécial des séries

alternées, la série
∑
n>1

(−1)nan converge et la série à termes positifs
∑
n>1

an diverge par comparaison à la

série harmonique. Ainsi, le domaine de définition de f est [−1; 1[.

b. Si x ∈ [−1; 0], on vient de voir que la suite (an|x|n)n>1 est décroissante et tend vers 0 donc
∑
n>1

anx
n

converge par le critère spécial des séries alternées et ∀n > 1, |Rn(x)| =
∣∣∣ +∞∑
k=n+1

akx
k
∣∣∣ 6 |an+1x

n+1| 6 an+1.

Ainsi, Rn est bornée sur [−1; 0] et ||Rn||∞,[−1;0] 6 an+1 −→
n→+∞

0. On a donc convergence uniforme de
∑
n>1

gn

sur [−1; 0] si gn : x 7→ anx
n et donc continuité de f sur [−1; 0] car les gn sont continues sur [−1; 0].

c. Comme f(x) ∼
1−

− ln(1 − x) est équivalent à f(x) + ln(1 − x) =
+∞

o(ln(1 − x)), on va majorer la différence
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f(x)−(− ln(1−x)). Comme on sait que ∀x ∈]−1; 1[, ln(1−x) = −
+∞∑
n=1

xn

n
, il s’agit de majorer

+∞∑
n=1

(
an− 1

n

)
xn.

Or, ∀n ∈ N∗,
th (n)

n
6 an 6 1

n
donc

∣∣∣an − 1

n

∣∣∣ 6 1− th (n)
n

et |f(x) + ln(1 − x)| 6
+∞∑
n=1

1− th (n)
n

xn pour

tout x ∈ [0; 1]. Posons bn =
1− th (n)

n
pour n > 1, alors 1 − th (n) = 1 − en − e−n

en + e−n = 2e−n

en + e−n ∼
+∞

2e−2n

donc bn ∼
+∞

2e−2n

n
=
+∞

o(e−2n) et la série géométrique
∑
n>1

e−2n converge car 0 < e−2 < 1.

Ainsi, ∀x ∈ [0; 1], |f(x) + ln(1 − x)| 6 B =
+∞∑
n=1

bn ce qui montre que f(x) =
1−

− ln(1 − x) + O(1) donc

f(x) =
1−

− ln(1− x) + o(ln(1− x)) car lim
x→1−

ln(1− x) = −∞ et on conclut bien que f(x) ∼
1−

− ln(1− x).� �
10.112� �a. On a v2n+1 = 0 car il n’existe aucun (2n+ 1)-uplet (a1, · · · , a2n+1) ∈ {−1, 1}2n+1 tel que

2n+1∑
k=1

ak = 0

car tous les ak sont impairs donc
2n+1∑
k=1

ak a la parité de 2n+ 1 donc est impair alors que 0 est pair.

b. n = 1 : il n’existe qu’un couple (a1, a2) ∈ {−1, 1}2 tel que a1 + a2 = 0 et ∀p ∈ [[1; 2]],
p∑

k=1

ak > 0 et il

s’agit de (1,−1). Ainsi, u1 = 1.

n = 2 : il n’y a que deux quadruplets (a1, a2, a3, a4) ∈ {−1, 1}4 tels que a1 + a2 + a3 + a4 = 0 et tels que

∀p ∈ [[1; 4]],
p∑

k=1

ak > 0 et il s’agit de (1, 1,−1,−1), (1,−1, 1,−1). Ainsi, u2 = 2.

n = 3 : il n’y a que cinq sextuplets (a1, a2, a3, a4, a5, a6) ∈ {−1, 1}6 tel que a1 + a2 + a3 + a4 + a5 + a6 = 0

et tels que ∀p ∈ [[1; 6]],
p∑

k=1

ak > 0 et il s’agit de (1, 1, 1,−1,−1,−1), (1, 1,−1, 1,−1,−1), (1, 1,−1,−1, 1,−1),

(1,−1, 1, 1,−1,−1) et (1,−1, 1,−1, 1,−1). Ainsi, u3 = 5.

c. Notons Un+1 =
{
(a1, · · · , a2n+1) ∈ {−1, 1}2n+1

∣∣∣ 2n+1∑
k=1

ak = 0 et ∀p ∈ [[1; 2n+ 2]],
p∑

k=1

ak > 0

}
et, pour

m ∈ [[1;n+ 1]], on note Um
n+1 =

{
(a1, · · · , a2n+2) ∈ Un+1

∣∣∣ 2m = Min

({
j ∈ [[1;n+ 1]]

∣∣∣ 2j∑
k=1

ak = 0

})}
(la

parité de Min

({
j ∈ [[1;n + 1]]

∣∣∣ 2j∑
k=1

ak = 0

})
tient au fait que

j∑
k=1

ak a la parité de j). On a la partition

Un+1 =
n+1⊔
m=1

Um
n+1 de sorte que un+1 = card (Un+1) =

n+1∑
m=1

card (Um
n+1). Traitons trois cas :

• Si m = 1 et si (a1, · · · , a2n+2) ∈ U1
n+1, alors a1 = 1 et a2 = −1 donc U1

n+1 est en bijection avec Un

en envoyant (1,−1, a3, · · · , a2n+2) sur (a3, · · · , a2n+2). Ainsi, card (U1
n+1) = un = u0un car u0 = 1.

• Si m ∈ [[2;n]] et si (a1, · · · , a2n+2) ∈ Um
n+1, alors u1 = 1 et u2m = −1 donc l’application qui à

(a1, · · · , a2n+2) ∈ Um
n+1 associe le couple

(
(a2, · · · , a2m−1), (a2m+1, · · · , a2n+2)

)
définit une bijection

entre les ensembles Um
n+1 et Um−1 × Un−m+1. En effet, la bijection réciproque est l’application

qui à
(
(b1, · · · , b2m−2), (c1, · · · , c2(n−m+1))

)
associe (1, b1, · · · , b2m−2,−1, c1, · · · , c2(n−m+1)). Ainsi,

card (Um
n ) = card (Um−1 × Un−m+1) = card (Um−1)× card (Un−m+1) = um−1un−m+1.

• Si m = n+ 1 et si (a1, · · · , a2n+2) ∈ U
n+1
n+1, alors a1 = 1 et a2n+2 = −1 donc U

n+1
n+1 est en bijection

avec Un en envoyant (1, a2, · · · , a2n+1,−1) sur (a2, · · · , a2n+1). Ainsi, card (Un+1
n+1) = un = unu0.

Par conséquent, un+1 = u0un +
( n∑

m=2

um−1un−m+1

)
+ unu0 =

n∑
k=0

ukun−k en posant k = m− 1.
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d. Analyse : supposons que la série entière
∑
n>0

unx
n a un rayon R > 0. Soit alors f :] − R;R[→ R définie

par f(x) =
+∞∑
n=0

unx
n. Pour x ∈] − R;R[, on a f(x)2 =

( +∞∑
n=0

unx
n
)2

=
+∞∑
n=0

( n∑
k=0

ukun−k

)
xn par produit de

Cauchy donc, avec la relation de c., on a f(x)2 =
+∞∑
n=0

un+1x
n donc xf(x)2 =

+∞∑
n=0

un+1x
n+1 = f(x) − 1.

Ainsi, f(x) est racine du polynôme Px = xX2−X+ 1 dont le discriminant vaut ∆ = 1− 4x. Comme f(x) ∈ R,

on a forcément ∆ > 0 donc x 6 1

4
. Ceci garantit déjà que R 6 1

4
. On donc f(x) = 1−

√
1− 4x

2x
ou

f(x) = 1+
√
1− 4x

2x
si x ̸= 0 et f(0) = u0 = 1. Comme g : x 7→ 2xf(x) − 1 est développable en série entière

sur ] − R;R[, elle y est continue et on sait d’après ce qui précède que ∀x ∈] − R;R[, g(x) = ±
√
1− 4x. La

continuité de g et le fait que g ne s’annule pas sur ]−R;R[ montre que l’on a soit ∀x ∈]−R;R[, g(x) =
√
1− 4x

soit ∀x ∈]− R;R[, g(x) = −
√
1− 4x. Mais comme g vaut −1 en 0, elle est négative sur ]− R;R[ et on a donc

∀x ∈]− R;R[, g(x) = −
√
1− 4x donc f(x) = 1−

√
1− 4x

2x
si x ̸= 0.

Synthèse : d’après le cours ∀u ∈]− 1; 1[,
√
1+ u = 1+

+∞∑
n=1

(−1)n−1(2n)!un

(2n− 1)(n!)24n
(on le retrouve assez vite avec le

développement en série entière de (1+x)α pour α = 1

2
) donc ∀x ∈

]
− 1

4
; 1
4

[
,
√
1− 4x = 1−

+∞∑
n=1

(2n)!xn

(2n− 1)(n!)2

ce qui montre que ∀x ∈
]
− 1

4
; 1
4

[
\ {0}, 1−

√
1− 4x

2x
=

+∞∑
n=1

(2n)!xn−1

2(2n− 1)(n!)2
=

+∞∑
n=0

(2n+ 2)!xn

2(2n+ 1)
(
(n+ 1)!

)2 qu’on

va plutôt écrire 1−
√
1− 4x

2x
=

+∞∑
n=0

(2n)!xn

n!(n+ 1)!
. Posons vn =

(2n)!
n!(n+ 1)!

pour tout n ∈ N de sorte que l’on a

∀x ∈
]
− 1

4
; 1
4

[
\ {0}, g(x) = 1−

√
1− 4x

2x
=

+∞∑
n=0

vnx
n. On pose g(0) = v0 = 1. Comme 0g(0)2 − g(0) + 1 = 0

et que ∀x ∈
]
− 1

4
; 1
4

[
\ {0}, xg(x)2 − g(x)+ 1 =

1− 2
√
1− 4x+ (1− 4x)

4x
− 2− 2

√
1− 4x

4x
+ 4x

4x
= 0, on a bien

∀x ∈
]
− 1

4
; 1
4

[
, xg(x)2−g(x)+1 = 0. En effectuant un produit de Cauchy sur

]
− 1

4
; 1
4

[
, et en identifiant les

coefficients (les calculs ont déjà été faits dans la partie analyse), on trouve que ∀n ∈ N, vn+1 =
n∑

k=0

vkvn−k.

Comme v0 = u0 = 1 et que (un)n∈N et (vn)n∈N vérifient la même relation de récurrence, par récurrence forte,

∀n ∈ N, un = vn. Ainsi,
∑
n>0

unx
n est bien de rayon R = 1

4
et ∀n ∈ N, un = vn =

(2n)!
n!(n+ 1)!

= 1

n+ 1

(
2n

n

)
.

Par exemple, u0 =
(2.0)!

0!(0+ 1)!
= 1, u1 =

(2.1)!
1!(1+ 1)!

= 1, u2 =
(2.2)!

2!(2+ 1)!
= 2 et u3 =

(2.3)!
3!(3+ 1)!

= 5 qui

confirme les calculs de la question b.. Et on a u4 =
(2.4)!

4!(4+ 1)!
= 14 et u5 =

(2.5)!
5!(5+ 1)!

= 42.� �
10.113� �a. f est définie comme la somme de la série entière lacunaire

∑
n>0

anx
n où an = 1 si n est un carré et

an = 0 sinon. Comme (anx
n)n>0 est bornée si et seulement si (an2xn

2

)n>0 l’est, c’est-à-dire si et seulement

si |x| 6 1, la rayon de R de cette série entière vaut R = 1. Pour x = ±1, cette série est grossièrement

divergente donc le domaine de définition de f vaut I =]− 1; 1[.

b. En tant que somme d’une série entière de rayon 1, d’après le cours, f est de classe C∞ sur son intervalle

ouvert de convergence, donc a fortiori continue sur I.

c. Comme on étudie f au voisinage de 1, on peut se contenter de prendre x ∈]0; 1[, et de poser la fonction
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hx : t 7→ xt
2

= et
2 ln(x) qui est continue et intégrable sur R+ par comparaison aux intégrales de Riemann

car hx(t) = et
2 ln(x) =

+∞
o

(
1

t2

)
par croissances comparées (ln(x) < 0).

Comme la fonction hx est décroissante sur R+, on a ∀k > 1,

∫ k+1

k
hx(t)dt 6 xk

2

= hx(k) 6
∫ k

k−1
hx(t)dt.

On somme pour k allant de 0 à +∞ à gauche et de 1 à +∞ à droite (l’intégrale et la série convergent) ce

qui donne par Chasles l’encadrement
∫ +∞

0
xt

2

dt 6 f(x) 6
∫ +∞

0
xt

2

dt+ hx(0) =
∫ +∞

0
xt

2

dt+ 1.

En posant t = u√
− ln(x)

= φ(u), φ étant une bijection strictement croissante de classe C1 de R+ dans R+,

par changement de variable, on a
∫ +∞

0
xt

2

dt =
∫ +∞

0
et

2 ln(x)dt = 1√
− ln(x)

∫ +∞

0
e−u2

du = 1

2

√
−π

ln(x)

d’après l’intégrale de Gauss rappelée. Ainsi, on a l’équivalent f(x) ∼
1−

1

2

√
−π

ln(x)
car 1 =

1−
o

(√
1

− ln(x)

)
puisque lim

x→1−

1

2

√
−π

ln(x)
= +∞.� �

10.114� �a. Par construction, ∀n ∈ N, an > 0, ainsi,
∣∣∣an+1

an

∣∣∣ = an+1

an

= n+ 1

α+ n+ 1
−→

n→+∞
ℓ = 1 donc, par critère

de d’Alembert, le rayon R de la série entière
∑
n>0

anx
n vaut R = 1

ℓ
= 1.

b. On a vn−vn−1 =
( n∑

k=1

ln

(
1+α

k

))
−α ln(n)−

((n−1∑
k=1

ln

(
1+α

k

))
−α ln(n−1)

)
= ln

(
1+α

n

)
−α ln

(
1− 1

n

)
pour tout entier n > 2 donc vn − vn−1 =

+∞
α

n
+ O

(
1

n2

)
+ α

(
− 1

n
+ O

(
1

n2

))
=
+∞

O

(
1

n2

)
. Par comparaison

aux séries de Riemann,
∑
n>2

(vn − vn−1) converge absolument donc converge.

c. Par dualité suite-série, grâce à la question précédente, la suite (vn)n>1 converge vers un réel α. Or

∀n ∈ N∗, vn = ln

( n∏
k=1

k+ α

k

))
− ln(nα) = − ln(nαan) donc an = e−vn

nα . Mais lim
n→+∞

e−vn = λ = e−α > 0

par continuité de l’exponentielle donc an ∼
+∞

λ

nα .

d. En 1 : d’après c., comme an ∼
+∞

λ

nα et que les an sont positifs, la série
∑
n>0

an converge si et seulement

si la série
∑
n>0

1

nα converge. Par critère de Riemann,
∑
n>0

an converge si et seulement si α > 1.

En −1 : la série
∑
n>0

an est alternée et la suite (|an|)n>0 tend vers 0 car an ∼
+∞

λ

nα et α > 0. De plus, comme

|an+1|
|an|

=
an+1

an

= n+ 1

α+ n+ 1
< 1, la suite (|an|)n>0 est aussi décroissante. Ainsi, par le critère spécial des

séries alternées, la série
∑
n>0

(−1)nan converge pour toutes les valeur de α > 0.� �
10.115� �a. La série

∑
n>0

un est alternée et la suite (|un|)n∈N =
(

1

2n+ 1

)
n∈N

est décroissante et tend vers 0 donc,

par le critère spécial des séries alternées, la série
∑
n>0

un converge, ce qui justifie l’existence de S =
+∞∑
n=0

un.

b. La suite (|unx
n+1|)n∈N =

( |x|n
2n+ 1

)
n∈N

est bornée si et seulement si |x| 6 1 donc, par définition du rayon

de convergence d’une série entière, le rayon de convergence de
∑
n>0

unx
n vaut R = 1. Bien sûr, on aurait pu

utiliser le critère de d’Alembert. Ainsi, le domaine de définition D de I vérifie ]− 1; 1[⊂ D ⊂ [−1; 1].

I(1) est bien définie car S existe d’après la question a.. Par contre,
∑
n>0

1

2n+ 1
diverge car 1

2n+ 1
∼
+∞

1

2n
> 0
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et la série harmonique
∑
n>1

1

n
diverge. Ainsi, I(−1) n’existe pas et on a D =]− 1; 1].

c. Soit x ∈]0; 1[ : on pose y =
√
x ∈]0; 1[ donc I(x) =

+∞∑
n=0

uny
2n+2 = y

+∞∑
n=0

(−1)n

2n+ 1
y2n+1 et on reconnâıt une

série entière classique, à savoir f(x) = yArctan(y) =
√
xArctan(

√
x).

Soit x ∈]− 1; 0[ : on pose y =
√
−x ∈]0; 1[ donc I(x) =

+∞∑
n=0

un(−1)n+1y2n+2 = −y
+∞∑
n=0

1

2n+ 1
y2n+1 donc

I(x) = −y

( +∞∑
n=1

1

n
yn −

+∞∑
n=1

y2n

2n

)
= −y

2

(
− 2 ln(1 − y) + ln(1 − y2)

)
= y

2
ln

(
1− y2

(1− y)2

)
= y

2
ln

(
1+ y

1− y

)
et

on reconnâıt I(x) = yArgth (y) =
√
−x Argth (

√
−x).

Posons fn : x 7→ unx
n+1 définie sur [0; 1] pour tout n ∈ N.

(H1) Pour tout entier n ∈ N, fn est continue sur [0; 1].

(H2) Pour n ∈ N, en posant Rn : x 7→
+∞∑

k=n+1

fk(x) sur [0; 1] (qui existe d’après b.), comme (|fk(x)|)k>0

est décroissante et tend vers 0 pour tout x ∈ [0; 1], le critère spécial des séries alternées montre que

|Rn(x)| 6 |fn+1(x)| = xn+2

2n+ 3
6 1

2n+ 3
donc Rn est bornée sur [0; 1] et ||Rn||∞,[0;1] 6 1

2n+ 3
donc

lim
n→+∞

||Rn||∞,[0;1] = 0 par encadrement :
∑
n>0

fn converge uniformément (pas normalement) sur [0; 1].

Par théorème, I =
+∞∑
n=0

fn est continue sur [0; 1] donc I(1) = S = lim
x→1−

I(x) = lim
x→1−

√
xArctan(

√
x) = π

4
.

d. D’abord, I étant continue sur le segment [0; 1], l’intégrale
∫ 1

0
I(x)dx converge.

Méthode 1 : on pose u : x 7→ 2

3
x3/2 et v : x 7→ Arctan(

√
x) de sorte que u et v sont de classe C1 sur ]0; 1] et,

comme lim
x→0+

u(x)v(x) = 0 car u(x)v(x)∼
0

2x2

3
, on a

∫ 1

0
I(x)dx = [u(x)v(x)]10 −

∫ 1

0
u(x)v′(x)dx ce qui donne∫ 1

0
I(x)dx = 2

3
× π

4
− 1

3

∫ 1

0

xdx

1+ x
= π

6
− 1

3

∫ 1

0

(
1− 1

1+ x

)
dx = π

6
− 1

3

[
x− ln(1+x)

]1
0
= π

6
− 1− ln(2)

3
∼ 0, 42.

Méthode 2 : comme
∑
n>0

fn converge uniformément sur le segment [0; 1] d’après c., on peut intégrer terme

à terme et avoir
∫ 1

0
I(x)dx =

+∞∑
n=0

∫ 1

0
fn(x)dx =

+∞∑
n=0

[
(−1)nxn+2

(2n+ 1)(n+ 2)

]1
0
=

+∞∑
n=0

(−1)n

(2n+ 1)(n+ 2)
. Or on peut

décomposer 1

(2n+ 1)(n+ 2)
= 2

3(2n+ 1)
− 1

3(n+ 2)
et
∫ 1

0
I(x)dx = 2

3

+∞∑
n=0

(−1)n

2n+ 1
− 1

3

+∞∑
n=0

(−1)n

n+ 2
. Or il est

classique (et c’est la même méthode qu’au c.) que
+∞∑
n=1

(−1)n−1

n
= ln(2) donc

+∞∑
n=0

(−1)n

n+ 2
= 1− ln(2) et on

trouve, comme avec la méthode précédente,
∫ 1

0
I(x)dx = 2S

3
− 1− ln(2)

3
= π

6
− 1− ln(2)

3
.� �

10.116� �a. La fonction f : t 7→ sin(t)
t

est continue sur R∗ par opérations et elle se prolonge par continuité en

0 en posant f(0) = 1 car sin(t)∼
0
t. Ainsi, f est continue sur R donc en particulier sur R+. De plus, en

posant u : t → 1

t
et v : t 7→ − cos(t), les fonctions u et v sont de classe C1 sur [1; +∞[ et lim

t→+∞
u(t)v(t) = 0.

Ainsi, l’intégrale
∫ +∞

1

sin(t)
t

dt =
∫ +∞

1
u(t)v′(t)dt est de même nature que

∫ +∞

1
u′(t)v(t)dt, c’est-à-dire

que
∫ +∞

1

cos(t)

t2
dt. Or cette dernière intégrale converge absolument par comparaison aux intégrales de

Riemann, donc elle converge, car g : t 7→ cos(t)

t2
est continue sur [1; +∞[ et que g(t) =

+∞
O

(
1

t2

)
. Ainsi,∫ +∞

1

sin(t)
t

dt converge donc
∫ +∞

0

sin(t)
t

dt converge aussi.
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b. On vient de voir que la fonction f est continue sur R ce qui montre, par le théorème fondamental de

l’intégration, que F est bien définie sur R en tant que primitive de f qui s’annule en 0. De plus, on sait que

∀t ∈ R, sin(t) =
+∞∑
k=0

(−1)kt2k+1

(2k+ 1)!
. Ainsi, ∀t ∈ R∗, f(t) =

sin(t)
t

=
+∞∑
k=0

(−1)kt2k

(2k+ 1)!
et cette formule marche

aussi pour t = 0 car 1 =
(−1)0t2.0

(2.0+ 1)!
. Comme le rayon de convergence de

∑
k>0

(−1)kt2k

(2k+ 1)!
vaut R = +∞, on peut

intégrer terme à terme sur ˜[0; x] qui est inclus dans l’intervalle ouvert de convergence R =]−∞; +∞[ pour

avoir ∀x ∈ R, F(x) =
∫ x

0
f(t)dt =

∫ x

0

( +∞∑
k=0

(−1)kt2k

(2k+ 1)!

)
dt =

+∞∑
k=0

(−1)kx2k+1

(2k+ 1).(2k+ 1)!
.

c. Pour x ∈ R, la fonction hx : t 7→ exp(−xe−it) est continue sur le segment J =
[
0; π

2

]
donc l’intégrale

I(x) =
∫ π/2

0
exp(−xe−it)dt existe. On sait que ∀z ∈ C, ez =

+∞∑
n=0

zn

n!
donc, en prenant z = −xe−it, on

obtient ∀t ∈ J, exp(−xe−it) =
+∞∑
n=0

(−1)nxne−int

n!
. Pour n ∈ N, posons hn : t 7→ (−1)nxne−int

n!
.

Comme ∀t ∈ J, |hn(t)| =
|x|n
n!

, on a ||hn||∞,J =
|x|n
n!

et la série exponentielle
∑
n>0

|x|n
n!

converge donc la série

de fonctions
∑
n>0

hn converge normalement vers h sur le segment J. Comme toutes les hn et h sont continues

sur J, le théorème d’intégration terme à terme sur segment montre que I(x) =
+∞∑
n=0

∫ π/2

0

(−1)nxne−int

n!
dt.

Pour n ∈ N, posons l’intégrale Ln =
∫ π/2

0

(−1)nxne−int

n!
dt. On a le cas particulier L0 =

∫ π/2

0
1.dt = π

2

et, pour n ∈ N∗, il vient Ln =
(−1)nxn

n!

∫ π/2

0
e−intdt =

(−1)nxn

n!

[
e−int

− in

]∫ π/2

0
=

(−1)nxn

n!
× e−inπ/2 − 1

− in
.

Comme on sait que Re (I(x)) =
+∞∑
n=0

Re (Ln) et que Re
(
e−inπ/2 − 1

− in

)
= 0 si n > 2 est pair et que l’on a

Re
(
e−inπ/2 − 1

− in

)
= Re

(
e−i(2k+1)π/2 − 1

− i(2k+ 1)

)
=

(−1)k

2k+ 1
si n = 2k+1 > 1 est impair, il ne reste dans la formule

ci-dessus que Re (I(x)) = π

2
+

+∞∑
k=0

(−1)2k+1x2k+1

(2k+ 1)!
× (−1)k

2k+ 1
= π

2
−

+∞∑
k=0

(−1)kx2k+1

(2k+ 1).(2k+ 1)!
.

d. Par inégalité triangulaire sur les intégrales, |I(x)| =
∣∣∣∫ π/2

0
exp(−xe−it)dt

∣∣∣ 6 ∫ π/2

0
| exp(−xe−it)|dt. Or

exp(−xe−it) = e−x cos(t)eix sin(t) donc | exp(−xe−it)| = e−x cos(t).

Méthode 1 : la fonction cos est concave sur J car cos′′ = − cos 6 0 sur J donc ∀t ∈ J, cos(t) > 1− 2t

π
. Ainsi,

e−x cos(t) 6 e−xe2xt/π donc ∀x > 0,

∫ π/2

0
| exp(−xe−it)|dt 6 e−x

∫ π/2

0
e2xt/πdt. On en déduit donc que

|I(x)| 6 e−x
[
π

2x
e2xt/π

]π/2
0

=
πe−x(ex − 1)

2x
=

π(1− e−x)
2x

. Comme lim
x→+∞

π(1− e−x)
2x

= 0, par encadrement,

on obtient la limite lim
x→+∞

∫ π/2

0
exp(−xe−it)dt = 0.

Méthode 2 : soit g : R×
[
0; π

2

[
→ R définie par g(x, t) = exp(−xe−it) de sorte que I(x) =

∫ π/2

0
g(x, t)dt.

(H1) pour tout t ∈ J, on a lim
x→+∞

g(x, t) = 0 = a(t) car cos(t) > 0.

(H2) pour tout x ∈ R, les fonctions hx : t 7→ g(x, t) et a sont continues sur
[
0; π

2

[
.

(H3) pour (x, t) ∈ R×
[
0; π

2

[
, on a |g(x, t)| 6 1 = φ(t) et φ est continue et intégrable sur

[
0; π

2

[
.

D’après le théorème de convergence dominée à paramètre continu, on a lim
x→+∞

I(x) =
∫ π/2

0
a(t)dt = 0.
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D’après les questions précédentes, on a ∀x ∈ R, Re (I(x)) = π

2
− F(x). Comme lim

x→+∞
I(x) = 0, on a aussi

lim
x→+∞

Re (I(x)) = lim
x→+∞

(
π

2
− F(x)

)
= 0. Ceci assure l’existence d’une limite finie de F en +∞ et sa valeur

lim
x→+∞

F(x) = π

2
qu’on note

∫ +∞

0

sin(t)
t

dt = π

2
(intégrale de Dirichlet).� �

10.117� �Posons an =
(n+ 1)(n+ 2)

2n
> 0 pour tout n ∈ N, de sorte que

an+1

an

=
(n+ 2)(n+ 3)2n

(n+ 1)(n+ 2)2n+1 ∼
+∞

ℓ = 1

2

donc, d’après le cours et la règle de d’Alembert, R = 1

ℓ
= 2.

Posons, pour x ∈]−2; 2[, f(x) =
+∞∑
n=0

(n+ 1)(n+ 2)
2n

xn et g(x) =
+∞∑
n=0

xn

2n
= 1

1− x

2

= 2

2− x
(série géométrique).

On peut dériver terme à terme à l’intérieur de l’intervalle ouvert de convergence, c’est-à-dire ] − 2; 2[, pour

avoir ∀x ∈] − 2; 2[, g′(x) =
+∞∑
n=0

(n+ 1)xn

2n+1 = 2

(2− x)2
puis g′′(x) =

+∞∑
n=0

(n+ 1)(n+ 2)xn

2n+2 = 4

(2− x)3
.

En prenant x = 1 dans cette dernière relation, on a directement g′′(1) =
+∞∑
n=0

(n+ 1)(n+ 2)

2n+2 = 4 donc

+∞∑
n=0

(n+ 1)(n+ 2)
2n

= 4× 22 = 16.� �
10.118� �a. Analyse : supposons que la fonction paire f = 1

cos
est développable en série entière au voisinage de

0, il existe donc un réel r > 0 et une suite (an)n∈N ∈ RN tels que ∀x ∈]− r; r[, f(x) = 1

cos(x)
=

+∞∑
n=0

anx
2n

(par parité). Comme le rayon R de
∑
n>0

anx
n vérifie R > r > 0 par l’existence de f(x) pour x ∈]− r; r[, et par

produit de Cauchy car le rayon de la série
∑
n>0

(−1)nx2n

(2n)!
vaut +∞, on a ∀x ∈]− r; r[, cos(x)× 1

cos(x)
= 1

donc a0 = 1 et ∀n > 1,
n∑

k=0

an−k
(−1)k

(2k)!
= 0 par unicité des coefficients d’un développement en série entière,

ce qui donne an = −
n∑

k=1

an−k
(−1)k

(2k)!
=

n∑
k=1

an−k
(−1)k−1

(2k)!
.

Synthèse : il existe une unique suite réelle (an)n∈N telle que a0 = 1 et ∀n > 1, an =
n∑

k=1

an−k
(−1)k−1

(2k)!
.

Calculons les premiers termes de cette suite : on a a1 = a0

2
= 1

2
, a2 = a1

2
− a0

24
= 1

4
− 1

24
= 5

24
et

a3 = a2

2
− a1

24
+ a0

720
= 5

48
− 1

48
+ 1

720
= 61

720
. Il semble que l’on ait |an| 6 1.

• Initialisation : on vient de montrer que ∀n ∈ [[0; 3]], on a |an| 6 1.

• Hérédité : soit n > 4, supposons que ∀k ∈ [[0;n − 1]], |ak| 6 1. Alors, |an| =
∣∣∣ n∑
k=1

an−k
(−1)k−1

(2k)!

∣∣∣
donc |an| 6

n∑
k=1

|an−k|
(2k)!

6
n∑

k=1

1

(2k)!
6

+∞∑
k=1

1

(2k)!
= ch (1)− 1 ∼ 0, 54 6 1.

Par principe de récurrence, on peut conclure que ∀n ∈ N, |an| 6 1. On note R le rayon de convergence

de la série entière
∑
n>0

anx
2n, qui est donc supérieur, d’après le cours, à celui de

∑
n>0

x2n qui vaut 1. Ainsi,

R > 1 et on peut définir g :]− 1; 1[→ R par ∀x ∈]− 1; 1[, g(x) =
+∞∑
n=0

anx
2n. Par produit de Cauchy, comme

avant, ∀x ∈] − 1; 1[, g(x) cos(x) =
( +∞∑

n=0

anx
2n
)
×
( +∞∑

n=0

(−1)nx2n

(2n)!

)
=

+∞∑
n=0

( n∑
k=0

an−k
(−1)k

(2k)!

)
x2n = 1 donc

g(x) = 1

cos(x)
= f(x) et f = 1

cos
est donc développable en série entière, au moins sur ]− 1; 1[.
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b. Si on avait R > π

2
, avec le même calcul que précédemment, on aurait ∀x ∈]−R;R[, f(x)×cos(x) = 1. Mais

comme x = π

2
∈] − R;R[, on aurait f(x) cos(x) = 0 = 1. NON. Ou alors on pourrait dire que f est continue

sur ] − R;R[, notamment en x = π

2
, ce qui contredit l’expression f(x) = 1

cos(x)
. Toujours est-il que R 6 π

2
.

En fait, R = π

2
mais c’est une autre histoire.� �

10.119� �a. Pour n > 1, on partitionne les involutions σ de [[1;n+ 2]] en deux catégories :

- celles pour lesquelles σ(n + 2) = n + 2 sont au nombre de In+1 car il n’y a pas de choix à faire pour

σ(n+ 2) qu’on impose égal à n+ 2, ensuite σ induit alors sur [[1;n+ 1]] une involution de [[1;n+ 1]].

- celles telles que σ(n + 2) = k ̸= n + 2 sont au nombre de (n + 1)In car pour les choisir de manière

bijective, il y a n+ 1 choix pour l’entier k qui est l’image de n+ 2 par σ et, une fois ce choix effectué,

cela implique que σ(k) = σ(σ(n+2)) = n+2 car σ doit être une involution, et on a alors In choix pour

finir de déterminer σ qui doit induire sur [[1;n+ 1]] \ {k} une involution de cet ensemble à n éléments.

Cette partition implique la relation In+2 = In+1+(n+1)In pour n > 1 et, comme I2 = 2 = 1+1.1 = I1+1.I0

avec la convention choisie pour I0, on a bien : ∀n > 0, In+2 = In+1 + (n+ 1)In.

b. Comme les involutions sont des permutations et qu’il y a n! permutations de [[1;n]], on en déduit que

In 6 n! d’où 0 6 In
n!

6 1. Comme la série entière
∑
n>0

xn a pour rayon 1, par comparaison, on a R > 1.

c. Les calculs qui suivent sont valides car le rayon de convergence R est supérieur à 1, on sait qu’on peut

dériver terme à terme à l’intérieur de l’intervalle ouvert de convergence qui contient ]−1; 1[. Pour x ∈]−1 ; 1[,

(1+x)φ(x) = φ(x)+xφ(x) =
+∞∑
n=0

In
n!

xn+
+∞∑
n=1

In−1

(n− 1)!
xn = 1+

+∞∑
n=1

In + nIn−1

n!
xn = 1+

+∞∑
n=1

In+1

n!
xn = φ′(x).

d. On en déduit en intégrant cette équation différentielle linéaire du premier ordre mise sous forme normalisée

sans second membre, comme une primitive de x 7→ 1 + x est x 7→ x + x2

2
sur l’intervalle ] − 1; 1[, que l’on a

∀x ∈]− 1 ; 1[, φ(x) = e
x+x2

2 puisque φ(0) = I0 = 1 par convention.

e. Alors ∀x ∈] − 1; 1[, φ(x) =

(
+∞∑
i=0

1

i!
xi

)
×

(
+∞∑
j=0

1

j!2j
x2j

)
. Ces deux séries ont pour rayon +∞ donc on

peut effectuer le produit de Cauchy et obtenir S(x) =
+∞∑
n=0

( ∑
i+2j=n

n!
i!j!2j

)
xn. En identifiant (par unicité)

les coefficients entre les deux expressions de S(x) sous forme de série entière, ∀n ∈ N,
In
n!

=
∑

i+2j=n

1

i!j!2j

donc In =
∑

i+2j=n

n!
i!j!2j

. Puisque 2j 6 n et i = n− 2j, on a la formule In =
⌊n/2⌋∑
j=0

n!
(n− 2j)!j!2j

.

Pour expliquer cette relation de manière combinatoire, on peut constater qu’une involution σ de [[1;n]] est

une application telle que pour tout entier x entre 1 et n, on a deux choix :

• soit σ(x) = x et x est appelé un point fixe de σ.

• soit σ(x) = y ̸= x et alors, comme σ2 = id [[1;n]], on a forcément σ(y) = x.

Ainsi, si σ ∈ An, le nombre f de points fixes de σ a la même parité que n de sorte qu’il existe 2j entiers de
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[[1;n]] qui ne sont pas fixes par σ avec f = n− 2j avec 0 6 j 6
⌊
n

2

⌋
. On peut donc écrire An =

⌊n/2⌋∪
j=0

An,j où

An,j = {σ ∈ An | σ admet f = n− 2j points fixes}.

Pour construire une involution σ de An,j :

• on choisit les n− 2j éléments de [[1;n]] qui sont fixes par σ :

(
n

n− 2j

)
=

(
n

2j

)
choix.

• on choisit l’image y du plus petit élément x qui reste : (2j− 1) choix (et alors σ(x) = y et σ(y) = x).

• on choisit l’image t du plus petit élément z qui reste : (2j− 3) choix etc...

Ainsi card (An,j) =

(
n

2j

)
×(2j−1)×(2j−3)×· · ·×3×1 =

n!

(n− 2j)!(2j)!
× (2j)!

2jj!
en multipliant en haut et en bas

par les termes pairs qui manquent. On retrouve bien In = card (An) =
⌊n/2⌋∑
j=0

card (An,j) =
⌊n/2⌋∑
j=0

n!
(n− 2j)!2jj!

.� �
10.120� �a. On a deux types de déplacements possibles, vers le haut ou vers la droite. On doit en faire 2n pour

aller de (0, 0) à (n, n) et il en faut n de chaque type. Cela fait donc cn =

(
2n

n

)
chemins possibles.

b. n = 1 : il n’existe qu’un chemin (0, 0) → (1, 0) → (1, 1) avec cette propriété donc d1 = 1.

n = 2 : (0, 0) → (1, 0) → (2, 0) → (2, 1) → (2, 2) et (0, 0) → (1, 0) → (1, 1) → (2, 1) → (2, 2) donc d2 = 2.

n = 3 : on dessine tous les chemins et on trouve (0, 0) → (1, 0) → (2, 0) → (3, 0) → (3, 1) → (3, 2) → (3, 3),

mais on obtient aussi celui-ci (0, 0) → (1, 0) → (2, 0) → (2, 1) → (3, 1) → (3, 2) → (3, 3) et encore celui-là

(0, 0) → (1, 0) → (2, 0) → (2, 1) → (2, 2) → (3, 2) → (3, 3), enfin on a les deux derniers en commençant par

(0, 0) → (1, 0) → (1, 1) → (2, 1) → (3, 1) → (3, 2) → (3, 3) et en terminant par celui qui rebondit sur la

diagonale (0, 0) → (1, 0) → (1, 1) → (2, 1) → (2, 2) → (3, 2) → (3, 3) donc d3 = 5.

c. Pour n ∈ N∗, notons Un+1 =
{
c = (0, 0) → · · · → (n + 1, n + 1) les chemins qui restent au dessus

de la diagonale
}

et, on note Um
n+1 =

{
c = (0, 0) → · · · → (m,m) → · · · → (n + 1, n + 1) les chemins

qui restent au dessus de la diagonale et tel que m est le plus petit entier k ∈ [[1;n + 1]] tel que (k, k)

appartient au chemin c

}
pour tout entier m ∈ [[1;n + 1]]. Comme cet entier m existe par définition d’un

chemin puisque (n + 1, n + 1) appartient à ces chemins, on a la partition Un+1 =
n+1⊔
m=1

Um
n+1 de sorte que

un+1 = card (Un+1) =
n+1∑
m=1

card (Um
n+1). Traitons trois cas :

• Si m = 1, on crée une bijection entre U1
n+1 et Un, donc card (U1

n+1) = dn = d0dn car d0 = 1, en

envoyant le chemin c = (0, 0) → (0, 1) → (1, 1) → · · · → (xk, yk) → · · · → (n+ 1, n+ 1)︸ ︷︷ ︸
σ′

∈ U1
n+1 sur le

chemin c′ = (0, 0) → · · · → (xk − 1, yk − 1) → · · · → (n, n) ∈ Un.

• Si m ∈ [[2;n]], on a une bijection entre les ensembles Um
n+1 et Um−1×Un−m+1 en envoyant le chemin

c = (0, 0) → (0, 1) → · · · → (m− 1,m)︸ ︷︷ ︸
σ′

→ (m,m) → (m,m+ 1) → · · · → (n, n+ 1) → (n+ 1, n+ 1)︸ ︷︷ ︸
σ′′

de

Um
n+1 sur le couple (c′, c′′) ∈ Um−1 ×Un−m+1 où c′ = (0, 0) → · · · → (xi, yi − 1) → · · · (m− 1,m− 1)

appartient à Um−1 et c′′ = (0, 0) → · · · → (xk−m, yk−m) → · · · → (n−m+1, n−m+1) ∈ Un−m+1.
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Ainsi, card (Um
n ) = card (Um−1 × Un−m+1) = card (Um−1)× card (Un−m+1) = dm−1dn−m+1.

• Si m = n + 1, on crée une bijection entre U
n+1
n+1 et Un, ce qui donne card (Un+1

n+1) = dn = dnd0, en

envoyant le chemin c = (0, 0) → (0, 1) → · · · → (xk, yk) → · · · → (n, n+ 1)︸ ︷︷ ︸
σ′

→ (n + 1, n + 1) ∈ U
n+1
n+1

sur le chemin c′ = (0, 0) → · · · → (xk, yk − 1) → · · · → (n, n) ∈ Un.

Par conséquent, dn+1 = d0dn +
( n∑

m=2

dm−1dn−m+1

)
+ dnd0 =

n∑
k=0

dkdn−k en posant k = m − 1. Cette

relation est encore vraie pour n = 0 car d1 = d2
0 = 1.

d. Les chemins qui vont de (0, 0) à (n, n) et qui restent toujours au-dessus de la diagonale x = y font partie

des chemins qu’on a dénombré à la question a.. Ainsi, par inclusion, on a 0 6 dn 6 cn =

(
2n

n

)
. Le rayon

de convergence de
∑
n>0

cnx
n vaut 1

4
par d’Alembert car

cn+1

cn
=

(
2n+ 2

n+ 1

)
(
2n

n

) =
(2n+ 2)!n!2

(2n)!(n+ 1)!2
=

2(2n+ 1)
n+ 1

tend vers ℓ = 4. D’après le cours et l’encadrement précédent, on a donc R > 1

4
.

e. Pour x ∈]− R;R[, on a f(x)2 =
( +∞∑

n=0

dnx
n
)2

=
+∞∑
n=0

( n∑
k=0

dkdn−k

)
xn par produit de Cauchy donc, avec

la relation de c., on a f(x)2 =
+∞∑
n=0

dn+1x
n donc xf(x)2 =

+∞∑
n=0

dn+1x
n+1 = f(x)− d0 = f(x)− 1.

f. Ainsi, f(x) est racine du polynôme Px = xX2−X+1 dont le discriminant vaut ∆ = 1−4x. Comme f(x) ∈ R,

on a forcément ∆ > 0 donc x 6 1

4
. Ceci garantit que R 6 1

4
donc R = 1

4
avec d.. On donc f(x) = 1−

√
1− 4x

2x

ou f(x) = 1+
√
1− 4x

2x
si x ̸= 0 et f(0) = u0 = 1. Comme g : x 7→ 2xf(x)− 1 est développable en série entière

sur ] − R;R[, elle y est continue et on sait d’après ce qui précède que ∀x ∈] − R;R[, g(x) = ±
√
1− 4x. La

continuité de g et le fait que g ne s’annule pas sur ]−R;R[ montre que l’on a soit ∀x ∈]−R;R[, g(x) =
√
1− 4x

soit ∀x ∈]− R;R[, g(x) = −
√
1− 4x. Mais comme g vaut −1 en 0, elle est négative sur ]− R;R[ et on a donc

∀x ∈]− R;R[, g(x) = −
√
1− 4x donc f(x) = 1−

√
1− 4x

2x
si x ̸= 0.

g. D’après le cours ∀u ∈] − 1; 1[,
√
1+ u = 1 +

+∞∑
n=1

(−1)n−1(2n)!un

(2n− 1)(n!)24n
(on le retrouve assez vite avec le

développement en série entière de (1+x)α pour α = 1

2
) donc ∀x ∈

]
− 1

4
; 1
4

[
,
√
1− 4x = 1−

+∞∑
n=1

(2n)!xn

(2n− 1)(n!)2

ce qui montre que ∀x ∈
]
− 1

4
; 1
4

[
\ {0}, 1−

√
1− 4x

2x
=

+∞∑
n=1

(2n)!xn−1

2(2n− 1)(n!)2
=

+∞∑
n=0

(2n+ 2)!xn

2(2n+ 1)
(
(n+ 1)!

)2 qu’on

va plutôt écrire 1−
√
1− 4x

2x
=

+∞∑
n=0

(2n)!xn

n!(n+ 1)!
et, en identifiant par unicité d’un développement en série

entière, on a ∀n ∈ N, dn = 1

n+ 1

(
2n

n

)
.

Par exemple, d0 =
(2.0)!

0!(0+ 1)!
= 1, d1 =

(2.1)!
1!(1+ 1)!

= 1, d2 =
(2.2)!

2!(2+ 1)!
= 2 et d3 =

(2.3)!
3!(3+ 1)!

= 5 qui

confirme les calculs de la question b.. Et on a d4 =
(2.4)!

4!(4+ 1)!
= 14 et d5 =

(2.5)!
5!(5+ 1)!

= 42.

h. Cette probabilité, avec les données de l’énoncé, vaut pn = dn

cn
= 1

n+ 1
.� �

10.121� �a. La suite (an)n∈N suit une récurrence linéaire d’ordre 2 à coefficients constants et l’équation car-

69



actéristique associée est r2 − 3r + 2 = (r − 1)(r − 2). Ainsi, d’après le cours, il existe deux constantes A et

B telles que ∀n ∈ N, an = A + B.2n. Comme a0 = A + B = 1 et a1 = 3 = A + 2B, on trouve sans peine

A = −1 et B = 2 donc ∀n ∈ N, an = 2n+1 − 1.

b. Pour n ∈ N∗, |an| = an = 2n+1 − 1 6 2n+1 6 22n = 4n car n + 1 6 2n. Comme on a aussi

a0 = 1 6 40 = 1, on a bien ∀n ∈ N, |an| 6 4n.

c. D’après le cours, le rayon de convergence de
∑
n>0

anx
n est supérieur ou égal à celui de

∑
n>0

4nxn qui vaut

1

4
car (4nxn)n>0 est bornée si et seulement si |x| 6 1

4
. Par conséquent R > 1

4
. Comme an ∼

+∞
2n+1 et que le

rayon de
∑
n>0

2n+1xn vaut 1

2
pour les mêmes raisons, on peut conclure tout de suite que R = 1

2
.

d. Pour x ∈]−R;R[ ⊃
]
− 1

4
; 1
4

[
,
+∞∑
n=2

(an− 3an−1+ 2an−2)x
n = 0 par hypothèse donc, comme les trois séries

convergent,
+∞∑
n=2

anx
n − 3

+∞∑
n=2

an−1x
n + 2

+∞∑
n=2

an−2x
n = 0. Posons S(x) =

+∞∑
n=0

anx
n pour des x convenables,

ce qui donne (S(x)−a1x−a0)−3(xS(x)−a0x)+2x2S(x) = 0 ou encore S(x)−3x−1−3xS(x)+3x+2x2S(x) = 0

et on a la relation S(x) =
+∞∑
n=0

anx
n = 1

2x2 − 3x+ 1
comme attendu.

e. Méthode 1 : comme P = 2X2 − 3X + 1 = (2X − 1)(X − 1), la fraction rationnelle F = 1

P
se décompose en

éléments simples sous la forme F = a

X− 1
+ b

2X− 1
=

a(2X− 1) + b(X− 1)
(2X− 1)(X− 1)

avec (a, b) ∈ R2 qui vérifie donc

le système linéaire (2a+b = 0 = a+b+1) ⇐⇒ (a = 1, b = −2). Ainsi, ∀x ∈
]
− 1

4
; 1
4

[
, S(x) = 2

1− 2x
− 1

1− x

donc S(x) = 2
+∞∑
n=0

2nxn −
+∞∑
n=0

xn et on a bien S(x) =
+∞∑
n=0

(2n+1 − 1)xn. Par unicité des coefficients du

développement en série entière d’une fonction, on a donc ∀n ∈ N, an = 2n+1 − 1 donc an ∼
+∞

2n+1 et on

conclut, comme on l’a déjà fait, que R = 1

2
.

Méthode 2 : comme P = 2X2−3X+1 = (2X−1)(X−1), on a ∀x ∈]−R;R[∩
]
− 1

2
; 1
2

[
, S(x) = 1

1− 2x
× 1

1− x
donc,

par produit de Cauchy, S(x) =
( +∞∑

n=0

(2x)n
)
×
( +∞∑

n=0

xn
)
=

+∞∑
n=0

( n∑
k=0

2k
)
xn. Par unicité des coefficients du

développement en série entière d’une fonction, on a ∀n ∈ N, an =
n∑

k=0

2k = 2n+1 − 1

2− 1
= 2n+1 − 1 et on

conclut à nouveau que R = 1

2
.� �

10.122� �La fonction f est définie sur R∗ où elle est de classe C∞ par opérations.

Comme on sait que cos(x)=
0
1 − x2

2
+ o(x2), on a f(x)=

0

1

2
+ o(1) donc lim

x→0
f(x) = 1

2
et on peut prolonger f

par continuité en 0 en posant f(0) = 1

2
. la fonction f ainsi prolongée est maintenant continue sur R.

Pour x ̸= 0, on a
f(x)− f(0)

x− 0
=

1− cos(x)− x2

2

x3
mais on sait aussi que cos(x)=

0
1− x2

2
+ o(x3) ce qui donne

f(x)− f(0)
x− 0

=
0
o(1) et on a donc lim

x→0

f(x)− f(0)
x− 0

= 0 donc f est dérivable sur R et on a f′(0) = 0 ce qui logique

car f est paire donc f′ (quand elle existe) est impaire.

Pour x ̸= 0, on a f′(x) =
x2 sin(x)− 2x(1− cos(x))

x4
=

x sin(x)− 2(1− cos(x))

x3
mais on a le développement
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limité x sin(x)−2(1−cos(x))=
0
x(x+o(x2))−2

(
1−
(
1− x2

2
+o(x3)

))
∼
0
x2−x2+o(x3)=

0
o(x) donc f′(x)=

0
o(1)

ce qui montre que lim
x→0

f′(x) = 0 = f′(0) donc que f′ est continue en 0. Ainsi, f est de classe C1 sur R.

Mais on sait que cos est développable en série entière sur R avec ∀x ∈ R, cos(x) =
+∞∑
n=0

(−1)nx2n

(2n)!
. Ainsi, pour

x ∈ R∗, on a f(x) =
1− cos(x)

x2
= 1

x2

+∞∑
n=1

(−1)n+1x2n

(2n)!
=

+∞∑
n=1

(−1)n+1x2n−2

(2n)!
=

+∞∑
k=0

(−1)kx2k

(2k+ 2)!
. En prenant

x = 0 dans cette somme, on obtient
+∞∑
k=0

(−1)k02k

(2k+ 2)!
=

(−1)0

(2.0+ 2)!
= 1

2
donc on retrouve la valeur de f(0) trouvée

ci-dessus. Par conséquent, f est en fait développable en série entière sur R avec ∀x ∈ R, f(x) =
+∞∑
k=0

(−1)kx2k

(2k+ 2)!

et f est donc de classe C∞ sur sont intervalle ouvert de convergence R.� �
10.123� �a. Si R = 0, il n’y a rien à démontrer car ]− R;R[ est vide.

Si R > 0, par produit de Cauchy, comme
∑
n>0

anx
n est de rayon R donc que

∑
n>0

anx
n converge absolument

pour x ∈] − R;R[ par le lemme d’Abel, S(x)2 =
+∞∑
n=0

( n∑
k=0

akan−k

)
xn = a2

0 + 2a0a1x +
+∞∑
n=2

anx
n par

hypothèse, ce qui donne S(x)2 = S(x)− x ou encore S(x) = x+ S(x)2.

b. À nouveau, si R = 0, il n’y a pas d’expression de S(x) à trouver car ]− R;R[ est vide.

Sinon, pour x ∈]− R;R[, S(x)2 − S(x) + x = 0 donc S(x) est une racine réelle du polynôme Px = X2 − X+ x.

Comme le discriminant ∆x du polynôme Px vaut ∆x = 1 − 4x, et que S(x) est un réel par construction, on

a forcément 1 − 4x > 0 donc R 6 1

4
et ∀x ∈] − R;R[, S(x) = 1−

√
1− 4x

2
ou S(x) = 1+

√
1− 4x

2
. Comme

f : x 7→ 2S(x) − 1 est développable en série entière sur ] − R;R[, elle y est continue et on sait d’après ce qui

précède que ∀x ∈] − R;R[, f(x) = ±
√
1− 4x. La continuité de f et le fait que f ne s’annule pas sur ] − R;R[

montre que l’on a soit ∀x ∈]− R;R[, f(x) =
√
1− 4x soit ∀x ∈]− R;R[, f(x) = −

√
1− 4x. Mais comme f vaut

−1 en 0, elle est négative sur ]− R;R[ et on a donc ∀x ∈]− R;R[, f(x) = −
√
1− 4x donc S(x) = 1−

√
1− 4x

2
.

D’après le cours, on sait que x 7→
√
1− 4x est développable en série entière sur

]
− 1

4
; 1
4

[
car u 7→

√
1− u l’est

sur ]−1; 1[. Ainsi, il existe une suite (bn)n∈N ∈ RN telle que ∀x ∈
]
− 1

4
; 1
4

[
, T(x) = 1−

√
1− 4x

2
=

+∞∑
n=0

bnx
n.

On a bien sûr ∀x ∈
]
− 1

4
; 1
4

[
, T(x)2−T(x)+x =

1− 2
√
1− 4x+ (1− 4x)

4
− 1−

√
1− 4x

2
+x = 0. En effectuant

un produit de Cauchy sur
]
− 1

4
; 1
4

[
, et en identifiant les coefficients (les calculs ont déjà été faits ci-dessus),

on trouve que v0 = T(0) = 0, v1 = T ′(0) = 1 et ∀n > 2, bn+1 =
n∑

k=0

bkbn−k. Ainsi, les deux suites (an)n∈N

et (bn)n∈N vérifient les mêmes conditions initiales et la même relation de récurrence donc, par récurrence

forte, on en déduit que ∀n ∈ N, an = bn. Ainsi,
∑
n>0

bnx
n est bien de rayon R = 1

4
comme

∑
n>0

bnx
n.

c. D’après le cours ∀u ∈] − 1; 1[,
√
1+ u = 1 +

+∞∑
n=1

(−1)n−1(2n)!un

(2n− 1)(n!)24n
(on le retrouve assez vite avec le

développement en série entière de (1+x)α pour α = 1

2
) donc ∀x ∈

]
− 1

4
; 1
4

[
,
√
1− 4x = 1−

+∞∑
n=1

(2n)!xn

(2n− 1)(n!)2

ce qui montre que ∀x ∈
]
− 1

4
; 1
4

[
, S(x) = 1−

√
1− 4x

2
=

+∞∑
n=1

(2n)!xn

2(2n− 1)(n!)2
. Comme R = 1

4
> 0 et que
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∀x ∈]−R;R[, S(x) =
+∞∑
n=0

anx
n =

+∞∑
n=1

(2n)!xn

2(2n− 1)(n!)2
, par unicité des coefficients d’une fonction développable

en série entière, on a a0 (on le savait déjà) et ∀n > 1, an =
(2n)!

2(2n− 1)(n!)2
=

(2n)(2n− 2)!

2n2((n− 1)!)2
= 1

n

(
2n− 2

n− 1

)
.

Il vient a0 = 0, a1 = 1, a2 = 1, a3 = 2, a4 = 5, a5 = 14, a6 = 42 : ce sont les nombres de Catalan.

� �
10.8 Officiel de la Taupe� �� �

10.124� �Par d’Alembert (ou comparaison) par exemple, le rayon de convergence de cette série entière est égal

à R = 1. De plus, par Riemann, il y a convergence en x = 1 et x = −1 donc D = [−1; 1].

On sait de plus, même si ce n’est pas demandé, que S(1) = π2

6
et S(−1) = −π2

12
. On a aussi S(0) = 0.

S est dérivable sur l’intervalle ouvert de convergence et ∀x ∈ [0; 1[, S′(x) =
+∞∑
k=1

xk−1

k
> 0 donc S est strictement

croissante sur [0; 1[. De plus, la convergence de cette série de fonctions est normale sur [0; 1] car en notant

uk : x 7→ xk

k2
, on a ||uk||∞,[0;1] =

1

k2
et
∑
k>1

1

k2
converge.

Comme les uk sont continues, par théorème, la fonction S est continue sur [0; 1] donc lim
x→1−

S(x) = S(1) = A.

Tout ce qui précède justifie que S réalise une bijection strictement croissante entre [0; 1] et [0;A].

Posons Sn : x 7→
n∑

k=1

xk

k2
, cette fonction Sn est strictement croissante (par dérivée) sur R+, elle y est continue

et elle admet les limites 0 et +∞ aux bornes de R+. Par le théorème de la bijection, l’équation (En) possède
une unique solution sur R+ : on la note xn = S−1

n (a) > 0.
• La suite (xn)n∈N∗ est strictement décroissante car Sn(xn) = a = Sn+1(xn+1) > Sn(xn+1) et on se sert de
la stricte croissance de Sn pour avoir xn > xn+1 si n > 1 : (xn)n∈N∗ converge car elle est minorée par 0.
• Supposons que a > A, alors comme Sn(xn) = a > A = S(1) > Sn(1), on a xn > 1. Si on avait
lim

n→+∞
xn = ℓ > 1, on aurait lim

n→+∞
Sn(ℓ) = +∞ car ℓ > R ; mais on aurait aussi Sn(xn) > Sn(ℓ) ce

qui montrerait que lim
n→+∞

Sn(xn) = +∞ et ceci est contraire à la construction de xn : d’où lim
n→+∞

xn = 1.

• Supposons que a 6 A, alors pour n > 1, on a Sn(xn) = a = S(S−1(a)) > Sn(S
−1(a)) donc xn > S−1(a).

Supposons que ℓ = lim
n→+∞

xn > S−1(a), alors comme précédemment, on ne peut avoir que ℓ 6 1 et alors

lim
n→+∞

Sn(ℓ) = S(ℓ) > S(S−1(a)) = a. Mais comme Sn(xn) > Sn(ℓ), on aurait aussi lim
n→+∞

Sn(xn) > a ce qui

contredit le fait que Sn(xn) = a. Par conséquent, on ne peut avoir que lim
n→+∞

xn = S−1(a).� �
10.125� �Cette série converge car un > 0 et un =

+∞
o

(
1

n2

)
. La série entière

∑
n>1

xn

n(2n− 1)
a R = 1 pour rayon

de convergence par D’Alembert par exemple, on note f sa fonction somme de la variable réelle définie

sur [−1; 1]. En notant un : x 7→ xn

n(2n− 1)
, ||un||∞,[−1,1] = 1

n(2n− 1)
∼
+∞

1

2n2 et
∑
n>1

1

2n2 converge par

Riemann donc la convergence est uniforme sur [−1; 1] et f est continue sur [−1; 1].

On décompose 1

n(2n− 1)
en éléments simples : ∀n > 1, 1

n(2n− 1)
= 2

2n− 1
− 1

n
donc, en faisant attention

au fait que les séries entières suivantes divergent en 1 : ∀x ∈]− 1; 1[, f(x) =
+∞∑
n=1

2xn

2n− 1
−

+∞∑
n=1

xn

n
.

On connâıt ces développements : ∀x ∈]0; 1[, f(x) = 2
√
x

+∞∑
n=1

(
√
x)2n−1

2n− 1
−

+∞∑
n=1

xn

n
= 2

√
xArgth

(√
x
)
+ln(1−x)

puis ∀x ∈]− 1; 0[, f(x) = 2
√
−x

+∞∑
n=1

(−1)n(
√
−x)2n−1

2n− 1
−

+∞∑
n=1

xn

n
= −2

√
−xArctan

(√
−x
)
+ ln(1− x).

Dans l’énoncé, il est demandé
+∞∑
n=1

1

2nn(2n− 1)
= f

(
1

2

)
=

√
2Argth

(
1√
2

)
− ln 2 =

√
2 ln

(√
2+ 1

)
− ln 2.
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Mais par continuité de f en 1 et −1, on a aussi
+∞∑
n=1

1

n(2n− 1)
= lim

x→1−

(
2
√
xArgth

(√
x
)
+ ln(1− x)

)
et aussi

+∞∑
n=1

(−1)n

n(2n− 1)
= lim

x→−1+

(
− 2

√
−xArctan

(√
−x
)
+ ln(1− x)

)
= ln(2)− π

2
.

2
√
xArgth

(√
x
)
+ ln(1− x) =

√
1− t ln

(
1+

√
1− t

1−
√
1− t

)
+ ln(t) = 2

√
1− t ln

(
1+

√
1− t

)
+ ln(t)

(
1−

√
1− t

)
en posant x = 1 − t. Or lim

t→0+

(
1 −

√
1− t

)
ln(t) = 0 par DL et croissance comparée et f(1) est trouvé (on

peut le faire avec l’équivalent classique de la série harmonique grâce aux sommes partielles de cette série).

Au final :
+∞∑
n=1

(−1)n

n(2n− 1)
= ln(2)− π

2
;

+∞∑
n=1

1

n(2n− 1)
= ln(4) et

+∞∑
n=1

1

2nn(2n− 1)
=

√
2 ln

(√
2+ 1

)
− ln 2.� �

10.126� �Comme P =
p∑

k=0

akX
k est de degré p > 1 (ap ̸= 0), en écrivant P(x) = apx

p
(
1 +

ap−1

apx
+ · · · + a0

apx
p

)
pour x ̸= 0, on a lim

x→+∞
|P(x)| = +∞ donc il existe bien n0 ∈ N tel que ∀n > n0, |P(n)| > 1.

Dès que n > n0, on a donc |P(n)an| > |an| et on sait qu’alors on peut conclure que R′ 6 R.

La famille proposée est une famille de p + 1 polynômes de degrés échelonnés donc elle est libre et comme

dim(Rp[X]) = p+1, c’est une base de Rp[X]. On décompose alors le polynôme P dans cette base P =
p∑

k=0

αkPk

en notant P0 = 1 et Pk =
k∏

i=1

(X−i+1) si k > 1 ; alors P(n)anx
n = α0anx

n+
p∑

k=1

αkann(n−1) · · · (n−k+1)xn.

On sait que la série dérivée (et par récurrence les dérivées successives) a le même rayon de convergence
que la série initiale. Ainsi, si |x| < R, toutes les séries

∑
n>0

ann(n − 1) · · · (n − k + 1)xn convergent et on a

+∞∑
n=0

ann(n − 1) · · · (n − k + 1)xn = xk
+∞∑
n=k

ann(n − 1) · · · (n − k + 1)xn−k = xkf(k)(x). Par somme de séries

convergentes, la série
∑
n>0

P(n)anx
n converge ce qui permet d’affirmer que R′ > R et enfin que R = R′.

De plus, on a
+∞∑
n=0

P(n)anx
n = α0f(x) +

p∑
k=1

αk

( +∞∑
n=0

ann(n− 1) · · · (n− k+ 1)xn
)
=

p∑
k=0

αk

(
xkf(k)(x)

)
.

Soit ici g(x) =
+∞∑
n=0

n2 + 1

n!
xn qui s’obtient en prenant P = X2 + 1 et f(x) =

+∞∑
n=0

xn

n!
: le rayon est clairement

R = +∞. On décompose X2 + 1 = X(X − 1) + X + 1 et f(x) = ex donc, avec les résultats précédents :

g(x) = f(x)+xf′(x)+x2f′′(x) = (x2+x+1)ex et on obtient alors
+∞∑
n=0

n22n + 2n

n!
xn = g(2x) = (4x2+2x+1)e2x.� �

10.127� �Si x ̸= 0, en notant un = n2 − 1

n+ 2
xn, on a un ∼

+∞
nxn donc (un)n>0 bornée ssi |x| < 1 donc le rayon de

convergence de cette série est R = 1. Comme n2 − 1 = (n+ 1)(n+ 2)− 3(n+ 2) + 3, pour x ∈]− 1; 0[∪]0; 1[,

S(x) =
+∞∑
n=0

(n+ 1)xn − 3
+∞∑
n=0

xn + 3

x2

+∞∑
n=0

xn+2

n+ 2
donc S(x) =

(
1

1− x

)′
− 3

1− x
− 3

x2

(
ln(1− x) + x

)
.

Ainsi : S(x) = 1

(1− x)2
− 3

1− x
− 3

x2

(
ln(1− x) + x

)
.� �

10.128� �a. Si f est solution de (E), alors f est dérivable donc continue sur R. Alors d’après l’équation f′ l’est aussi

donc f est de classe C1. Par une récurrence facile, on en déduit que f est de classe C∞ sur R.
Soit a > 0, on pose le réel Mp = Max

x∈[−a;a]
|f(p)(x)| (qui existe car f(p) est continue sur un segment). Comme

on a ∀x ∈ R, ∀p ∈ N, f(p+1)(x) = f(p)(x) + λpf(p)(λx), on a Mp+1 6 2Mp donc Mp 6 2pM0 par récurrence

immédiate. Par l’inégalité de Taylor-Lagrange, ∀x ∈ [−a;a],
∣∣∣f(x)− n∑

k=0

f(k)(0)
k!

xk
∣∣∣ 6 2n+1M0|x|n+1

(n+ 1)!
qui

tend vers 0 quand n tend vers +∞ par croissance comparée. Ainsi, f est développable en série entière sur R.

b. Par récurrence avec la formule de la question précédente, on a ∀k ∈ N, f(k)(0) = f(0)
k−1∏
i=0

(1+λi) = akf(0).
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Comme f solution de (E) est DSE sur R, on en déduit que ∀x ∈ R, f(x) = f(0)
+∞∑
n=0

anx
n

n!
donc les solutions

de (E) forment une droite (équation linéaire) engendrée par la fonction φ : x 7→
+∞∑
n=0

n−1∏
k=0

(1+ λk)x
n

n!
.

c. Soit vn =
n∏

k=0

(1 + λk) = an+1 > 0 car λ ∈] − 1; 1[. Donc ln(vn) =
n∑

k=0

ln(1 + λk) avec ln(1 + λk) ∼
+∞

λk

or
∑
n>0

λn converge absolument donc
∑
n>0

ln(1+ λn) converge aussi absolument donc converge (vers ℓ) ce qui

assure la convergence de la suite de l’énoncé vers un réel K(λ) = eℓ > 0.

d. À faire.� �
10.129� �a. La fonction g : y 7→ ln(|1− y|)

y
est continue sur ] − ∞; 0[∪]0; 1[∪]1; +∞[ avec un prolongement par

continuité en 0 avec g(0) = −1. Ainsi f est déjà définie sur ]−∞; 1[. De plus
∫ 1

0

ln(|1− y|)
y

dy converge car

φ(y)=
1
o

(
1√

1− y

)
. De même

∫ x

1

ln(|1− y|)
y

dy converge si x > 1. Par conséquent, f est définie sur R.

b. Soit x ∈] − 1; 1[, alors f(x) =
∫ x

0

ln(1− y)
y

dy = −
∫ x

0

+∞∑
n=1

yn−1

n
dy et en posant gn(y) = yn−1

n
, on

a ||gn||∞,[0;x] 6 |x|n−1 pour n > 1 avec
∑
n>1

|x|n qui converge donc la série de fonctions
∑
n>1

gn converge

normalement sur le segment [0; x] et on a donc f(x) = −
+∞∑
n=1

∫ x

0
gn(y)dy = −

+∞∑
n=1

xn

n2 et f est DSE.

On reprendre l’étude sur l’intervalle [0; 1[ mais on n’a plus convergence normale, par contre les fonctions gn

sont intégrables sur [0; 1[ avec g continue sur [0; 1[ et
∫ 1

0
|gn(y)|dy = 1

n2 donc la série numérique
∑
n>1

∫ 1

0
|gn|

converge. Ainsi, d’après le TITT, on a f(1) = −
+∞∑
n=1

∫ 1

0
gn = −π2

6
.� �

10.130� �a. En intégrant le développement en série entière de x 7→ 1√
1− x2

= (1 − x2)−1/2 = Arcsin′(x),

on a vu dans le cours que ∀x ∈] − 1; 1[, Arcsin(x) =
+∞∑
n=0

(2n)!

4n(n!)2(2n+ 1)
x2n+1 =

+∞∑
n=0

bnx
2n+1 si bn =

(2n)!

4n(n!)2(2n+ 1)
.

b. Par produit de Cauchy de séries numériques absolument convergentes, f : t 7→ (Arcsin(t))2 est

développable en série entière sur ]−1; 1[ mais les coefficients ne sont pas faciles à calculer avec cette méthode.

c. Par contre, f′(t) = 2
Arcsin(t)√

1− t2
donc f′′(t) = 2

1− t2
+ 2

tArcsin(t)√
1− t2(1− t2)

donc (1 − t2)f′′(t) = 2 + tf′(t)

pour t ∈] − 1; 1[. Comme f est paire et f(0) = 0, il existe une suite réelle (an)n>0 telle que a0 = 0

et ∀t ∈] − 1; 1[, f(t) =
+∞∑
n=0

ant
2n. Alors tf′(t) =

+∞∑
n=0

2nant
2n, f′′(t) =

+∞∑
n=0

(2n + 2)(2n + 1)an+1t
2n et

t2f′′(t) =
+∞∑
n=0

2n(2n− 1)ant
2n. En reportant dans l’équation différentielle et en regroupant les termes, on a

donc
+∞∑
n=0

(
(2n+ 2)(2n+ 1)an+1 − 2n(2n− 1)an − 2nan

)
t2n =

+∞∑
n=0

(
(2n+ 2)(2n+ 1)an+1 − 4n2an

)
t2n = 2

et par unicité des coefficients (rayon 1 > 0), on a a1 = 1 et ∀n ∈ N∗, an+1 = 4n2

(2n+ 2)(2n+ 1)
an.

Pour n ∈ N∗, an =
4(n− 1)2

(2n)(2n− 1)
an−1 =

4(n− 1)2

(2n)(2n− 1)
× 4(n− 2)2

(2n− 2)(2n− 3)
an−2 = ... et on continue jusqu’à

a2 = 4× 12

4× 3
a1 pour avoir an =

4n−1(n− 1)2 × · · · × 12

(2n)× (2n− 1)× · · · × 4× 3
a1 =

22n−1((n− 1)!)2

(2n)!
. On peut bien sûr
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prouver cette relation par récurrence une fois qu’on l’a conjecturée.

Ainsi, ∀t ∈]− 1; 1[, f(t) =
+∞∑
n=1

22n−1(n− 1)!2

(2n)!
t2n. Comme dit plus haut, on peut aussi calculer, par produit

de Cauchy, f(t)2 = f(t) × f(t) =
+∞∑
n=0

(n−1∑
k=0

(2k)!

4k(k!)2(2k+ 1)
× (2(n− k− 1))!

4n−k−1((n− k− 1)!)2(2n− 2k− 1)

)
x2n car

le terme en x2n provient du produit des termes en bkx
2k+1 et bn−k−1x

2n−2k−1 (pour k ∈ [[0;n− 1]]) de la

série entière de la question a.. En simplifiant et en identifiant par unicité du développement en série entière,

on obtient la relation bizarre : ∀n ∈ N,
22n−1(n− 1)!2

(2n)!
= 1

4n−1

n−1∑
k=0

(
2k

k

)(
2n− 2k− 2

n− k− 1

)
(2k+ 1)(2n− 2k− 1)

.� �
10.131� �a. fn : x 7→

n∑
k=1

xk

k
est clairement strictement croissante sur R+, fn(0) = 0 et lim

x→+∞
fn(x) = +∞. D’après

le théorème de la bijection, il existe un unique xn ∈ R∗
+ tel que fn(xn) = 1 car 1 ∈ [0; +∞[.

b. ∀t > 0, fn+1(t) > fn(t) donc 1 = fn+1(xn+1) > fn(xn+1) donc fn(xn+1) 6 fn(xn) = 1 =⇒ xn+1 6 xn

car fn est strictement croissante. Ainsi (xn)>1 est décroissante minorée par 0 donc elle converge vers ℓ > 0.

∀n > 1, fn(xn) =
n∑

k=1

xkn
k

= 1 6 − ln(1− xn) =
+∞∑
k=1

xkn
k

donc xn > 1− 1

e
. En passant à la limite, ℓ > 1− 1

e
.

Si on avait ℓ > 1 − 1

e
, alors on aurait − ln(1 − ℓ) > 1 donc il existe un entier n tel que la somme partielle

n∑
k=1

ℓk

k
> 1. Mais par stricte décroissance de la suite, xn > ℓ donc, comme fn est strictement croissante :

fn(xn) =
n∑

k=1

xkn
k

>
n∑

k=1

ℓk

k
= fn(ℓ) > 1 ce qui est impossible. Par conséquent : lim

n→+∞
xn = 1− 1

e
.� �

10.132� �f est de classe C∞ sur R∗ et par le développement limité cos(x)=
0
1− x2

2
+ o(x2), f est continue en 0.

Mais on a mieux, cos est DSE sur R et on a ∀x ∈ R, cos(x) =
+∞∑
n=0

(−1)n x2n

(2n)!
donc si x ̸= 0, on a

f(x) =

1−
+∞∑
n=0

x2n

(n)!

x2
=

+∞∑
n=1

(−1)n−1 x
2n−2

(2n)!
=

+∞∑
n=0

(−1)n x2n

(2n+ 2)!
. Cette relation étant aussi valable en 0 car

f(0) = 1

2
=

(−1)0

(2.0+ 2)!
, on a donc f développable en série entière sur R donc de classe C∞ sur R.

∀n ∈ N, an =
f(n)(0)

n!
donc ∀n ∈ N, f(2n+1)(0) = 0 et f(2n)(0) = (−1)n

(2n)!
(2n+ 2)!

=
(−1)n

(2n+ 1)(2n+ 2)
.� �

10.133� �a. On sait que ∀x ∈]− 1; 1[, ln(1− x) =
+∞∑
n=1

(−1)n−1xn

n
avec rayon 1 et convergence sur [−1; 1[.

b. Les coefficients de cette série entière sont a2n = − 1

4n
si n > 1 et a2n+1 = 1

2n+ 1
− 1

4n+ 2
= 1

4n+ 2
si

n > 0. Par croissance comparée ou d’Alembert, le rayon de cette série est donc R = 1.

Pour n ∈ N∗ et x ∈]−1; 1[, on a S2n−2 =
2n−2∑
k=0

(
x2k+1

2k+ 1
− xk+1

2k+ 2

)
=

2n−2∑
k=0

(
x2k+1

2k+ 1
+ x2k+2

2k+ 2
− x2k+2

2k+ 2
− xk+1

2k+ 2

)
et on sépare pour avoir S2n−2 =

2n∑
j=1

xj

j
− 1

2

n∑
m=1

(x2)m

m
− 1

2

n∑
p=1

xp

p
. Il suffit ensuite de faire tendre n vers

+∞ pour avoir
+∞∑
n=0

(
x2n+1

2n+ 1
− xn+1

2n+ 2

)
= − ln(1− x) + 1

2
ln(1− x2)− 1

2
ln(1− x) = 1

2
ln(1+ x).� �

10.134� �a. Soit R > 0 et f une fonction DSE sur ]−R;R[ : ∀x ∈]−R;R[, f(x) =
+∞∑
n=0

anx
n. On sait qu’on peut dériver
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terme à terme sur ] − R;R[ et avoir f′(x) =
+∞∑
n=1

nanx
n−1 =

+∞∑
n=0

(n + 1)an+1x
n donc xf′(x) =

+∞∑
n=0

nanx
n.

De même, f′′(x) =
+∞∑
n=1

n(n + 1)an+1x
n−1 donc xf′′(x) =

+∞∑
n=0

n(n + 1)an+1x
n. Si f est solution de (E), on

remplace dans l’équation et on regroupe les termes :
+∞∑
n=0

(
n(n+ 1)an+1 + (n+ 1)an+1 +nan − pan

)
xn = 0

et par unicité des coefficients dans un DSE, on obtient : ∀n ∈ N, (n+ 1)2an+1 = (p− n)an (R).

Réciproquement, soit la suite (an)n∈N définie par a0 = 1 et ∀n ∈ N, (n+ 1)2an+1 = (p− n)an, alors soit

p est un entier et la suite est nulle à partir d’un certain rang, soit p /∈ N et alors lim
n→+∞

an+1

an

= 0 donc

le rayon de la série entière
∑
n>0

anx
n vaut R = +∞ dans les deux cas (par le critère de d’Alembert. En

reportant dans l’équation, f donnée par f(x) =
+∞∑
n=0

anx
n est solution non nulle de (E).

b. Si p ∈ N, et si f est la solution DSE de (E) avec a0 = 1 (celle de la question a.), on a ap+1 = 0 d’après la

relation de récurrence (R). La même relation montrer alors que ∀n > p, an = 0 donc ∀x ∈ R, f(x) =
p∑

k=0

akx
k

et f est une fonction polynomiale de degré p (car ap ̸= 0) de l’équation (E).� �
10.135� �Comme

(
(−1)nxn

)
n∈N est bornée si et seulement si |x| 6 1, le rayon de cette série est R = 1. On sait que

∀x ∈]− 1; 1[,
+∞∑
n=0

(−1)nxn = 1

1+ x
donc lim

x→1−

+∞∑
n=0

(−1)nxn = 1

2
.

Si
∑
n>0

bn converge, on a convergence de
∑
n>0

bnx
n pour x = 1 donc le rayon de R de cette série vérifie R > 1.

Supposons R = 1 et posons f(x) =
∑
n>0

bnx
n pour x ∈]−1; 1]. Posons Rn =

+∞∑
k=n+1

bk, on sait que lim
n→+∞

Rn = 0

(reste d’une série convergente). En posant R−1 = f(1), on a ∀n ∈ N, bn = Rn−1 − Rn.

On effectue une transformation d’Abel (c’est hors programme mais je ne vois pas comment faire sans) :

∀x ∈ [0; 1], f(x)− f(1) =
+∞∑
n=0

bn(x
n − 1) = lim

n→+∞

n∑
k=0

bk(x
k − 1).

Or
n∑

k=0

bk(x
k − 1) =

n∑
k=0

(Rk−1 − Rk)(x
k − 1) =

n∑
k=0

Rk−1(x
k − 1)−

n∑
k=0

Rk(x
k − 1). On change d’indice dans

la première somme et f(x) − f(1) =
n−1∑
k=−1

Rk(x
k+1 − 1) −

n∑
k=0

Rk(x
k − 1) = Rn(1 − xn) −

n−1∑
k=0

Rk(x
k − xk+1).

Il vient donc en passant à la limite quand n tend vers +∞ : f(x)− f(1) = −
+∞∑
n=0

Rn(x
n − xn+1).

Comme lim
n→+∞

Rn = 0, pour ε > 0, il existe n0 ∈ N tel que ∀n > n0, |Rn| 6 ε

2
. Or x 7→

n0∑
n=0

Rn(x
n−xn+1) est

continue en 1 et vaut 0 en 1, ∃α > 0, ∀x ∈ [1−α; 1],
∣∣∣ n0∑
n=0

Rn(x
n−xn+1)

∣∣∣ 6 ε

2
. Ainsi, ∀n > n0, ∀x ∈ [1−α; 1] :

|f(x)− f(1)| =
∣∣∣ +∞∑
n=0

Rn(x
n − xn+1)

∣∣∣ 6 ∣∣∣ n0∑
n=0

Rn(x
n − xn+1)

∣∣∣+ ∣∣∣ +∞∑
n=n0+1

Rn(x
n − xn+1)

∣∣∣ 6 ε

2
+ ε

2

car ∀x ∈ [0; 1], 0 6 xn − xn+1 6 1 donc
∣∣∣ +∞∑
n=n0+1

Rn(x
n − xn+1)

∣∣∣ 6 ε

2

+∞∑
n=n0+1

(xn − xn+1) = ε

2
xn0+1 6 ε

2
.

Par conséquent ∀ε > 0, ∃α > 0, ∀x ∈ [1− α; 1], |f(x)− f(1)| 6 ε et f est bien continue en 1.� �
10.136� �Comme

(
xn

3n+ 2

)
n∈N

est bornée si et seulement si |x| 6 1 par croissances comparées, le rayon de∑
n>0

xn

3n+ 2
vaut R = 1. On pose f(x) =

+∞∑
n=0

xn

3n+ 2
pour x ∈ [−1; 1[. En effet, la série converge si x ∈]− 1; 1[

76



d’après le cours et
∑
n>0

(−1)n

3n+ 2
converge aussi par le critère spécial des séries alternées car

(
1

3n+ 2

)
n>0

est décroissante et tend vers 0. Par contre, la série
∑
n>0

1

3n+ 2
diverge car 1

3n+ 2
∼
+∞

1

3n
et que la série

harmonique diverge.

Posons g(x) = x2f(x3), alors g(x) =
+∞∑
n=0

x3n+2

3n+ 2
. Le rayon de cette série entière est aussi 1, on sait donc que

g est dérivable sur ] − 1; 1[ et que g′(x) =
+∞∑
n=0

x3n+1 = x

1− x3
. Ainsi, puisque g(0) = 0, par le théorème

fondamental de l’intégration, ∀x ∈]− 1; 1[, g(x) =
∫ x

0
g′(t)dt =

∫ x

0

tdt

1− t3
.

Or, comme (1− X3) = (1− X)(1+ X+ X2), on peut décomposer X

1− X3 = a

(1− X)
+ bX+ c

1+ X+ X2 avec a, b, c

des réels. En réduisant au même dénominateur, en identifiant et en résolvant le système, on trouve sans

peine X

1− X3 = 1

3(1− X)
+ X− 1

3(1+ X+ X2)
. Ainsi, pour x ∈]−1; 1[, en faisant apparâıtre des dérivées usuelles,

g(x) =
∫ x

0

(
1

3(1− t)
+ t− 1

3(1+ t+ t2)

)
dt = 1

3

∫ x

0

dt

1− t
+ 1

6

∫ x

0

(2t+ 1)dt

1+ t+ t2
− 1

2

∫ x

0

dt

1+ t+ t2
. En mettant

sous forme canonique, 1

1+ t+ t2
= 2√

3

(2/
√
3)

1+
(2t+1

√
3

)2 , on a l’expression de g(x) à l’aide des fonctions usuelles

g(x) =
[
− ln(1− t)

3
+

ln(1+ t+ t2)
6

−
Arctan

(
2t+ 1√

3

)
√
3

]x
0
= 1

6
ln

(
1+ x+ x2

(1− x)2

)
−
√
3

3
Arctan

(
2x+ 1√

3

)
+

√
3π

18

car Arctan

(
1√
3

)
= π

6
. On peut maintenant revenir à l’expression de f(x).

Si x = 0, f(x) = 1

2
. Si x ̸= 0, soit 3

√
x l’antécédent de x par la bijection y 7→ y3 de ]− 1; 1[ dans ]− 1; 1[, alors

f(x) = 1

( 3
√
x)2

g( 3
√
x) = 1

6( 3
√
x)2

ln

(
1+ 3

√
x+ ( 3

√
x)2

(1− 3
√
x)2

)
−

√
3

3( 3
√
x)2

Arctan

(
2 3
√
x+ 1√
3

)
+

√
3π

18( 3
√
x)2

.� �
10.137� �Soit r ∈]0; 1], alors (nanr

n)n∈N est bornée puisque (nan)n>0 tend vers 0. Le rayon de convergence R de∑
n>0

anx
n vérifie donc R > 1. Soit ε > 0, il existe un rang n0 tel que ∀n > n0, |nan| 6 ε

2
. Par conséquent, si

n > n0 et x ∈]0; 1[, il vient
∣∣f(x)∣∣ = ∣∣∣n0−1∑

n=0

anx
n +

+∞∑
n=n0

anx
n
∣∣∣ 6 n0−1∑

n=0

|an|xn + ε

2

+∞∑
n=n0

xn

n
. On en déduit que∣∣f(x)∣∣ 6 n0−1∑

n=0

|an|xn − ε

2

n0−1∑
n=1

xn

n
+ ε

2

+∞∑
n=1

xn

n
De plus, comme φ : x 7→

n0−1∑
n=0

|an|xn − ε

2

n0−1∑
n=1

xn

n
est continue

en 1, elle est bornée et on a φ(x)=
1
o(ln(1−x)). Il existe donc n1 > n0 tel que ∀n > n1, |φ(x)| 6 ε

2
| ln(1−x)|.

En combinant ces deux renseignements, ∀n > n1,
∣∣f(x)∣∣ 6 ε| ln(1− x)| et on a bien f(x)=

1
o(ln(1− x)).

Soit la suite (an)n∈N définie par a2n = 0 et a2n+1 =
(−1)n

2n+ 1
. Alors (nan) ne tend pas vers 0 alors que

f(x) = Arctan(x) (rayon de convergence 1) est bornée donc on a bien f(x)=
1
o(ln(1− x)).

Si on impose que tous les an sont positifs, il suffit de prendre an = 1

n
si n est une puissance de 2 et

an = 0 sinon, alors la série entière est
∑
n>0

x2
n

2n
dont le rayon vaut 1 par croissance comparée. En notant

f(x) =
+∞∑
n=0

x2
n

2n
, on a convergence normale sur [−1; 1] donc f est continue sur [−1; 1] donc bornée au voisinage

de 1 ce qui garantit que f(x) = o
(
ln(1− x)

)
.

Conclusion : si, au voisinage de 1−, f(x) = o
(
ln(1− x)

)
, on ne peut pas conclure que (nan) tend vers 0.
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� �
10.138� �• Avec cette hypothèse

∑
|an|Rn converge, la série entière

∑
anx

n de rayon R converge normalement sur

[−R;R] car en posant un(x) = anx
n, on a ||un||∞,[−R;R] = |an|Rn. Comme toutes les un sont continues sur

[−R;R], la somme f de cette série est continue sur [−R;R] donc a fortiori elle est continue en R.

• La fonction f est prolongeable par continuité (faire un DL) en 0 en posant f(0) = −2, elle est continue et

strictement négative sur ]− 1; 1[. On a f(t)∼
1
ln(1− t) or ln est intégrable sur ]0; 1] donc t 7→ ln(1− t) l’est

sur [0; 1[. De même f(t) ∼
−1

ln(1+ t) or ln est intégrable sur ]0; 1] donc t 7→ ln(1+ t) l’est sur ]− 1; 0]. Ainsi

f est intégrable sur ] − 1; 1[. Ensuite, on constate que f(t) = −2
Argth (t)

t
si t ̸= 0 et f(0) = −2 donc f est

développable en série entière en ∀t ∈]− 1; 1[, f(t) = −2
+∞∑
n=0

t2n

2n+ 1
.

Soit F la primitive de f qui s’annule en 0, on a ∀t ∈]− 1; 1[, F(t) = −2
+∞∑
n=0

t2n+1

(2n+ 1)2
. L’intégrale à calculer

vaut lim
t→1−

F(t)− lim
t→−1+

F(t) = 2 lim
t→1−

F(t) = −4
+∞∑
n=0

1

(2n+ 1)2
(par imparité de F et convergence normale sur

[−1; 1] de la série associée). Alors
∫ 1

−1
f(t)dt = −π2

2
.� �

10.139� �Par croissance comparée, la suite
(
(−1)ntn√

1+ n2

)
n>0

est bornée si et seulement si t ∈ [−1; 1] donc le rayon

de convergence de la série entière
∑
n>0

un vaut R = 1. Par théorème, on a donc convergence normale sur tout

segment inclus dans ]− 1; 1[ donc en particulier sur tout segment de [0; 1[. La somme f est donc de classe C∞

puisque la somme d’une série entière. (vn)n>0 est clairement alternée et la suite |vn| est décroissante donc∑
n>0

vn converge par le CSSA. De plus, |vn| =
∫ 1

0

(−1)ntn√
1+ n2

= 1√
1+ n2

∫ 1

0
tndt = 1

(n+ 1)
√

1+ n2
∼
+∞

1

n2

donc la série
∑
n>0

vn converge même absolument. Exercice trop facile, ce ne doit pas être le bon énoncé.� �
10.140� �On sait que

∑
n>0

bnx
n converge absolument pour x ∈] − R;R[. Mais il n’y pas convergence normale ni

uniforme de
∑
n>0

un en général sur ] − R;R[ si un : x 7→ bnx
n (exemple de la série géométrique de rayon

R = 1). Par contre, il y a convergence normale de
∑
n>0

un sur tout segment inclus dans ]− R;R[.

Soit n > 1 et Pn l’ensemble de toutes les partitions de [[1;n]] de sorte que pn = card (Pn).

Si n = 1, P1 = {{{1}}} donc p1 = 1.

Si n = 2, P2 = {{{1, 2}}, {{1}, {2}}} donc p2 = 2.

Si n = 3, P3 = {{{1, 2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{2, 3}, {1}}, {{1}, {2}, {3}}} donc p3 = 5.

Pour n > 1, Pn+1 =
n∪

j=0

Pn+1,j avec Pn+1,j = {{U1, . . . , Up} ∈ Pn+1 | card (Ui) = j + 1 si n + 1 ∈ Ui}.

En effet, l’élément n + 1 appartenant à [[1;n + 1]], il appartient à une seule partie Ui (avec i ∈ [[1; p]]) de

la partition {U1, . . . , Up} de [[1;n + 1]] et le cardinal de Ui est au moins égal à 1 et au maximum égal à

n + 1 donc card (Ui) = j + 1 avec j ∈ [[0;n]]. Cette réunion est disjointe donc {Pn+1,0, · · · ,Pn+1,n} est une

partition de Pn+1 (mise en ab̂ıme) donc pn+1 =
n∑

j=0

card (Pn+1,j).

Pour j ∈ [[0;n− 1]] et pour construire un élément de Pn+1,j, protocole de choix :

• on choisit les j éléments qui vont être avec n+ 1 dans la partie Ui de la partition :

(
n

j

)
choix.
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• il reste n + 1 − (j + 1) = n− j entiers dans [[1;n + 1]] \ Up qu’il faut partitionner : on peut le faire

de pn−j façons par construction (seul le nombre de termes à partitionner compte).

Par conséquent, card (Pn+1,j) =

(
n

j

)
pn−j. C’est aussi vrai pour j = n par convention car p0 = 1 et

Pn+1,n = {{[[1;n+ 1]]}} donc card (Pn+1,n) = 1 =

(
n

n

)
p0. Alors, ∀j ∈ [[0;n]], card (Pn+1,j) =

(
n

j

)
pn−j.

Ainsi, pour tout n > 1, il vient pn+1 =
n∑

j=0

card (Pn+1,j) =
n∑

j=0

(
n

j

)
pn−j =

n∑
k=0

(
n

k

)
pk en posant k = n− j.

On a même p1 = 1 =

(
0

0

)
p0 par convention d’où : ∀n ∈ N, pn+1 =

n∑
k=0

(
n

k

)
pk.

On a p0 = p1 = 1, p2 = 2, p3 = 5, p4 = 15 =
3∑

k=0

(
3

k

)
pk = p0 + 3p1 + 3p2 + p3. On constate que

0 6 pn 6 n! pour n ∈ [[0; 4]]. Soit n > 2 tel que ∀k ∈ [[0;n]], 0 6 pk 6 k!, alors pn+1 =
n∑

k=0

(
n

k

)
pk donc

0 6 pn+1 6
n∑

k=0

(
n

k

)
k! = n!

n∑
k=0

1

(n− k)!
6 n!

+∞∑
k=0

1

k!
= e n! 6 (n+ 1)! car e ∼ 2, 7 6 n+ 1.

Par principe de récurrence forte, on en déduit que ∀n > 0, 0 6 pn 6 n!, c’est-à-dire que 0 6 pn
n!

6 1. Comme

le rayon de convergence de la série entière
∑
n>0

xn est égal à 1, par comparaison, on trouve R > 1.

∀x ∈]1; 1[, f′(x) =
+∞∑
n=1

pn
(n− 1)!

xn−1 =
+∞∑
n=0

pn+1

n!
xn après changement d’indice. Ainsi, avec la relation

de récurrence trouvée ci-dessus, ceci se transforme en f′(x) =
+∞∑
n=0

( n∑
k=0

pk
k!

× 1

(n− k)!

)
xn. Par produit

de Cauchy, puisque le rayon de
∑
n>0

pk
k!

xk est au moins égal à 1 et que celui de
∑
k>0

xk

k!
vaut +∞, on a

∀x ∈]− 1; 1[, f′(x) = exf(x). On intègre classiquement, ∃λ ∈ R, ∀x ∈]− 1; 1[, f(x) = λee
x

. Or f(0) = p0 = 1

donc λ = 1

e
. Par conséquent ∀x ∈]−1; 1[, f(x) = ee

x−1. Puisque la fonction f est développable en série entière

(au moins sur ]− 1; 1[ mais certainement sur R), on sait que ∀x ∈]1; 1[, f(x) =
+∞∑
n=0

f(n)(0)
n!

xn =
+∞∑
n=0

pn
n!

xn ce

qui donne, en identifiant les coefficients de cette série entière : ∀n ∈ N, pn = f(n)(0).� �
10.141� �L’ensemble des n! permutations de [[1;n]] se partitionne selon le nombre de points fixes. Notons Dn,k le

nombre de permutations de [[1;n]] avec exactement k points fixes. Alors n! =
n∑

j=0

Dn,j. Or pour avoir une

permutation de [[1;n]] avec j points fixes, il faut d’abord choisir ces j points fixes :

(
n

j

)
possibilités ; puis

construire pour les n− j entiers restants une permutation sans nouveau point fixe : Dn−j possibilités.

Par “indépendance” de ces choix, on a donc Dn,j =

(
n

j

)
Dn−j donc n! =

n∑
j=0

(
n

j

)
Dn−j ce qui donne bien

n∑
k=0

(
n

k

)
Dk = n! en effectuant le changement d’indice k = n− j.

Comme Dn 6 n!, on a 0 6 Dn

n!
6 1 et le rayon de convergence de

∑
n>0

xn vaut 1. On sait qu’alors on a R > 1.

∀x ∈] − 1 ; 1[, exS(x) =
( +∞∑

n=0

xn

n!

)( +∞∑
n=0

Dn

n!
xn
)
=

+∞∑
n=0

( n∑
k=0

1

(n− k)!
× Dk

k!

)
xn =

+∞∑
n=0

1

n!

( n∑
k=0

(
n

k

)
Dk

)
xn

par produit de Cauchy. Ainsi exS(x) =
+∞∑
n=0

xn = 1

1− x
d’après le calcul combinatoire précédent et on

conclut que ∀x ∈]− 1 ; 1[, S(x) = e−x

1− x
. Par conséquent lim

x→1−
S(x) = +∞ donc R = 1.
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Par produit de Cauchy : S(x) =
( +∞∑

n=0

(−1)nxn

n!

)( +∞∑
n=0

xn
)

=
+∞∑
n=0

( n∑
k=0

(−1)k

k!

)
xn =

+∞∑
n=0

Dn

n!
xn pour

x ∈]− 1 ; 1[. Par unicité des coefficients : dn = n!
n∑

k=0

(−1)k

k!
donc lim

n→+∞
dn

n!
= 1

e
.� �

10.142� �Posons fn : t 7→
(
1+ t2

2

)n

, alors comme 0 <

∣∣∣∣1+ t2

2

∣∣∣∣ < 1 si t ∈ [0; 1[ la suite de fonctions (fn)n>0

converge simplement vers la fonction nulle sur [0; 1[ et on a la domination |fn| 6 1 où t 7→ 1 est intégrable

sur [0; 1[. Par le théorème de convergence dominée, lim
n→+∞

an = 0.

∀t ∈ [0; 1], on a 0 6 t 6 1+ t2

2
donc

∫ 1

0
tndt = 1

n+ 1
6 an. Par conséquent, la série

∑
n>0

an diverge par

Riemann et R 6 1. Par le CSSA,
∑
n>0

(−1)nan converge d’après ce qui précède donc R > 1. Ainsi : R = 1.

L’intervalle de convergence est [−1; 1[ comme on vient de le voir.

On peut continuer l’exercice en exprimant, pour x ∈]−1; 1[, f(x) =
∑
n>0

anx
n sous forme d’une seule intégrale

pour le calculer explicitement et en profiter pour avoir f(−1) ; en effet :

Pour x ∈] − 1 ; 1[, la convergence de la série de fonctions un(t) = xn
(
1+ t2

2

)n
est normale sur [0 ; 1] car

||un||∞ = |x|n donc f(x) =
∫ 1

0

( +∞∑
n=0

(
x(1+ t2)

2

)n)
dt =

∫ 1

0

2dt

2− x− xt2
(série géométrique). Si x ∈]− 1 ; 0[,

f(x) = 2

2− x

∫ 1

0

1

1+
x

x−2
t2

dt =
[

2√
x(x− 2)

Arctan

(√
x

x− 2
t

)]1
0
= 2√

x(x− 2)
Arctan

(√
x

x− 2

)
.

Le critère spécial des séries alternées permet de majorer :
∣∣∣ ∞∑
k=n+1

akx
k
∣∣∣ 6 an+1|x|n+1 6 an+1. Ainsi,

avec les notations habituelles : ||Rn||∞,[−1;0] 6 an+1. Or on sait que lim
n→+∞

an = 0 donc on a convergence

uniforme de la série entière sur [−1; 0]. Alors f est continue sur [−1; 0] :

f(−1) =
+∞∑
n=0

(−1)nan = lim
x→−1+

f(x) = π

3
√
3
car Arctan

(
1√
3

)
= π

6
.� �

10.143� �Posons un = 2n2 + 3n+ 1

2n+1 , par croissance comparée, un =
+∞

O

(
1

n2

)
donc

∑
n>0

un converge. D’Alembert

montre que le rayon de
∑
n>0

(2n2+3n+1)xn vaut R = 1. Posons donc ∀x ∈]−1; 1[, f(x) =
+∞∑
n=0

(2n2+3n+1)xn.

On écrit 2n2 + 3n+ 1 = 2(n+ 2)(n+ 1)− 3(n+ 1) pour avoir f(x) = 2
+∞∑
n=0

(n+ 2)(n+ 1)xn − 3
+∞∑
n=0

(n+ 1)xn

donc f(x) = 2

(
1

1− x

)′′
− 3

(
1

1− x

)′
= 4

(1− x)3
− 3

(1− x)2
= 1+ 3x

(1− x)3
. Enfin,

+∞∑
n=0

un = 1

2
f

(
1

2

)
= 10.� �

10.144� �Posons un = n(−1)n , alors 1

n
6 un 6 n et les séries entières

∑
n>1

xn

n
et
∑
n>0

nxn ont classiquement pour

rayon 1 donc le rayon de convergence de
∑
n>0

n(−1)nxn est R = 1 par encadrement.

De plus, comme (un)n>0 n’est pas bornée, l’intervalle de convergence est ]− 1; 1[.

En séparant termes pairs et impairs, on a ∀x ∈]− 1; 1[,
+∞∑
n=0

n(−1)nxn =
+∞∑
n=0

2nx2n +
+∞∑
n=0

x2n+1

2n+ 1
.

Comme ∀x ∈] − 1; 1[,
+∞∑
n=0

xn = 1

1− x
, en dérivant et en multipliant par x :

+∞∑
n=0

nxn = x

(1− x)2
donc

+∞∑
n=0

2nx2n = 2x2

(1− x2)2
. On sait que ∀x ∈]− 1; 1[,

+∞∑
n=1

(−1)n−1

n
xn = ln(1+ x) et que

+∞∑
n=1

1

n
xn = − ln(1− x).

En sommant : ∀x ∈]−1; 1[, 2
+∞∑
n=0

x2n+1

2n+ 1
= ln(1+x)−ln(1−x) donc

+∞∑
n=0

x2n+1

2n+ 1
= 1

2
ln

(
1+ x

1− x

)(
= Argth (x)

)
.
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Ainsi, ∀x ∈]− 1; 1[,
+∞∑
n=0

n(−1)nxn = 2x2

(1− x2)2
+ 1

2
ln

(
1+ x

1− x

)
.� �

10.145� �Il est bien connu que ∀x ∈] − 1; 1[, 1√
1− x

= (1 − x)−1/2 =
+∞∑
n=0

(
−1/2

n

)
(−1)nxn. Or, classiquement en

introduisant les termes pairs manquants

(
−1/2

n

)
=

(−1/2)(−3/2) · · · (−1/2− n+ 1)

n!
= (−1)n

(2n)!

4n(n!)2
donc

∀x ∈]− 1; 1[, 1√
1− x

= (1− x)−1/2 =
+∞∑
n=0

(2n)!xn

4n(n!)2
. On dérive et on obtient :

∀x ∈] − 1; 1[, 1

2
(1 − x)−3/2 = 1

2(1− x)3/2
=

+∞∑
n=1

n(2n)!xn−1

4n(n!)2
donc 1

(1− x)3/2
=

+∞∑
n=0

2(n+ 1)(2(n+ 1))!xn

4n+1((n+ 1)!)2

qui se transforme en 1

(1− x)3/2
=

+∞∑
n=0

(2n+ 1)(2n)!xn

4n(n!)2
=

+∞∑
n=0

(2n+ 1)

(
2n

n

)
xn

4n
.

Par produit de Cauchy, ∀x ∈]− 1; 1[, 1

(1− x)3/2
= 1

1− x
× 1√

1− x
= 1

(1− x)3/2
=
(+∞∑

i=0

xi
)(+∞∑

j=0

(2j)!xj

4j(j!)2

)
qui vaut

+∞∑
n=0

( n∑
k=0

(2k)!

4n(k!)2

)
xn =

+∞∑
n=0

( n∑
k=0

1

4k

(
2k

k

))
xn. En identifiant (les rayons sont strictement positifs)

les coefficients dans ces deux formes de (1− x)−3/2, on trouve bien : ∀n ∈ N,
n∑

k=0

1

4k

(
2k

k

)
=

2n+ 1

4n

(
2n

n

)
.� �

10.146� �La fonction g : t 7→ ln(|1− t|)
t

est continue sur ] − ∞; 0[∪]0; 1[∪]1; +∞[ avec un prolongement par

continuité en 0 avec g(0) = −1. Ainsi f est déjà définie sur ]−∞; 1[. De plus
∫ 1

0

ln(|1− t|)
t

dt converge car

φ(t)=
1
o

(
1√
1− t

)
. De même

∫ x

1

ln(|1− t|)
t

dt converge si x > 1. Par conséquent, f est définie sur R.

Soit x ∈] − 1; 1[, alors f(x) =
∫ x

0

ln(1− t)
t

dt = −
∫ x

0

+∞∑
n=1

tn−1

n
dt et en posant gn(t) = tn−1

n
, on a

||gn||∞,[0;x] 6 |x|n−1 pour n > 1 avec
∑
n>1

|x|n qui converge donc la série de fonctions
∑
n>1

gn converge

normalement sur le segment [0; x] et on a donc f(x) = −
+∞∑
n=1

∫ x

0
gn(t)dt = −

+∞∑
n=1

xn

n2 et f est DSE.

Le rayon de convergence est R = 1 en utilisant le critère de d’Alembert par exemple.

On reprendre l’étude sur l’intervalle [0; 1[ mais on n’a plus convergence normale, par contre les fonctions gn

sont intégrables sur [0; 1[ avec g continue sur [0; 1[ et
∫ 1

0
|gn(y)|dy = 1

n2 donc la série numérique
∑
n>1

∫ 1

0
|gn|

converge. Ainsi, d’après le TITT, on a f(1) = −
+∞∑
n=1

∫ 1

0
gn = −π2

6
.� �

10.147� �Soit n > 1, pour faire une partition de [[1;n + 1]], il faut choisir la partie Up (p est quelconque) de

cette partition qui contient n + 1. On fixe donc j ∈ [[0;n]] tel que card (Up) = j + 1 et on choisit j entiers

dans [[1;n]] pour tenir compagnie à n + 1 dans Up :

(
n

j

)
choix. Ensuite, il reste n + 1 − (j + 1) = n − j

entiers dans [[1;n+ 1]] \ Up qu’il faut partitionner : on peut le faire de pn−j façons par construction. Ainsi,

pn+1 =
n∑

j=0

(
n

j

)
pn−j =

n∑
k=0

(
n

k

)
pk en posant k = n− j. On a même p1 = 1 =

(
0

0

)
p0 par convention.

On a p0 = p1 = 1, p2 = 2 (”deux singletons” ou ”paire”), p3 = 5 (”trois singletons”, 3 fois ”singleton +

paire” et ”triplet”), p4 = 15. Ainsi 0 6 pn 6 n! pour n ∈ [[0; 4]]. Soit n > 4 tel que ∀k ∈ [[0;n]], 0 6 pk 6 k!,

alors pn+1 =
n∑

k=0

(
n

k

)
pk donc 0 6 pn+1 6

n∑
k=0

(
n

k

)
k! = n!

n∑
k=0

1

(n− k)!
6 n!

+∞∑
k=0

1

k!
= e.n! 6 (n+ 1)!.

Par récurrence forte : ∀n > 0, 0 6 pn 6 n!. Comme le rayon de
∑
n>0

xn est égal à 1, d’après le cours : R > 1.
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∀x ∈]1; 1[, f′(x) =
+∞∑
n=1

pn
(n− 1)!

xn−1 =
+∞∑
n=0

pn+1

n!
xn qui se transforme avec la relation de récurrence précédente

en f′(x) =
+∞∑
n=0

( n∑
k=0

pk
k!

× 1

(n− k)!

)
xn. Par produit de Cauchy : ∀x ∈]− 1; 1[, f′(x) = exf(x). On intègre :

∃λ ∈ R, ∀x ∈]− 1; 1[, f(x) = λee
x

. Or f(0) = p0 = 1 donc λ = 1

e
. Par conséquent ∀x ∈]− 1; 1[, f(x) = ee

x−1.� �
10.148� �Comme

(
xn

3n+ 2

)
n∈N

est bornée si et seulement si |x| 6 1 par croissance comparée, le rayon de cette série

est R = 1. Soit f(x) =
+∞∑
n=0

xn

3n+ 2
pour x ∈ [−1; 1[ (il y a convergence pour x = −1 par CSSA et divergence

pour x = 1 d’après Riemann).

Posons g(x) = x2f(x3), alors g(x) =
+∞∑
n=0

x3n+2

3n+ 2
. Le rayon de cette série entière est aussi 1, on sait donc que

g est dérivable sur ]− 1; 1[ et que g′(x) =
+∞∑
n=0

x3n+1 = x

1− x3
.

On peut continuer cette méthode en intégrant à partir de g(x) =
∫ x

0
g′(t)dt puisque g(0) = 0.

Autre méthode : on peut aussi écrire que pour x ∈] − 1; 1[, on a xn

3n+ 2
=
∫ 1

0
xnt3n+1dt donc il vient

f(x) =
+∞∑
n=0

∫ 1

0
xnt3n+1dt =

+∞∑
n=0

∫ 1

0
un(t)dt en posant un(t) = xnt3n+1. La série de fonctions

∑
n>0

un

converge normalement sur [0; 1] car ||un||∞,[0;1] = |x|n et
∑
n>0

|x|n converge (série géométrique). Comme on

intègre sur un segment, on peut intervertir pour avoir f(x) =
∫ 1

0

+∞∑
n=0

xnt3n+1dt =
∫ 1

0

tdt

1− xt3
dt.

Si x = 0, f(x) = 1

2
. Si x ̸= 0, soit 3

√
3x l’antécédent de x par la bijection y 7→ y3 sur ] − 1; 1[, on effectue le

changement u = 3
√
xt : f(x) = 1

( 3
√
x)2

∫ 3
√
x

0

udu

1− u3 . Or X

1− X3 = 1

3(1− X)
+ X− 1

3(1+ X+ X2)
par identification

par exemple donc f(x) = 1

3( 3
√
x)2

∫ 3
√
x

0

du

1− u
+ 1

6( 3
√
x)2

∫ 3
√
x

0

(2u+ 1)du

1+ u+ u2 − 1

2( 3
√
x)2

∫ 3
√
x

0

du

1+ u+ u2 .

On obtient f(x) = 1

6( 3
√
x)2

[
−2 ln(1−u)+ ln(1+u+u2)−2

√
3Arctan

(
2u+ 1√

3

)] 3
√
x

0

car on a classiquement

1

1+ u+ u2 = 2√
3

2√
3

1+
(
2u+ 1√

3

)2 en mettant sous forme canonique.

� �
10.149� �Par récurrence immédiate, puisque u0 = 1 > 0 et que a > 0, b > 0, on montre que ∀n ∈ N, un > 0

ce qui justifie bien la définition de la suite (vn)n∈N. Par définition de vn, on peut simplifier vn+1 − vn :

vn+1−vn = ln((n+1)b−aun+1)− ln(nb−aun) = (b−a) ln
(
1+ 1

n

)
+ ln

(
un+1

un

)
. Ainsi, d’après l’hypothèse

faite sur (un)n>0, vn+1−vn = (b−a) ln
(
1+ 1

n

)
+ln

(
n+ a

n+ b

)
= (b−a) ln

(
1+ 1

n

)
+ln

(
1+ a

n

)
−ln

(
1+ b

n

)
.

On effectue un développement limité à l’ordre 2 et vn+1−vn =
+∞

(b− a)
n

+ a

n
− b

n
+O

(
1

n2

)
=
+∞

O

(
1

n2

)
. Ainsi,

par comparaison et Riemann, la série
∑
n>0

(vn+1−vn) converge. La dualité suite-série nous montre alors que

(vn)n>0 converge, disons vers ℓ ∈ R. Par continuité de exp, comme nb−aun = evn , la suite (nb−aun)n>0

converge donc vers k = eℓ > 0. Alors un ∼
+∞

k

nb−a . Ainsi,
∑
n>0

un converge si et seulement si b− a > 1 par

équivalence et critère de Riemann.
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Si x ̸= 0,
∣∣∣un+1x

n+1

unx
n

∣∣∣ ∼
+∞

knb−a|x|
k(n+ 1)b−a ∼

+∞
|x| d’après ce qui précède. Ainsi, si |x| > 1,

∑
n>0

unx
n diverge

grossièrement donc R 6 1 et, si |x| < 1,
∑
n>0

unx
n converge absolument d’après d’Alembert donc R > 1.

Par conséquent, R = 1. Comme
∑
n>0

un converge et que un > 0. Les séries
∑
n>0

un et
∑
n>0

(−1)nun convergent

absolument. Ainsi, le domaine de définition de f est I = [−1; 1]. On a f(1) =
+∞∑
n=0

un.

Pour n > 0, comme (n+ b)un+1 − (n+ a)un = 0 ⇐⇒ nun+1 − nun = aun − bun+1 par hypothèse, on a la

relation (n+1)un+1−nun = un+1+aun−bun+1 = (1−b)un+1+aun (R). Comme la suite (nun)n>0 tend

vers 0 car nun ∼
+∞

1

nb−a+1 avec b− a+ 1 > 0, la dualité suite-série nous montre que
∑
n>0

(n+ 1)un+1 − nun

converge et que
+∞∑
n=0

(n + 1)un+1 − nun = −0.u0 = 0. Ainsi, en sommant la relation (R) pour n ∈ N, on

obtient (1− b)(f(1)− u0) + af(1) = 0. Par conséquent, il vient f(1) = b− 1

b− a+ 1
car u0 = 1.� �

10.150� �Comme la suite
(
sin
(
nπ

3

))
n>0

ne tend vers 0 car par exemple ∀n ∈ N, sin
( (6n+ 1)π

3

)
=

√
3

2
, la série∑

n>0

sin
(
nπ

3

)
diverge donc le rayon R de

∑
n>0

sin
(
nπ

3

)
xn vérifie R 6 1 car cette série diverge pour x = 1.

Mais comme
∣∣∣ sin (nπ

3

)∣∣∣ 6 1 et que le rayon de
∑
n>0

xn vaut 1, on a aussi R > 1 d’après le cours. Ainsi R = 1.

Soit x ∈] − 1; 1[, on a
+∞∑
n=0

sin
(
nπ

3

)
xn = Im

( +∞∑
n=0

e
inπ
3 xn

)
= Im

( +∞∑
n=0

(−j2x)n
)

car e
iπ
3 = −j2. Ainsi, il

vient Im

(
1

1+ j2x

)
= Im

(
1+ jx

1+ jx+ j2x+ x2

)
=

√
3 x

2(1− x+ x2)
=

+∞∑
n=0

sin
(
nπ

3

)
xn.� �

10.151� �a. Posons fn : t 7→
(
1+ t2

2

)n

, alors comme 0 <

∣∣∣∣1+ t2

2

∣∣∣∣ < 1 si t ∈ [0; 1[ la suite de fonctions (fn)n>0

converge simplement vers la fonction nulle sur [0; 1[ et on a la domination |fn| 6 1 où t 7→ 1 est intégrable

sur [0; 1[. Par le théorème de convergence dominée, lim
n→+∞

an = lim
n→+∞

∫ 1

0
fn(t)dt = 0.

b. Puisque ∀t ∈ [0; 1[, ∀n ∈ N,
(
1+ t2

2

)n >
(
1+ t2

2

)n+1
, par croissance de l’intégrale, on a an > an+1 donc

(an)n∈N est décroissante et tend vers 0. Par le critère spécial des séries alternées,
∑
n>0

(−1)nan converge.

c. ∀t ∈ [0; 1], 0 6 t 6 1+ t2

2
(car (1 − t)2 > 0) donc

∫ 1

0
tndt = 1

n+ 1
6 an. Ainsi,

∑
n>0

an diverge par

comparaison à la série harmonique et R 6 1. D’après b., comme
∑
n>0

(−1)nan converge, R > 1. Ainsi, R = 1.

d. Pour x ∈]−1; 1[, soit un : t 7→ xn
(
1+ t2

2

)n
pour tout entier n ∈ N. La série

∑
n>0

un converge normalement

sur [0; 1] car ||un||∞,[0;1] = |x|n (valeur maximale en t = 1) donc, comme on intègre sur le segment [0; 1], on

peut intervertir et avoir f(x) =
∫ 1

0

( +∞∑
n=0

un(t)
)
dt =

+∞∑
n=0

∫ 1

0
un(t)dt ce qui donne, comme

∣∣∣x(1+ t2)
2

∣∣∣ < 1,

f(x) =
∫ 1

0

( +∞∑
n=0

(
x(1+ t2)

2

)n)
dt =

∫ 1

0

1

1− x(1+t2)

2

dt =
∫ 1

0

2dt

2− x− xt2
(série géométrique).

Traitons trois cas :

• Si x = 0, f(0) = a0 = 1.

• Si x ∈] − 1; 0[, f(x) = 2

2− x

∫ 1

0

1

1+
x

x−2
t2

dt =
[

2√
x(x− 2)

Arctan

(√
x

x− 2
t

)]1
0
car x

x− 2
> 0 ce
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qui donne f(x) = 2√
x(x− 2)

Arctan

(√
x

x− 2

)
.

• Si x ∈]0; 1[, f(x) = 2

2− x

∫ 1

0

1

1−
x

2−x
t2

dt =
[

1√
x(2− x)

ln

(
1+

√
2

2−x
t

1−
√

2

2−x
t

)]1
0
car x

2− x
> 0 ce qui

donne f(x) = 1√
x(2− x)

ln

(
1+

√
2

2−x

1−
√

2

2−x

)
.

e. Pour x ∈ [−1; 0], la série
∑
n>0

anx
n est alternée car an > 0 et la suite (an|x|n)n∈N est décroissante et

tend vers 0 d’après a. donc, par le critère spécial des séries alternées, en notant Rn(x) =
+∞∑

k=n+1

akx
k, on a

|Rn(x)| 6 an+1|x|n+1 6 an+1 donc ||Rn||∞,[−1;0] 6 an+1. Comme lim
n→+∞

an = 0, on a convergence uniforme

de
∑
n>0

un sur [−1; 0] en notant un : x 7→ anx
n. Comme les un sont continues sur [−1; 0], la fonction f est

continue sur [−1; 0], ce qui montre que f(−1) =
+∞∑
n=0

(−1)nan = lim
x→−1+

f(x) = π

3
√
3
car Arctan

(
1√
3

)
= π

6
.
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