SOLUTIONS EXERCICES CORRIGES 10
SERIES ENTIERES

[10.1 Rayon et expression}

2n+3
R =1, régle de d’ALEMBERT appliquée aux séries numériques : lim GnA x|2.

notoo (3n 4+ 5)[x[F !

+oo _3n42
La fonction somme est notée S, elle est impaire et pour x € [0; 1], v/xS(x3/2) = 3 ;‘ n+ 5= g(x). On dérive
=0 oM
+oo "
et on obtient Vx €] —1;1[, ¢’'(x) = Y, x*"+! = ] X qu’on primitive en décomposant en éléments simples :
n=0 - X
_ L . 2x +1) 1
'x:l< 1 _x=1 ) On intégre en écrivant g/(x) = 1 + ( -
g'(x) 3\ —x  T4x+x7 & 9'(x) 31—=%x)  6(1+x+x%)  2(14+x+x%)

donc comme g(0) = 0, il vient g(x) = —% In(1—x)+ % In(1+x+x%)— %

Arctan (M) — % . 11 suffit

V3

donc d’écrire que pour x € [0;1], S(x) = %g(xzﬁ) et c’est fait.
x

a. Le rayon de convergence est R = 1 par la régle de d’ALEMBERT, il y a convergence en 1 et en —1 par le

critére de RIEMANN donc l'intervalle de convergence est [—1;1].

b. On a Vx €] — 1;1], f(x) = i%x“ = i(—])“(ﬁ - %)x“ =xIn(1+x) + (ln(l +x) —X).

On aurait aussi pu obtenir cette formule en prenant la dérivée de f et en intégrant ensuite.

1
nn—1)

c. Comme il y a convergence normale sur [—1;1] car ||un || = en posant un(x) = ————=x", on

af(l)= lim f(x)=2n(2) —1et f(—1) = lim f(x)=1.
x—1— x——1+

On pose I’équation caractéristique de cette récurrence linéaire : z> —2z—1 = 0 dont les solutions sont /2 + 1

et v/2 — 1. Apres des calculs classiques : Vn € N, ap = %((ﬁJr N"+ (V2 - 1)“) ~ %(\/EJr 1)™ donc le
oo
rayon est celui de V2 4+ 1)"x" et donc R = 1 =2-1.
s e 2V 7
+oo too
Ensuite, en notant f(x) = > anx™ pour x €] —R;R[, on a Y (ant2 — 2ani1 — an)x™ % = 0 ce qui donne
n=0 n=0
(f(x) — a1x — ap) — 2x(f(x) — ap) — x*f(x) = 0 et donc f(x) = 2";1
x4+ 2x — 1

Sirt>0,o0na (a2nr?™)nen bornée si et seulement si r < ﬁ et (a2ni172™ ) nen bornée si et seulement

sir < —\}E Comme (an™)nen est bornée si et seulement si (aznm?™)nen et (azny1m?™ ey le sont :
1 Al v g n L 2\n L 2\n 1 X

R=—=. Alors Vx €] = R;R[, >_ anx™ = > (ax +x Y (bx = + .
\/1B ] ’ [ n=0 " n:O( ) n:O( ) 11— aXZ 11— sz



Le rayon est classiquement R = 1. Pour calculer la somme de la série, il suffit de décomposer en éléments

Coles: M3 _ 1204145 _ 1.5 1
SUNPICS = 9 17~ 2 Inot1 2+22 T

On distingue ensuite x > 0 ou x < 0.

Zn

2 Z n+3 . on_ 1 oy 5 1 5
Six>0 _ tf yn=1% E Argth (y).
X , OI1 pOse x y- e () ZTL—F] zn:Oy 2T1.+] 2(1_y2)+2y rg (y)

Vx € [0;1], f(x) = 2(17) 2\[Arg‘ch(\/@. De méme : Vx E}—];O], f(x) = ﬁ+2\/5?x Arctan(y/—x).

3
Par croissance comparée, (%xzn“) bornée si et seulement si |x| < /3 : R = /3.
neN

a. R=1. Comme (an)nen n’est pas bornée, la somme de la série en tout point du cercle de centre 0 et de

rayon 1 donc a fortiori aux bornes de l'intervalle | — 1;1]
b. On trouve classiquement : f(x) = (]17)2 — e~
—x
. 1 1 : 1
c. On trouve Um f(x) = - — = alors que f diverge en —1 ; et f —
x——1+ () 4 e d & (x ) - (1—x)*"

Les deux séries entieres sont classiquement de rayon 1, divergence en £1 pour la premiere car le terme

général ne tend pas vers 0 et convergence en £1 pour la seconde avec le critere de RIEMANN.

+oo +o0 +o00
Yy €]-1;1[, Fly) = Z n2y™ = > (n+2)(n+1)y" =3 > (n+1)y™+ > y™ et en reconnaissant les dérivées
n=0 n=0 n=0
o " ’ 230 —y)+(1-y)? _ y? +u,
de la série géométrique : nZy" = (L) — 3( 1 ) + 1 = =
éo i) ) Ty (- (1—y)"
+oo 5 3
Ainsi : Vx €] — 1;1], f(x) = Z n2 (=) = xF(—x?) = 2=
=0 (1 +x7)
Vel =IO o) = 5 X =18 TS x4 L (e S
’ ’ —nf—1 2 =n—1 n+1 2 2x 2)

a. Le rayon de convergence de ces séries entieres est R, = 1 et il y a divergence en 1 et en —1.

b. Les f, sont de classe C*> (et dérivables terme & terme) sur l'intervalle ouvert de convergence donc :

+oo
Vx €] = 131, xf(x) =x X nPH T = (%),

n=1
c. On voit par récurrence sur p que f, a, sur D, une expression du type : f,(x) = = ) pr7 T Z g 0 (p ))]
=1\l =X
C’est vrai pour p = 0,1 et si ga 'est pour un entier p, fp1(x) = xf},(x) = A +x Z % qui
X

(] )P+2
|
00 (] — X)p+] '
d. D’apres la formule précédente, fp(x) admet une limite finie quand x tend vers —17.
10.10| a. Par la regle de d’ALEMBERT par exemple, on trouve R = 1.
b. Il y a convergence en —1 d’apreés le CSSA, et divergence en 1 d’apres le critere de RIEMANN.

|X‘n+1

c. Sur [-1;0], on a [Rn(x)| < [uny1(x)| = o qui tend vers 0 donc il y a convergence uniforme de la

se met sous la bonne forme en écrivant x = x — 1+ 1. on a donc fp,(x)

série sur [—1;0] donc continuité en —1.
+o0 n
d. Pour n > 1, on a y/n < n donc pour x € [0;1], f(x) >

n=

X = (1 —x) donc Um f(x) = +oc.
n x—1—

—_

10.11 | Le rayon vaut R = V/3 avec D’ ALEMBERT.

On reconnait la série entiere de la fonction Arctan et f(x) = 31/3 Arctan (%)



(10.2 Théorie)

10.12 | Notons R le rayon de Y anz™ et R’ celui de ) A gn
n>0

n>0 an

SiR>0et0<r<R, ona Um a,™ =0donc lim 1 — = 400 et ainsi (ir’")neN ne tend pas vers
n—+oo n—+o00 AnT an
0 avec 1’ = 1+ donc 1 > R’. Ainsi 1 ]E -1 > R’ ; ceci étant vrai pour tout r vérifiant cette condition :
T T T T

1 > R’ donc RR’ < 1. C’est a fortiori vrai si R = 0. Dans tous les cas RR’ < 1.

R
10.13 ] Notons R’ le rayon de convergence de Y aZz™. Si R = 0 alors (an(y/r)™)nen est non bornée pour tout
neN
r € R% donc a fortiori (a41™)nen et ainsi R = 0. Réciproquement, si R = 0 alors (aZ1?™)nen est non

bornée pour tout r € R donc a fortiori (ant™)nen et ainsi R = 0.

SiR>0et0<r<R<«=0<1?<R% alors (apnt™)nen est bornée donc a fortiori (a?r?™), ey donc r* < R'.
ceci implique R? < R’ (puisque c’est vrai pour tout 2 €]0; R?[). Réciproquement, si R’ > 0 et 0 < ' < R/, on
a (aﬁr’“)neN bornée donc (\an(\/pn)neN aussi ce qui implique v/ < R <= v < R? d’olt R’ < RZ.

Ainsi dans tous les cas, on a R’ = R?.

10.14)a. Vn € N, ||bn| <1 et Y z™ est de rayon de convergence 1 donc R" > 1.

n>0
De plus Vn € N ||by| < |an| et > anz™ est de rayon de convergence R donc R’ > R. Ainsi R’ > Max(1,R).
n>0
. . ) b |
b. SiR > 1 b donc lim bn =0 et bo| = 90l s jq, = lonl
iR'>1,0ona né:O n qui converge donc lim by et comme |by,| T ] lan| T bn]

des que n est suffisamment grand donc |an |~ |by| donc R = R'.
o0
c. SiR' =1, 0n aR <1 dapres a. donc R" = Max(1,R). D’apres b., dans tous les cas : R" = Max(1,R).
10.15) On note R le rayon de > anx™ et R’ celui de > Spx™. Comme a, < Sn, on a R < R. Comme

n>0 n>0
lim Sy = +oo, la série Y anx™ diverge en 1 donc R < 1. De plus, Vn € N, Snil _ 1+ 92 tend vers 1,
n—-+4oo n>0 STL n
donc R” =1 d’apres la régle de ’ALEMBERT. Ainsi : R=R' = 1.
+oo —+00 —+o00
Vx €]—T1;1], ( > anx“> ( > x“) = ( > Snx“) par produit de CAUCHY de séries absolument convergentes
n=0 n=0 n=0

+oo +oo
donc en notant f(x) = > anx™ et g(x) = Y, Snx™, on a (1 —x)f(x) = g(x).
n=0

n=0

—+oo +oo
10.16 Soit x € [0;R[, posons S(x) = > anx™, alors si f(x) = > anR™™, on a f de rayon 1 et la relation :

n=0 n=0
Vx € [0;1], f(x) = S(Rx). Cela nous permet de nous ramener a R = 1.
“+oo +oo
On reprend done S(x) = > anx™ avec R =1 et on pose Rp = > ax (convergence par hypothése). En
n=0 k=n+1
—+oo
posant S = > an la somme de série, on a ¥n € N; ap, = Rn_1 — Ry avec R_; = S. On effectue une
n=0

“+o0 400
transformation d’ABEL : S(x) = Y. anx™ =S — Y. Rp(x™ — x™1) apres calculs. Puisque lim R, =0,
n=0 n=0 n—+400

Mo
. Orx e > Ru(x™ —x™F1) est continue en 1 et
n=0

ng
vaut 0 en 1, il existe Ja > 0 tel que Vx € [1—o; 1], | Y Ry (x™ —x"H1)| <
n=0

pour un ¢ > 0, il existe ng € N tel que VYn > ng, |Rn| < %
%. Ainsi, Vn 2 ng, Vx € [1— o 1] :

3



+o0 o too
S0 =S =180 =81 = | 32 Ralxm x| £ Raler x4 | 5 Raben x| <64
n=0 n=0 n=ng-+1 2 2
—+o0 +oo
car Vx € [0;1], 0 < x™ —x™*! < 1 donc ‘ b Rn(x“—xn"'])‘ <E Y (XM —xMT) = Exnetl < £ On
n=no+1 2 n=mgt 2 2

+oo —+oo
conclut bien que, puisque Ve >0, Ja >0, Vx € [1 — ; 1], |Sx) —S(1)] < ¢, on a 111]121 DT oant™ = > anR™

t=R™n—0 n=0

[10.3 Relations avec I’intégrale}

n n
10.17]a. On a: Vt € [0;1], % < 1:L|—t2 < t" donce 2(n]7+1) <anp < %_H d’ot R = 1. Comme (an)nen est

clairement décroissante, on a convergence en —1 mais pas en 1.
n,n
x t

b. Pour |x| < 1, la série de fonctions (un)nen OU un(t) = | 2 converge normalement sur [0;1] car
[linlloo < |X|™ donc on peut intervertir série et intégrale pour avoir la relation souhaitée.
2
c. Ontrouve a = —*—~ b= —% 5 etc= L 5. On intégre alors pour avoir la relation suivante :
1T+x 1+x 1+x
T —axin(1 —x) +2xIn(2) + =
1) = [ = =25 (1 = xt) + =X (1 + ) + L5 Arctan(t)| = .
(X) ]+X2 Tl( X) 2(] +XZ) Tl( ) ]+X2 T ClTl( ) o 4(1 +X2)
A. . T n . ln(Z) 7T .
insi f(—=1) = > (=1)"an = Um f(x) = —== 4+ T par convergence uniforme sur [—1;0].
n=o0 x——1+ 2 8

(et

n _1 k—] .
A anea an = g done azn = (1) (5 - Z G- Comme tim_an =0, % -

10.18] a. On va trouver un encadrement de a,, pour répondre & ces deux questions. Pour t € [0; 1], classiquement,

T+t2 _ 1+t 2 2 ) .
0<t< < <lecar (t—1)° > 0et t= <t. En élevant ces inégalités a la puissance n et en les

2 2
1 n+1171 (1 —&—t)“ﬂ 1 T/ n

intégrant sur [0; 1], t“dt:[t } =1 <aq, <1 (2—1—):[7] = (j) dt
intégrant sur | }fo ntllo n+1 S SITTT o 2"(n+1) Jo fo 2

ce qui donne plus simplement ’encadrement ﬁ <an < %

n n
e Ainsi an > 1 ot 1a série harmonique 1 diverge donc ) ay diverge par comparaison.
n+1 nson+1 n>0

2 2\ n+1 2\ N
e Comme Vt € [0;1], ]% €[0;1],on a Vn € N, (l%) < (1%) ce qui montre par croissance

de l'intégrale que an4+1 < an. Ainsi, la suite (an)nen est décroissante et elle tend vers 0 par encadrement
1 done > (=1)™an converge par le critere spécial des séries alternées.
2n 1 n>0
b. La série Y. an diverge d’apreés a. donc R < 1. De plus, la série > (—1)™an converge d’apres a. donc
n>0 n>0
R > 1. Ainsi, R =1 et l'intervalle de convergence est [—1;1[ d’aprés la question a..

car 0 < an <

2\ n
c. Pour x €] — 1;1], en posant un (t) = x“(l%) , comme la fonction |uy| est croissante sur [0;1], on a

[[unlloo,[0:1] = [un (1) = [x|™ et la série géométrique ) |x|™ converge puisque [x| < 1. Par conséquent, la série
n>0
2
> u, converge normalement sur le segment [0; 1] done, par un théoréme du cours et car M‘ < 1 pour
n=>0
o 1 x(1T 4+ )\ Tt rx(1+ 2\ 1 2dt
B SR Y L) PV S U P A
o110 = 5 [0 (55 Jo (X (55 Jo 7724 Pourx €] —1:0]
—x
1 LR YAP.
on a donc f(x) = —2 1 dt = —2 2=x f 27X 4t car ==X > 0. Ainsi, on conclut
2—xJo -x 5 2—x —x Jo -x 5 — X
T4+ —t 14—t
2—x 2—x



1
; 2 —X 2 —X
classiquement que f(x) = [7 Arctan ( [ —— t)} = —=—— Arctan ( )
qa que f(x) —x(2 —x) 2—x 0 —x(2 —x) 2—x

d. Avec les mémes notations, si x € [—1;0] (on a vu la convergence de > (—1)™a, en question a.) la suite
n=>0
(an(—%)™)n>0 est décroissante et tend vers 0 donc la série alternée > (—1)"an(—x)™ converge par le critere
n=0
< (111—‘,-1|X|n+1 < Antl- AiIlSi, ||R11Hoo,[f1;0] < Qn4y O

spécial et on peut majorer |Ry (x) apx®

-
k=n+1
on sait que lim an, = 0donc lim [|Rnl|se [-1;0) = 0 par encadrement et on a convergence uniforme de
n—+oo n—+o00 ’ ’
> upn sur [—1;0]. Alors, f est continue sur [—1;0] car toutes les fonctions u,, sont continues sur [—1;0] et
n=0

+oo
. . 2 —x T 1 ud
f(—1) = —1)"a, = lUm f(x)= Um 7Arctan( 7) = ——= car Arctan (—) = =,
( ) nz::()( ) " ( ) 3\/§ \/g

x——1+ x——1+ —x(Z—x) 2—x 6
2x
10.19) Comme t — e~ est de classe C* sur R, la fonction f : x +> f e~ dt Pest aussi. Or, pour tout réel x,
x

f(x) = Qe qu’on sait développer en série entiere avec le développement de la série exponentielle :
+oo_nn2n +oo0 (__1\n,2n oo (__1\N(92n+1 _ 2n

VXER,f/(X)*22(1)4 72(])'X :Z(])(z ' ])X

n=0 n. n=0 n.

série entiere decrlvant f (x) est R+ 0o, celui de la série primitive est aussi R = 400 et on a donc en intégrant

400 (_])n(22n+1 _ ])XZnJrl

terme a terme : Vx € R, f(x) = > '
=0 nl2n+1)

10.20] t? — %t +1=(t-2) (t - %) = (1 -2t (1 - 2) donc f est définie et C* sur } - oo;%[. On dérive :

. Comme le rayon de la

car f(0) = 0.

1 1 1 t =2 1
Vx € }foo; 2 [, f'(x) = < 111(]*276)4’; In (1*5) =— né:] <?7ﬁ>x“4. Le rayon de cette série est R = 2
1.1 X2 1
et le rayon de la série primitive est le méme donc f est DSE sur ] — i3 [ ouf(x)=— > (—2 - Zn—z>x“.
n n
+oco M n
10.21) vVt €]0;1], In(1 —t)In(t) = — > in(t) en développant en série entiere In(1 —t). Si fy(t) = %,
n=1 n n
on a bien les (fn)nen continues et intégrables sur |0;1[, Y fn converge simplement sur ]0;1[ vers une
n>l
. : t"n(t) 7' T 1 1
fonction continue et fn = [7] — —————dt= ————. Comme fn| converge,
Joar™ = lami o~ o n(n—H) A+ 1) Z, Jo Il convers
1 1 +°C " In(t) e et ln(t) 12 1 :
ar le TITT : In(t) In(1 — t)d = - dt = ————. Ainsi
b Jo m@m( —var = - [ 5 ZJs ,anm+m

1 n 2
. 1 1 1 ; =2-T

In(t) In(1 —t)dt = lim > (77 ) lim (1 g ) 2 .
j;) (1) In( ) nﬁlJroo =1 \k k41 (k+ 1)2 nﬁlﬂLOO VT S (k+ ) 6

Arct oo (—1)x2n . - .
10.22] On a Vx € [0;1], 44X — %= T On majore le reste de cette série par le CSSA, ce qui donne :
X n

n=0
400 ( 1)k 2k 2n+2 1 )
Vx € [0;1], |Rn(x)| = ‘k %:H T ’ S T3 S s donc la convergence est uniforme sur [0;1]. On
1 oo _])TLXZH 400 n 2n 400 (_])n
eut donc intervertir et md (Gl sl = —dx = — .
s s ) s [ U5 i,

10.23| La fonction f est prolongeable par continuité (faire un DL) en 0 en posant f(0) = —2, elle est continue et
strictement négative sur | — 1;1[. On a f(t) ¥ In(1 —t) or In est intégrable sur ]0; 1] donc t — In(1 —t) lest
sur [0;1[. De méme f(t) ~ In(1+1t) or In est intégrable sur |0;1] donc t — In(1 +t) Pest sur | — 1;0]. Ainsi

Argth Argth (t)

f est intégrable sur | — 1;1[. Ensuite, on constate que f(t) = sit# 0et f(0) = —2 donc f est

+oo
développable en série entiere en Vt €] — 1;1[, f(t) = Z . Soit F la primitive de f qui s’annule en



+oo t2n+1
O,onaVvte]—1;1[, Ft) = -2

n=0 (Zn + ])2 .
+oo 1
L’intégrale a calculer vaut lim F(t) — lim F(t) =2 Um F(t) = —4 ) ———— (par imparité de F et
t—1- tos—T+ t—1- no (2n+1)
1 2
convergence normale sur [—1; 1] de la série associée). Alors f ! f(t)dt = 7717.

|10.4 Equation différentielle

10.24 a. On sait que x — Arcsin(x) et x — \/%2 sont DSE avec un rayon 1 donc f est aussi DSE avec un
1—x
rayon au moins égal a 1 par produit de CAUCHY.
b. On dérive f et on trouve Vx €] — 1;1[, (1 —x?)f'(x) — xf(x) = 1 par calculs.

+oo
c. On note Vx €] — 1;1[, f(x) = Y. anx*™*! ce développement en série entiere car f est impaire. Alors on

“+o00 n=0 “+o00 “+o0
a:Vxel—11] f(x) = Y 2n+ Danx?™ = > (2n — Dan_1x*""2 donc x*f'(x) = > 2n — 1)ap_1x*"
n=0 n=1 n=1
+oo +o0
et xf(x) = > anx®™? = 3 a,_1x*" d'oll, en remplacant dans ’équation différentielle, on obtient :
n= n=I1
+oo °
ar+ S (@n+MNan — 2n — Dan_1 —an_1)x*™ = T donc a; = 1 et Y¥n € N*| qa,, = 2;:‘_1@1_1. Par
n=1

2n 12
% et on vérifie que 1111 ntl — 1 donc f est bien DSE
n ! n—+o0o  an

+oo ZZn(n!)ZXZnJr]
n=0 (ZTI + ])'

10.25 a. Par la méthode classique, on montre que si ¢ est DSE et solution de (E), alors elle est proportionnelle &

+oo n
> (; Ik D’aprés d’ ALEMBERT, le rayon de cette série entiére est R = +00. On a clairement, ¢ (x) = ch (1/x)
n=0 (<N ):
six >0, p(0) =1 et @(x) = cos(v/—x) si x < 0. En remontant les calculs sur les coefficients de la série
entiere, on constate que ¢ est bien solution DSE de (E) sur R.

th (v/x)

b. Par la méthode LAGRANGE, on pose z = ych (y/x) et on parvient & ’équation z” + (T + Zi)z’ = 0.
X X

— K1 doncz=2K;th
= 2K;th (1/x) + K2 donc
Vx(ch (vx))?
y = Ajch (/%) + Azsh (y/x). Du cdté négatif et on obtient y = By cos(v/—x) + B2 sin(y/—x).
c. Pour un prolongement C Ten0: Ay =By =0 et A; = By en utilisant les développements limités.

10.26 | a. Par la méthode classique, on montre que si @ est DSE et solution de (E), alors elle est proportionnelle

récurrence, on trouve : Vn € N*| a, =

avec un rayon R =1 et on a Vx €] — 1;1], f(x) =

On inteégre en reconnaissant les primitives et on obtient z' =

+oo n
a > (2"7_“)' D’apres d’ALEMBERT, le rayon de cette série entiere est R = +o0o. On a clairement,
n=0 n .
o(x) = sh (x) six # 0, (0) = 1. En remontant les calculs sur les coefficients de la série entiére, on constate
X

que @ est bien solution DSE de (E) sur R.
b. Par la méthode LAGRANGE, on pose z = y@(x) et on parvient & ’équation z”” + coth(x)z’ = 0. On integre

en reconnaissant les primitives et on obtient z/ = ﬁ donc z = —Kj coth(x) + K2 et alors cela donne
sh (x
v = A ch (x) +Azsh (x)
X X
c. Par un prolongement C' en 0: A; =By =0 et A, = B, en utilisant les développements limités.

(sur R ou R*).



[10.5 Produit de Cauchy et dénombrement]

10.27|a. Onaby; =1,a; =1,b3 =2, a4 =5 et bs = 16 en les écrivant toutes ces permutations zig-zag sous la

forme de liste (o(1),0(2),---,0(n)). Par exemple as =5 car les seules permutations zig-zag pour n = 4 sont

(]’3’2)4)’ (])4) 2) 3)7 (2,3’ ])4)7 (2’4, ]’3)7 (3)4’ ])2)'

b. Comme a,, <nlet by <nl,onaod< a—*,‘ <let0 <K b—T" < 1 donc les rayons vérifient Rq > 1 et Ry, > 1.
n! n!

c. Soit n > 2 pair, on compte le nombre de permutations up-down de [1;n + 1] pour lesquelles la position
de n+ 1 (le plus grand élément) dans la liste est 2k (forcément une position paire 2 < 2k < n puisque ¢a
monte et ¢a descend) :

e il faut d’abord choisir les 2k — 1 entiers parmi les n entiers de [1;n] qui sont avant n 4+ 1 dans la liste :

cela fait " choix.
2k —1

e ensuite il faut choisir la permutation up-down qui contient ces 2k — 1 éléments : cela fait b7 choix
(ce nombre ne dépend que du nombre d’éléments et pas des éléments eux-mémes).

e ensuite il faut choisir la permutation up-down qui contient les n — 2k 4+ 1 entiers qui sont apres n + 1
(pas besoin de choisir ces entiers, ce sont ceux qui restent) : cela fait b _2x11 choix.

Comme on obtient une partition des permutations up-down quand on fait varier ’entier 2k entre 2 et n, on

. n . . o /n
obtient : by = > ( bok—1bn_2k+1 ; mais avec les conventions : b1 = > ( >bkbn_k.
2<2kgn \Zk — 1 k=0 \k
Soit n > 3 impair, on compte le nombre de permutations up-down de [1;n + 1] pour lesquelles la position

de n 4 1 dans la liste est 2k :
e choisir les 2k — 1 entiers dans [[1;n] qui sont avant n + 1 dans la liste : cela fait (an 1) choix.

e ensuite il faut choisir la permutation up-down qui contient ces 2k — 1 éléments : cela fait box_1 choix.
e ensuite il faut choisir la permutation up-down qui contient les n — 2k + 1 entiers qui sont apres n + 1
(pas besoin de choisir ces entiers, ce sont ceux qui restent) : cela fait an_zx41 choix.

n . .
De nouveau, any1 = <2k ]>b 2k—10n—2k+1 qui se transforme avec les conventions et le changement
2<2k<n -

no/n no/n
d’indices k = n —j en la formule plus homogene an 1 = > (k) bran_x =Y. <.)ajbnj.
k=0 j=0 \)

too . T . +oo b: b;
d. ¥x €] — Rp;Rp[, b(x)2 = | 3 et 0 jJ'XJ = > | > =-]x™ ce qui nous donne aussi
. j=0 )+ .

i=0 1 n=0 \i+j=n il j!
+oo n +oo n
by bn-k n x™
w0 = 3 (5 Btk har = 5 (8 (Vo) 3
n=o0 \¥k=o k! (n —k)! n=o0 \k=o0 \k " n!
+oo n n n “+o0o b ]
Vx €] = Rp;Rof, b(x)2 = 3 | 20 bibnoi | X5 = 30 “ELT =1 (x) — 1.
n=0 \k=0 \K noa=
!/
Vx €] — Ryp; Ry, % =1 donc x — Arctan(b(x)) — x est constante sur cet intervalle et comme on a la
x
condition initiale b(0) = 0 il vient : b(x) = tan(x).
. . N - tan@" 1) (0)
e. Comme tan est DSE sur | —1; 1] au moins, elle est égale & sa série de TAYLOR donc bon 41 = T
n !
n X
Six € ]0§ % {, on a tan(x) = kZ::O bopix? !+ m fo (x — £)>"*1 tan®*+2)(t)dt mais comme on
sait que tan’ = 1+ tan?, on montre par une récurrence facile que tan®™ est positive sur }0;%[ ainsi
n

bokr 1 X2t < tan(x) done 3 bop1x?Kt! est convergente et on a Ry > % Comme la fonction tan
k=0 k>0
n’admet pas de limite finie en %, on a aussi Rp < %[ ce qui donne au final : Ry, = %



+o0
On a donc par imparité de tan : Vx € ] - %; % [, 3 banp1x®™ ! = tan(x).

n=0
£ 81 R = Min(RarRo), ¥ €] = RiRly 0000 = 2 (35 (7 )awonos) X = 5 &t o'
. Si R = Min(Rq,Rp), ¥x €] — R;R[, a(x)b(x) = akbn_x | X = “BEL™ = d/(x).
ame n=o \k=0 \k " nl =l
Alors d/(x) = sm((x)) a(x) qui est une équation linéaire homogene du premier ordre ; comme x — In(| cos(x)|)
cos(x
est une primitive de x — tan(x) et que a(0) = 11il vient : a(x) = !

cos(x)’

1

/
Comme avant on montre par récurrence avec la formule (—) = tan X ( 1
cos

) que les dérivées successives
cos
2n — 1

cos(x)

Une formule simple relie ces nombres tangents aux valeurs de la fonctlon zeta de RIEMANN en les nombres

OO
de 1 sont positives donc que Rq = Z. Par parité de 1 iwe } [ az“
cos 2 cos

+oo
. . 1 bon—1 2 ) s c o . .
entiers : Vn € N*, ¢(2n) = 2_:1 n = 2 - 11)1(271 — ])!71 ™ de sorte qu’on a les jolies relations :

_n _ 2 4 _nt _ 16 6_ 272 6_ n°
¢2) =" (W) = 3Ty = e O = y@ ™ ga57 4(8) = 2256 — )71 T 9450

Comme on sait que lim (¢(2n) =1, on a équivalent : byn_1 ~ (%)n(Zn -1l
n—+oo oo T

10.28) a. On sépare les involutions de [[1;n + 2] : celles qui fixent n + 2 au nombre de I,41 (une involution de
[1;n + 1] induite) et celles qui ne fixent pas n + 2 (qui I’échange avec k (n + 1 choix) ce qui induit une
involution de [1;n + 1]\ {k}). Comme I, <n!,onaR>1.

e E Iy +nly_ g pg
c. Vx €]—1;1], (1+x)S(x) = E “+Z —n= “—l—&—zu 1—|—Z%X“:S’(x).
n=0 T ( ) n=1 T ,
On en déduit, puisque S(0) =1 et en intégrant I’équation différentielle, que Vx €] — 1;1]; S(x) = ST
+oo “+oo X ! n (ZTL)
d. AlorsS(x)—<Z ]xk)x Z L% | et commeR>0: 1, = 3 D 1, =) 5N
K=o k! )'2J " it2j=n 1512 " =0 (2n — 2j)512)

k
10.29 | Ces séries sont absolument convergentes : en effet, si x €] — 1;0[N]0; 1], en notant u, = ( )ka, on a
m

Vk >m, |2kt ’ = k [x| = |x|] < 1 et on utilise la regle de D’ ALEMBERT.
Uk k—m-+1
Pour m = 0 et x €] — 1;1], il s’agit d’une simple série géométrique absolument convergente de raison x tel
+oo
ue |x| < 1 donc k= 1 L : c¢’est bon pour 'initialisation !

que x| 2_: x T—x (1 —x)o"'1 P
+oo [k 1 . n+m

Soit m > 0, supposons que Vx €] — 1;1[, > ( )ka = ——7- Comme les séries ( )xn
k=m \M (] - X)m n>o0 m

et > x* convergent absolument, on peut utiliser le théoréme sur le produit de CAUCHY de telles séries.

k>0

n /s
On obtient la convergence absolue (mais on le savait déja) de Y ( > (J + m))x” avec la formule :
n>0 ‘j=0 m

e EECPe- (527 (E)

, nofj4+m n+m+1 .
11 suffit alors de se rappeler que, par récurrence, on montre »_ () > = ( 1 ) pour obtenir
j=o\ m m

foo ] to [ % 1
D <“ tmt >xn .S ( )ka‘ = 1 et avoir Ihérédité,
Zo\ m e \m 1 0o

too [k 1
Par principe de récurrence, on a bien Vm € N, Vx €] —1;1[, > ( )xk_m = —-
k=m \M (1 - X)
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10.30 a. On choisit les p qui ne bougent pas et on dérange le reste : N(n,p) = ( D(n —p).

P
n n —
b. D(n) < n! donc R > 1 car D(n) < 1. Comme > N(n,p)=nl,ona > M X 1—' = 1. Ainsi, par
n. p=0 p=0 (Tl - p)' p:
n _
produit de CAUCHY car le rayon de X—| est infini : e*f(x) = ]]— donc f(x) = ]e " et en développant
nso ! —x -
n (_1\k
le produit de CAUCHY : D(T‘l) =3 CLIAN iy
nl =0 Kl e

i ' © Um L -1
c. Il vient simplement : nEToo !N(n,p) o]

10.31) a. Par construction, Vn € N, |bn| < 1 donc le rayon R’ est supérieur a celui de la série Y x™, ce qui
n=0
prouve que R’ > 1. De plus, la suite (bn)n>o ne tend pas vers 0 donc la série Y by, diverge donc R’ < 1 car
n=0
>~ bnx™ diverge pour x = 1. Par conséquent, R’ = 1.
n>l

Comme il existe une infinité de termes de la suite (an)nen qui sont supérieurs ou égaux a 1 (il y a une

infinité de carrés parfaits), on en déduit que la série Y a, diverge, ce qui prouve que R < 1. Comme
n>0

an = card {k € [0; [v/n]] | n — k? est un carré parfait}, on a a, < /n+1 < n+1 et comme la série entiere

> (n+1)x™ est de rayon 1, on a R > 1. Par conséquent, R = 1.

n=0
Pour n € N, a,, = > 1= 3 bibj (en posant i = u? et j = v?) par définition des by,. Par
(u,v)e[o; | vn]]? (i,j)efosn]
uz+v2:n i+j=n

exemple, a5 = bobs + b1bsg + babz + bizby + bgby +bsbg =2 car by =bz =bs =0et bp =by =bg =1

ce qui correspond aux deux écritures 5 = 1+ 4(= 12 4+ 22 = 22 + 1" =)4 + 1. Par produit de CAUCHY de

—+oo —+oo —+oo
deux séries enticres, pour x €] — R;R[=] — 1;1[, on a g(x)? = ( > bnx“)( > bnx“) = > cnx™ avec
n=0 n=0 n=0
n
cn = Y, bxbp_k = > bibj = an. Ainsi, g(x)* = f(x) ce qui prouve que Y. anx™ converge pour
k=0 (i,j)eloin]? n>o0
itj=n

x €] — 1;1[ (on déduit de ce calcul, indépendamment de ce qui précede, que R > 1).

b. Six €]0;1[, hy : t > xt" = et” () est continue sur Ry et on a hy(t) = et” M) = 0(1—2) car In(x) < 0
+o00 t

donc hy est intégrable sur Ry par comparaison aux intégrales de RIEMANN.

c. En posant t = ——%—— = ¢(u), ¢ étant une bijection strictement croissante de classe C' de R, dans

—1In(x)

+oo +oo
R, , par changement de variable fo x~tdt = fo et’ gt = R

1 oo Lo 1
mfo TV AT

K1 k
Comme la fonction hy est décroissante sur R, on a Vk > 1, fk hy(t)dt < XK = hy (k) < fk B (t)dt.

N +oo 2 +oo 2 ..
On somme pour k allant de 1 & 400 (tout converge) donc fo xtUdt < gx) < fo x'"dt + hy(0). Ainsi :

Nl —TT [REN T 4713 ~ T — 2
g(x) Y2y e d’olt 'on déduit que f(x) Y T car f(x) = g(x)~.

10.32) a. I est clair que C; = 1 et on a déja vu que dans I’énoncé que C3 = 2, C4 = 5. Pour k € [I;n — 1],

le nombre de parenthésages d’'un mot a n éléments qui scindent les n éléments en k a gauche et n — k
a droite (pour la derniere évaluation) vaut CxCn_x en prenant C; = 1 (pas le choix pour “arranger” un

terme). Comme un parenthésage correct doit couper les n éléments en deux parties non vides, on obtient,

9



en effectuant une partition, la relation de récurrence : C, = Z CxCn_x = Z CxCn_x avec Co = 0.
k 1 k=0

+oo n
b. Pour x €] — R;R[, on C(x)2 = 3. ( ) CkCn_k)xn - z Cox™ = C(x) — C1x — Co = C(x) — x. Ainsi
n=0 ‘k=0
C(x) est racine du polynéme X? — X + x dont le dlscrlmmant vaut A =1 —4x > 0 puisque C(x) est réel En
posant R' = Min <R, éll) >0, on a donc Vx €] —R;R'[, C(x) = 1+ Vz — % En posant f(x) = 2C() — , la

\/]—4x

fonction f est continue sur | — R’; R’[ par opérations et on a f(x)? = 1 par calculs, ainsi f est constante valant

1 ou —1 sur cet intervalle. Comme f(0) = —1, on a Vx €] — R’;R’[, f(x) = —1 donc C(x) = T=VIl=4& ”2174’(
c. Réciproquement, soit D : } — %, JI[ — R définie par D(x) = ]7% D est développable en série
+o0 n—1 +oo +oo
P 1.1 1 (7]) (Zn)! n,n (211)! n n gy N
entleresur]—f;f{etD = —= —— (-4 = ——X = D d’apres
474 () ==3 2 o - Y T X i Y T X, D dap

n
le cours. Mais comme D(x)? —D(x)+x = 0, par produit de CAUCHY, on a aussi (on en vient) Dy =0, Dy = 1

etVn>2 D, = Z DyDn—k. Comme les suites (Cn)nen €t (Dn)nen vérifient les mémes conditions initiales

k=0
<2n)
|
Co =Dy — 2n)! _ n

C2(n)*(2n—1)  22n—1)

et la méme relation de récurrence, elles sont égales : Vn > 1,

[10.6 Développement en série entiére}

() )
10.33]a. On a ay = f k!(O) et Rn(x) = fox %f(“*‘])(t)dt
t\ " t\™
(-2 (-3
o xX7 oy
n'

F+) (1) dt < foy

b. Kbt _ [

n+1 0 T f D (t)dt car 1 — t<1—-Ypowrte [0;x] et que
x n! x y
+1
(M1 () > 0. On a donc Ry (x) < %Rn(y) et on conclut par encadrement (x fixé).
Yy

c. Ce qui précede prouve que f est développable en série entiere sur [0; «[ mais comme f est paire ou impaire,
elle 'est sur | — oc; otf.

10.34) Posons f : x — sh(Arcsinx), en dérivant sur | — 1;1[, on trouve que f vérifie I'équation différentielle
(E) : (1 —=x?)y” —xy’ —y = 0 avec les conditions initiales y(0) = 0 et y’(0) = 1.

o0
Si f est DSE sur | — R;R[ avec 0 < R < 1, alors on aurait (an)nen telle que ¥x €] — R;R[, f(x) = Z anx™

avec ap = 0 et a7 = 1. En remplacant dans I’équation, on trouve que Vn € N, an42 = %
n
P
d’oli, par récurrence : az, =0 et azpr1 = N E— 1T ((2p — N2 +1).
P P (2p+ )
Réciproquement, par d’ALEMBERT, le rayon de cette série est bien R = 1 car si up = azp L1x?P+! on a
+oo
1111 ’JD— = |x|?. En remontant les calculs précédents, la fonction : g : x Z azp £1x%PH 1 est solution
p—+oo =0

de équation différentielle (E) et elle vérifie bien g(0) = 0 et ¢'(0) = 1 donc f = g par le théoreme de
CAUCHY-LIPSCHITZ et f est bien DSE sur | — 1; 1] avec le développement ci-dessus.

+oo
10.35) a. Les fonctions x — (1+x)* sont DSE sur | —1;1] avec ¥x €] —1;1[, (1+x)* = > <“)xn orici a = —%
n

n=0
o (*%)X(*?X”'(*m;) (—1)™(2n)!
donc <n> = o = Zzn(n!)z = an.

10




| 2n+42
b. Sivne N, b, = L—i_;)', on a Vx € R*, b“'HXZn (2n+3)(2n+2)x2 = 2(2n+3)x2 — (4x?)*T.
(n!) bnx (n+1)? (m+1)

D’aprés D’ ALEMBERT, on a convergence si |x| < % donc R > % et divergence si |x| > 1 done R < % :R= %

-1 !
De plus, pour x € ] -1 [ onax(1—-4x?)Z = (z—n)z'xz’l“ qu’on peut dériver (on le peut a l'intérieur

2’2 nso (n!)
=
de 'intervalle ouvert de convergence) pour avoir la relation f(x) = ( (1—ax*)7Z ) =—1
(1

— 4x 2)%
d’

e Il y a divergence quand x = +R car (|bnR2“|)n> croit (au moins a partir d’un certain rang) d’apres b..

| 2n / 211
e Ou aussi par STIRLING : ;—’}1 = (2n +1)(@2n)! ~ (2n)(2n) I ~ 2 /™ qui ne tend méme pas
[e%e) T

ZZn(n!)Z +o0 ZnZZn 2“(27m)

vers 0 donc > bpRZ™ et S (—1)"b,,R?™ divergent grossiérement.
n=0 >0

10.36| a. Le rayon vaut R = 1 par les méthodes habituelles. Par RIEMANN, la série converge quand x = 1 et
quand x = —1 donc le domaine de définition D de ¢ est [—1;1].

n+1
b. En posant u,(x) = 7‘27], on a |[unllee,[—1,1] = A — et 37 —— converge donc 3 u, CVN sur
n- — n® —1 n>2mn - 1 n>2
—1] et comme toutes les u,, sont continues, ¢ est continue sur [—1;1].
1] et toutes 1 t ti t ti 1:1

Si x €] - 1:1] . ! ! (= 5 S g
ix — 1;1[, comme = — ,ona @(x) = — onc
n? 2n—1) 2+ ¢ 22 —1) =2t
+o0 — +00 n+1 2 2
x> x" 1 x X x X X 1
=X - X =X in(1—x)+24+%2 +ina—x).
o() =73 {:n z( 2 =On—|—1> P U A R e L U
x (1 +X)(] _X> . o s .
On adonc Vx €]—1;1], o(x) = —|— + s In(1—x) et par continuité de ¢ sur [—1;1], on obtient
N lim o) = 3 et o(—1) = 5* ED™ i o =1
(P()—nzzzznz_1—x_1>T]T17(PX—4e(P(— _nZ::Z le—1 _x—}m+(px_4.
10.37 ] a. Il s’agit d’une récurrence simple car u; =1, uy = % et si 1 < un < 2 pour un entier n > 2, alors on a
simplement 1 < 1+ %_H Supgr <1+ i] 2w =T, upy = % puis hérédité simple.

On en déduit successivement que :

o lim up=1lcaru, =1+ 2un_1 =1 t (2un—1 — 1)n>1 est bornée.
n—+oo
eu, — 1 ~ 1 car Uy — 1= Zun =1 et (2un—1 — 1)n>1 tend vers 1.
oo N n
*1+1+ +o<1)carunf1flzzwetqueun1—1~17~1.
n n n con—1+comn
b. Le rayon R de cette série est entre ceux des séries >, x™ et Y. 2x™ donc R = 1. Ou alors up ~ 1 direct.
n>0 n>0 +oo
—+oo +oo +oo +oo
Pour x €] —1;1,ona §'(x) = > (n+ Nuppix™ = >, (m+1)x™+2 > upx™ — > x™. On reconnait la
n=0 n=0 n=0 n=
série géométrique et sa dérivée donc S’(x) = % + 2S(x) =2S(x) + —=%

C1—x

(1—x) (1—x)*

X 2t
Classiquement avec variation de la constante : S(x) = % +e2x fo (]teit)zdt et on peut aussi en déduire que

S est DSE sur | — 1; 1] par produit de CAUCHY et intégration des fonctions DSE.

c. D’apres a., comme Un = a+ 2+ O( ) JA >0, Vn > Up—1— l‘ < AZ En sommant ces inégalités
n n? n
1 2
apres les avoir multipliées par x™, on obtient : Vx €]0;1[, |S(x) — 2~ ]7 +1+m(1—x)| <A > %5
- n= 1“

11



+o0 n
> %5 est bornée au voisinage de 1~ donc S(x) —
n=1 Tl — X

(1—=x) = o(1).
10.38 ) a. f est clairement continue donc f est de classe C', etc.. : récurrence sur la classe de f.

b. Sif est DSE (avec rayon R > 0) et solution de I’équation différentielle, alors Vx €] —R;R], f(x) = Z anx™

+o0o
On remplace dans 1'équation et on trouve : Vx €] —R;R[, > ((n + 1)ant1 — aan —A™an )x™ = 0 donc par
n=0
n
unicité des coefficients dans une série entiere de rayon strictement positif : Yn € N; app1 = oc—:_?\] an.
n

Réciproquement, si on définit f par f(x) = Z anx™ avec la suite (an)nen vérifiant cette récurrence et par

exemple ap = 1, on a bien R = +o0 avec d’ ALEMBERT et f est solution de ’équation en remontant les calculs.

c. Soit f € E tel que f(0) = 0, alors f'(0) = of(0) + f(0) = 0 et, plus généralement, par récurrence :

¥n e N*, £ (0) = af™(0) + AW (0) = 0. Soit a > 0, alors si on note M, =  Sup  |f(P)(x)], on a avec

x€la—;a]
(x)— i ) < @™ My
k=0 k,' (n -+ ])'

Vn e N, Vx € [—a;a], f D (x) = af™ (x) + A" (Ax) done M1 < (+1)M,, et done My, < (a4-1)"Mo.
k

Ainsi : Vn € N*| ¥x € [—a;q], |f(x) — i () o™ (1) Mo

=0 K! (m+1)!

+oo. Ainsi, f est DSE sur [—a; a] et f =0 sur [—a; a] pour tout a >0 : f=10 sur R.

d. Si g est une solution quelconque de I’équation, alors posons h = g — g(0)f ol f est la solution DSE de la

question b. valant 1 en 0. Comme h est de classe C*> et vaut 0 en 0 par construction, on a h = 0 d’apres la

question c. car h est solution de I’équation aussi. Ainsi g = g(0)f : E = Vect(f).

10.39 ) a. Le critére spécial des séries alternées prouve l'existence de f(x) si x €] — 1;+o0].
pl(=1)e p!

(x +n)PH! (n+p)Pt!
convergente d’aprés RIEMANN ; d’aprés le théoréme de dérivation terme & terme d’une série de fonctions et

par récurrence (comme il y a convergence simple pour f) : f est de classe C° et on a les dérivées successives
)n+p—1

I'inégalité de TAYLOR-LAGRANGE : ¥Vn € N* Vx € [—a;d],

. Mais puisque

‘ < qui tend vers 0 quand n tend vers

Pour B > —1 et x €Jp;+o0[, on a qui est le terme général d’une série

sous forme de séries de fonctions : Vp € N, Vx €] —1;+oc[, fP)(x) = Z 13(744
n=1 (X+n)p

(k) 4oo (_1\n—1 k+1
b. Pour x €] — 1;1[, comme f k'(O) = (=1 % =ap = (— )k221<7+1_zﬂ(k+ 1) (classique), alors
n=1 N
n 1 (_1)71—] P (_kak
pour p € N : ‘f( ) — Z axx ‘ = ‘ ( x—|—n — - P k )‘ ce qui amene la majoration
(1! 1= (/) IS B i
_ — (=1 n—1 )) _ p+1 < d’ot
£(x) zakx\ \ ( ) e, P X | S gy ot
la convergence vers f vers sa série de TAYLOR. On peut aussi utiliser TAYLOR reste intégral.
c. On a facilement : Vx > —1, f(x) +f(x+1) = % donc, comme f continue en 0 et f(0) = In(2), on
+oo (_])n
a f(x) ~ ——. De plus, f est décroissante sur | — 1;4o00[ car f'(x) = ) ———5 < 0 ce qui justifie
-1+ x +1 n=1 (X-I—TL)
AT 1 1 1
= — < < - = — ~ —,
I'inégalité ¥x > 0, f(x) + f(x + 1) 11 S 2f(x) < . f(x) + f(x — 1) donc f(x) fodtw

10.40| Le rayon vaut R = 1 par d’ALEMBERT car ln (1 + l) o L v a convergence en —1 par le CSSA et
n/ +oom

divergence en 1 car alors le terme général de la série est équivalent a 1. Donec convergence sur [—1;1[. Par le
n

1
n (1+ )xp‘ <ln (1+ )x““ <1+ )< 1
S n+1 +1 n

donc il y a convergence uniforme sur [—1;0[ et donc continuité de la somme sur [—1;1].

CSSA, si x € [~1;0], Vn € N*, [Rn(x |_‘
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En1*,onencadreln(1—|—l) :—ln(l—nl]) > n—1|—1 et ln(]—f— 1)

Py x" py x" 1
) zm(1+) = f(x) < . X done L(—1n(1 —x) = x) <f(x) < ~1n(1 = x). En terme

< 1 ainsi, six € [0;1], on a
n

n:1n+] n=1 n:1n+1
d’équivalent, cela donne : f(x) ~- In(1 —x). De plus, déja vu cette année en TD : f(—1) = In (;)
- m
, (. (—1)n! (—1)n! 1 .
10.41 | D’abord la série )  ~—5— converge car ~—5— = O( ) et on utilise RIEMANN (2 > 1).
n>1 n n +oo n?
2 k-1 2k—2 2k—1
-1 (=1 (=1 S 1 S
Depluspourn}honaz( 72( + ):Z - > en
’ =K (2k—1)? (2K)° = 2k=1)7 (& (k)7
n
séparant les termes d’indice pair et ceux d’indice impair. En notant S = > 1 la somme partielle de la
k=1
2
série de RIEMANN pour « = 2, on sait que lim S, = ((2) = &
n—+oo 6
Alors 5% CFL )DEENEPE i R S RS . Is d
ors — 4 — = — — = Son — =Sn qui ten
= K k=17 T E 207 & 20T &S TS (k)7 " "
i T e DA
vers ° en +00. Ainsi nz::1 T3
In(l+x) . .
Soit f définie sur [0;1] par f(0) = 1 et f(x) = six > 0 ; f est DSE donc continue sur [0;1] car
x
1 400 (_1)11—1 400 (_1)11—1
Vx €]0;1], f(x) = = =3 X"~ (valable pour x = 0 (clair) et x = 1 (classique)).
X n=1 n=I1 n
Pour n > 1 et x € [0;1], [Rn(x)| = Jrf:o ¢k1‘< <7donc||R I <1 o0
= sy I IBn - W K Tl-i—]\ +1 nooO]]\n+]

ce qui garantit la convergence uniforme de la série de fonctions sur [0; 1] donc la continuité de f sur [0;1] (et
la formule pour x = 1 aussi d’ailleurs). Par convergence uniforme sur un segment, on peut intégrer terme &

e R T ey 3 (T ) 5 G
terme : fo . dx-fo nZ::1 X dx-né:] fo X dx —né:] 2 =15

(10.7 Exercices aux oraux des étudiants de PSI1)

n
10.42| a. Pour p > 0, si P est de degré d, la suite (M) . tend vers 0 par croissance comparée car
n: ne

P(n) = 0(n4) donc P(n)p™ = o(p+1)™) = o(n!). Ainsi 3 Pn )z est de rayon R = +o00.
+o0 +oo +oo n>0 n!

b. La famille (1,X,X(X —1),+-+,X(X =1)--- (X — d + 1)) est une famille de polynoémes de Rq[X] de degrés

échelonnés, elle est donc une base de Rq[X] grace & la dimension.

Si deg(P) =0, alors P =ap € Z. Si deg(P) =1, alors P = a1 X + ao avec ap et aj entiers.

Si on suppose que pour un entier d et P € Z[X] de degré inférieur ou égal & d, on a P = i ax k]:f (X =1)

avec ao,- -, aq entiers, alors soit Q € Z[X] de degré d + 1. On écrit Q = agr1 X4+ + -f;i)/ec (:31 € Z,

alors Q — ag+1 ﬁ (X —1i) est un polynéme a coefficients entiers de degré inférieur & d qu’on peut écrire par
0 d k—1 d+1 k-1

hypothese de récurrence > ax [] (X —1) avec des entiers ap...,aq. Ainsi Q = > ax [[ (X—1) ce qui clot
k=0  i=0 k=0 i=0

la récurrence.

+oo P( ) d +o0 1 k=1 d +oo 1
Ainsi 3, 2 z z ax H( D=3 ak< > L H(nfi)) =Y ak 3~ (somme d'un
n=o ™ k=0  ‘n=k ™ i=0 =0  n=x (m—K)!
400 P(n) 400 1 d
nombre fini de séries numériques convergentes) donc =2 ak ) T = ( > ak)e € Ze.
n=o ™ =0  n=k (mM—k) k=0



10.43] a. fn : x — anx™ est continue sur [0;R] et [|fn||s,0;r) = |an|R™. Par hypothese, la série ) |an|R™

n>0
converge donc Y f, converge normalement sur [0;R] et f est donc continue sur [0; R], donc en R.
n=0
; . ; . _ 1 T1—x) _ 1
b. f est continue sur ]0;1[. Si x €]0;1[, on a f(x) = ;ln (m) = ;(ln(] —x) — In(1 + x)) donc

f(x) ]f\:ln(l —x) ~ o( 1 ) et f est intégrable sur B;l { f(x) =

1
1- VvV1—x 0 X

1
continue sur [0; 1] en posant f(0) = —2 : f est intégrable sur [0; %] Par conséquent : fo f(t)dt converge.

(—x—l—o(x)—x—l—o(x))rg—z et f

+oo 2n+1 too 2n
1 1—x 1 2 X

P €)o;1[, f _—1( >_—11 In(1 + = = -2 . 0

our x €]0;1[, f(x) L i x( n(l —x) —n(1+x)) SP U e ngzo P na
d v 0;1], f(x) =-2 3 X" P 1 = — 20

. . . : .

onc : ¥x € [0;1], f(x) n§:O 57 Fosons alors gn : x ]

Les fonctions g, sont continues sur [0;1] et > gn converge simplement vers f qui est continue sur [0;1].

n=0

t > 5 converge. Par le théoreme d’intégration terme a terme, on

1
2 2
De pl S .
¢ P f |9n| (2 +1)2 ¢ n>0 (Zn )

en déduit que f est intégrable sur [0; 1] (ce qu’on savait déja) et que f f= Z f gn = — ﬁ
n
7'[2 / . . . too 1 7_[2
c. Comme ((2) = -, en séparant les termes pairs et impairs, on montre que Y ————5 = . Pour
6 n=0 (ZTI + ]) 8

x> 1,f(x) = iln (X =1 ) = i(ln(x—])—ln@ +x)) donc f(x) ~ In(x—1) ~ o( 1 ) donc f est intégrable

T+x vVx —1
sur ]1;2]. f(X):]<1n(]—]> <1+ )) = 1(—1+0<1)—]+0(])> ~ %doncfestintégrable
x x +oo X x x/  x x/ | o0 x
1
sur [2;+o0o[. f est donc intégrable sur |1;4+o00[ d’olt sur |0; 1{U]1; +00] ce qui permet d’écrire f;) f(t)dt.

+oo
Dans f] f(t)dt, on effectue le changement de variable t = — = @(u) avec ¢ qui est une bijection strictement

1
u

= ) (e
1
Enfin : f]+oc f(t)dt = Louln (; _1]) ( — #)du = fol f(u)du. Ainsi : f0+oo f(t)dt = Zf(: f(t)dt = —7(72.

o

+oo
décroissante de classe C' de ]0; 1[ dans ]1; +oo] : j‘] f(t)

1+
w
10.44 | a. Comme la suite (ﬁ) est décroissante et tend vers 0, par le critéere spécial des séries alternées,
n n>0
la suite (an)n>o0 converge donc a, = O(1). Ainsi, 0 = O(l) et comme le rayon de convergence de la
~ +oo n! +oo n!

Tl
série Y X T vaut +o0o, on en déduit que le rayon R de la série > ’?x“ vérifie R > 400 donc R = +o0.

nxo M nxo M
¥ ; R G DA kg — - e = [ 1= (=™
b. Avec I'énoncé, a, = Zo o kZ:: (-1) fo thdt = fo (kgo(ft) )dt = fo Tdt par
1
linéarité de l'intégrale. Comme fo ]dﬁ = [In(1 + t)]} = n(2), par inégalité de la moyenne, on majore
n+1 +1
lan — In(2)| = ‘f T +t ‘ = /s ]n_|_t f tHlat = % Par encadrement, liT an = In(2).
n——+oo
+00 n o0 _ n
c. Méthode 1+ pour x € B, [g(x) ~1n(2)] = [e” x5 dnnexp(0) D= 8 (an = In(2))"
n=0 n! n=0 n! n=0 n!
n
donc, comme |an — In(2)] < —1_ gapres b., [g(x) —In(2)| < e ™ Z M‘ <e ™™ Z X
n+1 o n! s (1)
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Ainsi, [g(x) — In(2)| < e —Ff:c 1= one lim g(x) = In(2) puisque lim 1= e
x Zo(m+1)! X x——+00 x—+oo X

=0.

Méthode 2 : (méthode générale des que la suite (an)n>o est convergente) Ecrivons a,, = In(2) + v avec

lim = 0. Comme ™ = o(i'), le rayon de Y T—T}x“ vaut aussi +oco. Comme tout converge, en
n: n.

n—+oo n! +oo >0
oo T xn . oo lTl(Z)

notant h(x) = > 25—, puisque }_ —x = 1n(2)eX, g(x) = (In(2)e* + h(x))e™™ = In(2) + e “h(x).
n=0 ™ n=0 ™

Montrons que liT e *h(x) = 0. Soit ¢ > 0, il existe np € N tel que Vn > ng, |rn| < £. De plus, comme
X—>+00

N

Mo n no n
lim e % X — 0 par croissances comparées car x — > X et polynomiale, il existe xo € R4
X—+4-00 n=0 n! n=0 n!
Mo n Mo +oo n
_ . _ _ _ Th|x
tel que ¥x > xo, exzfnf g%. Six > xo, |e Xh(x)|§e"2rnX +e ™ %gecar
n=0 T n=0 n! n=ng-+1 n:
—+o0 n “+oo n +00 n
Tn|x N _ .
[t e ooxogt X_ =% dott lim e *h(x) = 0. Par somme lim g(x) = In(2).
n! 2 n! T2 12 x—+00 X—+00
n=no+1 . n=no+1 . n=0 '*
An+1
(=1)"x

10.45 | Cette série converge par le CSSA. Il est clair que le rayon de convergence de la série entiére > y——
n>o0 n
+oo (_])nx4n+1

est égal & R =1. On pose donc f(x) = 3 pour x € [—1;1] (cil y a convergence aux bornes).

n=0 4T1+1
+oo 1
On sait que f est de classe C* sur | — 1;1[. Pour x €] — 1;1[, f'(x) = >_ (=1)™x*" = T
n=0 x

Comme 1 +x* = (14 2x* +x%) —2x? = (x> — V2x + 1)(x? + v/2x + 1), on peut décomposer en éléments
1 _ f( —x+ V2 L x4+ V2 )

simples cette fraction rationnelle : T vl T Tt

ﬁ( —2x+ /2 2x+ V2 ) 1( 1 1 ) o
Y= + + = + et il vient alors
)= Vit V1) T NV - E 1 (xR ST

(x
V2 1 ’
/(x) = —{—ln(x —V2x 1)+ In(x? +\fx—|—1)} —|—2—\[Z[Arctan (V2x—1) + Arctan (\ﬁx—}—])] . Comme
f(0) = 0, on a donc en intégrant (sur un intervalle), pour un réel x dans | — 1;1[ :
(x):\[[ In(x? —vV2x +1) +In(x*> + V2x + 1)| + ﬁ{/\rctan(ﬁx—])—l—Arctan(ﬁX—Fl)}.
Comme f est continue en 1: (1) = xliql f(x) = % In (; i_ g) +2\]7 [Arctan (V2—1) +Arctan (\ﬁ-i-])}

+31) = ‘[ n (342v2) +

Ainsi :

N

ce qui donne f(1) = \Sﬁln (3+2v2) + 2\[{ \[2

10.46 ) a. L’équation homogene (Eo) : In(x)y’ + 2 = 0 a pour solutions les fonctions yy : x . 7E ] sur |0; 1] et
x n(x

est x = In|In(x)|. Par variation de la constante,

sur |1;+oo[ avec A € R car une primitive de x —

xln ( )
on a comme solutions de (E) les fonctions yj, : x — ’{"E}S sur |0; 1] et sur |1;+oo[ avec A € R.
b. g se prolonge par continuité en 0 en posant g(0) = 1. De plus, g est de classe C* sur | — 1;4o00[ car
o0
elle est développable en série entiere sur | — 1; 1] avec g(x) = W+ _ > (71)“% (vrai méme pour
X n=0 n

x = 0) et qu'elle est de classe C*° sur R par opérations. On constate aussi que la fonction g ne s’annule
pas sur | — 1;+o00[ car In ne s’annule qu’en 1 et que g(0) =1 # 0.

c. Siy est une solution de (E) sur ]0; +oo[, d’apres la question a., il existe deux constantes réelles Ay et
A2 telles que Vx €]0;1], y(x) = Xl—’—ih et ¥x €]1;+oof, y(x) = 222 Or la continuité de y en 1 impose
n

(x) n(x)
_ _ . . _x=1 _ 1 : _ _
A1 =A2 = —1. On a alors Vx €]0;1[U]1; 400, y(x) o) e =) Mais comme y(1) =1 et g(0) =1,
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on a donc Vx > 0, y(x) = Réciproquement, cette fonction y : x est de classe C>® sur

1 1
glx—1) glx—=1)

R d’apres la question b. et solution de (E) d’apres la question a..

10.47) a. La suite (ﬁx“) est bornée pour tout réel x par croissance comparée. Ou alors, si x # 0,
nenN

‘(Zﬁij_]g)!x”“ X (ZT;:_ )! ‘ (Zn(T—Li——iZ_) ()2|;|+ 3) tend vers 0 : le rayon de convergence est R = +00.
b. On sait que: vy € R, sin(y) = 5% S gy = 5F w2
. Un sait que : € R, sin = ——————— el s = .
due = vy Y= L T n ) Y= Lot

+oo 2n+1
c. Le rayon de convergence de X" ost oo, Pour x > 0, ®(x) = \Lf > (vx) sh (v/x)
n> X

b (2n+1)! — 2+ WX

+00 n 2n+1 .

, . . 1 ( 1 ) (\/ —x) stn(\/ —x)

d b.. P t 0, ® = > = . Et ®(0) =1
apres ar contre, si x < 0, ¢(x) \/7 ) 2 i \/7 (0)

+oo

d. Posons f(x) = Y ﬁx“ pour x € R. Par dérivation d’une série entiere sur le disque ouvert de
—0 n :
+ oo n—1 +oo n
convergence : Vx € R, x®'(x) = an::1 nﬁ = Z ﬁ = f(x).

Ainsi f(0) = 0 et Vx > 0, f(x):X(Sh\(/\é;)> \[Ch(\[zzf sh(\/g).
(/) /ey = sy
V—x 2v/—x '

10.48 | a. Pour dénombrer les permutations qui ont k points fixes exactement, on choisit ces point fixes ce qui fait

De méme, Vx < 0, f(x) = x(

(k) choix et on doit ensuite choisir une permutation des n — k éléments restants sans point fixe, au nombre

n
de An_k,0. On obtient donc A\ = (k) An_x,0-

AnO n

b. Comme on a 0 < Ap o < n! donc 0 < A*“"Q < 1. Ainsi le rayon R de la série entiere iz est
n: n>0 n.
supérieur a celui de Y z™. Par conséquent R > 1 donc f(z) = E *Pz converge si |z| < 1.
n>0 n!
n
c. On partitionne O, selon le nombre de points fixes de la permutation et on obtient n! = > A«
k=0
sachant que A, 1 = 0 clairement. Comme le rayon de la série exponentielle est égal a +oo, pour tout

complexe z tel que |z| < 1, par produit de CAUCHY de deux séries entiéres, on obtient la relation suivante :

e2f<z>=<+z°:° ”)(z )=§°<iokﬁ;;_kﬁ)> = S — o Done ) = £

on! n=0 -z -z

Si on avait R > 1, alors le rayon de convergence de la série produit de CAUCHY serait au moins égal a R

d’apres le cours or il vaut 1 (série géométrique). Par 'absurde, on a donc R = 1.

. . “+o0 (7])1’12}1 —+o00 " “+oc0 n ( ])k
d. Encore un produit de CAUCHY et si |z| < 1: f(z) = | > ~—+— >zt => 1 > o

n=0 n! n=0 n=0 \ k=0

n (_1\k
donc, par unicité des coefficients d’une série entiére de rayon non nul : Vn € N, A, o =n! > ( k]') .
k=0 X
1 1 n—1 1n—1 1
10.49 | a. Par inégalité de la moyenne |an| = — f t J] (k= f IT kdt < - dés que n > 1. Comme
nlJo 5 KT n

n
le rayon de la série > *— est égal & 1 (série logarithmique), alors R > 1.
n>l n

n—1 n
b. Soit x €] — 1; 1], si on pose un(t) = ( IT (t— k)) X—, alors on a vu que si n > 2, on avait la majoration
k=0
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x[™

YVt e [0;1], Jun(t)] < donc la série Y converge normalement sur [0;1] et on peut intervertir terme

( 7]) n=0
n—1 1
& terme de sorte que S(x Z f un(t)dt = f Z ( IT (= k)x“) dt = f (1 +x)tdt (série entiere a
Mo 0

(+x)" } — X
m(1+x)lo  n(1+x)

connaitre par ceeur). Ainsi, S(x) = [

C a1 ti LM T k—aes L [0 -0 T k- 1)a !
. . = — t —t)dt — t(l —t - t=—F—"—.
c. Comme & la question a., on a |an| 0 fo k];[1( )dt > 0 fo ( )kl;lz( ) yrye—

n
Comme le rayon de la série Y x vaut aussi 1, on a bien R = 1.

n>2 dn(n—1)
10.50 a. Soit f :] — 1;1[x[0; 1] — R définie par f(«,x) = w avec la valeur f(oc, %) = « qui est un
COos(X

prolongement par continuité puisque lim cos(x) =0 donc, si « # 1, In(1 + acos(x)) ~ acos(x).
x—7/2 /2

o Vx € [0;7], o +> f(o,x) est de classe C! sur | — 1;1] (méme si x = 72l)

1

o Vo €] — 1; 1], les fonctions x — f(a,x) et x — aa—;(oc, x) = sont continues donc intégrables sur

14+ occos(x)
[0; 7] car g—;(oc, n/2)=1= ] —i-]oc.O donc g;(oc,x) = H—cx]T(x) est valable pour tout x € [0;7].
7T

On en déduit que I est de classe C' “11fet que (o) = [ —dx

n en déduit que I est de classe C' sur ] [ et que I'(ex) fo T+ acos(x)
On pose x = 2 Arctan(t) dans cette intégrale et on obtient classiquement I'(a) = f+oo Zdt .

0 T4a+(1—at
2 1 e
On calcule encore et on parvient & I'(a) = —(—52— [Arctan (t — & )} =0
V1—o? T+« 1—o?

b. Comme f(0) =0 et que | — 1;1[ est un intervalle : Vo €] — 1;1[, I(er) = wArcsin(a).

c. On connait le DSE de o — 1
1—«

qu’on intégre pour trouver celui de Arcsin et on a (c’est presque du

. T (2n)! 2 1
cours) : Va €] — 1;1], I(«) = mArcsin(e) = ngo W o™ 1. Le rayon de convergence de cette

série entiere vaut 1 soit parce qu’on le sait, soit en utilisant comme dans le cours la régle de D’ ALEMBERT.
On aurait aussi pu faire cette question indépendamment des résultats précédents en écrivant, puisque

+oo (__1\n+1 n n
acos(x) €] —1;1] pour « €] — 1;1] et x € [0;7], la relation In(1 + acos(x)) = >, (=)™ cos () .Ona
n

—_

T Foo (_]>n+1
sin > 1. Comme il

n=

n—1 n 1 \yn+1 n—1 n
cos™ (%)« dx. On pose fn(x) = (=)™ cos™ ' (x)
n n

donc I(a) = fo
n=1

n n
est clair que |[fn|oo,j0:n] = o™ Y o™ converge. On a donc convergence normale de > f, sur le seg-
n >1 N n>1

+o00 e +o00 1 \yn+1 n—1
ment [0;7t] donc Voo €] — 1;1[, I(e) = > fo fn(x)dx = > Ina™ en notant I, = j;)n (=1) cos™” (x)
n=1 n=1 n

dx.

Ceci prouve que [ est développable en série entiere avec un rayon supérieur ou égal a 1.
Comme cos(m — x) = —cos(x), par le changement de variable x = m — t dans l'intégrale, on a Ipn = 0
2Won (Zn)

et ny1 = e ou Wo, = m est la classique intégrale de WALLIS. Ainsi, par STIRLING ou

. 7T . 4
directement WALLIS, |Ion4+1] ~ 2#/2 et le rayon de convergence vaut 1 par croissances comparées.
+oo 2n

“+o00
10.51) a. Vx €] — 151, f1(x) = LI > x™ et on dérive p — 1 fois (on le peut terme & terme & lintérieur
n=0

1T—x
de lintervalle ouvert de convergence), sachant que fgp_l)(x) = ((]p — ]))p par une récurrence tres classique :
— X

)
Vx €] —1;1], ((}9_7@ Zo L)x et on divise par (p — 1)! pour avoir le développement attendu :
n=
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Vx €] — 1;1], fp(x):ﬁ: b5l (“+p_1)x“= ) <n+§_1>x“: ) (p*_‘]>xn—v+1.

n=0 p—1 n=0 n=p—1
b. Pour p > 0, il suffit d’écrire que Vx €] —1;1], fp42(x) = fpp1(x) x f1(x) qui s’écrit aussi d’apres la question

+oo +oo +o0
précédente : (n e >x“ = ( > (n + p)x“) X ( > x“). Comme les séries intervenant dans cette
n=0 P+ 1 n=0 n n=0

T /m 1 too 0k

formule sont absolument convergentes, on sait que Vx €] —1;1[, > ( tee >x“ =3 ( > < ip>)x“
n=0 n n=0 ‘k=0

par produit de CAUCHY. On peut identifier car le rayon commun de ces séries vaut 1 > 0 et on obtient donc

nook 1
Ve N, Vne N, Y ( + p) = <n trt ) (déja vu par ailleurs par récurrence).

k=0 \ Kk p+1
4an
10.52| Pour x € R, par croissances comparées, on a ( X ) bornée si et seulement si |x| < 1. Ainsi, par
In+1/nenN
4n
définition du rayon de convergence R de X __ onaR=1. Pourx=Il, X = 1
y & n§O4n+] n§04n+1 n§O4n+1
+oo 4n
diverge par comparaison a la série harmonique. Posons g : x — 4X T le domaine de définition de
n=0 N
+oo X4‘n+1 . .
g est donc Dy =] — 1;1[. Pour x €] — 1;1[, f(x) = xg(x) = et on sait d’apres le cours que f
+oo 1
est de classe C*® sur | — 1;1[ avec f/(x) = >, x™ = s Comme 1 —x* = (1 —x)(1 +x)(1 — x?),
n=0 -X
la décomposition en éléments simples de —— est —— = —& 4+ b &x+d By identifiant par
P P 1—x* [ T R P

1 1

1 1 I
4(14+x) 201 4+x%)

exemple, ontrouvea:b:i,c:Oetd:%. Ainsi, Vx €] —1;1], i a0 —x)+

_ _ !/
Ainsi f'(x) = tn(1 +x) 2 tn(1 = x) + Arct;n(x)} , comme f(0) = 0, en intégrant, sur l'intervalle | — 1;1],
on aVx €] — 1:1], f(x) = In(1+x) ;ln(] —x) n Arct;m(x).

On en conclut que g(0) =1 et que Vx €] — 1;0[U]0; 1], g(x) = L in

14+ x) Arctan(x)
4x ( + '

1—x 2x
10.53 | a. Pour n > 1, on partitionne les involutions o de [1;n + 2] en deux catégories :

- celles pour lesquelles o(n 4+ 2) = n + 2 sont au nombre de I,, 47 car il n’y a pas de choix & faire pour

o(n+2) qu’on impose égal & n + 2, ensuite o induit alors sur [[1;n + 1] une involution de [1;n 4 1].

- celles telles que o(n +2) = k # n + 2 sont au nombre de (n + 1)1, car pour les choisir de maniere

bijective, il y a n + 1 choix pour 'entier k qui est I'image de n + 2 par o et, une fois ce choix effectué,

cela implique que o(k) = o(oc(n+2)) = n+2 car o doit étre une involution, et on a alors I, choix pour

finir de déterminer o qui doit induire sur [[1;n+ 1] \ {k} une involution de cet ensemble & n éléments.

Cette partition implique la relation I 42 = Iny1+(n+1)In pourn > Tet, comme, =2=1+1.1=1;+1.1p
avec la convention choisie pour Ip, on a bien : ¥Yn > 0, Int2 = a1 + (n+1)1,.

b. Comme les involutions sont des permutations et qu’il y a n! permutations de [1;n], on en déduit que

I, <nldouo < I—T‘; < 1. Comme la série entiere Y x™ a pour rayon 1, par comparaison, on a R > 1.
n!

n=0
c. Les calculs qui suivent sont valides car le rayon de convergence R est supérieur a 1 : pour x E] —1;1[,on a
+
I +nl
(T+x)e(x) = e(x)+xe(x) = 3 n“+z( - ) 1+27“‘ 1+z “+' = ¢'(x).
n=

d. On en déduit en intégrant I’équation différentielle linéaire du premier ordre mise sous forme normalisée
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2
sans second membre, comme une primitive de x — 1 4 x est x — x + x7 sur l'intervalle | — 1;1[, que l'on a

2
Vx €] =151, o(x) = ST puisque ¢(0) = Ip = 1 par convention.

—+oo . +oo X
e. Alors Vx €] — 1;1], o(x) = <Z .1',&) ~ (Z .,121"‘2])' Ces deux séries ont pour rayon +oo donc on
i=0 b j=01:

+oo |
( n!

peut effectuer le produit de CAUCHY et obtenir S(x) = Y )x“. En identifiant (par unicité)

n=0 \it+2j=n ilj12)
les coefficients entre les deux expressions de S(x) sous forme de série entiere, Vn € N, In _ - _1 -
Tl' i4+2j=n 1')'2)
| [n/2] .
donc I, = nJ Puisque 2j <n et i =n —2j, on a la formule I, = Tlij
i+2j=n 112 j=o (n—2j)l2

Pour expliquer cette relation de maniére combinatoire, on peut constater qu’'une involution o de [1;n] est
une application telle que pour tout entier x entre 1 et n, on a deux choix :

e 50it o(x) = x et x est appelé un point fixe de o.

e s0it o(x) =y # x et alors, comme o2 = id [1,], on a forcément o(y) = x.

Ainsi, si 0 € Ay, le nombre f de points fixes de o a la méme parité que n de sorte qu'il existe 2j entiers de
[n/2]

[1;n] qui ne sont pas fixes par o avec f =n —2j avec 0 < j < {TZLJ . On peut donc écrire A,, = U An,j ou
j=0

An;j = {0 € A, | 0 admet f =n — 2j points fixes}.

Pour construire une involution o de A, ; :

e on choisit les n — 2j éléments de [[1;n] qui sont fixes par o : ( " 2.> = <;) choix.
n—2 )

e on choisit I'image y du plus petit élément x qui reste : (2j — 1) choix (et alors o(x) =y et o(y) = x).

e on choisit I'image t du plus petit élément z qui reste : (2j — 3) choix etc...

! 29)!
Ainsi card (Anj) = n X(2j—1)x(2j—3) x---x3x1 = n X ( .)) en multipliant en haut et en bas
’ 2j (m=2)12j)! 25!
[n/2] [n/2] |
par les termes pairs qui manquent. On retrouve bien I, = card (A) = > card(An;) = > (7217)'2“
j=0 j=0 (n—2j):2%):

10.54 | a. Comme tan est strictement positive sur }0; % [, Vn >0, un, > 0. De plus, Vx € }0; % [, 0 < tan(x) < 1

donc tan™1(x) < tan™(x) et un41 < un en intégrant. La suite de fonctions (tan™)n>o converge simplement

vers la fonction nulle sur ]0; Z‘l [ et on a la domination par la fonction constante égal a 1 sur I'intervalle. Par

théoréme de convergence dominée, on a liT un = 0. Ainsi, par le CSSA, Y (—1)™u, converge.

n——+oo n>0
/4 t(lTLnJr] x)77/4
b. Comme tan’ = 14tan?, on a up 2 +u, = j;) tan™(x) tan’(x)dx = {Tp}o = %_'_] Comme
Unt2 S Up, 0N a2uy 2 up +uny2 = ﬁ Comme la série harmonique diverge, la série > uy diverge
n n>0
donc R < 1. Mais Y (—1)™u, converge donc R > 1. Enfin : R=1.
n>0

A 2 b ~ . 7
c. A nouveau, Y (—1)™ u, converge d’aprés a. car n? a la méme parité que n : R’ > 1.
n>0

d. Six € — 1;1[, posons fn : t = tan™(t)x™, alors ||fn||oc,0;n/4) = [X|™ et D> |x|™ converge (série
n=0
géométrique). Ainsi, par convergence normale sur un segment, on peut intervertir série et intégrale et
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oo /4 /4 /4
avoir : f(x) = > fﬂ fn = fﬂ ( Z fn(t ))dt = fﬂ — 1 ___4t. On pose u = tan(t) et on a

= Jo 0 1T—xtan(t)
1 1 2
siqement 10 = [ (1 1
classiquement f(x) fo (=) +ud) j; T 1—xu+1+x T+u U+ T2 T2 u

en décomposant en éléments simples.

1
- 2x1n(2) — 4x1n(1 —x)
Ainsi f :L[At + X1 +u2) —xn(1 — }:“’L
insi f(x) T2 LA an(u) > n(1 +u?) — xIn( xu)o 2002
+oo
e. En posant Ry (t) = > (=1)*tan®(t),on aVt € [O; % [, 0 < tan(t) < 1 donc [Rp ()| < tan™1(t) par le
k=n+1
CSSA. En intégrant cette inégalité UHMR (t)dt‘ U“M( ] S (—1)Ft ())dt‘
. En intégrant cette inégalité : = _ = —
: & " T+tan(t) =0 o et
Ainsi ‘i(])k I ) C li — 0 déduit, ¢
insi : =)k — —& I <u omme lim u = 0, on en déduit, en posant a
=0 K 0 1+tan(t - n— ntl P
+oo /4
nouveau le changement de variable u = tan(t), que nZ::O(—U"un = fo T f;n(t) _nt Zgln( ) ~0,57.

n
10.55 ] a. Il est clair que 0 < W,, 721 donc le rayon R est supérieur & celui de la série entiére > % qui vaut
n>0

/2
clairement 1 donc R > 1. Par le changement de variable t = % — 0, on trouve W,, = fo sin™(0)do et on
sait, par concavité de la fonction sin sur [0; g}, que VO € [O; %], sin(0) > 20 Ep élevant & la puissance
T

n
i o - X
—2— donc R est inférieur au rayon de la série > —X—
2n+1) Y So2(n+1)

aussi classiquement 1. On a au final R = 1.

n et en intégrant, on trouve W, > qui vaut

b. Par le TCD (avec domination par 1), comme lim cos™(t) =0sit€ }0; E}, ona lm W, =0. Comme
n—+oo 2 n—+i

la suite (Wn)n>o est aussi décroissante par croissance de l'intégrale, Y (—1)"W, converge par le CSSA.
n=0

T - . . .
———— et que la série harmonique diverge, W, diverge.
2 (Tl + .l) q q g ngo n g

c. Soit x €] — 1;1[, posons fn : t — cos™(t)x™, alors ||fn||e jo;n/2) = [X|™ donc la série ) f, converge
n>0

Comme W,, >

1

——————. De plus, toutes les fonctions f,
1 —xcos(t)

normalement sur le segment [O; g} vers la fonction S : t —

et méme S sont continues sur le segment {O; %}, on sait que ceci implique l'intégration terme & terme (la

: : 1 /2
convergence uniforme suffirait) : > Wpx™ Z f t)dt = f S(t)dt.
n=0
On calcule cette intégrale par le changement de Varlable habituel issu des regles de BIOCHE (hors programme
+o0 1
¢ i 2du <y s .

néanmoins) u = tan ( ) et on trouve Whx™ = ui s’integre avec les techniques

) 2 nzo " fO 1—x—|—(1+x)uzq & 4

= 2 1 ! 2 1

usuelles en > Wpx™ = {7 Arctan ( + Xu)] = —=%— Arctan ( + X).

n=0 1 -2 1—x 0 1—x2 1—x

10.56| a. Si on avait lim sin(n@) = 0, on aurait alors lim sin((n + 1)0) = 0. Mais comme on sait que
n—-+00 n—+00
sin((n +1)8) = sin(0) cos(nd) + cos(0) sin(nd), on a sin(0) cos(nd) = sin((n + 1)0) — cos(0) sin(nd) donc
lim sin(0) cos(nB) = 0. Mais comme sin(0) # 0 puisque 0 €]0; [ par hypothése, lim cos(nd) =0. On
n—-+o00 n—+400
aurait alors liT (sin?(n8) +cos?(nd)) = 02402 = 0 ce qui est impossible puisque sin®(n8) +cos?(nd) = 1.
n—-+0o0o
On conclut ce raisonnement par ’absurde : la suite (sin(n8))nen ne tend pas vers 0.

b. D’aprés la question a., Y sin(n0) 1™ diverge grossiérement, comme »_ sin(n0)z" diverge pour z = 1,
n=0 n=0
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on a donc R < 1. De plus, comme |sin(nd)| < 1 et que le rayon de convergence de > z™ vaut 1, on déduit

n=0
du cours que R > 1. Au final, R=1.
c. Si|z| =1, on a |sin(n)z™| = |sin(nd)| d’ot D sin(nd)z" diverge grossiérement avec a..
n>0
+oo +oo _ _—in®
d. Sifz| <1, Y sin(n0)z™ converge absolument car R =1 et S(z) = > sin(n@)z™ = > %z“
= i

n=0

+o00 X
> (ze’le)“) avec DE MOIVRE donc on

n=0

+oo .
par la formule d’EULER classique puis S(z) = %( 3 (zet) —
1 \n=o0

1 1 1 (el —e %)z zsin(0)
obtient S ( — — - ) = ' . = )
() = 2i\1 —ze® 1 —ze 0 2i(1— (e +e )z +2%) 1 —2zcos(0) +2°
10.57)a. Oncalcule ap =1, a1 = —%, =0,a3 = 2]—4 as =0, a5 = _ZJTO' On constate que Vn € [[0;5]], |an| <1
Soit un entier n € N* tel que Vk € [0;n]], |akx| < 1, alors par inégalité triangulaire, on obtient la majoration
lanti| < 2:21 la“ Kl ¢ < Z ] <& ; 1 < 1. Par principe de récurrence, ¥n € N, lan| <1

Comme la suite (an)nen est bornée, la suite (anx™)nen est bornée pour |x| < 1 donc R > 1.

n
b. Soit z € C tel que |z| < R, les séries > anz™ et > Z—| convergent absolument (car le rayon de la série
n>o0 n>1 N

+o0 +00 n —+o0 n a X
exponentielle vaut +00) et on a par produit de CAUCHY : ( > anz“) X ( > Z—') = > ( > )z“
n=0 n=1 T n=1 k=1 k!

ce qui revient & S(z)(e* — 1) = —2(S(z) — 1) qui s’écrit aussi S(z)(e* + 1) = 2. Ceci prouve que e* # —1 et

qu’on a la relation attendue S(z) = 7_2+ T Si on avait R > 7, on aurait pu prendre z = im dans le calcul

e
précédent et ceci contredirait la condition e* +1 # 0. Ainsi, R< 7
c. Six € ] — %; % [, |Zix| < R < 7« donc, d’apres la question b., S(2ix) = ﬁ d’on, par les formules

ix —ix i
d’EULER, 1 — S(2i —1_; e —e psinGd gy :
’ ( IX) 21x 41 li(elx —IX) COS(X) 1 an(x)
+oo
d. On sait déja que R < m. Pour x € ] %, % [, itan(x) =1 —=S(2ix) = — > 2™Mi"anx™ car ap = 1 et
n=1
|2ix| < R donc tan(x) = — E 2min—Tq, x™. Ainsi, tan est développable en série entiere sur ] - %; %[ et,
par imparité de tan, on a Vn e N*, an =0.
Par conséquent, tan(x) = — Z 22nH12ng, At = —g)f 22T (g ™ On en déduit que
n=0 n=0

2n+1
vne N, 22T (—nntlay, g = H. Par exemple, si n =0, —2a; = tan/(0) = 1.

n !

241 2k+1 (), 2k+1 X (v _ \2nH1 L 2n42
Soit x € [O; I [ etn € N,onatan(x) = tan (0)x f (x—t) tan (t) dt par la formule
2 = 2kt 0 (2n+1)!

de TAYLOR reste intégral. Or, pour x € ] — z 5 [ tan(x) = Po(tan(x)) et tan’(x) = 1+tan?(x) = Py (tan(x))

avec Py = X et P; = X2 + 1. Si on suppose, pour n € N*, que tan(™(x) = P, (tan(x)) avec P, un polynome
de degré n+1 et de coefficients entiers naturels, alors tan™+1)(x) = tan’(x)P/, (tan(x)) = Pn41(tan(x)) avec
Pri1 = (1+X?)P/(X) qui est bien de degré n+ 2 et de coefficients entiers naturels. On conclut que principe

de récurrence que Vn € N, Vx € ] - %; 72l [, tan(™(x) = P, (tan(x)) avec P,, € N[X] et deg(Pn) =n + 1.

tan tan

2n+1)!

)2n+1 2n+2 (t) 2n+1

2Kk+1 2k+1
>0donco< (0)x
k=0

(2k+1)!

Ainsi, Vx € [0;7/2[, Vn € N, f < tan(x). Les

21



2n+1
. ‘o - N T . an 0
sommes partielles de cette série numérique & termes positifs étant majorées, > 7()73“‘” converge.

2n+1 (0)

Or ¥n € N, 2201 () Hlg, vy = ————= d’out la convergence de . iazni1(2ix)?™*!. La série
>~ anz™ converge donc en 2ix pour x € ] — % %[ ce qui assure que R > 7. Au final, R = n. La fonction
n>0
—+oo
tan est développable en série entiere sur ] %; %[ et Vx € ] 725; % [, tan(x) = 3. 22 (1), x0Tt
n=0
10.58] > ] converge car, par croissances comparées, 1= o(l> et que la série exponentielle converge.
>0 (3n)‘ (3n)! +oo \n!
Comme Z S - ch(1) = el el et qu’on utilise U, = {1,—1} pour le calcul de Jrf:o 1 on peut
n=0 (ZT‘L). 2 ’ n=0 (Zn)!’
+o0 1
penser & utiliser les racines troisitmes de 1'unité pour le calcul de Sop = >, ——. Comme on sait que
n=0 (311)!
Vze € = 5 Zonadgiel = 3 Ao+ L4 S 1 donce!
ze (e ,on a déja el = + + once =Sp+S1+S5;en
n=0 M n! n=0 (3n)! n=0 (3T1 + 1)' n=0 (3T1 + Z)'
+oo 1 too 1
osant S1 = — et S = —.
PO S = 2 G %2 T 2 Bt 2)
M ; +oo ﬁ +oo j3n +o0o 3n+1 +o0 j3n+2 2 3 D
ails on a aussi ¢ = = + =So+3jS1 +3°Sy car j° = 1. De
Z Z ( ) Z (3 +]) n§0(3n+2)! 0 T )91 ) o2 )
! ;2 400 Zn . n +oo 6n+2 +oo J6n+4 5 4
us, e/ = = + =S50 +j“S1 +jSp carj” =j.
P S R E S pe S Gy s s e
Cela donne un systéme trois équations/trois inconnues mais, comme on sait que 1+ j +j% = 0, il suffit de
o iy A L
sommer ces trois relations pour avoir 3o = e+ +¢)° donc So = &+ e3—|— e _ete’e 3+ € ¢
1 VBT p o SN _1( 2 (ﬁ))
car j = —— +1iX2 =j%. Ainsi, So = —_—— = - Y2 ) ~ 1,168.
S R N 0 n20(311)! s\eteeos\; :
De méme, on aurait 3S1 = e + j%el —|—jejz et 35, = e+ je +jzej2.
1"
R =D™\ _1 1
10.59] a. Notons R le rayon de convergence »_ anz™ ol an, = In (7‘/5) =1n (1 + 7) ——1n (1 + *).
n>0 / 1 \/TT 2 n
= 1 + —
Ora, = (=" —i—i—i—O( ] ) Comme|an| ~ ——,pourz#0,ona lim |anp1z™ M anz" = 2.
+o0o \/TT 2n 2n 3/2 f’ ’ n—+o0
Si|z| < 1, la série Y anz™ converge d’aprés D ALEMBERT donc R > 1.
n>0
Mais, toujours avec D’ALEMBERT, si |z| > 1, la série Y a,z™ diverge donc R < 1. Ainsi, R =1.
n=0
_ n
b. 3 (=1 converge par le CSSA, si un = O< 3/2) alors Y up converge par RIEMANN et enfin > 1
n>1l ﬁ n>o0 n>1n

diverge toujours d’prés RIEMANN. Par somme ) a, diverge.
n=0

1 (=n" ( 1 ) A 1 (
De plus (—1)"a, = — + 0 . A nouveau, diverge,
P ( ) n +oo \/TT. n T13/2 Tg] \/H g Tg] n

up, = O (%), alors Y uyn. Par somme > (—1)"a, diverge. L’intervalle de convergence de S est | —1;1].

converge et si

oo n>0 n=0
2n+2 2n+2
10 60 801t an = M et x # 0, alors Q“HXZ ‘ (2n + 3)(2n + 2)| |2 donc lim \0““7)(2 = 4x
(n!)? anx™ (n+1)? n—too  anpx "

Si x| > E alors Y anx?™ diverge grossierement par la régle de D’ ALEMBERT donc R <
n=0
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Si x| < %, alors 3 anx?™ converge absolument par la régle de D’ ALEMBERT donc R > % Ainsi R = %
n>0
Méthode 1 : pour n > 0, on a 2t — 2(2n+—|—]3) donc (n + 1an4+1 = 2(2n + 3)an. On essaie de faire
an n
intervenir des termes du type anx?™ (qui vont donner S(x)) ou des termes du type 2(n + 1)an1x*™ ! ou
2nanx?™~ " (qui vont donner §'(x)). On écrit donc 2(n + 1)an 1 = 8nan + 12ay.
] 1 —+oo —+oo +oo
Pour x € } — 33 [7 comme tout converge : Y. 2(n + Dany1x?™ 1 =8 3 napx®™ ! £12 37 qpx?n!
=0 =0
“+o0 “+o00 T-L‘roo "
qui s’écrit encore S 2(n 4 Nan1x®™ ! = 4x2 3 (2n)anx ™D +12x 37 anx?™. On reconnait enfin
n=0 n=0 n=0
§'(x) = 4x2S/(x) + 12xS(x). S est donc solution de I'’équation (E) : (1 —4x?)y’ = 12xy sur } - % %[ avec la
condition $(0) = 1. Comme une primitive de x Hi est la fonction x +— —% In(1 — 4x?%), on en déduit
avec la condition initiale S(0) =1 que Vx € } - %; % {, (1 —4x?)=3/2,

ui s’annule en 0, par intégration terme a terme, on a

L

Méthode 2 : en notant T la primitive de S sur } %, 15 [
(Zn‘H) X (2n)! 2nHl Jio

)7 g E() -

2" et on reconnait presque un développement

= 8 G

. - . 2n)
classique en série entiere : Vt € %t“. Pour x € | —
e -k e = B G ]
2 (=)™ (2n)! 12 (2n)! 12 (2n
t=—4x? €] —1;0] C —1;1,*: (7—4“73“: X" = X2, ce
] ] } [ m ZO 4n(n!)2 ( ) nz::O (n!)z Z

n= n=0 \ T

%; % [, en posant

. _ X _ 42\ =1/2 fos . i
qui montre que T(x) 7\/@ x(1 — 4x7) . 1l suffit de dériver pour avoir, comme par la méthode
précédente, S(x) = T'(x) = (1 —4x?) 1/ 2 4 4x?x(1 —4x2)73/2 = (1 = x® + %) (1 —4x?)73/2 = (1 —4x?)73/2,

n

10.61 | Comme Y 173122n ey +oo X “3 si x # 0, par croissances comparées, la suite (n(n T 1") n+ 1))n>1 est

bornée si et seulement si x € [—1;1] donc le rayon de convergence de cette série entiere vaut R = 1. Si
n 1 . L.

x = =*1, Ry 1X)(2n 1) (—3> onc 2t 1)(2n 1) converge absolument par RIEMANN. Ainsi,

I’ensemble de définition de f est I = [—1;1].

La fraction L se décompose en éléments simples L a4, b 4 _c

nn+1)2n+1) nn+1)(2n+1) n n+1 2n+41°
En réduisant au méme dénominateur, a(n +1)(2n+1) +bn(2n+ 1)+ en(n+1) = 1 pour n € N ce qui
donne, par identification, 2a + 2b +¢c =3a+b+c=a—1=0donc a =1, b =1 et ¢ = —4. Ainsi,

Yn € N*, m = % + %4-1 — Zné:— z Pour tout x €] — 1;1[, comme |x| < R et que les trois
R e o T D .
séries convergent, f(x) = = .
sent, i+t )ntl) 2 n i1 AR
+00 n
On reconnait des développements en série entiere classiques du cours : Vx €] — 1;1[, In(1—x) = — > *— et
n=

oo n in] r X ~
vx €]0;1], :Z::]anw_%f 2:)1 (\zfn)+1+ 22\][(111(1—1-\/;)—171(1—[) 2\[) Argth (V) = Vx
< n — vV 2n+l retan(v—x) — v —
VXG]—EOLT—E%ZHX_’_] \/sz( )2(n+1) T At (\/—) . Ainsi, f(0) =0et :

e Six €]0;1], f(x):—ln(l—x)—i—i( In(1—x) — ) 2 1n( +\f>—2f)

X

%

X
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e Sixe]l—1;0 f(x) =—1In(1 —x)—l—%(—ln(l —x)—x) - \/%(Arctan(\/—ix)—\/—ix)

X [ 1] = 1 1
nn+1)(2n+1)’ el

1

De plus, en notant un(x) = ~ —5 et —3 converge

P, n(x) n(n+1)2n+1) +oo 2n3 n§1 n’ &

par RIEMANN donc Y uy converge normalement sur [—1;1] d’ou la continuité de f sur le segment [—1;1].
n>0

Pour x €]0;1[, en écrivant 1 —x = (1 — /x)(1 4+ v/x) et avec les propriétés de In, on trouve la nouvelle

3o 04V +f)2 (1 + vx) - L0 _X\/;)Z

expression f(x) = In(1 — y/x). Puisque li1g)1+y2 In(y) = 0, et comme
y—

on sait que f(1) = liql f(x), on trouve f(1) = 3 —41n(2) ~ 0,23. Pour obtenir cette valeur, en notant
X— 11—

n n n n n
1 : 1 1 1
= —, on aurait transformer S,, = —_— - ce
E:]k’ n aurait pu transformer Sy kX::]k(k—l—])(Zk—i—l) X::k_‘_kZ]k-l-] kz12k+] qui
2n+1 1 n 1
donne en rajoutant et en enlevant les termes pairs, S, = Hpy + Hpyp1 — 1 — 4( > P ) +4 3 o et
k=1 k=1
Sn =3+ 4H, —4Hy, + ﬁ - Znt— ] et on termine en sachant que Hy = In(n) +v 4+ o(1).
De méme, f(—1) = Um f(x)=—-1—n+4=3—m~ —0,14 avec la relation ci-dessus.

x——1+

10.62) a. Comme lim In(n) = 4oo, la série > In(n) diverge donc R < 1 car Y, In(n)x™ diverge pour x = 1.
n—+oo n>1 n>1

n

Si |x| < a < 1, par croissances comparées, on a ln(n)x = o(a™) et la série géométrique > a™ converge

R n>1
donc Y In(n)x™ converge par comparaison et R > 1. Ainsi R = 1.
n->l
n n tov n ln(Z)Xz
b. Comme ¥n > 2, In(n) > In(2), pour x € [0; 1], In(n)x™ = In(2)x™ donc S(x) = > In(2)x™ = : en
— — X

2
sommant. Comme Um @) _ +00, on a par minoration la limite lim S(x) = 4oc.
x—1- - X x—1-

Une preuve plus générale en se servant seulement du fait que ¥n > 1, In(n) > 0 et que > In(n) diverge :
n>1

toutes les x — In(n)x™ sont croissantes sur [0; 1] donc S est aussi croissante sur [0;1]. Par le théoreme de la

limite monotone, la fonction S admet donc une limite £ en 1~ qui est finie ou qui vaut +oo.

n
Posons S, : x = Y In(k)x¥ les sommes partielles qui sont polynomiales donc continues. Comme S, < S sur
k=1

n
[0;1], lim Sn(x) = Sn(1) < ¢ (méme si cette limite est infinie). Or Sy (1) = > In(k) donc lim S, (1) = +o0.
x—1 k=1 n—-+oo

Ainsi l'inégalité S, (1) < ¢ montre que £ ne peut pas étre finie. Au final : lim S(x) = +o0.

x—=1-
1 ot At . . g Klae _ 1
c. Comme t — " est décroissante et continue sur R*, on a les inégalités Yk > 1, . " < k (1) et
k
Yk > 2, % < fk ' % (2). En sommant (1) pour k € [1;n] et (2) pour k € [2;n], on obtient encadrement
n
In(n+1) Z % In(n) + 1 par CHASLES. En multipliant par x™ pour x € [0;1] et en sommant
=t —+o0 +oo —+o0 —+oo
ces inégalités, on trouve > In(n+1)x" < Y Hux™ < > In(n)x™ + > x™. Or, par produit de CAUCHY,
n=1 n=1 n=1 n=1
+o0 +oo +oo — —
Vx €] — 151, > Hpx"™ = ( > lx“) X ( > x“) _ -y _ Wn{ X). Ce qui donne, puisque
n=1 n=1"M n=0 T—x x—1
+oo — —
S nn+1)x" = ix)’ Pencadrement n(l—x) __1 <S(x) € M Par théoreme d’encadrement,
n=t X x—1 1T—x x—1
puisque n(l—%) _ _1 ~ xIn(l —x) ~ n(1 — X), nous avons établi que S(x) ~ M
x—1 T—x1- x—1 - x—1 - x—1

24



10.63 ) a. On note S, ensemble de toutes les permutations de [1;n]. On sait que card (Sn) = nl. On partitionne

(ou plut6t on partage) Sn selon le nombre de points fixes des permutations. Notons donc Sy x l’ensemble
n

des permutations de S, qui ont exactement k points fixes. Alors S,, = U Sn,k (réunion disjointe) avec
k=0
Snn—1 = 0 car si une permutation a au moins n — 1 points fixes, c’est forcément Iidentité donc elle a en fait

n n
n points fixes. On a donc Vn > 1, card (Sn) =n!l= > An(k) = > card (Sn ).
k=0 k=0

n
Pour dénombrer Sy, i, on choisit les k points fixes parmi les éléments de [1;n] ce qui fait (k) choix ; ensuite

on choisit une permutation des n — k éléments restants sans point fixe, elles sont au nombre de A,,_(0) par

définition (le nombre de dérangements, c’est le nom des permutations de S, o, ne dépend que du nombre

d’éléments de I’ensemble qu’on “dérange”). On obtient donc card (Sn,k) = An(k) = <E> An—1(0).

0 0
Pour n =0, 0on a 0! = Apg(0) = > Ao(k) = 1 par convention et Ap(0) = <0> Ao—0(0) =1 donc les formules
k=0

sont valables aussi pour n = 0.

b. Comme Sy 0 C S, ona0 < Ap(0) < nldonc0 < A“('O) < 1. On sait d’apres le cours que le rayon R de la
n!
série entiere ) L@z“ est alors supérieur & celui de Y z"™. Comme »_ z" est de rayon de convergence
n>o0 ™ n>0 n>0
X AR0) n .
T,onaR>1doncf(z) = > z™ converge si |z| < 1.

n!

n=0

c. Comme le rayon de convergence de la série exponentielle est égal & +o0, si |z| < 1, par produit de CAUCHY

A z t® z" T An(o) n T o Anfk(o) n
de deux séries absolument convergentes, e*f(z) = ( > =) X =572z ) = X ( X 5747 )z" Or
n=o M/ \nZo n! n=o \i=o k!(n — k)!

i Anic(0) _ 1 i ")A k(0) = 1 d’apres a.. Ainsi, e*f(z) = +ZO:O 2" = —— A nouveau, le rayon
k=0 k'(n - k,)' n! k=0 k " ' ’ n=0 1— Z. ’

de convergence de > z™ vaut 1 et d’apres le cours sur le rayon de convergence d’un produit de CAUCHY de
n>0
deux séries entieres, 1 > Min(R, +00) ce qui donne R < 1 et, au final, R = 1.

e
1 —

oo (—1)ehy kX too (LK
nouveau par produit de CAUCHY, f(z) = ( > 7|) ( > z“) = > ( ' )z“ donc, par unicité
n=0 n: n=0 n=0 k=0 k!
k
(=1

1
k!

De plus, si |z| < 1, on a f(z) =

z
. On effectue encore un produit de CAUCHY et si |z| < 1, il vient &
z

n
des coefficients d’une série entieére de rayon non nul, on a Vn € N, A, (0) =n! >
k=0

n (_1\k
d. Avec ces notations de I’énoncé, p, = A“('o) donc pn = > ( k]') qui est la somme partielle de la série
n. k=0 .

exponentielle associée & e~!. Par conséquent, lim pn = 1. 0, 36.
n—-+oo e
. In(1 + xt) .
10.64 |a. Soit x €]—1;1[, alors gy : t — — est continue sur J0; 1] car ¥t € [0;1], 0 < 1—|x| < T+xt < 1+]x|.
Six =0, gx est nulle sur ]0; 1] et si x # 0, comme In(1+xt) N xt, gx se prolonge par continuité en 0 en posant

gx(0) = x. Ainsi gy est intégrable sur ]0; 1] donc g(x) est bien défini. Ainsi | —1;1[C Dy.

. +oo 7x ™M L. 1 +oo
b. Si[x| < 1,0na |xt| < 1 pour t € [0;1] donc n(14+xt) = 3 (~1)™ 122 Ainsi g(x) = || ( ) gn(t))dt
n=1 n n=1

n—1 +o00

avec gn : [0;1] — R définie par gn(t) = (—1)“’1% car YVt € [0;1], gx(t) = > gn(t). Comme
n=1
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n n
llgnloo,j0:1] = ™ et que Y, ™ converge car |x| < 1, la série Y gn converge normalement vers g, sur le
' n n>l n n>l
+oo a1 +o n
segment [0; 1] donc on peut intervertir et avoir g(x) = Y fo gn(t)dt = > %5,
n=1 n=1T
n
c. En tant que somme d’une série entiere de rayon R = 1 (car (%) : est bornée si et seulement si
n n>
|x| < 1 par croissances comparées), la fonction g est C* sur Uintervalle ouvert de convergence | — 1;1] et
/ 2 o] - / n(1+x)
g'(x) = > (=1)™ " =—. On reconnait, pour x €] — 1;0[U]0; 1], ¢'(x) = ———=.
n=1 n X

1
d. Posons f :]0;1[x]0;1] — R définie par f(x,t) = M de sorte que g(x) = j;) f(x,t)dt.

e Pour x €]0; 1], t = f(x,t) est de classe C' sur ]0;1].
e Pour t €]0;1], t — f(x,t) = gx(t) est continue et intégrable sur ]0;1] (on vient de le voir). De plus,

t— gi (x,t) = 1_;7“ est continue sur |0;1].

e Pour (x,t) €]0;1[x]0; 1], ’%(X’ t)‘ < 1=o(t) et @ est continue et intégrable sur ]0; 1].

dt {171(1 + xt)} In(1+x)

14+ xt X 0 X '

Pourtant, la meilleure méthode est, pour x # 0, d’effectuer le changement de variable t = ¥ dans l'intégrale
X

1
Par dérivation sous le signe somme, g est C'sur ]0;1] et ¢’(x) = fo

1
g(x) = fo Mdt pour avoir g(x) = j;) . @du et tout est limpide par le théoréme fondamental

est continue sur | — 1;1].

de l'intégration car u — n(1+u)
u

a. La fonction f : x — x + e~ est dérivable sur Ry et f'(x) =1 —e* > 0 (f ne s’annule qu’en 0). Or
f(0)=1et lim f(x) = 4+o00. Ainsi, f réalise une bijection strictement croissante de R, dans [1;+o0[. Par
conséquent, pour tout entier n > 1, Ax,, = 0, f(xn) = ¥ — x;, = n. Par exemple x; = 0.

b. Pour n > 1, comme e™™ > 0, fn(xn) =n < fr(n) d’olt xn < n par stricte croissance de f. De plus,
fn—1) =n—1+e ™D <ncare ™1 <1. A nouveau, n — 1 < xn. Au final, Vn > 1, xn € [n — T;nl.

c. D’apres la question précédente, ¥n > 1, 0 < an =n —x, < 1. Comme le rayon de > x™ vaut 1: R > 1.
n>l

M < an <exe M Comme les rayons

Mieux, comme a, =n —x, = e ", on a d’apres b. ’encadrement e

des deux séries > e ™x™ et > e.e”™x™ valent clairement R’ = e, on a d’apres le cours R = e.

n>1 n>1
ane™ = (n—xp)e™ =e Xnet =" *n =%, Comme a, 2 0,onae >1donc > ane™et > an(—e)™
n>l n>l
divergent grossierement. L’intervalle de convergence de cette série est | — e;e].

n
10.66 | a. Par croissances comparées, la suite ( 28 ) est bornée si et seulement si |x| < 1. Ainsi, R = 1.
dn+1/nzo0
_ n
1 1 v (51

~ —

converge par le CSSA car la
n+1+40dn  Spdn+1

De plus, > 1 diverge d’aprés RIEMANN car
n>0 In +1

suite ( 1 ) est décroissante et tend vers 0. L’intervalle de convergence de cette série vaut [—1;1].
n+1/n>o0
n 1
b. Posons S,, = 1 Comme —— = [ t*%dt pour tout k € N, on a par linéarité de lintégrale :
n ax+1 Js P P &

n+1 1 4n+4

1 n 1
o= | (= el = 1) (= o = [} S < [}
S = 1] fo g::o 1+t f t 1—|—t o 1+4+t* fo

donc |y — 1| < —1—. Aj Hm Sp=1=5(-1)
onc |Sn \\4n+ insi, im _Sn f 1+t

c1+x47x4+2x2+1—2x2 (x2+1) — (V2X)? = (X2 = V2X+ 1) (X2 +V2X +1).

26



1 _ _ _aX+b X+d
X1 X2 V22X +1 0 X2+ V22X + 1

On procede par identification et on trouve a = ,L, b=1 c= L, d=1
p p 2\/2 7’ 2\/’

On sait qu’alors, il existe quatre constantes a, b, c, d telles que

) = - + :
1+t W22 V241 4 — V2t 4\ft F2V2t 1 AR V2t 1

" T t2 4 V24T 1 1 !
classiquement que S(—1) = {— n (7) + —— Arctan(v2t + 1) + —= Arctan(y/2t — 1
d que S(=1) 42 2 V2t 1 V2 an(v2t+1) V2 an(v2 )o

1 i
—=In(v24+1)+ —=
2v2 (V2+1) 4v2

10.67 | a. On calcule les premiers termes : ap = 1, a1 =

Initialisation : 0 < ap =1 < 1.

d. Ainsi 1 A 2t— V2 1 1 1 2t 4212 + 1 1 On en déduit

11 vient donc S(—1) = ~ 0, 867.

3= %. Soit A(n) ="Vk € [0;n]l, 0 < ar <17

N [—

n

Hérédité : soit n € N tel que A(n) soit vraie, alors 0 < an41 < nl] kgo - 7L+2 par hypothese, donc

= = 1. Par principe de récurrence que Vk € [0;n], 0 < ax < 1.

O<an+1\ n+

n

Z _n+41

Ainsi, le rayon de convergence R de > anx™ est supérieur a celui de > x™, d'ou R > 1.
n>0 n=0

n
b. Comme 1 €] —1;1[, la série Y an<l> converge donc L existe et L = f(1)
2 n>0 2 2
—+o0

+oo n
c. fest de classe C® sur | — 1;1[. Pour x €] — 1;1[, f'(x) = > anti(n+1)x" = > Y —K—x". Or
n=0 n=0k= o“—k+2

—+oo +oo
1 est de rayon 1. Par produit de CAucCHY, Vx €] — 1;1], f'(x) = ( > anx“) X ( > an).
+2 n=0 n=0 M +2

n>on
—+o0 —+o0
In(1—x) +x .
d. Pour x €]0;1[, posons g(x) = 1= i( Lx“*'z) = ————~“——. f est solution sur
J0;1, p 9(x) ngonJrz 2 ngonJrz 2
10; 1] de I’équation différentielle y’ = g(x)y dont les solutions sont les fonctions x — AeS™) ott A € R et G est

une primitive sur ]0; 1] de g. On trouve par intégration par parties que G : x — —In(1 —x) + In(l—x) +x
X

convient. De plus, comme les a,, sont strictement positifs, f est strictement positive sur ]0; 1] donc A > 0 et

In(f(x)) =n(A) —n(1 —x) + M En faisant tendre x vers 0T, on trouve que In(A) = 0 donc on a
x

In(1—x)+x
—

Ainsi, In (f(%)) —n(2) + z( —n(2) + %) =1-(2) don L =N = € 136

la relation ¥x €]0; 1], In(f(x)) = —In(1 —x) +

n n
10.68 | a. Posons les deux sommes partielles associées : S, = > xi et S, = Z Yk.

k=0
e Si Y xy converge, alors la suite (Sn)nen converge (vers S). Or S, = SZn—H donc (S],)nen converge aussi
n>0
vers S en tant que suite extraite d’une suite convergente donc > yn converge.
n=>0
e Si Y yn converge, alors la suite (S )nen converge (vers S’). Or Syni1 = S, done 11m Sonyr = 8
n=0 n—+
et Son = San+1 — X2n41 = Sj — x2n41 donc lim Syn = S’ car lim xan41 = O par hypothese. Par
n—-+oo n—-+oo
conséquent, la suite (Sy)nen converge vers S’ et Y. x, converge.
n=0
+oo +oo
Ainsi, > xn et Y. yn sont de méme nature et on a >, xn = Y. yn en cas de convergence.
n>0 n>0 n=0 n=0

n
b. Comme a, ~ %, la suite (anx™)nen+ est bornée si et seulement si (X—z) est bornée, c’est-a-dire
+oo 4n n°/nenN*
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si et seulement si |x| < 1 par croissances comparées. Ainsi, le rayon de convergence de Y an,x™ est R = 1.

n>0
De plus, > an est absolument convergente par RIEMANN donc f est définie aussi en £1. Le domaine de
n>1
définition D de f vaut donc D = [—1;1].
+o00 n +oo n n +0 n +o0o n
c. Six €)1, fx) = >, —F—— = (X— - =X ) = D (les deux séries
i 2n(2n+1) 2n  2n+1 i2n i 2n 41

%) “+o00 2n+1
n 1
comengent) done 9 = § 5 2 = Jp 55 LS im0 - o (Jn () - vB).

x" sont continues sur [—1;1] et ||un||oo,[—1;1] = donc > u, converge

X 1

n(2n+1) n(2n+1) w1

normalement sur [—1;1] par RIEMANN. Ainsi, f est continue sur [—1;1] donc f(1) = lin]1 f(x). Comme
X— 1=

d. Les up : x —

B I RV — Vx _ _
flx)=1- 2 ln(l—i—\/i)—i— 2x In(1—4/x) car T —x = (1 —/x)(1 4+ /x), on trouve f(1) =1 —1n(2)

+oo n—1
par croissances comparées. Or f(1) = HE:] 2“(271‘74‘1) = - Z <2n 1 ﬂ) = — nZZ (Gl ) d’apres a
(—1)n! . . . oo (—pn!
en posant x, = ~———— car on a bien lim xn = 0. En identifiant, on a bien In(2) = Z —
n n—+o00 — n

10.69 | a. Comme h est de classe C* sur J, par la formule de TAYLOR reste intégral, on a, pour tout entier N € N

N
et tout réel x € J, la relation Ry (x) = fox %hm“)(t)dt

N
b. Si (x,y) € RZet0<x<y<a, N+1 =N f ( ,> h(NFD (1)dt < %foy (1 - i) RN+ (1) dt

Yy

t t 1 KN+T L\ N
car 1 — £ <1 - 2L pour t € [0;x] et que ("D (t) > 0. On a donc Rn(x) < XgrRa(y) = (*) RN (Y)-

x Yy Y Y

N+1
c. Soit y €]0;al et x €]0;y[, alors comme _lim <l) = 0, on a par encadrement lim Ryn(x) = 0
N—+o0 \Yy NS 400

d’aprés b.. Ainsi, h est développable en série entiére sur [0; a[ donc sur | — a; a par parité ou imparité de h.
d. La fonction tan est de classe C*° sur ] —% Py [ tan et tan’ = 1+4tan? sont positives sur [O; %[ Soitn > 1

tel que Vk € [[0;n], tan(® est positive sur [O; % [ Alors, d’apres la formule de LEIBNIZ en dérivant n fois

no/n

la relation tan’ = 1+ tan?, on obtient tan™*" = % (k) tan®™ tan™~%) donc tan(™t1) est positive sur
k=0

[0; % [ Par principe de récurrence, pour tout entier n € N, tan(™ est positive sur [0; % [ Par conséquent,

d’apres la question précédente, tan est développable en série entiere sur ] — % % [
Question de cours : la série entiere Y anx™ de rayon R converge normalement sur tout segment inclus dans
n>=0
son intervalle ouvert | — R; R[ de convergence (si R > 0 bien sur). Si > |an| converge, > anx™ converge
n=0 n=0
normalement sur [—R;R] car si un : x = anx™, on a |[un||oo,[r;r] = |an| et que ) an converge absolument.
n>0

10.70 ) a. On sait que 1111}) Arctan(x) = Arctan’(0) = 1 donc h se prolonge par continuité en 0 en posant h(0) = 1.
X— X

Comme h est continue par opérations sur R* car Arctan l'est, la fonction h est maintenant continue sur R.

+m>(_4)nX2n+1

b. On sait que, si x €] — 1;1[, Arctan(x) = > donc, pour x €] — 1;0[U]0; 1], on a la relation

n=0 271 + ]
T (=)™ . L (-=1)° - .
h(x) = >, ~=———. Cette relation est aussi vraie pour x = 0 car =1 = h(0). Ainsi, h est bien
= 20+1

XZn

2n + 1

DSE sur | — 1; 1] et la rayon de cette série entiere est classiquement R =1 car ( ) est bornée si et
neN
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seulement si |x| < 1 par croissances comparées.
c. Comme h est paire, il suffit de vérifier que la décomposition de h en série entiere est valable sur [0;1],

c’est-a-dire en 1 puisque on vient de le voir sur [0; 1] & la question précédente.

n
La série Z ( 1) converge par le CSSA car (2 ! ) est décroissante et tend vers 0.
ne

n+1 n+1
Posons up, : x — m, alors pour x € [0;1], |[Rn(x)| = ’ ur(x)]| < Junt1(x)] < 1 barle CSSA
2T'L + 1 k=n+1 2T1 + 3
donc [|Rn||oo,0;1] < 5 ]_’_ 3 ce qui prouve la convergence uniforme de > u, vers h sur [0; 1]. Comme toutes
n n>0
“+00 o0 +o0 (7])n
les uy sont continues sur [0;1], ona lim > un(x)= > un(1)= > . Or h est continue sur R donc
x=17 n=0 n=0 n=0 n+1
fox (Lq)mn e ()
lim h(x) = h(1) = Z. Puisque Vx € [0;1], h(x) = Y, ~~—~——, on trouve en identifiant T = > .
Ml 4 = m+d 47 = ml
+oo (_UnXZn
Ainsi, Vx € [0;1], h(x) = . ~—=————. Par parité, cette relation est valable sur [—1;1].
n=0 211 + ]
X
d. La fonction H : R — R définie par H(x) = fo h(t)dt est la primitive qui s’annule en 0 de la fonction h
. . e . . . H(x) — H(0) .
qui est continue sur R. Ainsi, H'(0) = h(0) = 1. Ceci se traduit par lim ——+———= =1 donc lim f(x) =1
x—0 x—0 x—0

ce qui nous permet de prolonger f par continuité en 0 en posant f(0) = 1.
e. Puisque H est de classe C' sur R en tant que primitive de h, la fonction f est de classe C! sur R* par

- fox h(t)dt
2

hest C', h(x) —h(t) = (x — t)h(c ) par le théoréme des accroissements finis et |h’(c | < Il

X
opérations avec f'(x) = h(x) _ iz fo h(t)dt = - f (t))dt si x # 0. Comme
x x

[O X = M.

%. Or h’ étant continue en 0 et h/(0) =0, il

vient lm}) my = 0. Ainsi, par encadrement 11m '(x) = 0 donc, par le théoreme de prolongement C', f est
xX—

dérivable en 0, f'(0) = 0 et f' est continue en O. Par conséquent, la fonction f est bien de classe C! sur R.

+oo nZn +oo (__1\n,2n+1
f. Comme h est DSE sur | — 1;1[, Vx €] — 1;1], f dt—fX ( t )dt: (Gabis

= 2n+1 20 (2n +1)?
+o00 (_1)n 2n

(intégration terme a terme). Ainsi, Vx €] — 1;1[, si x #£ 0, f(x) = >_ 7)(2
n=0 (ZTI + ])

Par l'inégalité de la moyenne, |f'(x) ‘ f t\mxdt‘ =

. Or, comme f(0) = 1, cette

relation marche aussi si x = 0 donc f est DSE sur | — 1;1].

10. 71 Pu1sque la fonction sin est 1-lipschitzienne car |sin’| =|cos| < 1,onaVn € N, ¥x € R, |fa(x)] < |a|™[x].

Comme |a] < 1, la série > |a™||x| converge donc, par comparaison, > fn(x) converge absolument et la
n=>0 n=>0

série de fonctions Y f, converge simplement sur R. Ainsi F, est définie sur R.
n=0
(H1) La série Y fn converge simplement sur R vers Fyq.
n>0
(Hz) Toutes les fonctions f,, sont de classe C* sur R.

(H3) Pour p € N*, on a 7 (x) = a™P sin (a“x—f—p%) donc 7 est bornée sur R et 1690, 2 < |a]™P

(on a méme égalité). Or la série géométrique Y |a|™P converge car |a| < 1, donc la série Y #p)
n>0 n>0

converge normalement sur R.

Par un théoreme du cours, F, est de classe C>® et Vp € N, ¥Vx € R, Fﬁf)(x) Z a™P sin (a X+p )
n=0

+oo
On en déduit que Fslp)(O) = Y a"™Psin (p%) donc F&p)(O) = 0 si p est pair et, si p = 2k + 1, on trouve

n=0
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+oo 1 —1)*
F&RH)(O) =3 Q™ (24T gin ((Zk—i— 1)%) =3 (_])kqﬂ(Zk-H) = ]Eai]z)kﬂ.

n=0 n=0
D’apres le cours, Fq est développable en série entiere sur R si et seulement si le reste intégral d’ordre k, a

x
savoir % fo (x — t)kF(akJr])(t)dt7 tend vers 0 quand k tend vers 4+o0o pour tout réel x. Or, par inégalité de

la moyenne, |- fox(x - t)kalkH)(t)dt‘ < %‘ fox |x — t|k|F£1k+1)(t)|dt‘. Avec Pexpression de Fglk“)(t) vue

k!

(k1) = et i = KA1 1 : \
avant, et [Fq ()] = | 3 a™*Vsin (ant+ (k + 1)*)’ < Y fam* ) = — L+ On arrive donc &
n=0 2 n=0 - |(1|

X x Kt
la majorati ‘l —RFE (¢ dt‘ <— 0 ‘ —tkdt‘ = i L x—t
a majoration | fo (x —t)*Fq "/ (t)dt]| < A= [T fo |x — | KT = aF car, x
— x x _ k+1-x k+1
étant de signe constant sur [0;x], on a ‘ fo |x—t|kdt‘ = ‘ fo (x—t)kdt‘ = H— (ij_)] }o = |lt|+1 . Par
|X‘k+1

croissances comparées, lim =0, donc F, est bien développable en série entiere sur R

e e e+ )1 — [Ty — o PP

t, étant égale A sa série de F Vx € R, Fo(x) +ij (=Pt
et, étant égale a sa série de FOURIER, on a Vx € X) =

g y Fa S @+ — aZp-H)

grace a ce qui précede.

400 , 400 (_])kan(2k+1)X2k+1
Comme la fonction sin est développable en série entiere sur R, Fq(x) = > ( > ' )
n=0 ‘k=0 (2k+1)!

(_1 )kan(2k+1 )X2k+1 )
(2k+1)! (n,k)e N2

Or la famille ( est sommable car, par sommation par paquets, on a le calcul

|a|n(2k+1)|x|2k+1 |a|n(2k+1)|x|2k+1 |X‘2k+1
= = < 400 car si x # 0,
(n,k)e N2 (Zk+1)! k%:N(neN 2k +1)! ) e 2k 4+ DI —[a? ) 4
|X|2k+1 |X‘2k+1 |X|2k+1 L A
~ t —_— = . i .7 E R, t
Qe DI = (a1 £ 2k 1) et que k%:N 2k )1 sh(|x]) < 4o00. Ainsi, pour x on peu
400 +o00 2k+1 +oo (_1)kx2k+1
développer en série entiere Fq(x) = —1 k( a“(Zk“)) X = )
PP () kzz:o( ) nX—:O k+1)! = (2k+ D)1 — o)
n
10.72] a. Soit x € R, comme Y ap converge, (an)nen tend vers 0 donc 0“77" = o(%). Or, par croissances
n>0 n: o n.
n n
comparées, lim X 0donc lim 92X — 0 et le rayon de convergence de > InX _ est donc R = +o00.
n—+4oo n! n—4oco n! >0 n!

b. La fonction g : t — f(t)e™" est continue sur R, car f I’est en tant que somme de série entiére de rayon

. . oo a-ttet anttet .

infini. De plus, g(t) = > - On pose up : t +— e de sorte que Y un, converge simplement
n=0 n: : n>0

vers g sur R;. Les u, sont continues sur R, comme la fonction g. De plus, u, est intégrable sur R,

+ + ne—t
car the™t +zooo(e_t/2). Enfin, j;) = lun| = L/; = %dt = %F(n +1) = |an| et la série nXZ:O|(111|
+o0 +o00 +oo +o0 +oo
converge par hypothese. Ainsi, par le TITT, on a fo g= fo f(t)e tdt = > fo Un = > an.
n=0 n=0

n
T<an<n (considérer n pair et n impair) et les séries entieres >, *— et
n n>1
=

10.73 | Posons a,, = n(’1)n, alors 0 <

n
> nx™ ont classiquement pour rayon 1 car (nx™)nen est bornée si et seulement si |x| < 1 et (X—) est
n/nxi

n=0
bornée si et seulement si |x| < 1. Ainsi, le rayon de convergence R de n(=D"x™ vérifie 1 > R > 1 d’apres
n>0
le cours : R =1. De plus, comme (un)n>o n’est pas bornée, l'intervalle de convergence est | — 1;1[.
+oo n +oo + 2n+1
En séparant termes pairs et impairs, on a Vx €] — 1;1[, 3. n(=D"x™ = 3 2nx?™ + X .
n=0 n=0 n=0 n+1
+oo 1 +oo
Comme Vx €] — 1;1, Y x™ = ——, en dérivant et en multipliant par x : Y nx"™ = —*— donc
n=0 T—x n=0 (1—x)
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=, 2% . =)~ 1) ! =g
> 2kt = ﬁ On sait que Vx €] —1; 1], Z Xt =1In(1+x) et que >3 —x"=—1n(1—x).
=0 — X n=1 T\.:]n

+oo 2 +1 +o0 2 +1
En sommant : Vx €]—1;1[, 2 E 2 n+] In(14+x)—1In(1—x) donc E 3 n+] —; (}ﬁ)(:Argth(X)).
—x
too  2n+ )nf1

f(

n02n+] n=1

On pouvait aussi écrire x™ + Z x en séparant termes d’indices pairs et

120 y2n it 1y (O 1y (1t
t it =1n(1 T—x%) = -1 (7):71 (—X) = Argth (x)).
impairs et on reconnai Zo i m +x)— 2 In(1—x?) il G S ( rgth (x))
. . . +00  2n+1 x s F+oo . )
On pouvait aussi, pour x €] —1; 1], intégrer terme & terme N = f < > th) dt (car [0;x] est inclus
n=0 n+1 0 n=0

+00  2n41 X X
dans l'intervall td : x — ddt ~_ 1 (— —)dt_‘l (“LX)
ans 'intervalle ouvert de convergence) ngo T fo T3 fo T t+1 i S

+oo n 2
Ainsi, Vx €] — 1;1], 32 nD %" = 2724— 1 ln(] +X)
n=0 (] ) -

10.74) a. 1l est archi-classique que X? + 2cos(8)X + 1 = (X — ®)(X — e7*9) avec la formule d’EULER.

b. Comme les racines de X% + 2 cos(8)X + 1 sont complexes non réelles, la fonction f est bien définie sur R.

. b)x — (ae™ 9 + bel?) . .

Identifions : 1 = 4 -+ b - (at d’apres la question a..
1+2xcos(8) +x> x—e® ' x—e tF 1+ 2xcos(0) +x* P 4

On résout le systéme a +b = ae ¢ 4 be'® +1 = 0 pour avoir a = —b = ﬁ On peut donc conclure

isin
1 1
ue Vx € R, f(x) = o — .

4 109 2isin(0)(x — ') 2isin(0)(x — e '?)

c. Si|x| < 1, en écrivant f(x) = ! ( e e ) comme |xe'®] < 1 et [xe'®| < 1, on
’ 2isin(0) \1 —xe'® 1 —xe 10/’ ’

15 g, i
trouve f(x) = ————— > x™(etM+10 _ =i(n+1)0) on ytilisant les séries géométriques ce qui donne le

+oo s

développement f(x) = Wﬂ‘ en série entiere. Si le rayon R de cette série était strictement
=0 sin

sin((n+1)0)

supérieur a 1, la série entiere Y. z™ de la variable complexe aurait le méme rayon donc la

n>0 Sln(e)
+oo s
fonction g : z — Z M@;)mz” serait continue sur B(0,R) donc en particulier en z = e* 9 ce qui est
sin

1 _ 1 :
21 Sln(e)(l — eie) 21 Siﬂ(e)(z — 6719)

pas étre continue en ¢'®. Ainsi, le rayon de w
& sin(0)

impossible puisqu’en remontant les calculs, on a g(z) = et g ne peut

x™ vaut exactement R = 1.

2 n2
_ 2n"4+3n+1 : 4 _
10.75 | Posons u, = BT par croissances comparées, Un ~ z—n O donc 2;0 un converge par
n
comparaison aux séries de RIEMANN. Soit x € R’ , comme (Zn +3n+1 )x +~ 2n?x™, toujours par croissances
o0

comparées, la suite ((2n? +3n -+ 1)x“)n ¢ est bornée si et seulement si [x| < 1 donc le rayon de convergence

+oo
de Y (2n? 4 3n + 1)x™ vaut R = 1. Posons donc Vx €] — 1;1], f(x) = > (2n? +3n + 1)x™

n>0 n=0
+o0 oo
On écrit 2n? +3n+1=2(n+2)(n+1) —3(n+1) pour avoir f(x) =2 Y. (n+2)(n+1)x" =3 > (n+1)x"
n=0 n=0
" !/
les d t) donc f ( ) ( ): 43 143 g
(les deux séries convergent) donc f(x) — r— 0o 0o 0= nfin,

= _1i®, 0 N 11y 1 1+3/2) _
Lun=3 % (n +3n+1)(2) - f( )—zx e =
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10.76 ] a. Pour x € R*, la fonction f : t — coi(t) est continue sur le segment [x;3x] donc F est bien définie sur

-3 3 —
R*. Comme f est impaire sur R*, F(—x) = f * cos(t )dt f " M(—du) = F(x) par le changement
—-x t x —u

de variable t = —u facile a justifier. Ainsi, F est paire.

1

2
b. Comme cos(t) :1 - t— + o(t?), on a f(t) 1 + o(t) ce qui signifie que f(t) = T % + te(t) avec

ot
11n(1) e(t) =0. All’lSl pour tout e >0, il existe a < 0 tel que Vt €] — o; «[\{0}, |e(t)] < e. Alors, si x # 0 mais
[x| < &, on a ‘ f - = E dt‘ ’ f stdt‘ = 4ex?. On en déduit donc que F(x) —ln(3) —2x% +o(x?).
cos(3x)  cos(x)
3x X
Par conséquent, 1in}) F(x) = In(3) et on peut donc prolonger F par continuité en 0 en posant F(0) = In(3). De
x—

et son DL d’ordre 1.

On pouvait invoquer la primitivation des DL en calculant F'(x) = 3

plus, le DL précédent montre que F ainsi prolongée est dérivable en 0 avec F/(0) = 0.

: 3x 3x
c. Soit x > 0, par une intégration par parties facile, on obtient F(x) = [%} + f Sntl( )dt et
x
3 3 i 3x 3
stm ‘\fxizdt:lfi:l. Comme lim [M} —oet tm [T MY g 0 par
x t x  3x 3x x—+00 t x x—+oo Jx 2
la majoration précédente, on a lim F(x) = 0. Par parité de F, lim F(x) =0.
X—r+00 X —
3x 3x — —
d. Soit x # 0, alors F(x) = f Tat + f M )+ f cos( costt) =1y Ort s cos(t) —1 est
x t x t t
. L s oo cos(t) — (-nH" t2T1 ! o
développable en série entiere avec un rayon infini et 7 = Z T donc, en intégrant terme
n=1 n
3x +o© (_])nt2n71 400 (_])n((sx)Zn _ in)
a terme, on a Vx # 0, F(x) = In(3) + Al————dt=1n(3)+ > . Clest aussi
’ f x a1 (@) n= (2n)(2n)!

L8 ()N E ) o
& (e

10. 7 7 L hypothese de I’énoncé montre que an = 0( ) donc que an =0 o(1). Comme le rayon de >  x™ vaut 1,
n [e’e]

n>l
le rayon R de la série entiere Y anx™ vérifie R > 1 ce qui justifie 'existence de la fonction f sur | — 1;1].
n=0

vrai si x = 0 donc F est développable en série entiere sur R et Vx € R, F(x) = In(3)+

a. On constate d’abord, pour n € N* et i € N, que :

. i . i
—sii}n,alors]—iéOé(l—%) doncl—ig(w%) est vérifié.

. i . i
—sii:O,l—l:(1—l) :1d0ncl—l<(1—l) est & nouveau vrai.
n n n n
. 1 1 . N
—sii:1,1—l:1—f=(—f) doncl—lg(—f) est encore valide.
n n n
Ceci nous conduit & effectuer une récurrence sur i € [0;n]. L’initialisation vient d’étre faite.

. i it1 i
Soit i € [1;n—1] tel que 1—+ < <1—l) . Alors (1—l) = (1—l) ><(1—7) donc, puisque 1—
n n n n n

1
n
i+ . . . .
I’hypothese de récurrence montre que ( — l) > (1 — l) X (1 — l) — i+l L >1- Ll S
n n n n n n

. 1
I’hérédité est établie. Par principe de récurrence, on a donc Vi € N, Vn € N*, 1 — X K (1 — l) .
n n

b. Pour n > 1, en décomposant la somme et par inégalité triangulaire, comme la convergence de la série

1) st absolue oui 1 1) _ W 1) S 1)
Zai<]_g> estasouepmsque‘]—E’<Retcommef(1—g)—Zai(l—;) —Zai(1_g> +

n>0 i=0 1i=0
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“+oo 1 i
Soag (1 — 7> , d’apres la question précédente
n
a~]—(l——>>—|— a~(1——)
=0 n i1 n

+oo 1 i
|ai|i+ Z |ai|(]7;>

l n
ni—o i=n+1

(Za)-r0-1) =

<

Comme la suite (i|ai|)ien tend vers 0 par hypothese, le théoréeme de CESARO (hors programme mais & savoir

n
re-démontrer) permet d’affirmer que la suite des moyennes arithmétiques (% > |ai|i) , tend aussi
n i=0 ne

n
mo >~ |ai]i = 0. De plus, cette méme suite étant bornée, on

vers 0. Or commen+1 ~ n, on a aussi i
+o00 n—+oon o

peut majorer Vi > n+1, ilai| < Sup j|aj| = My ce qui donne
jzn+1

+oo i +oo i +o00 i
Solal(1-1) < 32 Mo 1) o Ma v (5o 1) o Ma (g
i n n

i=n+1 U n+1 i=n+1

400 1 i nM 1 n+1 . .
et on conclut enfin que > |ay| (1 — f) < —= ( — 7) < My. Mais puisque lim na, =0, on a
n

i=n+1 n n—-+4oo

+oo i
aussi lim My =0 ce qui montre qu’on a aussi lim > |ai] <1 — l) =0.
n—+oo n—+oo i=n+1 n

n
Grace a la majoration précédente, on peut conclure par encadrement que lim (( > ai) — f(] — l)) =0.
n—-4oo i=0 n

c. Comme HT (1 — l) =1 et que f admet une limite finie, disons ¢, quand x tend vers 1, en composant
n—+oo n
n

ona lm f (1 — l) = {. En notant S;, = > a; la somme partielle de > an, ce qui précéde montre que
n—+oo n i=0 n>0

“+o0o
im Spu,=04+¢=~{car S, = (Sn —f(l — l)) —|—f(1 — l). Ainsi, Y an converge et > an ={L.
n

n—-+oo n n>0 n=0
£* . . ex In(t)
10.78 ) a. Pour x € R, gy : t — Tt est continue et positive sur ]0;1] car gx(t) =

donc, par RIEMANN, gy est intégrable sur ]0;1] si et seulement si —x < 1 <= x > —1. Ainsi, comme gy est

1
T De plus, gx(t)'s’tfix

positive, F(x) est défini si et seulement si x > —1, d’ou D =] — 1; +00[.
b. Posons f :] — 1;+00[x]0; 1] — R définie par f(x,t) = %
e Pour t €]0;1], la fonction x +— f(x,t) est de classe C> sur | — 1; +o0|.
e Pour x €] — 1;400[, t — f(x,t) = gx(t) est continue et intégrable sur ]0;1] (on vient de le voir).

ks (In ’c)ktX

e Pour x €]—1;+o0[etn € N*, t — ax—k(x, t) = est continue sur ]0; 1] et, si a €]—1; 400, on a

X k,a
la majoration ¥x € [a; 400, Vt €]0;1], ’%(x, t)‘ < % = @q(t) avec @4 continue et intégrable
x

sur ]0; 1] d’aprés RIEMANN car, par croissances comparées, on a @q(t) = o( 1]_(1 ) et PTQ <.

t 2

1 kyx
D’aprés un théoréme du cours, F est de classe C* sur |—1; +-o0[ et Vk € N, Vx > —1, F&)(x) = f Mdt.

0 14+t
c. Pour x €] — 1;1[, F(x) :f1 t dt:f(;( 1 +f:oxnm(t)n)dt: f1(§om>dt. Pour

014+t 14+t = n! o \ & nl(1+ 1)
n n
.ot 01] Bt par 10 = S0
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e La série Y f, converge simplement vers gy sur |0;1] (on en vient).
n=>0

e Les fonctions f, et gy sont continues sur ]0;1]. f, est intégrable sur ]0;1] car fo(t ) (ﬁ)

lim+ fa(t) = 0 pour n > 1 par croissances comparées.
t—0

e Pour n € N, fo [fa(t)|dt < % fo [In(t)|™dt. Posons J, = f(: (In(t))™dt. On effectue une

intégration par parties avec u:t > tet v:t (In(t))™, uet vsont C' sur]o;1] et tlggh u(t)v(t) =0
1 n—-1

par croissances comparées donc J, = [tln™ t]g) — j;) t.%dt = —nJp—1. Par une récurrence,

simple, comme Jo = 1 et J; = [tln(t) —t]} = =1, on aV¥n € N, J,, = (=1)"nl. On aurait aussi pu

poser le changement de variable t = ¢(x) = e avec ¢ bijection strictement décroissante et de classe

+
C' de R’ sur ]0;1] pour avoir, apres calculs, Jn = (—1)" f T xteXdx = (=)' (n+1) = (=1)"n!

0

1
(classique). Ainsi, f [fn(t)]dt < [x|™ et > |x|™ car |x| < 1 (série géométrique).

n>0

1 +oo N +oo

Alors, F(x) = L/; ( Eo n'(11n—(i— )t) )dt = E f ’;' 11n+ 0 dt = Zo anx™ par le théoreme d’intégration terme
n n=

1
a terme en posant a,, = fo %dt. Ainsi, F est développable en série entiere sur | — 1;1].
1 n 1 n

Méthode 1 : Comme YVt €]0;1], % < ]1? <1,ona fo %dt < Jan| < f Mdt et, puisque

n!

1
fo | in(t)|™dt = n! d’apres les calculs précédents, — < |an| < 1. Comme les rayons de convergence des séries

N [—

n
SxM™et > X? valent 1, le rayon R de > anx™ vaut aussi R = 1.

n>0 n=0 n>l
Méthode 2 : D’abord ap = f dt = In(2) et, si n > 1, on peut calculer effectivement a, en écrivant
k n
que vt o 1], L = — 3 (1Y% done an = /! ( k%)dt. Soit gy : €+ (—1)k T
k=0 n. n.
- . ()" .
e La série > gy converge simplement vers h: t — Z (_1)k7' sur ]0; 1] (on en vient).
n!

k>0 k=0
e Les fonctions gy et h sont continues sur ]0;1]. gy est intégrable sur ]0; 1] car gy se prolonge en une

fonction continue sur [0;1] si k > 1 et go(t) ?o(i).

Vi

1 1 1
_ 1 k n — X — Kinam
e Pour k € N, fo lgx(t)|dt = o fo t*|In(t)|™dt. Posons t = e™™ dans Iy = fo t*In™(t)dt et on

+oo . —1 too —1)'™n
— n n k+1)x — u — n,—u —
aIk—(l)j;) xne( )dxpulsx— ]etlk—(](&nﬂﬁ) u'te du—(é ]))n1

1
comme ci-dessus. On aurait pu poser Ky , = j;) tP In"(t)dt, faire des intégrations par parties. Ainsi,

1
1 1 , .
t)|dt = ———— et ———— converge (série de RIEMANN car n +1 > 1).
j:) |9k( )| (k+])n+1 ké:o (k+])n+1 Verg ( n )

+oo _1\k
Alors, an = (=1)™ > ﬁ = (=1)"0(n + 1) par le théoréme d’intégration terme & terme ou 0 est la
=0

—1)yt+!
seconde fonction de RIEMANN : 6(x) = Z P lliai ) pour « > 0.

+
On sait que lim 6(a) = 1 (classique par double limite) donc, pour x # 0, lim W =Tetla
x—+-00 n—-+4oo |anx ‘
régle de D’ ALEMBERT permet de conclure que R = 1.

Question de cours : si (u,) € CN est une suite de complexes ne s’annulant par et si on suppose I'existence
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de t = hT n1 ’ € R4, alors on a deux implications qui constituent le critéere de D’ ALEMBERT :
n—+oo | Up

esi{ <1 alors Y u, converge absolument.
n>0

esif>1 alors Y. u, diverge grossiérement.
n>0
e si { =1, on ne peut rien conclure comme le prouvent les séries de RIEMANN.

n ] RN n .
10.79] a. Posons un =n(="" alors % < un < n et les séries entieres > *— et Y nx™ ont classiquement pour

n>1 M n=0
rayon 1 donc le rayon de convergence de > n(=D"x" est R = 1 par encadrement.
n=0
De plus, comme (un)n>o n'est pas bornée, les séries > un et > (—1)"uy, divergent grossicrement et
n>0 n>0
I'intervalle de convergence de 3> n(=D"x™ est | —1;1[.
n>1
, . . . oo - ) oo 2n+1
b. En séparant termes pairs et impairs, on a Vx E] —1;1 [, Z n(=D% Z 2nx“" 4
n=0 n=0 n=0 n + T
Comme Vx €] — 1;1[, Y. x™ = ]1—7 en dérivant et en multipliant par x, Y nx™ = ﬁ donc
—x - —x
+oo ) 2 +oo (_])n71
3 Pt = ﬁ car x2 €] — 1;1[. On sait que Vx €] — 1;1, Y. ~—~—x" = In(1 + x) et que
— — X n=1 n
400 n . +oo 2TL+1
> X = —n(1 —x). En sommant, on obtient Vx €] — 1;1[, 2 Z 1 = In(1 +x) — In(1 — x) donc
n
+00  2n+1 +oo 2
X _1 1+x> _ - 1. (-Hhn _ _ 2x 1 (l—i—x)
_1(— — Argth (x)). Ainsi, Vx €] — 1;1 — 2T 1 (1x),
nE::ozn+1 (i ( rgth (x)). Ainsi, Vx €] — 1;1], nz::on x (lixz)z—i-zn T

10.80) a. Si f est solution de (E) sur R, alors f est au moins dérivable sur R. Mais x — f(x) + f(Ax) est

alors dérivable par opérations donc f’ est aussi dérivable donc f est deux fois dérivable. Par une récurrence
classique, on montre comme ceci que f est de classe C*° sur R. En dérivant n fois la relation (E), on a
D (x) = M (x) £ AW (x) (En). Soit a > 0, la fonction f(™) est continue sur le segment [—a; a] donc elle

y est bornée et on peut définir My, = Sup [f(M(x)| = Hf(“)||oo,[_a;a]. D’aprés (En), comme Ax € [—a;a]

x€[—a;al

six € [~a;a] car [A] < 1, 0on a Vx € [—a;a], [ ()| < [f™ ()] + AMFM (W) < My + [A|"M,, donc
Mn+1 < (1 +2A")M;, < 2My,. Par une récurrence simple, on a Vn € N, My < 2™My.

n (k
Par TAYLOR reste intégral, Vn € N*| Vx € [—a;a], f(x) — Y, f 1 f — )"+ (t)dt donc
k=0
n n+1 n_n+l n_n
f(x) — Z '( ) ¥ < [x —2"Mo < zai'l\/lo. Par croissances comparées, lim 2-9— =0 quel que
=0 n! n! no4oo !

n (k) +oo (1)
soit a > 0 donc ¥x € R, f(x) = uT > f k,(o)xk = > ! |(0)
n—+00 1 7o ! n=0 T

en série entiere sur R, donc avec un rayon R = +o00.

x™ ce qui prouve que f est développable

. . X . too £ (0)
b. Soit f solution de (E) sur R, d’apres la question a., on a Vx € R, f(x) = > anx™ avec an = '
n=0 n:

+00 too
On adonc ¥x € R, f(x) = > (n+ 1Nanpi1x™ et f(x) = > anA™™. En remplagant dans (E), on obtient
=0 =0
oo n n
Vx €] = R;R[, > ((m+T)ant1 —an — Aan)x™ = 0 donc, par unicité des coeflicients dans une série entiere
n=0
142" an. Par récurrence, Yn € N, a, = %0 1:[ (14 A%).
n+1 nl =

de rayon strictement positif : Vn € N; ap41 =

+oo ,m—1
Ainsi, Vx € R, f(x) = apg(x) avec g(x) = > ( 10+ )\k)) oy . L’ensemble des solutions de (E) sur R est
n=0 k=0
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donc la droite vectorielle engendrée par g.
xt —xt

10.81] a. Pour tout réel x, la fonction hy : t — e~ *'sh (xt) est continue sur Ry et sh (xt) = % = O(exIt)
oo

2 2 . .
donc e~*’sh (xt) = O(e A = 0(e7t) car lim e U Tt = 0 donc, par comparaison, la fonction
—+00 t—+4oc0

+oo xZn-H 2n+1

hy est intégrable sur R, . Par conséquent, la fonction F est bien définie sur R.
t X2n+1 th-H 2

+oo s to0
= W, donc F(X) = fO (nz::o fn(t))dt avec f,, 1t +— We

e La série de fonctions > f, converge simplement vers hy sur R} (on en vient).
n>0

e Les fonctions f,, et la fonction hy sont continues sur R .

-t

b. Vt >0, sh(xt) =

e Les fonctions f,, sont intégrables sur R car f,(t ) = O( ) par croissances comparées.

2

+oo 2
e Posons I,, = fo 2" t1e=tat, en posant u:t— t?hetv:t sur

Ry, u(0)v(0) = tliT u(t)v(t) = 0 par croissances comparées donc, par intégration par parties, pour
— 400
+o0 +oo 2 —t2 7400
/ _ 2n—1_—t _ _ | _e _ 1
tout n > 1, I, = fo u(t)v/(t)dt = nfo t e” " dt =nl,_;. Comme Iy = [ 3 }0 =

. | . . .. .
par récurrence, Vn € N, I, = n7 On aurait aussi pu poser t = f = cp(u) avec @ bijection de classe

1

—+oo
C! strictement croissante de R% dans R? ce qui donne I, = 3 j;) ute W dy = @ —nl

2
|X|2n+1n! |x|2n+1 |X|2n+1

+oo
= d f < A t] , .
2(2n+1)! 22n+1)x - x (n+1) one fo Ifn] < (1) et la série

+oo
Ainsi, fo [fn] =

|x‘2n+1
+———— converge (série exponentielle).
nso (n+1)!
Par le théoreme d’intégration terme a terme, on a donc l’intégrabilité de hy sur Ry (on le savait déja) et
+oo 2n+'| |
surtout le développement en série entiere de F : Vx € R, F(x Z f £ T
n=0 Z(Zn +1 )

On pouvait aussi dériver sous le signe somme, soit f: R x Ry — ]R définie par f(x,t) = e ~t*sh (xt), alors :
e Vt > 0, la fonction x + f(x,t) est de classe C' sur R.

e Vx € R, la fonction hy : t — f(x,t) est continue et intégrable sur Ry (on vient de le faire).

of

e Vx € R, la fonction t — 5 (x,t) = te=t"ch (xt) est continue sur R,.

e Soit a > 0, on a la majoration Vx € [—a;a], Vt > 0, ’%(x,t)‘ < te’tzch(at) = @qft) et

@alt) = o(e_t) comme avant donc la fonction ¢4 est intégrable sur R, .
(o)

+oo
On en déduit que F est de classe C! sur Ret Vx € R, F/(x) = j;) te=t"ch (xt)dt. On pose u(t) = ch (xt) et

2
v(t) = —¢ 5 alors u et v sont C! sur R, u(0)v(0) = —% et lim u(t)v(t) = 0 par croissances comparées
o . ) +00 ] X
donc, par intégration par parties, on a F/(x) = fo u(t)V/ (t)dt = = + > f h(xt)dt = * + F( ).
Alnsi, F est la solution sur R de (E) : y' = 15 + Ey qui vérifie la condition de CAUCHY F(0) = 0. Comme

2 Z
x = X a est une primitive de x — E sur R, on sait d’apres le cours queyp : x — e T est un vecteur directeur

de la droite des solutions de I’équation homogene (Eo) : y' = %y. Par méthode de variation de la constante,

2 x —t2
on trouve par exemple comme solution particuliere de (E) la fonction yp : x %eXT fo e 4 dt. Ainsi, il
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2 _¢2
existe A € R tel que Vx € R, F(x) =yp + Ayo. Comme F(0) =0 =A, Vx € R, F(x) =x — %eXT j;)x e 4 dt.

On peut a partir de la retrouver un développement en série entiere de F par produit de CAUCHY car

x2 400 2n x —t2 x +oo _] nth +o00 (_]) +o00 (_])nX2n+1
e N R N o (G i P (SIS S e e
¢ nZ::O 4l ¢ fo ¢ f 4“11‘ 2 -[;) 4™n! 2 A"nl(2n +1)

n=0 n=0

en intégrant terme & terme sur [0;x] inclus dans lintervalle ouvert de convergence R. Comme les séries

‘s in (_])nXZn-H )
précédentes convergent absolument pour x € R, en notant a, = Al et by = m, par produit de
n 2n—2k (71)k><2k+1 n (7])k n X2n+1
Caucny, 2F Cn Slcp = b X - ( ) )
(X) nzo n n kgo An—kOk = Z::O 4n—k(n — k)! 4kk!(2k + ]) kX::O 2k+1\x% 4

Par unicité du développement en série entiere des lors que le rayon est strictement positif (et c’est le cas ici),

22n+1)! T 24™nl 2y 2k 41 So2k+1\k/)  2(2n41)! (zn+])<2n)'
n

1

- -t . s - s .

10.82) a. La série ), % converge clairement par le critere spécial des séries alternées donc son reste
n>l n

+oo (71 )k+1

d’ordre n noté ici un, = ~—/=— existe bien pour tout entier n > 1 : la suite (un)n>1 est bien définie.
k=n-+1 \f
Comme toute suite de restes, on a lim wu,, =0.
n—-4oo

b. Le critére spécial nous apprend aussi que u,, est du signe de son premier terme donc de (—1)™ ainsi vy,

est un terme positif. Enfin, on déduit encre du critére spécial des séries alternées que |[un| < \/% donc

1 1 s N

| < —M— = O(—) donc vn converge d’apres RIEMANN.
|n|\n M+ 1400 \n3/?2 nz>:1 " & P

+o00 (7])k+1

(7])k+1
c. En notant S = )
k=1

n
Vo et S z:: 7 pour n > 1, on a donc S;, = S — u,, ce qui donne
(=1"s _(=n" (=1)"s

. -1"s
Wn = — Up = —vn. Comme la série (=)
n n n S1oon

converge par le critere spécial des

séries alternées et que Y vy converge d’apres la question précédente, par somme, la série > w, converge.
n>1 n>1

d. Comme Y wy converge, le rayon R de la série entiere > wyx™ vérifie déja R > 1. Mais si on regarde
n>1 n>l

ce qui se passe quand x = —1, on a wy(—1)" = 3 _ (=1)™v. Comme la série Y (—1)"v, converge

n n>l
puisque Y v, converge absolument d’aprés b. et que la série harmonique > S diverge, par somme, la
n>1 n>1 N
série > (—1)"wy diverge. Ainsi, on a R < 1. Au final, R=1.
n>l1

10.83) a. Pour n € N, comme |an| = 1, on a ‘a—‘ll‘ = l' et on sait que le rayon de convergence de la série
n! n!

n
entiere (exponentielle) > X—' vaut +oo. Ainsi, par comparaison, le rayon de convergence de la série entiere
n>0 n.

> a‘? x™ vautR = +o00. Ainsi, la fonction f est définie sur R.
n>0 n.
b. Supposons que ap = 1 (le cas ap = —1 s’obtient en considérant —f a la place de f avec les mémes

hypotheses sur f en remplacant la suite (an )nen par la suite (—an)nen)-

Comme f est de classe C* sur R, elle admet des développements limités a n’importe quel ordre qui sont

®) (0
donnés d’apres le théoréme de TAYLOR-YOUNG par Vn € N, f(x)= Z 00k

5 = W x* + o(x™). Or, d’apres le
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(m) n
cours, Yn € N, 90 — 7(0) donc an, = f(M(0). Ainsi, Vn € N, f(x)= > Fkxk 4 o(x™) (ce qui est
n! n! 0= k!

une troncature de la série entiere). De méme, on sait qu’on peut dériver une série entiére terme a terme :

+oo too
vme N, Vxe R, fM(x)= 3 —9n__yn-m _ § Gktmk parexemple f™ (x) = am 4 am1x +0(x).
n=m (n—m)! K=o K 0

e Initialisation : comme f(0) = ap = 1, f est positive localement au voisinage de 0. Avec le développement
limité & l’ordre 1 de f au voisinage de 0, on a f(x) Saotax+ o(x) §1 + a1x + o(x) donc, comme a7 # 0, il
vient f(x) —1 T arx Si on avait a; =1, alors f(x) — 1 X donc f(x) — 1 serait strictement positif au voisinage
de 0T ce qui est contraire & I’hypothese |f(x)| = f(x) < 1 si x > 0. On conclut ce raisonnement : a; = —1.

e Hérédité : soit m > 1 et supposons que ¥Vn € [1;m], an = (—1)™. Alors f(™)(x) = am + am+1x+0(x) dong,
par continuité de f(™) en 0, f(™) est du signe de (—1)™ au voisinage de 0 donc |f(™) (x)| = (=1)™f(™)(x) au
voisinage de 0. Or on a vu que f(™)(x) = am + Qmp1x + o(x) donc [f(™)(x)| §1 + (—=1)™ami1x+o(x). Sion
avait amy1 = (—1)™, on aurait alors [f(™)(x)| §1 +x + o(x) donc [f(™)(x)| — 1 X ce qui contredit encore

une fois le fait que Vx > 0, |[f(™)(x)| < 1. Par 'absurde, on a donc prouvé que am,1 = (—1)™*7.
o . . o (=)™
e Par principe de récurrence, Vn € N, an = (=1)". Ainsi, Vx € R, f(x) = > ~—5—=e™™
n=0 n:
+oo
En regroupant les deux cas selon ap, si (an)neny C {—1,1}%, f(x) = > Q—T'Lx“ et qu’on suppose que
n=0 T
Vx>0, Vn € N, [fM(x)| <1, alors (an)nen = ((—1)") (an)nen = ((71)“+1)HGN donc f:x+— e

ouf:xmr— —e X,

nenN ou

10.84 | L’ensemble E contient la suite nulle et, si A € C et u = (un)nen €t v = (Vn)nen sont des suites de E,

comme [un +vn| < Jun|+ |vnl, la série > (un +vn) converge absolument par comparaison et, par linéarité
n=0
+oo +o0 +oo
de la somme de séries convergentes, Yk € N*| 3~ (un +v)27 " = 3" un27*" + 3" v 278" = 0+ 0 donc
n=0 n=0 n=0
u+v € E. Ainsi, E est un sous-espace vectoriel de CY (et méme de ¢'(C)) donc E est un C-espace vectoriel.

Soit (un)nen de E, comme la série Y un converge absolument, la série entiere Y. unz™ est de rayon R > 1

n>0 n>0
car il y a convergence de Y unz™ au moins sur le disque B¢(0,1) = {z € C| |z|] < 1} par comparaison. Posons
n>0
+oo 1
f(z) = Zo Unz™ quand il y a convergence. Par hypothese, Vk € N*| f(z—k) = 0. Comme f est continue sur
n=
] = 1;1] car elle y est développable en série entiere, on a f(0) = klim f(;—k> =0 donc f(0) =up = 0.
—>+00
Soit un entier p € N, supposons qu’on ait déja montré que up = --- = up, = 0. Alors, on obtient
+o00 +oo +oo
Vke N Y w27 = Y oy 27k = zk(giﬂ) ST up2 K FRPED = 0 donc, en changeant d’indice,
n=0 n=p+1 n=p+1
+oo +oo +oo
> ]unZ’kT”k(p“) = Zo Untpt12~¥™ = 0. Par conséquent, en posant fp(z) = Zo Un4p+12™, le rayon
n=p+ n= n=

de convergence de cette série entiere est a nouveau supérieur ou égal a 1 car Vz € B¢(0,1), f(z) = zPf,(2).
Ce qui précede montre que Vk € N*, f, (;7) = 0 et, avec les mémes arguments que précédemment, le terme
constant de f, est nul ce qui montre que up 1 = 0 et 'hérédité est établie.

Par principe de récurrence, ¥n € N; u,, = 0. Ainsi, E est réduit a la suite nulle !
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_1\n_n
10.85| Comme (&> est bornée si et seulement si x| < 1 par croissances comparées, le rayon de
neN

n—+1
—1)y ™ +oo (_1\n n _1\yn,n
(G . i vaut R = 1. On pose f(x) = > (D™ pour x €] — 1;1]. En effet, la série > (D™

. N -n" . s . Y. .
converge si x €] — 1; 1] d’apres le cours et > (bl converge aussi par le critere spécial des séries alternées

n203n+1
1 -~ Le
3n+1+4003n

car ( ! ) est décroissante et tend vers 0. Par contre, la série ) diverge car
In+1/n>0

n>o0 3n + 1
+oo (_1)nx3n+1

que la série harmonique diverge. Posons g(x) = xf(x3), alors g(x) = 3 . Le rayon de cette série

n=0 31’1 + 1
+oo 1
entiere est aussi 1, on sait donc que g est dérivable sur | —1;1[ et que g/(x) = > (—=1)™*" = T Ainsi,
— X
. PR e s . b x * _dt
puisque g(0) = 0, par le théoréme fondamental de I'intégration, Vx €] —1;1], g(x) = fo g'(t)at = fo el
Or, comme (1 +X3) = (1 +X)(1 — X+ X?), on peut décomposer 1 - a 4 bX+cC avecab,e
des réels. En réduisant au méme dénominateur, en identifiant et en résolvant le systeme, on trouve sans
peine 1 - 1 + 2-X Ainsi, pour x €] —1; 1], en faisant apparaitre des dérivées usuelles,

T+X3 7 30+X) 301 =X+Xx%)
t

* 1 2t ) 1% dt 1 xQt=1)dt 1 at
- dt =5 [ S -~ | ———— + > | —&—. En mettant
o) fo <3(1+t)+3(17t+t2) 3fo T+t Gfo ot 2o 7o gz B0 mettan

1 2 (2/V3)

sous forme canonique, ———— = “=—= "2 on a ’expression de g(x) a ’aide des fonctions usuelles
1T—t+t° \@1+(2t ‘)2 90)
7

g(x) =

40 e T w)]x L () v (22) 4 3

3 6 V3 T—x+x7 V3

car Arctan (\L@) = % On peut maintenant revenir & 'expression de f(x).

Six =0, f(x) =1. Si x # 0, soit ¢/x 'antécédent de x par la bijection y + y> de | — 1;1] dans | — 1; 1[, alors
: 2 3

1 ey ] ( 1+ Vx) ) V3 (Zﬁ/i—1) V3n

) =39V = cam oot (o) T e T ) T

_ 1\, n —+00
Pour aller plus loin, en posant uy : x — (1) et Rn(x) = > uk(x) pour x € [0;1], d’apres le critere
3n+1 K=nt1
spécial des séries alternées car (Jun (x)|)ne N est décroissante et tend vers 0, |Rn (x)| < [unt1(x)| < 3 1+ ] d’out
n
1 , : _ o
R 00,[051] < T ce qui prouve que nBToo [[Rnl[s0,[0;1] = O par encadrement et la série ) u, converge

n>0
uniformément sur [0;1]. Comme toutes les u,, sont continue sur [0; 1], f est elle aussi continue sur [0; 1] donc

1 (1+ v)? V3 29x =1 L ABn | _n2) | m
Gwln(]_w+(%)z)+3%/\rctan( 3 )—’_18\5/;]_ 3 +3\/§.

10.86) a. Soit a € R tel que (un)nen- définie par u; = a et Vn € N*, up 1 = —22_ + 1 (R). On suppose que

f(1) = lm f(x) = lim

x—1- x—1-

n+
cette suite converge vers un réel £. En passant & la limite dans (R), on trouve £ = 0+ 1 =1. Soit b € R
et (vn)nen- définie par vi =b et Vn € N*| v, = Yn_ 4 1. Comme Vn € N, Unt] — Vnal = Un — Vn
n+1 n+1
on montre par une récurrence simple que ¥Yn € N*, uy, — vy, = 21 =V1 — a=D donc lim (un —vn) =0.
n! n! n—+o0o

Ainsi, comme vy, = un, — (uy — vy ), par somme, on a E;T vpo=1—-0=1.
n o0

i ite (Un)n>1 \Y cel a ite (Un)n>1 Y \% av .
Si la suite >1 converge pour un réel a, alors la suite >1 converge pour toute valeur de a vers 1
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= 1,5 mais aussi u3 = % g = % —=1,375. Soit n = 1 tel que 1 < up < 2, alors

% + 1 < 2. Par principe de récurrence, Vn > 1, un € [1;2] donc (un)n>1 est

b. Onau; =1, uy; =

N NI

1<un+1=n“—$1+1

bornée. Ainsi, comme lim —1— =0, ona UWm upy; =1 ce qui équivaut au fait que lim u, = 1.
n—+ocon -+ 1 n—+4oo n—+4oo

c. Soit n > 1, alors s —ni]L!—(nz? k! )+(n+ ! donc, comme (n+1)!' = (n+1).n!, on
M ) = (n+ 1) T () )

. La question précédente montre que (sn)n>1 tend vers 1.

Sn
a s 1 =
nt n—+1

d. Comme s, ~ 1, le rayon de convergence R de snx™ est, d’apres le cours, le méme que celui de
JrOO b ) b

nxl
“+o0o
> x™, donc R = 1. Pour x €] — 1;1[, posons f(x) = Y spx™. La fonction f est alors dérivable sur | — 1;1]
n>1 n=1
+0o0o
et f'(x) = Y. (n+ Dsnpix™ Orvn 21, (n+ 1)spy1 = sn + (n+ 1) dong, en reportant dans ’expression
n=0

de f'(x), on a f'(x) =1+ Z M+ 1)sppx™ =1+ Z(Sn m+1))x™ =1+1f(x)+ g(n—i—wxn. Comme

=1 1
-:oo 1 " +oo 1
on sait que Vx €] —1;1[, > x"'=_-*_ =~ —1 en dérivant,ona 1+ 3. (n+1)x"™ = —— donc
n=0 T—x -Xx n=1 (] _X>
f(x) = f(x) + (1]7)2 (E). Les solutions réelles sur | — 1; 1] de I’équation homogene (E¢) : y’ =y sont les
—x
fonctions y : x — Ae* avec A € R. Par la méthode de variation de la constante, on trouve A'(x) = %
— X
X e tat :
et on peut prendre par exemple A(x) = fo oo Les solutions de (E) sur | — 1;1] sont donc toutes les

—t
fonctions y : x — (7\ + f d;cz) e*. Comme f est solution de (E) sur | — 1;1[ et que f(0) =0, ona A =0
x —t
donc, pour tout réel x €] — 1;1 il vient f(x) = e* [ -£—dt_
p xel =1l )= [ a4
10.87)a. Pour n > 1, on partitionne les involutions o de [1;n + 2] en deux catégories :

- celles pour lesquelles o(n + 2) = n + 2 sont au nombre de I,47 car il n’y a pas de choix a faire pour

o(n+2) qu’on impose égal & n + 2, ensuite o induit alors sur [[1;n + 1] une involution de [1;n 4 1].

- celles telles que o(n +2) = k # n + 2 sont au nombre de (n + 1)I,, car pour les choisir de maniere

bijective, il y a n + 1 choix pour 'entier k qui est I'image de n + 2 par o et, une fois ce choix effectué,

cela implique que o(k) = o(oc(n+2)) = n+2 car o doit étre une involution, et on a alors I, choix pour

finir de déterminer o qui doit induire sur [[1;n+ 1] \ {k} une involution de cet ensemble & n éléments.

Cette partition implique la relation In42 = Iny1+(n+1)[ pourn > Tet, comme I, =2=1+1.1=1;+1.1p
avec la convention choisie pour Iy, on a bien : ¥n 2 0, Int2 = Iyt + (n+1)1,.

b. Comme les involutions sont des permutations et qu’il y a n! permutations de [1;n], on en déduit que

In <n!douod< I—T; < 1. Comme la série entiere Y. x™ a pour rayon 1, par comparaison, on a R > 1.

c. Les calculs qui suivent sont valides car le rayon de convergence R est supérieur a 1 : pour x €]—1;1,ona
p Inon = In1 XM I + T‘-In 1 In+1

(THx)e(x) = o(x)+xe(x) = > Jx"+ 3 —— 1—|—Z S 1+Z = ¢'(x).
n=0 N n=1 (Tl - ])

d. On en déduit en intégrant I’équation différentielle linéaire du premier ordre mise sous forme normalisée

2
sans second membre, comme une primitive de x — 1 4 x est x — x + x7 sur l'intervalle | — 1;1[, que l'on a
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XZ

Vx €] = 1;1], @(x) = T2 puisque ¢(0) = Iy = 1 par convention.

+oo X +oo .
e. Alors Vx €] — 11, o(x) = <Z _1'x1> « (Z % 21), Ces deux séries ont pour rayon +oco donc on
i=o0 - j=0)*
. . oo ! . . .
peut effectuer le produit de CAUCHY et obtenir S(x) = ) ( . 5 )x“. En identifiant (par unicité)
n=0 ‘i42j=n I!J!z
les coefficients entre les deux expressions de S(x) sous forme de série entiere, ¥n € N, I—T} = _|.]'2j
: i+2j=n V)
donc I, = 'n' 7. Puisque 2j <neti=n—2j, on a la formule I, = %
i+2j=n 1512 j=o (n—2j)4!2

Pour expliquer cette relation de maniére combinatoire, on peut constater qu'une involution o de [1;n] est
une application telle que pour tout entier x entre 1 et n, on a deux choix :

e 50it o(x) = x et x est appelé un point fixe de o.

e soit o(x) =y # x et alors, comme 02 = id [1,n], on a forcément o(y) = x.

Ainsi, si 0 € Ap, le nombre f de points fixes de o a la méme parité que n de sorte qu’il existe 2j entiers de
[n/2]

[1;n] qui ne sont pas fixes par o avec f =n —2j avec 0 <j < {TZIJ . On peut donc écrire A,, = U An,j ol
j=0

An,j = {0 € Ay | 0 admet f =n — 2j points fixes}.

Pour construire une involution o de A, j :

e on choisit les n — 2j éléments de [1;n] qui sont fixes par o : < " 2,) = (;) choix.
n—2s )

e on choisit I'image y du plus petit élément x qui reste : (2j — 1) choix (et alors o(x) =y et o(y) = x).

e on choisit 'image t du plus petit élément z qui reste : (2j — 3) choix etc...

! 2j)!
Ainsi card (An,j) = n X(2j—1)%x(2j=3)x---x3x1 = n X ( ‘)) en multipliant en haut et en bas
1=y = 2)@) Dy
[n/2] [n/2] ,
par les termes pairs qui manquent. On retrouve bien I, = card (A) = > card (Anj) = > W
j=0 j=0 (M —2)):27):

10.88)a. Pour x € R, fy : t — _: ¢ est définie et continue sur Ry si x > —1 et sur [0; In(—x)[U] In(—x); +o0]
x+e
si x < —1. Comme fy(t) o e™ ! la fonction fy est intégrable sur R, si x > —1. De plus, f_; est continue et
o0
LEpY % donc f(—1) n’existe pas par comparaison & une intégrale de RIEMANN.

—To
Comme f est définie sur | — 1;1] et pas sur [—1;1], on en déduit que le réel « > 0 maximal tel que f soit

positive sur R et f_1(t) = o

définie sur | — o; o[ est le réel o = 1.

1 —+oo —+oo

b. Six € — L1, Vt 20, fx(t) = e " x —— = e ' Y (=1)"x"e ™ = Y u,(t) si on définit
1+ xe n=0 n=0
Un(t) = (=1)™"x"e~ M+t Lasérie 3 u, converge simplement sur R, d’aprés ce qui précede. Les u,, sont

n=0
—+oo
continues et intégrables sur Ry car n 4+ 1 > 0 pour tout entier n € N. La fonction fy = > u, est continue
n=0

sur R;. De plus, pour n € N erOO [un| = i et > il converge car X _ o([x|™) et que la
_1\yn—1_n
série géométrique Y |x|™ converge car |x| < 1. Ainsi, si x # 0, f(x) = 1 > (D™ X" _ (1 +x) car on
n>0 X n=0 n X

reconnait le développement en série entiere de x — In(1 + x) sur | — 1; 1[. Bien sur, f(0) = 1.
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10.89 ) a. La fonction f est continue sur R . On a f(x) Y %H donc f est intégrable sur ]0; 1] par RIEMANN (15 <1).
X
De plus, f(x) o % donc f est intégrable sur [1;+oo[ par RIEMANN (% > 1). Ainsi, f est intégrable sur
00 x
* FEIIpL +oo
R* donc l'intégrale j;) f(x)dx converge.

+oo
b. Dans l'intégrale convergente f] f(x)dx, on pose x = — = @(t) avec @ strictement décroissante, de classe

1

t

! et bijective de ]0; 1] dans [1; +oo[, et f+oo f(x)dx = fff(%)( %)dt = f \/T f t)dt. Par
t t

400 ]
CHASLES, on a donc fo dx-f f(x dx—i—f f(x)dx.

+oo —1)--- — 1
c. D’apres le cours que Vx €] — 1;1], Va € R, (14+x)*= > ( >x avec <oc> = o) (—mt )
= n

n!

Siuel—1;1] u? €0;1[C] —1;1[ donc Yu € [0;1], é— Z (1/2)(= /2).”(_n+<1/2))u4“ avec

V14 ut n=0 n!

o = —%. Classiquement, on factorise les 2, on multiplie au numérateur et au dénominateur par les termes

—1/2 1™ (2n)! oo (_1\n 1,,4m
G I LIPS S Y55
n )T N R ST

(2n)u? L déeroi . )
W a suite (vi(u))x>o est décroissante car si u €]0;1],
on a VHEL(LLL) = (znij)ﬁz{;j Nt = ;Ki; ut < 1 et vp(0) = 8n,0. La suite (vic(u))iso tend aussi vers

0 si u € [0;1] puisque la série > (—1)®vi (1) converge d’apres c.. De plus, si u = 1, par STIRLING, on
k>0

VA4mm(2n)2" e 1

24.---.(2n), ce qui donne <

d. Pour u € [0;1] et n € N, posons vy (u) =

N N : _ o _\n o
a vn(1) £ 2 2y E T L% donc nLIToo v (1) = 0. Ainsi, nz;o( 1)™vn (1) converge par le critere
spécial des séries alternées. La série > (—1)™vy, converge donc simplement sur [0; 1].
n=0
+o0o
Posons maintenant R (1) = >, (=1)%v(u) pour u € [0;1] et n € N. D’apres le critere spécial des séries

k=n+1
alternées, |Rn(u)| < vny1(u) <vnp1(1). Ainsi, Ry est bornée sur [051] et |[Rn||oo,j0;1] < Vi1 (1)-

e. On effectue le changement de variable x = u? = (p( ) avec @ strictement croissante, de classe C' et

bijective de [0;1] dans [0;1], et on a (Qu)du =2 1 du
’ Jy o= fy s fo 7t
Comme [|Rn||oo,j0;1] < vny1(1) et d’apres d., par encadrement, hT |[Rnl[s0,[0;1] = 0 donc la série de
n—+oo
fonctions > (—1)™vy converge uniformément sur le segment [0; 1] done, comme toutes les vy, sont continues
n>0
+oo
sur [0;1], la fonction S = > (—1)™v;,, est continue sur [0;1] (on n’en a pas besoin ici). D’apreés le cours,
n=0

+00 oo —1)"(2n)! n
f mdu = f] S(wydu= >, (f()](—])nvn(u)du) = ngo Zzn((n]!))z(&zn)—l'— 1 car fo] u'Mdu = 4n]—|— 1

n=0
(= 1) (2n)!

+o00 1 1
D’apres b., on en déduit que fo f(x)dx = Zfo f(x)dx = 4]; \/#du =4 Z I an 1)
u?

On aurait pu montrer cette relation par le théoreme d’intégration terme a terme !

10.90a. f:t— @ est continue sur | — oo; 1] en la prolongeant par continuité en 0 avec f(0) = —1 puisque

In(1 —t) 3 —t. F est donc la primitive de —f qui s’annule en 0 donc F est au moins définie sur | — oo; 1[.

Comme f n’est pas définie sur [1;4+o00[, le domaine de définition D de F est inclus dans | — oo; 1].
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Six =1, f(t) ~ In(1 —t) = o( 1 ) donc f est intégrable sur [0;1] et F(1) existe par comparaison aux

Vv1i—t

intégrales de RIEMANN. Par conséquent, le domaine définition de F est D =] — oo; 1].
+oo m +oo ]

b. D’apres le cours, Vt €] —1;1[, In(1—t) = — > & donc —f(t) = Y, *— (marche aussisi t =0). Pour
n=1 "N n=1 M

x €] — 1;1], en intégrant terme & terme sur le segment [0;x| inclus dans Uintervalle ouvert de convergence,

il vient F(x) = [0 (~f(t)at = [ T o W R S _ §(x). Par définition de 1
il vient F(x) = | (= _OHZ::]n _nZ::]O - —n§1nz— x). Par définition de la
convergence d’'une intégrale, F(1) = liTP F(x). Par continuité de F en —1, on a aussi F(—1) = lin‘%JrF(x).
x—1- b
En posant u, : x — %, on a ||un||o,j=1;1] = 1—2 donc Y u, converge normalement sur [—1;1] et, puisque
n n n>1
2
toutes les uy, sont continues sur [—1;1], S est continue sur [—1;1] donc F(1) = liql S(x) = S(1) = % et
X—1—
2
F(—1) = lim1+ S(x) =S(-1) = —7][—2 (classique en séparant les termes d’indices pairs et impairs).
X——

On a bien Vx € [—1;1], F(x) = S(x).
2
c. Soit G : [0;1[— R définie par G(x) = % —In(x)In(1 —x) si x # 0 et G(0) = 0. Alors, par opérations
et comme In(x) In(1 —x) v In(x) et lin}) xIn(x) = 0 par croissances comparées, la fonction G est continue
X—

In(1 —x)

sur [0; 1] et dérivable sur ]0; 1. De plus, F est dérivable sur ]0; 1] avec F/(x) = — donc, pour x €]0; 1],

(F(x) + F(1 = x) = G(x)) = F(x) = F(1 = x) — G'(x) = — 1 =%)  In{0 = (1=x) , n(=x) ﬁn(” =0
X — X X — X
avec I’abus de notation usuel. Ainsi, la fonction x — F(x) 4+ F(1 —x) — G(x) est constante sur I'intervalle ]0; 1],

et en utilisant sa continuité en 0, elle vaut donc F(0) + F(1) — G(0) = F(1) = %

2
On a donc la relation Vx €]0;1], F(x) + F(1 —x) = % —In(x) In(1 — x).

2 2
10.91 | Pour tout entier naturel n, posons w, = In” + 15171 +3 o 2_1 =0 (%) par croissances comparées donc,
2 +o0 2 +oo \n
par comparaison & une série de RIEMANN, comme 2 > 1, la série Y un converge.

n=0
Pour calculer la somme de cette série numérique, posons an = 2n? + 5n + 3 et considérons la série entiere

>~ anx™. Toujours par croissances comparées, (anx™)n>o0 est bornée si et seulement si |x| < 1 donc, par

ggf(i)nition, le rayon de cette série entiere vaut R = 1. Pour x €] —1;1[, comme an =2(n+1)(n+2) — (n+1),
on a f(x) = Jio anx™ =2 —io Mm+1)n+2)x" — ED:O (n + 1)x™ (les deux séries convergent puisque les deux
n=0 n=0 n=0 oo
rayons valent encore 1). On reconnait les dérivées de la série géométrique, ¥x €] — 1;1], nX::O X" = 1]?
= n 1Y 1 = n 1) 2
donc nZ::O(n + )X = (] —x) = =2 et nZ::O(n +1)(n4+2)x™ = (l —x) = 0=° de sorte que
oo 5 2
0 = G — g~ i A £ AR () - ZEOR
a. Pour x € R, (an)nen étant bornée, %x“ = @) (%) donc nE;Too %x“ = 0 par croissances comparées.

o . a / . a
Ainsi, (—T"x“) est bornée quel que soit x donc le rayon de convergence de Y —T"x“ vaut +o0.
n n>0 nzo T

b. Les trois suites suivantes sont bien bornées :

n
> X converge si et seulement si x| < 2 donc R = 2 et la série géométrique Y an

e Sia, = o
n>=0 n=0

1
2m’
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converge car elle est de raison % el -1;1

e Sian, =1, Y x™ converge si et seulement si |x| <1 donc R=1et Y. an diverge grossierement.

n>0 n=0
. 1 /. Xn . . yan
e Sian = ——, la série ——— converge si et seulement si |x| < 1 donc R =1 et la série de
P G e Gz e M=
RIEMANN Y a;, converge.
n>0
c. Pour x € [—1;1], la suite (anx™)n>0 est bornée car |anx™| = |an|[x|™ < |an| et que la suite (an)n>0 est

elle-méme bornée. Par définition du rayon de convergence, R > 1.

d. Soit k € N, la fonction fy : x — x*e™* est continue sur R, et fi(x) =0 (iz) par croissances comparées
oo X

“+o00
donc fy est intégrable sur Ry par comparaison aux intégrales de RIEMANN donc fo xKe™Xdx converge.

—+oo
On pose Iy = fo xke~*dx pour k € N. Pour k > 1, les fonctions u : x — x¥ et v : x — —e™* sont de classe

C' sur Ry avec liT u(x)v(x) = 0 = u(0)v(0) par croissances comparées donc, par intégration par parties,
X—>+00

oo k—1_,—x A : oo —X —x]+0o0
onalx = kx e *dx = klx_1. Par une récurrence simple, comme Iy = e “dx = [—e } =1
0 ’ 0 0 ’

+oo
on a Yk € N, Iy = kl. On pouvait aussi dire que I} = fo 1 =Te=Xdx =T(k+1) = (k+1—-1) = k!

d’apres le cours mais le calcul est attendu.

—+oo +oo
e. Soit t > 1, d’apres a., f est définie sur R et, pour tout x € Ry, onae *'f(x) = > a—*"x“e"‘t = > un(x)
n=o0 M- n=0

a —
en notant un(x) = “x"e .
n!

(Hq) La série > uy, converge simplement vers x — e~ *'f(x) sur R, (on en vient).
n=0

(Hz) Les u, sont continues et intégrables sur Ry car un(x) = o(%) par croissances comparées.
oo \x
(H3) x — e *'f(x) est continue sur R, puisque f l’est en tant que somme d’une série entiere de rayon +oo.

Hoo _ o lan] o xt _ : :
(Hg) Pour n € N, o [un(x)]dx = o Fx"e™*"dx et on pose u = xt (facile car t > 0) pour avoir
n!

[ e = —Lanl 7 ey = 18] rapres d. o 35 120 dapre 1
0 Unp (X X = n!tn+] 0 u-e u = 1 apres d. € = tn+1 converge apres C. car le
=

t
rayon de convergence de > anx™ vérifie R > 1 et que % €]o; 1[.
n=>0

7 N . 7 . N +m +OO +OO A~
Par le théoréme d’intégration terme & terme, g(t) = fo e M (x)dx = > j;) un (x)dx or, avec le méme
n=0

+ + oo
calcul que ci-dessus, on a f;} Ooun(x)dx = tg% donc Vt > 1, g(t) = fo Oo e Hf(x)dx = > tg% = %S(%)
n=0

10.93| a. La fonction f : t — Su;(t) est continue sur R* par opérations et elle se prolonge par continuité en 0

en posant f(0) = 1 car sin(t) Et' Ainsi, f est continue sur R ce qui montre, par le théoreme fondamental

de l'intégration, que F est bien définie sur R en tant que primitive de f qui s’annule en 0. De plus, on sait

“+oo (_1)kt2k+1 Siﬂ.(t) B +o0 (_])ktZK

que Vt € R, sin(t) = > Ainsi, Vt € R*, f(t) = > r et cette formule

= (2x+1)! t = (2k+1)!
(—1)0t2'0 (_])ktZk
marche aussi pour t =0 car 1 = >—~——. Comme le rayon de convergence de > ~——— vaut R = +o0,
(204 1)! S0 (2k+1)!
on peut intégrer terme & terme sur [0;x] qui est inclus dans lintervalle ouvert de convergence pour avoir
O R T o = PR s
S y - t)dt = — = .
X (x) fo ®) fo (go (zk+1)!) kgo 2k +1).2k +1)!
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b. Pour x € R, la fonction hy : t + exp(—xe™'!) est continue sur le segment | = {O; %} donc l'intégrale

/2 . +oo o .
I(x) = j;) exp(—xe '')dt existe. On sait que Vz € C, e* = ), %= donc, en prenant z = —xe™ ‘', on
omn
. +o0 (71)nxneflnt " ( 1)11 n 71nt
obtient Vt € J, exp(—xe™ ") = 37 *————. Pourn € N, posons hy : t —'.
n=0 n. n:
n
omme Vt € ], |hn(t)| = on a 00,] = et la série exponentielle converge donc la série
Comme 1€ 1, (8] = B, on 0 ol = B et 1 séric exponentitie = B2 converge done
: n>0
de fonctions > h, converge normalement vers h sur le segment J. Comme toutes les hy, et h sont continues
n=0
71/2 nxneflnt
sur J, le théoréme d’intégration terme & terme sur segment montre que I(x Z f —dt.

n_—int

/2
Pour n € N, posons l'intégrale L,, = fo %
n!

(7])“)(“ fn/z eiintdt _ (71)nxn [efint]

n! 0 n! —1in

- 7T/
dt. On a le cas particulier Ly = fo l.dt =%

fn/z (=)™ y e—inT/2 g

et, pour n € N* il vient L,, = -

0 n! —in

. +oo e~ inm/2 _ 4 . .

Comme on sait que Re (I(x)) = > Re(Ln) et que Re( - ) = 0sin > 2 est pair et que I'on a
—in

efinﬂ/z 1 671(2k+1)7r/2 7 (_1)k ) ) o

Re (7 ) = Re ( - ) = sin = 2k+1 > 1 est impair, il ne reste dans la formule
—in —i(2k +1) 2k +1

+oco (_])Zk—HXZk-H (_])k

+ 2

" n (_])k 2k+1
= (@xk+ 1) 2k+1 2 k=o(2k—|—)2k+1)

+oo
ci-dessus que Re (I(x)) = -

SR

(
. 7 . 7’ . . . 7’ _ 7.[/2 _ _it _ _it
c. Par inégalité triangulaire sur les intégrales, |I(x)| = o exp(—xe 't)dt| < o |exp( xe~'Y)|dt. Or

—x cos(t)

e

xe ') = e

exp(— ixsin(t) qopc |exp(—xe*it)| — e—xcos(t)

Méthode 1 : la fonction cos est concave sur J car cos” = —cos < 0 sur ] donc Vt € J, cos(t) > 1— 2t Ainsi,
m

/2 . /2
e Xcos(t) < eXe2Xt/T donc Vx > 0, j;) [exp(—xe ") |dt < e j; e?*t/7qt. On en déduit donc que

/2 —X (X _ =X X
I(x)| <e™™ [ﬂez"t/”] _me (et 1) _nll—e ) Comme Um mi—e?) _ 0, par encadrement,
2x 0 2x 2x x—+00 2x
/2 )
on obtient la limite hm i exp(—xe~)dt = 0.
X—+ 0

. /2
Méthode 2 : soit g: R x [O; % [ — R définie par g(x,t) = exp(—xe~ ') de sorte que I(x) = fon g(x,t)dt.

(Hi) pour tout t € J,ona lim g(x,t) =0 = a(t) car cos(t) > 0.
X—400

(H2) pour tout x € R, les fonctions hy : t — g(x,t) et a sont continues sur [0; % [

(Hz) pour (x,t) € R x [O; % {, on a |g(x,t)] <1=(t) et ¢ est continue et intégrable sur {O; % [

/2
D’apres le théoréme de convergence dominée a parametre continu, on a 11111 I(x) = fo a(t)dt = 0.
X—>+00

D’apres les questions précédentes, on a Vx € R, Re(I(x)) = T — F(x). Comme lim I(x) = 0, on a aussi

2 X—+00
lim Re(I(x)) = lim (E - F(x)) = 0. Ceci assure 'existence d’une limite finie de F en +o0 et sa valeur
x—++00 x—+o0o0 \ 2
+o0 g
. o sin(t) .. w o
XBTOCF(X) =35 quon note fo . dt = 5 (intégrale de DIRICHLET).

10.94] a. Si, pour n € N, on pose a,, = (—1)™, le rayon de convergence de la série entiere >  an,x™ vaut R =1
n=0
+o00 1
et sa fonction somme f:x +— > (=1)™"x" = T est majorée par 1 sur [0;1].
n=0 x
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b. L’hypothese se traduit par a,, = o(l> donc lim a, = 0. Ainsi, la suite (an)nen est bornée donc,
+oo n n—+oo
pour tout réel r €]0;1], la suite (ant™)nen lest aussi donc, par définition, le rayon de convergence R de

+oo
> anx™ vérifie donc R > 1. Ainsi, la fonction somme f : x — > anx™ est définie sur | — 1; 1] au minimum.
n>0 n=0

c. Soit ¢ > 0, il existe un rang ng tel que Yn > ng, |nan| < % Par conséquent, sin > ng et x €]0; 1], il vient
no—1 no—1 “+o0 no—1 —+o00 n
| (x )‘ ‘ Z anx™ + Z anx™ < Y Janx™ 4+ Y Janx™ < Y Janx™ + € S0 %= par inégalité
n=ngp n=0 n=ngo n=0 2 n=n,
no—1 no—1 n +o00 n
triangulaire. On en déduit la majoration |f(x)| < > [an[x™ = £ Y *-+ £ 37 X De plus, comme
n= 2 n=1 T 211:1 n
TLo—] no—] n
Qeix Y |an|x“—§ >~ X est polynomiale donc continue en 1, elle est bornée et on a @(x) = o(In(1—x))
n=0 n=1 M
car liql In(1—x) = —oo. Il existe donc « > 0 tel que Vx € [1—a; 1], |@(x)| < §| In(1—x)|. En combinant ces
x—1—
+00 n
deux renseignements, Vx € [1 — a; 1[, |f(x)| < e|n(1 —x)| car on sait que In(1 —x) = — Xosixel—1;1]
n=1 T

Ainsi, Ve > 0, o >0, Vx € [1 — a; 1], |[f(x)| < e|tn(1 —x)|. Ceci justifie bien que f(x) = o(ln(1 —x)).

est bien définie

d. Avec 'exemple de la question a., si on pose b;, = (—1)", la fonction somme g : x — 3 J_
X
sur | — 1;1[ et vérifie bien g(x) = o(In(1—x)) car g est bornée sur [0; 1] et liql In(1 —x) = —oo. Pourtant,
- Midis

la suite (nby )nen ne tend pas vers 0. La réciproque espérée est donc fausse.

Méme si on impose que tous les by, sont positifs, il suffit de prendre b,, = 1 §in est une puissance de 2 et
n

Zn n
bn = 0 sinon. Alors, Y. % est de rayon de convergence 1 car (X—n) est bornée si et seulement si
n>0 2 2 neN
+o00 2“ “+o00 1
|x| <1 par croissances comparées. En notant g : x Z Swoona Vx € [-1;1], |g(x)]| < Zo ™= 2 donc
n=
g est bornée sur [—1;1] et g(x ) o(In(1 —x)) méme si (nbn)neN ne tend pas vers 0 puisque 2™bon = 1.

Conclusion : si, au voisinage de 17, f(x) = o( In(1— x)), on ne peut pas conclure que (nan )nen tend vers 0.

n f(k) O f(n+1)(t)
10.95 ] a. Comme f est de classe C® sur [, Vx € I, Vn € N, f(x) = > o x + f dt par la
k=0
L . x(x—t)" f(“'H)(t)
formule de TAYLOR reste intégral. On constate que si x € [0; A[, comme fo ' t>0,o0na
n!
no M (0) . f(0) L ” .
ax < f(x) donc la série ax est une série a termes positifs dont les sommes partielles sont
k=0 ' k>0 :
majorées donc elle est convergente et on peut en déduire que son terme général tend vers 0, ce qui montre
£(k)
que lim Jxk =0 (L). Traitons maintenant deux cas :
k—+oo k!

Sixe]l—A;0],

_ne(nt1) 0 (t — (n+1)
X (x —t)"f (t) dt’ _ f (t—x)"f M) 4t car f*+1(t) > 0 par hypothese.

0 n! x n!
Comme f(n2) > o, fM+1) est croissante donc Vt € [x;0], fM+1(t) < f+1)(0) ce qui montre que
‘ f f(n+1)( )dt’ < fo (t _ X)nf(nJr])(O) dt = f(n+1)(0) {(t _ X)n+1 }O _ (*X)n+1f(n+1)(0).
= Jx n! n! n+1 Ix (n+1)!

(k)
Mais comme —x > 0, d’apres (L), on a lim 2(0) (—x)k = 0 donc, par encadrement, on en déduit

k——+o0 k'
. x (x — )M ()
aue tm Jo o

dt = 0 et, d’apres le cours, f est égale & sa série de TAYLOR sur |—A;0].
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Si x €]0;A[, on prend r tel que x < ¥ < A et, en posant t = xu = @(u) avec ¢ C' sur le segment

_f)ng(n+1) T (x — xu)vf(m+1) +1 p1
[0;1], on a fox (x—t) TI' (®) 4 — fo (x = xu) TB 0w g = X?l' fo (1 — )™+ (xu) du.

x — )M ()
n!

1
Comme f(™+1) est croissante car f(™*2) > 0, il vient fox ( dt < fo (1—w)™ D (ru) du

car Yu € [0;1], f™+ D (xu) < fM*+D(ru). Avec le méme calcul qu’avant avec r & la place de x, on a
fr (r — t)nf(n+1)(t) 4 = Pt

0 n! n!

1
fo (1 — W)™+ (ru)du donc on obtient la majoration suivante :

fx (X — t)nf(nJr])(t) dt < :nJrl fr (T _ t)nf('f”r])(t) dt — Xn+1 (f(r) B i f(k) (0) rk> < Xn+1f(r)

0 n! nt+1 Jo n! N =0 k! it
n+l X (x — )M D (¢ . .
Comme Uim Xn+1 =0car0<x<r,onadonc Um ( ) ( )dt = 0 ce qul garantit
n—+oo r n——+oo J O n!

que f est égale a sa série de TAYLOR sur ]0; A[.
Avec ces deux cas, f est égale & sa série de TAYLOR sur | — A; A[, donc f est développable en série entiére sur
] — A;A[ : on dit que f est absolument monotone sur | — A; A quand Vn € N, (™ >0 sur | — A; A[.
b Comme f est de classe C* sur I et exp 'est sur R, par composition, g est de classe C*> sur I.
Initialisation : g = ef est positive sur I, g’ = f’ x e’ donc g’ est positive sur I car ' I'est et g = (f"+ (")) x ef
est aussi positive sur I car f” et (f)? le sont.

Hérédité : soit n > 1 tel que la fonction g(®) est positive sur I pour tout entier k € [0;n]], alors, par la formule

de LEIBNIZ, on a g("+‘) = (g’)(“) = (f/Xef)(n) - (f/xg)(n) - i (Z) (f/)(k)g(n—k) _ i (L‘) f(k+1)g(n—k).
k=0 k=0

Or, par hypothese sur f et hypothese de récurrence, pour tout k € [[0;n]), les fonctions f(x+1) et g(m=¥) sont

n
positives sur I, donc par produit, multiplication par (k) > 0 et somme, la fonction g™ 1) est positive sur I.

On a bien établi par récurrence forte que ¥n € N, g™ est positive sur I.
Ainsi, les hypotheses de la question a. sont vérifiées pour g qui est donc développable en série entiere sur 1.

c. Pour x € } - g;g[, tan(x) = Po(tan(x)) et tan’(x) = 1+ tan?(x) = Pi(tan(x)) avec Py = X et
P1 = X2 + 1. Si on suppose, pour n € N*, que tan(™ (x) = P,,(tan(x)) avec P,, un polynéme de degré n + 1

dont les coefficients sont des entiers naturels, alors tan™*1)(x) = tan’/(x)P. (tan(x)) = Pn41(tan(x)) avec
n+1

Pt = (1+X?)PL(X) qui est bien de degré n + 2 et de coefficients entiers naturels car si P, = . aiX¥, on
k=0
n+1 n+1 n n+2
aPnir = O kaX 4+ 3 kar X = 37 (k+ Dag 1 X<+ (k — 1)ax_1X* ce qui donne I’expression
k=1 k=0 k=0 k=1

n
Prs1 = (n+ DanX™! +na, X" + ( > ((k + Dagr + (k— l)ak_1)Xk> + a7 qui est bien & coefficients
k=1
e de

entiers naturels. On conclut que princip récurrence que Vn € N, Vx € } = %; % [, tan(™(x) = Py (tan(x))
avec Py € N[X] et deg(Pn,) =n +1.

Comme tan(x) > 0 pour x € [0; %[ et que P, € N[X], Vn € N, x € {0; g [, tan(™(x) = P, (tan(x)) > 0

donc, d’apres la question a., la fonction tan est développable en série entiere sur [0; %[ et on peut écrire

+o00 (2n+1)
vee [0F], tan(y) = 3 7 (0)

2n+1
@)

. Comme tan est impaire, Vx € ] . g; O], tan(x) = —tan(—x)
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400 (2n+1) +o00 (2n+1)
donc tan(x) = — M(—X)Z“‘H = MXZTH—]. Cette relation est donc vraie pour
n=0 (21’1 + 1)' n=0 (Zn + 1)'

tout x € ] - [ et tan est bien développable en série entiere sur } - %; % [

i
272

10.96 ) a. Comme X% — 2ch ()X +1 = X% — (e* + e ¥)X + 1 = (X — e*)(X — e~%), la quantité x* — 2ch (a)x + 1

est donc strictement positive hors du segment [e~*; e®] reliant les deux racines. Par conséquent, I’ensemble
de définition de f, est D =] — oo; e~ *[U]e®; +00|.

b. La fonction f est de classe C' sur D par opérations. Comme fq(x) = %ln(xz — 2ch («)x + 1) pour

— ch () (x/2) = (e%/2) + (x/2) — (e”%/2) 1 1
G D, fl == x ¢ = e _
* on a fo(x) x—eM)(x—e %) (x—eM)(x—e %) 2(e*—x)  2(e”%*—x)
donc ,(x) = f%.] — l_“x - %.] —1e°‘x' Pour tout réel x €] —e~*;e~*[, [e”*x| < 1 et [e*x| < T donc
—x too « oo
on a f,(x) = _eT' Sem )™ — 67 (e*x)™ grace aux séries géométriques. On a donc la relation
n=0 n=0
—a Tt +o0
suivante, Vx €] — e~ % e[, f,(x) = Z (em%x)™ — 67 Z (e*x)™ qu’on peut regrouper et simplifier
n=0 n=0
too [(n+1) —(n+1)
en fi(x)=— > € e +ze " o(x“ =- Z ch ((n+ 1)a)x™. Les fonctions f/, et fo sont développables
n=0 n=0
en série entiere sur | —e”%;e"*[. En intégrant a l'intérieur de l'intervalle ouvert de convergence, comme
n+1
fo(0) =0,0n aVVx €] —e *e %[, fo(x) = — Z ch((n+1)x )T
=0

10.97 | a. Comme f est dérivable sur R, elle y est continue. Ainsi, par composition, x — f(ax) est continue sur R

donc f" aussi ce qui montre que f est de classe C! sur R. Si on suppose que f est de classe C™ sur R pour un
entier n > 1, alors x > f(ax) est aussi de classe C™ sur R donc f’ I'est encore et f est donc de classe C™*!
sur R. Par principe de récurrence, f est de classe C™ pour tout n € N sur R donc f est de classe C* sur R.

Pour x € R, on a f'(x) = f(ax) donc f”(x) = af'(ax) = af(a?x). On continue, f”'(x) = a*f'(a*x) = a>f(a3x)
n(n-1)
et f*)(x) = a®#(ax) = a®f(a*x). Supposons, pour n € N, qu'on ait Vx € R, f™M(x) =a~ 2 f(a™x).
nmn-1) n(n+1)
Alors, en dérivant cette relation, on a f™*1(x) =a™ 2~ x a™(a™x) =a~ 2z f(a™'x). Comme on a

0(0—1) nn-1)
fO(x) =f(x) =a~ Z f(a®), on a montré par récurrence que Yn € N, ¥x € R, f™(x) =a~ 2 f(a™x).

b. Pour b > 0, f étant continue sur le segment [—b; b], elle y est bornée et on peut poser My = |[f||o, [~ b:b)-
n (k) k _ \ne(n+T1) —
Pour x € [-b;b] et n € N, on a f(x) = Y, L O + fx (e —t)7f () dt. Pour t € [0;x], comme
k=0 k.' 0 TL‘
n(n+1) — n(n+1)
f () =a™ 2 f(a™'t) et que a™t € [0;x] C [~b;b] car |a| < 1, 0n a |f (n+1) ( ) <a” T My.
o _ ey < xraT [ T M
Par inégalité triangulaire, on a ‘ fo O ’ ‘ f = o
|x|n+1 n(n+1) +oo (k) (O)Xk .
donc, comme lim = lim a 2 =0car|a|<T1,onaVxe[-bb], f(x) = > ——. Mais
n—+oo ml n—-+oo k=0 k!

k(k—1)
2

ceci étant vrai pour tout b > 0 et comme f(¥)(0) = a
(k 1))

f(0), f est bien égale & sa série de TAYLOR sur R

“+o0 k
etonaVx € R, f(x) = ()Za k
too KO=D) k(k=T)
c. Soit A € R et la fonction gp : R — R définie par ga(x) =A > GZTX- Sion pose ax = % >0,
k=0 ' '
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k
ona Ikl — _a donc, comme 0 < a <1, lim Sl — donc, par D’ ALEMBERT, le rayon de convergence
akx k+1 k—+oo Ak
de la série Y axx® vaut R = 400 ce qui justifie que la fonction gy est bien définie et de classe C*° sur R.
k=0
k(k—1) k(k+1) k(k—1)
too ——— k-1 XK Kk
De plus, Vx € R, gg\(x) =A Z (1(]{27]) Z a2 X ) Z A = gA(ax), Avec
k=1 - k!
ce qui précede, les fonctions g : R — R dérivables telles que Vx € R, g’(x) = g(ax) sont les fonctions
oo K(k=1)
proportionnelles & g7 : x +— > & o X elles constituent donc la droite vectorielle Vect(gy).
k=0 :
2 1(n1)2
10.98 ) a. Posons an = ") >o pour n € N, alors dntl — (2n + 2)!(n) 5 = (2n+2)(2n2+ 1) _20n+1)
n an ) (n+ 1)} (n+1) n+1

) a R n
donc lim =2+l — 4, D’aprés D’ ALEMBERT, le rayon de convergence R de > x™ vaut R = 1.
n—+o0o an n>0 4

n\ , (2n)! Varm(2n)? e
X = ~ ~
4™ (n!)? +o0 4™ (27 )n2me?™ +oo \/rn

n
par comparaison aux séries de RIEMANN, > an (%) diverge.
n>0

b. Six = éll’ anx™ = ( avec I’équivalent de STIRLING donc,

n

n+1
Six=—1 la série >~ anx™ est alternée et ’an+1xn ’ _2nt1) _ 4n 2 < 1 d’apres a. donc la suite
4 n>0 anXx 4n+1) n +4
(|anx“|) y est décroissante et tend vers 0 puisqu’on vient de voir que |anx“| ~ \ﬁ Alinsi, par le critere
n
spécial des séries alternées, > an( — l) converge.
n>0 4
L’ensemble de définition de f est donc { — él‘ éll {
c. On a vu en question a. que Vn € N, (n+ 1)an+1 =2(2n+ 1)an. En multipliant par x™ et en sommant,
400 “+ o0 “+ o0
on a donc Vx € ] - L l{ (n+Nanpx™ = Z 2020+ Napx™ = 4x > nanx™ ' +2 Y anx™ et on
4’4 n=0 n=0 n=1 n=0
reconnait, puisqu’on est dans 'intervalle ouvert de convergence, f'(x) = 4xf’'(x)+2f(x) ou (1 —4x)f'(x) = 2f(x)
donc f est solution sur } - Z 2 [ de (E) : (1—4x)y' —2y=0.
d. On résout classiquement cette équation différentielle linéaire homogene normalisée (E) d’ordre 1 et,
2 1

comme une primitive de a : x — est A @ x — —Eln(1 — 4x) et puisque f(0) = ap = 1, on a

1—4x
—1n(1—-4x) 1

We}—}‘ﬂ f(x)=e 2 =
a. On calcule a; = aj +ap =2, a3 = a2 +2a; =4, ag = a3 +3a2 =10, a5 = a4 + 4a3 = 26 et on peut
conjecturer que Vn € N*, 0 < an < 2(n —1)!. On vient de faire l'initialisation.
Soit n > 1 tel que 0 < ant1 < 2nlet 0 € an < 2(n — 1), comme any2 = ant1 + (0 + 1)an, on a
O+(n+No<anpz <2 +2n+ ) —-D'=2n-NDn+n+1)<2n—-1Nnn+1)) =2(n+1)! car
n+1<n? pulsque n > 1. Par principe de récurrence double, on a ¥n > 1, 0 < an, < 2(n — 1)!. Ainsi, pour

>1,0< —T;“ <= donc, par encadrement, (a—:‘) converge vers 0.
nl T n n!/nenN

b. Comme la suite (‘%) tend vers 0, elle est bornée, donc par définition du rayon de convergence d’une
n!/neN

série entiere, on a R > 1.

c. Les dérivations qui suivent sont valides sur l'intervalle ouvert de convergence. Pour x €] — R;R[, on

49



+oo +oo —+oo —+o00
_ a na _ a
a f'(x) = > Mnyn=T — S~ Tndlyn of /(x) = Y, —ntlyn=l = S~ Tnt2un Op, pour n € N
n=1 n! n=0 n! n=1 n! n=0 n! ’ ’
n n n +oo n +oo n +oo n
An2X Ant1Xx n+1)anx An42X Ant1X n+1)anx .
nt2X _ Gnii —|-( e gone Sy 2R 5~ TndlR o (n+1)anx® ) sommant ce qui
n! n! n! = n! n= n! n=0 n!

revient a "' (x) = f'(x) + —io naTT:'x“ + Jio aTT‘LTn = f'(x) + xf'(x) 4+ f(x). Par conséquent, f est solution sur
] — R;R[ de 'équation diffgr:eontiell;a (E) ?le” — .(1 +x)y —y=0.

d. D’apres la question précédente, on a f”(x) — (1+x)f'(x) — f(x) = (f'(x) — (1 +x)f(x))’ = 0. Comme | —R; R|
est un intervalle et que f'(0) — (1 4+ 0)f(0) = a1 — ap = 0, on a donc Vx €] — R;R[, f'(x) — (1 +x)f(x) = 0.
On en déduit en intégrant cette équation différentielle linéaire du premier ordre mise sous forme normalisée

2
sans second membre, comme une primitive de x — 1 4+ x est x — x + X? sur Uintervalle | — R; R[, que l'on a

2
Vx €] — R;R[, f(x) = T puisque f(0) =ap = 1.

+oo . +oo .
Alors Vx €] — R;R[, f(x) = <Z _1'x1> « (Z % 21), Ces deux séries ont pour rayon +o0o donc on peut
i=o0 Vv j=0):

+oo |

effectuer le produit de CAUCHY et obtenir f(x) = > ( 'n' 5 )x“. En identifiant (par unicité) les
n=0 ‘i4+2j=n 1')'2

coefficients entre les deux expressions de f(x) sous forme de série entiere, Vn € N, a—T" = > _'_1'2]- donc

n it2j=n 1):
| [n/2] |
an= > ,lT_ll'j. Puisque 2j <n et i =n —2j, on a la formule a, = %
i+2j=n Hji2 j=0 (n—2j)}l2

Pour information : on considére ’ensemble I, des permutations o de [[T;n] qui sont des involutions, ¢’est-a-
dire qui vérifient 0o o = id [1,n] ; et on pose by, = card (I). Alors, pour n > 1, on partitionne les involutions
o de [1;n 4 2] en deux catégories :
- celles pour lesquelles o(n +2) =n + 2 sont au nombre de by 17 car il n’y a pas de choix a faire pour
o(n + 2) qu’on impose égal & n + 2, ensuite ¢ induit alors sur [1;n + 1] une involution de [1;n + 1].
- celles telles que o(n 4+ 2) = k # n + 2 sont au nombre de (n + 1)by, car pour les choisir de maniere
bijective, il y a n + 1 choix pour I'entier k qui est 'image de n 4 2 par o et, une fois ce choix effectué,
cela implique que o(k) = o(o(n 4+ 2)) = n + 2 car o doit étre une involution, et on a alors by choix
pour finir de déterminer o qui doit induire sur [1;n + 1] \ {k} une involution de cet ensemble.
Cette partition implique la relation by 42 = byy1+(n+1)by pourn > 1 et, comme by =2 = 14+1.1 = by +1.bg
en prenant comme convention que bg = 1, on a bien Vn > 0, bpyi2 = bny1 + (n+ 1)by,. On montre alors
par une récurrence double que Yn € N, a, = by,.
On peut alors expliquer la relation (R) de maniére combinatoire, en constatant qu’une involution o de [[1;n]]
est une application telle que pour tout entier x entre 1 et n, et on a deux choix :
e 50it o(x) = x et x est appelé un point fixe de o.
e soit o(x) =y # x et alors, comme o2 = id [1,n], on a forcément o(y) = x.

Ainsi, si 0 € Ay, le nombre f de points fixes de o a la méme parité que n de sorte qu’il existe 2j entiers de
[n/2]

[1;n] qui ne sont pas fixes par o avec f =n —2j avec 0 <j < {;J . On peut donc écrire A, = U An,j ol
j=0
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An;j = {0 € A, | 0 admet f =n — 2j points fixes}.

Pour construire une involution o de A, j :

e on choisit les n — 2j éléments de [[1;n] qui sont fixes par o : ( " 2.> = <;) choix.
n—2 )

e on choisit I'image y du plus petit élément x qui reste : (2j — 1) choix (et alors o(x) =y et o(y) = x).

e on choisit 'image t du plus petit élément z qui reste : (2j — 3) choix etc...

! 2j)!
Ainsi card (Ay ;) = n X (2j—=1)%(2j=3)x-+-x3x1 = n X ( .J) en multipliant en haut et en bas
=y (n—2)) " Dyl
[n/2] [n/2] |
par les termes pairs qui manquent. On retrouve bien I, = card (An) = Y card(Anj) = > W
j=0 j=0 (M —2)):27):

10.100] a. Initialisation : f est solution de (E) donc f est dérivable par définition donc f est de classe C° sur R.

Hérédité : supposons, pour un entier n € N, que f soit de classe C™ sur R, alors f' : x — f(x) + f(Ax) est

aussi de classe C™ sur R par somme et composition. Ainsi, f est de classe C™t! sur R.

Par principe de récurrence, f est de classe C™ sur R pour tout entier n donc f est de classe C* sur R.

b. Soit f solution de (E) telle que (0) = 0, alors f'(0) = of(0)+f(0) = 0 et, plus généralement, par récurrence,
¥n e N*, £ (0) = af(™(0) + AW (0) = 0. Soit a > 0, alors si on note M, = Sup  |f(P)(x)], on a avec

x€[a—;a]
. . nor0) ) a™ M o
I'inégalité de TAYLOR-LAGRANGE, ¥n € N*, Vx € [—qa;a], |f(x) — > o < ot ]‘ST . Mais puisque

Vn € N, Vx € [~a;a], fMHD(x) = ocf(“)(x)—i—?\“f(“)(?\x) onaMpyi < (e+1)My et done My, < (+1)"Mo.

o n () (o a"(a+1)"'M
\ e ) )| ¢ @ 0
insi, Vn € N*| Vx € [—a;d], |f(x) kX::O k' (n+1)!

+00. Ainsi, f est développable en série entiere sur [—a; a] et f = 0 sur [—a; a] pour tout a >0 : f =0 sur R.

qui tend vers 0 quand n tend vers

c. Si f est développable en série entiére (avec rayon R > 0) et solution de I’équation différentielle, alors Vx €

“+oo +oo
]=R;R[, f(x) = 3. anx™. Onremplace dans I’équation et Vx €] —R;R[, > ((n+1)ant1 —aan—A"an)x™ =0
n= n=0
n
donc, par unicité des coefficients dans une série entiere de rayon strictement positif, an41 = 0‘1)\1 an.
n
+oo
Réciproquement, si on définit f par f(x) = Y. anx™ avec la suite (an)nen vérifiant cette récurrence et par
n=0 n
exemple ag = 1, on a bien R = 400 avec d’ALEMBERT car lim M‘ = Uum M‘ =0 et f est

n—+oo | an n—+oo | n+ 1

solution de ’équation en remontant les calculs.

OC
Si g est une solution quelconque de ’équation, alors posons h = g — g(0)f ot f: x — Z ( H oli_'«—k)\l )
=0

est la solution développable en série entiere qu’on vient de trouver (valant 1 en 0). Comme h est de classe

C®° et vaut 0 en 0 par construction, on a h = 0 d’apres la question c. car h est solution de I’équation aussi.
Ainsi g = g(0)f. Par conséquent, E = Vect(f).
10.101] a. Soit (an)nen une suite complexe, le rayon de convergence de la série entiere Y. anx™ vaut par
n=0
définition R = Sup ({x € Ry | (anx™)n>o est bornée}) avec par convention R = +oo si cet ensemble n’est

pas majoré.

n
b. Pour n € Net t € [0;1], on a % < ] j—tz < t" donc, par croissance de l'intégrale, on a ’encadrement
1,n 1
0 < gt = 1 < ap < 1 _ f t"dt (1). Comme le rayon de convergence des deux séries
o 2 2(n+1) 0

o1



n n
ST X —— et > —X— vaut classiquement 1, on peut conclure d’apres le cours que R = 1. Par croissance
nso2(n+1)  Son+T

n+1 n
de lintégrale, sin € N, Vt € [0;1], 0 < ]t+ 2 < ] —t|—t2 donc 0 < any1 < an et la suite (an)nen est
décroissante. De plus, 'encadrement (1) montre que liT an = 0. Par critere spécial des séries alternées,
n——+oo
la série Y an(—1)" converge alors que la série Y a, diverge par minoration puisque a, > 1 e
n>0 n>0 2(n+1)
1 Tt
que la série harmonique 7 diverge. Ainsi, le domaine de définition de x — > anx™ est [—1;1].
nzo M n=0
: 1 a bt [ BT
c. Dans la relation (R) : = + + , pour x # 0, on multiplie par 1—xt et on
(R) O +td) T-xt 1+ 1+87° 7 prep
2

prend t = 1 et on trouve a = ] _T_ 5. Dans (R), on multiplie par 1+t et on prend t = i pour avoir : 1 — =
x X —ix

X 1 co. A ,

et c = — . On peut aussi bien stur procéder

1+ %2 142 0P P

1 _ x? + xt + 1
(1 —xt) (1 +t2) 1+ =xt) (1 +xH)0+t%) (1 +x2)(1 +t9)
et cette relation marche encore pour x = 0.

1+ix _
1+x2

bi+c donc, comme b et ¢ sont réels, on ab =

par identification. Alors, Vt € [0;1],

ngn
d. Pour |x| < 1, la série de fonctions (un)nen ot un(t) = ;C_’_ittz converge normalement sur [0;1] car
[[unloo,[051] < [X™ et que la série géométrique ) [x|™ converge car |x| < 1 donc on peut intervertir série et

n=>0
intégrale sur le segment [0; 1], puisque les fonctions u, sont toutes continues sur [0; 1], pour avoir la relation

W €] = 1], S(x) = :z: ([ wntar) = [ (%Oun(t))dt S —— :z::j)(xt)“ =

o (1 —xt)(1 4+ t%) xt
1 1 1
s t 1. D’ > "V c _171 S _ X xdt X tdt 1 dt

bisque |X|< apres ¢ * ] [’ (X) ]+X2f0 17Xt+1+xz-[0 ]+t2+]+xzf0 1+t2

s s e s - 1 2311 1 1

par linéarité de I'intégrale donc S(x) = ] szz [—In(1 —xt)]y + m[ln(l +t%)]y + Tl [Arctan(t)])
et on obtient donc S(x) = —hxn(l —x) + 22x n(2) + 7.

4(1 + x )
e. Les fonctions vy : x — unx™ sont toutes continues sur [—1;0] et, pour x € [—1;0], la série > unx™ est
n=0

alternée et la suite (Jvn(x)|)n>0 est décroissante et tend vers 0 car (un)n>o est décroissante, tend vers 0 et

—+00
> vk < a1 ()] < unga

|x| < 1. Ainsi, par le critére spécial des séries alternées, on a |Rn(x)| =
k=n+1

donc |[Rn||ss,[=1;0] € Un41 ce qui montre par encadrement que lm  [|Rn|[oo,[—1;0] = 0 €t que la série ) vn
’ ’ n—-+oo > ’ n>0

converge uniformément vers S sur [—1;0]. Par théoréme, on a donc la continuité de S sur [—1; 0] ce qui montre
“+o00

que S(=1) = 3 (=) Mup = lim S(x) = M2 4w
n—0 x——1+ 2 8

10.102] a. f est définie comme la somme de la série entiere lacunaire > b,x™ olt by, = 1 si n est un carré et

n=0
. L . 2 2 g
by, = 0 sinon. Comme (bpyx™)n>0 est bornée si et seulement si (bp2x™ Jnzo0 = (x™ )nxo Pest, c’est-a-dire si

et seulement si |x| < 1, le rayon de convergence R de cette série entiere vaut R = 1. Pour x = £1, cette série

est grossierement divergente donc le domaine de définition de f vaut I =] — 1;1].

b. En tant que somme d’une série entiere de rayon 1, d’apres le cours, f est de classe C* sur son intervalle

ouvert de convergence, donc a fortiori dérivable sur I =] — 1;1].

c. Comme on étudie f au voisinage de 1, on peut se contenter de prendre x €]0;1[, et de poser la fonction

2 2 . . . , . . 7
hy : t = xt = et ™) qui est continue et intégrable sur R, par comparaison aux intégrales de RIEMANN

52



car hy(t) = et In(x) J;}Oo(t] ) par croissances comparées (In(x) < 0).

k

K1
Comme la fonction hy est décroissante sur R, on a Vk > 1, fk hy(t)dt < XK = hy (k) < f hy(t)dt.

k—1

On somme pour k allant de 0 & 400 & gauche et de 1 & +oo a droite (I'intégrale et la série convergent) ce
+ + +
qui donne par CHASLES 'encadrement fo Fxtat < f(x) < j;) Tt at+ hy(0) = fo FxPar 1.

En posant t = ——%—— = ¢(u), @ étant une bijection strictement croissante de classe C! de R, dans Ry,

—In(x)

+oo +oo
par changement de variable, on a fo xtdt = fo et gy = e Wau=1 [ —m

+o0
\/T Js 2\ i)’

Par encadrement, comme 1 = 0( ﬁ) et xl—i>n]17 % lrt(?c) = 400, on a Iéquivalent f(x ) % ln(ﬂ)
(

d. Comme il existe une infinité de termes de la suite (an)nen qui sont supérieurs ou égaux a 1 (il y a une

infinité de carrés parfaits), on en déduit que la série > a, diverge, ce qui prouve que R’ < 1. Comme

n=>0
an = card {k € [0; [\/n]] | n — k? est un carré parfait}, on a an < [/n] +1<y/n+1<n+1 et comme la
série entiere Y (n+ 1)x™ est de rayon 1, on a R’ > 1. Par conséquent, R’ =
n>0
Pourn € N, an, = > 1= Y bibj (en posant i = u? et j = v?) par définition des by,. Par
(u,v)e[o; | vn ]2 (iniﬂ)_e‘[[O;n]]
uz+vz:n tr=n

exemple, a5 = bobs + bibsg + babs + bsby + bgby +bsbg =2 car by = bz =bs =0et bgp =by =bg =1

ce qui correspond aux deux écritures 5 = 14 4(= 12 42?2 = 22 + 1" =)4 + 1. Par produit de CAUCHY de

“+o00 +oo +o0
deux séries entieres, pour x €] — R;R'[=] — 1;1], on a f(x)? = ( > bnx“)< > bnx") = > cnx™ avec
n=0 n=0 n=0

Cn = Z bybn_k = S>> bibj = an. Ainsi, f(x)2 = g(x) ce qui prouve que Y. anx™ converge pour
k=0 (i,j)€eloin]? n>0
i+j=n
x €] — 1;1] donc que R’ > 1 indépendamment de ce qui précede. On trouve & nouveau que R’ = 1. D’apres
—7

la question c., on a méme g(x) = f(x ) * TG’
n(x

n

n
10.103 | Déja, la suite (un )n>o0 est bien définie car up est donné et la relation un41 = Y, (k) Uk Un—i définit bien
k=0

Un471 connaissant les termes ug, - - -, un. On peut montrer facilement par récurrence que vn € Nyu, € N.

a. Comme up = 3, on a u; = uj = 9 et up = 2upuy = 54. Ainsi, on a bien 0 < % =3 < 4 =407,

0 < 1' =9 <16 =41 eto<%=27<64=43+1. Soitn>3te1que\7ke[[o;n]],og%gztk“,

no/n
alors up1 = > (k) UguUn_k = 0 car ug,---,un sont positifs. De plus, par hypotheése de récurrence,
k=0
- i‘: (n)u " o n UgUn—k <n! i 4RHTgn+1-k — (n+]>[4n+2 donce Un+1 < 4gnt2
n4l = KUn—k =N g ST = : — 0 S .
=0 \k =0 kl(n — k)! = (n+1)!

Par principe de récurrence forte, on a établi que Vn € N, 0 < u—T" < 4nHT
n!

b. Comme Vn € N, 0 < u"‘ < 4™ d’apres a., et puisque le rayon de convergence de la série entiere
n!

S 4 IX™ vaut i car (4™ 1x™) e est bornée si et seulement si |x| < 4 on en déduit que le rayon R de la

n>0
série entiere u’;“ x™ vérifie R > All Ainsi, la fonction f, qui est la somme de cette série entiere, est bien
n>o0 -
définie surI:} -1 l[C —R;R[.
L) ri|
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“+o00
c. On dérive terme & terme donc Vx € I, f'(x) = Z nu“ == u”}“ x™ & l'intérieur de l'intervalle
n—=0 TN

+oo n
ouvert de convergence et apres changement d’indice. On a donc Vx € I, f'(x) = > ( > %‘.%)x"
n=0 ‘k=0 & (M —K)

!
car (2) ﬁ On reconnait un produit de CAUCHY, valide puisque I C] —R;R[, et on a f'(x) = f(x)?.
n—

Par conséquent, f est bien solution sur I de ’équation (E) : y’ =y?.

/ !
d. Analyse : supposons que f ne s’annule pas sur I, alors Vx € I, f (X; =1 <= (1— + x) = 0 donc

f(x)

X = 71‘(])() + x est constante sur l'intervalle I. Or f(0) = 3 donc Vx € I, f(17x) +x = 1§ et f(x) = ] _33)(.

Synthese : soit g : ] — %,%{ — R définie par g(x) = ] 33 . g ne sannule pas sur 1, g(0) — % o
—3x

g(x) = —2— = g(x)2. Ainsi, f et g sont solutions du méme probleme de CAUCHY (non linéaire

(1 —3x)?
donc hors programme) et sont donc égales sur 1. Si on veut rester dans le programme, on décompose

1.1 “+oo “+oo
Vx € } —33 [, g(x) =3 > (3x)™ = Y 3" 1x™. Posons, v, = n!3™*! pour n € N.
n=0 n=0

~ 1.1 w Vi (& vk vk
Par produit de CAUCHY dans} - 7{ onag(x)= Y (n+1) 2t _x"= ¥ ( > —kni)x“. Par

3’3 n=0 (m+1)! n=o \ik=o k! (n —k)!
.. . . . V41 oy Vn—k 1 & (n
unicité du développement en série entiere, il vient ¥n € N, -2+l = $~ Yk _—n-k_ — L %= ViVn_k-
n! o kI n—K)!  nlZH\k
Par récurrence forte, on montre facilement que ¥n € N, w, = vy, = n!3™! car (un)nen et (vn)nen ont le
n
méme premier terme et la méme relation de récurrence, a savoir vo =3 et Vn € N, vy = Y ) Vvn—ke
k=0

10.104 |a. f:t+— ln“%t) est continue sur | — 0o; 1] en la prolongeant par continuité en 0 avec f(0) = —1 puisque

In(1—t) vt F est donc la primitive de —f qui s’annule en 0 donc F est au moins définie sur | — oo; 1][.

Six=1,f(t) ~In(1 —t) = ( 1 ) donc f est intégrable sur [0;1] et F(1) existe par comparaison aux
X (t) T ( ) - o V-t g [0;1] (1) P p
intégrales de RIEMANN. Par conséquent, le domaine définition de F est D =] — o0;1].
+oo n-1
b. D’apres le cours, Vt €] —1;1[, In(1—t) = Z " done —f(t) = >, Y— (marche aussi si t = 0). Pour
=1 n

x €] — 1;1], en intégrant terme & terme sur le segment [0;x] inclus dans l'intervalle ouvert de convergence,

il vient F(x) = [ (~f(1))at = fz Lat = Zoofxtn_1dt 2% _ s(x). Par définition de 1
il vient F(x) = = - = . =Xz x). Par définition de la
convergence d’une intégrale, F(1) = 111;1 F(x). En posant un : x — 2, on a [[un||oo,j0;1] = =7 donc Y un
Land n>1
converge normalement sur [0;1] et, puisque toutes les u, sont continues sur [0;1], S est continue sur [0;1]
2 T n
donc F(1) = Um F(x) = Um S(x) =S(1) = . On a bien Vx € [0;1], F(x) =S(x) = Y, %*5.
x—1- x—1- 6 n=17n
2
c. Soit G :]0; 1[— R définie par G(x) = % —In(x) In(1 — x). Par opérations, la fonction G est dérivable sur
]0; 1]. De plus, la fonction F est dérivable sur |0; 1] avec F/(x) = (=) donc, pour x €]0; 1], on a la relation
x
(F(x) +F(1 = x) = G(x)) = F(x) = F(1 —x) — G'(x) = — 1 =%)  In{0 = (1=x) , n(l=x) gn(” =0
x —x x —x

avec I’abus de notation usuel. Ainsi, la fonction x — F(x) 4+ F(1 —x) — G(x) est constante sur I'intervalle ]0; 1[.

2
On a li‘ré1+(F(x) +F(1—x)—G(x)) =F0)+F() — ? = 0 d’apres b. et car hm In(x) In(1 —x) = 0 puisque
x—

2
In(1 —x) =-x et lim xIn(x) =0, donc Vx €]0;1], F(x) + F(1 —x) = % —In(x) In(1 — x).

x—0t
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10.105] a. Initialisation : pour n =0, Vx € I, (O (x) = f(x) = %&(?); en prenant Po = X + 1 qui est bien a
X

coefficients dans N par définition de la fonction f.

Pour n = 1, en dérivant, on a f/(x) = < 200 + (sm(x) Dsin(y) _ sin(x 2) donc 1 (x) = M

cos?(x) cos”(x
avec P; = X+ 1 a coefficients dans N et de degré n = 1 et unitaire.
Hérédité : soit n > 1 tel que Vx € I, fM(x) = %&(xz; avec Pn = i axX® € N[X] de degré n
avec an = 1. On dérive une fois de plus, toutes les fonctions étant de claszg 0C°° sur I, et on obtient la
relation Vx € I, f(“'H)(x) = COS(X)PH:‘_F(ISZ:)(X)) +(n+ ])sin(x)PT?f;iE:)(x))

donc, apres réduction au méme

cos?(x)PL (sin(x)) + (n + 1) sin(x)Py (sin(x)) _ Paii(sin(x))
cos™ 2 (x) cos™ 2 (x)

n n n
polynome Py 1 = (1= X3P+ (n+1)XPr = 3 kX5 T — 37 ka X5 4 (n4+1) 3 arX¥+! qui s’arrange
k=1 k=0 k=0

Ccos

si on définit le

dénominateur, f*1(x) =

n—1 n+1 n+1
en Pryr = > (k+ Daga X — 3 (k= Dag_1 X+ (n+1) Y ax_1X¥, puis, en regroupant les termes, en
k=0 k=1 k=1
n—1
Pri1 = an X 20, XM+ ( Sk+1aks1 +(n+2— k)ak,1]Xk) + a1 € N[X] qui est bien unitaire, de
k=1
degré n + 1 et a coefficients dans N.

Conclusion : par principe de récurrence, ¥n € N, 3P, € N[X], ¥x € I, f™M(x) = %&(X);

Qn(sin(x)) Pn(sin(x))

cos™ 1 (x) cos™t1(x)’

aurait Vx € I, Pn(sin(x)) = Qn(sin(x)) donc P, = Qn car Pn et Qn coincident sur | — 1;1[ qui est infini.

. De plus, s’il

—
x

existait, pour n € N, un autre polynéme Qn € R[X] tel que Vx € 1, f(™)(x) =

Ainsi, la suite (Py,)nen est unique et vérifie Po = 1 et Vn € N, P, = (1 — X?)P/, + (n + 1)XP,, et on a

montré lors de la récurrence que Yn € N*| P, est de degré n et unitaire.

n g(k)
b. Soit x € | = [0; 725 [, onaVn e N, f(x) = kz—:o f o f £)™ (1) (t)dt par la formule de
TAYLOR reste intégral. Or Vt € [0;x] C J, on a (x — t)“f(“H)(t) =(x— t)“%ﬂgﬁ?) z0carx—t2=0,
co
sin(t) > 0 donc Pn4q(sin(t)) > 0 car P, € N[X] et cos(t) > 0. Ainsi, - f — )™+ D (t)dt > 0 donc

no (9 (0)xk
0 < Sulx) = kzo%
x sont majorées. Comme il s’agit d’'une série a termes positifs, cette série converge d’apres le cours. Ceci

. " £ (0)x™
montre que le rayon de convergence R de la série entiere > —
n>o0 n.

toujours, la série de TAYLOR de f converge donc sur l'intervalle ouverte de convergence |R; R[ qui contient I.

. +o00 f(n)(O)Xn
c. Soit g: I — R telle que ¥x € I, g(x) = >, —0
n=0 .

. . 2 2 2
snl(xz) +1 _ (sin(x) + 1)2 +cos”(x) _ f(x)” +1 done on obtient
cos”(x) 2cos(x) 2

Vx € 1, 2f'(x) = f(x)? + 1. Par la formule de LEIBNIZ, en écrivant (2f'(x))™ = (f(x)2 + 1)(™ pour n € N*,

< f(x) ce qui montre que les sommes partielles de la série de TAYLOR de f en

vérifie R > % D’apres le cours

, g est bien définie d’apres la question précédente.

La fonction f est dérivable sur I et f'(x) =

n
on a la relation Zf(”‘H)( ) = E (E) f09(x)f=%)(x). En particulier en prenant x = 0, on a la relation

n
— TP (0)Pr_x(0) donc 2 = ) Hkln—k
k'( k)' k(0)Pn—x(0) done 2ot 11 kX::O N1

)-

(n+1) (0 n k) -

2T (0) = 2Pn11(0) '(0) = Z
=0

( sin > 1. On a aussi 2f/(0) = f(0)? + 1 donc 207 = o + 1.

k

en posant oy =
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+o00o +o0o n
Mais on a Vx € I, g(x) = Y. anx™ et, par produit de CAUCHY, Vx € I, g(x)? = 3. ( > ockocn,k)x“
n=0 n=0 k=0

“+ o0 n +oo +oo

dot gx)2 =2+ 3 (n+ 1)( > cxkocn_k)xn = 1423 (R4 Dangix™ = —1+2 3 (n+ onpqx™ donc
n=1 k=0 n=1 n=0

g(x)? = —1 +2g¢'(x). Les deux fonctions f et g sont donc solutions sur I de I’équation différentielle non

linéaire 2y’ = y? + 1. Comme on n’a pas au programme de théoréme de CAUCHY-LIPSCHITZ non linéaire,

on va poser les fonctions a = Arctanof et b = Arctanog qui sont dérivables sur I comme composées de

/ /!
fonctions dérivables. Vx € I, a/(x) = L)z =1_ &)2 = b/(x) donc, comme I est un intervalle,
14 f(x) 2 1+g(x)

il existe une constante C € R telle que ¥Vx € 1, a(x) = b(x) + C. Or a(0) = b(0) = Arctan(eap) = % donc
400 (M) n
C=0. Ainsi, Vx €1, f(x) = 3. %

n=0

ce qui justifie que f est développable en série entiere sur 1.

De plus, si on avait R > %, alors f = g serait de classe C*> sur [— %; %} C] — R;R[ donc, en particulier, f
serait continue en % alors que lin/lz f(x) = +00. Ainsi, le rayon R de la série de TAYLOR de f vaut R = %
X—TT -

Questions de cours :
+o00 (_1>nX2n+1
o D’apres le cours, on sait que Vx €] — 1; 1], Arctan(x) = > ~————
n=0 2TL + ]
e Pour une fonction f : I — C de classe C™*! sur Iintervalle I, pour tout (a,b) € I?, on a la formule
n (k) 1k b _ a\ne(n+1)
de TAYLOR reste intégral suivante, f(b) = > ()b —a) + f (b —t)7f () dt
K=0 k!

e Soit f : R® — R de classe C' et g : t — f(cos(t), Arctan(t),2'). D’apres la régle de la chaine,

a n!

comme t > cos(t), t = Arctan(t) et t — 2% sont de classe C! sur R, g l'est aussi et

g—i (cos(t), Arctan(t),2")
4+ > %(cos(t), Arctan(t),2') + ln(l)Zt%(cos(t), Arctan(t),2%)

—_~

e Soit f: I — R une fonction continue sur un intervalle I et (a,b) € 12, alors Vy € [f(a); f(b)], il existe

un réel ¢ € [/a_;\g] tel que f(c) = y.

X
10.106 Ja. Pour x € R, soit fx : RY — R définie par fy(t) = ] :-tz qui est continue sur R%. Comme fy(t) 1

ot~
par comparaison aux intégrales de RIEMANN, f, est intégrable en 0 si et seulement si —x < 1 <= x > —1.

De plus, fy(t) <= tz%x donc, de méme, f, est intégrable en +oo si et seulement si2 —x > 1 <= x < 1.

+oo
Comme fy est positive, fo fx converge si et seulement si fy est intégrable sur R* , c’est-a-dire intégrable

en 0 et en +o00. Par conséquent, le domaine de définition de f est D =] — 1;1].
. x x In(t) too (xln(t))“
b. Pour x € D, fy est intégrable sur [1;4+o0o[ d’apres a. et fx(t) = t =£ = ~— 2’ Pour
y Ix g [ [ p x( ) 1 +t2 1 —|—t2 o TL'(] +t2)
n_n + +oo
n € N, s0it gn : [1;+00[— R définie par gn(t) = M de sorte que g(x) = f * ( > gn(t))dt.
Tl'(] +t ) 1 n—o0

(H1) > gn converge simplement sur [1;+00[ vers fx (on en vient).
n=>0
(H2) Les fonctions gn sont continues et intégrables sur [1;+o00[ pour n € N par comparaison aux

" (In(t))"x™ 1 . .
intégrales de RIEMANN car gn(t) ~ ~~—=5"— = o( —3 ) par croissances comparées.
+oo  nlt oo \;3
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(H3) La fonction fy est continue sur [1;4o00].

n
(H )PournENf \gn)|dt:%f1

+o0 In(t)™
2

+oo In(t)™
1+t

X[ oo In()" i
rdt < 7f1 —7 dt. On définit, pour

1

tout n € N, J, = f dt et, avec u : t — (In(t))™ et v : t — 1 qui sont de classe

1

C' sur [1;4o00[ avec tlhﬂ u(t)v(t) = 0 par croissances comparées, on obtient pour n > 1, par
— T+

+oo
intégration par parties, Jn = [w(t)v(t)]7> — j‘] (%)n(ln(t))“_1 ( — l)d’c = nJn_1. Puisque

t
oo 4 1]t , . .
Jo = f1 t—zd = [f ﬂ] = 1, on a par une récurrence simple vn € N, J, = nl. Ainsi,
+ T |X|™ n e n
f} [gn(t)|dt < 71— = [x|™ et la série géométrique ) |x|™ converge car [x| < 1.
n. n=0
+oo s to0
Par le théoreme d’intégration terme & terme, g(x) = f1 ( Z gn(t )dt = E f t)dt = E anx™
+oo ln -
en posant a, = o f 2 dt donc g est développable en série entiére sur | — 1;1].
1
c. Par la relation de CHASLES, Vx € D, f(x f fx(t)dt + f t)dt. Dans lintégrale fo fx(t)dt, on
effectue le changement de variable t = 1_ @(u) avec @ qui est une bijection strictement décroissante de
u
1 T (/)X 1 +oo | —x
1 . . - . = u = g(—
classe C' de [1;4o00[ dans ]0;1] et on a fo fx(t)dt = f+oo -, L( uz)du f1 . du = g(—x).
2
Ainsi, f(x) = g(x) + g(—x) donc, comme g est développable en série entiere sur | — 1;1[ d’apres b., f lest

“+o00 “+o0
aussi et on a Vx € D, f(x) = g(x) + g(—x) = > (an + (=1)"an)x™ = > 2aznx*™. La fonction f est donc
n=0 n=0
1

paire sur D, ce qu’on pouvait voir directement avec le méme changement de variable t = —.
u

- Foo
10.107 a. Soit r > 0 et p € N, par hypothese, on a f(re't) = Z anr™e!™t car lerayon de Y anz™ vaut R = +oo.

n>0

. . too . . .
Ainsi, f(re‘t)e’lpt = > aprTelMtelPt = Z aprtetn—Pit = Z gn(t)dt si gn : t anrtet(n—pit,

n=0 n=0
On a |[gn]loo,j0;27] = lan|[t™ et > anr™ converge absolument par le lemme d’ABEL car v < R = +00, donc
n>0
la série de fonctions Y. gn converge normalement sur le segment [0;27]. Par le théoréme d’intégration
n=0
+o0o
terme a terme par convergence normale sur segment, f < > gnlt )dt = Z f t)dt. Or on calcule
n=0
27 n_ i(n—p)t
t)dt = L} =0si et t)dt = 2ma,rP.
fo gn () i(n —p) 0 n#p f apT™.

s . .
On en déduit donc que Vp € N, Vr > 0, fo f(rett)e Ptdt = 2ma,rP.
b. Comme f est bornée sur C, posons M = [|f||ec,c = Sup|f(z)| et, par inégalité triangulaire sur les
zeC

L, s . . 27 . .
intégrales, f(re“)e‘lptdt’ < j; |f(re't)|dt < 2nM. D’apres a., |2ma,rP| < 27M donc |ap| <

<M
P’
Comme ceci est vrai pour tout r > 0, en faisant tendre r vers +o0o dans cette inégalité pour p € N*, on a
<Jap| < lim Mp =0 donc ap, = 0. Ainsi, Vz € C, f(z) = ap donc f est constante.
T+ T

Bien str, ceci est faux si f n’est que bornée sur R comme en témoigne la fonction cos par exemple.

c. Pour un entier p > q + 1 et un réel r > 0, toujours par inégalité triangulaire sur les intégrales, on obtient
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27 . 27 L .
‘ f elt ”’tdt‘ fo |f(rett)]dt < fo (ar9 + B)dt < 2m(ard 4 B). Ainsi, avec la question a., on a
|27 aprp| < 2n(ar9+p) d’ot1 0 < |ap| < ar97P 4 pr~P. Encore une fois, comme li_T (ar9=P+Br~P) =0, en
T—+00
q
passant a la limite, on a |ap| = 0 si p > q. Par conséquent, Vz € C, f(z) = > apzP donc f est polynomiale.
p=0
d. Soit g: C — C définie par g(z) = f(z)e *. Comme f et exp sont développables en série entiere avec un
rayon +oo, par produit de CAUCHY, la fonction g est elle-méme développable en série entiere sur C. Pour
z € C, |g(2)| = |f(z)|]le ?| = |f(z)\e’Re (2) <1 donc g est bornée sur C ce qui, avec la question b., montre

que g est constante sur C. Ainsi, il existe k € C tel que Vz € C, g(z) = f(z)e * =k douVz € C, f(z) = keZ.

(_] )n+1X2n+1
10.108 ] a. Pour n € N*, soit la fonction u,, : R — R définie par un (x) = W Pour tout réel x € R*,
n(2n

‘u“H(X) n(2n +1) x% donc  lim 711““

_ 2=y
un (x) ‘ m+1)(2n+3) n—too | un(x

‘—x

e Si|x| < 1,0n af< 1 donc, par critére de D ALEMBERT7 >~ un(x) converge. Ainsi, R > 1.
n=0

e Si|x| > 1, 0on a ¢ > 1 donc, par critére de D’ALEMBERT, Y un(x) diverge. Ainsi, R < 1.
n>0
(_] )n+1x2n+1

Par conséquent, le rayon de convergence de la série entiere vaut R =1.

1 n(2n+1)

b. Comme |un, (£1)] o 2]—2 donc > un(=£1) converge absolument par comparaison aux séries de RIEMANN.
oo n n>l

Le domaine I de définition de S est I = [—1;1].

c. D’apres le cours, la fonction S (somme d’une série entiére) est continue (et méme de classe C*°) au moins

sur U'intervalle ouvert de convergence, c¢’est-a-dire dans notre cas sur | — 1;1].
d. Comme ¥n € N*, ||lu — lun()] = —1—— ~ 1 et que la séric de RIEMANN A converge
I n||oo,1 [un (1)] n(2n+1) oo 2 q n§1 n2 g
car 2 > 1, la série ) un converge normalement sur I. Comme toutes les fonctions u, sont continues sur I,
n>1
par théoreme de continuité des séries de fonctions, la fonction S est continue sur I.
_ 2n+1
e. Pour n € N*, on a 1 _@n4l)-m 12 et le rayon de convergence de »_ % et
n2n+1) ni2n+1) n 2n+1 w1 n
2n+1 +o0 (7])n+1X2n+1 +o0 (7])n 2n+1
X vaut aussi 1 donc, pour x €] —1;1[, on peut écrire S(x) = Y Z T

n>1 In+1 n=1 n n= n+1

en séparant les sommes. On reconnait des séries entieres classiques et S(x) = x In(1 +x2) +2(Arctan(x) —1).

f. Comme la fonction S est impaire et continue sur [—1;1] donc en 1, on a S(1) = S(—1) = UT1T1 S(x) donc
x—1—

S(1) = 111? (xIn(1 + x?) + 2(Arctan(x) — 1)) = n(2) — 2 + % ~ 0,26 > 0. Pour x = %1, la série alternée
X— 1

(=D"

1 n2n+1)

1

n2n+1)

_ )1+1
2+1)

n

10.109 | Déja, la suite (an)n>o0 est bien définie car ap est donné et la relation anyy = (Z) axan_x définit bien

k=0
an41 connaissant les termes ap, - -+, an. On peut montrer facilement par récurrence que Vn € N an € N

converge aussi par le critere spécial des séries alternées car ( ) est décroissante
n>1

et tend vers 0. On sait alors que sa somme S(1) est du signe de son premier terme (1 > 0 donc S(1) > 0.

'

a. Initialisation : comme wo =1, u3 =u3 =1 et uz = 2upu; = 2. Ainsi, 0 < ‘(1)") =1<1,0< ” =1<1.

no/n
Hérédité : soit n > 2 tel que Vk € [0;n], 0 < % <1 alors apg1 = Y (k) axan_ = 0 car ag,- -+, an sont
: k=0

o8



n

positifs. Par hypotheése de récurrence, any1 = . " axan_x = n! Z Gkln—k ) E 1T=(Mm+1)!
k=0 \k o kl(n —k)!

donc on a bien I'inégalité —nt1 - < 1.

(n+1)!
Conclusion : par principe de récurrence forte, on a établi que Vn € N, 0 < ﬁ <1
Comme Vn € N, 0 < "1 < 1, et puisque le rayon de convergence de la série entiere géométrique nz>:o x™
vaut 1, d’apres le cours, le rayon R de la série entiere ; %x“ vérifie R > 1. Ainsi, la fonction f, qui gst la
somme de cette série entiere, est bien définie sur I =] T:/1O; 1[C] — R;R[.
b. On dérive terme & terme & Uintérieur de I'intervalle ouvert de convergence qui contient | — 1;1[ d’apres

+oo —+oo
la question a. pour avoir Vx € I, f'(x) = > na—r"x“_] = Y 9ntlyn ) Pintérieur de Vintervalle ouvert
— n.

n=0 n!
N . . 1 - a k
de convergence et aprés changement d’indice. On a donc Vx € I, f'(x) = . ( > k—k ﬁ)x“ car
n=0 k=0 n — i
n n!
(k) = W On reconnait un produit de CAUCHY, valide puisque I C] — R;R[, et on a f'(x) = f(x)?.
I(m—x)!
Par conséquent, f est bien solution sur I de 'équation (E) : y’ =y?.
/ I
c. Analyse : supposons que f ne s’annule pas sur I, alors Vx € I, :(();; =1 << (f( ) ) = 0 donc
x x
X — —1— + x est constante sur l'intervalle I. Or f(0) =1 donc ¥x € 1, o 4x=1Tet f(x) =
f(x) f(x) —x

Synthese : soit g :] —1; 1[— R définie par g(x) = 1 , alors g ne s’annule pas sur I, g(0) = 1 et, pour x € I,
—x

1

onag'(x)= ;x)z = g(x)2. Ainsi, f et g sont solutions du méme probléme de CAUCHY (non linéaire donc

(-

hors programme) et sont donc égales sur I.

Si on veut rester dans le programme, on décompose Vx €] —1;1], g(x) = Jrf:o x™. Posons, v, =n!pourn € N
oo n=0
de sorte que Vx €] — 1;1], g(x) = nz—:o %Xn' Par produit de CAUCHY et par unicité du développement en
série entiere dans | — 1;1[, on a ¢'(x) = +ZO:O(n + 1)l _yn ijo ( ™ vk M)x“ il vient donc la
’ n=0 (m+1)! n=o \k=o kI (n—1¥)/ "’
relation Vn € N, v’::!H = ki:o % (n\)nﬁ = $ éo ( )Vkvn_k. Par récurrence forte, on montre facilement

que Vn € N; up = vy = nl car (up)nen et (vn)nen ont le méme premier terme et la méme relation de
. N . no/n
récurrence, & savoir vo =let Vn € N, v = > ) ) VkVn—k-
k=0
Bien siir, on pouvait le conjecturer en calculant quelques termes initiaux de plus et le démontrer par

récurrence forte sans passer par les séries entieres.

])nJrl

400 k n+1 /_1\k
10.110] a. On sait que Vx € R, e* = > *- X donc comme (( +1) + E = ) = > ( k]') , on en déduit
k=0 <

n=o0 M k=0

que Um (uniy —up)=e ' = 1 Dapres (C), on a donc Z (Uk41 —Uk) =up —Up =un — 1 ~ nf par
n—-+00 e +o0o

k=0
télescopage ce qui montre que lim u, = +oo donc que uy — 1 ~ up ~ =,
n—-+4oo —+oo +oco e
‘s - n . N . n+1)e N
Comme le rayon de convergence de la série entiere Y "X~ est égal & 1 car lim (n+1e =1 avec la regle
n>0 e n—-+oo en
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de D’ ALEMBERT, le rayon de convergence R de la série entiére Y unx™ vérifie aussi R = 1.
n=>0

kK (_1\1

b. Sion note Sy = >, ( :) pour tout k € N, comme Vn € N, uny1 —un = Sn41, on a par télescopage

i=0 U
n—1 n—1

Un —ug = . (Uupgr —ug) = Z Sk4+1 = Z S; en posant j = k + 1 donc, comme Sg = 1 = up, on obtient
k=0 j=1

vne N, u, = Z Sx. Comme S, -, le rayon de convergence de la série entiere > S;,x™ vaut 1 comme
+oo e

k=0 n=0

celui de la série géométrique . x™. Par produit de CAUCHY, pour x dans I'intervalle ouvert de convergence
n>0

]—1;1[, on a (:izsnx“) X (%o x“) %o ( Z 1 Sk) = :ii)unxn = f(x) donc 19(_X1 = f(x) en posant

n=0 n=0

g(x) = +Zoo Snx™. Mais, de méme, pour x €]—1;1], ona( Z (_])nxn> X ( —ioxn) Jio ( i 1. (= .)k)xn

n=0 n—o n! n=0 k=0

_ n
car le rayon de convergence de ¢x vaut 400 donc € = g(x). Ainsi, Vx €]—1;1][, f(x) = - —.
nso M 1T—x ( —x)

Mais

—_

c. Soit ¢ > 0, par convergence de (n)nen vers ¢, il existe ng € N tel que Vn > ng, Jun — € < %
T'I.o—] n—1 ‘ ‘ T'I.o—]

5wt = S -0 =[S -0+ E -0 < E 0]+ T -

k=0 k=no k=0 k=no
(n—mno)e
+ 2

vn Z no,

n—1 n—1
par inégalité triangulaire donc | Y ux — nf‘ <A+ > lw—{ <A <A+ % en posant
k=0 k=no
no—]
A= ‘ S (uk — f)‘ > 0. Or il existe un entier n; > ng tel que Vn > n7, A < %€ car lim ™ = 400 d'on
=0 2 n—+oo 2
n—1 n—1
Z ug —nl| < BE 4 BE = ne Ainsi, YD ug —nl = o(n) = o(nt) donc > upx ~ nt.
2 2 k=0 +oo +oo

Yn>n
Ty +o00

10.111) a. La fonction g : t — tligt) est continue sur [1;4o00[ et g(t) o~ t]—z donc la fonction g est intégrable
(oo}

sur [n;4oo[ par comparaison aux intégrales de RIEMANN d’ou l'existence de a,, pour tout entier n > 1.

Comme la fonction th est croissante sur Ry et tliT th(t) =1, Vt € [n;+o0], th(n) < th(t) <1 donc, par
—r+00

+ + +
croissance de l'intégrale, on a fn * th (trzl)dt = [thin)]noo = % <an < % = fn > % donc an I

1
n
Classiquement, par le critéere de D’ ALEMBERT par exemple, le rayon de convergence de la série entiere x
n>1 n
/

est égal & 1 donc, par équivalence, celui de la série entiere > anx™ vaut aussi R = 1.
n>l

Comme th est positive et que la suite d’intervalle ([n; +oo[) est décroissante pour l'inclusion, (an)n>1

n=l1

est décroissante et tend vers 0 en tant que reste d’'une intégrale convergente. Par le critere spécial des séries

alternées, la série Y (—1)"a, converge et la série & termes positifs > a, diverge par comparaison a la
n>1 n>l

série harmonique. Ainsi, le domaine de définition de f est [—1;1].

b. Six € [-1;0], on vient de voir que la suite (an|x|™)n>1 est décroissante et tend vers 0 donc Y anx™

n>1
converge par le critére spécial des séries alternées et Vn > 1, |Rn(x)| = ’ akxk’ < |an+1x“"’1 | < anyt-
k=n+1
Ainsi, Ry est bornée sur [—1;0] et [|Rn|[oo,—1:0) € ang1 — 0. On a donc convergence uniforme de » gn
] n—4o00

n>1

sur [—1;0] si gn : x > anx™ et donc continuité de f sur [—1;0] car les gn sont continues sur [—1;0].

c. Comme f(x) ~ —In(1 — x) est équivalent & f(x) + In(1 —x) = o(ln(1 = x)), on va majorer la différence
- o0
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f(x)—(— In(1—x)). Comme on sait que Vx €]—T1;1[, In(1—x) = — Z , il s’agit de majorer Z ( l)x“.

n=1
— too 1 =
th (n) < an < 1 donce ’an - f’ < 1—th{n) et [f(x) +In(1 —x)| < > Mx“ pour
n n n n = n
_th n n__ ,—n 2 —-n _
tout x € [051]. Posonsbn—#pourn 1, alors 1 —th(n) = 1—2n+§7n=enie +~002e n

Or, Vn € N*, 1

2

donc by, ~ 2€ = o(e™?™) et la série géométrique > e~2™ converge car 0 < e”2 < 1.

+oo M +oo n>1

400
Ainsi; Vx € [0;1], [f(x) + In(1 —x)] < B = > by ce qui montre que f(x)i —1In(1 —x) + 0(1) donc

n=1

f(x) = —n(1 —x) + o(In(1 —x)) car lim In(1 —x) = —oo et on conclut bien que f(x) ~ - In(1 —x).

1= x—1-

2n41
10.112)a. On a vy, 1 = O car il n’existe aucun (2n + 1)-uplet (a7, -, a2np1) € {=1,132" tel que > ar =0

k=1
2n+1

car tous les ay sont impairs donc > ay a la parité de 2n + 1 donc est impair alors que 0 est pair.
k=1

p

b. n=1: il n'existe qu'un couple (aj,az) € {—1,1}% tel que a; + a2 =0 et Vp € [1;2], D ax > 0 et il
k=1

s’agit de (1, —1). Ainsi, u; = 1.

n=2: il n'y a que deux quadruplets (aj, a2, az,as) € {—1,1}* tels que a; + az + a3z + a4 = 0 et tels que

P
Vp € [1;4], > ax =0 et il s’agit de (1,1,—1,—1), (1,—1,1,—1). Ainsi, uy = 2.

n=23:iln’y a que cingq sextuplets (a1,0a2,a3,a4,as,a6) € {—1,1}° tel que a3 +az + a3 + a4 +as+ag =0
et tels que Vp € [[1;6], Zak 0 et il s’agit de (1,1,1,—1,—1,-1), (1,1,-1,1,—1,-1), (1,1,—-1,-1,1, 1),
(1,-1,1,1,—1, 1) et (1, 1,1,—1,1,—1). Ainsi, uz = 5.

2n+

P
c. Notons Up41 = {(a1,-~-,a2n+1) € {—1,1}p2H! ‘ Z ak =0etVpe[l;2n+2], > ax > } et, pour
k=1 k=1

€ [1sn+ 1], on note U | = {(a1,~~ y@2n42) € Ung ‘ 2m = Min ({] eftm+1 Z:]: })} (la

2j
parité de Min ({] € [n+1] ’ > ak = 0}) tient au fait que Z ak a la parité de j). On a la partition
k=1

k=1
n+1 n+1
Unr = |_| Uy de sorte que un 7 = card (Uny1) = > card (U7, ). Traitons trois cas :

m=1 m=1
eSim=1etsi(ar, --,anyt2) € U:L_H, alors a; =1 et ap = —1 donc UJH_] est en bijection avec Uy,
en envoyant (1,—1,a3, -+, an+2) sur (az, -, azn+2). Ainsi, card (U n+1) =Uup = Upun car up = 1.
e Sim € [2;n] et si (a1, az2n42) € U, alors ug = 1 et upm = —1 donc l'application qui a
(a1,--+,az2n42) € U, associe le couple ((az) s @2m—1), (@2maty - --,a2n+2)) définit une bijection

entre les ensembles UTY ¢ et Uym—1 X Un_my1. En effet, la bijection réciproque est 'application
qUi a ((b1 y " Ty bszz)) (C1 y "y CZ(n—m+]))) associe (1)b1 y "y b2m723 _1) Cly "y CZ(n—m+1))~ AinSiv

card (U) = card (Um—1 X Un—m+1) = card (Um—1) X card (Upn—m+41) = Wm—1Un—m-+1-

eSim=n+1etsi(ar, - -,an42) € un+1, alors a1 = 1 et azni2 = —1 donc Un+1 est en bijection
avec Uy, en envoyant (1,a2,- -+, a1, —1) sur (az,---,aznt1). Ainsi, card (Uzﬂ) = 1Up = unlp.
n n
Par conséquent, un41 = woun + ( > um_1un_m+1) +upuo = Y. UglUn—_k en posant k =m — 1.
m=2 k=0
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d. Analyse : supposons que la série entiere Y un,x™ a un rayon R > 0. Soit alors f :] — R;R[— R définie
n>0

—+o0 —+o00 2 “+o0 n
par f(x) = Y. unx™. Pour x € — R;R[, on a f(x)? = ( > unx“> = > ( > ukun,k>x“ par produit de
n=0 n=0 n=0 k=0

—+oo —+oo

CAUCHY donc, avec la relation de c., on a f(x)? = > upy1x™ done xf(x)? = 3 upp1x™ = f(x) — 1.
n=0 n=0

Ainsi, f(x) est racine du polynéme Py = xX? — X + 1 dont le discriminant vaut A = 1 —4x. Comme f(x) € R,

on a forcément A > 0 donc x < i Ceci garantit déja que R < i On donc f(x) = 1-V1—ax V2]_4X ou
X

=up = 1. Comme g : x — 2xf(x) — 1 est développable en série entiere

flx) = TV —dx W six # 0 et £(0)

sur | — R;R[, elle y est continue et on sait d’apres ce qui précede que Vx €] — R;R[, g(x) = /1 —4x. La
continuité de g et le fait que g ne s’annule pas sur | —R; R[ montre que l'on a soit Vx €] —R; R[, g(x) = /1T —4x
soit Vx €] — R; R, g(x) = —v/1 — 4x. Mais comme g vaut —1 en 0, elle est négative sur | — R; R et on a donc

Vx €] — R;R[, g(x) = —y/T — 4x donc f(x) = T=v1=dx # 0.

2x

4oo (__1\yn—1 1.,
Synthese : d’apres le cours Vu €] —1; 1, V/T+u=1+ ) % (on le retrouve assez vite avec le
n=1 n — n.
, L. . o 1 11 = )"
développement en série entiere de (14+x)* pour « = ~) donc Vx € | ——; - |, V1 —dx=1- Y ——~——
2 4’4 nsh (2n—1)(n)

— VT —4x _ “'zo:o (n)x! e (2n 4 2)x"

. 1 s
ce qui montre que Vx € ] — %; éll {\{O}, ™ =3 7 quon

=2en=nD)? 0 22n + 1)((n+ 1))
T —ax  t>® I ™ !
% =3 % % pour tout n € N de sorte que l'on a
n=0 N . . .

+oo
Vx 6] - zlt; [\{0}, g(x) = 1= VI —dx VZL_4X = Z:Ovnx“. On pose g(0) = vo = 1. Comme 0g(0)? — g(0) +1 =0

1

4
etquevxe}_ , {\{0}, Xg(X)z—g(x)—H:]_2‘/]_jx—i_(]_4X)—2_2\4/]_4X+%:0,0nabien
X X X

Vx € } — %; éll [, xg(x)? —g(x)+1 = 0. En effectuant un produit de CAUCHY sur } ~1.1 {, et en identifiant les

474

va plutot écrire . Posons v,, =

n
coefficients (les calculs ont déja été faits dans la partie analyse), on trouve que Vn € N, vy 41 = > vivn—k.
k=0
Comme vy =up =1 et que (un)nen €t (Vn)nen vérifient la méme relation de récurrence, par récurrence forte,

| 2
vn € N, uy = vn. Ainsi, nz}:ounxn est bien de rayon R = i etvVne Ny uy, =v, = n!((iri.1)! == —]i-1 ( n>.

(2.0)! (2.1)!
ol(0+1)! na+nt

confirme les calculs de la question b.. Et on a ugy =

l _ (23)!

e BT 1
(2.5)!

5!(5+1)! =42

Par exemple, ug = =5 qui

=1, u =

(2.4)!

74!(4_"_])! =14 et us =

10.113] a. f est définie comme la somme de la série entiere lacunaire > anx™ oll a, = 1 si n est un carré et

n=>0
an = 0 sinon. Comme (anx™)n>0 est bornée si et seulement si (a,2x™ )n>o lest, c’est-a-dire si et seulement

si [x| < 1, la rayon de R de cette série entiere vaut R = 1. Pour x = =+1, cette série est grossiérement

divergente donc le domaine de définition de f vaut I =] —1;1[.

b. En tant que somme d’une série entiere de rayon 1, d’apres le cours, f est de classe C* sur son intervalle

ouvert de convergence, donc a fortiori continue sur I.

c. Comme on étudie f au voisinage de 1, on peut se contenter de prendre x €]0;1[, et de poser la fonction
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2 2 . . . . L
hy : t = xt = et ™) qui est continue et intégrable sur R, par comparaison aux intégrales de RIEMANN

car hy(t) = et In(x) =0 (t]—z) par croissances comparées (In(x) < 0).
oo

K+1 3
Comme la fonction hy est décroissante sur R, on a Vk > 1, fk hy(t)dt < XK = hy (k) < fk_1 hy(t)dt.
On somme pour k allant de 0 & 400 & gauche et de 1 & 400 a droite (I'intégrale et la série convergent) ce
. s +oo 12 “+oo 12 “+ oo 2
qui donne par CHASLES I'encadrement fo xtdt < f(x) < j;) xt dt + hy(0) = fo xtdt+1.

En posant t = %() = @(u), ¢ étant une bijection strictement croissante de classe C Tde R, dans Ry,
—In(x
par changement de variable, on a f+oo xtdt = f+oo et ngy = 1 f+oo e Wy = 1 [ =
’ 0 0 V—tn(x) Jo 2\ n(x)
d’apres lintégrale de GAUSS rappelée. Ainsi, on a l’équivalent f(x) ~ 1T/ =m car1= 0( 4)
1- 24/ In(x) - —In(x)
uisque 1 = —T 0.
prsaue. T 2\ (v
10.114 ) a. Par construction, Vn € N, a, > 0, ainsi, In+tl ‘ L I — £ =1 donc, par critere
an an x+n+1n—-+cc
de D’ALEMBERT, le rayon R de la série entiere Y. anx™ vaut R = % =1.
n=0
n n—1 1
b. Onavy—vy_1 = ( > in (H—ﬁ))—ocln(n)—(( >in (H—ﬁ))—txln(n—w) =1n (1—&—5)—“111 (1——)
k=1 k k=1 k n n
pour tout entier n > 2 donc vy —vn_1 = £ 40 (%) + oc( -1y O(%)) = O(%) Par comparaison
+oomn n n n +oo n
aux séries de RIEMANN, Y (viy —vn_1) converge absolument donc converge.

n>2
c. Par dualité suite-série, grace & la question précédente, la suite (vn)n>1 converge vers un réel a. Or

n
Vn e N* v, = ln( IT m)) —In(n%) = —In(n%ay,) donc an =
k=1 K

e Vn

.Mais lim e V" =A=¢e *>0

n‘x n—-+4oo

par continuité de I’exponentielle donc a,, ~ %
+oomn

d. En 1 : d’apreés c., comme a,, ~ et que les a,, sont positifs, la série Y ay,, converge si et seulement
+oo

A
o
n n=0

si la série > % converge. Par critere de RIEMANN, > ay converge si et seulement si o > 1.

n=0 n n>0
En —1: lasérie ) an est alternée et la suite (Jan|)n>o tend vers 0 car an, ~ L‘X et oo > 0. De plus, comme
n=0 +oomn
a a . C o o o .
o] _ oy _ntd < 1, la suite (Jan|)n>o0 est aussi décroissante. Ainsi, par le critére spécial des
lan| an ax+n+1

séries alternées, la série Y (—1)™an converge pour toutes les valeur de a > 0.
n=0

10.115) a. La série > uy est alternée et la suite (Jun|)nen = (2 ]+ ] ) ., est décroissante et tend vers 0 donc,
n ne

n>0

+oo
par le critere spécial des séries alternées, la série > u, converge, ce qui justifie Uexistence de S = > u,.
n=0 n=0
X[
n+1

de convergence d’une série entiére, le rayon de convergence de Y unx™ vaut R = 1. Bien siir, on aurait pu
n=0

b. Lasuite (Junx™ " )nen = ( ) . est bornée si et seulement si x| < 1 donc, par définition du rayon
ne

utiliser le critére de D’ALEMBERT. Ainsi, le domaine de définition D de I vérifie | — 1;1[C D C [—1;1].

I(1) est bien définie car S existe d’aprés la question a.. Par contre, > 1 diverge car 1 ~

n>o2n+1 2n+1 +o0 2n
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et la série harmonique 1 diverge. Ainsi, I(—1) n’existe pas et on a D =] — 1;1].
n

n>1
: X ong2 DN g 5
c. Soit x €]0;1[ : on pose y = y/x €]0; 1[ donc I(x) = Y. uny?™ ™ =y >, —~—y?™! et on reconnait une
n=0 n:Oznﬁ_]
série entiere classique, a savoir f(x) = y Arctan(y) = /x Arctan(y/x).
+oo +0o0
Soit x €] = 1;0[ : on pose y = v/—x €]0;1[ donc I(x) = S un(—1)"H1y2n+2 = —y 3 12041 gonc
n=0 n=0 2n +1
+oo +oo | 2n 2
- 1 L)_ Yy 2)) — Y (QL)_H (qu)
I = — ( n— = — —2In(1 — In(1 — =21 =21 t
(x) n;ny n; - (2 —y)+ (1 —y?)) =T aoy?) T2y e

on reconnait I(x) =y Argth (y) = v/—x Argth (v/—x).
Posons fy, : x + w,x™ 1 définie sur [0;1] pour tout n € N.

(H1) Pour tout entier n € N, f,, est continue sur [0;1].

—+o0
(H2) Pour n € N, en posant Ry : x = > fi(x) sur [0;1] (qui existe d’apres b.), comme (|fk(x)|)k>0

k=n+1
est décroissante et tend vers 0 pour tout x € [0;1], le critére spécial des séries alternées montre que
n+2
R < |f =X < 1 donc Ry, est bornée sur [0;1] et ||R 1 < 1 donc
[Rn(¥)] < [frs1(x)] mi3 S i n [0;1] et [[Rnl[oo,051) < I3

lim  |[Rn|[oo,[0;1] = O par encadrement : ) f, converge uniformément (pas normalement) sur [0; 1].

n—-+4oo n>0
+oo
Par théoréme, I = Y f,, est continue sur [0;1] donc I(1) =S = Um I(x) = Um y/xArctan(y/x) = Z.
n=0 x—1- x—1- 4

1
d. D’abord, I étant continue sur le segment [0; 1], I'intégrale fo I(x)dx converge.

;X3/2

Méthode 1 : on pose u: x — 3 et v:x — Arctan(y/x) de sorte que u et v sont de classe C' sur ]0;1] et,

comme leg)h u(x)v(x) = 0 car u(x)v(x) Y %, on a f()] I(x)dx = [u(x)v(x)]y — fo] u(x)v/(x)dx ce qui donne

1 1 1
_ 2. m 1 xdx w1 ( 1 ) w1 T o 1—1n(2)
I(x)dx =2 xZ—1 = 1 (_ dx=T 1 n(4+x)] =2 - =) Lo 42,
j;) (x)ax 374 3Jo1+x 6 3Jo 1+x *= 5% 3[X n X)]O 6 3 ’

Méthode 2 : comme Y f,, converge uniformément sur le segment [0;1] d’apres c., on peut intégrer terme
n=0

. . 1 _ +oo a1 B +o0 (—1) X2 1 B +oo (-1
& terme et avoir fo I(x)dx = nX::O fo fa(x)dx = nZ::O {m}o = nX::o i)

1 +oo (_ 1\ +oo (_ 1\
1 2 fo I(x)dxz% (=1) f% (=1) . Oril est

, 1
d = - ¢
OO o T ) n+2)  3@n+1) 3(n+2)

—+o0

n—1
classique (et c’est la méme méthode qu’au c.) que [GlD In(2) donc >

n=1 n—on+2
1 _ _
trouve, comme avec la méthode précédente, fo I(x)dx = % - % = % _] ;n(z)

10.116 ] a. La fonction f : t — Sni(t) est continue sur R* par opérations et elle se prolonge par continuité en

0 en posant f(0) = 1 car sin(t) fgt. Ainsi, f est continue sur R donc en particulier sur Ry. De plus, en

posant u:t — % et vt —cos(t), les fonctions u et v sont de classe C' sur [1; +oo[ et tliT u(t)v(t) = 0.
—>+00

% sin(t)
t

+ + +
Ainsi, l'intégrale f1 dt = f1 oou(t)v’(t)dt est de méme nature que j‘] OOu’(t)v(t)dt7 c’est-a-dire

+o0 cos(t e . s
que f1 %dt. Or cette derniere intégrale converge absolument par comparaison aux intégrales de

RIEMANN, donc elle converge, car g : t — C%Z(t) est continue sur [1;+oo[ et que g(t) = O(t]—z) Ainsi,
o0

+oo sin(t oo sin(t :
f1 %dt converge donc fo %dt converge aussl.
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b. On vient de voir que la fonction f est continue sur R ce qui montre, par le théoreme fondamental de

I'intégration, que F est bien définie sur R en tant que primitive de f qui s’annule en 0. De plus, on sait que

+o0 (_1)kt2k+1 sin(t) B +o00 (—1)kt2k

vt € R, sin(t) = > Ainsi, vVt € R*, f(t) = et cette formule marche

o (@k+1) T ot S (k+ )
. (_1)0 2.0 (—1)kt2k
aussi pour t =0 car 1 = -—2——. Comme le rayon de convergence de Y, ~——— vaut R = 400, on peut
20+ k>0 2k 4+ 1)!
intégrer terme & terme sur [O; x] qui est inclus dans lintervalle ouvert de convergence R =] — co; +00[ pour
v R x x / Fo© (_])ktZk +oo (_1)kX2k+1
i € F(x) = | f(t)dt= ( 7)dt = .
avolr ¥x € R, F(x) fo (t) fo kz::O 2k +1)! kZ::O 2k +1).2k+ 1)

c. Pour x € R, la fonction hy : t — exp(—xe™'!) est continue sur le segment | = {O; ﬂ donc l'intégrale

/2 . . i +oo " .

I(x) = fo exp(—xe~tt)dt existe. On sait que Vz € C, e* = Y % donc, en prenant z = —xe™'*, on
om

+o0 (_])n n —1nt "=

_1\n,n_—int
obtient Vt € J, exp(—xe~'t) = Y (=1)"x"e

. Pour n € N, posons hy, : t —

n! n!

n=0
Comme Vt € ], |hn(t)] = i | ;ona ||[hnlle,y = " ‘ et la série exponentielle > [x " converge donc la série
n>0 n
de fonctions > hy, converge normalement vers h sur le segment J. Comme toutes les h,, et h sont continues

n=0
71/2( ])n n 71nt

“+o0
sur J, le théoréeme d’intégration terme a terme sur segment montre que I(x) = f dt.

n=0v0 n!
/2 (— int /2
Pour n € N, posons l'intégrale L,, = f %dt. On a le cas particulier Ly = f ldt=1T1
0 n! 0 2
1\, T /2 . 1\ —int /2 1\ —inm/2
et, pour n € N*, il vient L,, = (Gablieds f et = ()7 [67] f _ (=D x € ——1
n! 0 n! —inlJo n! —in
. +oo e~ inm/2 _ 4 . .
Comme on sait que Re (I(x)) = 3 Re(Ln) et que Re( - ) = 0sin > 2 est pair et que I'on a
n=0 —m

efinﬂ/z 1 671(2k+1)7r/2 7 (_1)k ) ) o
Re (7) = Re ( kT ) ) = %11 sin = 2k+1 > 1 est impair, il ne reste dans la formule
—in —1

oo (_1)2k+1, 2k+1 _\k +oo k. 2k+1
ci-dessus que Re (I(x)) = Z + > (=1) X X 1) _m 3 (1)
25 2kt K12 (k1 )(2k+1)

/2 .
d. Par inégalité triangulaire sur les intégrales, |I(x)| = ‘fo exp(—xe‘lt)dt‘ < fo | exp(—xe~'t)|dt. Or
exp(—xe‘“) — e—xcos(t)ixsin(t) Jone |€Xp(—xe_it)| — e—xcos(t)

Méthode 1 : la fonction cos est concave sur J car cos” = —cos < 0 sur J donc Vt € J, cos(t) > 1— 2t Ainsi,
m

/2

/2 .
e xcos(t) e Xe2Xt/T done Vx > 0, j;) |exp(—xe™")|dt < e j;) e2Xt/7qt. On en déduit donc que

1—e )
. Comme U 7[(7
2x 2x xalToo 2x

/2 —X (X _ X
I(x)| < e | Ee2xt/m _me (1) _ml—e) = 0, par encadrement
) p )

0

2x
btient la limite Ui fﬂ/z (—xe~1t)dt = 0
on obtient la limite Um =~ exp(—xe =0.
. /2
Méthode 2 : soit g : R x [O; % [ — R définie par g(x,t) = exp(—xe™ ') de sorte que I(x) = fo g(x,t)dt.
(H1) pour tout t € J,ona lim g(x,t) =0 = a(t) car cos(t) > 0.
X——+400
(Hz2) pour tout x € R, les fonctions hy : t — g(x,t) et a sont continues sur [0; 721 [

(H3) pour (x,t) € R x [O; % {, on a |g(x,t)] <1 = o¢(t) et @ est continue et intégrable sur {0; % [

/2
D’apres le théoreme de convergence dominée a parametre continu, on a 1111 I(x) = fo a(t)dt = 0.
X—+00
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D’apres les questions précédentes, on a Vx € R, Re(I(x)) = T — F(x). Comme lim I(x) = 0, on a aussi

2 x——400
lim Re(I(x)) = lim (5 - F(x)) = 0. Ceci assure ’existence d’une limite finie de F en +o0o et sa valeur
X—>+00 x—+o00 \ 2
. +oo sin(t) L
T _x
XETOO F(x) = 5 quon note fo . dt =7 (intégrale de DIRICHLET).
D(n+2) ani1 _ (nt2)(n+3)2" i
10.117) P = nF)hm+2) tout n € N, de sort ntl — ~ =<
osons an o pour tout n » de sorte que =7 T2 % b

donc, d’apres le cours et la regle de D’ ALEMBERT, R = % =2.

—+oo +o00 n
Posons, pour x €]—2;2][, f(x) = > WX“ et g(x) = = 1 =_2 (série géométrique).
n=0 2 n=0 2 1— E 2—x
On peut dériver terme & terme & Uintérieur de l'intervalle ouvert de convergence, c’est-a-dire | — 2;2[, pour
. X (n+ )X 2 . e (n+1)(n+2) 4
avoir Vx €] — 2;2[, ¢g'(x) = > = puis g’ (x) = > = .
’ n=0 2n+1 (2 - X)z n=0 Zn+ (Z - X)S
T (n+1)(n+2)

En prenant x = 1 dans cette derniére relation, on a directement g”(1) =

—+o0
5 —(n+12)1(1n+2) —4x22 =16

n=0

X Sz = 4 donc
n=

10.118 ) a. Analyse : supposons que la fonction paire f = T est développable en série entiere au voisinage de
cos

0, il existe donc un réel r > 0 et une suite (an)nen € RY tels que Vx €] — 57, f(x) = ( 7= Z anx*"
Ccos

(par parité). Comme le rayon R de Y anx™ vérifie R > r > 0 par l'existence de f(x) pour x €] —1; r[, et par
n=0

(7])n 2n 1

vaut +o00, on a Vx €] —r;7], cos(x) X =1

produit de CAUCHY car le rayon de la série ) 5
Cos(Xx

n>0 ( n)'

(=D~

n
doncap=TetVn>=1, > an—x = 0 par unicité des coefficients d'un développement en série entiere,
k=0

(2k)!
ce qui donne an, = i a (=1 _ i a (=1
=- -k = —kTT5 N
" D B G35 T N €1 9]
N . o n (—1)k!
Synthese : il existe une unique suite réelle (an)nen telle que ap =1 etVn > 1, an = >, an,kw.
k=1 :
Calculons les premiers termes de cette suite : on a a; = 40 = l, a, =4 - 9% — T3 =5
2 2 2 24 4 24 24
—a _a a0 5 _ 1 1 _ 61l [ sembl 'on ait
=5 "t 70 a5 a3 T 70 aor Wsemble queTonait fan| <
e Initialisation : on vient de montrer que Vn € [[0;3], on a |a,| <1
k—1
o Hérédité : soit n > 4, supposons que Vk € [0;n — 1], |ax| < 1. Alors, |an| = Z an_ k( (12]1)

n +o0
donc |a |an— k|\ 1< 1 ch(1)=1~0,54 <1
anl < & 15 < £ g < £ gm0

Par principe de récurrence, on peut conclure que ¥n € N, |an| < 1. On note R le rayon de convergence

de la série entiere anx?™, qui est donc supérieur, d’apres le cours, & celui de > x?™ qui vaut 1. Ainsi,

n=0 n=0
+oo
> 1 et on peut définir g :] —1;1[— R par Vx €] —1;1], g(x) = Y. anx?™. Par produit de CAUCHY, comme
=0
400 +o0 (_])n:2n 400 n (_Uk
avant, Vx €] — 1;1], g(x) cos(x) = ( > anxzn) X ( > 7') =5 ( > an—k ' )XZ“ =1 donc
n=0 n=0 (Zn)' n=0 k=0 (Zk)'
g(x) = 1= f(x) et f = —1_ st donc développable en série entiere, au moins sur ]—1;1]
cos(x) cos
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b. Sion avait R > %, avec le méme calcul que précédemment, on aurait Vx €] —R; R[, f(x) X cos(x) = 1. Mais

comme x = 721 €] — R; R, on aurait f(x)cos(x) = 0 = 1. NON. Ou alors on pourrait dire que f est continue
sur | — R; R[, notamment en x = %, ce qui contredit l'expression f(x) = ]( 3 Toujours est-il que R < %
cos(x

En fait, R = % mais c’est une autre histoire.

10.119] a. Pour n > 1, on partitionne les involutions ¢ de [[T;n + 2] en deux catégories :

- celles pour lesquelles o(n + 2) = n + 2 sont au nombre de I,47 car il n’y a pas de choix a faire pour
o(n+2) qu’on impose égal & n + 2, ensuite o induit alors sur [[1;n + 1] une involution de [1;n + 1].
- celles telles que o(n +2) = k # n + 2 sont au nombre de (n + 1)I,, car pour les choisir de maniere
bijective, il y a n + 1 choix pour I'entier k qui est 'image de n 4 2 par o et, une fois ce choix effectué,
cela implique que o(k) = o(oc(n+2)) = n+2 car o doit étre une involution, et on a alors I, choix pour

finir de déterminer o qui doit induire sur [[1;n+ 1] \ {k} une involution de cet ensemble & n éléments.

Cette partition implique la relation Iy 42 = In41+(n+1)I, pourn > 1et, comme I =2 =14+1.1=1; + 1.1

avec la convention choisie pour Ip, on a bien : Vn >0, Ini2 = Iny1 + (n+ 1)1,

b. Comme les involutions sont des permutations et qu’il y a n! permutations de [1;n], on en déduit que

I <nldouo < 1. Comme la série entiere Y x™ a pour rayon 1, par comparaison, on a R > 1.

I
7'”'- <
n! >0

c. Les calculs qui suivent sont valides car le rayon de convergence R est supérieur a 1, on sait qu’on peut

dériver terme & terme & U'intérieur de l'intervalle ouvert de convergence qui contient | —1;1[. Pour x €] —1;1],

ISl X I+ nIn 1 n+1 :
(1+x)0(x) = o(x) +xp(x) = 3 1 ot Z ( ) =1+ Z e e L Z =¢'(x).
n=0 N !
d. On en déduit en intégrant cette équation différentielle linéaire du premier ordre mise sous forme normalisée
2
sans second membre, comme une primitive de x — 1+ x est x — x + X? sur Uintervalle | — 1;1[, que l'on a
2
Vx €] = 1;1], o(x) =" T puisque @(0) = Ip = 1 par convention.
+oo 1 +o0 1 .
e. Alors Vx €] — 1;1], o(x) (Zo Tk > X j;) ]'!7)‘2] . Ces deux séries ont pour rayon +o0o donc on
+oo |
peut effectuer le produit de CAUCHY et obtenir S(x) = > ( 'nl ; )x“. En identifiant (par unicité)
n=0 ‘i+2j=n Hj!2
les coefficients entre les deux expressions de S(x) sous forme de série entiere, Vn € N, In _ .|.1'2)-
i+2j=n bv):
[n/2] '
donc In = 35 = '23 Puisque 2j <n et i =n —2j, on ala formule I = - (—;ﬁ
i+2j=n 1J j=0 )

Pour expliquer cette relation de maniére combinatoire, on peut constater qu’une involution o de [[1;n] est

une application telle que pour tout entier x entre 1 et n, on a deux choix :
® 50it o(x) = x et x est appelé un point fixe de o.
e soit o(x) =y # x et alors, comme o2 = id [1,n], on a forcément o(y) = x.

Ainsi, si 0 € Ay, le nombre f de points fixes de o a la méme parité que n de sorte qu’il existe 2j entiers de
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[n/2]

[1;n] qui ne sont pas fixes par o avec f =n —2j avec 0 <j < {;J . On peut donc écrire A,, = U Anj ol
=0

An;j = {0 € Ay | 0 admet f =n — 2j points fixes}.

Pour construire une involution o de Ay j :

e on choisit les n — 2j éléments de [[1;n] qui sont fixes par o : < " 2,) = (;) choix.
n—2 )

e on choisit I'image y du plus petit élément x qui reste : (2j — 1) choix (et alors o(x) =y et o(y) = x).

e on choisit I'image t du plus petit élément z qui reste : (2j — 3) choix etc...

! 2j)!
Ainsi card (An ;) = n X(2j—1)x(2j—3) x---x3x1 = n X ( .)) en multipliant en haut et en bas
’ 2j (m=2)!12i)! 25!
[n/2] [n/2] |
par les termes pairs qui manquent. On retrouve bien I, = card (An) = > card(An;j) = > (7217)'2“
j=0 j=0 (n—2j):2%):

10.120) a. On a deux types de déplacements possibles, vers le haut ou vers la droite. On doit en faire 2n pour
2
aller de (0,0) & (n,n) et il en faut n de chaque type. Cela fait donc ¢, = ( n) chemins possibles.
n

b. n=1: il n’existe qu'un chemin (0,0) — (1,0) — (1,1) avec cette propriété donc d; = 1.

n=2:(0,0) = (1,0) = (2,0) = (2,1) = (2,2) et (0,0) = (1,0) = (1,1) = (2,1) — (2,2) donc d; = 2.

n =3 : on dessine tous les chemins et on trouve (0,0) — (1,0) — (2,0) — (3,0) — (3,1) — (3,2) — (3,3),
mais on obtient aussi celui-ci (0,0) — (1,0) — (2,0) — (2,1) — (3,1) — (3,2) — (3,3) et encore celui-la
(0,0) — (1,0) — (2,0) = (2,1) = (2,2) — (3,2) — (3,3), enfin on a les deux derniers en commencant par
(0,0) = (1,0) = (1,1) = (2,1) = (3,1) — (3,2) — (3,3) et en terminant par celui qui rebondit sur la
diagonale (0,0) — (1,0) — (1,1) — (2,1) = (2,2) — (3,2) — (3,3) donc d3 = 5.

c. Pour n € N*, notons Up41 = {c = (0,0) = -+ = (n+ 1,n + 1) les chemins qui restent au dessus
de la diagonale} et, on note U, ; = {c =(0,0) - - = (mym) = -+ = (n+1,n+ 1) les chemins
qui restent au dessus de la diagonale et tel que m est le plus petit entier k € [1;n + 1] tel que (k, k)

appartient au chemin c} pour tout entier m € [[1;n + 1]. Comme cet entier m existe par définition d’un

n+1
chemin puisque (n 4+ 1,n + 1) appartient & ces chemins, on a la partition Up 1 = |_| Unhq de sorte que
m=1
n+1
Uny1 = card (Upy1) = > card (U, ;). Traitons trois cas :
m=1

e Sim = 1, on crée une bijection entre ULH et U;,,, donc card (UL_H) =dn, = dodn car dp = 1, en

envoyant le chemin ¢ = (0,0) = (0,1) = (1,1) = -+ = (xx,yx) = -+ = (n+T,n+1) € U], surle

o

chemin ¢’ = (0,0) = -+ = (xk — L,y — 1) = -+ = (n,n) € U,.
e Sim € [2;n], on a une bijection entre les ensembles U, ; et U1 X Up 1 en envoyant le chemin

c=(0,00—>(0,1) = -+ > (m—-1,m) = (mm) > (mm+1)—= - > (nn+1)=>n+1,n+1)de

o’ ol

Ui, sur le couple (¢/;c¢”) € Up—1 X Up_myg ot e’ = (0,0) = -+ = (xj,yi —1) = -~ (m—1,m —1)

appartient & Um_1 et ¢ = (0,0) = -+ = (xk —m,yx—m) = -+ > (Mm—m+TI,n—m+1) € Up_m41.
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Ainsi, card (UT) = card (Uy—1 X Up—m41) = card (Um—1) X card (Un—m+1) = dm—1dn—m+1-

e Si m =n+4 1, on crée une bijection entre ugi} et Uy, ce qui donne card (Uzi}) = dn = dndo, en

envoyant le chemin ¢ = (0,0) = (0,1) = -+ = (xx,yx) 2> - - > (,n+1) = (n+1,n+1) € Ugﬂ

0—/
sur le chemin ¢/ = (0,0) = -+ = (xi,yx — 1) = -+ = (n,n) € Uy.
n n
Par conséquent, dn, 1 = dodn + ( > dm_1dn_m+1) + dndo = Y. dkdn_k en posant k = m — 1. Cette

m=2 k=0
relation est encore vraie pour n =0 car dy = d3 = 1.

d. Les chemins qui vont de (0,0) & (n,n) et qui restent toujours au-dessus de la diagonale x =y font partie

. . . . . 2n
des chemins qu’on a dénombré a la question a.. Ainsi, par inclusion, on a 0 < dn, < ¢, = ( . Le rayon
n

2n +2
cng1 _ \n+1/)  (2n4+2)Wm!? 22n+1)

de convergence de >  cnx™ vaut l par D’ALEMBERT car

n>0 cn 2\ 2!+ At
n
tend vers { = 4. D’apres le cours et 'encadrement précédent, on a donc R > %
+oo 2 +oo n
e. Pour x €] — R;R[, on a f(x)? = ( > dmc") = > ( > dkdn_k>x“ par produit de CAUCHY donc, avec
n=0 n=0 “k=0

—+oo +oo
la relation de c., on a f(x)? = 3. dpy1x™ done xf(x)? = 3. dpp1x™ = f(x) —do = f(x) — 1.
n=0 n=0
f. Ainsi, f(x) est racine du polynéme Py = xXZ —X+1 dont le discriminant vaut A = 1—4x. Comme f(x) € R,

on a forcément A > 0 donc x < +. Ceci garantit que R < donc R= 411 avec d.. On donc f(x) = 1=v1=dx V21_4X
x

ou f(x) = LV =% &y 4 0 et £(0)

p =1uo = 1. Comme g : x — 2xf(x) — 1 est développable en série entiere
X

sur | — R;R[, elle y est continue et on sait d’apres ce qui précede que Vx €] — R;R], g(x) = £4/1 —4x. La
continuité de g et le fait que g ne s’annule pas sur | — R; R[ montre que 'on a soit ¥x €] —R;R[, g(x) = /1 — 4x
soit ¥x €] — R;R[, g(x) = —y/1 — 4x. Mais comme g vaut —1 en 0, elle est négative sur | — R; R[ et on a donc

Vx €] — R;R[, g(x) = —y/1 —4x donc f(x) = T=vi=dx ”zl_ébcsix;éo.

n—1 1,
g. D’aprés le cours Vu €] — T;1[, v/1+u =1+ Z > (1) (@)t (on le retrouve assez vite avec le
n=

(2n —1)(nl) %"

“+o00o I, U
développement en série entiere de (1+x)* pour o = l) donc Vx € } — l; 1 [, VIi—dx=1=>" sz
2 44 = 2n—1)(n)

T Av +oo 1 n—1 +oo [
ce qui montre que Vx € ] % All [\{O} 7] 4x Q™ (2n +2)lx

= qu’on
a2en =) 02020 4+ 1) ((n+1))?
1 A +oo I,
va plutot écrire T=Vl—dx & et, en identifiant par unicité d’'un développement en série
2x Zonl(n+1)!
2
entiere, on a Vn € N, d = 1( n)'
n—+1
2.0)! (2.1)! (2.2)! (2.3)! :
P ]d:(7=1d:7=]d=7=2td=7=5
A exempe, €0 = o+t T T T e T 0 2T e LB T 3E ) am
. . (2.4)! (2.5)!
confirme les calculs de la question b.. Et on a d4 = —/—4+— =14 et d5 = ——+— =42,
44 +1)! 5154+ 1)!
dn _ _1

h. Cette probabilité, avec les données de I’énoncé, vaut pn = —_—
Cn n+1

10.121) a. La suite (an)nen suit une récurrence linéaire d’ordre 2 & coefficients constants et 1’équation car-
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actéristique associée est 2 — 3r +2 = (r — 1)(r — 2). Ainsi, d’aprés le cours, il existe deux constantes A et
B telles que Vn € N, a,, = A+ B.2™". Comme ap = A+ B =1¢et aj =3 = A + 2B, on trouve sans peine
A=-letB=2doncVn e N, a, =2 —1.
b. Pour n € N* |an| = an = 2™ —1 < 21 < 22" = 4™ car n+ 1 < 2n. Comme on a aussi
ao =1<4%=1,0nabien ¥n € N, |a,| < 4™
c. D’apres le cours, le rayon de convergence de > anx™ est supérieur ou égal a celui de > 4™x™ qui vaut

n>0 n=0

1

7 car (4™x™)n>0 est bornée si et seulement si |x| <1 4 Par conséquent R > —. Comme an, o 2™+ et que le
o0

m—t

rayon de 3. 2™F1x™ vaut % pour les mémes raisons, on peut conclure tout de suite que R =

n>0

N [—

+oo
d. Pour x €] —R;R[ D } - L th [7 > (an —3an—1 +2an_2)x™ = 0 par hypothese donc, comme les trois séries

4 n=2
[ee) +o0 [e'e) —+o0
convergent, Y. anx™—3 Y, an_1x"+2 Z an—2x™ = 0. Posons S(x) = > anx™ pour des x convenables,
n=2 n=2 n=0

ce qui donne (S(x) —arjx— ao) 3(xS(x )—aox)—l—ZxZS(x) = 0 ou encore S(x) —3x—1—3xS(x) +3x+2x2S(x) =0

et on a la relation S(x) = Z anx™ comme attendu.

%
2x% —3x +1
1

e. Méthode 1 : comme P = 2X2 —3X+1=(2X—-1)(X=1), la fraction rationnelle F = 7 se décompose en

éléments simples sous la forme F = —%— + b _ a@X—1)+b(X—1) avec (a,b) € R? qui vérifie donc
X—1 " 2X—1 2X—1)(X—1)
le systéme linéaire (2a+b=0=a+b+1) <= (a =1,b = —2). Ainsi, Vx € ] 7411; % [, S(x) = : 22 o 1
—2x —x
—+oo —+oo —+o0
donc S(x) = 2 > 2™™ — 3 x™ et on a bien S(x) = Y. (2™ — 1)x™. Par unicité des coefficients du
n=0 =0 n=0
développement en série entiere d’une fonction, on a donc Vn € N, an = 2™ — 1 donc an o 2"+ et on
oo
conclut, comme on 'a déja fait, que R = %
Méthode 2 : comme P = 2X%—3X+1 = (2X—1)(X—1), on a Vx E]fR;R[ﬁ} f%; % [, S(x) = . ]2 o 1 donc,
—2x 1—x

400 400 +oo n
par produit de CAUCHY, S(x) = ( > (2x)“> X ( > x“) = > ( > Zk)x“. Par unicité des coefficients du

n=0 n=0 n=0

n
développement en série entiere d'une fonction, on a Vn € N, a, = 3 2¢ = =21 _ 1 et on

conclut & nouveau que R = %

10.122 | La fonction f est définie sur R* ou elle est de classe C*° par opérations.

2
Comme on sait que cos(x) ?1 - X? + 0(x?), on a f(x) = % + o(1) donc lin}) f(x) = % et on peut prolonger f
X—

par continuité en 0 en posant f(0) = % la fonction f ainsi prolongée est maintenant continue sur R.
2
X

_ 1—cos(x) — — 2

Pour x # 0, on a fl) = 1(0) _ 3 2 mais on sait aussi que cos(x) ?l - %

x—0 X
09 =) _ (1) et on a done tim T =F©)
x—0 0 x—=0 x—0
car f est paire donc f’ (quand elle existe) est impaire.
x% sin(x) — 2x(1 — cos(x)) _ xsin(x) — 2(1 — cos(x))
= 3
X X

+ o(x3) ce qui donne

= 0 donc f est dérivable sur R et on a f'(0) = 0 ce qui logique

Pour x # 0, on a f'(x) = mais on a le développement
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2
limité x sin(x) —2(1 —cos(x)) ﬁx(x—&—o(xz)) —2(1 — (1 - %4—0(7(3))) ,S,XZ —x2+0(x3) 5 o(x) donc '(x) S o(1)
ce qui montre que 1irr(1) '(x) = 0 = /(0) donc que ' est continue en 0. Ainsi, f est de classe C' sur R.

X—

+oo (_1)11 2n

Mais on sait que cos est développable en série entiére sur R avec Vx € R, cos(x) = > W Ainsi, pour
n=0 n):
1 — COS(X) (_])n+1 2n +o0 (_])nJr]XanZ 400 (—1)kX2k
x € R*, on a f(x) = ———~* = 2722—227.Enprenant
x* n=1 o (2n)! n=1 (2n)! =0 (2k+2)!

k2K _
x = 0 dans cette somme, on obtient Z ((Zk)—&—OZ) (2(0 -]l-)Z) 15 donc on retrouve la valeur de f(0) trouvée
1Ry 2K
pof ek
=, 2k +2)!

ci-dessus. Par conséquent, f est en fait développable en série entiere sur R avec Vx € R, f(x) =

et f est donc de classe C* sur sont intervalle ouvert de convergence R.

10.123] a. SiR =0, il n’y a rien & démontrer car | — R; R[ est vide.

Si R > 0, par produit de CAUCHY, comme Y. anx™ est de rayon R donc que > anx™ converge absolument
n>0 n>0

+o0 n +oo
pour x €] — R;R[ par le lemme d’ABEL, S(x)? = ( > akan,k)x“ = a + 2aparx + Y, anx™ par
n=0 “k=0 =2

hypothese, ce qui donne S(x)? = S(x) — x ou encore S(x) = x + S(x)2.

b. A nouveau, si R = 0, il n’y a pas d’expression de S(x) & trouver car | — R; R[ est vide.

Sinon, pour x €] — R;R[, S(x)? — S(x) +x = 0 donc S(x) est une racine réelle du polynéme P = X? — X + x.
Comme le discriminant Ay du polynéme Py vaut Ay =1 —4x, et que S(x) est un réel par construction, on

a forcément 1 — 4x > 0 donc R < le et Vx €] — R;R[, S(x) = % ou S(x) = 1+ vI—dx ”2]_4" Comme
f:x — 25(x) — 1 est développable en série entiére sur | — R; R[, elle y est continue et on sait d’aprés ce qui

précede que Vx €] — R;R[, f(x) = £+/1 —4x. La continuité de f et le fait que f ne s’annule pas sur | — R; R|
montre que l'on a soit ¥x €] — R;R[, f(x) = /1 —4x soit Vx €] — R; R, f(x) = —v/1 — 4x. Mais comme f vaut

—1 en 0, elle est négative sur | — R; R[ et on a donc Vx €] — R;R[, f(x) = —v/1 — 4x donc S(x) = 1=Vl ”2174X

[Carul—> /1T —ulest

/ —+oo
sur | —1; 1. Ainsi, il existe une suite (bn)nen € RY telle que Vx € } -1 l{ T(x) = LiVA e > bax™.
n=

D’apres le cours, on sait que x — /1 — 4x est développable en série entiere sur } }I éll
474 2

Onabiensﬁr%c6}—}t 411{ T(x)?=T(x)+x = 1-2 1_44X+(1 —h) 1= ”2] —HX | x = 0. En effectuant

un produit de CAUCHY sur } — %; 411 {, et en identifiant les coefficients (les calculs ont déja été faits ci-dessus),

on trouve que vo = T(0) =0, vi =T(0) =1 et Vn > 2, bpyg = E brbn_k. Ainsi, les deux suites (an)nen
k=0
et (bn)nen vérifient les mémes conditions initiales et la méme relation de récurrence donc, par récurrence

forte, on en déduit que Vn € N, an = by. Ainsi, >, byx™ est bien de rayon R = éll comme Y. bpx™.

n>0 n=0

c. D’apres le cours Vu €] — 131, V/T+u =1+ Z %

(on le retrouve assez vite avec le

+oo |
développement en série entiere de (14+x)* pour o = E) donc Vx € } % 411 { VIi—dx=1->" %
n=1 -
_ 1T —dx _ & ) 1
ce qui montre que V' 6}—1;1[,5 = —— = PYZ YAV A Comme R = - > 0 et que
d due vx 5 S™ 2 2 3m - ()2 4 d
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“+o00
Vx €] —R; R, S(x) = Z anx™ = > (2n)h™ ~, par unicité des coefficients d’une fonction développable

n=12(2n—1)(n!) ( )
(2n)! _ (@2n)@n-2)! 1 (2n-2 '

en série entiere, on a on le savait déja) et V¥n > 1, = = =
’ ao ( v Ja) et vn T o H)m)E T A (1)) n\n—1

Il vient ap =0, a1 =1,a2 =1,a3 =2, a4 =5, a5 = 14, ag = 42 : ce sont les nombres de CATALAN.

[10.8 Officiel de la Taupe]

10.124 | Par D’ ALEMBERT (ou comparaison) par exemple, le rayon de convergence de cette série entiere est égal

a R = 1. De plus, par RIEMANN, il y a convergence en x =1 et x = —1 donc D = [-1;1].
On sait de plus, méme si ce n’est pas demandé, que S(1) = ”—62 et S(—1) = 77]1—2. On a aussi S(0) = 0.
N
S est dérivable sur I'intervalle ouvert de convergence et Vx € [0;1[,S'(x) = Y. ¥*—— > 0 donc S est strictement
croissante sur [0;1[. De plus, la convergence de cette série de fonctions Zs} normale sur [0;1] car en notant

K
u s x = Xy, on a ffulfe01) = det 3 L converge.
k k k>1 Kk

Comme les uy sont continues, par théoréme, la fonction S est continue sur [0; 1] donc liql S(x) =S(1) = A.
X— 17
Tout ce qui précede justifie que S réalise une bijection strictement croissante entre [0; 1] et [0; A].

ok

Posons Sy @ x +— Z w2 cette fonction Sy, est strictement croissante (par dérivée) sur R, elle y est continue
k=1

et elle admet les limites 0 et +00 aux bornes de R,. Par le théoréme de la bijection, I’équation (E;, ) possede

une unique solution sur R, : on la note x, = S;'(a) > 0.

e La suite (xn)nen+ est strictement décroissante car Sp(xn) = @ = Spt1(Xn+1) > Sn(xn+1) et on se sert de

la stricte croissance de S, pour avoir x,, > xn41 Sin > 1: (xn)nen+ converge car elle est minorée par 0.

e Supposons que a > A, alors comme Sy(xn) = @ > A = S(1) > Su(1), on a x, > 1. Si on avait
Uim x, = € > 1, on aurait lim S,({) = 400 car £ > R ; mais on aurait aussi Sp(xn) > Sn(f) ce
n—+o00 n—-+oo
qui montrerait que lim Sn(xn) = 400 et ceci est contraire a la construction de xy, : d’out 1111 xn = 1.
n—+oo

e Supposons que a < A alors pour n>1,0onaSy(xn) =a=5(5"(a)>Sn(S"(a)) donc x, > S~ '(a).
Supposons que { = 1111 Xn > ST ((1)7 alors comme précédemment, on ne peut avoir que ¢ < 1 et alors
n—+oo

lim Sn(0) =S(0) > S(S7"(a)) = a. Mais comme S, (xn) > Sn(£), on aurait aussi lim Sy (xn) > a ce qui
n—+4oo n—4-00
contredit le fait que Sy (xn) = a. Par conséquent, on ne peut avoir que liT Xn = S$7(a).
n——+oo

n
10.125 | Cette série converge car u, > 0 et up = o<1—2). La série entiere > ﬁ a R = 1 pour rayon
o] n —

n n>1 n
de convergence par D’ALEMBERT par exemple, on note f sa fonction somme de la variable réelle définie

n
sur [—1;1]. En notant Px o _ =1 1 e 1 converge par
[ ] tn oo X n(2n—1) [Fnloo, (=11 n(2n — 1) +oo 2n? né:] n? 8 p

RIEMANN donc la convergence est uniforme sur [—1;1] et f est continue sur [—1;1].

On décompose — 1 en éléments simples : Vn > 1, 1 =2 1 donc, en faisant attention

n(2n-—1) n2n—-1) 2n—-1 n
+oo %™ n
au fait que les séries entieres suivantes divergent en 1: Vx €] — 1;1], f(x) = Z D
n=1 T

2n—1
On connait ces développements : Vx €]0; 1], f(x) = 24/x Z L - Z Xt = 2y/xArgth (y/x) +1n(1—x)

puis Vx €] — 1;0], f(x) = 2y/—x Z (=) (V=9 +Z°° Xn = —2y/=xArctan (vV=x) + In(1 — x).

2n—1 =y n
+oo

Dans ’énoncé, il est demandé nZ::] m = f(%) = \/EArgth (%) —n2=+21In (ﬁ—i— 1) —1In2.
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+oo

Mais par continuité de f en 1 et —1, on a aussi » —1 = lnn (Z\fArgth (\/;c) +1n(1— x)) et aussi
Zin2n—1) x50

e ()

> = lim (— 2y/=x Arctan (y/=x) + In(1 — x)) =1n(2) —

=in2n—1) x5+ %
2/XArgth () + In(1 —x) = /T — tin ( + Fv) Fln(t) =27 —tin (14T —1) + ln(t)(1 N/ - t)

en posant x =1 —1t. Or 111(1)1 (1 — V1 - t) In(t) = 0 par DL et croissance comparée et f(1) est trouvé (on
t—

peut le faire avec I’équivalent classique de la série harmonique grace aux sommes partielles de cette série).

Auﬁnal:&ozo (=" :ln(Z)—%;im:m@l)et§m=ﬂln(ﬁ+1)—m2.

Zin(@2n-1)

P
10.126 | Comme P = ) axX* est de degré p > 1 (ap # 0), en écrivant P(x) = apxP (1 + 81y %)
k=0 a-p apX

pour x # 0, on a _liT [P(x)| = 400 donc il existe bien ng € N tel que Vn > no, [P(n)| > 1.
X—+00

Dés que n > ng, on a donc |P(n)an| > |an| et on sait qu’alors on peut conclure que R’ < R.
La famille proposée est une famille de p + 1 polynomes de degrés échelonnés donc elle est libre et comme

P

dim(Rp[X]) = p+1, c’est une base de R, [X]. On décompose alors le polynome P dans cette base P = 3 Py
k=0

k P
en notant Pp = 1et Py = [ (X—i+1)sik > 1;alors P(n)anx™ = cpanx™+ Y, agapn(n—1)--- (n—k+1)x"
i=1 k=1
On sait que la série dérivée (et par récurrence les dérivées successives) a le méme rayon de convergence
que la série initiale. Ainsi, si |x| < R, toutes les séries > ann(n —1)---(n — k + 1)x™ convergent et on a
n>0

+oo +oo

Stapnn—=1)--(n—k+1)x" =x* 3 apnn —1)---(n — k + 1)x" 7k = x*)(x). Par somme de séries

n=0 n=k

convergentes, la série > P(n)a,x™ converge ce qui permet d’affirmer que R’ > R et enfin que R =R’.

n>0

+00 P +o0 P
De plus, on a Y, P(n)anx™ = apf(x) + > ock( ooapn(n—1)---(n—k+ l)x“> =3 o (x*f¥(x)).
n=0 k=1 n=0 k=0
+oo 2 +oo n_
Soit ici g(x) = ni':']x“ qui s’obtient en prenant P = X2 + 1 et f(x) = >, *- : le rayon est clairement
0 n. n=0 TL

R = +o00. On décompose X? +1 = X(X — 1) + X + 1 et f(x ) = e* donc, avec les résultats précédents :

0(x) = () +xF (x)-4x2F"(x) = (x> +x-+1)e* et on obtient alors 3 “2“7“ = g(2x) = (A2 +2x+1)e?
n=0 !

2
10.127) Si x # 0, en notant u, = 2 _;2] x™, on a un o~ nx™ donc (un)n>o bornée ssi |x| < 1 donc le rayon de
n [e’e]
convergence de cette série est R=1. Comme nz —T=Mm+1)(n+2)—3(n+2)+3, pour x € — 1;0[U]0; 1],

S6) = 5 (n+ 10 —3Zx+ X doncS() (])/—ﬁ—%<ln(1—x)+x).

n=0 T—x

Ainsi : S(x) = 1 3 _ Xi(ln(l —x)—i—x).

10.128] a. Si f est solution de (E), alors f est dérivable donc continue sur R. Alors d’apres I’équation ' 'est aussi
donc f est de classe C'. Par une récurrence facile, on en déduit que f est de classe C* sur R.

Soit a > 0, on pose le réel M, = I\[/lax [fP)(x)| (qui existe car f(P) est continue sur un segment). Comme
xXe a,a
onaVx € R, ¥p e N, fPHD(x) = f(P)(x) + APF(P)(Ax), on a M 41 < 2M,, donc M, < 2PM, par récurrence
L e n R 0) 2V Mg [x ™!
immédiate. Par 'inégalité de TAYLOR-LAGRANGE, Vx € [—a; a], [f(x)— > x =L
k=0 k' (Tl + 1)'
tend vers 0 quand n tend vers 400 par croissance comparée. Ainsi, f est développable en série entiere sur R.

< qui

K1 ,
b. Par récurrence avec la formule de la question précédente, on a Vk € N, £0(0) = £(0) [] (1+AY) = axf(0).

i=0
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+oo n
Comme f solution de (E) est DSE sur R, on en déduit que Vx € R, f(x) =f(0) > % donc les solutions
n=0 T
+oo n—1
de (E) forment une droite (équation linéaire) engendrée par la fonction ¢ : x — >, [] (1+ ?\k)x—'
n=0 k=0

n
c. Soit vy, = J] (1 +A¥) = any1 > 0 car A €] — 1;1[. Donc In(vy) = Z In(1 + A*) avec In(1 +)\k) ~ AK

k=0 00
or Y. A™ converge absolument donc Y In(1+A™) converge aussi absolurnent donc converge (vers () ce qui
n=0 n=0
. I ‘ ’ 0
assure la convergence de la suite de 1’énoncé vers un réel K(A) = e > 0.

d. A faire.
10.129] a. La fonction g : y — n(t —yl) est continue sur | — oo;0[U]0; 1[U]1; +00[ avec un prolongement par
Y

1 —
continuité en 0 avec g(0) = —1. Ainsi f est déja définie sur | — co;1]. De plus fo Mdy converge car

X —
o(y) = o( \/11?13) De méme f] ln(‘]yiywdy converge si x > 1. Par conséquent, f est définie sur R.

_ 400 n—1
b. Soit x €] — 1;1], alors f(x) = fxm = fx Z y—dy et en posant gn(y) = Y—, on
0 y n
a [|gn|loo,jong < [X|™7! pour n =1 avec Y [x|™ qui converge donc la série de fonctions ) gn converge
n>l n>1
+oo X
normalement sur le segment [0;x] et on a donc f(x) = — > fo gn(y)dy = — Z et f est DSE.
n=1 n=1 n

On reprendre 1’étude sur l'intervalle [0; 1] mais on n’a plus convergence normale, par contre les fonctions gn

1
sont intégrables sur [0; 1] avec g continue sur [0; 1] et f o lgn(y)|dy = —5 donc la série numérique Z f lgn|
Tl n=1
Tt A1 2
converge. Ainsi, d’aprés le TITT, on a f(1) = — ) fo gn = —%.
n=1

10.130) a. En intégrant le développement en série entiere de x + \/%2 = (1 —x3)""2 = Arcsin/(x),
1T—x

on a vu dans le cours que Vx €] — 1;1[, Arcsin(x) = +Z°° ﬁxznﬁ = ijo b2t si b, =

Y n=0 4n(n!)2(2n + ]) n=0 " "
(2n)!

AMm)r2n+ 1)

b. Par produit de CAUCHY de séries numériques absolument convergentes, f : t +— (Arcsin(t))? est

développable en série entiere sur | —1; 1[ mais les coeflicients ne sont pas faciles a calculer avec cette méthode.

Arcsin(t) 2 t Arcsin(t)

—— 2

V1 —t2 V1—2(1—t2)

pour t €] — 1;1[. Comme f est paire et f(0) = 0, il existe une suite réelle (an)n>o telle que ap = 0

400 “+00 +oo
et Vt €] — 11, f(t) = . ant®™. Alors tf'(t) = > 2nant®™, /(1) = Y. (2n +2)(2n + an1t?™ et
n=0

c. Par contre, f'(t) = 2 donc f'(t) = . donc (1 —t2)f"(t) = 2 + tf'(t)

n=0 n=0
+oo
t2f”(t) = > 2n(2n — 1)ant?™. En reportant dans 1’équation différentielle et en regroupant les termes, on a
n=0
+o00 too
donc > ((2n+2)2n+ Dant1 —2n(2n = 1)an — 2nan)t?™ = > (2n+2)(2n + angr —4nlay ) 2" =2
n=0 n=0

4n?

et par unicité des coefficients (rayon 1 >0),ona a; =1 et Vn € N*| an41 = m
n n

4(n —1)? 4(n—1)2 4(n —2)2 . . s

P * = ——— —an_1 = 2= .. squ’

our n € N* ap )@ —1) an_1 2n)n 1) X n-2)(n - 3)an 2 et on continue jusqu’a
2 n—1 _1)\2 . 2 2n—1 _1\n2

a) = um pour avoir a, = 4 (n —1)° x x 1 a; = 2 (n 1Y . On peut bien sir

4x3 n)x(2n—1)x---x4x3 (2n)!
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prouver cette relation par récurrence une fois qu’on ’a conjecturée.

+oo 227171 (Tl . 1)!2

Ainsi, YVt €] =151, f(t) = > 2", Comme dit plus haut, on peut aussi calculer, par produit

n=1 (Zn)!
co ,n—1 —k —
de CaucHY, f(1)2 = () x () = :go (kgo - (k!)(f‘gz)]i T (n(z_(:‘{ - ‘;) !)2‘()2):1 — ]))XZn car

le terme en x?™ provient du produit des termes en bx?**! et by, 1 1x** 721 (pour k € [0;n — 1]) de la

série entiere de la question a.. En simplifiant et en identifiant par unicité du développement en série entiére,
(2k> (Zn -2k 2)
2n—-1/_ _ 1y12 n—1 —_k =
on obtient la relation bizarre : ¥n € N, z (n — 1! = n]_1 k nok—l .
(2n)! 4 o 2k +1)(2n -2k —1)

no_k
10.131)a. f, :x— > X? est clairement strictement croissante sur Ry, f,(0) =0 et HT fn(x) = +00. D’apres
k=1 X—4o00

le théoreme de la bijection, il existe un unique x,, € R% tel que fn(xn) =1 car 1 € [0; +00l.

b. Vt > 0, fn+1 (t) 2 fn(t) donc 1 = fn+] (Xn+]) 2 fn(xn+1) donc fn(Xn+1) < fn(Xn) =1= Xn+1 < Xn
car fy est strictement croissante. Ainsi (xn)>1 est décroissante minorée par 0 donc elle converge vers ¢ > 0.

noxk oo Xk 1 o 1
Y21, fulxn)= > 2 =1<—-In(1 —xn) = >, = donc x, =1 — =. En passant a la limite, ¢ > 1 — —.
k=1 K k=1 K e e

Si on avait £ > 1 — 7, alors on aurait —In(1 — ) > 1 donc il existe un entier n tel que la somme partielle
€

nook
> % > 1. Mais par stricte décroissance de la suite, x,, > { donc, comme f,, est strictement croissante :
k=1
n k n e 1
fn(xn) = Z oo S L — £ (0) > 1 ce qui est impossible. Par conséquent :  lim xp =1 — L.
k=1 k k=1 k n—-+4oo e
2
10.132] f est de classe C* sur R* et par le développement limité cos(x) ?1 — X? + o(x?), f est continue en 0.
+too 2n
Mais on a mieux, cos est DSE sur R et on a Vx € R, cos(x) = > (=1)" é I donc si x # 0, on a
n=0 n):
+oo  2n
-3 7 +
f(x) = M f:o( Hn-t Sl i@(_])nxzin Cette relation étant aussi valable en 0 car
x? = (n)! = (2n +2)!
f(0) = % = ﬁ, on a donc f développable en série entiere sur R donc de classe C*° sur R.
™ (0) (2n)! (=n"
vneN, an = donc ¥n € N, fZnF1(0) =0 et f2™(0) = (1) = :
mES e one TS S (0)=0e © = G ~ G Dan T 2)

+oo (_1)n71Xn
10.133 ] a. On sait que Vx €] — 1;1, In(1 —x) = > ~———
n=1

'

avec rayon 1 et convergence sur [—1;1].
n

1

b. Les coefficients de cette série entiere sont ar,, = ~an sin>1et aymer = 1 _ 1 = 1

= si
2n+1 In +2 In+2
n > 0. Par croissance comparée ou D’ALEMBERT, le rayon de cette série est donc R = 1.

2n—2 2n—2
n (X2k+1 Xk+1 ) _ n (X2k+1 X2k+2 _ X2k+2 _ Xk+1 )

P N* et -1;1 Son—2=
our n € etx €]—1;1[,onaSym_2 2k+1+2k+2 2k+2 2k+2

o \2k+1 2k+2) &
, . 2n X) ] LA (Xz)m ] XP . .
et on sépare pour avoir Spn_2 = », = — 2 > L — X 11 suffit ensuite de faire tendre n vers
j=1 1 2Zm=1 m 2,51 p

+oo 2n+1 Xn+1 (] n(1 5 1 e 1 i
—|—oop0urav01rz<2n+] 2n+2)——n( —x)+=1ln —x)—i n( _X)_E n(1+x).
10.134]a. Soit R > 0 et f une fonction DSE sur | —R; R[ : Vx €]—R;R[, f(x) = Z anx™. On sait qu’on peut dériver
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—+o0 “+o0 —+o0
terme & terme sur | — R;R[ et avoir '(x) = > nanx™ ' = 3. (n+ Dany1x™ done xf'(x) = > napx™.
=1 =0 =0
oo n +Oon n
De méme, f/(x) = > n(n + 1)an1x™ ! done xf”(x) = 3 n(n + 1)an1x™. Si f est solution de (E), on
=1 =0
mn oo n
remplace dans 1’équation et on regroupe les termes : Y (n(n +Dany1 +(n+1)any1 +nan — pan)x“ =0
n=0

et par unicité des coefficients dans un DSE, on obtient : ¥n € N, (n 4 1)?2an11 = (p —n)an, (R).

Réciproquement, soit la suite (an)nen définie par ap =1 et Vn € N, (n 4+ 1)%2any1 = (p — n)ayn, alors soit

p est un entier et la suite est nulle a partir d'un certain rang, soit p ¢ N et alors lim ntl
n—+o0o0 Qapn

= 0 donc

le rayon de la série entiere Y, anx™ vaut R = +o0o dans les deux cas (par le critére de D’ALEMBERT. En

n=0
—+o00
reportant dans ’équation, f donnée par f(x) = > anx™ est solution non nulle de (E).
n=0

b. Sip € N, et si f est la solution DSE de (E) avec ag = 1 (celle de la question a.), on a ap41 = 0 d’apres la
P
relation de récurrence (R). La méme relation montrer alors que Vn > p, a, = 0donc Vx € R, f(x) = Y apx®
k=0
et f est une fonction polynomiale de degré p (car ap # 0) de I’équation (E).

10.135 | Comme ((—1)“x“)n€N est bornée si et seulement si [x| < 1, le rayon de cette série est R = 1. On sait que

+o0 1 +o0 1
Vx €] —1;1 —1)"x" = —— donc lim 1" x" = -
=1l ) = s done i 55 (e = ]
Si > by, converge, on a convergence de Y. bpx™ pour x = 1 donc le rayon de R de cette série vérifie R > 1.
n=0 n=0
+oo
Supposons R = 1 et posons f(x) = Y byx™ pour x €]—1;1]. PosonsR,, = Y. by, onsaitque lim R, =0
n>=0 k=n+1 n—+oo

(reste d’une série convergente). En posant R_y = f(1), on a ¥n € N, b, = R,_1 — Ry

On effectue une transformation d’ABEL (c’est hors programme mais je ne vois pas comment faire sans) :

Vx € [0;1], f(x) — f(1) = —ibn(x“ S = lim Y bk —1).

n—-+oo k=0
n n n n
Or 3 br(x*=1)= > Reo1 —R)(x* = 1) = 3 Re_1(x* = 1) = 3 Ri(x* = 1). On change d’indice dans
k=0 k=0 k=0 k=0
n—1 n n—1
la premiére somme et f(x) — f(1) = > R(x® —1) = 3 Re(xk — 1) = Ry (1 —x™) — 3 Rye(xF — xKFT).
k=—1 k=0 k=0
—+oo
Il vient donc en passant & la limite quand n tend vers 4+o00 : f(x) — f(1) = — > R (x™ —x™*1)
n=0
Mo
Comme lim Ry =0, pour ¢ > 0, il existe ng € N tel que Vn > ng, |[Rn| < £ Orx = Y Ru(x™—x"F1) est
n—-o0 2 n=0
no
continue en 1 et vaut O en 1, Jou > 0, ¥x € [T—o; 1], | D Rn(x“—xn"’])‘ < £ Ainsi, Vn > ng, Vx € [1—a; 1] :
n=0 2

+o0 no +oo
169~ 1) = | 3 Ralem =] <] 32 Ralem x| 4| E ralem xmt)| < £ 48

n=0 n=0 n=no+1 2 2

+oo “+oo
car Vx € [0;1], 0 < x™ —x™*! < 1 donc ‘ > Ra(x™ —x“‘”)‘ <E Y (M) = Exmotl £
n=no+1 2 n=no+1 2 2

Par conséquent Ve > 0, Joe > 0, Vx € [1 — a; 1], [f(x) — f(1)] < ¢ et f est bien continue en 1.

n
10.136 | Comme ( X ) est bornée si et seulement si |x| < 1 par croissances comparées, le rayon de
neN

n+2
Xn +OO Xn ) .
go P vaut R = 1. On pose f(x) = Zo 3 32 PoUr € [-1;1]. En effet, la série converge si x €] — 1; 1]
n> n=
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_ n
d’apres le cours et Y (=) converge aussi par le critére spécial des séries alternées car ( 1 )
nso 3N +2 In+2/n>o0
est décroissante et tend vers 0. Par contre, la série »_ 1 diverge car 1 ~ L et que la série
n>0 3n + 2 3n + +oo 3n

harmonique diverge.
+oo X3 n+42

n=0 3n +

Posons g(x) = x?f(x3), alors g(x) = . Le rayon de cette série entiere est aussi 1, on sait donc que

g est dérivable sur | — 1;1] et que ¢'(x) = Z X3t = = X 3 Ainsi, puisque g(0) = 0, par le théoréme

fondamental de 'intégration, Vx €] — 1;1], f g'(t)dt = fox ] tdlff,,.

Or, comme (1 —X3) = (1 = X)(1 + X + X?), on peut décomposer X —__a 4 bX+cC aveca b,

des réels. En réduisant au méme dénominateur, en identifiant et en résolvant le systeme, on trouve sans

. X 1 X —1 . . N L
eine = + . Ainsi, pour x €] —1; 1], en faisant apparaitre des dérivées usuelles,
peine T2y = S X T30 L X+ D) pour x €] [ pp v
X 1 t—1 ) 1 (*_at 1 x@2t+1)dt 1 at
= + dt = - = 4+ - =/ - —=~ . En mettant
9(x) fo (3(1—t) 31+ t+t%) 3Jo1—t 6do e+t 2Jo 14ttt

1 _ 2 @3

1+t+t2_\f1 (2t+1)2’
V3
2t+1>

V3

sous forme canonique, on a 'expression de g(x) & l’aide des fonctions usuelles

Arctan (

o(x) = [7 1n(13— t) Jrln(l —|—6t ) 7 K = n (1(‘]*‘27‘*‘)") 7§ Arctan (

car Arctan (%) = % On peut maintenant revenir & I’expression de f(x).

)fn

3 18

Six=0, f(x) = % Si x # 0, soit ¢/x I'antécédent de x par la bijection y + y3 de ] — 1;1[ dans | — 1;1[, alors

1 sy 1+ Vx4 (3%)° V3 29X +1 Van
A = e (Ca ) s e (U0 +

10.137 Soit T €]0;1], alors (nant™)nen est bornée puisque (nan)n>o tend vers 0. Le rayon de convergence R de

f(x) =

> anx™ vérifie donc R > 1. Soit £ > 0, il existe un rang ng tel que Vn > ng, [nany| < % Par conséquent, si
n=0
no—1 no—1 +o0 "
n = ng et x €]0; 1], il vient ‘f(x | = ‘ Z anx™+ Z anx ‘ < Y Janx™+ £ > X, On en déduit que
n=ng n=0 2 n=no, "
no—1 no— TL no—1 no—1 n
[f(x)] < X Jan|x™—£ Z + £ Z " De plus, comme ¢ : x — S Janx™ =& > X~ est continue
n=0 2 n=1 N Z n=1 n=0 2 n=1 N

en 1, elle est bornée et on a ¢(x) =o(In(1— x)) 1l existe donc ny = ngp tel que Vn = nq, |o(x)| < §|ln(l—x)|.

70
En combinant ces deux renseignements, vn > ny, |f(x)‘ < g In(1 —x)| et on a bien f(x) = o(In(1 —x)).
_ (=n"

S+
f(x) = Arctan(x) (rayon de convergence 1) est bornée donc on a bien f(x) < o(ln(1 —x)).

Soit la suite (an)nen définie par azn = 0 et azn41 Alors (nay) ne tend pas vers 0 alors que

Si on impose que tous les a, sont positifs, il suffit de prendre a, = 1 §in est une puissance de 2 et
n
n

2
an = 0 sinon, alors la série entiere est Y, % dont le rayon vaut 1 par croissance comparée. En notant

n>0
+oo 2™
flx)= > Xz—n, on a convergence normale sur [—1; 1] donc f est continue sur [—1; 1] donc bornée au voisinage
n=0

de 1 ce qui garantit que f(x) = o(In(1 —x)).

Conclusion : si, au voisinage de 17, f(x) = o(In(1 —x)), on ne peut pas conclure que (nay) tend vers 0.
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10.138 ] e Avec cette hypothese Y |an|R™ converge, la série entiére Y anx™ de rayon R converge normalement sur

[—R; R] car en posant un(x) = anx™, on a |[un|[oe,[—r;r] = |an|R™. Comme toutes les u, sont continues sur
[—R; R], la somme f de cette série est continue sur [—R; R] donc a fortiori elle est continue en R.

e La fonction f est prolongeable par continuité (faire un DL) en 0 en posant f(0) = —2, elle est continue et
strictement négative sur | — 1;1[. On a f(t) > In(1 —t) or In est intégrable sur ]0; 1] donc t — In(1 —t) lest

sur [0; 1[. De méme f(t) ~ In(141t) or In est intégrable sur ]0;1] donc t — In(1 4 t) Pest sur | — 1;0]. Ainsi

f est intégrable sur | — 1;1[. Ensuite, on constate que f(t) = fZAr%h(t) sit# 0et f(0) = —2 donc f est
+oo 2n
développable en série entiere en Vt €] — 1;1], f(t) = -2 5, £ —.
. o . 1o y2ndd .
Soit F la primitive de f qui s’annule en 0, on a Vt €] — 1;1[, F(t) = =2 > ————. L’intégrale a calculer
n=0 (Zn + ])
+oo 1
vaut Um F(t)— lm F(t) =2 Um F(t) = —4 ) ——— (par imparité de F et convergence normale sur
t—1— t——1+ t—1- n=0 (ZTL—i-])

1 2

[—1;1] de la série associée). Alors f : f(t)dt = —“7.

_ n,n
10.139 | Par croissance comparée, la suite (ﬁ) . est bornée si et seulement si t € [—1;1] donc le rayon
nz

V14 n?

de convergence de la série entiere > u, vaut R = 1. Par théoréme, on a donc convergence normale sur tout
n>0

segment inclus dans | — 1; 1] donc en particulier sur tout segment de [0; 1[. La somme f est donc de classe C*°
puisque la somme d’une série entiere. (vn)n>o est clairement alternée et la suite |vn| est décroissante donc

>~ vn converge par le CSSA. De plus, |vn| = f1 )™ ] f] thdt= —— 1~ Lz

n>0 0 \/1+n2 \/1+n2 0 (Mm+1)y/1+n2ten

donc la série Y vy, converge méme absolument. Exercice trop facile, ce ne doit pas étre le bon énoncé.
n>0

10.140] On sait que > bnpx™ converge absolument pour x €] — R;R[. Mais il n’y pas convergence normale ni

n>0
uniforme de > u, en général sur | — R;R[ si up : x — byx™ (exemple de la série géométrique de rayon
n>0
R =1). Par contre, il y a convergence normale de > uy, sur tout segment inclus dans | — R; R[.

n=0
Soit n > 1 et Py, I'ensemble de toutes les partitions de [1;n] de sorte que pn = card (Py).

Sin=1, Py ={{{1}}} donc p; = 1.
Sin=2, P2 ={{{1,2}},{{1},{2}}} donc p2 = 2.
Sin =3, P3={{{1,2,3}}{{1,2}, {34}, {{1, 35, {2} }, {{2,3}, {1} }, {{1}, {2}, {3}}} donc p3 = 5.

Pour n > 1, Pryq = O:PM],J- avec Pry1j = {{Un,...,Up} € Pryr |card (W) =j+1sin+1 € W)

j=0
En effet, I’élément n + 1 appartenant a [1;n + 1], il appartient & une seule partie U; (avec i € [[1;p]) de

la partition {Uj,...,Up} de [1;n + 1] et le cardinal de U; est au moins égal & 1 et au maximum égal a
n+ 1 donc card (U;) =j + 1 avec j € [0;n]. Cette réunion est disjointe donc {Pny1,0, -, Prnt1,n} €st une

n
partition de Pr41 (mise en abime) donc pny1 = ) card (Pny1j).
=0

Pour j € [[0;n — 1] et pour construire un élément de Pr41 j, protocole de choix :

n
e on choisit les j éléments qui vont étre avec n + 1 dans la partie U; de la partition : <> choix.
)
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eilreste n+1— (j+ 1) =n —j entiers dans [1;n + 1] \ U, qu’il faut partitionner : on peut le faire

de pn—j facons par construction (seul le nombre de termes & partitionner compte).
n

j
Prsin = {{[1;n + 1]}} donc card (Pryy ) =1= <:)‘po. Alors, Vj € [0;n], card (Pni1j) = <?)‘pn)~.

Par conséquent, card (Pny1j) = < )pn_]-. C’est aussi vrai pour j = n par convention car pp = 1 et

. - I no(n no/n
Ainsi, pour tout n > 1, il vient pny1 = Y card (Pnyi1,j) = Y (.)pn_j = > <k>pk en posant k = n — j.
j=0 j=0 \J k=0

O n
On a méme p; =1= <O>p0 par convention d’olt : Vn € N, ppp1 = > (T]z)pk.

3 3 B
Onapo=p1 =1,p2=2p3 =05 ps=15= 3 <k>Pk = po + 3p1 + 3p2 + p3. On constate que
k=0

n
0 < pn < nl pour n € [0;4]. Soit n > 2 tel que Vk € [[0;n], 0 < px < k!, alors pny1 = >, (n)pk donc
k=0

n n +oo
0< pngp1 < 30 <n)k!n! Y Loy Leenl<(m+1)care~2,7<n+1.
k=0 \k K=o (N —X)! K=o K!

Par principe de récurrence forte, on en déduit que Vn > 0, 0 < pn < n!, c’est-a-dire que 0 < ]:TT; < 1. Comme

le rayon de convergence de la série entiere > x™ est égal & 1, par comparaison, on trouve R > 1.
n>0
+o0 +oo
Yx €11, f'(x) = > (—p”—wlan = > p“%]x“ apres changement d’indice. Ainsi, avec la relation
n=1 \n — . —0 N
+oo

n
de récurrence trouvée ci-dessus, ceci se transforme en f'(x) = > ( %‘ X ﬁ)x“. Par produit
n=0 n-—K)
k
de CAUCHY, puisque le rayon de Y %‘xk est au moins égal & 1 et que celui de ’li—' vaut +o0o, on a
nxo K k>0 <

Vx €] — 1;1], /(x) = e*f(x). On integre classiquement, I\ € R, Vx €] — 1;1], f(x) = Ae . Or £(0) = po =1

donc A = 1. Par conséquent Vx €] —1;1[, f(x) = e ~'. Puisque la fonction f est développable en série entiere
e

400 1c(n) (0) +o00
(au moins sur | —1; 1[ mais certainement sur R), on sait que Vx €]1;1[, f(x) = >} —=x" = }_ L‘}x” ce
n=0 n. —o N

qui donne, en identifiant les coefficients de cette série entitre : ¥n € N, py = (™) (0).

10.141 | L’ensemble des n! permutations de [[1;n] se partitionne selon le nombre de points fixes. Notons Dy k le
n
nombre de permutations de [1;n] avec exactement k points fixes. Alors n! = »_ Dy j. Or pour avoir une
j=0
n
permutation de [[1;n] avec j points fixes, il faut d’abord choisir ces j points fixes : () possibilités ; puis
construire pour les n — j entiers restants une permutation sans nouveau point fixe : Dy, _; possibilités.

. a1z . n no/n
Par “indépendance” de ces choix, on a donc Dy ; = (.)Dn_j donc nl = (
)

)Dn_j ce qui donne bien

j=0 \J
no/n
> <k>Dk =n! en effectuant le changement d’indice k =n —j.
k=0
Comme D,, <n!,onad < D—T" < 1 et le rayon de convergence de > x™ vaut 1. On sait qu’alors on a R > 1.
n. n>0
+00 n +oo +oo n +oo n
D 1 D 1 n n
Vx €] = 151 eXS(x):(Z L)(z —“x“) -3 (Zix—k»c“: ) 7(2 ( )Dk)x
’ n=o nt/\ = n! n=o \k=o (n—Kk) K n=o 1! \(=o \k
+oo
par produit de CAUCHY. Ainsi e*S(x) = x™ = —— d’apres le calcul combinatoire précédent et on
duit de C Ainsi e*$ n 11 d’apres le calcul binatoi scédent et
n=0 - X
—X
conclut que Vx €] —1;1], S(x) = ]e . Par conséquent m? S(x) = 400 donc R = 1.
— X x—1-
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+oo (_])nxn +oo +oo n (_])k +oo D
Par produit de CAucHY : S(x) = ( > 7')( > x“) = > (Z ' )x“ = > —%x" pour
n=o T n=0 n=o0 ‘k=0 K n=o M
n (_1\k
x €] — 1;1[. Par unicité des coefficients : d, =n! > (=1) donc lim dn =1,
=0 k! n—+oo nl e
1) 1442 : - :
10.142 ) Posons fy : t — 5 , alors comme 0 < 5 < 1sit € [0;1] la suite de fonctions (fn)n>o0

converge simplement vers la fonction nulle sur [0;1] et on a la domination |[f| < 1 ot — 1 est intégrable

sur [0; 1[. Par le théoréme de convergence dominée, lim a, = 0.
n—-+oo
142 ! 1 . . .
Vt e [0;1],ona0<t< —Lt+ donc f thdt = —— < an. Par conséquent, la série Y a, diverge par
2 0 n+41 n>0
RIEMANN et R < 1. Par le CSSA, > (—1)"an converge d’apres ce qui précede donc R > 1. Ainsi : R=1.
n=0

L’intervalle de convergence est [—1; 1] comme on vient de le voir.

On peut continuer I'exercice en exprimant, pour x €] —1;1[, f(x) = > anx™ sous forme d’une seule intégrale
n>0
pour le calculer explicitement et en profiter pour avoir f(—1) ; en effet :

2\
Pour x €] —1;1[, la convergence de la série de fonctions un(t) = x“(%) est normale sur [0;1] car

1 /o0 2y\n 1
[lun|loo = |x|™ donc f(x) = f ( > (M) )dt = fo Lz (série géométrique). Six €] — 1;0],

0\ =H 2 2 —x—xt
2 ! 1 2 X ! 2 X
9= o= [ st (L[5 )] = 2 setan (L [53)
2=x 0 14 42 x(x —2) x—2 0 x(x — 2) x—2
x—2
o
Le critére spécial des séries alternées permet de majorer : ‘ > akxk‘ < anp|x|™ < angg. Ainsi,
k=n-+1

avec les notations habituelles : |[Rn|[oo,[—1;0) < @ng1. Or on sait que lim an = 0 donc on a convergence
’ n—+o00

uniforme de la série entiére sur [—1;0]. Alors f est continue sur [—1;0] :

“+ o0
(=1)= 3 (-)an = Um i(x) = ;T car Arctan (\iﬁ) =z

n=0

2
10.143 | Posons u, = %, par croissance comparée, iy, = O (iz) donc Y u, converge. D’ ALEMBERT
o \n

n=0

+oo
montre que le rayon de > (2n?+3n+1)x™ vaut R = 1. Posons donc Vx €] —1;1[, f(x) = > (2n? +3n-+1)x™.
n=0 n=0

+oo +o0
On écrit 2n? +3n+1=2(n+2)(n+1) —3(n+1) pour avoir f(x) =2 >, (n+2)(n+1)x" =3 3 (n+1)x"
n=0 n=0

1 I —+o00
done f(x) =2(71-) = 3(7) = oty - 2y = A Eafin, 3w =16(1) =10
onef) =2075) TR T T G T (s i 2w =5f(5) =10

n . o\ n .
10.144) Posons u, = n(=1", alors % < un < n et les séries entieres Y. X~ et Y nx™ ont classiquement pour

n>1 n n>0

rayon 1 donc le rayon de convergence de > n(=D"x" est R = 1 par encadrement.
n=>0

De plus, comme (un)n>o n'est pas bornée, l'intervalle de convergence est | — 1;1[.

o0 XZn-H

400 n ~+o0 +
En séparant termes pairs et impairs, on a Vx €] — 1;1[, S n(=D"x™ = 3 2™ + .
n=0 n=0 n=0 n+1

“+oo “+oo
Comme Vx €] — 1;1[, Y x"™ = —1_ en dérivant et en multipliant par x : S nx™ = —%*— donc
n=0 -x n=0

1 (1—x)*
+§OO nn = — 2¢O sait Vx €] - 1; +§OO D +§OO L= -
= 5 que Vx €] —1;1], x™ =1n(1+x) et que x" = —1In(1—x).
= =) o Zin

+oo
En sommant : Vx €]—1;1[, 2 Y
n=0

2n+1 +oo  2n+1
T n(14) —Tn(1—x) d 1y (ﬂ) = Argth (x)).
o n(1+x)—In(1—x) oncnz::o 7 =2 ( rgth (x))
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+oo n 2
Ainsi, ¥x €] — 1;1[, 3 nCD = 25 4 Ty (@)

n=o0 (1 fxz) 2 1—x
teo (—1)2
10.145 | II est bien connu que Vx €] — 1;1], 1 - 1—-x)"1"2=3 ( / )(])“x“. Or, classiquement en
V1—x n—o\ T
—1/2 —1/2)(=3/2)---(—1/2 — 1 2n)!
introduisant les termes pairs manquants / = (=1/2)(=3/2) - (Z1/2 = n+1) =(-n" (2n) 5 donc
n n! 4™ (nl)
1 IRV = 03193l
Vx €] —1;1], =(1-x)"1"2=3 2 . On dérive et on obtient :
T—x n=04 ( )
-1 +o00 [t
7 ] —3/2 _ 1 _ n(2n)x" 1 _ 2n+1)2n+1))k
vx €] — 11 1o - =1 =3 B done 1y =
€)=l 0= = gl = 8RR dene -l = E R

n

+oo n +oo
i 1 (2n+1)(2n)x n\ x
ul se transforme en ———~ = — = 2 1 —.
a (1—x)>2 nZ—:O 4™ (nh)? nz::O( D n /4"

. 1 1 1 1 0 (X @)
Par produit de CAUCHY, Vx €] — 1;1], g —x)3/z =15 X i = 0 —x)3/2 = ('z:ox )( 04j(j')2)
i= j= .

. =& () &7 (2k\\ n . . . L
qui vaut Y ( > o= ' 2)x“ = > ( > % )x . En identifiant (les rayons sont strictement positifs)
n=0 “k=0 4" (k!) n=o0 ‘k=04" \ Kk

2k 2 1/2
les coefficients dans ces deux formes de (1 —x)™3/2, on trouve bien : ¥n € N, Z . aF (k) = TZI: ( n).
n

10.146 | La fonction g : t — M est continue sur | — o0o;0[U]0; 1{U]1; +00[ avec un prolongement par

1 —
continuité en 0 avec g(0) = —1. Ainsi f est déja définie sur | — oo; 1[. De plus fo Mdt converge car
o(t) =0 (h) De méme flx Mdt converge si x > 1. Par conséquent, f est définie sur R.
— too n—1
Soit x €] — 1;1[, alors f(x) = fo m(] Yap = —f Z —dt et en posant gn(t) = L—, on a
n

llgnloo,jo:x] < [X|™7" pour n > 1 avec Z [x|™ qui converge donc la série de fonctions > gn converge
n>1 nxl

Tl
normalement sur le segment [0;x] et on a donc f(x) = — Z f gn(t)dt = — E %5 et f est DSE.

Le rayon de convergence est R = 1 en utilisant le critere de D’ ALEMBERT par exernple.
On reprendre 1’étude sur l'intervalle [0; 1] mais on n’a plus convergence normale, par contre les fonctions gn

1
sont intégrables sur [0; 1] avec g continue sur [0; 1] et f . lgn(y)|dy = —5 donc la série numérique ) | f [gn]
T\. n-xl

+too 1 2
converge. Ainsi, d’aprés le TITT, on a f(1) = — ) fo gn = —%.
n=1

10.147] Soit n > 1, pour faire une partition de [1;n + 1], il faut choisir la partie U, (p est quelconque) de
cette partition qui contient n 4+ 1. On fixe donc j € [0;n] tel que card (Up) = j + 1 et on choisit j entiers

dans [[1;n] pour tenir compagnie & n + 1 dans U, : <n> choix. Ensuite, il reste n+1—-(G+1) =n —j
)
entiers dans [1;n 4+ 1] \ U, qu'il faut partitionner : on peut le faire de pn_j fagons par construction. Ainsi,

N /n N /n . R 0 .
Pt = 2 | . Pn—j = > K Pk en posant k =n —j. On a méme p; =1 = 0 Po par convention.
j=0 \) k=0

On a po = p1 =1, p2 = 2 ("deux singletons” ou ”paire”), p3 = 5 ("trois singletons”, 3 fois ”singleton +
paire” et ”triplet”), psa = 15. Ainsi 0 < pn < n! pour n € [0;4]. Soit n > 4 tel que Vk € [0;n], 0 < pr < k!

n n
alors ppi1 = Y. Cl) pk donc 0 < pnt1 < D (k)k' =nl! Z N ey k)‘ n! Z =en!l<(n+1)L

k=0 k=0
Par récurrence forte : Vn > 0, 0 < pn < n!. Comme le rayon de > x™ est egal a 1, d’apres le cours : R > 1.
n>0
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+oo

“+o0
Vx €)1, F(x) = > —Pn_xn1 = 5 p”%]x“ qui se transforme avec la relation de récurrence précédente
—0 N

n=1 (Tl - ])'
+oo n 1
en f'(x) = > ( p—"‘ X ﬁ)x". Par produit de CAUCHY : Vx €] — 1;1], f/(x) = e*f(x). On integre :
n=o ‘=0 k!~ (n—¥k)!

-1

A€ R, Vx €] —1;1[, f(x) = Ae¢". Or £(0) = po = 1 donc A = 1 Par conséquent Wx gl —1;1], f(x) =e®
e

n
10.148 | Comme (3 XJr 2) est bornée si et seulement si |x| < 1 par croissance comparée, le rayon de cette série
n neN

n

+oo X
est R = 1. Soit f(x) =
() Eoanrz

pour x = 1 d’aprés RIEMANN).

pour x € [—1;1] (il y a convergence pour x = —1 par CSSA et divergence

+o0  3n42
Posons g(x) = x*f(x3), alors g(x) = ;‘ 3 Le rayon de cette série entiere est aussi 1, on sait donc que
=0 oM
n oo
g est dérivable sur | — 1;1[ et que g'(x) = Y. x*"*! = 1%
n=0 - X

X
On peut continuer cette méthode en intégrant & partir de g(x) = fo g’(t)dt puisque g(0) = 0.

n 1
Autre méthode : on peut aussi écrire que pour x €] — 1;1[, on a 3 X+2 = fo x™ 31 dt donc il vient
n

+o0 1 +o0 1
f(x) = Zo fo M3t e = Zo fo un(t)dt en posant un(t) = x™t3"*1. La série de fonctions Y un
n= n=

n=0
converge normalement sur [0;1] car |[un]|so,0;1] = [x|™ et > [x|™ converge (série géométrique). Comme on
n>0
PERN . . . 1 1o 3 1 1 tdt
intégre sur un segment, on peut intervertir pour avoir f(x) = fo SoxmM e = fo P dt.
n=0 -Xx

Six =0, f(x) = 1 Six 0, soit +v/3x I'antécédent de x par la bijection y +— y3 sur | — 1;1[, on effectue le
2

X _
changement u = {/xt : f(x) = (3]x)2 fo h ]u_dﬁ3. Or . —XX3 =30 1—X) +3(] +X—i]-XZ) par identification
1 X _du 1 VX (2u+ 1)du 1 X du
ar exemple donc f(x) = e — —.
bat exenmp () 3(\3/{)2fo T—u 6(\3/»2)2fo 1+ utu? z(%/;)zfo 1+t 2
/%
On obtient f(x) = o \31/;)2 l—z (1 —u) +In(1+u+u?)—2v3Arctan (%) car on a classiquement
2

1 2 V3 .
———— = “=——5———7 en mettant sous forme canonique.
T+u+u \/§]+(2u+1)

V3
Par récurrence immédiate, puisque up =1 > 0 et que a > 0, b > 0, on montre que Vn € N, u, > 0
ce qui justifie bien la définition de la suite (vn)nen. Par définition de v;,, on peut simplifier vi, 41 — vy :
Vil —vn = n((n+1)°" %) —n(nP~%,) = (b—a) In (1 + %) +1n (uﬁi:]) Ainsi, d’aprés 'hypothese
faite Sur (un)ns0, Vns1 —vn = (b—a) ln (1 +%) +ln (E—H) = (b—a)ln (1 +%) +ln (1 +%) ~In (1 +%).
On effectue un développement limité a l'ordre 2 et vy 41 —vp = @ + % - % +0 (#) = 0 (ﬁ) . Ainsi,

par comparaison et RIEMANN, la série > (vn41 —vn) converge. La dualité suite-série nous montre alors que
n=>0
(Vn)n>o converge, disons vers { € R. Par continuité de exp, comme n
k

converge donc vers k = et > 0. Alors un, ~ —p—g - Ainsi, > upn converge si et seulement si b —a > 1 par
toon n=0
>

b— b—a

“un = e¥n, la suite (N~ %un)n>o0

équivalence et critere de RIEMANN.
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Six #£ 0,

n+1 b—a

u X kn X N . P L .

ntl ~ |l ~ |x| d’aprés ce qui précede. Ainsi, si |x| > 1, > upx™ diverge

Uunx™ oo k(n +1)°79 400 n>o0
grossierement donc R < 1 et, si |x| < 1, Y. unx™ converge absolument d’aprés D’ALEMBERT donc R > 1.

n=0

Par conséquent, R = 1. Comme Y u, converge et que un > 0. Les séries > un et > (—=1)™u, convergent
n>0 n=0 n>0

+oo
absolument. Ainsi, le domaine de définition de f est I=[—-1;1]. On a f(1) = > un.

n=0
Pour n > 0, comme (n +b)unt1 — (n+ a)uy, =0 < nun41 — Nuy = au, — bun 4 par hypothese, on a la
relation (n+1)un41 —NUn = Un41 + aun —bunt1 = (1 —b)uny1 +auy (R). Comme la suite (nun )n>o tend

vers 0 car nuy o b%a“ avec b —a + 1 > 0, la dualité suite-série nous montre que Y. (n+ 1)upq —nuy,

con n>0
+oo
converge et que ». (n+ T)upq41 — nun, = —0.up = 0. Ainsi, en sommant la relation (R) pour n € N, on
n=0
obtient (1 —b)(f(1) — uo) + af(1) = 0. Par conséquent, il vient f(1) = ﬁ car up = 1.
—a
10.150 | Comme la suite (sin (%)) o ne tend vers 0 car par exemple Vn € N, sin (@) = ?, la série
nz
> sin (n—”) diverge donc le rayon R de > sin (M)x“ vérifie R < 1 car cette série diverge pour x = 1.
n>0 3 n>0 3
Mais comme | sin (n?”)‘ < Tet que lerayon de > x™ vaut 1, on a aussi R > 1 d’apres le cours. Ainsi R = 1.
n=0
—+o0 —+o00 inm —+o00 im
Soit x €] — 1;1[, on a Y sin (BF)x™ = Im( d>e3 x”) = Im( > (—jzx)“) car e 3 = —j?. Ainsi, il
n=0 3 n=0 n=0
. +oo
vient Im (%) = Im( - L +.JZX 2) = V3x > = > sin (BE)x™
14j§%% T+ix+j % +x 20 —=x+x7) =0 3

1+¢2 - - :
5| < 1sit e [0;1] la suite de fonctions (fn)n>o

2 n
10.151] a. Posons fy, : t — <1";t> , alors comme 0 <

converge simplement vers la fonction nulle sur [0;1] et on a la domination |f| < 1 ol t — 1 est intégrable

. 1
I_I)TOOL[O fa(t)dt = 0.

sur [0;1[. Par le théoréme de convergence dominée, HT an =
n——+oo n

2 2
b. Puisque Vt € [0;1], Vn € N, (]%)n > (]%)HH, par croissance de l'intégrale, on a an, > any1 donc

(an)nen est décroissante et tend vers 0. Par le critére spécial des séries alternées, > (—1)"a, converge.
n>0

1
(car (1 —t)? > 0) donc fo thdt = —— < a,. Ainsi, > an diverge par

c. Vte[0;1],0<t< It
n+41 n>0

2

comparaison & la série harmonique et R < 1. D’apres b., comme ) (—1)™a,, converge, R > 1. Ainsi, R =1.
n=0

2\ N
d. Pour x €]—1;1[, soit uy : t — x™ (]%) pour tout entier n € N. Lasérie Y uy converge normalement
n=0
sur [0;1] car [Jun||oo,j0;1) = [x|™ (valeur maximale en t = 1) donc, comme on integre sur le segment [0;1], on
’x(] + tz)‘ o

)

1 7t +oo a1
peut intervertir et avoir f(x) = L/; ( > un(t)) dt = > fo un (t)dt ce qui donne, comme
n=0 n=0

VX (42" ! 1 T oat e

f(x) :fo <n§() (f) )dt: j;) wdt:j‘o Py (série géométrique).
2

Traitons trois cas :

e Six=0,f(0)=ap=1.
1

1
e Six€]—1;0] f(x) = =2 1 dtz[#}\mtan< Lt)} car —*— > 0 ce
x(x—Z x—2 0 x—2
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: _ 2 X
qui donne f(x) = D) Arctan ( /X = 2).

2 ' 1 Yy
e Six €|o;1], f(x) = dt:{ n = ] car —*— > 0 ce qui
01 () 2—xJo X 5 \/X(z_x) R ER 0 2—x
1T——1t 1 t
2—x 2—x
2
144/—
1 2—x
donne f(x) = In .
Vx2-x) \;_ [z
2—x
e. Pour x € [—1;0], la série Y anx™ est alternée car an, > 0 et la suite (an|x|™)nen est décroissante et
n=0
+oo
tend vers 0 d’aprés a. donc, par le critere spécial des séries alternées, en notant Ry (x) = > axx¥, on a
k=n+1
Rn(x)| < ant1x|™" < angr done [[Rn oo, —1,0] < @n41. Comme lim an = 0, on a convergence uniforme

n—-+o0
de > un sur [—1;0] en notant un : x — anx™. Comme les un sont continues sur [—1;0], la fonction f est
n=0
1S T 1 s
continue sur [—1;0|, ce qui montre que f(—1) = —1)"an, = Um f(x) = —== car Arctan (—) ==
150, ce q aue f(=1) = 5% (~1)"an () = 35 v

n=0 x——1+ 6
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