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n n
Comme Y IX)(Zn ) e 2"? si x # 0, par croissances comparées, la suite (n(n n 1X) s 1))n>1 est

| donc le rayon de convergence de cette série entiére vaut R = 1. Si

bornée si et seulement si x € [—

1:1
11 n

=+ (i) d X bsol t RIEMANN. Ainsi
X "t 1)(Zn Y 3 ) donc ngl nF ) Zn 1) converge absolument par insi,

Pensemble de définition de f est I = [—1;1].

] z 7172 .
e d 1 t 1 == .
n(n+1)(2n+1) se décompose en éléments simples n(n+1)(2n+1) n+n—|—1 +2n—|—1

En réduisant au méme dénominateur, a(n +1)(2n+1) +bn(2n+1) + ecn(n+1) = 1 pour n € N ce qui

La fraction 1 a, _b_ ¢

donne, par identification, 2a +2b4+¢ =3a+b+c=a—1=0donca =1, b =1 et ¢ = —4. Ainsi,

Vn € N¥ m = % + nlrl - Znil' Pour tout x €] — 1;1[, comme |x| < R et que les trois
400 400 " +oo K™
séries convergent, f(x .
& (x) = nz1 n(n—|—1)(2n—|—1) HZ1 n 21 n+1
400
On reconnait des développements en série entiere classiques du cours : Vx €] —T1;1[, In(1 —x) = — x et
n=1 N

vx €]0; 1], E % 7 ; (*ﬁ)jrnr] - 2\]/;(111(1 +VX) —n(1 = %) —2\/§) _ Argth (V) = Vx

00 n 1) (/=X )2 rctan X -
B e S
() %),

e Six €]0;1], f(x) = —1n(1 —x)—l—i(—ln(] —x)—x) —L(l
e Sixe]—1;0[ f(x) = —1n(1 —x)—l—l(—ln(] —x)—x) - \/AL—X(Arctan(\/jx)—\/jx).

o S
o X

X

=

X

Xn ] ] 1
1= ~ et
nn+1)2n+1)’ [Fun oo, (=151 n(n+1)(2n +1) +oo 2n° € n§1 o3 converge

De plus, en notant u, (x) =

par RIEMANN donc Y uy converge normalement sur [—1;1] d’ou la continuité de f sur le segment [—1;1].
n=0
Pour x €]0;1[, en écrivant 1 — x = (1 — /x)(1 + v/x) et avec les propriétés de In, on trouve la nouvelle
2 _ 2
(1 +vx) (1 + V%) — (=)
x x

expression f(x) =3 — In(1 — y/x). Puisque lim y?In(y) = 0, et comme
y—0

on sait que f(1) = th f(x), on trouve f(1) = 3 — 41n(2) ~ 0,23. Pour obtenir cette valeur, en notant
x—1-
Z 1 on aurait pu transformer S, = i S S i 1y i L—Zli 1 ce qui
=K S kk+1)2k+1) Sk S kAT 2k +1
2n+1 1 n 1
donne en rajoutant et en enlevant les termes pairs, S,y = Hp + Hpyp1 — 1 — 4( > P ) Z —k
k=1 k=1
Sn =3 +4H, —4Ho, + ? - Zni : et on termine en sachant que Hy = In(n) +v 4+ o(1).
De méme, f(—1) = lim f(x) =—-1—-n+4=3— 7~ —0,14 avec la relation ci-dessus.

x——1+



a. Comme liT In(n) = +o0, lasériec > In(n) diverge donc R < 1 car Y In(n)x™ diverge pour x = 1. Si
n—+oo

n>1 n>1
|x| < a <1, par croissances comparées, on a In(n)x" = o(a™) et la série géométrique > a™ converge donc
Rl n>l
> In(n)x™ converge par comparaison et R > 1. Ainsi R = 1.
n>1
12 In(2)x?
Comme Vn > 2, In(n) > In(2), pour x € [0;1], In(n)x™ > In(2)x™ donc S(x) = > In(2)x"™ = . en
n=2 -X
In(2)x? . . -
sommant. Comme lim ——=— = 400, on a par minoration la limite lim S(x) = +o0.
x—=1- 1 —x x—1-
Une preuve plus générale en se servant seulement du fait que ¥n > 1, In(n) > 0 et que > In(n) diverge :

n>l
toutes les x — In(n)x™ sont croissantes sur [0; 1] donc S est aussi croissante sur [0;1]. Par le théoreme de la

limite monotone, la fonction S admet donc une limite £ en 1~ qui est finie ou qui vaut +oo.

n
Posons Sy, : x — Y. In(k)x* les sommes partielles qui sont polynomiales donc continues. Comme S,, < S sur
k=1

[0; 1], lin% Sn(x) = Sn(1) < € (méme si cette limite est infinie). Or Sy (1) = Z In(k) donc liT Sn(1) = +oo.
xX—> n—+oo

Ainsi I'inégalité S (1) < ¢ montre que ¢ ne peut pas étre finie. Au final : 117}1 S(x) = +o0.

k41
b. Comme t — l est décroissante et continue sur R, on a les inégalités Vk > fk % < ]E (1) et
>2, % f ] dT . En sommant (1) pour k € [[1;n] et (2) pour k € [2;n]], on obtient I’encadrement
n
In(n+1) < Hy Z ]E In(n) + 1 par CHASLES. En multipliant par x™ pour x € [0;1] et en sommant

+oo +oo +oo
ces inégalités, on trouve Z Inn4+1)x" < Y Hox™ < > In(n)x™ + > x™. Or, par produit de CAUCHY,
n=1 n=1 n=1

n=1

“+o00 +oo +oo — —
Vx €] — 151, > Hpx"™ = ( > lx“) X ( > xn) = _In(1—x) = tn(1 X). Ce qui donne, puisque

n=1 n=1n n=0 1—x x—1
+oo _ _
> In(n+1)x™ = &, I’encadrement tn(1 1X) 7 1< S(x) < M Par théoréme d’encadrement,
= x x — —x x —
puisque n(=x) 1 xin(—x  In(l— X), nous avons établi que S(x) ~ (1 —x) X).

x—1 T—x1- x—=1 1- x—1 - x—1

Puisque la fonction sin est 1-lipschitzienne car |sin’| = |cos| < T,onaVn € N, Vx € R, [fn(x)| < |a|™|x].

Comme |a] < 1, la série > |a™||x| converge donc, par comparaison, > fn(x) converge absolument et la
n>0 n>0

série de fonctions Y f, converge simplement sur R. Ainsi F, est définie sur R.
n>0
(Hy) La série > f, converge simplement sur R vers Fyq.
n>0
(Hz) Toutes les fonctions f,, sont de classe C* sur R.

(H3) Pour p € N*, on a fgf)(x) = a"P sin (a”x—i—pﬂ) donc 1P est bornée sur R et Hfgf)HooR < |a™P

(on a méme égalité). Or la série géométrique Y |a|™P converge car |a| < 1, donc la série Y #P)
n=>0 n=0

converge normalement sur R.

Par un théoreme du cours, F, est de classe C* et Vp € N, Vx € R, F( ) (x) = Z aP sin (a x+p> )
n=0

+o0
On en déduit que FP'(0) = 3 a™ sin (p%) donc FP(0) = 0 si p est pair et, si p = 2k + 1, on trouve
n=0

+o00 T —1)*
2R (0) = § n@kD) i ((2k+ 1)%) = 3 (=1)kan@k+1) = (712)“1

n=0 n=0 1—a



D’aprés le cours, Fq est développable en série entiere sur R si et seulement si le reste intégral d’ordre k, a

savoir — f kF(k“)(t)dt7 tend vers 0 quand k tend vers +oo pour tout réel x. Or, par inégalité de

la moyenne,

x K1 x (k+1 ; K1
l,fo (x — t)ka1 + )(t)dt‘ < %‘ fo |x t|k|F + )( )|dt‘ Avec D'expression de F&F )(t) vue

(k1) = ) i = K1 1 : \
avant, et [Fq (1) = | 32 a™*Vsin (ant+ (k + 1)*)’ < Y Jam* ) = — L+ On arrive donc &
n=0 2 n=0 - |(1|
la majoration ‘l — t)kF(kH)(t)dt‘ < %‘ fx |x — t|kdt‘ = X[ car, x — t

Kl @ S = o (eF I — )
— x x kT K+
étant de signe constant sur [0;x], on a ‘ fo |x—t|kdt‘ = ‘ j;) (x—t)kdt’ = H— (ij_)] }0 = |lj|+1 . Par

‘k+1

croissances comparées, lim | =0, donc F4 est bien développable en série entiere sur R

k—+oo (k4 (T — [a[<FT)

. étant éeale trie de F v R T +o0 (_])pXZer]

et, étant égale & sa série de FOURIER, on a Vx € R, Fq(x) pZ::O e a2p+1)

) ) . oo /4o (L1)kgn(2kH1) 2k

Comme la fonction sin est développable en série entiére sur R, Fo(x) = > ( )
n=0 k=0 (2k +1)!

grace a ce qui précede.

(_1 )kan(Zk-H )XZk-H

(2k+1)! )(n,k)e N2
|a|n(2k+1)|x|2k+1 |a|n(2k+1)|x|2k+1 )

(n,k)e N2 (2k +1)! _k;N(neN (2k +1)!

‘2k+1 ‘2k+1

. E |X|2k+1
et que )
)! e (Zk+1)!

Or la famille ( est sommable car, par sommation par paquets, on a le calcul

‘2k+1
P < +o00 car si x # 0,

B I
=2 i

[x [x = sh(|x|]) < +oo. Ainsi, pour x € R, on peut

(2k+ 1)1 — ||2k+‘)+ (2k + 1
“+ o0

“+o00
développer en série entiere Fq(x) = —1 k( a“(Zk“)) X — )
PP ) kg()( ) nzzjo 2k + 1)1 & (2k+ 1)1 — o)

n Y EEN n .
a. Posons un, = n(="" alors 1 < un < n et les séries entieres Y. *— et > nx™ ont classiquement pour
n n>1 n n>0
rayon 1 donc le rayon de convergence de > n(=D"x" est R = 1 par encadrement.
n=0
De plus, comme (un)n>o n'est pas bornée, les séries > un et Y (—1)"un divergent grossierement et
n=0 n>0
I'intervalle de convergence de 3> n(=D"x™ est | — 1;1].
n>l

2k+1 +oo (—1)kX2k+1

. o oo ke 2n
b. En séparant termes pairs et impairs, on a Vx €] — 1;1[, > n(-! Z x4 Y X
n=0 n=0 2n + T

Comme Vx €] — 1;1[, > x"™ = ]1—, en dérivant et en multipliant par x, Z " = ﬁ donc
— — X — — X
“+oo

=, 2 2% 2 : (=nn!

> 2nx ™t = Wcarx €] — 1;1[. On sait que Vx €] — 1;1[, Y, ~~—~—x" = In(1 + x) et que
_ —X n=1 n

t© n . +too  2n+1

> X~ = —1n(1 —x). En sommant, on obtient Vx €] — 1;1[, 2 > % = In(1 +x) — In(1 — x) donc

n=1 M n=0 n+1

400 2141 o ,
x _1 (M) _ o o 1y n_zi 1 (lﬂ)
=31 = Argth (x)). Ainsi, V 11, S _ n -
n=o0 2n+1 2 n 1 —x ( rg (X)) msi, vx e] ) [) nzon X (] . )2 + T




xt —xt

a. Pour tout réel x, la fonction hy : t — e~ sh (xt) est continue sur R, et sh (xt) = % = O(elxIt)
oo

2 2 . .
donc e~*’sh (xt) = O(e Ut = O(e7t) car lim et FIXItt = 0 donc, par comparaison, la fonction
—+00 t—4oc0

2n+1

hy est intégrable sur R, . Par conséquent, la fonction F est bien définie sur R.
t X2n+1 J[271-{-1 >

Pl donc F ST 0)a f
— = t t Tt
P T onc F(x) fo (nZ::o n( )) avec an )l e

e La série de fonctions > f, converge simplement vers hy sur R} (on en vient).
n>0
e Les fonctions f,, et la fonction hy sont continues sur R .

-t

b. Vt >0, sh(xt) =

e Les fonctions f,, sont intégrables sur Ry car f;,(t ) = O( ] ) par croissances comparées.

+oo 2 —t?
e Posons I, = fo t2" et 4t en posant w: t > t2M et vt — ,eT, u et v sont de classe C' sur

R4, uw(0)v(0) = tEToo u(t)v(t) = 0 par croissances comparées donc, par intégration par parties, pour

+ + —t? 400
tout n > 1, I, = fo oou(t)\/(t)dt = nfo Fan—1,-t? g — nlp_1. Comme Iy = [_ 62 }0 = %7

, | . . .. .
par récurrence, VYn € N, I, = % On aurait aussi pu poser t = /u = @(u) avec ¢ bijection de classe

+
C! strictement croissante de R% dans R ce qui donne I, = %j; oou”e_uz du = w — “7'
+ 2n+1_ 2n+1 + 2n+1
Ainsi, f = [fn] = x| LSIge x| donc f ~ [fn] < it et la série
0 2(2n+1)! 22n41) x - x (n41) 0 (n+1)!
|x|?™ ! . .
-———— converge (série exponentielle).
Par le théoreme d’intégration terme a terme, on a donc l’intégrabilité de hy sur Ry (on le savait déja) et
tout le dével t ticre de F : Vx € R, F(x 3 2
E A S
surtout le développement en série entiere de X Z f p2 o 2T

On pouvait aussi dériver sous le signe somme, soit f: R x Ry — R définie par f(x,t) = e ~t’gh (xt), alors :
e Vt > 0, la fonction x + f(x,t) est de classe C' sur R.

o Vx € R, la fonction hy : t — f(x,t) est continue et intégrable sur Ry (on vient de le faire).

o Vx € R, la fonction t — gf (x,t) = te=t"ch (xt) est continue sur R;.

e Soit a > 0, on a la majoration Vx € [—a;a], Vt > 0, ’%(x, t)‘ < te’tzch(at) = @q(t) et
@a(t) = o(e‘t) comme avant donc la fonction @ est intégrable sur R, .

+
On en déduit que F est de classe C! sur Ret Vx € R, F/(x) = fo “te~tch (xt)dt. On pose u(t) = ch (xt) et

_ 42

t

v(t) = —¢ 5 alors u et v sont C! sur Ry, u(0)v(0) = _]E et lim u(t)v(t) = 0 par croissances comparées
s . . +oo

donc, par intégration par parties, on a F/(x) = fo u(t)v/ (t)dt = +5 f h (xt)dt = % + %F(x).

1

Alinsi, F est la solution sur R de (E) : y' = P

+ %y qui vérifie la condition de CAUCHY F(0) = 0. Comme

XZ

2 x2 .
X XI est une primitive de x — % sur R, on sait d’apres le cours que yp : x — e 4 est un vecteur directeur

de la droite des solutions de 1’équation homogene (Eo) : y' = %y. Par méthode de variation de la constante,

x2 x —t?
on trouve par exemple comme solution particuliere de (E) la fonction yp : x %eT fo e 4 dt. Ainsi, il

7,[2

2
existe A € R tel que Vx € R, F(x) =yp + Ayo. Comme F(0) =0 =A, ¥x € R, F(x) =x — %eXT IOX e 4 dt.



On peut a partir de la retrouver un développement en série entiere de F par produit de CAUCHY car

2 +oo t ~+o0 n.2n +oo _1\ny2n +oo (_1\n,2n+1
e’Z: xn et f 4dt_fxno( 4nt' )dt:ngo(ﬁx%dt):n;)%
en intégrant terme & terme sur [0;x] inclus dans lintervalle ouvert de convergence R. Comme les séries
précédentes convergent absolument pour x € R, en notant a, = 4",3:! et by = m, par produit de

_ k., 2k+41 k 2n+1
CAUCHY, 2F(x) = nZO n 8 tn = kE_IO Gn kbl = 2130 4“1(‘3;1 z_kk)! i?k]!)(zﬁ N (éo élzli—)l <E>)X4“n! '

Par unicité du développement en série entiére deés lors que le rayon est strictement positif (et c’est le cas ici),

2 2n—-2
nl 1 & (=)E(m (=N ) 24t 2
on adone ¥n € N, 55 Bt = 3amnt 2 2k 7 Wk ) O 2 211 \k T 2m+1) m\’
2n+1)
n

n (k) _ \ne(n+1)
a. Comme f est de classe C® sur I, Vx € I, ¥n € N, f(x) = ka + fox (-t :' ©) dt par la

k=0 K
L . X (x — )M ()
formule de TAYLOR reste intégral. On constate que si x € [0; A[, comme fo ' > 0,o0n a
n!
nof(0) . f19(0) o . .
X < f(x) donc la série X est une série & termes positifs dont les sommes partielles sont
k=0 K k>0 K

majorées donc elle est convergente et on peut en déduire que son terme général tend vers 0, ce qui montre

£()
que lim (0)

k—+oo k!
_ \ng(n+1)
Sixe]l—A;0], ¥ () (t)dt’
0 n!
Comme f("*+2) > 0 f+1) et croissante donc Vt € [x;0], ™+ (1) < £ (0) ce qui montre que
‘fx (x — ) (1) dt’ < fo (t — )™ (0) dt — £+ (0) [(t —x)" ! }o _ (_X)n+1f(n+1)(o)'
0 n! x n! n! n+1 Ix (n+1)!
(k)
Mais comme —x > 0, d’apres (L), on a khT %(—x)k = 0 donc, par encadrement, on en déduit
—+00 .
X _ \np(n+1)
que lim (x —t)"f (t)
n—+oo J O n!

x¥ =0 (L). Traitons maintenant deux cas :

0 (+ _ (n+1)
_ f (t=x) f' M) ¢ car f*+1(t) > 0 par hypothese.
X n.

dt = 0 et, d’aprés le cours, f est égale & sa série de TAYLOR sur |—A;0].

Si x €]0;A[, on prend r tel que x < ¥ < A et, en posant t = xu = @(u) avec ¢ C' sur le segment

_ t)ne(n+1) 1 (x — ne(n+1) +1 pl
[0;1], on a fox (x—1) TI' () 4 — fo (x = xu) r]:' (DR X:U fo (1 — )™+ (xu) du.

_ n+1) 1
Comme f(™+1) est croissante car f(™*2) > 0, il vient fox (x ‘ () dt < fo (1—w)™ D (ru) du
n!

car Yu € [0;1], f™+D(xu) < fMHD(ru). Avec le méme calcul qu’avant avec r & la place de x, on a

fr (r— t)nf(n+1)(t) & — L

0 n! n!

1
fo (1 — W)™+ (ru)du donc on obtient la majoration suivante :

t< n+1

fx (X_t)“f(n+1)(t)d Xn+1 fr (T—t)nf(nJr])(t) 4t — Xn+1 ( ( ) i f k)( ) > < Xn+1f(r).

0 n! T 0 nl nt1 o K it
X+ < (=™ ) —
Comme lim = ST =0car 0 <x<r,ona donc lim dt = 0 ce qui garantit
n—4oo n—4o0J0 n!

que f est égale a sa série de TAYLOR sur ]0; A[.

Avec ces deux cas, f est égale a sa série de TAYLOR sur | — A; A[, donc f est développable en série entiere sur
] — A;A[ : on dit que f est absolument monotone sur | — A; A quand Vn € N, (™ >0 sur | — A; A[.

b Comme f est de classe C*™ sur I et exp 'est sur R, par composition, g est de classe C*> sur L.



Initialisation : g = e’ est positive sur I, g’ = ' x e’ donc g’ est positive sur I car ' I'est et g”” = (f/+(')%) x ef
est aussi positive sur I car f” et (f')? le sont.

Hérédité : soit n > 1 tel que la fonction g(®) est positive sur I pour tout entier k € [0;n]], alors, par la formule

de LIz, on a g = (¢/)(M) = (1/xe")( = (f'x )™ = 3° @ (1) g = 3 (E) (it Dg(n i,
k=0 k=0

Or, par hypothése sur f et hypothese de récurrence, pour tout k € [[0;n]), les fonctions f(*+1) et g(m=¥) sont

n
positives sur I, donc par produit, multiplication par (k) > 0 et somme, la fonction g™ 1) est positive sur I.

On a bien établi par récurrence forte que ¥n € N, g(™) est positive sur I.
Ainsi, les hypotheses de la question a. sont vérifiées pour g qui est donc développable en série entiere sur 1.

c. Pour x € } — %;%{, tan(x) = Po(tan(x)) et tan’(x) = 1+ tan?(x) = Py(tan(x)) avec Py = X et

P1 = X2 + 1. Si on suppose, pour n € N*, que tan™ (x) = P, (tan(x)) avec P, un polynéme de degré n + 1

dont les coefficients sont des entiers naturels, alors tan™*1(x) = tan’/(x)P, (tan(x)) = Pn41(tan(x)) avec
n+1

Pri1 = (1+X?)P/(X) qui est bien de degré n+ 2 et de coefficients entiers naturels car si P, = > aiX¥, on
k=0
n+1 n+1 n n+2
aPnir = > kapX<T + kXt = 37 (k + a1 X< + (k — 1)ax_1X* ce qui donne I'expression
k=1 k=0 k=0 k=1
n
Prit = (M +DanX™ +nap_ 1 X™ + ( > ((k+Nakpr + (k— l)ak_1)Xk) + a7 qui est bien & coefficients
k=1

entiers naturels. On conclut que principe de récurrence que Yn € N, Vx € } - %; % [, tan(™ (x) = P, (tan(x))

avec Py, € N[X] et deg(Pn,) =n +1.
Comme tan(x) > 0 pour x € [O; %[ et que P, € N[X], yn € N, x € {O; g [, tan™(x) = P, (tan(x)) > 0

donc, d’apres la question a., la fonction tan est développable en série entiere sur [O; %[ et on peut écrire

12 tan@™(0) 5,44 . . -
Vx € [0; % [, tan(x) = nX::o WX n+1 Comme tan est impaire, Vx € } =5 O}, tan(x) = —tan(—x)
+o00 (2n+1) 400 (2n+1)
donc tan(x) = — M(—X)ZH-H = MXZ“‘H. Cette relation est donc vraie pour
n=0 (2T1+ 1)' n=0 (2Tl+ 1)'
tout x € } - %; % et tan est bien développable en série entiere sur } — %; % [



a. Comme X? — 2ch ()X +1=X% — (¥ +e %)X +1 = (X —e*)(X — e~ %), la quantité x> — 2ch («)x + 1 est

donc strictement positive hors du segment [e~%; e*] reliant les deux racines. Par conséquent, I’ensemble de
définition de fo est D =] — oo; e~ *[U]e*; +oo].

b. La fonction f, est de classe C! sur D par opérations. Comme fq(x) = %ln(xz — 2ch (a)x + 1) pour

— ch (o) (x/2) — (e%/2) + (x/2) — (e~ */2) 1 1
€D, . (x) = X—¢ - _ _
* onafal) = e ®) x—e)x—e %) 2e* —x)  2(e ™ —x)
— o
donc ,(x) = —eT.] — l_o‘x - 67.1 —]eo‘x' Pour tout réel x €] — e~ ;e %[, [e”*x| < 1 et [e*x| < 1 donc
—x to© o« too
on a fi (x) = ,GT' do(em )™ — 67. > (e®x)™ grace aux séries géométriques. On a donc la relation
=0 =0
" _T; +oo +oo
suivante, Vx €] —e~ % e[, fl (x) = _eT' S(em )™ — % Z (e®x)™ qu’on peut regrouper et simplifier
Tl:O n=0
+oo  (n41)a —(n+1)a
en 7, (x) = — Eo £ Jrze X" = — Z ch ((n+ 1)a)x™. Les fonctions f, et f, sont développables
n—=
en série entiere sur | — e~ %;e”*[. En integrant a l'intérieur de l'intervalle ouvert de convergence, comme

foe(0) =0,0naVx €] —e % e %[, fx(x) =— Z ch((n+1)a)

n+1’
a. Comme f est dérivable sur R, elle y est continue. Ainsi, par composition, x — f(ax) est continue sur R

donc f' aussi ce qui montre que f est de classe C' sur R. Si on suppose que f est de classe C™ sur R pour un
entier n > 1, alors x + f(ax) est aussi de classe C™ sur R donc f' 'est encore et f est donc de classe C™*!
sur R. Par principe de récurrence, f est de classe C™ pour tout n € N sur R donc f est de classe C* sur R.

Pour x € R, on a f/(x) = f(ax) donc f’(x) = af’(ax) = af(a?x). On continue, f"”'(x) = a*f'(a?x) = a*f(a3x)
n(n-1)
et f(x) = a®f(a®x) = a®f(a*x). Supposons, pour n € N, quon ait Vx € R, f™(x) = a~ Z  f(a™x).
n(n—1) nn+1)
Alors, en dérivant cette relation, on a f"*1(x) = a= 2~ x a™f'(a™x) = a2

f(a™'x). Comme on a
o(0=1) n(n-1)
fO(x) =f(x) =a~ Z f(a®), on a montré par récurrence que Yn € N, ¥x € R, f™M(x) =a~ 2 f(a™x).

b. Pour b > 0, f étant continue sur le segment [—b;b], elle y est bornée et on peut poser My = |[f||o,[—b;b]-
n (k) k x _ \ne(n+T1) —
Pour x € [-b;b] et n € N, on a f(x) = 3, L O + f (c—t)7f (t)dt. Pour t € [0;x], comme
k=0 k! 0 n!
n(n+1) nn+1)
f+D () =a™ 2 f(a™'t) et que a™t € [O x] C [— b'b] car [a] < 1,o0n a |f MED()| <a” 2 My.
f(n-i-]) x n nntl) n+1 n(nZJrl)M
Par inégalité triangulaire, on a ‘ f — )" ’ < ‘ f X["a = x| a b
0 n!
|X|n+1 n(n-H) oo f(k) (O)Xk .
donc, comme lim = lim a 2 =0carla/<T1,onaVxe€[-b;b], f(x) = >, ——. Mais
n—+oo  nl n—+oo = K
K(k—1)
ceci étant vrai pour tout b > 0 et comme f(¥)(0) = a™~ Z  £(0), f est bien égale & sa série de TAYLOR sur R
k(k=1)
ok
et onaVx € R, f(x) = f(0 )z oz x
k(kq) K k(k—1)
c. Soit A € R et la fonction g : R — R définie par ga(x) = A Z a = x k . Si on pose ax = % >0,
k
ona Ikl — _a donc, comme 0 < a < 1, lim Sietl — donc, par D’ ALEMBERT, le rayon de convergence
ax k+1 k—+oo Qg

k

de la série Y axx® vaut R = 400 ce qui justifie que la fonction gp est bien définie et de classe C* sur R.

k>0



k(k+1 ) k(kf1 )

oo k(kzq) k=1 (ax)k
De plus, Vx € R, ¢gj(x) = A > a_ = X ) Z a2 _x ) Z ————— = ga(ax). Avec
= (k=1)! k!
ce qui précede, les fonctions g : R — R dérivables telles que Vx € R, g’(x) = g(ax) sont les fonctions
oo K(k=T)
proportionnelles & g7 : x +— > & o X_elles constituent donc la droite vectorielle Vect(gy).
k=0 :
a. f est définie comme la somme de la série entiere lacunaire Y bpx™ ol by = 1 si n est un carré et

n=o0

by, = 0 sinon. Comme (bnx™)n>0 est bornée si et seulement si (bnzxnz)n>o = (x“z)n>o Pest, c’est-a-dire si
et seulement si |x| < 1, le rayon de convergence R de cette série entiere vaut R = 1. Pour x = +1, cette série
est grossierement divergente donc le domaine de définition de f vaut I =] — 1;1[.

En tant que somme d’une série entiere de rayon 1, d’apres le cours, f est de classe C* sur son intervalle
ouvert de convergence, donc a fortiori dérivable sur I =] — 1;1].

b. Comme on étudie f au voisinage de 1, on peut se contenter de prendre x €]0; 1], et de poser la fonction
hy :t— Xt = et () qui est continue et intégrable sur R} par comparaison aux intégrales de RIEMANN

car hy(t) = et’ In(x) J;Oo(t] ) par croissances comparées (In(x) < 0).

. , . k+1 K2 k
Comme la fonction hy est décroissante sur R, on a Vk > 1, fk hx(t)dt < x = hy(k) < f

. hy (t)dt.

On somme pour k allant de 0 & 400 & gauche et de 1 & +oo a droite ('intégrale et la série convergent) ce

“+ o0 400 “+ o0
qui donne par CHASLES 'encadrement fo xdt < f(x) < j;) Xt dt + hy (0) = fo Xt dt+ 1.

En posant t = %() = @(u), @ étant une bijection strictement croissante de classe C! de Ry dans R,
—1In(x
par changement de variable, on a eroo Xt dt = eroo et?mgp = 1 eroo e Wau=1 [=m_
7 0 0 v —1n(x) Jo0 24/ In(x)

Par encadrement, comme 1 = o( /;) et lim 1 —T

1
—1n(x) x>1- 21/ In(x) 1= 2|/ In ( )
(

c. Comme il existe une infinité de termes de la suite (an)nen qui sont supérieurs ou égaux a 1 (il y a une

= 400, on a I’équivalent f(x )

infinité de carrés parfaits), on en déduit que la série > a, diverge, ce qui prouve que R’ < 1. Comme

n=0
an = card {k € [0; [\/n]] | n — k? est un carré parfait}, on a an < [/n) +1</n+1<n+1 et comme la
série entiere > (n+ 1)x™ est de rayon 1, on a R’ > 1. Par conséquent, R’ =
n=>0
Pourn € N, an, = > 1= Y bibj (en posant i = u? et j = v?) par définition des b,,. Par
(w,v)e[o;|vn ]2 (i, JJ)rG[[O in]
uz+v2=n J=n

exemple, a5 = bobs + bibs + babs + bszby + bgby +bsbg =2 car by = bz =bs =0et bgp =by =bg =1

ce qui correspond aux deux écritures 5 = 14 4(= 12 42?2 = 22 + 1" =)4 + 1. Par produit de CAUCHY de

“+oo “+o00
deux séries entieres, pour x €] — R;R'[=] — 1;1], on a f(x)? ( Z bnx™ )( > bnx“) = > cnx™ avec
n=0 n=0
n
tn = Y, bxbn_k = S>> bibj = an. Ainsi, f(x)? = g(x) ce qui prouve que Y. anx™ converge pour
k=0 (i,j)€eloin]? n>0
i+j=n
x €] — 1;1] donc que R’ > 1 indépendamment de ce qui précede. On trouve & nouveau que R’ = 1. D’apres

ST

la question c., on a méme g(x) = f(x)% ~



17.10 ] Déja, la suite (un)n>o est bien définie car up est donné et la relation un41 = Y

n

n o e s
( )ukun_k définit bien
. . k=0 \k
Un41 connaissant les termes ug, - - -, 1. On peut montrer facilement par récurrence que ¥n € Nyu, € N.

a. Comme ug = 3, on a uq :ué = 9 et uy = 2upu; = 54. Ainsi, on a bien 0 < % =3 < 4 =457,

Y —9g16=4"""et0< %2 =27 <64 =431 Soit n > 3 tel que Vk € [0;n]], 0 < %gztk“,

Os Ty = 2!

no/n
alors uny1 = >, (k>ukun_k > 0 car up,---,un sont positifs. De plus, par hypothese de récurrence,
k=0
& (n UxUn—k k41 m+1-k 2 Un1 2
Unyl = Ugn -k = n! <nl Yo 4ktignt n + 1)14™*+2 donc < 4nt2,
" kgo k> " Z okl —x)! = kgo = ) (m+1)!

Par principe de récurrence forte, on a établi que Vn € N, 0 < u—“ <4t
n!

Comme Vn € N, 0 < u” < 4™ d’apres a., et puisque le rayon de convergence de la série entiere > 47 H1x™
n! n>0

vaut J‘ car (4™ 1x™) e est bornée si et seulement si x| < Z on en déduit que le rayon R de la série entiere

> u?x“ vérifie R >
n>o ™™

1:} —%;Hc]—R;R[.

. Ainsi, la fonction f, qui est la somme de cette série entiere, est bien définie sur

I

+oo “+oo
b. On dérive terme & terme donc Vx € 1, f'(x) = > nu—TxT‘_1 = > u“%]x“ a lintérieur de l'intervalle
n=1 T n=0 T
+oo n u u
ouvert de convergence et aprés changement d’indice. On a donc Vx € I, f'(x) = Y. ( —%‘.Lk')x“
n=o \Kk=o kI (n —k)!
n n!
car (k) = m On reconnait un produit de CAUCHY, valide puisque I C] —R;R[, et on a f'(x) = f(x)?.
'(n —X)!

Par conséquent, f est bien solution sur I de I'’équation (E) : y’ = y?.

/ !
Analyse : supposons que f ne s’annule pas sur I, alors Vx € I, :(();; =1 << (16(17) + x) 0 donc
x
X f(17> + x est constante sur l'intervalle I. Or f(0) = 3 donc Vx € I, ﬁ +x=1et f(x) = ] —33x'
Synthese : soit g : ] — %,%{ — R définie par g(x) = ] 33 . g ne sannule pas sur I, g(0) = % et
—3x
g(x) = (1%)2 = g(x)2. Ainsi, f et g sont solutions du méme probleme de CAUCHY (non linéaire
—3x

donc hors programme) et sont donc égales sur 1. Si on veut rester dans le programme, on décompose

1.1 o0 o0
Vx € ] —33 [, g(x) =3 > (3x)™ = Y 3" 1x™. Posons, v, = n!3™*! pour n € N.
n=0 n=0

. 1.1 +o0 Vit +o00 LY Vin_k
Par produit de CAucHY dans} -3 g{ onag(x)= Y (n+1)—2E_x"= ¥ ( > —k%)x“. Par

n=0 (n+1)! n=0 ‘=0 kI (n —k)!
Vn+41 = Vk _VYn—k 1 = n

unicité du développement en série entiere, il vient Yn € N, = L _—nme = B ViVn_k-
n! o kK (=K nlZTH\k

Par récurrence forte, on montre facilement que ¥n € N, wu, = vy, = n!3™F! car (un)nen et (va)nen ont le

. . R . , N . ao/n
méme premier terme et la méme relation de récurrence, a savoir vo =3 et Vn € N, vy = Y (k)vkvn_k'
k=0



17.11)a. La série Y un est alternée et la suite (Jun|Jnen = ( 1 ) est décroissante et tend vers 0 donc,

+oo
par le critere spécial des séries alternées, la série > uy, converge, ce qui justifie Uexistence de S = > un.
n=0 n=0
X[
2n+1

de convergence d’une série entiére, le rayon de convergence de Y unx™ vaut R = 1. Bien siir, on aurait pu
n=0

b. Lasuite (Junx™ 1) nen = ( ) est bornée si et seulement si |x| < 1 donc, par définition du rayon
neN

utiliser le critére de D’ALEMBERT. Ainsi, le domaine de définition D de I vérifie | — 1;1[C D C [—1;1].

I(1) est bien définie car S existe d’apres la question a.. Par contre, ngo Zn] : diverge car P 1+ T ﬁ >0
et la série harmonique > 1 diverge. Ainsi, I(—1) n’existe pas et on a D =] — 1;1].
n>1 n
: X oong2 =D g 5
c. Soit x €]0;1[ : on pose y = v/x €]0; 1] donc I(x) = > uny*™ ™ =y y*"*! et on reconnait une
n=0 n=0 n +1
série entiere classique, & savoir f(x) =y Arctan(y) = /x Arctan(y/x).
+o00 =
Soit x €] —1;0[ : on pose y = v/—x €]0;1[ donc I(x) = 3 un(=1)"1y2"*+2 = —y 3> ——y2"* donc
n=0 n=0 2n+1
+o00 too . 2n 2
- Iyno s u ) Y _ _y2) =Y (g)_g (1;11)
166) = —y( n )= 21n(1 tn(1 =Yy =Y ¢
&) nz::1 n? n{:] n 2( (1 —y) il =) 2 "\ —y)? 2"\ y/ ¢
on reconnait I(x) =y Argth (y) = v/—x Argth (v/—x).
Posons fp, : x + unyx™ ! définie sur [0;1] pour tout n € N.
(H1) Pour tout entier n € N, f;, est continue sur [0;1].
+oo
(H2) Pour n € N, en posant Ry : x = > fi(x) sur [0;1] (qui existe d’aprés b.), comme (|fk(x)|)k>0
k=n-+1
est décroissante et tend vers 0 pour tout x € [0;1], le critere spécial des séries alternées montre que
n+2
[Rn(x)| < [fat1(x)| = Z)'?I—FS < 2n1—|—3 donc Ry, est bornée sur [0;1] et ||[Rnl|oo,[051] < 2n1—|—3 donc
lim |[Rn|[so,[0;1] = O par encadrement : ) f, converge uniformément (pas normalement) sur [0; 1].
n—-+oo e n>0
+oo
Par théoreme, I = Y f, est continue sur [0;1] donc I(1) =S = lim I(x) = lim y/xArctan(y/x) = Z.
n=0 x—1- x—1- 4

1
d. D’abord, I étant continue sur le segment [0; 1], 'intégrale fo I(x)dx converge.

Méthode 1 : on pose u: x — %x3/2 et v:x — Arctan(y/x) de sorte que u et v sont de classe C' sur ]0;1] et,

comme lez)h u(x)v(x) = 0 car u(x)v(x) ~ %, on a f()] I(x)dx = [u(x)v(x)]} — fo] u(x)v/(x)dx ce qui donne

0
1 1 _
xdx _m_1 (]_17) S N SRRV R S Bl € PP
3%47 3Jo1+x 6 3fo T Ll s n(149)], = 3 0,42.

Méthode 2 : comme > f, converge uniformément sur le segment [0;1] d’apres c., on peut intégrer terme
n>0

1
fo I(x)dxzzxﬂ—l

a terme et avoir f1 I(x)dx = %O f1 fa(x)dx = —E):O {wr _ W =n" . Or on peut
0 n=0+"0 no t@n+1n+2)Jo  Z (2n+1)(n+2)
décomposer 2 ! = 2 - 1 et f1 I(x)dx = SR UL o) <_]>n. Or il est
n+1)(n+2) 3(2n+1) 3(n+2) 0 3nso2n+1 3y n+2
classique (et c’est la méme méthode qu’au c.) que JFZO::) (Cabia = 1n(2) donc %O:o () 1—1n(2) et on
n= n

1 —
trouve, comme avec la méthode précédente, j;) I(x)dx = % - ];)7“@ = % — ———= ~(,42.



17.12 a. Analyse : supposons que la fonction paire f = T st développable en série entiere au voisinage de 0,
cos

Z anx?™

il existe donc un réel v > 0 et une suite (an)neny € RY tels que ¥x €] — 7;7], f(x) =

cos( )

par parité). Comme le rayon R de anx™ vérifie R > r > 0 par lexistence de f(x) pour x €] —r;7[, et par
ité). C 1 R d " vérifie R > 0 Iexist d t
n=0
. . (=)™ 1
produit de CAUCHY car le rayon de la série ) ~—*—— vaut +o0, on a ¥x €] —r;r[, cos(x) x =1
nso  (2n)! cos(x)

(="
(20)!
)

n
doncap=TetVn =1, > an_x = 0 par unicité des coefficients d’un développement en série entiere,
k=0

4 n (_ k n (_1)k_1
ce qui donne =— - = k.
“ TG @ T !
n ( 1)k—1
Synthese : il existe une unique suite réelle (an)nen telle que ap =1 et Vn > 1, an = >, an,kw
k=1 :
Calculons les premiers termes de cette suite : on a a; = 40 = l, a, =4 - 9 — T3 5
2 2 2 24 4 24 24
az3=9%2 %14 6 5 1, 1 _ 6l pgemplequel'on ait lan| <
2 24 720 48 48 720 720
o Initialisation : on vient de montrer que Vn € [[0;3]], on a |an| < 1
k=1
o Hérédité : soit n > 4, supposons que Vk € [0;n — 1], |ax| < 1. Alors, |an| = Z an_ k( (12]1)

n —+o0
donc |a |an— k|\ 1< 1 ch(1)=1~0,54 <1
anl < 32 s < % Gl < 5 g m )

Par principe de récurrence, on peut conclure que Vn € N, |an| < 1. On note R le rayon de convergence

de la série entiere > anx?™, qui est donc supérieur, d’apres le cours, & celui de Y x?™ qui vaut 1. Ainsi,
n>0 n>0

400
R > 1 et on peut définir g :] —1;1[— R par ¥x €] —1;1], g(x) = Y. anx?™. Par produit de CAUCHY, comme

=0
+oo +o00 (71)n::2n +oo n ( 1)k
avant, Vx €] — 1; 1], g(x) cos(x) = ( > anxzn) X ( > 7'> = > ( Z an—k )xzn =1 donc
n=0 n=0 (Zn)' n=0 (Zk)
g(x) = —— = f(x) et f= —1_ est donc développable en série entiere, au moins sur ]—1;1]
cos(x) cos

b. Sion avait R > %7 avec le méme calcul que précédemment, on aurait Vx €] —R; R[, f(x) X cos(x) = 1. Mais

comme x = g €] — R;R[, on aurait f(x)cos(x) = 0 = 1. NON. Ou alors on pourrait dire que f est continue
sur | — R; R[, notamment en x = g, ce qui contredit expression f(x) = 1 ok Toujours est-il que R < %
cos(x

En fait, R = % mais c’est une autre histoire.

17.13] a. Pour n > 1, on partitionne les involutions o de [1;n + 2] en deux catégories :

- celles pour lesquelles o(n + 2) = n + 2 sont au nombre de I,47 car il n’y a pas de choix a faire pour
o(n + 2) qu’on impose égal & n + 2, ensuite o induit alors sur [1;n + 1] une involution de [1;n + 1].
- celles telles que o(n +2) = k # n + 2 sont au nombre de (n + 1)1, car pour les choisir de maniere
bijective, il y a n + 1 choix pour 'entier k qui est I'image de n + 2 par ¢ et, une fois ce choix effectué,
cela implique que o(k) = o(o(n+2)) = n+2 car o doit étre une involution, et on a alors I, choix pour
finir de déterminer o qui doit induire sur [[1;n+ 1] \ {k} une involution de cet ensemble & n éléments.

Cette partition implique la relation Iy 42 = In11+(n+1)I, pourn > 1 et, comme I =2 =14+1.1 =1; + 1.1



avec la convention choisie pour Iy, on a bien : ¥Yn 2 0, Int2 = Ins1 + (n+1)1,.
b. Comme les involutions sont des permutations et qu’il y a n! permutations de [1;n], on en déduit que

In <n!douod < I—T; < 1. Comme la série entiere Y. x™ a pour rayon 1, par comparaison, on a R > 1.

c. Les calculs qui suivent sont valides car le rayon de convergence R est supérieur a 1, on sait qu’on peut

dériver terme & terme & I'intérieur de l'intervalle ouvert de convergence qui contient | —1;1[. Pour x €] —1;1],

w n w In 1 - In +n1n 1 w Int1.n 1
(T+x)e(x) = 0(x) +xe(x) = ZO x4 Z T =1+ Z St =14 21 St =),
n ne !

d. On en déduit en intégrant cette équation différentielle linéaire du premier ordre mise sous forme normalisée

2
sans second membre, comme une primitive de x — 1 4 x est x — x + x7 sur lintervalle | — 1;1[, que l'on a
2

Vx €] =151, o(x) = ST puisque ¢(0) = Ip = 1 par convention.

—+oo +oo
e. Alors Vx €] — 1;1], o(x) = <Z 1'x > X (Z '121 x23>. Ces deux séries ont pour rayon +oo donc on
ov =0

+oo
peut effectuer le produit de CAUCHY et obtenir S(x) = Y ( > .,T.L,!zj )x“. En identifiant (par unicité)
n=0 ‘i+2j=n 1:):

les coefficients entre les deux expressions de S(x) sous forme de série entiere, ¥n € N, I—T‘; = 1

i425=n 112
[n/2] \
donc In = > Puisque 2j <neti=n—2j, on a la formule I, = Y — .
i+2j=n 1')'2J 2o (n—25)412°

Pour expliquer cette relation de maniére combinatoire, on peut constater qu’'une involution o de [1;n] est
une application telle que pour tout entier x entre 1 et n, on a deux choix :

® 50it o(x) = x et x est appelé un point fixe de o.

e s0it o(x) =y # x et alors, comme o2 = id [1,,], on a forcément o(y) = x.

Ainsi, si 0 € Ay, le nombre f de points fixes de o a la méme parité que n de sorte qu’il existe 2j entiers de
n/2]

[1;n] qui ne sont pas fixes par o avec f =n —2j avec 0 < j < {TZIJ . On peut donc écrire A,, = U An,j ol
j=0

An,j = {0 € Ay | 0 admet f =n — 2j points fixes}.
Pour construire une involution o de An j :

e on choisit les n — 2j éléments de [1;n] qui sont fixes par o : < " 2,) = <;> choix.
n-—=zs )

e on choisit 'image y du plus petit élément x qui reste : (2j — 1) choix (et alors o(x) =y et o(y) = x).

e on choisit 'image t du plus petit élément z qui reste : (2j — 3) choix etc...

! 2j)!
Ainsi card (An ;) = n X(2j—1)x(2j—3) x---x3x1 = n X ( .J) en multipliant en haut et en bas
1=y -2 Dy
In/2) n/2) ,
par les termes pairs qui manquent. On retrouve bien I, = card (An) = > card(Anj) = > W
j=0 j=0 ML= 2)):27):

17.14 a. On a deux types de déplacements possibles, vers le haut ou vers la droite. On doit en faire 2n pour

2
aller de (0,0) & (n,n) et il en faut n de chaque type. Cela fait donc ¢, = < "

) chemins possibles.
n

b. n=1: il n’existe qu'un chemin (0,0) — (1,0) — (1,1) avec cette propriété donc d; = 1.
n=2:(0,0)— (1,0) = (2,0) = (2,1) — (2,2) et (0,0) = (1,0) = (1,1) — (2,1) — (2,2) donc d = 2.



n =3 : on dessine tous les chemins et on trouve (0,0) — (1,0) — (2,0) — (3,0) — (3,1) — (3,2) — (3,3),
mais on obtient aussi celui-ci (0,0) — (1,0) — (2,0) — (2,1) — (3,1) — (3,2) — (3,3) et encore celui-la
(0,0) = (1,0) = (2,0) = (2,1) = (2,2) — (3,2) — (3,3), enfin on a les deux derniers en commencant par
(0,0) — (1,0) — (1,1) — (2,1) — (3,1) — (3,2) — (3,3) et en terminant par celui qui rebondit sur la
diagonale (0,0) — (1,0) — (1,1) — (2,1) = (2,2) — (3,2) — (3,3) donc d3 = 5.

Pour n € N*, notons Unyy = {c = (0,0) = -+ = (n+ 1,n+ 1) les chemins qui restent au dessus
de la diagonale} et, on note U7, ; = {c = (0,0) » -+ = (mym) = -+ = (n+ 1,n+ 1) les chemins
qui restent au dessus de la diagonale et tel que m est le plus petit entier k € [1;n + 1] tel que (k, k)

appartient au chemin c} pour tout entier m € [[1;n + 1]. Comme cet entier m existe par définition d’un

n+1
chemin puisque (n 4+ 1,n + 1) appartient & ces chemins, on a la partition Up 1 = |_| Unhq de sorte que
m=1
n+1
Uny1 = card (Upy1) = > card (U, ;). Traitons trois cas :
m=1

e Sim = 1, on crée une bijection entre ULH et Uy, donc card (ULH) =d, = dodn, car dg = 1, en

envoyant le chemin ¢ = (0,0) = (0,1) = (1,1) = -+ = (xi,yx) = --- = (n+1,n+1) € U] sur le

o’

chemin ¢/ = (0,0) = -+ = (xk = l,yk — 1) = -+ = (n,n) € Uy.
e Sim € [2;n], on a une bijection entre les ensembles U, ; et Uy 1 X Up 71 en envoyant le chemin

c=(0,0—(0,1)= - = (m-1m) = (mm)—>(mm+1)— = nn+1)=>n+1,n+1)de

()—/ o—l/
Ut sur le couple (c/,¢”) € U1 X Up_my1 ot ¢ = (0,0) = -+ — (xi,yi —1) = ---(m—1,m —1)
appartient & U7 et ¢/ = (0,0) = -+ = (xk —m,yx—m) = - > (n—m+I,n—m+1) € Un_my1.
Ainsi, card (UT') = card (Um—1 X Up—my1) = card (Um—1) X card (Un—m+1) = dm—1dn—m+1-

e Sim =n+ 1, on crée une bijection entre Uzﬂ et Uy, ce qui donne card (UKI}) = d,, = dndo, en

n+1

envoyant le chemin ¢ = (0,0) — (0,1) = -+ = (xk,yx) = --- = (y,n+1) = (n+1,n+1) € UST,

c)—/
sur le chemin ¢’ = (0,0) = -+ = (xx,yxk — 1) = -+ = (n,n) € Uy,.
n n
Par conséquent, dn4+1 = dodn + ( > dm_1dn_m+1) + dndo = Y dxdn_k en posant k = m — 1. Cette

m=2 k=0
relation est encore vraie pour n =0 car dy = d(z) =1.

c. Les chemins qui vont de (0,0) & (n,n) et qui restent toujours au-dessus de la diagonale x =y font partie

. . PN . . . . 2n
des chemins qu’on a dénombré & la question a.. Ainsi, par inclusion, on a 0 < dn < cn = ( . Le rayon
n

<2n + 2)
Int?
de convergence de 3" cnx™ vaut L par D’ALEMBERT car Sntl — AT +1/ _ _(nt2)h 2@n+1)

n>0 4 Cn n @)+ 1
n
tend vers { = 4. D’apres le cours et 'encadrement précédent, on a donc R > %

+o0 2 +oo n
d. Pour x €] —R;R[, on a f(x)? = ( > dnx“) = > ( > dkdn_k>x“ par produit de CAUCHY donc, avec
n=0 n=0 k=0
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la relation de c., on a f(x)? = > dn1x™ donc xf(x)? = > dn1x™ ! = f(x) —do = f(x) — 1.
n=0 n=0
e. Ainsi, f(x) est racine du polynéme P, = xX? —X+1 dont le discriminant vaut A = 1—4x. Comme f(x) € R,

on a forcément A > 0 donc x < le Ceci garantit que R < 411 donc R = le avec d.. On donc f(x) = 1-vi—4x V21_4X
X

ou f(x) = T+ vI=—dx ”21_4’( six # 0 et f(0) =upo = 1. Comme g : x — 2xf(x) — 1 est développable en série entiere
x

sur | — R; R, elle y est continue et on sait d’aprés ce qui précede que Vx €] — R;R[, g(x) = £4/1 —4x. La

continuité de g et le fait que g ne s’annule pas sur | — R; R[ montre que 'on a soit ¥x €] —R;R[, g(x) = v/1 — 4x

soit Vx €] — R;R[, g(x) = —v/1 —4x. Mais comme g vaut —1 en 0, elle est négative sur | — R; R[ et on a donc

Vx €] — R;R[, g(x) = —y/1 — 4x donc f(x) = T=vl=dx gy # 0.

2x
+
f. D’aprés le cours Vu €] — 1;1, v/1+u =1+

8

(=)™ T2n)u"
1 (2n —1)(n!)%4"

\g

(on le retrouve assez vite avec le

n=
) L . o 1 11 e 2n)k"
développement en série entiere de (1+x)* pour o = ) donc Vx € } -5 [, VIi—dx=1-5% ———~———
2 474 n=1 (Zn — ])(n!)
N — “+o00 1,1 +oo [
ce qui montre que ¥x € } _L1 {\{0}) T-VI—4x _ §~ %2 S (2n+2)Ix » qu'on
474 2x a1 22 =17 wZo202n +1)((n+ 1))
1 Ay +oo I, U
va plutot écrire T=Vl=dx _ _(m)x™ et, en identifiant par unicité d’'un développement en série
2x onl(n+1)!
2
entiere, on aVn € N, d, = 1( n)-
n+1\n
2.0)! (2.1)! (2.2)! (2.3)! .
P ld:(iz = ————=1,d) = ——*+— =2etd3 = ——+—— =5
ab exempie, Qo = Giornt T T T g et T 0 2 T e BT 3E ) am
confirme les calculs de la question b.. Et on a d4 = _@a =14 et ds = _@5)! = 42.
44 +1)! 554 1)!

Cette probabilité, avec les données de I’énoncé, vaut pn = dn _ T
Cn n+1



