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17.1� �Comme xn

n(n+ 1)(2n+ 1)
∼
+∞

xn

2n3 si x ̸= 0, par croissances comparées, la suite
(

xn

n(n+ 1)(2n+ 1)

)
n>1

est

bornée si et seulement si x ∈ [−1; 1] donc le rayon de convergence de cette série entière vaut R = 1. Si

x = ±1, xn

n(n+ 1)(2n+ 1)
=
+∞

O

(
1

n3

)
donc

∑
n>1

xn

n(n+ 1)(2n+ 1)
converge absolument par Riemann. Ainsi,

l’ensemble de définition de f est I = [−1; 1].

La fraction 1

n(n+ 1)(2n+ 1)
se décompose en éléments simples 1

n(n+ 1)(2n+ 1)
= a

n
+ b

n+ 1
+ c

2n+ 1
.

En réduisant au même dénominateur, a(n + 1)(2n + 1) + bn(2n + 1) + cn(n + 1) = 1 pour n ∈ N ce qui

donne, par identification, 2a + 2b + c = 3a + b + c = a − 1 = 0 donc a = 1, b = 1 et c = −4. Ainsi,

∀n ∈ N∗, 1

n(n+ 1)(2n+ 1)
= 1

n
+ 1

n+ 1
− 4

2n+ 1
. Pour tout x ∈] − 1; 1[, comme |x| < R et que les trois

séries convergent, f(x) =
+∞∑
n=1

xn

n(n+ 1)(2n+ 1)
=

+∞∑
n=1

xn

n
+

+∞∑
n=1

xn

n+ 1
− 4

+∞∑
n=1

xn

2n+ 1
.

On reconnâıt des développements en série entière classiques du cours : ∀x ∈]− 1; 1[, ln(1− x) = −
+∞∑
n=1

xn

n
et

∀x ∈]0; 1[,
+∞∑
n=1

xn

2n+ 1
= 1√

x

+∞∑
n=1

(
√
x)2n+1

2n+ 1
= 1

2
√
x

(
ln(1+

√
x)− ln(1−

√
x)− 2

√
x

)
=

Argth (
√
x)−

√
x√

x
et

∀x ∈]− 1; 0[,
+∞∑
n=1

xn

2n+ 1
= 1√

−x

+∞∑
n=1

(−1)n(
√
−x)2n+1

2n+ 1
=

Arctan(
√
−x)−

√
−x√

−x
. Ainsi, f(0) = 0 et :

• Si x ∈]0; 1[, f(x) = − ln(1− x) + 1

x

(
− ln(1− x)− x

)
− 2√

x

(
ln

(
1+

√
x

1−
√
x

)
− 2

√
x

)
.

• Si x ∈]− 1; 0[, f(x) = − ln(1− x) + 1

x

(
− ln(1− x)− x

)
− 4√

−x

(
Arctan(

√
−x)−

√
−x

)
.

De plus, en notant un(x) =
xn

n(n+ 1)(2n+ 1)
, ||un||∞,[−1;1] =

1

n(n+ 1)(2n+ 1)
∼
+∞

1

2n3 et
∑
n>1

1

n3 converge

par Riemann donc
∑
n>0

un converge normalement sur [−1; 1] d’où la continuité de f sur le segment [−1; 1].

Pour x ∈]0; 1[, en écrivant 1 − x = (1 −
√
x)(1 +

√
x) et avec les propriétés de ln, on trouve la nouvelle

expression f(x) = 3 − (1+
√
x)2

x
ln(1 +

√
x) − (1−

√
x)2

x
ln(1 −

√
x). Puisque lim

y→0+
y2 ln(y) = 0, et comme

on sait que f(1) = lim
x→1−

f(x), on trouve f(1) = 3 − 4 ln(2) ∼ 0, 23. Pour obtenir cette valeur, en notant

Hn =
n∑

k=1

1

k
, on aurait pu transformer Sn =

n∑
k=1

1

k(k+ 1)(2k+ 1)
=

n∑
k=1

1

k
+

n∑
k=1

1

k+ 1
− 4

n∑
k=1

1

2k+ 1
ce qui

donne en rajoutant et en enlevant les termes pairs, Sn = Hn + Hn+1 − 1 − 4

( 2n+1∑
k=1

1

k
− 1

)
+ 4

n∑
k=1

1

2k
et

Sn = 3+ 4Hn − 4H2n + 1

n+ 1
− 4

2n+ 1
et on termine en sachant que Hn =

+∞
ln(n) + γ+ o(1).

De même, f(−1) = lim
x→−1+

f(x) = −1− π+ 4 = 3− π ∼ −0, 14 avec la relation ci-dessus.
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17.2� �a. Comme lim

n→+∞
ln(n) = +∞, la série

∑
n>1

ln(n) diverge donc R 6 1 car
∑
n>1

ln(n)xn diverge pour x = 1. Si

|x| < a < 1, par croissances comparées, on a ln(n)xn =
+∞

o(an) et la série géométrique
∑
n>1

an converge donc∑
n>1

ln(n)xn converge par comparaison et R > 1. Ainsi R = 1.

Comme ∀n > 2, ln(n) > ln(2), pour x ∈ [0; 1[, ln(n)xn > ln(2)xn donc S(x) >
+∞∑
n=2

ln(2)xn =
ln(2)x2

1− x
en

sommant. Comme lim
x→1−

ln(2)x2

1− x
= +∞, on a par minoration la limite lim

x→1−
S(x) = +∞.

Une preuve plus générale en se servant seulement du fait que ∀n > 1, ln(n) > 0 et que
∑
n>1

ln(n) diverge :

toutes les x 7→ ln(n)xn sont croissantes sur [0; 1[ donc S est aussi croissante sur [0; 1[. Par le théorème de la

limite monotone, la fonction S admet donc une limite ℓ en 1− qui est finie ou qui vaut +∞.

Posons Sn : x 7→
n∑

k=1

ln(k)xk les sommes partielles qui sont polynomiales donc continues. Comme Sn 6 S sur

[0; 1[, lim
x→1

Sn(x) = Sn(1) 6 ℓ (même si cette limite est infinie). Or Sn(1) =
n∑

k=1

ln(k) donc lim
n→+∞

Sn(1) = +∞.

Ainsi l’inégalité Sn(1) 6 ℓ montre que ℓ ne peut pas être finie. Au final : lim
x→1−

S(x) = +∞.

b. Comme t 7→ 1

t
est décroissante et continue sur R∗

+, on a les inégalités ∀k > 1,

∫ k+1

k

dt

t
6 1

k
(1) et

∀k > 2, 1

k
6
∫ k

k−1

dt

t
(2). En sommant (1) pour k ∈ [[1;n]] et (2) pour k ∈ [[2;n]], on obtient l’encadrement

ln(n + 1) 6 Hn =
n∑

k=1

1

k
6 ln(n) + 1 par Chasles. En multipliant par xn pour x ∈ [0; 1[ et en sommant

ces inégalités, on trouve
+∞∑
n=1

ln(n+ 1)xn 6
+∞∑
n=1

Hnx
n 6

+∞∑
n=1

ln(n)xn +
+∞∑
n=1

xn. Or, par produit de Cauchy,

∀x ∈] − 1; 1[,
+∞∑
n=1

Hnx
n =

( +∞∑
n=1

1

n
xn
)
×
( +∞∑

n=0

xn
)

= − ln(1− x)
1− x

=
ln(1− x)
x− 1

. Ce qui donne, puisque

+∞∑
n=1

ln(n+1)xn =
S(x)
x

, l’encadrement
ln(1− x)
x− 1

− 1

1− x
6 S(x) 6 x ln(1− x)

x− 1
. Par théorème d’encadrement,

puisque
ln(1− x)
x− 1

− 1

1− x
∼
1−

x ln(1− x)
x− 1

∼
1−

ln(1− x)
x− 1

, nous avons établi que S(x) ∼
1−

ln(1− x)
x− 1

.� �
17.3� �Puisque la fonction sin est 1-lipschitzienne car | sin′ | = | cos | 6 1, on a ∀n ∈ N, ∀x ∈ R, |fn(x)| 6 |a|n|x|.

Comme |a| < 1, la série
∑
n>0

|an||x| converge donc, par comparaison,
∑
n>0

fn(x) converge absolument et la

série de fonctions
∑
n>0

fn converge simplement sur R. Ainsi Fa est définie sur R.

(H1) La série
∑
n>0

fn converge simplement sur R vers Fa.

(H2) Toutes les fonctions fn sont de classe C∞ sur R.
(H3) Pour p ∈ N∗, on a f

(p)
n (x) = anp sin

(
anx+ pπ

2

)
donc f

(p)
n est bornée sur R et ||f(p)n ||∞,R 6 |a|np

(on a même égalité). Or la série géométrique
∑
n>0

|a|np converge car |a| < 1, donc la série
∑
n>0

f
(p)
n

converge normalement sur R.

Par un théorème du cours, Fa est de classe C∞ et ∀p ∈ N, ∀x ∈ R, F
(p)
a (x) =

+∞∑
n=0

anp sin

(
anx + pπ

2

)
.

On en déduit que F
(p)
a (0) =

+∞∑
n=0

anp sin

(
pπ

2

)
donc F

(p)
a (0) = 0 si p est pair et, si p = 2k + 1, on trouve

F
(2k+1)
a (0) =

+∞∑
n=0

an(2k+1) sin

(
(2k+ 1)π

2

)
=

+∞∑
n=0

(−1)kan(2k+1) =
(−1)k

1− a2k+1 .



D’après le cours, Fa est développable en série entière sur R si et seulement si le reste intégral d’ordre k, à

savoir 1

k!

∫ x

0
(x − t)kF

(k+1)
a (t)dt, tend vers 0 quand k tend vers +∞ pour tout réel x. Or, par inégalité de

la moyenne,
∣∣∣ 1
k!

∫ x

0
(x − t)kF

(k+1)
a (t)dt

∣∣∣ 6 1

k!

∣∣∣∫ x

0
|x − t|k|F(k+1)

a (t)|dt
∣∣∣. Avec l’expression de F

(k+1)
a (t) vue

avant, et |F(k+1)
a (t)| =

∣∣∣ +∞∑
n=0

an(k+1) sin

(
ant + (k + 1)π

2

)∣∣∣ 6 +∞∑
n=0

|a|n(k+1) = 1

1− |a|k+1 . On arrive donc à

la majoration
∣∣∣ 1
k!

∫ x

0
(x − t)kF

(k+1)
a (t)dt

∣∣∣ 6 1

k!(1− |a|k+1)

∣∣∣∫ x

0
|x − t|kdt

∣∣∣ = |x|k+1

(k+ 1)!(1− |a|k+1)
car, x − t

étant de signe constant sur ˜[0; x], on a
∣∣∣∫ x

0
|x− t|kdt

∣∣∣ = ∣∣∣∫ x

0
(x− t)kdt

∣∣∣ = ∣∣∣[− (x− t)k+1

k+ 1

]x
0

∣∣∣ = |x|k+1

k+ 1
. Par

croissances comparées, lim
k→+∞

|x|k+1

(k+ 1)!(1− |a|k+1)
= 0, donc Fa est bien développable en série entière sur R

et, étant égale à sa série de Fourier, on a ∀x ∈ R, Fa(x) =
+∞∑
p=0

(−1)px2p+1

(2p+ 1)!(1− a2p+1)
grâce à ce qui précède.

Comme la fonction sin est développable en série entière sur R, Fa(x) =
+∞∑
n=0

( +∞∑
k=0

(−1)kan(2k+1)x2k+1

(2k+ 1)!

)
.

Or la famille
(
(−1)kan(2k+1)x2k+1

(2k+ 1)!

)
(n,k)∈N2

est sommable car, par sommation par paquets, on a le calcul∑
(n,k)∈N2

|a|n(2k+1)|x|2k+1

(2k+ 1)!
=
∑
k∈N

( ∑
n∈N

|a|n(2k+1)|x|2k+1

(2k+ 1)!

)
=
∑
k∈N

|x|2k+1

(2k+ 1)!(1− |a|2k+1)
< +∞ car si x ̸= 0,

|x|2k+1

(2k+ 1)!(1− |a|2k+1)
∼
+∞

|x|2k+1

(2k+ 1)!
et que

∑
k∈N

|x|2k+1

(2k+ 1)!
= sh (|x|) < +∞. Ainsi, pour x ∈ R, on peut

développer en série entière Fa(x) =
+∞∑
k=0

(−1)k
( +∞∑

n=0

an(2k+1)
)

x2k+1

(2k+ 1)!
=

+∞∑
k=0

(−1)kx2k+1

(2k+ 1)!(1− a2k+1)
.� �

17.4� �a. Posons un = n(−1)n , alors 1

n
6 un 6 n et les séries entières

∑
n>1

xn

n
et
∑
n>0

nxn ont classiquement pour

rayon 1 donc le rayon de convergence de
∑
n>0

n(−1)nxn est R = 1 par encadrement.

De plus, comme (un)n>0 n’est pas bornée, les séries
∑
n>0

un et
∑
n>0

(−1)nun divergent grossièrement et

l’intervalle de convergence de
∑
n>1

n(−1)nxn est ]− 1; 1[.

b. En séparant termes pairs et impairs, on a ∀x ∈]− 1; 1[,
+∞∑
n=0

n(−1)nxn =
+∞∑
n=0

2nx2n +
+∞∑
n=0

x2n+1

2n+ 1
.

Comme ∀x ∈] − 1; 1[,
+∞∑
n=0

xn = 1

1− x
, en dérivant et en multipliant par x,

+∞∑
n=0

nxn = x

(1− x)2
donc

+∞∑
n=0

2nx2n = 2x2

(1− x2)2
car x2 ∈] − 1; 1[. On sait que ∀x ∈] − 1; 1[,

+∞∑
n=1

(−1)n−1

n
xn = ln(1 + x) et que

+∞∑
n=1

xn

n
= − ln(1 − x). En sommant, on obtient ∀x ∈] − 1; 1[, 2

+∞∑
n=0

x2n+1

2n+ 1
= ln(1 + x) − ln(1 − x) donc

+∞∑
n=0

x2n+1

2n+ 1
= 1

2
ln

(
1+ x

1− x

)(
= Argth (x)

)
. Ainsi, ∀x ∈]− 1; 1[,

+∞∑
n=0

n(−1)nxn = 2x2

(1− x2)2
+ 1

2
ln

(
1+ x

1− x

)
.



� �
17.5� �a. Pour tout réel x, la fonction hx : t 7→ e−t2sh (xt) est continue sur R+ et sh (xt) = ext − e−xt

2
=
+∞

O(e|x|t)

donc e−t2sh (xt) =
+∞

O(e−t2+|x|t) =
+∞

O
(
e−t
)
car lim

t→+∞
e−t2+|x|t+t = 0 donc, par comparaison, la fonction

hx est intégrable sur R+. Par conséquent, la fonction F est bien définie sur R.

b. ∀t > 0, sh (xt) =
+∞∑
n=0

x2n+1t2n+1

(2n+ 1)!
, donc F(x) =

∫ +∞

0

( +∞∑
n=0

fn(t)
)
dt avec fn : t 7→ x2n+1t2n+1

(2n+ 1)!
e−t2 .

• La série de fonctions
∑
n>0

fn converge simplement vers hx sur R+ (on en vient).

• Les fonctions fn et la fonction hx sont continues sur R+.

• Les fonctions fn sont intégrables sur R+ car fn(t) =
+∞

O

(
1

t2

)
par croissances comparées.

• Posons In =
∫ +∞

0
t2n+1e−t2dt, en posant u : t 7→ t2n et v : t 7→ −e−t2

2
, u et v sont de classe C1 sur

R+, u(0)v(0) = lim
t→+∞

u(t)v(t) = 0 par croissances comparées donc, par intégration par parties, pour

tout n > 1, In =
∫ +∞

0
u(t)v′(t)dt = n

∫ +∞

0
t2n−1e−t2dt = nIn−1. Comme I0 =

[
− e−t2

2

]+∞

0
= 1

2
,

par récurrence, ∀n ∈ N, In = n!
2
. On aurait aussi pu poser t =

√
u = φ(u) avec φ bijection de classe

C1 strictement croissante de R∗
+ dans R∗

+ ce qui donne In = 1

2

∫ +∞

0
une−u2

du =
Γ(n+ 1)

2
= n!

2
.

Ainsi,
∫ +∞

0
|fn| =

|x|2n+1n!
2(2n+ 1)!

=
|x|2n+1

2(2n+ 1)× · · · × (n+ 1)
donc

∫ +∞

0
|fn| 6 |x|2n+1

(n+ 1)!
et la série∑

n>0

|x|2n+1

(n+ 1)!
converge (série exponentielle).

Par le théorème d’intégration terme à terme, on a donc l’intégrabilité de hx sur R+ (on le savait déjà) et

surtout le développement en série entière de F : ∀x ∈ R, F(x) =
+∞∑
n=0

∫ +∞

0
fn =

+∞∑
n=0

x2n+1n!
2(2n+ 1)!

.

On pouvait aussi dériver sous le signe somme, soit f : R× R+ → R définie par f(x, t) = e−t2sh (xt), alors :

• ∀t > 0, la fonction x 7→ f(x, t) est de classe C1 sur R.

• ∀x ∈ R, la fonction hx : t 7→ f(x, t) est continue et intégrable sur R+ (on vient de le faire).

• ∀x ∈ R, la fonction t 7→ ∂f
∂x

(x, t) = te−t2ch (xt) est continue sur R+.

• Soit a > 0, on a la majoration ∀x ∈ [−a;a], ∀t > 0,

∣∣∣ ∂f∂x (x, t)∣∣∣ 6 te−t2ch (at) = φa(t) et

φa(t) =
+∞

o
(
e−t
)
comme avant donc la fonction φa est intégrable sur R+.

On en déduit que F est de classe C1 sur R et ∀x ∈ R, F′(x) =
∫ +∞

0
te−t2ch (xt)dt. On pose u(t) = ch (xt) et

v(t) = −e−t2

2
, alors u et v sont C1 sur R+, u(0)v(0) = −1

2
et lim

t→+∞
u(t)v(t) = 0 par croissances comparées

donc, par intégration par parties, on a F′(x) =
∫ +∞

0
u(t)v′(t)dt = 1

2
+ x

2

∫ +∞

0
e−t2sh (xt)dt = 1

2
+ x

2
F(x).

Ainsi, F est la solution sur R de (E) : y′ = 1

2
+ x

2
y qui vérifie la condition de Cauchy F(0) = 0. Comme

x 7→ x2

4
est une primitive de x 7→ x

2
sur R+, on sait d’après le cours que y0 : x 7→ e

x2

4 est un vecteur directeur

de la droite des solutions de l’équation homogène (E0) : y′ = x

2
y. Par méthode de variation de la constante,

on trouve par exemple comme solution particulière de (E) la fonction yp : x 7→ 1

2
e
x2

4

∫ x

0
e
−t2

4 dt. Ainsi, il

existe λ ∈ R tel que ∀x ∈ R, F(x) = yp + λy0. Comme F(0) = 0 = λ, ∀x ∈ R, F(x) = x 7→ 1

2
e
x2

4

∫ x

0
e
−t2

4 dt.



On peut à partir de là retrouver un développement en série entière de F par produit de Cauchy car

e
x2

4 =
+∞∑
n=0

x2n

4nn!
et
∫ x

0
e
−t2

4 dt =
∫ x

0

+∞∑
n=0

(
(−1)nt2n

4nn!

)
dt =

+∞∑
n=0

(∫ x

0

(−1)nt2n

4nn!
dt

)
=

+∞∑
n=0

(−1)nx2n+1

4nn!(2n+ 1)

en intégrant terme à terme sur [0; x] inclus dans l’intervalle ouvert de convergence R. Comme les séries

précédentes convergent absolument pour x ∈ R, en notant an = x2n

4nn!
et bn =

(−1)nx2n+1

4nn!(2n+ 1)
, par produit de

Cauchy, 2F(x) =
+∞∑
n=0

cn si cn =
n∑

k=0

an−kbk =
n∑

k=0

x2n−2k

4n−k(n− k)!

(−1)kx2k+1

4kk!(2k+ 1)
=
( n∑

k=0

(−1)k

2k+ 1

(
n

k

))
x2n+1

4nn!
.

Par unicité du développement en série entière dès lors que le rayon est strictement positif (et c’est le cas ici),

on a donc ∀n ∈ N, n!
2(2n+ 1)!

= 1

2.4nn!

n∑
k=0

(−1)k

2k+ 1

(
n

k

)
ou

n∑
k=0

(−1)k

2k+ 1

(
n

k

)
=

2.4n(n!)2

2(2n+ 1)!
=

22n−2

(2n+ 1)

(
2n

n

) .

� �
17.6� �a. Comme f est de classe C∞ sur I, ∀x ∈ I, ∀n ∈ N, f(x) =

n∑
k=0

f(k)(0)
k!

xk +
∫ x

0

(x− t)nf(n+1)(t)
n!

dt par la

formule de Taylor reste intégral. On constate que si x ∈ [0;A[, comme
∫ x

0

(x− t)nf(n+1)(t)
n!

dt > 0, on a

n∑
k=0

f(k)(0)
k!

xk 6 f(x) donc la série
∑
k>0

f(k)(0)
k!

xk est une série à termes positifs dont les sommes partielles sont

majorées donc elle est convergente et on peut en déduire que son terme général tend vers 0, ce qui montre

que lim
k→+∞

f(k)(0)
k!

xk = 0 (L). Traitons maintenant deux cas :

Si x ∈]− A; 0],
∣∣∣∫ x

0

(x− t)nf(n+1)(t)
n!

dt

∣∣∣ = ∫ 0

x

(t− x)nf(n+1)(t)
n!

dt car fn+1(t) > 0 par hypothèse.

Comme f(n+2) > 0, f(n+1) est croissante donc ∀t ∈ [x; 0], f(n+1)(t) 6 f(n+1)(0) ce qui montre que∣∣∣∫ x

0

(x− t)nf(n+1)(t)
n!

dt

∣∣∣ 6 ∫ 0

x

(t− x)nf(n+1)(0)
n!

dt =
f(n+1)(0)

n!

[
(t− x)n+1

n+ 1

]0
x
=

(−x)n+1f(n+1)(0)
(n+ 1)!

.

Mais comme −x > 0, d’après (L), on a lim
k→+∞

f(k)(0)
k!

(−x)k = 0 donc, par encadrement, on en déduit

que lim
n→+∞

∫ x

0

(x− t)nf(n+1)(t)
n!

dt = 0 et, d’après le cours, f est égale à sa série de Taylor sur ]−A; 0[.

Si x ∈]0;A[, on prend r tel que x < r < A et, en posant t = xu = φ(u) avec φ C1 sur le segment

[0; 1], on a
∫ x

0

(x− t)nf(n+1)(t)
n!

dt =
∫ 1

0

(x− xu)nf(n+1)(xu)
n!

xdu = xn+1

n!

∫ 1

0
(1 − u)nf(n+1)(xu)du.

Comme f(n+1) est croissante car f(n+2) > 0, il vient
∫ x

0

(x− t)nf(n+1)(t)
n!

dt 6
∫ 1

0
(1−u)nf(n+1)(ru)du

car ∀u ∈ [0; 1], f(n+1)(xu) 6 f(n+1)(ru). Avec le même calcul qu’avant avec r à la place de x, on a∫ r

0

(r− t)nf(n+1)(t)
n!

dt = rn+1

n!

∫ 1

0
(1 − u)nf(n+1)(ru)du donc on obtient la majoration suivante :∫ x

0

(x− t)nf(n+1)(t)
n!

dt 6 xn+1

rn+1

∫ r

0

(r− t)nf(n+1)(t)
n!

dt = xn+1

rn+1

(
f(r) −

n∑
k=0

f(k)(0)
k!

rk

)
6 xn+1f(r)

rn+1 .

Comme lim
n→+∞

xn+1

rn+1 = 0 car 0 < x < r, on a donc lim
n→+∞

∫ x

0

(x− t)nf(n+1)(t)
n!

dt = 0 ce qui garantit

que f est égale à sa série de Taylor sur ]0;A[.

Avec ces deux cas, f est égale à sa série de Taylor sur ]−A;A[, donc f est développable en série entière sur

]− A;A[ : on dit que f est absolument monotone sur ]− A;A[ quand ∀n ∈ N, f(n) > 0 sur ]− A;A[.

b Comme f est de classe C∞ sur I et exp l’est sur R, par composition, g est de classe C∞ sur I.



Initialisation : g = ef est positive sur I, g′ = f′×ef donc g′ est positive sur I car f′ l’est et g′′ = (f′′+(f′)2)×ef

est aussi positive sur I car f′′ et (f′)2 le sont.

Hérédité : soit n > 1 tel que la fonction g(k) est positive sur I pour tout entier k ∈ [[0;n]], alors, par la formule

de Leibniz, on a g(n+1) = (g′)(n) = (f′×ef)(n) = (f′×g)(n) =
n∑

k=0

(
n

k

)
(f′)(k)g(n−k) =

n∑
k=0

(
n

k

)
f(k+1)g(n−k).

Or, par hypothèse sur f et hypothèse de récurrence, pour tout k ∈ [[0;n]], les fonctions f(k+1) et g(n−k) sont

positives sur I, donc par produit, multiplication par

(
n

k

)
> 0 et somme, la fonction g(n+1) est positive sur I.

On a bien établi par récurrence forte que ∀n ∈ N, g(n) est positive sur I.

Ainsi, les hypothèses de la question a. sont vérifiées pour g qui est donc développable en série entière sur I.

c. Pour x ∈
]
− π

2
; π
2

[
, tan(x) = P0(tan(x)) et tan′(x) = 1 + tan2(x) = P1(tan(x)) avec P0 = X et

P1 = X2 + 1. Si on suppose, pour n ∈ N∗, que tan(n)(x) = Pn(tan(x)) avec Pn un polynôme de degré n+ 1

dont les coefficients sont des entiers naturels, alors tan(n+1)(x) = tan′(x)P′
n(tan(x)) = Pn+1(tan(x)) avec

Pn+1 = (1+X2)P′
n(X) qui est bien de degré n+ 2 et de coefficients entiers naturels car si Pn =

n+1∑
k=0

akX
k, on

a Pn+1 =
n+1∑
k=1

kakX
k−1 +

n+1∑
k=0

kakX
k+1 =

n∑
k=0

(k + 1)ak+1X
k +

n+2∑
k=1

(k − 1)ak−1X
k ce qui donne l’expression

Pn+1 = (n+ 1)anX
n+1 + nan−1X

n +
( n∑

k=1

(
(k+ 1)ak+1 + (k− 1)ak−1

)
Xk
)
+ a1 qui est bien à coefficients

entiers naturels. On conclut que principe de récurrence que ∀n ∈ N, ∀x ∈
]
− π

2
; π
2

[
, tan(n)(x) = Pn(tan(x))

avec Pn ∈ N[X] et deg(Pn) = n+ 1.

Comme tan(x) > 0 pour x ∈
[
0; π

2

[
et que Pn ∈ N[X], ∀n ∈ N, x ∈

[
0; π

2

[
, tan(n)(x) = Pn(tan(x)) > 0

donc, d’après la question a., la fonction tan est développable en série entière sur
[
0; π

2

[
et on peut écrire

∀x ∈
[
0; π

2

[
, tan(x) =

+∞∑
n=0

tan(2n+1)(0)
(2n+ 1)!

x2n+1. Comme tan est impaire, ∀x ∈
]
− π

2
; 0
]
, tan(x) = − tan(−x)

donc tan(x) = −
+∞∑
n=0

tan(2n+1)(0)
(2n+ 1)!

(−x)2n+1 =
+∞∑
n=0

tan(2n+1)(0)
(2n+ 1)!

x2n+1. Cette relation est donc vraie pour

tout x ∈
]
− π

2
; π
2

[
et tan est bien développable en série entière sur

]
− π

2
; π
2

[
.



� �
17.7� �a. Comme X2 − 2ch (α)X+ 1 = X2 − (eα + e−α)X+ 1 = (X− eα)(X− e−α), la quantité x2 − 2ch (α)x+ 1 est

donc strictement positive hors du segment [e−α; eα] reliant les deux racines. Par conséquent, l’ensemble de

définition de fα est D =]−∞; e−α[∪ ]eα; +∞[.

b. La fonction fα est de classe C1 sur D par opérations. Comme fα(x) = 1

2
ln(x2 − 2ch (α)x + 1) pour

x ∈ D, on a f′α(x) =
x− ch (α)

(x− eα)(x− e−α)
=

(x/2)− (eα/2) + (x/2)− (e−α/2)
(x− eα)(x− e−α)

= − 1

2(eα − x)
− 1

2(e−α − x)

donc f′α(x) = −e−α

2
. 1

1− e−αx
− eα

2
. 1

1− eαx
. Pour tout réel x ∈] − e−α; e−α[, |e−αx| < 1 et |eαx| < 1 donc

on a f′α(x) = −e−α

2
.
+∞∑
n=0

(e−αx)n − eα

2
.
+∞∑
n=0

(eαx)n grâce aux séries géométriques. On a donc la relation

suivante, ∀x ∈]− e−α; e−α[, f′α(x) = −e−α

2
.
+∞∑
n=0

(e−αx)n − eα

2
.
+∞∑
n=0

(eαx)n qu’on peut regrouper et simplifier

en f′α(x) = −
+∞∑
n=0

e(n+1)α + e−(n+1)α

2
xn = −

+∞∑
n=0

ch ((n+ 1)α)xn. Les fonctions f′α et fα sont développables

en série entière sur ] − e−α; e−α[. En intégrant à l’intérieur de l’intervalle ouvert de convergence, comme

fα(0) = 0, on a ∀x ∈]− e−α; e−α[, fα(x) = −
+∞∑
n=0

ch ((n+ 1)α) x
n+1

n+ 1
.� �

17.8� �a. Comme f est dérivable sur R, elle y est continue. Ainsi, par composition, x 7→ f(ax) est continue sur R

donc f′ aussi ce qui montre que f est de classe C1 sur R. Si on suppose que f est de classe Cn sur R pour un

entier n > 1, alors x 7→ f(ax) est aussi de classe Cn sur R donc f′ l’est encore et f est donc de classe Cn+1

sur R. Par principe de récurrence, f est de classe Cn pour tout n ∈ N sur R donc f est de classe C∞ sur R.

Pour x ∈ R, on a f′(x) = f(ax) donc f′′(x) = af′(ax) = af(a2x). On continue, f′′′(x) = a3f′(a2x) = a3f(a3x)

et f(4)(x) = a6f′(a3x) = a6f(a4x). Supposons, pour n ∈ N, qu’on ait ∀x ∈ R, f(n)(x) = a
n(n−1)

2 f(anx).

Alors, en dérivant cette relation, on a f(n+1)(x) = a
n(n−1)

2 × anf′(anx) = a
n(n+1)

2 f(an+1x). Comme on a

f(0)(x) = f(x) = a
0(0−1)

2 f(a0x), on a montré par récurrence que ∀n ∈ N, ∀x ∈ R, f(n)(x) = a
n(n−1)

2 f(anx).

b. Pour b > 0, f étant continue sur le segment [−b; b], elle y est bornée et on peut poser Mb = ||f||∞,[−b;b].

Pour x ∈ [−b; b] et n ∈ N, on a f(x) =
n∑

k=0

f(k)(0)xk

k!
+
∫ x

0

(x− t)nf(n+1)(t)
n!

dt. Pour t ∈ ˜[0; x], comme

f(n+1)(t) = a
n(n+1)

2 f(an+1t) et que ant ∈ ˜[0; x] ⊂ [−b; b] car |a| < 1, on a |f(n+1)(t)| 6 a
n(n+1)

2 Mb.

Par inégalité triangulaire, on a
∣∣∣∫ x

0

(x− t)nf(n+1)(t)
n!

dt

∣∣∣ 6
∣∣∣∫ x

0

|x|na
n(n+1)

2 Mb

n!

∣∣∣ =
|x|n+1a

n(n+1)
2 Mb

n!

donc, comme lim
n→+∞

|x|n+1

n!
= lim

n→+∞
a
n(n+1)

2 = 0 car |a| < 1, on a ∀x ∈ [−b; b], f(x) =
+∞∑
k=0

f(k)(0)xk

k!
. Mais

ceci étant vrai pour tout b > 0 et comme f(k)(0) = a
k(k−1)

2 f(0), f est bien égale à sa série de Taylor sur R

et on a ∀x ∈ R, f(x) = f(0)
+∞∑
k=0

a
k(k−1)

2 xk

k!
.

c. Soit λ ∈ R et la fonction gλ : R → R définie par gλ(x) = λ
+∞∑
k=0

a
k(k−1)

2 xk

k!
. Si on pose ak = a

k(k−1)
2

k!
> 0,

on a
ak+1

ak

= ak

k+ 1
donc, comme 0 < a < 1, lim

k→+∞
ak+1

ak

= 0 donc, par d’Alembert, le rayon de convergence

de la série
∑
k>0

akx
k vaut R = +∞ ce qui justifie que la fonction gλ est bien définie et de classe C∞ sur R.



De plus, ∀x ∈ R, g′λ(x) = λ
+∞∑
k=1

a
k(k−1)

2 xk−1

(k− 1)!
= λ

+∞∑
k=0

a
k(k+1)

2 xk

k!
= λ

+∞∑
k=1

a
k(k−1)

2 (ax)k

k!
= gλ(ax). Avec

ce qui précède, les fonctions g : R → R dérivables telles que ∀x ∈ R, g′(x) = g(ax) sont les fonctions

proportionnelles à g1 : x 7→
+∞∑
k=0

a
k(k−1)

2 xk

k!
, elles constituent donc la droite vectorielle Vect(g1).� �

17.9� �a. f est définie comme la somme de la série entière lacunaire
∑
n>0

bnx
n où bn = 1 si n est un carré et

bn = 0 sinon. Comme (bnx
n)n>0 est bornée si et seulement si (bn2xn

2

)n>0 = (xn
2

)n>0 l’est, c’est-à-dire si

et seulement si |x| 6 1, le rayon de convergence R de cette série entière vaut R = 1. Pour x = ±1, cette série

est grossièrement divergente donc le domaine de définition de f vaut I =]− 1; 1[.

En tant que somme d’une série entière de rayon 1, d’après le cours, f est de classe C∞ sur son intervalle

ouvert de convergence, donc a fortiori dérivable sur I =]− 1; 1[.

b. Comme on étudie f au voisinage de 1, on peut se contenter de prendre x ∈]0; 1[, et de poser la fonction

hx : t 7→ xt
2

= et
2 ln(x) qui est continue et intégrable sur R+ par comparaison aux intégrales de Riemann

car hx(t) = et
2 ln(x) =

+∞
o

(
1

t2

)
par croissances comparées (ln(x) < 0).

Comme la fonction hx est décroissante sur R+, on a ∀k > 1,

∫ k+1

k
hx(t)dt 6 xk

2

= hx(k) 6
∫ k

k−1
hx(t)dt.

On somme pour k allant de 0 à +∞ à gauche et de 1 à +∞ à droite (l’intégrale et la série convergent) ce

qui donne par Chasles l’encadrement
∫ +∞

0
xt

2

dt 6 f(x) 6
∫ +∞

0
xt

2

dt+ hx(0) =
∫ +∞

0
xt

2

dt+ 1.

En posant t = u√
− ln(x)

= φ(u), φ étant une bijection strictement croissante de classe C1 de R+ dans R+,

par changement de variable, on a
∫ +∞

0
xt

2

dt =
∫ +∞

0
et

2 ln(x)dt = 1√
− ln(x)

∫ +∞

0
e−u2

du = 1

2

√
−π

ln(x)
.

Par encadrement, comme 1 =
1−

o

(√
1

− ln(x)

)
et lim

x→1−

1

2

√
−π

ln(x)
= +∞, on a l’équivalent f(x) ∼

1−

1

2

√
−π

ln(x)
.

c. Comme il existe une infinité de termes de la suite (an)n∈N qui sont supérieurs ou égaux à 1 (il y a une

infinité de carrés parfaits), on en déduit que la série
∑
n>0

an diverge, ce qui prouve que R′ 6 1. Comme

an = card {k ∈ [[0; ⌊
√
n⌋]] | n− k2 est un carré parfait}, on a an 6 ⌊

√
n⌋+ 1 6 √

n+ 1 6 n+ 1 et comme la

série entière
∑
n>0

(n+ 1)xn est de rayon 1, on a R′ > 1. Par conséquent, R′ = 1.

Pour n ∈ N, an =
∑

(u,v)∈[[0;⌊√n⌋]]2
u2+v2=n

1 =
∑

(i,j)∈[[0;n]]
i+j=n

bibj (en posant i = u2 et j = v2) par définition des bn. Par

exemple, a5 = b0b5 + b1b4 + b2b3 + b3b2 + b4b1 + b5b0 = 2 car b2 = b3 = b5 = 0 et b0 = b1 = b4 = 1

ce qui correspond aux deux écritures 5 = 1 + 4(= 12 + 22 = 22 + 11 =)4 + 1. Par produit de Cauchy de

deux séries entières, pour x ∈] − R′;R′[=] − 1; 1[, on a f(x)2 =
( +∞∑

n=0

bnx
n
)( +∞∑

n=0

bnx
n
)

=
+∞∑
n=0

cnx
n avec

cn =
n∑

k=0

bkbn−k =
∑

(i,j)∈[[0;n]]2

i+j=n

bibj = an. Ainsi, f(x)2 = g(x) ce qui prouve que
∑
n>0

anx
n converge pour

x ∈] − 1; 1[ donc que R′ > 1 indépendamment de ce qui précède. On trouve à nouveau que R′ = 1. D’après

la question c., on a même g(x) = f(x)2 ∼
1−

−π

4 ln(x)
.



� �
17.10� �Déjà, la suite (un)n>0 est bien définie car u0 est donné et la relation un+1 =

n∑
k=0

(
n

k

)
ukun−k définit bien

un+1 connaissant les termes u0, · · · , un. On peut montrer facilement par récurrence que ∀n ∈ N, un ∈ N.
a. Comme u0 = 3, on a u1 = u2

0 = 9 et u2 = 2u0u1 = 54. Ainsi, on a bien 0 6 u0

0!
= 3 6 4 = 40+1,

0 6 u1

1!
= 9 6 16 = 41+1 et 0 6 u2

2!
= 27 6 64 = 43+1. Soit n > 3 tel que ∀k ∈ [[0;n]], 0 6 uk

k!
6 4k+1,

alors un+1 =
n∑

k=0

(
n

k

)
ukun−k > 0 car u0, · · · , un sont positifs. De plus, par hypothèse de récurrence,

un+1 =
n∑

k=0

(
n

k

)
ukun−k = n!

n∑
k=0

ukun−k

k!(n− k)!
6 n!

n∑
k=0

4k+14n+1−k = (n+ 1)!4n+2 donc
un+1

(n+ 1)!
6 4n+2.

Par principe de récurrence forte, on a établi que ∀n ∈ N, 0 6 un

n!
6 4n+1.

Comme ∀n ∈ N, 0 6 un

n!
6 4n+1 d’après a., et puisque le rayon de convergence de la série entière

∑
n>0

4n+1xn

vaut 1

4
car (4n+1xn)n∈N est bornée si et seulement si |x| 6 1

4
, on en déduit que le rayon R de la série entière∑

n>0

un

n!
xn vérifie R > 1

4
. Ainsi, la fonction f, qui est la somme de cette série entière, est bien définie sur

I =
]
− 1

4
; 1
4

[
⊂]− R;R[.

b. On dérive terme à terme donc ∀x ∈ I, f′(x) =
+∞∑
n=1

n
un

n!
xn−1 =

+∞∑
n=0

un+1

n!
xn à l’intérieur de l’intervalle

ouvert de convergence et après changement d’indice. On a donc ∀x ∈ I, f′(x) =
+∞∑
n=0

( n∑
k=0

uk

k!
.

un−k

(n− k)!

)
xn

car

(
n

k

)
=

n!

k!(n− k)!
. On reconnâıt un produit de Cauchy, valide puisque I ⊂]−R;R[, et on a f′(x) = f(x)2.

Par conséquent, f est bien solution sur I de l’équation (E) : y′ = y2.

Analyse : supposons que f ne s’annule pas sur I, alors ∀x ∈ I,
f′(x)

f(x)2
= 1 ⇐⇒

(
1

f(x)
+ x

)′
= 0 donc

x 7→ 1

f(x)
+ x est constante sur l’intervalle I. Or f(0) = 3 donc ∀x ∈ I, 1

f(x)
+ x = 1

3
et f(x) = 3

1− 3x
.

Synthèse : soit g :
]
− 1

3
; 1
3

[
→ R définie par g(x) = 3

1− 3x
. g ne s’annule pas sur I, g(0) = 1

3
et

g′(x) = 9

(1− 3x)2
= g(x)2. Ainsi, f et g sont solutions du même problème de Cauchy (non linéaire

donc hors programme) et sont donc égales sur I. Si on veut rester dans le programme, on décompose

∀x ∈
]
− 1

3
; 1
3

[
, g(x) = 3

+∞∑
n=0

(3x)n =
+∞∑
n=0

3n+1xn. Posons, vn = n!3n+1 pour n ∈ N.

Par produit de Cauchy dans
]
− 1

3
; 1
3

[
, on a g′(x) =

+∞∑
n=0

(n+ 1)
vn+1

(n+ 1)!
xn =

+∞∑
n=0

( n∑
k=0

vk
k!

vn−k

(n− k)!

)
xn. Par

unicité du développement en série entière, il vient ∀n ∈ N,
vn+1

n!
=

n∑
k=0

vk
k!

vn−k

(n− k)!
= 1

n!

n∑
k=0

(
n

k

)
vkvn−k.

Par récurrence forte, on montre facilement que ∀n ∈ N, un = vn = n! 3n+1 car (un)n∈N et (vn)n∈N ont le

même premier terme et la même relation de récurrence, à savoir v0 = 3 et ∀n ∈ N, vn+1 =
n∑

k=0

(
n

k

)
vkvn−k.



� �
17.11� �a. La série

∑
n>0

un est alternée et la suite (|un|)n∈N =
(

1

2n+ 1

)
n∈N

est décroissante et tend vers 0 donc,

par le critère spécial des séries alternées, la série
∑
n>0

un converge, ce qui justifie l’existence de S =
+∞∑
n=0

un.

b. La suite (|unx
n+1|)n∈N =

( |x|n
2n+ 1

)
n∈N

est bornée si et seulement si |x| 6 1 donc, par définition du rayon

de convergence d’une série entière, le rayon de convergence de
∑
n>0

unx
n vaut R = 1. Bien sûr, on aurait pu

utiliser le critère de d’Alembert. Ainsi, le domaine de définition D de I vérifie ]− 1; 1[⊂ D ⊂ [−1; 1].

I(1) est bien définie car S existe d’après la question a.. Par contre,
∑
n>0

1

2n+ 1
diverge car 1

2n+ 1
∼
+∞

1

2n
> 0

et la série harmonique
∑
n>1

1

n
diverge. Ainsi, I(−1) n’existe pas et on a D =]− 1; 1].

c. Soit x ∈]0; 1[ : on pose y =
√
x ∈]0; 1[ donc I(x) =

+∞∑
n=0

uny
2n+2 = y

+∞∑
n=0

(−1)n

2n+ 1
y2n+1 et on reconnâıt une

série entière classique, à savoir f(x) = yArctan(y) =
√
xArctan(

√
x).

Soit x ∈]− 1; 0[ : on pose y =
√
−x ∈]0; 1[ donc I(x) =

+∞∑
n=0

un(−1)n+1y2n+2 = −y
+∞∑
n=0

1

2n+ 1
y2n+1 donc

I(x) = −y

( +∞∑
n=1

1

n
yn −

+∞∑
n=1

y2n

2n

)
= −y

2

(
− 2 ln(1 − y) + ln(1 − y2)

)
= y

2
ln

(
1− y2

(1− y)2

)
= y

2
ln

(
1+ y

1− y

)
et

on reconnâıt I(x) = yArgth (y) =
√
−x Argth (

√
−x).

Posons fn : x 7→ unx
n+1 définie sur [0; 1] pour tout n ∈ N.

(H1) Pour tout entier n ∈ N, fn est continue sur [0; 1].

(H2) Pour n ∈ N, en posant Rn : x 7→
+∞∑

k=n+1

fk(x) sur [0; 1] (qui existe d’après b.), comme (|fk(x)|)k>0

est décroissante et tend vers 0 pour tout x ∈ [0; 1], le critère spécial des séries alternées montre que

|Rn(x)| 6 |fn+1(x)| = xn+2

2n+ 3
6 1

2n+ 3
donc Rn est bornée sur [0; 1] et ||Rn||∞,[0;1] 6 1

2n+ 3
donc

lim
n→+∞

||Rn||∞,[0;1] = 0 par encadrement :
∑
n>0

fn converge uniformément (pas normalement) sur [0; 1].

Par théorème, I =
+∞∑
n=0

fn est continue sur [0; 1] donc I(1) = S = lim
x→1−

I(x) = lim
x→1−

√
xArctan(

√
x) = π

4
.

d. D’abord, I étant continue sur le segment [0; 1], l’intégrale
∫ 1

0
I(x)dx converge.

Méthode 1 : on pose u : x 7→ 2

3
x3/2 et v : x 7→ Arctan(

√
x) de sorte que u et v sont de classe C1 sur ]0; 1] et,

comme lim
x→0+

u(x)v(x) = 0 car u(x)v(x)∼
0

2x2

3
, on a

∫ 1

0
I(x)dx = [u(x)v(x)]10 −

∫ 1

0
u(x)v′(x)dx ce qui donne∫ 1

0
I(x)dx = 2

3
× π

4
− 1

3

∫ 1

0

xdx

1+ x
= π

6
− 1

3

∫ 1

0

(
1− 1

1+ x

)
dx = π

6
− 1

3

[
x− ln(1+x)

]1
0
= π

6
− 1− ln(2)

3
∼ 0, 42.

Méthode 2 : comme
∑
n>0

fn converge uniformément sur le segment [0; 1] d’après c., on peut intégrer terme

à terme et avoir
∫ 1

0
I(x)dx =

+∞∑
n=0

∫ 1

0
fn(x)dx =

+∞∑
n=0

[
(−1)nxn+2

(2n+ 1)(n+ 2)

]1
0
=

+∞∑
n=0

(−1)n

(2n+ 1)(n+ 2)
. Or on peut

décomposer 1

(2n+ 1)(n+ 2)
= 2

3(2n+ 1)
− 1

3(n+ 2)
et
∫ 1

0
I(x)dx = 2

3

+∞∑
n=0

(−1)n

2n+ 1
− 1

3

+∞∑
n=0

(−1)n

n+ 2
. Or il est

classique (et c’est la même méthode qu’au c.) que
+∞∑
n=1

(−1)n−1

n
= ln(2) donc

+∞∑
n=0

(−1)n

n+ 2
= 1− ln(2) et on

trouve, comme avec la méthode précédente,
∫ 1

0
I(x)dx = 2S

3
− 1− ln(2)

3
= π

6
− 1− ln(2)

3
∼ 0, 42.



� �
17.12� �a. Analyse : supposons que la fonction paire f = 1

cos
est développable en série entière au voisinage de 0,

il existe donc un réel r > 0 et une suite (an)n∈N ∈ RN tels que ∀x ∈] − r; r[, f(x) = 1

cos(x)
=

+∞∑
n=0

anx
2n

(par parité). Comme le rayon R de
∑
n>0

anx
n vérifie R > r > 0 par l’existence de f(x) pour x ∈]− r; r[, et par

produit de Cauchy car le rayon de la série
∑
n>0

(−1)nx2n

(2n)!
vaut +∞, on a ∀x ∈]− r; r[, cos(x)× 1

cos(x)
= 1

donc a0 = 1 et ∀n > 1,
n∑

k=0

an−k
(−1)k

(2k)!
= 0 par unicité des coefficients d’un développement en série entière,

ce qui donne an = −
n∑

k=1

an−k
(−1)k

(2k)!
=

n∑
k=1

an−k
(−1)k−1

(2k)!
.

Synthèse : il existe une unique suite réelle (an)n∈N telle que a0 = 1 et ∀n > 1, an =
n∑

k=1

an−k
(−1)k−1

(2k)!
.

Calculons les premiers termes de cette suite : on a a1 = a0

2
= 1

2
, a2 = a1

2
− a0

24
= 1

4
− 1

24
= 5

24
et

a3 = a2

2
− a1

24
+ a0

720
= 5

48
− 1

48
+ 1

720
= 61

720
. Il semble que l’on ait |an| 6 1.

• Initialisation : on vient de montrer que ∀n ∈ [[0; 3]], on a |an| 6 1.

• Hérédité : soit n > 4, supposons que ∀k ∈ [[0;n − 1]], |ak| 6 1. Alors, |an| =
∣∣∣ n∑
k=1

an−k
(−1)k−1

(2k)!

∣∣∣
donc |an| 6

n∑
k=1

|an−k|
(2k)!

6
n∑

k=1

1

(2k)!
6

+∞∑
k=1

1

(2k)!
= ch (1)− 1 ∼ 0, 54 6 1.

Par principe de récurrence, on peut conclure que ∀n ∈ N, |an| 6 1. On note R le rayon de convergence

de la série entière
∑
n>0

anx
2n, qui est donc supérieur, d’après le cours, à celui de

∑
n>0

x2n qui vaut 1. Ainsi,

R > 1 et on peut définir g :]− 1; 1[→ R par ∀x ∈]− 1; 1[, g(x) =
+∞∑
n=0

anx
2n. Par produit de Cauchy, comme

avant, ∀x ∈] − 1; 1[, g(x) cos(x) =
( +∞∑

n=0

anx
2n
)
×
( +∞∑

n=0

(−1)nx2n

(2n)!

)
=

+∞∑
n=0

( n∑
k=0

an−k
(−1)k

(2k)!

)
x2n = 1 donc

g(x) = 1

cos(x)
= f(x) et f = 1

cos
est donc développable en série entière, au moins sur ]− 1; 1[.

b. Si on avait R > π

2
, avec le même calcul que précédemment, on aurait ∀x ∈]−R;R[, f(x)×cos(x) = 1. Mais

comme x = π

2
∈] − R;R[, on aurait f(x) cos(x) = 0 = 1. NON. Ou alors on pourrait dire que f est continue

sur ] − R;R[, notamment en x = π

2
, ce qui contredit l’expression f(x) = 1

cos(x)
. Toujours est-il que R 6 π

2
.

En fait, R = π

2
mais c’est une autre histoire.� �

17.13� �a. Pour n > 1, on partitionne les involutions σ de [[1;n+ 2]] en deux catégories :

- celles pour lesquelles σ(n + 2) = n + 2 sont au nombre de In+1 car il n’y a pas de choix à faire pour

σ(n+ 2) qu’on impose égal à n+ 2, ensuite σ induit alors sur [[1;n+ 1]] une involution de [[1;n+ 1]].

- celles telles que σ(n + 2) = k ̸= n + 2 sont au nombre de (n + 1)In car pour les choisir de manière

bijective, il y a n+ 1 choix pour l’entier k qui est l’image de n+ 2 par σ et, une fois ce choix effectué,

cela implique que σ(k) = σ(σ(n+2)) = n+2 car σ doit être une involution, et on a alors In choix pour

finir de déterminer σ qui doit induire sur [[1;n+ 1]] \ {k} une involution de cet ensemble à n éléments.

Cette partition implique la relation In+2 = In+1+(n+1)In pour n > 1 et, comme I2 = 2 = 1+1.1 = I1+1.I0



avec la convention choisie pour I0, on a bien : ∀n > 0, In+2 = In+1 + (n+ 1)In.

b. Comme les involutions sont des permutations et qu’il y a n! permutations de [[1;n]], on en déduit que

In 6 n! d’où 0 6 In
n!

6 1. Comme la série entière
∑
n>0

xn a pour rayon 1, par comparaison, on a R > 1.

c. Les calculs qui suivent sont valides car le rayon de convergence R est supérieur à 1, on sait qu’on peut

dériver terme à terme à l’intérieur de l’intervalle ouvert de convergence qui contient ]−1; 1[. Pour x ∈]−1 ; 1[,

(1+x)φ(x) = φ(x)+xφ(x) =
+∞∑
n=0

In
n!

xn+
+∞∑
n=1

In−1

(n− 1)!
xn = 1+

+∞∑
n=1

In + nIn−1

n!
xn = 1+

+∞∑
n=1

In+1

n!
xn = φ′(x).

d. On en déduit en intégrant cette équation différentielle linéaire du premier ordre mise sous forme normalisée

sans second membre, comme une primitive de x 7→ 1 + x est x 7→ x + x2

2
sur l’intervalle ] − 1; 1[, que l’on a

∀x ∈]− 1 ; 1[, φ(x) = e
x+x2

2 puisque φ(0) = I0 = 1 par convention.

e. Alors ∀x ∈] − 1; 1[, φ(x) =

(
+∞∑
i=0

1

i!
xi

)
×

(
+∞∑
j=0

1

j!2j
x2j

)
. Ces deux séries ont pour rayon +∞ donc on

peut effectuer le produit de Cauchy et obtenir S(x) =
+∞∑
n=0

( ∑
i+2j=n

n!
i!j!2j

)
xn. En identifiant (par unicité)

les coefficients entre les deux expressions de S(x) sous forme de série entière, ∀n ∈ N,
In
n!

=
∑

i+2j=n

1

i!j!2j

donc In =
∑

i+2j=n

n!
i!j!2j

. Puisque 2j 6 n et i = n− 2j, on a la formule In =
⌊n/2⌋∑
j=0

n!
(n− 2j)!j!2j

.

Pour expliquer cette relation de manière combinatoire, on peut constater qu’une involution σ de [[1;n]] est

une application telle que pour tout entier x entre 1 et n, on a deux choix :

• soit σ(x) = x et x est appelé un point fixe de σ.

• soit σ(x) = y ̸= x et alors, comme σ2 = id [[1;n]], on a forcément σ(y) = x.

Ainsi, si σ ∈ An, le nombre f de points fixes de σ a la même parité que n de sorte qu’il existe 2j entiers de

[[1;n]] qui ne sont pas fixes par σ avec f = n− 2j avec 0 6 j 6
⌊
n

2

⌋
. On peut donc écrire An =

⌊n/2⌋∪
j=0

An,j où

An,j = {σ ∈ An | σ admet f = n− 2j points fixes}.

Pour construire une involution σ de An,j :

• on choisit les n− 2j éléments de [[1;n]] qui sont fixes par σ :

(
n

n− 2j

)
=

(
n

2j

)
choix.

• on choisit l’image y du plus petit élément x qui reste : (2j− 1) choix (et alors σ(x) = y et σ(y) = x).

• on choisit l’image t du plus petit élément z qui reste : (2j− 3) choix etc...

Ainsi card (An,j) =

(
n

2j

)
×(2j−1)×(2j−3)×· · ·×3×1 =

n!

(n− 2j)!(2j)!
× (2j)!

2jj!
en multipliant en haut et en bas

par les termes pairs qui manquent. On retrouve bien In = card (An) =
⌊n/2⌋∑
j=0

card (An,j) =
⌊n/2⌋∑
j=0

n!
(n− 2j)!2jj!

.� �
17.14� �a. On a deux types de déplacements possibles, vers le haut ou vers la droite. On doit en faire 2n pour

aller de (0, 0) à (n, n) et il en faut n de chaque type. Cela fait donc cn =

(
2n

n

)
chemins possibles.

b. n = 1 : il n’existe qu’un chemin (0, 0) → (1, 0) → (1, 1) avec cette propriété donc d1 = 1.

n = 2 : (0, 0) → (1, 0) → (2, 0) → (2, 1) → (2, 2) et (0, 0) → (1, 0) → (1, 1) → (2, 1) → (2, 2) donc d2 = 2.



n = 3 : on dessine tous les chemins et on trouve (0, 0) → (1, 0) → (2, 0) → (3, 0) → (3, 1) → (3, 2) → (3, 3),

mais on obtient aussi celui-ci (0, 0) → (1, 0) → (2, 0) → (2, 1) → (3, 1) → (3, 2) → (3, 3) et encore celui-là

(0, 0) → (1, 0) → (2, 0) → (2, 1) → (2, 2) → (3, 2) → (3, 3), enfin on a les deux derniers en commençant par

(0, 0) → (1, 0) → (1, 1) → (2, 1) → (3, 1) → (3, 2) → (3, 3) et en terminant par celui qui rebondit sur la

diagonale (0, 0) → (1, 0) → (1, 1) → (2, 1) → (2, 2) → (3, 2) → (3, 3) donc d3 = 5.

Pour n ∈ N∗, notons Un+1 =
{
c = (0, 0) → · · · → (n + 1, n + 1) les chemins qui restent au dessus

de la diagonale
}

et, on note Um
n+1 =

{
c = (0, 0) → · · · → (m,m) → · · · → (n + 1, n + 1) les chemins

qui restent au dessus de la diagonale et tel que m est le plus petit entier k ∈ [[1;n + 1]] tel que (k, k)

appartient au chemin c

}
pour tout entier m ∈ [[1;n + 1]]. Comme cet entier m existe par définition d’un

chemin puisque (n + 1, n + 1) appartient à ces chemins, on a la partition Un+1 =

n+1⊔
m=1

Um
n+1 de sorte que

un+1 = card (Un+1) =
n+1∑
m=1

card (Um
n+1). Traitons trois cas :

• Si m = 1, on crée une bijection entre U1
n+1 et Un, donc card (U1

n+1) = dn = d0dn car d0 = 1, en

envoyant le chemin c = (0, 0) → (0, 1) → (1, 1) → · · · → (xk, yk) → · · · → (n+ 1, n+ 1)︸ ︷︷ ︸
σ′

∈ U1
n+1 sur le

chemin c′ = (0, 0) → · · · → (xk − 1, yk − 1) → · · · → (n, n) ∈ Un.

• Si m ∈ [[2;n]], on a une bijection entre les ensembles Um
n+1 et Um−1×Un−m+1 en envoyant le chemin

c = (0, 0) → (0, 1) → · · · → (m− 1,m)︸ ︷︷ ︸
σ′

→ (m,m) → (m,m+ 1) → · · · → (n, n+ 1) → (n+ 1, n+ 1)︸ ︷︷ ︸
σ′′

de

Um
n+1 sur le couple (c′, c′′) ∈ Um−1 ×Un−m+1 où c′ = (0, 0) → · · · → (xi, yi − 1) → · · · (m− 1,m− 1)

appartient à Um−1 et c′′ = (0, 0) → · · · → (xk−m, yk−m) → · · · → (n−m+1, n−m+1) ∈ Un−m+1.

Ainsi, card (Um
n ) = card (Um−1 × Un−m+1) = card (Um−1)× card (Un−m+1) = dm−1dn−m+1.

• Si m = n + 1, on crée une bijection entre U
n+1
n+1 et Un, ce qui donne card (Un+1

n+1) = dn = dnd0, en

envoyant le chemin c = (0, 0) → (0, 1) → · · · → (xk, yk) → · · · → (n, n+ 1)︸ ︷︷ ︸
σ′

→ (n + 1, n + 1) ∈ U
n+1
n+1

sur le chemin c′ = (0, 0) → · · · → (xk, yk − 1) → · · · → (n, n) ∈ Un.

Par conséquent, dn+1 = d0dn +
( n∑

m=2

dm−1dn−m+1

)
+ dnd0 =

n∑
k=0

dkdn−k en posant k = m − 1. Cette

relation est encore vraie pour n = 0 car d1 = d2
0 = 1.

c. Les chemins qui vont de (0, 0) à (n, n) et qui restent toujours au-dessus de la diagonale x = y font partie

des chemins qu’on a dénombré à la question a.. Ainsi, par inclusion, on a 0 6 dn 6 cn =

(
2n

n

)
. Le rayon

de convergence de
∑
n>0

cnx
n vaut 1

4
par d’Alembert car

cn+1

cn
=

(
2n+ 2

n+ 1

)
(
2n

n

) =
(2n+ 2)!n!2

(2n)!(n+ 1)!2
=

2(2n+ 1)
n+ 1

tend vers ℓ = 4. D’après le cours et l’encadrement précédent, on a donc R > 1

4
.

d. Pour x ∈]− R;R[, on a f(x)2 =
( +∞∑

n=0

dnx
n
)2

=
+∞∑
n=0

( n∑
k=0

dkdn−k

)
xn par produit de Cauchy donc, avec



la relation de c., on a f(x)2 =
+∞∑
n=0

dn+1x
n donc xf(x)2 =

+∞∑
n=0

dn+1x
n+1 = f(x)− d0 = f(x)− 1.

e. Ainsi, f(x) est racine du polynôme Px = xX2−X+1 dont le discriminant vaut ∆ = 1−4x. Comme f(x) ∈ R,

on a forcément ∆ > 0 donc x 6 1

4
. Ceci garantit que R 6 1

4
donc R = 1

4
avec d.. On donc f(x) = 1−

√
1− 4x

2x

ou f(x) = 1+
√
1− 4x

2x
si x ̸= 0 et f(0) = u0 = 1. Comme g : x 7→ 2xf(x)− 1 est développable en série entière

sur ] − R;R[, elle y est continue et on sait d’après ce qui précède que ∀x ∈] − R;R[, g(x) = ±
√
1− 4x. La

continuité de g et le fait que g ne s’annule pas sur ]−R;R[ montre que l’on a soit ∀x ∈]−R;R[, g(x) =
√
1− 4x

soit ∀x ∈]− R;R[, g(x) = −
√
1− 4x. Mais comme g vaut −1 en 0, elle est négative sur ]− R;R[ et on a donc

∀x ∈]− R;R[, g(x) = −
√
1− 4x donc f(x) = 1−

√
1− 4x

2x
si x ̸= 0.

f. D’après le cours ∀u ∈] − 1; 1[,
√
1+ u = 1 +

+∞∑
n=1

(−1)n−1(2n)!un

(2n− 1)(n!)24n
(on le retrouve assez vite avec le

développement en série entière de (1+x)α pour α = 1

2
) donc ∀x ∈

]
− 1

4
; 1
4

[
,
√
1− 4x = 1−

+∞∑
n=1

(2n)!xn

(2n− 1)(n!)2

ce qui montre que ∀x ∈
]
− 1

4
; 1
4

[
\ {0}, 1−

√
1− 4x

2x
=

+∞∑
n=1

(2n)!xn−1

2(2n− 1)(n!)2
=

+∞∑
n=0

(2n+ 2)!xn

2(2n+ 1)
(
(n+ 1)!

)2 qu’on

va plutôt écrire 1−
√
1− 4x

2x
=

+∞∑
n=0

(2n)!xn

n!(n+ 1)!
et, en identifiant par unicité d’un développement en série

entière, on a ∀n ∈ N, dn = 1

n+ 1

(
2n

n

)
.

Par exemple, d0 =
(2.0)!

0!(0+ 1)!
= 1, d1 =

(2.1)!
1!(1+ 1)!

= 1, d2 =
(2.2)!

2!(2+ 1)!
= 2 et d3 =

(2.3)!
3!(3+ 1)!

= 5 qui

confirme les calculs de la question b.. Et on a d4 =
(2.4)!

4!(4+ 1)!
= 14 et d5 =

(2.5)!
5!(5+ 1)!

= 42.

Cette probabilité, avec les données de l’énoncé, vaut pn = dn

cn
= 1

n+ 1
.


