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18.1� �a. On note Dk = “le tirage k est différent du tirage k−1”. On a (X = k) = D2∩· · ·Dk−1∩Dk pour k > 2 donc

P(X = k) = P(D2)× PD2
(D3)×· · ·× PD2∩···∩Dk−2

(Dk−1)× PD2∩···∩Dk−1
(Dk) par la formule des probabilités

composées. Par l’indépendance des tirages imposée dans l’énoncé, tirer au tirage k la même couleur qu’au

tirage k−1 ne dépend pas de ce qu’on a tiré avant le tirage k−1 donc, ∀i ∈ [[2; k]], PD2∩···∩Di−1
(Di) =

n− 1

n

et on trouve donc P(X = k) =
(
n− 1

n

)k−2
1

n
=
(
n− 1

n

)k−2

−
(
n− 1

n

)k−1

.

Soit A = “le processus s’arrête” = (X < +∞) =
+∞⊔
k=2

(X = k) (réunion incompatible), par σ-additivité,

P(A) =
+∞∑
k=2

P(X = k) =
+∞∑
k=2

((
n− 1

n

)k−2

−
(
n− 1

n

)k−1)
= 1 par télescopage car lim

k→+∞

(
n− 1

n

)k−1

= 0.

Le processus s’arrête donc presque sûrement.

b. Méthode 1 : pour k > 2, comme (X > k) =
+∞⊔
i=k

(X = i) (réunion incompatible), par σ-additivité,

on a P(X > k) =
+∞∑
i=k

((
n− 1

n

)i−2

−
(
n− 1

n

)i−1)
donc P(X > k) =

(
n− 1

n

)k−2

par télescopage car

lim
i→+∞

(
n− 1

n

)i−1

= 0. Par contre, P(X > 1) = 1. Comme X est une variable aléatoire à valeurs dans N,

d’après le cours, il vient E(X) =
+∞∑
k=1

P(X > k) = 1+
+∞∑
k=2

(
n− 1

n

)k−2

= 1+ 1

1− n−1

n

= n+ 1.

Par théorème de transfert, on a E(X(X − 1)) =
+∞∑
k=2

k(k − 1)P(X = k) = 1

n

+∞∑
k=2

k(k − 1)
(
n− 1

n

)k−2

car

X(Ω) ⊂ N∗ \{2} en cas de convergence. Or ∀t ∈]−1; 1[,
(

1

1− t

)′′
=
( +∞∑

k=0

tk
)′′

=
+∞∑
k=2

k(k−1)tk−2 = 2

(1− t)3

donc E(X(X− 1)) = 2n2. Ainsi V(X) = E(X(X− 1)) + E(X)− E(X)2 = 2n2 + n+ 1− (n+ 1)2 = n(n− 1).

Méthode 2 : comme (X− 1 = k) = (X = k+ 1) pour k ∈ N∗, on a P(X− 1 = k) =
(
1

n

)
×
(
1− 1

n

)k−1

donc

X− 1 suit la loi géométrique de paramètre pn = 1

n
. Ainsi, d’après le cours, E(X− 1) = 1

pn
= E(X)− 1 donc

E(X) = n+ 1 et V(X) = V(X− 1) = 1− pn

p2n
donc V(X) = n2

(
1− 1

n

)
= n(n− 1).� �

18.2� �a. La matrice BAT est dans Mn(R) et toutes ses colonnes sont proportionnelles à la matrice colonne B donc

rang (BAT ) 6 1. On distingue alors deux cas :

• Si A = 0 ou B = 0, alors BAT = 0 donc rang (BAT ) = 0.

• Si A ̸= 0 et B ̸= 0, alors en notant A = (ak)16k6n et B = (bk)16k6n, ∃(i, j) ∈ [[1;n]]2, ai ̸= 0 et

bj ̸= 0. Or BAT = (ajbi)16i,j6n donc BAT n’est pas nulle donc pas de rang 0. Ainsi, rang (BAT ) = 1.

Traduisons la condition d’appartenance à E. Soit C ∈ Mn,1(R) et posons M = BCT , alors M2 = BCTBCT .

Or CTB ∈ M1(R) qui contient le réel
n∑

k=1

ckbk = Tr (BCT ) = Tr (M) (en notant C = (ck)16k6n). Ainsi,

M2 = Tr (M)M, le polynôme P = X2− Tr (M)X est donc annulateur de M. Distinguons à nouveau deux cas :



• Si Tr (M) = 0, alors X2 annule M donc Sp(M) = {0} (car M est nilpotente donc non inversible et

0 est valeur propre de M et la seule racine de X2 est 0) et M est diagonalisable si et seulement si

E0(M) = Rn, c’est-à-dire si et seulement si M = 0.

• Si Tr (M) ̸= 0, alors P = X(X− Tr (M)) annule M et ce polynôme est scindé à racines simples dans

R[X] donc la matrice M est diagonalisable dans Mn(R).

On en déduit l’équivalence : M est diagonalisable ⇐⇒ (M = 0 ou Tr (M) ̸= 0). Ce qui peut aussi s’écrire :

(M = 0 ou M non diagonalisable) ⇐⇒ Tr (M) = 0. Ainsi, E = {C ∈ Mn,1(R) | Tr (BCT ) = 0}.

E ⊂ Mn,1(R) et 0 ∈ E. Soit (C1, C2) ∈ E2 et λ ∈ R, Tr (B(λC1 +C2)
T ) = λTr (BCT

1 )+ Tr (BCT
2 ) = λ.0+ 0 = 0

donc λC1 + C2 ∈ E. Ainsi, E est un sous-espace vectoriel de Mn,1(R) donc lui-même un espace vectoriel.

Traitons deux cas :

• si B = 0, E = Mn,1(R) donc dim(E) = n.

• si B ̸= 0, φ : Mn,1(R) → R définie par φ(C) = Tr (BCT ) est une forme linéaire non nulle car

φ(B) = Tr (BBT ) = ||B||2 > 0 et E = Ker(φ) donc E est un hyperplan de Mn,1(R) donc dim(E) = n−1.

b. D’après ce qui précède, BXT diagonalisable si et seulement si BXT = 0 ou Tr (BXT ) ̸= 0. Or comme B ̸= 0

et X ̸= 0, on ne peut pas avoir BXT = 0. Ainsi, BXT diagonalisable si et seulement si Tr (BXT ) =
n∑

k=1

Xk ̸= 0.

Traitons deux cas :

• si n est impair, comme tous les Xk sont à valeurs ±1, donc impaires, Tr (BXT ) impair donc on ne

peut pas avoir Tr (BXT ) = 0 et U = Ω donc P(U) = 1.

• si n = 2p est pair, les variables aléatoires Bk = Xk + 1

2
suivent des lois de Bernoulli de paramètre

1

2
et sont mutuellement indépendantes donc Sn =

n∑
k=1

Bk = n

2
+ 1

2
Tr (BXT ) suit la loi binomiale de

paramètres n, 1

2
donc P(Tr (BXT ) = 0) = P(Sn = p) = P(U) =

(
2p

p

)(
1

2

)p(1
2

)2p−p

=

(
2p

p

)(
1

2

)2p
.

On en déduit donc que P(U) = 1− P(U) = 1−
(
2p

p

)(
1

2

)2p
.� �

18.3� �Notons pour toute la suite Tk la variable aléatoire qui est le résultat du tirage d’indice k s’il a lieu. Par

construction, Xn(Ω) ⊂ [[1;n]] donc Xn est bornée et admet donc une espérance finie. On suppose bien sûr

aussi que chaque boule de l’urne a autant de chance d’être tirée à chaque étape.

a. Si n = 1, on vide l’urne en un seul tirage. Ainsi, X1 est constante égale à 1 donc E(X1) = 1.

Si n = 2, (X2 = 1) = (T1 = 1) et (X2 = 2) = (T1 = 2, T2 = 1) donc P(X2 = 1) = P(T1 = 1) = 1

2
et

P(X2 = 2) = P(T1 = 2)P(T2 = 1 | T1 = 2) = 1

2
× 1 = 1

2
. Ainsi, par définition, E(X2) =

1

2
× 1+ 1

2
× 2 = 3

2
.

Pour n > 2 et i = 1, on a (Xn = 1) = (T1 = 1) donc P(Xn = 1) = 1

n
.

Pour n > 2 et i ∈ [[2;n]], on a (Xn = i) =

n⊔
j=2

(T1 = j, Xn = i). Cette réunion étant disjointe, on a donc

P(Xn = i) =
n∑

j=2

P(T1 = i)P(Xn = i | T1 = j). Or, quand on a tiré la boule j au premier tirage, on

enlève les boules numérotées j, j + 1, · · · , n et on se retrouve au point de départ du problème définissant



Xj−1, une urne contenant les boules numérotées de 1 à j − 1, avec les mêmes règles, sauf qu’on a déjà

effectué un tirage. Ainsi, P(Xn = i |T1 = j) = P(Xj−1 = i − 1). Par conséquent, si n > 2 et i ∈ [[2;n]],

P(Xn = i) = 1

n

n∑
j=2

P(Xj−1 = i− 1) = 1

n

n−1∑
k=1

P(Xk = i− 1) en posant k = j− 1.

Alors, E(Xn) =
n∑

i=1

iP(Xn = i) = 1

n
+ 1

n

n∑
i=2

i
n−1∑
k=1

P(Xk = i− 1) = 1

n
+ 1

n

n−1∑
k=1

n∑
i=2

iP(Xk = i− 1) en inversant

la somme double. Mais P(Xk = i− 1) = 0 dès que i > k donc E(Xn) =
1

n
+ 1

n

n−1∑
k=1

k+1∑
i=2

iP(Xk = i− 1). Ainsi,

E(Xn) =
1

n
+ 1

n

n−1∑
k=1

k+1∑
i=2

(i−1+1)P(Xk = i−1) = 1

n
+ 1

n

n−1∑
k=1

(
1+ E(Xk)

)
car E(Xk) =

k+1∑
i=2

(i−1)P(Xk = i−1)

et P(Ω) = 1 =
k+1∑
i=2

P(Xk = i− 1). On a donc bien la relation attendue, E(Xn) = 1+ 1

n

n−1∑
k=1

E(Xk) si n > 2.

b. Méthode 1 : d’après b., on a E(X3) = 1 + 1

3

(
1 + 3

2

)
= 1 + 1

2
+ 1

3
= 11

6
. De même, on obtient

E(X4) = 1 + 1

4

(
1 + 3

2
+ 1 + 1

2
+ 1

3

)
= 1 + 1

2
+ 1

3
+ 1

4
= 25

12
. Il semble que E(Xn) = Hn =

n∑
k=1

1

k

pour tout entier n ∈ N∗. On a déjà réalisé l’initialisation pour n = 1, et n = 2. Soit n > 2 tel que

∀k ∈ [[1;n− 1]], E(Xk) = Hk, d’après la question b., on a E(Xn) = 1+ 1

n

n−1∑
k=1

E(Xk) = 1+ 1

n

n−1∑
k=1

k∑
j=1

1

j
donc

E(Xn) = 1+ 1

n

n−1∑
j=1

n−1∑
k=j

1

j
= 1+ 1

n

n−1∑
j=1

n− j

j
= 1+

(n−1∑
j=1

1

j

)
− n− 1

n
= Hn. Par principe de récurrence forte,

on a bien ∀n ∈ N∗, E(Xn) = Hn donc E(Xn) ∼
+∞

ln(n) (par comparaison série-intégrale avec x 7→ 1

x
).

Méthode 2 : d’après b., pour n > 2, nE(Xn) = n +
n−1∑
k=1

E(Xk) et (n + 1)E(Xn+1) = (n + 1) +
n∑

k=1

E(Xk)

donc (n + 1)E(Xn+1) = 1 + nE(Xn) + E(Xn) = (n + 1)E(Xn) + 1 d’où E(Xn+1) − E(Xn) = 1

n+ 1
. Par

télescopage, on a donc E(Xn) = E(X1)+
n−1∑
k=1

(
E(Xk+1)− E(Xk)

)
= 1+

n−1∑
k=1

1

k+ 1
= Hn et E(Xn) ∼

+∞
ln(n).

Question supplémentaire : comme f : t 7→ 1

t
est continue et décroissante sur [1; +∞[, on a la majoration

∀k ∈ [[1;n]],
∫ k+1

k
f(t)dt =

∫ k+1

k

dt

t
6 f(k) = 1

k
et ∀k ∈ [[2;n]],

∫ k

k−1

dt

t
> 1

k
. En sommant la première

inégalité pour k ∈ [[1;n]] et par Chasles, on obtient
∫ n+1

1

dt

t
6 Hn =

n∑
k=1

1

k
. Si on fait de même pour

la seconde pour k ∈ [[2;n]], on a
∫ n

1

dt

t
> Hn − 1 =

n∑
k=2

1

k
. Ainsi, ln(n + 1) 6 Hn 6 1 + ln(n). Comme

ln(n+ 1) ∼
+∞

ln(n) ∼
+∞

ln(n) + 1, par encadrement, on a donc Hn ∼
+∞

ln(n).



� �
18.4� �a. Quand on choisit l’urne Ui, la probabilité de tirer une boule blanche est de i

p
, et comme les tirages se font

avec remise, ils sont indépendants. D’après le cours, la loi de Np sachant Ai est la loi binomiale B

(
n, i

p

)
.

Par conséquent, PAi
(Np = k) =

(
n

k

)(
i

p

)k(
1− i

p

)n−k

pour i ∈ [[0; p]] et k ∈ [[0;n]].

La variable aléatoire Np est bornée car 0 6 Np 6 n donc elle admet une espérance finie et on a par

définition E(Np) =
n∑

k=0

kP(Np = k). Comme {A0, · · · , Ap} est un système complet d’évènements, on a

P(Np = k) =
p∑

i=0

PAi
(Np = k)P(Ai) par la formule des probabilités totales. Si on suppose que toutes

les urnes ont la même chance d’être choisies, P(Np = k) =
p∑

i=0

PAi
(Np = k)

p+ 1
. En reportant, on a donc la

relation E(Np) = 1

p+ 1

n∑
k=0

k
p∑

i=0

(
n

k

)(
i

p

)k(
1 − i

p

)n−k

. En inversant cette somme double, on obtient la

relation E(Np) =
1

p+ 1

p∑
i=0

n∑
k=1

k

(
n

k

)(
i

p

)k(
1− i

p

)n−k

qui devient, car k

(
n

k

)
= n

(
n− 1

k− 1

)
et en posant le

changement d’indice j = k − 1, E(Np) =
n

p+ 1

p∑
i=0

i

p

n−1∑
j=0

(
n− 1

j

)(
i

p

)j(
1 − i

p

)n−1−j

. Or, avec le binôme

de Newton, on a
n−1∑
j=0

(
n− 1

j

)(
i

p

)j(
1 − i

p

)n−1−j

=
(
1 − i

p
+

i

p

)n−1

= 1 donc on obtient finalement

E(Np) =
n

p+ 1

p∑
i=0

i

p
=

np(p+ 1)
2(p+ 1)p

= n

2
. Rien que de très prévisible car il y a autant de chance en général

de tirer des boules blanches ou noires et on en tire n en tout.

b. Pour k ∈ [[1;n − 1]], on a P(Np = k) = 1

p+ 1

p∑
i=0

(
n

k

)(
i

p

)k(
1 − i

p

)n−k

d’après la question précédente

donc P(Np = k) =

(
n

k

)
p

p+ 1

[
0k1n−k

p
+

1

p

p∑
i=1

(
i

p

)k(
1− i

p

)n−k]
. Comme fk : x 7→ xk(1−x)n−k est continue

sur le segment [0; 1], et que 1

p

p∑
i=1

(
i

p

)k(
1− i

p

)n−k

= 1− 0

p

p∑
i=1

fk

(
i

p

)
est une somme de Riemann associée

à cette fonction, par théorème, lim
p→+∞

1

p

p∑
i=1

(
i

p

)k(
1− i

p

)n−k

=
∫ 1

0
fk(x)dx. Il est clair que lim

p→+∞
p

p+ 1
= 1

et lim
p→+∞

0k1n−k

p
= 0 donc, par somme et produit, lim

p→+∞
P(Np = k) =

(
n

k

)∫ 1

0
xk(1− x)n−kdx.� �

18.5� �Par construction, on a X(Ω) = [[2; +∞]] et Y(Ω) = [[1; +∞]] en convenant que Y = +∞ si on n’obtient

jamais pile et X = +∞ si on n’obtient jamais la séquence “pile-face”. On a aussi X > Y + 1. En notant

l’évènement Pk = “on tombe sur pile au lancer k”, on peut écrire, pour des entiers x > 2 et y > 1 tels que

x > y, (X = x, Y = y) =
( y−1∩

i=1

Pi

)
∩
( x−1∩

i=y

Pi

)
∩ Px. On suppose que (Pi)i>1 est une suite d’évènements

indépendants, ce qui montre d’après le cours que P1, · · · Py−1, Py, · · · , Px−1, Px le sont aussi, ce qui donne

P(X = x, Y = y) =
y−1∏
i=1

P(Pi)×
x−1∏
i=y

P(Pi)× P(Px) = 1

2x
car la pièce est équilibrée par hypothèse.

Pour n > 1, (Y = +∞) ⊂
n∩

y=1

Py donc 0 6 P(Y = +∞) 6 1

2n
. Par encadrement, P(Y = +∞) = 0.

Soit x > 2, on a (X = x) =
x−1⊔
y=1

(X = x, Y = y) (réunion disjointe) donc P(X = x) =
x−1∑
y=1

P(X = x, Y = y)



par σ-additivité. Ainsi, P(X = x) = x− 1

2x
. On sait que ∀t ∈] − 1; 1[,

+∞∑
x=2

tx−1 = t

1− t
= 1

1− t
− 1. On

dérive à l’intérieur de l’intervalle ouvert de convergence pour avoir ∀t ∈] − 1; 1[,
+∞∑
x=2

(x − 1)tx−2 = 1

(1− t)2

donc ∀t ∈] − 1; 1[,
+∞∑
x=2

(x − 1)tx = t2

(1− t)2
. En prenant t = 1

2
, on a

+∞∑
x=2

P(X = x) = 1 donc, comme

Ω = (X = +∞) ⊔
( +∞⊔

x=2

(X = x)
)
, il vient P(X = +∞) = 1−

+∞∑
x=2

P(X = x) = 0 comme attendu.

E(X) =
+∞∑
x=2

xP(X = x) =
+∞∑
x=2

x(x− 1)
2x

. On dérive une autre fois ∀t ∈] − 1; 1[,
+∞∑
x=2

(x − 1)tx = t2

(1− t)2
pour

avoir ∀t ∈] − 1; 1[,
+∞∑
x=2

x(x − 1)tx−1 = 2t

(1− t)3
d’où ∀t ∈] − 1; 1[,

+∞∑
x=2

x(x − 1)tx = 2t2

(1− t)3
. Avec t = 1

2
à

nouveau, on a E(X) = 4.� �
18.6� �a. Comme X(Ω) ⊂ N, pour n ∈ N, on a (Y = n) =

+∞⊔
k=0

P(X = k, Y = n) (incompatible) donc, par

σ-additivité, on a P(Y = n) =
+∞∑
k=0

P(X = k, Y = n) =
n∑

k=0

(
n

k

)
p

2n
(1 − p)n d’après l’énoncé. Ainsi,

P(Y = n) = p

2n
(1 − p)n

n∑
k=0

(
n

k

)
=

p

2n
(1 − p)n(1 + 1)n = p(1 − p)n. Par conséquent, 1 + Y suit la loi

géométrique de paramètre p car (1+ Y)(Ω) ⊂ N∗ et P(Y + 1 = n) = P(Y = n− 1) = p(1− p)n−1.

On sait que ∀x ∈] − 1; 1[, 1

1− x
=

+∞∑
n=0

xn. En dérivant cette relation k fois sur l’intervalle ouvert de

convergence de cette fonction développable en série entière, on obtient la formule du binôme négatif, qui

s’écrit ∀x ∈]− 1; 1[, k!
(1− x)k+1 =

+∞∑
n=k

n!
(n− k)!

xn−k ⇐⇒ 1

(1− x)k+1 =
+∞∑
n=k

(
n

k

)
xn−k.

b. ∀k ∈ N, (X = k) =
+∞⊔
n=0

(Y = n, X = k) (réunion disjointe) donc, par σ-additivité, on obtient comme

avant P(X = k) =
+∞∑
n=0

P(Y = n, X = k) = p
+∞∑
n=k

(
n

k

)(
1

2

)n
(1 − p)n = p

(
1− p

2

)k +∞∑
n=k

(
n

k

)(
1− p

2

)n−k

.

Ainsi P(X = k) = p

(
1− p

2

)k
× 1(

1−
(1− p

2

))k+1 =
(

2p

1+ p

)(
1− p

1+ p

)k
=
(

2p

1+ p

)(
1 − 2p

1+ p

)k
après

simplification. Comme en question a., 1+ X suit la loi géométrique de paramètre 2p

1+ p
.

P(X = Y = 0) = p ̸= 2p2

1+ p
= P(X = 0)P(Y = 0) car p2 ̸= p : X et Y ne sont pas indépendantes.

c. Z prend presque sûrement ses valeurs dans N d’après les conditions imposées à X et Y et pour m ∈ N,

comme avant, on a (Z = m) =

+∞⊔
k=0

(X = k, Y = m + k) donc P(Z = m) =
+∞∑
k=0

(
m+ k

k

)
am+k(1 − p)m+kp.

Comme

(
m+ k

k

)
=

(
m+ k

m

)
et en posant i = m + k, on a P(Z = m) =

+∞∑
i=m

(
i

m

)
(a(1 − p))ip donc

P(Z = m) = p(a(1 − p))m
+∞∑
i=m

(
i

m

)
(a(1 − p))i−m = p

(
1− p

2

)m
× 1(

1−
(1− p

2

))m+1
=

2p

1+ p

(
1− p

1+ p

)m
.

Ainsi, 1+ Z suit la loi géométrique de paramètre 2p

1+ p
, comme X.

Comme P(Y = n) = p(1 − p)n > 0, la loi de X sachant (Y = n) existe pour tout n ∈ N. Si k > n,



P(X = k|Y = n) = 0 par hypothèse et, si k ∈ [[0;n]], P(X = k|Y = n) =
P(X = k, Y = n)

P(Y = n)
par définition donc

P(X = k|Y = n) =

(
n

k

)
(1/2)n(1− p)np

p(1− p)n
=

(
n

k

)(
1

2

)n
. La loi de X sachant (Y = n) est la loi B

(
n, 1

2

)
.� �

18.7� �a. On peut mettre un jeton dans chaque urne et on peut mettre tous les jetons dans l’urne U1, ce sont les

cas extrêmes. Tous les cas intermédiaires sont possibles. Ainsi, Xn(Ω) = [[0;n− 1]]. Si on note Lk le numéro

de l’urne dans laquelle on met le k-ième jeton, on a (Xn = 0) =
n∩

k=1

(Lk = k) (le jeton k dans l’urne Uk)

ou (Xn = n − 1) =

n∩
k=1

(Lk = 1) (tous les jetons dans l’urne U1) donc, par indépendance des “placements”,

P(Xn = 0) =
n∏

k=1

P(Lk = k) =
n∏

k=1

1

k
= 1

n!
et P(Xn = n) =

n∏
k=1

P(Lk = 1) =
n∏

k=1

1

k
= 1

n!
.

b. Comme le premier jeton va dans l’urne U1 par définition, P(B1 = 1) = 0 et P(B1 = 0) = 1.

Soit k ∈ [[2;n]], les k− 1 premiers jetons ne peuvent pas aller dans l’urne Uk par construction, et l’urne Uk

est vide à la fin si et seulement si les n − k + 1 derniers jetons ne sont pas mis dans l’urne Uk. Ainsi, on a

(Bk = 1) =
n∩

i=k

(Li ̸= k). Par “indépendance des jetons”, P(Bk = 1) =
n∏

i=k

P(Li ̸= k) =
n∏

i=k

i− 1

i
= k− 1

n

par télescopage multiplicatif (marche aussi si k = 1) : Bk suit la loi de Bernoulli de paramètre k− 1

n
.

c. Comme Xn =
n∑

k=2

Bk, E(Xn) =
n∑

k=2

E(Bk) =
n∑

k=2

k− 1

n
=

n(n− 1)
2n

= n− 1

2
par linéarité de l’espérance.

D’après le cours, V
( n∑

k=2

Bk

)
=

n∑
k=2

V(Bk) + 2
∑

26i<j6n

Cov(Bi, Bj). Comme Bk ∼ B

(
k− 1

n

)
, on sait que

V(Bk) =
k− 1

n

(
1− k− 1

n

)
=

(k− 1)(n− k+ 1)

n2 . De plus, Cov(Bi, Bj) = E(BiBj)− E(Bi)E(Bj) et la variable

aléatoire BiBj suit la loi de Bernoulli de paramètre P(BiBj = 1) = P(Bi = 1, Bj = 1) car elle ne peut valoir

que 0 ou 1. Comme avant, si i < j et n > 2, (Bi = 1, Bj = 1) =
( j−1∩

k=i

(Lk ̸= i)
)
×
( n∩

k=j

(Lk /∈ {i, j})
)
d’où

P(Bi = 1, Bj = 1) =
( j−1∏

k=i

k− 1

k

)
×
( n∏

k=j

k− 2

k

)
= i− 1

j− 1
× (j− 2)(j− 1)

n(n− 1)
=

(i− 1)(j− 2)
n(n− 1)

par indépendance des

Lk. Ainsi, V(Xn) =
n∑

k=2

(k− 1)(n− k+ 1)

n2 + 2
∑

26i<j6n

(i− 1)(j− 2)
n(n− 1)

. En décalant les indices dans les deux

sommes, on obtient V(Xn) =
1

n2

n−1∑
m=1

m(n−m)+ 2

n(n− 1)

n−1∑
v=2

(v−1)
( v−1∑

u=1

u

)
. On connâıt ces sommes, et on

a V(Xn) =
n2(n− 1)

2n2 − (n− 1)n(2n− 1)

6n2 + 1

n(n− 1)

n−1∑
v=2

(v−1)2v. En écrivant v = (v−1)+1 et en décalant à

nouveau, V(Xn) =
n− 1

2
− (n− 1)(2n− 1)

6n
+ 1

n(n− 1)

(
(n− 2)2(n− 1)2

4
+

(n− 2)(n− 1)(2n− 3)
6

)
. Après

simplifications, avec V(X1) = 0, on a ∀n > 2, V(Xn) =
3n3 − 9n2 + 10n− 2

12n
.



� �
18.8� �a. Soit n ∈ N, pour avoir Xn = 0, il est d’abord nécessaire que le nombre de pas n soit pair. Ainsi,

P(Xn = 0) = 0 si n est impair. Par contre, si n = 2p avec p ∈ N∗, X2p = 0 si et seulement si p

pas parmi 2p s’effectuent vers la gauche (réussite) et les p autres s’effectuant vers la droite (échec). Ce

schéma binomial se traduit d’après le cours, en supposant bien sûr que tous les pas de cette marche sont

indépendants, par la relation P(X2p = 0) =

(
2p

p

)(
1

2

)p(1
2

)p
=

(2p)!

22p(p!)2
. Par l’équivalent de Stirling, on

a P(X2p = 0) ∼
+∞

√
4πp(2p)2pe2p

22pe2p(2πp)p2p
= 1√

πp
. Par comparaison aux séries de Riemann,

∑
n>0

P(Xn = 0) diverge.

b. Bi ne prend que les valeurs 0 et 1 (si Xi = 0), cette variable aléatoire suit donc la loi de Bernoulli de

paramètre P(Xi = 0). Ainsi, E(Bi) = P(Xi = 0). Soit p ∈ N, la variable aléatoire
p∑

i=1

Bi prend des valeurs

dans N donc, d’après le cours, E
( p∑

i=1

Bi

)
=

+∞∑
k=1

P
( p∑

i=1

Bi > k

)
. Ainsi, par linéarité de l’espérance et avec

ce qui précède,
+∞∑
k=1

P
( p∑

i=1

Bi > k

)
=

p∑
i=1

E(Bi) =
p∑

i=1

P(Xi = 0).

c. Si k ∈ N∗, par définition de Ek et des Bi, on a Ek =
+∞∪
p=1

( p∑
i=1

Bi > k

)
puisque

p∑
i=1

Bi est le nombre

de retours à l’origine pendant les p premiers pas de la marche. Comme la suite

(( p∑
i=1

Bi > k

))
p∈N∗

est

croissante, on obtient, par continuité croissante, la relation P(Ek) = lim
p→+∞

P
( p∑

i=1

Bi > k

)
. Plus simplement,

pour tout p ∈ N∗, on a P(Ek) > P
( p∑

i=1

Bi > k

)
. Ainsi,

+∞∑
k=1

P(Ek) >
+∞∑
k=1

P
( p∑

i=1

Bi > k

)
=

p∑
i=1

P(Xi = 0) en

sommant. Comme cette minoration est vraie pour tout p ∈ N∗ et que
∑
i>1

P(Xi = 0) diverge d’après a., on

en déduit que
+∞∑
k=1

P(Ek) = +∞ et
∑
k>1

P(Ek) diverge.

d. On a E2 =
⊔

16i<j

(( i−1∩
n=1

(Xn ̸= 0)
)
∩ (Xi = 0) ∩

( j−1∩
m=i+1

(Xm ̸= 0)
)
∩ (Xj = 0)

)
donc, par σ-additivité et

probabilité conditionnelle,
( j−1∩

m=i+1

(Xm ̸= 0)
)
∩ (Xj = 0) ne dépend que de la position de la marche après le

i-ième pas, on a P(E2) =
+∞∑
i=1

+∞∑
j=i+1

P
(( i−1∩

n=1

(Xn ̸= 0)
)
∩ (Xi = 0)

)
P(Xi=0)

(( j−1∩
m=i+1

(Xm ̸= 0)
)
∩ (Xj = 0)

)
d’où P(E2) =

+∞∑
i=1

P
(( i−1∩

n=1

(Xn ̸= 0)
)
∩ (Xi = 0)

)( +∞∑
j=i+1

P(Xi=0)

(( j−1∩
m=i+1

(Xm ̸= 0)
)
∩ (Xj = 0)

))
.

Or (Xi = 0)∩
( j−1∩

m=i+1

(Xm ̸= 0)
)
∩(Xj = 0)

)
= (Xi = 0)∩

( j−1∩
m=i+1

(
j−1∑

k=i+1

pk ̸= 0)
)
∩(

j∑
k=i+1

pk = 0)
)
en notant

pk = ±1 le k-ième pas de sorte que Xi =
i∑

k=1

pk. Par le lemme des coalitions, (Xi = 0) =
( i∑

k=1

pk = 0

)
est indépendant de

( j−1∩
m=i+1

(
j−1∑

k=i+1

pk ̸= 0)
)
∩ (

j∑
k=i+1

pk = 0)
)

car p1, · · · , pj indépendants. Et en on a

donc P(Xi=0)

(( j−1∩
m=i+1

(Xm ̸= 0)
)
∩ (Xj = 0)

))
= P

( j−1∩
m=i+1

(
m∑

k=i+1

pk ̸= 0)
)
∩ (

j∑
k=i+1

pk = 0)
)
. Or on



a P
( j−1∩

m=i+1

(
m∑

k=i+1

pk ̸= 0)
)
∩ (

j∑
k=i+1

pk = 0)
)

= P
( j−1∩

m=i+1

(
m∑

k=i+1

pk−i ̸= 0)
)
∩ (

j∑
k=i+1

pk−i = 0)
)

car

(p1, · · · , pj−i) suit la même loi que (pi+1, · · · , pj). Tout ceci prouve, en posant p = m − i et ℓ = k − i,

la relation P(Xi=0)

(( j−1∩
m=i+1

(Xm ̸= 0)
)
∩ (Xj = 0)

))
= P

( j−i−1∩
p=1

(
p∑

ℓ=1

pℓ ̸= 0)
)
∩ (

j−i∑
ℓ=1

pℓ = 0)
)
. Ainsi, on

arrive à P(E2) =

(
+∞∑
i=1

P
(( i−1∩

n=1

(Xn ̸= 0)
)
∩ (Xi = 0)

))( +∞∑
j=i+1

P
( j−i−1∩

p=1

(
p∑

ℓ=1

pℓ ̸= 0)
)
∩ (

j−i∑
ℓ=1

pℓ = 0)
))

.

Comme
p∑

ℓ=1

pℓ = Xp, qu’on a aussi
j−i∑
ℓ=1

pℓ = Xj−i, et avec le changement d’indices k = j− i, on arrive enfin à

P(E2) =

(
+∞∑
i=1

P
(( i−1∩

n=1

(Xn ̸= 0)
)
∩ (Xi = 0)

))( +∞∑
k=1

P
( k−1∩

p=1

(Xp ̸= 0)
)
∩ (Xk = 0)

))
= P(E1)

2.

De la même manière, ∀k ∈ N∗, P(Ek+1) = P(Ek)P(E1) donc, par récurrence, ∀k ∈ N∗, P(Ek) = (P(E1))
k.

Puisque la série géométrique
∑
k>1

(P(E1))
k diverge d’après c., on a forcément P(E1) = 1.

e. D’après d., on a donc ∀k ∈ N∗, P(Ek) = 1. Notons O = “on revient une infinité de fois à l’origine”, de

sorte que O =
+∞∩
k=1

Ek. Comme la suite (Ek)k∈N∗ est décroissante, par théorème de continuité décroissante, on

a P(O) = lim
k→+∞

P(Ek) = 1. Il est donc presque sûr que le marcheur revienne une infinité de fois à l’origine.� �
18.9� �On note qu’ici λn > 0 contrairement à ce qu’on a vu en cours où on a imposé que le paramètre d’une variable

aléatoire suivant une loi de Poisson soit strictement positif. Il est donc possible, si λn = 0, que Xn soit

presque sûrement nulle car alors on a P(Xn = 0) = e−000

0!
= 1 et ∀k > 1, P(Xn = k) = e−00k

k!
= 0.

On a (S = 0) =
+∞∩
n=1

(Xn = 0) car les Xn sont à valeurs positives. Comme (S = 0) =
+∞∩
n=1

( n∩
k=1

(Xk = 0)
)
et que

la suite
(
In =

n∩
k=1

(Xk = 0)
)
n∈N∗

est décroissante pour l’inclusion, par théorème de continuité décroissante,

on a P(S = 0) = lim
n→+∞

P(In). Par indépendance des Xk, P(In) =
n∏

k=1

P(Xk = 0) =
n∏

k=1

e−λk = e

−
n∑

k=1

λk
.

On a donc deux cas :

• Si
∑
n>1

λn converge, on a P(S = 0) = exp

(
−

+∞∑
k=1

λk

)
> 0.

• Si
∑
n>1

λn diverge, alors lim
n→+∞

n∑
k=1

λk = +∞ donc P(S = 0) = 0.

Dans le cas général, pour p ∈ N, en posant les sommes partielles Sn =
n∑

k=1

Xk, on constate que la suite

(Sn(ω))n∈N∗ est croissante pour tout ω ∈ Ω et que (S 6 p) =
∩

n∈N∗

(Sn 6 p). Or
(
(Sn 6 p)

)
n∈N∗ est

décroissante pour l’inclusion donc, par le théorème de continuité décroissante, P(S 6 p) = lim
n→+∞

P(Sn 6 p).

On a vu dans le cours que si X et Y sont deux variables aléatoires indépendantes suivant des lois de Poisson

de paramètres respectifs λ et µ, alors X+ Y suit la loi de Poisson de paramètre λ+ µ.

Initialisation : X1 suit la loi de Poisson de paramètre λ1 par hypothèse et, avec ce qui précède, X1+X2 suit



la loi de Poisson de paramètre λ1 + λ2.

Hérédité : soit n > 2 tel que la variable aléatoire Sn suit la loi de Poisson de paramètre λ =
n∑

k=1

λk. Comme

Sn et Xn+1 sont indépendantes par le lemme des coalitions, Sn + Xn+1 = Sn+1 suit la loi de Poisson de

paramètre λ+ λn+1 =
n+1∑
k=1

λk.

Par principe de récurrence, pour tout n ∈ N∗, Sn suit la loi de Poisson de paramètre
n∑

k=1

λk.

Pour n ∈ N∗, (Sn 6 p) =

p⊔
i=0

(Sn = i) donc P(Sn 6 p) =
p∑

i=0

P(Sn = i) =
p∑

i=0

exp

(
−

n∑
k=1

λk

)( n∑
k=1

λk

)i
i!

(1).

Traitons deux cas :

• Si
∑
k>1

λk converge, en notant S =
+∞∑
k=1

λk ∈ R+, par continuité de t 7→ et et de t 7→ ti pour i ∈ [[0; p]]

en S, en passant à la limite quand n tend vers +∞ dans (1), on obtient P(S 6 p) =
p∑

i=0

e−SSi

i!
.

• Si
∑
k>1

λk diverge, comme lim
t→+∞

e−tti = 1 si i = 0 et lim
t→+∞

e−tti = 0 si i > 1, en passant à la limite

quand n tend vers +∞ dans (1), on obtient P(S 6 p) = 1.

Pour avoir la loi de S, on écrit (S = 0) = (S 6 0) et, pour p ∈ N∗, (S 6 p) = (S = p) ⊔ (S 6 p− 1) de sorte

que, en traitant à nouveau deux cas :

• Si
∑
k>1

λk converge, P(S = 0) = e−S et P(S = p) =
p∑

i=0

e−SSi

i!
−

p−1∑
i=0

e−SSi

i!
= e−SSp

p!
si p ∈ N∗.

• Si
∑
k>1

λk diverge, P(S = 0) = 1 et P(S = p) = 1− 1 = 0 si p ∈ N∗.

Dans les deux cas, S suit la loi de Poisson de paramètre S =
+∞∑
k=1

λk.� �
18.10� �a. Pour que l’on ait Sk = 0, il est nécessaire et suffisant qu’il y ait k indices i ∈ [[1; 2k]] tels que Xi = 1

(considérés comme des réussites) et que les k autres indices i ∈ [[1; 2k]] vérifient Xi = −1 (échecs). Ce schéma

binomial se traduit par le fait que p(k) = P(Sk = 0) =

(
2k

k

)
pk(1− p)k.

Avec l’équivalent de Stirling, p(k) =
(2k)!

(k!)2
pk(1− p)k ∼

+∞

√
4πk(2k)2ke2k

e2k(2πk)k2k
pk(1− p)k =

(4p(1− p))k√
πk

.

b. Notons R le nombre de retours à l’origine, c’est-à-dire R = card
({

k ∈ N∗ | Sk = 0

})
∈ N ∪ {+∞}.

On revient une infinité de fois à l’origine si et seulement si, pour chaque entier i ∈ N∗, il existe un entier

j > i pour lequel Sj = 0. Ceci se traduit par (R = +∞) =
+∞∩
i=1

(
+∞∪

j=i+1

(Sj = 0)

)
. Comme la suite

d’évènements

(
Ai =

+∞∪
j=i+1

(Sj = 0)

)
i∈N∗

est décroissante pour l’inclusion, par le théorème de continuité

décroissante, on a P(R = +∞) = lim
i→+∞

P(Ai). Or, par sous-additivité, on a P(Ai) 6
+∞∑

j=i+1

P(Sj = 0).

Comme p ̸= 1

2
dans cette question, 0 < 4p(1 − p) < 1 car

(
p − 1

2

)2
> 0 donc, avec la question précédente,

p(j) = P(Sj = 0) =
+∞

o((4p(1−p))j) et la série géométrique
∑
j>1

(4p(1−p))j converge donc, par comparaison, la



série
∑
j>1

P(Sj = 0) converge. En notant Ri =
+∞∑

j=i+1

P(Sj = 0) son reste d’ordre i, on a donc 0 6 P(Ai) 6 Ri

donc, par encadrement, lim
i→+∞

P(Ai) = 0 et P(R = +∞) = 0. Ainsi, si la marche aléatoire n’est pas

symétrique, la probabilité pour qu’on revienne une infinité de fois à l’origine est nulle.� �
18.11� �Pour k ∈ N∗, on note Bk = “on tire une boule blanche au tirage k”. Il n’y a pas indépendance des tirages

puisque si on tire une boule blanche, on arrête le jeu.

Pour n ∈ N∗, on a donc (Y = n) = B1 ∩ · · · ∩ Bn−1 ∩ Bn et, d’après la formule des probabilités composées,

on a P(Y = n) = P(B1)× P(B2|B1)× · · · × P(Bn|B1 ∩ · · · ∩ Bn−1) ce qui donne, avec les règles des tirages,

P(Y = n) = 1

2
× 1

3
× · · · × 1

n
× n

n+ 1
= n

(n+ 1)!
.

Comme (Y = 0) =
+∞⊔
n=1

(Y = n) d’après l’énoncé, par σ-additivité, on a 1 − P(Y = 0) =
+∞∑
n=1

n

(n+ 1)!
donc

P(Y = 0) = 1 −
+∞∑
n=1

(n+ 1)− 1

(n+ 1)!
= 1 −

+∞∑
n=1

1

n!
+

+∞∑
n=1

1

(n+ 1)!
= 1 − (e − 1) + (e − 1 − 1) = 0 et l’évènement

(Y = 0) = “jamais de boule blanche” est négligeable.

D’après le cours, Y admet une espérance finie si et seulement si la série (nP(Y = n))n∈N est sommable,

ce qui revient à la convergence (tout est positif) de la série
∑
n>1

n2

(n+ 1)!
. Or n2

(n+ 1)!
∼
+∞

1

(n− 1)!
et la

série exponentielle
∑
n>1

1

(n− 1)!
converge. Ainsi, Y admet une espérance finie et E(Y) =

+∞∑
n=1

n2

(n+ 1)!
donc

E(Y) =
+∞∑
n=1

n(n+ 1)− (n+ 1) + 1

(n+ 1)!
=

+∞∑
n=1

1

(n− 1)!
−

+∞∑
n=1

1

n!
+

+∞∑
n=1

1

(n+ 1)!
e−(e−1)+(e−1−1) = e−1 ∼ 1, 72.� �

18.12� �a. Soit Bk = “on tire une boule blanche ou tirage k”, Nk = Bk = “on tire une boule blanche ou tirage k”.

Cas r = 1 : il y a N−1 boules blanches et une seule boule noire dans l’urne. On a XN(Ω) = [[1;N]] dans ce cas

et, pour k ∈ [[1;N]], on a (XN = k) =
( k−1∩

i=1

Bi

)
∩Nk donc, avec la formule des probabilités composées en tenant

compte de la composition de l’urne à chaque étape, P(XN = k) = P(B1)× P(B2|B1)× · · · × P
(
Nk

∣∣∣ k−1∩
i=1

Bi

)
donc P(XN = k) =

( k−1∏
i=1

N− i

N− i+ 1

)
× 1

N− k+ 1
= 1

N
après télescopage. Ainsi, XN suit la loi uniforme sur

[[1;N]] et on a E(XN) =
N∑

k=1

kP(XN = k) = 1

N

N∑
k=1

k =
N(N+ 1)

2N
= N+ 1

2
.

Cas r = N : il n’y a que des boules noires dans l’urne : XN = N est certain, XN(Ω) = {N} et E(XN) = N.

b. On peut modéliser cette expérience par des N-uplets comme BNNBBNN · · ·BN, celui-ci signifiant que la

première boule tirée est Blanche, les deux suivantes Noires, etc..... sachant qu’il doit impérativement y avoir

N− r fois B et r fois N dans cette suite de lettres : en d’autres termes l’ “évènement” BNNBBNN · · ·BN est

égal à B1 ∩N2 ∩N3 ∩ B4 ∩ B5 ∩N6 ∩N7 ∩ · · · ∩ BN−1 ∩NN. On note Ω l’ensemble des tous ces N-uplets, il

y en a

(
N

r

)
car il faut choisir les r tirages qui vont donner une boule noire parmi les N tirages. On prend

aussi la tribu pleine A = P(Ω) et pour P la probabilité uniforme (par symétrie) sur Ω. On a XN(Ω) = [[r;N]]

car il faut au moins r tirages pour prendre toutes les boules noires et au plus N.



Soit k ∈ [[r;N]], alors P(XN = k) =
card ((XN = k))

card (Ω)
(loi uniforme sur Ω, ce qui est justifié dans l’autre

méthode). Or on a card (Ω) =

(
N

r

)
et card ((X = k)) =

(
r− 1

k− 1

)
car il faut forcément tirer une boule noire

au tirage k, des blanches à tous les tirages suivants et il faut choisir parmi les r− 1 premiers tirages les k− 1

tirages qui donnent une boule noire. Ainsi P(XN = k) =

(
k− 1

r− 1

)
(
N

r

) =
(k− 1)!(N− r)!r!
(r− 1)!(k− r)!N!

=
r(k− 1)!(N− r)!

(k− r)!N!
.

Autre méthode : pour k ∈ [[r;N]] = XN(Ω), on pouvait aussi décrire, avec la définition de XN, l’évènement

(XN = k) par (XN = k) =
⊔

16i1<···<ir−16k−1

(( r−1∩
j=1

Nij

)
∩
( ∩

p∈[[1;k−1]]
p/∈{i1,···,ir−1}

Bp

))
∩Nk ∩

( N∩
m=k+1

Bm

)
, ce qui

fait une réunion de

(
k− 1

r− 1

)
évènements incompatibles car il faut choisir les r− 1 entiers i1, · · · , ir−1 parmi

les k− 1 entiers de [[1; k− 1]]. Le premier (dans l’ordre lexicographique par exemple) de ces évènements est

U =
( r−1∩

j=1

Nj

)
∩
( k−1∩

p=r

Bp

)
∩Nk∩

( N∩
m=k+1

Bm

)
et le dernier V =

(( k−r∩
p=1

Bp

)
∩

k−1∩
j=k−r+1

Nj

)
∩Nk∩

( N∩
m=k+1

Bm

)
.

Pour le premier de ces deux évènements, avec la formule des probabilités composées, on obtient la relation

P(U) =
( r−1∏

j=1

r− j+ 1

N− j+ 1

)
×
( k−1∏

p=r

N− p

N− p+ 1

)
× 1

N− k+ 1
×
( N∏

m=k+1

N−m+ 1

N−m+ 1

)
=

r!(N− r)!
N!

. Pour le second,

P(V) =
( k−r∏

p=1

N− r− p+ 1

N− p+ 1

)
×
( k−1∏

j=k−r+1

k− j+ 1

N− j+ 1

)
× 1

N− k+ 1
×
( N∏

m=k+1

N−m+ 1

N−m+ 1

)
=

r!(N− r)!
N!

. On

se rend compte que pour chacun des évènements dont (XN = k) est la réunion incompatible, on va avoir

les mêmes dénominateurs allant en décroissant de N à 1 et les mêmes numérateurs mais pas dans le même

ordre. Comme tous ces évènements ont pour probabilité
r!(N− r)!

N!
et qu’ils sont au nombre de

(
k− 1

r− 1

)
, il

vient P(XN = k) =

(
k− 1

r− 1

)
× r!(N− r)!

N!
=

r(k− 1)!(N− r)!

(k− r)!N!
.

c. Par définition, E(XN) =
N∑

k=r

kP(XN = k) = 1(
N

r

) N∑
k=r

k

(
k− 1

r− 1

)
=

1(
N

r

) N∑
k=r

r

(
k

r

)
avec la formule du

capitaine, ce qui se simplifie avec la formule des colonnes en E(XN) =

r

(
N+ 1

r+ 1

)
(
N

r

) =
r(N+ 1)
r+ 1

< N comme il

se doit. La formule est aussi valable pour les cas limites r = 1 et r = N de la question a..



� �
18.13� �a. Comme S est symétrique réelle, ses valeurs propres sont réelles par le théorème spectral. Pour λ ∈ R,

χS(λ) = (λ − X)2 − Y2 = (λ − X + Y)(λ − X − Y) donc Sp(S) = {X − Y, X + Y} donc, puisque Y(Ω) = N∗ par

définition donc Y > 0, il vient λ = X− Y et µ = X+ Y.

b. S est inversible si et seulement si det(S) = X2 − Y2 = (X − Y)(X + Y) ̸= 0 donc, puisque X + Y > 0, S

est inversible si et seulement si X ̸= Y. Ainsi, (S /∈ GL2(N∗)) = (X = Y) =

+∞⊔
k=1

(X = k, Y = k) et, puisque

ces évènements sont incompatibles et que X et Y sont indépendants et de même loi, par σ-additivité et car

|1− p| < 1, on a P(S /∈ GL2(N∗)) =
+∞∑
k=1

P(X = k)2 =
+∞∑
k=1

p2(1− p)2(k−1) = p2
+∞∑
j=0

((1− p)2)j = p2

1− (1− p)2

simplifié en P(S /∈ GL2(N∗)) = p

2− p
. Ainsi, P(S ∈ GL2(N∗)) = 1− P(S /∈ GL2(N∗)) = 1− p

2− p
=

2(1− p)
2− p

.

c. On sait d’après le cours que S, étant déjà symétrique réelle, est définie positive si et seulement si ses

valeurs propres sont strictement positives donc (S ∈ S
++
2 (R)) = (λ > 0) = (X > Y) =

+∞⊔
k=1

(X > k, Y = k)

car on a toujours µ > 0. À nouveau, par incompatibilité de ces évènements et indépendance de X et Y, par

σ-additivité, on a P(S ∈ S
++
2 (R)) =

+∞∑
k=1

P(Y = k)P(X > k) =
+∞∑
k=1

p(1− p)k−1(1− p)k qui se calcule comme

à la question précédente, P(S ∈ S
++
2 (R)) = p(1− p)

+∞∑
k=1

(
(1− p)2

)k−1
=

p(1− p)

1− (1− p)2
= 1− p

2− p
.

Il est logique de trouver P(S ∈ S
++
2 (R)) = 1

2
P(S ∈ GL2(N∗)) car (λ < 0) et (λ > 0) sont deux évènements

de même probabilité par symétrie entre X et Y.


