
Apprentissage non
supervisé

I Algorithme des k-moyennes
1. Description du problème

On considère des « points » que l’on souhaite répartir dans différentes catégories, en fonction de certaines de leurs
caractéristiques.
Contrairement à l’algorithme des k plus proches voisins, on ne dispose pas d’un ensemble de points de référence ; on va
seulement imposer le nombre de catégories que l’on souhaite créer.

Sur la figure de gauche, on voit qu’il semble raisonnable de regrouper les points en trois sous ensembles. On souhaiterait
les regrouper comme sur la figure de droite.

2. Formalisation du problème
De façon plus formelle, on se donne un entier k ∈ N∗ et on souhaite créer une partition de l’ensemble de points X qui
minimise l’inertie du système.
Pour tout ensemble de points non vide Xi = {xi,j , 1 ⩽ j ⩽ ni}, on définit le barycentre de Xi (ou plutôt l’isobarycentre
de Xi) par

Bi = 1
ni

n∑
j=1

xi,j

On suppose que l’ensemble des points appartient à un espace euclidien dont la norme est notée ∥ ∥.
Enfin, on note Pk l’ensemble des partitions de l’ensemble X en k sous-ensembles non vides.
L’inertie d’une partition P = {X1, . . . , Xk} ∈ Pk, donc la quantité que l’on souhaite minimiser, est définie par

IP =
k∑

i=1

∑
x∈Xi

∥Bi − x∥

PSI1 - Lycée Montaigne Page 1/4

3. L’algorithme des k-moyennes
Pour tenter de minimiser cette quantité, on va procéder de la façon suivante :

• on crée une première partition aléatoire de X en k sous ensembles non vides
• on détermine les barycentres Bi, 1 ⩽ i ⩽ k, de chacun des sous ensembles de cette partition
• on crée une nouvelle partition de X en k sous ensembles en regroupant les points de X en fonction du point Bi

dont ils sont le plus proche.
• on recommence au deuxième point avec cette nouvelle partition jusqu’à ce que le système n’évolue plus, c’est-à-dire

jusqu’à ce que la nouvelle partition soit égale à la précédente.

On peut démontrer que l’inertie du système est décroissante au cours du déroulement de cet algorithme, ce qui assure
qu’il se terminera bien puisque l’ensemble des partitions de X est fini.
Si la convergence est trop lente, on peut choisir d’interrompre la recherche après un certain nombre d’itérations ou bien
lorsque l’inertie du système ne varie pas beaucoup (en dessous d’un certain seuil) au cours d’une ou plusieurs itérations
consécutives.

L’avantage principal de cet algorithme est sa simplicité de mise en œuvre.
Mais il possède plusieurs défauts :

— Cet algorithme ne fournit pas toujours une solution optimale, donc une partition qui minimise l’inertie du système,
mais converge vers une configuration qui réalise un minimum local de l’inertie.

— La solution donnée par cet algorithme dépend de la première partition créée. Si on utilise deux fois de suite cet
algorithme avec le même ensemble X, on peut avoir deux partitionnements différents à la fin selon le choix qui a
été fait au moment de créer la première partition. une des deux solutions peut correspondre à un minimum local et
la deuxième à un autre minimum local (ou au minimum absolu que l’on recherche).

— Pour fonctionner, on doit connaître à l’avance le nombre de classes à créer : dans le cas où ce nombre est inconnu,
on peut être amené à faire des tests avec différentes valeurs de k pour déterminer celle qui est la plus satisfaisante.

II Codage de l’algorithme sur un exemple
On suppose disposer d’un ensemble X de points du plan.
On a pour, commencer, besoin d’une distance euclidienne : dans le plan, on utilisera la norme euclidienne canonique
sur R2.

def d(X,Y) :
return ((X[0] −Y[0]) ∗∗2+(X[1] −Y[1]) ∗∗2) ∗∗0 .5

Il nous faut ensuite une fonction pour calculer le barycentre d’une partie Y non vide de points du plan. On peut noter
que les barycentres ne sont en général pas des points de l’ensemble X lui même.

def barycentre (Y) :
s1 , s2 = 0 ,0
for (x , y) in Y :

s1 += x
s2 += y

return s1 / len (Y) , s2 / len (Y)

Puis une fonction qui, pour un point p du plan et une partie M de points (qui seront les barycentres dans l’utilisation de
cette fonction), détermine l’indice d’un point de M dont p est le plus proche

def plusProche (p ,M) :
ind , d i s t = 0 ,d(p ,M[0])
for i in range (len (M)) :

po int = M[i]
d i s t 1 = d(p , po int)
i f d i s t 1 < d i s t :

ind = i
d i s t = d i s t 1

return ind

PSI1 - Lycée Montaigne Page 2/4

Enfin, une fonction permettant de créer aléatoirement la première partition de X. La fonction shuffle du module random
permet de mélanger une liste, la fonction randint(a,b) du module random renvoie un entier aléatoire de l’ensemble [[a, b]]
(bornes incluses). Il faut faire attention à créer une partition de X en k sous ensembles non vides

import random as rd

def i n i t i a l i s a t i o n (X, k) :
rd . s h u f f l e (X)
part = [[] for _ in range (k)]
on p lace un po in t dans chaque sous ensemble
for i in range (k) :

part [i] . append (X[i])
on r é p a r t i t a l é ato irement l e s au t r e s
for i in range (k , len (X)) :

part [rd . rand int (0 , k−1)] . append (X[i])
return part

On peut alors coder l’algorithme

def kMoy(X, k) :
n = len (X)
part = i n i t i a l i s a t i o n (X, k)
evo lue = True
while evo lue :

B = [barycentre (E) for E in part]
part2 = [[] for _ in range (k)]
for i in range (n) :

ind = plusProche (X[i] ,B)
part2 [ind] . append (X[i])

i f part == part2 :
evo lue = False

part = part2
return part

Cet algorithme peut ne pas fonctionner correctement car il peut, en dehors de l’initialisation, créer une partition dont
un sous ensemble est vide, ce qui provoque une erreur au moment du calcul de barycentre mais ceci ne se produit pas
général, si les points peuvent effectivement se répartir en k classes. Pour corriger ce problème, on peut par exemple placer
dans le sous ensemble vide un point dont la contribution dans la valeur de l’inertie est la plus grande (un point x pour
lequel ∥x − Bi∥ est maximal).

III Exemples d’utilisation
1. Reconnaissance de chiffres

Si on considère un ensemble d’image représentant les 10 chiffres, on peut appliquer cet algorithme (donc avec k = 10) pour
regrouper les images. Si à l’issue de cet algorithme, on affiche les images (de 8 × 8 pixels) correspondant aux barycentres
des sous ensembles créés, on peut obtenir les dessins suivants :

Si on cherche la proportion d’images d’une classe qui correspondent effectivement au bon chiffre, on obtient les résultats
suivants :

chiffre 0 1 2 3 4 5 6 7 8 9
résultat 99% 57% 84% 85% 98% 87% 97% 86% 46% 58%

Le plus mauvais résultat est obtenu pour le chiffre 8, qui donne effectivement l’image la plus « floue » .
Ces résultats sont susceptibles de varier si on exécute à nouveau l’algorithme puisque l’initialisation de la partition sera
sans doute différente.

PSI1 - Lycée Montaigne Page 3/4

2. Compression d’image
Une image couleur de h lignes et ℓ colonnes est codée en Python par une matrice (tableau Numpy) de h lignes et ℓ colonnes
dont chaque élément donne la couleur d’un pixel ; la couleur d’un pixel étant codée par un triplet R,G,B, donnant la
« quantité » de rouge, vert et bleu de la teinte. Chacune de ces couleurs « primaire » R,G,B est codée sur un octet (8
bits), ce qui donne 28 = 256 possibilités pour chaque couleur primaire donc 2566 = 16777216 couleurs disponibles. Une
image nécessite donc h × ℓ × 24 bits en mémoire.
Si on limite le nombre de couleurs utilisées à 16 par exemple, il suffira de 4 bits (24 = 16) pour repérer la couleur de
chaque pixel donc un espace de h × ℓ × 4 bits pour stocker l’image (mais qui sera de moins bonne qualité), en négligeant
l’espace nécessaire à la mémorisation des 16 couleurs utilisées (16 × 24 bits).

Pour déterminer ces 16 couleurs à utiliser, on peut appliquer l’algorithme des k moyennes (avec k = 16) de façon à
déterminer les couleurs les plus « utiles » qui seront les barycentres des 16 parties créées.
Dans l’exemple suivant l’image initiale (de 640×427 pixels) comporte 75792 couleurs alors que celle de droite n’en nécessite
plus que 16.

Image initiale Image avec 16 couleurs

PSI1 - Lycée Montaigne Page 4/4

	Algorithme des k-moyennes
	Description du problème
	Formalisation du problème
	L'algorithme des k-moyennes

	Codage de l'algorithme sur un exemple
	Exemples d'utilisation
	Reconnaissance de chiffres
	Compression d'image

