Apprentissage non
supervisé

I Algorithme des k-moyennes

1. Description du probléme

On considére des « points » que l'on souhaite répartir dans différentes catégories, en fonction de certaines de leurs

caractéristiques.
Contrairement a ’algorithme des k plus proches voisins, on ne dispose pas d’un ensemble de points de référence; on va
seulement imposer le nombre de catégories que ’on souhaite créer.

20 ¢ 'Y ¢ 20 'Y 'y

10 A

~10

—20

T
-10

T
10

T
20

10 A

~10

—20

T
-10

T
10

T
20

Sur la figure de gauche, on voit qu’il semble raisonnable de regrouper les points en trois sous ensembles. On souhaiterait
les regrouper comme sur la figure de droite.

2. Formalisation du probleme

De facon plus formelle, on se donne un entier k € N* et on souhaite créer une partition de ’ensemble de points X qui
minimise 'inertie du systéme.
Pour tout ensemble de points non vide X; = {x; ;,1 < j < n;}, on définit le barycentre de X; (ou plutét l'isobarycentre

de X;) par
1 n
B, = — 0.
n;];IC J

On suppose que 'ensemble des points appartient & un espace euclidien dont la norme est notée || ||.
Enfin, on note Py ’ensemble des partitions de ’ensemble X en k sous-ensembles non vides.

L’inertie d’une partition P = {X7,..., X;} € Pj, donc la quantité que 1’on souhaite minimiser, est définie par
k
=3 Y 1B
i=1zeX;

Page 1

PSI1 - Lycée Montaigne

3. L’algorithme des k-moyennes

Pour tenter de minimiser cette quantité, on va procéder de la fagon suivante :
e on crée une premiere partition aléatoire de X en k sous ensembles non vides
e on détermine les barycentres B;, 1 < i < k, de chacun des sous ensembles de cette partition

e on crée une nouvelle partition de X en k sous ensembles en regroupant les points de X en fonction du point B;
dont ils sont le plus proche.

e on recommence au deuxiéme point avec cette nouvelle partition jusqu’a ce que le systéme n’évolue plus, c’est-a-dire
jusqu’a ce que la nouvelle partition soit égale a la précédente.

On peut démontrer que l'inertie du systéme est décroissante au cours du déroulement de cet algorithme, ce qui assure
qu’il se terminera bien puisque ’ensemble des partitions de X est fini.

Si la convergence est trop lente, on peut choisir d’interrompre la recherche apres un certain nombre d’itérations ou bien
lorsque l'inertie du systéme ne varie pas beaucoup (en dessous d’un certain seuil) au cours d’une ou plusieurs itérations
consécutives.

L’avantage principal de cet algorithme est sa simplicité de mise en ceuvre.
Mais il possede plusieurs défauts :

— Cet algorithme ne fournit pas toujours une solution optimale, donc une partition qui minimise l'inertie du systeme,
mais converge vers une configuration qui réalise un minimum local de I'inertie.

— La solution donnée par cet algorithme dépend de la premiére partition créée. Si on utilise deux fois de suite cet
algorithme avec le méme ensemble X, on peut avoir deux partitionnements différents a la fin selon le choix qui a
été fait au moment de créer la premiere partition. une des deux solutions peut correspondre & un minimum local et
la deuxiéme & un autre minimum local (ou au minimum absolu que l'on recherche).

— Pour fonctionner, on doit connaitre a ’avance le nombre de classes a créer : dans le cas ol ce nombre est inconnu,
on peut étre amené a faire des tests avec différentes valeurs de k& pour déterminer celle qui est la plus satisfaisante.

II Codage de l’algorithme sur un exemple

On suppose disposer d’un ensemble X de points du plan.
On a pour, commencer, besoin d’une distance euclidienne : dans le plan, on utilisera la norme euclidienne canonique
sur R?.
def d(X,Y)

return ((X[0]=Y[0]) **x2+(X[1] =Y [1]) **2) 0.5
Il nous faut ensuite une fonction pour calculer le barycentre d’une partie Y non vide de points du plan. On peut noter
que les barycentres ne sont en général pas des points de ’ensemble X lui méme.

def barycentre (Y)

sl,s2 = 0,0

for (x,y) in Y :
sl += x
s2 4=y

return sl/len(Y),s2/len(Y)

Puis une fonction qui, pour un point p du plan et une partie M de points (qui seront les barycentres dans 'utilisation de
cette fonction), détermine 'indice d’un point de M dont p est le plus proche

def plusProche(p,M)
ind ,dist = 0,d(p,M[0])
for i in range(len(M))
point = M[i]
distl = d(p, point)
if distl < dist
ind = i
dist = distl
return ind

PSI1 - Lycée Montaigne Page 2

Enfin, une fonction permettant de créer aléatoirement la premiere partition de X. La fonction shuffle du module random
permet de mélanger une liste, la fonction randint (a,b) du module random renvoie un entier aléatoire de 1’ensemble [a, b]
(bornes incluses). Il faut faire attention & créer une partition de X en k sous ensembles non vides

import random as rd

def initialisation (X,k)
rd.shuffle (X)
part = [[] for _ in range(k)]
on place un point dans chaque sous ensemble
for i in range(k) :
part [i].append (X[i])
on répartit aléatoirement les autres
for i in range(k,len(X))
part [rd.randint (0,k—1)]. append (X[i])
return part

On peut alors coder 'algorithme

def kMoy (X, k)

n = len (X)
part = initialisation (X, k)
evolue = True

while evolue
B = [barycentre(E) for E in part]
part2 = [[] for _ in range(k)]
for i in range(n)
ind = plusProche (X[i],B)
part2[ind|.append (X[i])
if part = part2
evolue = False
part = part2
return part

Cet algorithme peut ne pas fonctionner correctement car il peut, en dehors de l'initialisation, créer une partition dont
un sous ensemble est vide, ce qui provoque une erreur au moment du calcul de barycentre mais ceci ne se produit pas
général, si les points peuvent effectivement se répartir en k classes. Pour corriger ce probléme, on peut par exemple placer
dans le sous ensemble vide un point dont la contribution dans la valeur de l'inertie est la plus grande (un point x pour
lequel ||z — B;|| est maximal).

IITI Exemples d’utilisation

1. Reconnaissance de chiffres

Si on consideére un ensemble d’image représentant les 10 chiffres, on peut appliquer cet algorithme (donc avec k = 10) pour
regrouper les images. Si & I'issue de cet algorithme, on affiche les images (de 8 x 8 pixels) correspondant aux barycentres
des sous ensembles créés, on peut obtenir les dessins suivants :

I0&71L561313

Si on cherche la proportion d’images d’une classe qui correspondent effectivement au bon chiffre, on obtient les résultats
suivants :

chiffre 0 1 2 3 4) 6 7 8 9
résultat | 99% | 57% | 84% | 85% | 98% | 87% | 97% | 86% | 46% | 58%

Le plus mauvais résultat est obtenu pour le chiffre 8, qui donne effectivement 'image la plus « floue » .
Ces résultats sont susceptibles de varier si on exécute a nouveau l’algorithme puisque Uinitialisation de la partition sera
sans doute différente.

PSI1 - Lycée Montaigne Page 3

2. Compression d’image

Une image couleur de h lignes et £ colonnes est codée en Python par une matrice (tableau Numpy) de h lignes et £ colonnes
dont chaque élément donne la couleur d’un pixel; la couleur d’un pixel étant codée par un triplet R,G,B, donnant la
« quantité » de rouge, vert et bleu de la teinte. Chacune de ces couleurs « primaire » R,G,B est codée sur un octet (8
bits), ce qui donne 2% = 256 possibilités pour chaque couleur primaire donc 256° = 16777216 couleurs disponibles. Une
image nécessite donc h x £ x 24 bits en mémoire.

Si on limite le nombre de couleurs utilisées a 16 par exemple, il suffira de 4 bits (24 = 16) pour repérer la couleur de
chaque pixel donc un espace de h x £ x 4 bits pour stocker I'image (mais qui sera de moins bonne qualité), en négligeant
lespace nécessaire a la mémorisation des 16 couleurs utilisées (16 x 24 bits).

Pour déterminer ces 16 couleurs & utiliser, on peut appliquer 'algorithme des k moyennes (avec k = 16) de facon a
déterminer les couleurs les plus « utiles » qui seront les barycentres des 16 parties créées.

Dans I’exemple suivant 'image initiale (de 640 x 427 pixels) comporte 75792 couleurs alors que celle de droite n’en nécessite
plus que 16.

PSI1 - Lycée Montaigne Page 4/@

	Algorithme des k-moyennes
	Description du problème
	Formalisation du problème
	L'algorithme des k-moyennes

	Codage de l'algorithme sur un exemple
	Exemples d'utilisation
	Reconnaissance de chiffres
	Compression d'image

