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CHAPITRE 12
ESPACES VECTORIELS NORMES,

TOPOLOGIE ET CONTINUITE

(© La topologie générale est une branche des mathématiques qui fournit un vocabulaire et un cadre
général pour traiter des notions de limite, de continuité, et de voisinage. Les espaces topologiques forment
le socle conceptuel permettant de définir ces notions. Elles sont assez générales pour s’appliquer a un grand
nombre de situations différentes : ensembles finis, ensembles discrets, espaces de la géométrie euclidienne,
espaces numériques et matriciels, espaces fonctionnels plus complexes, mais aussi en géométrie algébrique.

La topologie générale définit le vocabulaire fondamental. Elle possede deux prolongements importants,
permettant une analyse plus approfondie encore de la notion générale de forme : la topologie différentielle,
généralisant les outils de lanalyse classique (dérivée, champs de vecteurs, etc.) et la topologie algébrique,
introduisant des invariants calculables tels que les groupes d’homologie.

Un exemple fondamental est celui des espaces métriques, ensembles (de points) au sein desquels une
notion de distance entre les éléments de ’ensemble est définie. Tout espace métrique est canoniquement muni
d’une topologie. Les espaces métrisables sont les espaces topologiques obtenus de cette maniere. L’exemple
correspondant le plus & notre expérience intuitive de ’espace est ’espace affine euclidien a trois dimensions :
la distance entre deux points comme la longueur du segment les reliant.

Quand il s’agit d’un espace vectoriel, les topologies sont souvent (et c’est le cadre ici) associées & des
normes ou la distance entre deux vecteurs est la norme du vecteur différence. Il y a pléthore d’exemples
de ce type dans toutes les branches des mathématiques : espaces numériques, fonctionnels. Développée
notamment par David HILBERT et Stefan BANACH, cette notion d’espace vectoriel normé est fondamentale
en analyse et plus particulierement en analyse fonctionnelle, avec I'utilisation d’espaces de BANACH (toutes
suite de CAUCHY converge) tels que les espaces LP.
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(PROGRAMME]

1 : Topologie d’un espace vectoriel normé

CONTENUS CAPACITES & COMMENTAIRES

Point intérieur a une partie. Ouvert d’'un espace normé. Une boule ouverte est un ouvert.

Stabilité par réunion quelconque, par intersection finie.

Fermé d’un espace normé. Caractérisation séquentielle.

Une boule fermée, une sphere, sont des fermés.

Stabilité par réunion finie, par intersection quelconque.

Point adhérent & une partie, adhérence. L’adhérence est I’ensemble des points adhérents.
Caractérisation séquentielle. Toute autre propriété
de I'adhérence est hors programme.

Partie dense.

Invariance des notions topologiques par passage a une

norme équivalente.

2 : Limite et continuité en un point

CONTENUS CAPACITES & COMMENTAIRES

Limite d’une fonction en un point adhérent & son  Caractérisation séquentielle.
domaine de définition.
Opérations algébriques sur les limites, composition.

Continuité en un point. Caractérisation séquentielle.

3 : Continuité sur une partie

CONTENUS CAPACITES & COMMENTAIRES

Opérations algébriques, composition.

Image réciproque d’un ouvert, d’un fermé par une Si f est une application continue de E dans R alors

application continue. lensemble défini par f(x) > 0 est un ouvert et les
ensembles définis par f(x) = 0 ou f(x) > 0 sont des fermés.

Fonction lipschitzienne. Toute fonction lipschitzienne

est continue.

4 : Espaces vectoriels normés de dimension finie

CONTENUS CAPACITES & COMMENTAIRES

Théoreme des bornes atteintes : La démonstration est hors programme.

toute fonction réelle continue sur une partie non vide

fermée bornée d’un espace vectoriel normé de dimension

finie est bornée et atteint ses bornes.

Continuité des applications linéaires, multilinéaires et La notion de norme subordonnée est hors programme.

polynomiales. Exemples du déterminant, du produit matriciel.
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(PARTIE 12.1 : TOPOLOGIE DANS UN EVN]

[12.1.1 : Ouverts et fermés|

DEFINITION 12.1 :
Soit E un espace vectoriel normé, U une partie de E et a € E, on dit que :
e a est un point intérieur ¢ U si Ir > 0, B(a,r) C U.
o U est un ouvert de E (ou que U une partie ouverte de E) si Va € U, Ir >0, B(a,r) C U.

EXERCICE 12.1 : Montrer qu’un sous-espace ouvert F d’un espace vectoriel normé E est F = E.

REMARQUE 12.1 : o () et E sont des ouverts de E.
e On peut remplacer B(a,r) par B¢(a,r) dans la définition des points intérieurs ou des ouverts.
e On dit point intérieur mais on devrait plutét dire vecteur intérieur car E est un espace vectoriel.
e U est ouverte si et seulement si tous ses points sont intérieurs a elle-méme.
e Les intervalles ouverts de R sont des parties ouvertes.

e Si a est intérieur a A alors a € A mais il existe des points de A qui ne sont pas intérieurs a A.
EXERCICE CLASSIQUE 12.2 : Soit E = C°([0;1], R) et U= {f € E | f(0) > f(1)}.

Est-ce que U est ouvert si on munit E de la norme ||.||s ? Et si on choisit la norme ||.||; ?

(PROPOSITION SUR LES PROPRIETES DES OUVERTS 12.1 :
Soit E un espace vectoriel normé.
e Toute boule ouverte est une partie ouverte.
e Toute réunion (quelconque) de parties ouvertes de E est une partie ouverte de E.

e Toute intersection finie de parties ouvertes de E est une partie ouverte de E.

EXEMPLFE 12.3 : Soit U un ouvert de E et A une partie de E, on définit la somme des parties U
et A, notée U+ A, par U+ A ={x €E|I(u,a) € UxXA, x=u+ a}. Montrer que U+ A est ouvert.

REMARQUE 12.2 : Une intersection quelconque de parties ouvertes peut ne pas étre ouverte.

11
EXEMPLE 12.4 : ﬂ ] - == { = {0} n’est pas un ouvert de R.

nn
ne N*

DEFINITION 12.2 :

Soit E un espace vectoriel normé, F une partie de € et a € E, on dit que :
e a est un point adhérent d F si Vr > 0, B(a,r) NF # 0.
o T est un fermé de E (ou que F est une partie fermée de E) si son complémentaire (dans E) est une

partie ouverte de E.

~

(PROPOSITION 12.2 :
Soit E un espace vectoriel normé, A une partie de E, alors A est fermé si et seulement si tout
point adhérent & A est dans A.

REMARQUE 12.3 : o () et E sont des fermés de E.
e Les intervalles fermés de R sont des fermés.
e ]I existe des parties ouvertes et fermées et des parties ni ouvertes ni fermées.
e Si a € A alors a est adhérent a A mais il existe des points adhérents a A qui ne sont pas dans A.
e Si A est une partie de R non vide et majorée, alors Sup A est adhérent a A.
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( ’ ’ ’
PROPOSITION SUR LES PROPRIETES DES FERMES 12.3 :
Soit E un espace vectoriel normé.

e Toute boule fermée et toute sphére est une partie fermée.

e Toute réunion finie de parties fermées de E est une partie fermée de E.

e Toute intersection (quelconque) de parties fermées de E est une partie fermée de E.
- J

REMARQUE 12.4 : Une réunion quelconque de parties fermées peut ne pas étre fermée.

EXEMPLE 12.5 : Dans le R-espace des suites réelles bornées muni de la norme ||u||oo = Sup |un|,
neN

soit I’ensemble S des suites stationnaires. Montrer que toute suite convergente est adhérente a S.

THEOREME DE CARACTERISATION SEQUENTIELLE DES POINTS ADHERENTS ET
DES PARTIES FERMEES (ENORME) 12.4 :

Soit A et F deux parties d’un espace vectoriel normé E et a € E :

e a est adhérent & A si et seulement s’il existe (un)neny € AV telle que a = lim un.
n—oo

e F est fermée si et seulement si toute suite (un)nen € FY convergente vérifie lim u, € F.
n—oo

REMARQUE 12.5 :

e Cela ne veut pas dire que toute suite de vecteurs appartenant a une partie fermée F converge mais

que si une telle suite de vecteurs de F converge alors sa limite est aussi dans F.
e Ce qui précéde signifie que “F est fermée si et seulement si tout point adhérent a F appartient a F”.

EXEMPLE 12.6 : Montrer que tout fermé F d’un espace vectoriel normé E peut s’écrire comme

intersection d’une suite décroissante d’ouverts.

[12.1.2 : Adhérence et densité]

DEFINITION 12.3 :
Soit E un espace vectoriel normé, A une partie de E, on définit 'adhérence de A comme étant la partie de

E contenant les points adhérents a A ; on la note A.

REMARQUE HP 12.6 : Les deux notions qui suivent viennent de disparaitre du programme :
[e]
e L’intérieur de A défini comme la partie de E contenant les points intérieurs a A, notée A .
e La frontiére de A, notée Fr(A), est définie par Fr(A) = A\ A.

o

[e] J— —
e On adonc AC A CA et Fr(A) C A et 'égalité Fr(A)N A = ().

REMARQUE 12.7 : Soit E un espace normé, A est fermé.

EXEMPLE 12.7 : Soit C C E un convexe, montrer que C l'est aussi.

DEFINITION 12.4 :

Soit E un espace normé, A C E, on dit que A est dense dans E si A = E.

EXEMPLE 12.8 : Qet R\ Q sont denses dans R.
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EN PRATIQUE : Soit E un espace vectoriel normé et A une partie de E, a € E, pour montrer que :
e A est ouverte, on prouve que : Ya € A, Ir >0, Vb €E, |[b—a||<T=b € A.

e A est ouverte, on ’exprime comme réunion d’ouverts ou intersection finie d’ouverts.
e A est ouverte, on établit (séquentiellement) que son complémentaire est fermé.

e A est ouverte, on trouve f : E — R continue et U un ouvert de R (habituellement des intervalles
ouverts R*%, R*,]0;1[ ou ] —1;1[) tels que A = £~ (U).

e A est fermée, on I’exprime comme intersection de fermés ou réunion finie de fermés.

e A est fermée, on établit que son complémentaire est ouvert.

e A est fermée, on trouve f : E — R continue et F un fermé de R (habituellement des intervalles fermés
Ry, R_, [0;1], [-1;1] ou {0}) tels que A = f~1(F).

e A est fermée, on prouve que si (un)nen € AN converge, alors nEToo un € A.

e a est adhérent a A, on vérifie que Vr > 0, Ix € A, |[x —a|| < 1.

e a est adhérent a A, on trouve (un)nen € AN telle que Um u, = a.
n—-4oo

e A est dense, pour tout x € E, on trouve une suite (un)nen € AN telle que HT Uy = X.
n—+oo

12.1.3 : Invariance de ces notions avec des normes équivalentes

PROPOSITION D’INVARIANCE PAR EQUIVALENCE DES NORMES 12.5 :

Soit un espace vectoriel E et Ny, N, deux normes équivalentes dans E. SiACEetackt:
e a est intérieur & A dans ’espace vectoriel normé (E,N;) <= a est intérieur & A dans (E,N3).
e a est adhérent & A dans ’espace vectoriel normé (E,N;) <= a est adhérent & A dans (E,N3).
e A est ouvert dans ’espace vectoriel normé (E,Nj) <= A est ouvert dans (E,N3).
e A est fermé dans I’espace vectoriel normé (E,Nj) <= A est fermé dans (E,N;).

e A est dense dans ’espace vectoriel normé (E,N;) <= A est dense dans (E,N3).
-

REMARQUE 12.8 : e Ces notions topologiques dépendent en général des normes employées.

e En dimension finie, pas besoin de préciser la norme choisie, elles sont toutes équivalentes : on parle
donc de la topologie des normes.

[PARTIE 12.2 : LIMITE ET CONTINUITE PONCTUELLE,

[12.2.1 : Limite]

DEFINITION 12.5 :

Soit (E, [l HE), (F, [|. ||F) deuz espaces vectoriels normés, A CE, f: A — F, a un point de E adhérent a A,
CEF, on dit que f tend vers ( en a si Ve >0, Ja >0, Vx €A, |[x —a|lge L a = ||[f(x) — {||r < e.

REMARQUE 12.9 : e On peut remplacer les inégalités strictes par des larges sans changer la notion.

e [’existence et la valeur d’une limite dépend des normes employées dans E et dans F.

e Si E et F sont de dimensions finies, la convergence de f et la limite sont indépendantes des normes.

PROPOSITION SUR L’UNICITE DE LA LIMITE DES FONCTIONS 12.6 :

Si f admet une limite en a alors elle est unique.
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DEFINITION 12.6 :

Awvec les notations de la définition précédente, le vecteur € est noté imf ou lim f(x) : limite de f en a.
a X—a

EXEMPLE 12.9 : Soit f: R2\ {(0,0)} — R définie par f(x,y) = — xy(x —y) 5.
X"+ 21x[ [yl +y

Déterminer la limite de la fonction f en (0, 0).

DEFINITION 12.7 :

Soit f: A — R, ot A est une partie d’un espace vectoriel normé €, et a un point de E adhérent a A ;
(i) Umf =400 siVK € R, Ja >0, Vx € A, ||x — a|]|[g < « = f(x) > K.
a

(i) lim f = —o0 siVK € R, Ja >0, Vx € A, ||x — a||g < « = f(x) < K.

Soit I un intervalle de R, F un espace vectoriel normé, f:1—F et L €F ;
(i) Si1 n'est pas majoré, lJ}mf ={siVe>0, IKe R, ¥x €1, x>K=|[f(x) —||r <.
(o]

(i) Si1 n'est pas minoré, imf=1{ siVe >0, IK € R, ¥x € I, x < K= ||f(x) — {||F < ¢.
— 00

Ce sont les limites infinies ou les limites en ’infini.

REMARQUE 12.10 : Dans la suite, si 1 est un intervalle non majoré, on dit (par abus) que +o0o est

adhérent a 1. De méme, si 1 est non minoré, on dit que —oo est adhérent a 1.

12.2.2 : Continuité en un point

DEFINITION 12.8 :

Soit A est une partie de E, f: A = F, a € A, on dit que f est continue en a si limf = f(a).
a

REMARQUE 12.11 : Soit A est une partie de E, f : A = F, a € A\ A, on suppose que f admet une

limite en a, on dit que f est prolongeable par continuité en a. La fonction f définie sur A U {a} par

f(x) = f(x) six € A et f(a) = Umf est continue en a (prolongement par continuité de f en a).
a

THEOREME DE CARACTERISATI’ON SEQUENTIELLE DE LA LIMITE DES
FONCTIONS ET DE LA CONTINUITE 12.7 :

Soit f: A — F, a adhérent & A et b € F, alors on a 1’équivalence qui constitue la caractérisation
séquentielle de la limite : (limf=1b) <= (Y(un) €AY, lm up=a= lim f(un) =b).
a n—+o0 n—oo

Soit f : A — F et a € A, alors on adapte pour obtenir la caractérisation séquentielle de la

continuité : (f continue en a) <= (V(un) € AY, lim u, =a= lm f(un) = f(a)).
n—-+o00 n—oo

2
EXEMPLE 12.10 : f: R? — R définie par f(x,y) = 4—x+y—2, (0,0) = 0 est-elle continue en (0,0) ?
X Y

PROPOSITION DE CARACTERISATION DE LIMITE PAR LES COORDONNEES 12.8 :

Soit E et F des espaces vectoriels normés, A C E, B = (vq,---,vp) une base de F de dimension p,
P P

f:A—>Fet,pour k€ [1;p], b= > byvk EFetles f: A = Ktelles que: Vx € A, f(x) = > fi(x)vk.
k=1 k=T

Alors on a I’équivalence : limf =b <= Vk € [1;p], limfx = by.
a a
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REMARQUE 12.12 : @ dimF = p : I'étude de f sur A équivaut a I'étude de p applications de A dans K.
e Par contre, si E de dimension finie et si B = (e1,--+,en) une base de E, I'étude de f : E — F au

n
voisinage de a = Y ayeyx n’est pas équivalente a I'étude des n applications partielles f, : K — F (pour
k=1
k € [1;n]) définies par fi(xik) = f(aje; + -+ + xxex + - - - + anen) au voisinage de ay.

2 2
EXEMPLE 12.11 : Soit f: R? — R définie par f(x,y) = ﬁ? si (x,y) # (0,0) et £(0,0) = 1.
x| + [y

Alors f n’est pas continue en (0,0) malgré 1’étude des applications partielles au voisinage de (0,0).

N

(PROPOSITION 12.9 :
Si f: A — F admet une limite en a adhérent a A alors f est bornée au voisinage de a, ce qui se
traduit par : Ir >0, IK € Ry, Vx € A, ||x — a|le <= ||f(x)||r <K.

Soit f: A = F, a adhérent 4 A, b €F et ¢ : A — R, telle que ||f(x) — b||r < ¢(x) au voisinage de a.

On a alors 'implication : limg =0 = limf=b.
a a
- J

REMARQUE 12.13 : o Cela permet de se ramener a des fonctions de référence grace aux majorations.
e On a méme (et grace a ce qui précede), si im f = b, alors lim ||f||r = |[b][F.
a a

( 2’ 2’
PROPOSITION OPERATOIRE SUR LES LIMITES ET LA CONTINUITE 12.10 :

Soit f et g définies de A dans F et a adhérent a A :
e si f et g admettent des limites (finies) en a alors : V(x,f) € K2, application of + pg
admet aussi une limite (finie) en a et on a : lim(af + fg) = alimf+Blimg ;
a a a

e si f et g sont continues en a alors : V(x,B) € K2, af + g est aussi continue en a.
Soit E, F et G des espaces vectoriels normés, A une partie de E et B une partie de F, f: A — F
et g: B — G telles que f(A) C B :

e si a est adhérent a A, b = 11(11111‘ existe (finie ou non), b est adhérent a B et ligng existe

(finie ou non), alors gof admet une limite en a et limgof = libmg ;
a

e si f est continue en a et si g continue en f(a) alors g o f est continue en a.
Soit A\:A —> K, f: A —F et a adhérent a A :

e si A et f admettent des limites (finies) en a alors Af aussi et lim(Af) = limA X lim f

a a a

e si A et f sont continues en a alors Af est continue en a.
Soit f: A — K et a adhérent a A :

e si f admet une limite (finie) non nulle en a alors f ne s’annule pas au voisinage de a,

-1
% admet une limite en a et lim 1_ (lim f) .

a a

e si f est continue en a et si f(a) # 0 alors 1; est continue en a.

REMARQUE 12.14 : Sif: A — F, a € A, si f est continue en a alors ||f||¢ est continue en a.

EN PRATIQUE : Soit A une partie de E, f: A — F et a adhérent a A et b € F, pour montrer que :
e imf = b, on vérifie que Ve >0, Jou >0, ¥x € A, [|x — a|]| < o« = ||[f(x) — b]| < e.

a

e limf = b, on établit que si (un)nen € A" tend vers a, alors lim f(u,) =b.
a n—+4oo

e limf =b, si dim(F) < 400, f= (f1,---,fp), L = ({1,--,{p), on prouve Yk € [1;p]l, im fic = .
a a

e limf = b, on utilise les propriétés algébriques des limites en exprimant f différemment ou f est
a

carrément continue en a € A par opérations algébriques et b = f(a).
e f ne tend pas vers b en a, on trouve une suite (un)neny € AN qui tend vers a alors que pourtant
(f(un))neN ne tend pas vers b.
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[PARTIE 12.3 : CONTINUITE SUR UNE PARTIE]

’12.3.1 : Applications continues‘

DEFINITION 12.9 :

Soit E et F deuz espaces vectoriels normés, A une partie de E et f: A — F.
On dit que f est continue sur A si f est continue en tout point (ou vecteur) a de A.
On note C°(A,F) l’ensemble des fonctions continues sur A et a valeurs dans F.

REMARQUE 12.15 : Le caractére continu ou non des applications dépend des normes employées, mais
ne change pas si on prend des normes équivalentes. En dimension finie, cela ne dépend pas des normes.

THEOREME DE CARACTERISATION SEQUENTIELLE DE LA CONTINUITE 12.11 :

Soit f: A — F, la fonction f est continue sur A si et seulement si pour toute suite (u,) € AN qui
converge vers un vecteur a € A, on a lim f(un) = f(a).
n—oo

REMARQUE 12.16 : Soit E un espace vectoriel normé, f : E — E, et (un)nen définie par uo € E,

Vn € N, unt1 = f(un). Si (un)nen converge vers { ot f est continue alors f({) = € (vecteur fixe de f).

PROPOSITION OPERATOIRE SUR LA CONTINUITE 1 12.12 :

Si (f,g) € C°(A,F)? et («,B) € K? alors of + Bg € C°(A,F) (combinaison linéaire).
Ainsi C°(A,F) est un sous-espace vectoriel de F(A,F).

Si f € C°(A,F), si g€ C°(B,G) et si f(A) C B alors gof € C°(A,G) (composition).
Si f € C°(A,F) et B C A alors f|lg € C°(B,F) (restriction).

Si f € C°(A,F) alors ||f|| € C°(A, R) (norme).

)

~

(. P -
PROPOSITION DE CONTINUITE PAR LES FONCTIONS COORDONNEES 12.13 :
Soit A une partie d’un espace vectoriel normé, F un espace vectoriel normé de dimension finie

pet B = (e, -,ep) une base de F. Si f: A — F, on note fq,---,f, les applications de A dans K
P

définies par Vx € A, f(x) = ) fx(x)ex. Alors on dispose de I’équivalence suivante :
k=1

(f est continue sur A) — (f1,-~-,fp sont continues sur A).
- J

( 2 ,

PROPOSITION OPERATOIRE SUR LA CONTINUITE 2 12.14 :

Si A € CO°(A, K) et f € CO(A,F) alors Af € C°(A,F) (multiplication par un scalaire).
Si A€ Co%A, K) et ue COA, K) alors Ap € C°(A, K) (produit de fonctions scalaires).

Par conséquent : C°(A, K) est une sous-algébre de F(A, K).

Si f € CO(A, K) vérifie Vx € A, f(x) # 0 alors 1? € C°(A, K) (inverse d’une fonction scalaire).

2,2V, /2,4
EXEMPLE 12.12 : f: R?® — R définie par f(x,y,z) = n(1+y é ) zzy + 1 st continue.
cos(xy”) +e“ +1




CONTINUITE SUR UNE PARTIE 203

REMARQUE HP 12.17 : Soit E, F deux espaces normés et f : E — F une application continue sur E :

e Si U est un ouvert de F alors f~1(U) est un ouvert de E.
e SiV est un fermé de F alors f~'(V) est un fermé de E.

Ce théoréme est hors programme, on utilisera seulement sa conséquence essentielle au programme.

THEOREME SUR LES IMAGES RECIRROQUES PAR UNE APPLICATION REELLE
CONTINUE D’OUVERTS OU DE FERMES 12.15 :

Soit E un espace vectoriel normé, f: E — R une application continue sur E et a € R :

o 1(Ja;+ocf) et f~1(] — oo;a]) sont des ouverts de E.

o 71 ({a}), ' ([a; +oo]) et (] — c0;a]) sont des fermés de E.

REMARQUE 12.18 : Cette propriété est fausse pour les images directes :

e f:x > x? est continue sur R et f(] —1;1[) = [0; 1] n’est pas ouvert.

e La fonction exponentielle est continue sur R et exp(R) = R’ n’est pas fermé.

EXERCICE 12.13 : L’ensemble O(n) des matrices orthogonales de My, (R) (celles qui vérifient
MT™™ = I,,) est un compact.

THEOREME DES BORNES ATTEINTES POUR UNE FONCTION REELLE SUR UN
COMPACT (ENORME) 12.16 :

Si E est un espace vectoriel normé de dimension finie, A C E et f : A = R continue sur A et

K C A une partie fermée bornée non vide de E, alors “f est bornée sur K et elle y atteint ses

bornes” : MKinf et MKaxf existent.

DEMONSTRATION : hors programme.

REMARQUE 12.19 :

e Un corollaire : si E est un espace vectoriel normé de dimension finie, A CEetf: A —-FetKCA
une partie fermée bornée de E (K #£ () : MKin [If]|F et MKax [|f]|¢ existent.
e Une autre application classique : si K est une partie fermée bornée de E (espace vectoriel normé de

dimension finie) et f : K — R est continue sur K alors il existe o > 0 tel que Vx € K, f(x) > «.

12.3.2 : Applications lipschitziennes

DEFINITION 12.10 :

Soit f: A — F, ou A est une partie d’un espace vectoriel normé E, F un espace normé et k € R .

On dit que f est k-lipschitzienne si V(x,y) € A%, |[f(x) — f(y)||r < K||x —y||e-

On dit que f est lipschitzienne s’il existe k > 0 tel que f soit k-lipschitzienne.

REMARQUE 12.20 : e Bien siir, la constante de LIPSCHITZ dépend des normes employées.

e Par contre, le caractere lipschitzien ne dépend pas des normes équivalentes choisies.

EXEMPLE 12.14 : e L’application x — ||x|| de E dans R est 1-lipschitzienne.

e Les applications cy : (x1,--+,%xn) € K™ — xi sont 1-lipschitziennes pour || . ||co-




204 ESPACES VECTORIELS NORMES DE DIMENSION FINIE

EXERCICE CLASSIQUE 12.15 : Soit E un espace vectoriel normé de dimension finie, A est une
partie non vide de E et x € E, on pose d(x,A) = Inf ({|[x — a|| | a € A}).

a. Montrer lapplication d : x € E — d(x,A) est 1-lipschitzienne.
b. Etablir que : x € A <= d(x,A) = 0.

c. Justifier que si A est fermée, il existe un vecteur ap € A tel que d(x, A) = ||x — ao]].

PROPOSITION SUR LES APPLICATIONS LIPSCHITZIENNES 12.17 :
Si f, g sont lipschitziennes sur A : V(a, ) € K2, («f + Bg) est lipschitzienne sur A.

Si f est lipschitzienne sur A, g lipschitzienne sur B, f(A) C B : gof est lipschitzienne sur A.

REMARQUE 12.21 : Le produit d’applications lipschitziennes n’est pas toujours lipschitzien.

EXEMPLE 12.16 : idg est 1-lipschitzienne mais x + x? ne I'est pas (mais pourtant continue).

THEOREME DE CONTINUITE D’UNE APPLICATION LIPSCHITZIENNE 12.18 :

Si f est lipschitzienne sur A alors f est continue sur A.

EXEMPLE 12.17 : La fonction f : x — In(x) est continue mais pas lipschitzienne de R dans R.

]12.3.3 : Applications linéaires, multilinéaires et polynomiales\

REMARQUE HP 12.22 : Seule la continuité en dimension finie est au programme, mais pour information

soit (E,||.]le), (F||.|[f) deux espaces vectoriels normés avec E # {0g}, f € £(E,F), il y a équivalence de :
(i) f est continue sur E.
(ii) f est continue en Og.
(iii) Il existe k € Ry tel que Vx € E, ||f(x)||r < Kk|[x||e.

(iv) f est lipschitzienne sur E.

Si f est continue, on définit sa norme subordonnée a ||.||e et ||.||r par [||f]|| = Sup ||f(X)HF
x€E\{O0e} [[x[|e

Ceci signifie que Vx € E, ||[f(x)|lr < ||If|ll ||x]|e et que si k € Ry vérifie Vx € E, ||f(x)||r < k|[x||e, alors
k > |||f|||. Ainsi, |||f]|| est la plus petite des constantes de lipschitzianité de f.

+oo
ORAL BLANC 12.18 : £ = R[X] muni des normes N1 (P) = > ‘P(k) (0)‘ et N2(P) = Sup |P(t)]:
k=0 te[=151]

e Montrer que la dérivation est continue dans E muni de Ny et calculer sa norme.

e Montrer que la dérivation n’est pas continue dans E muni de N,. Comparer N7 et Nj.

THEOREME DE CONTINUITE DES APPLICATIONS LINEAIRES EN DIMENSION
FINIE (ENORME) 12.19 :

Soit (E,||.||e) un espace normé de dimension finie, (F||.[[f) un espace normé de dimension

quelconque. Toute application linéaire de E vers F est lipschitzienne donc continue.

REMARQUE FONDAMENTALE 12.23 : En dimension finie, tout sous-espace vectoriel est fermé.

REMARQUE HP 12.24 : Avec les hypothéses du théoréme ci-dessus, si f € L(E,F), on a méme mieux :
[l = Max [[f(x)|[r. Cest-a-dire : 3x# 0e € E, [[f(x)l[r = [[fll[ x [x|le-

[1xlle=

EXEMPLE 12.19 : P € GL,(K) alors f € £(M(K)) définie par f(M) = P~"MP est continue.
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EXFERCICE 12.20 : Soit une forme linéaire f € (R™)* et A = (ai)1<icn € M1,n(R) sa matrice

dans la base canonique, ce qui signifie que f(x1,---,xn) = a;x7 + - - + anxn, alors f est continue sur
R™ et :
n
e si R™ est muni de ||.||co, alors |||[f||lcc = >_ |ai] = |]a]|1-
e si R™ est muni de ||.||1, alors |||f]||1 = Max lai| = |lal|so-
1<ign

n 1/2
o si R™ est muni de ||. ||, alors ||[f]||2 = ( ) \ai|2) = [d||2.
i=1

REMARQUE HP 12.25 :
e Soit E un espace vectoriel normé de dimension finie et F un espace vectoriel normé quelconque, alors
Papplication f € £L(E,F) — |||f||| est une norme sur £(E,F).

e Soit E et F deux espaces vectoriels de dimensions finies, G un espace vectoriel normé (de dimension
quelconque), f € L(E,F) et g € L(F,G) alors on a : |||g o ||| < |||gll] x |I[f]]]-
e Si E est un espace vectoriel normé de dimension finie alors, d’apres ce qui précede, I'application

f — |||f||| est une norme d’algébre sur £(E).

PROPOSITION 12.20 :

Soit E, F deux K-espaces vectoriels normés de dimensions finies, G un K-espace vectoriel
quelconque et B : E X F — G une application bilinéaire :

o Il existe k € Ry tel que V(x,y) €E X F, ||B(x,y)|lc <k x ||x|[e % |[yl|r.
e B est continue sur E x F.

REMARQUE 12.26 : o L’application ¢ : My (K)? — M, (K) définie par ¢(A,B) = AB est continue.
e L’application 6 : £(E)? — £(E) définie par 6(u,v) = wov est continue si E de dimension finie.
e L’application V¥ : K X E — E telle que $(A,x) = Ax est continue si E est de dimension finie.

e Tout produit scalaire sur un espace euclidien est continu.

DEFINITION 12.11 :

Soitp > 1, F, Ey,---,E, des espaces vectoriels normés. Alors f: Eq X -+ X E, = F est dite p-linéaire si
pour tout k € [1;p] et tout p — T-uplets (x1,- -+, Xk—1,Xk41,---,Xp) € B X +-- X Ex_1 X Exq1 X --- X Ep,
Vapplication ¢y : Ex — F définie par fic(x) = f(x1,- -+, Xk—1,%, Xk41, -, Xp) est linéaire.

P
REMARQUE 12.27 : La plus simple est le produit P, : RP — R défini par Pp(x1,---,xp) = [ xx.
k=1
PROPOSITION 12.21 :
Toute application multilinéaire en dimension finie est continue.

EXEMPLE 12.21 : Sip € N* alors P, : My (K) — My (K) telle que P, (A) = AP est continue.

DEFINITION 12.12 :

Soit p = 1, on dit que f : KP — K est une application polynomiale si elle est combinaison linéaire
d’applications du type (x1,---,xp) > xlf’ ~--xgp avec (K1,---,kp) € NP,

EXEMPLE 12.22 : f: R® — R définie par f(x,y,z) = x*y?z + 5xy>3z> est polynomiale de degré 7.




206 ESPACES VECTORIELS NORMES DE DIMENSION FINIE

PROPOSITION 12.22:
Toute application polynomiale est continue sur KP.

REMARQUE 12.28 : L’application det : M, (K) — K (par extension) est polynomiale en ses coefficients,

multilinéaire en ses colonnes donc continue.

EXERCICE CLASSIQUE 12.23 : Montrer que GL,,(K) est un ouvert dense de M, (K).

EN PRATIQUE : Soit E et F deux espaces normés, A C E et f: A — F, pour montrer que :
e f est continue, on établit qu’elle est linéaire ou multilinéaire si dim(E) < 4o0.
e f est continue, on vérifie qu’elle est polynomiale si E = KP.
e f est continue, on vérifie qu’elle est lipschitzienne.
e f est continue, on la décompose et on utilise la stabilité de la continuité par opérations.
e f est continue, on vérifie la continuité de chaque fi si f = (f1,---,fp) et dim(F) = p < +o0.
e f n’est pas continue, on trouve (un) € AN qui tend vers a € A et (f(un))neN qui diverge.

e f n'est pas continue, on trouve (u,) € AN qui tend vers a € A avec HT flun) =L # f(a).
n—+oo

+oo
REMARQUE FONDAMENTALE 12.29 : On pose, pour p > 1 et A € Mp(K), exp(A) = >

n=0 n!’

e La série converge absolument ce qui assure l'existence de exp(A).

e Si D = diag(A1,- -+, Ap), alors exp(D) = diag(eM, -+, etv).

e exp(A) est un polynéme en A car K[A] est un sous-espace vectoriel fermé de M, (K).

e Si A et B commutent : exp(A+B) = exp(A) exp(B). Ainsi exp(A) € GL,(K) et exp(A)~" = exp(—A).
e SiP € GL,(K), exp (PAP™!) = Pexp(A)P~'. Le calcul de exp(A) si A est diagonalisable est facile.

o Alors Spc (exp(A)) = exp (Spc(A)) et det(exp(A)) = exp (tr(A)).

(COMPETENCES|

e Maitriser les opérations entre parties ouvertes et fermées et savoir les caractériser.

e Penser prioritairement aux suites pour montrer qu’une partie est fermée.

e Comprendre les généralisations des propriétés des limites aux fonctions entre vecteurs.

e Utiliser la caractérisation séquentielle pour montrer une continuité ou 1'utiliser pour une limite.
e Connaitre les différentes structures d’ensembles de fonctions continues.

e Montrer qu’'une partie est ouverte ou fermée avec les images réciproques d’intervalles.

e Penser sans modération au théoreme des bornes atteintes pour établir ’aspect borné.

e Savoir montrer qu'une fonction est lipschitzienne pour établir sa continuité.

e Maitriser I’équivalence entre lipschitzianité et continuité pour des applications linéaires.

e Trouver la constante optimale de lipschitzianité pour une application linéaire en dimension finie.

e Reconnaitre le cadre des applications bilinéaires ou polynomiales pour montrer la continuité.



