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CHAPITRE 12

ESPACES VECTORIELS NORMÉS,

TOPOLOGIE ET CONTINUITÉ⊙
La topologie générale est une branche des mathématiques qui fournit un vocabulaire et un cadre

général pour traiter des notions de limite, de continuité, et de voisinage. Les espaces topologiques forment
le socle conceptuel permettant de définir ces notions. Elles sont assez générales pour s’appliquer à un grand
nombre de situations différentes : ensembles finis, ensembles discrets, espaces de la géométrie euclidienne,
espaces numériques et matriciels, espaces fonctionnels plus complexes, mais aussi en géométrie algébrique.

La topologie générale définit le vocabulaire fondamental. Elle possède deux prolongements importants,
permettant une analyse plus approfondie encore de la notion générale de forme : la topologie différentielle,
généralisant les outils de l’analyse classique (dérivée, champs de vecteurs, etc.) et la topologie algébrique,
introduisant des invariants calculables tels que les groupes d’homologie.

Un exemple fondamental est celui des espaces métriques, ensembles (de points) au sein desquels une
notion de distance entre les éléments de l’ensemble est définie. Tout espace métrique est canoniquement muni
d’une topologie. Les espaces métrisables sont les espaces topologiques obtenus de cette manière. L’exemple
correspondant le plus à notre expérience intuitive de l’espace est l’espace affine euclidien à trois dimensions :
la distance entre deux points comme la longueur du segment les reliant.

Quand il s’agit d’un espace vectoriel, les topologies sont souvent (et c’est le cadre ici) associées à des
normes où la distance entre deux vecteurs est la norme du vecteur différence. Il y a pléthore d’exemples
de ce type dans toutes les branches des mathématiques : espaces numériques, fonctionnels. Développée
notamment par David Hilbert et Stefan Banach, cette notion d’espace vectoriel normé est fondamentale
en analyse et plus particulièrement en analyse fonctionnelle, avec l’utilisation d’espaces de Banach (toutes
suite de Cauchy converge) tels que les espaces Lp.
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Stabilité par réunion finie, par intersection quelconque.
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Image réciproque d’un ouvert, d’un fermé par une Si f est une application continue de E dans R alors

application continue. l’ensemble défini par f(x) > 0 est un ouvert et les
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PARTIE 12.1 : TOPOLOGIE DANS UN EVN� �

12.1.1 : Ouverts et fermés

DÉFINITION 12.1 :

Soit E un espace vectoriel normé, U une partie de E et a ∈ E, on dit que :

• a est un point intérieur à U si ∃r > 0, B(a, r) ⊂ U.

• U est un ouvert de E (ou que U une partie ouverte de E) si ∀a ∈ U, ∃r > 0, B(a, r) ⊂ U.

EXERCICE 12.1 : Montrer qu’un sous-espace ouvert F d’un espace vectoriel normé E est F = E.

REMARQUE 12.1 : • ∅ et E sont des ouverts de E.
• On peut remplacer B(a, r) par Bf(a, r) dans la définition des points intérieurs ou des ouverts.
• On dit point intérieur mais on devrait plutôt dire vecteur intérieur car E est un espace vectoriel.
• U est ouverte si et seulement si tous ses points sont intérieurs à elle-même.
• Les intervalles ouverts de R sont des parties ouvertes.

• Si a est intérieur à A alors a ∈ A mais il existe des points de A qui ne sont pas intérieurs à A.

EXERCICE CLASSIQUE 12.2 : Soit E = C0([0; 1], R) et U = {f ∈ E | f(0) > f(1)}.
Est-ce que U est ouvert si on munit E de la norme || . ||∞ ? Et si on choisit la norme || . ||1 ?� �

PROPOSITION SUR LES PROPRIÉTÉS DES OUVERTS 12.1 :

Soit E un espace vectoriel normé.

• Toute boule ouverte est une partie ouverte.

• Toute réunion (quelconque) de parties ouvertes de E est une partie ouverte de E.

• Toute intersection finie de parties ouvertes de E est une partie ouverte de E.� �
EXEMPLE 12.3 : Soit U un ouvert de E et A une partie de E, on définit la somme des parties U

et A, notée U+ A, par U+ A = {x ∈ E | ∃(u, a) ∈ U× A, x = u+ a}. Montrer que U+ A est ouvert.

REMARQUE 12.2 : Une intersection quelconque de parties ouvertes peut ne pas être ouverte.

EXEMPLE 12.4 :
∩

n∈N∗

]
− 1

n
;
1

n

[
= {0} n’est pas un ouvert de R.

DÉFINITION 12.2 :

Soit E un espace vectoriel normé, F une partie de E et a ∈ E, on dit que :
• a est un point adhérent à F si ∀r > 0, B(a, r) ∩ F ̸= ∅.
• F est un fermé de E (ou que F est une partie fermée de E) si son complémentaire (dans E) est une

partie ouverte de E.

� �
PROPOSITION 12.2 :

Soit E un espace vectoriel normé, A une partie de E, alors A est fermé si et seulement si tout
point adhérent à A est dans A.� �

REMARQUE 12.3 : • ∅ et E sont des fermés de E.
• Les intervalles fermés de R sont des fermés.
• Il existe des parties ouvertes et fermées et des parties ni ouvertes ni fermées.
• Si a ∈ A alors a est adhérent à A mais il existe des points adhérents à A qui ne sont pas dans A.
• Si A est une partie de R non vide et majorée, alors SupA est adhérent à A.
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PROPOSITION SUR LES PROPRIÉTÉS DES FERMÉS 12.3 :

Soit E un espace vectoriel normé.

• Toute boule fermée et toute sphère est une partie fermée.

• Toute réunion finie de parties fermées de E est une partie fermée de E.

• Toute intersection (quelconque) de parties fermées de E est une partie fermée de E.� �
REMARQUE 12.4 : Une réunion quelconque de parties fermées peut ne pas être fermée.

EXEMPLE 12.5 : Dans le R-espace des suites réelles bornées muni de la norme ||u||∞ = Sup
n∈N

|un|,

soit l’ensemble S des suites stationnaires. Montrer que toute suite convergente est adhérente à S.

THÉORÈME DE CARACTÉRISATION SÉQUENTIELLE DES POINTS ADHÉRENTS ET
DES PARTIES FERMÉES (ÉNORME) 12.4 :

Soit A et F deux parties d’un espace vectoriel normé E et a ∈ E :

• a est adhérent à A si et seulement s’il existe (un)n∈N ∈ AN telle que a = lim
n→∞

un.

• F est fermée si et seulement si toute suite (un)n∈N ∈ FN convergente vérifie lim
n→∞

un ∈ F.

REMARQUE 12.5 :

• Cela ne veut pas dire que toute suite de vecteurs appartenant à une partie fermée F converge mais

que si une telle suite de vecteurs de F converge alors sa limite est aussi dans F.

• Ce qui précède signifie que “F est fermée si et seulement si tout point adhérent à F appartient à F”.

EXEMPLE 12.6 : Montrer que tout fermé F d’un espace vectoriel normé E peut s’écrire comme

intersection d’une suite décroissante d’ouverts.

12.1.2 : Adhérence et densité

DÉFINITION 12.3 :

Soit E un espace vectoriel normé, A une partie de E, on définit l’adhérence de A comme étant la partie de

E contenant les points adhérents à A ; on la note A.

REMARQUE HP 12.6 : Les deux notions qui suivent viennent de disparâıtre du programme :

• L’intérieur de A défini comme la partie de E contenant les points intérieurs à A, notée
◦
A .

• La frontière de A, notée Fr(A), est définie par Fr(A) = A \
◦
A .

• On a donc
◦
A⊂ A ⊂ A et Fr(A) ⊂ A et l’égalité Fr(A)∩

◦
A= ∅.

REMARQUE 12.7 : Soit E un espace normé, A est fermé.

EXEMPLE 12.7 : Soit C ⊂ E un convexe, montrer que C l’est aussi.

DÉFINITION 12.4 :

Soit E un espace normé, A ⊂ E, on dit que A est dense dans E si A = E.

EXEMPLE 12.8 : Q et R \ Q sont denses dans R.
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EN PRATIQUE : Soit E un espace vectoriel normé et A une partie de E, a ∈ E, pour montrer que :
• A est ouverte, on prouve que : ∀a ∈ A, ∃r > 0, ∀b ∈ E, ||b− a|| < r =⇒ b ∈ A.
• A est ouverte, on l’exprime comme réunion d’ouverts ou intersection finie d’ouverts.

• A est ouverte, on établit (séquentiellement) que son complémentaire est fermé.

• A est ouverte, on trouve f : E → R continue et U un ouvert de R (habituellement des intervalles
ouverts R∗

+, R∗
−, ]0; 1[ ou ]− 1; 1[) tels que A = f−1(U).

• A est fermée, on l’exprime comme intersection de fermés ou réunion finie de fermés.

• A est fermée, on établit que son complémentaire est ouvert.

• A est fermée, on trouve f : E→ R continue et F un fermé de R (habituellement des intervalles fermés
R+, R−, [0; 1], [−1; 1] ou {0}) tels que A = f−1(F).

• A est fermée, on prouve que si (un)n∈N ∈ AN converge, alors lim
n→+∞

un ∈ A.
• a est adhérent à A, on vérifie que ∀r > 0, ∃x ∈ A, ||x− a|| < r.
• a est adhérent à A, on trouve (un)n∈N ∈ AN telle que lim

n→+∞
un = a.

• A est dense, pour tout x ∈ E, on trouve une suite (un)n∈N ∈ AN telle que lim
n→+∞

un = x.

12.1.3 : Invariance de ces notions avec des normes équivalentes� �
PROPOSITION D’INVARIANCE PAR ÉQUIVALENCE DES NORMES 12.5 :

Soit un espace vectoriel E et N1, N2 deux normes équivalentes dans E. Si A ⊂ E et a ∈ E :

• a est intérieur à A dans l’espace vectoriel normé (E,N1) ⇐⇒ a est intérieur à A dans (E,N2).

• a est adhérent à A dans l’espace vectoriel normé (E,N1) ⇐⇒ a est adhérent à A dans (E,N2).

• A est ouvert dans l’espace vectoriel normé (E,N1) ⇐⇒ A est ouvert dans (E,N2).

• A est fermé dans l’espace vectoriel normé (E,N1) ⇐⇒ A est fermé dans (E,N2).

• A est dense dans l’espace vectoriel normé (E,N1) ⇐⇒ A est dense dans (E,N2).� �
REMARQUE 12.8 : • Ces notions topologiques dépendent en général des normes employées.

• En dimension finie, pas besoin de préciser la norme choisie, elles sont toutes équivalentes : on parle

donc de la topologie des normes.

� �
PARTIE 12.2 : LIMITE ET CONTINUITÉ PONCTUELLE� �

12.2.1 : Limite

DÉFINITION 12.5 :

Soit
(
E, || . ||E

)
,
(
F, || . ||F

)
deux espaces vectoriels normés, A ⊂ E, f : A → F, a un point de E adhérent à A,

ℓ ∈ F, on dit que f tend vers ℓ en a si ∀ε > 0, ∃α > 0, ∀x ∈ A, ||x− a||E 6 α =⇒ ||f(x)− ℓ||F 6 ε.

REMARQUE 12.9 : • On peut remplacer les inégalités strictes par des larges sans changer la notion.

• L’existence et la valeur d’une limite dépend des normes employées dans E et dans F.

• Si E et F sont de dimensions finies, la convergence de f et la limite sont indépendantes des normes.� �
PROPOSITION SUR L’UNICITÉ DE LA LIMITE DES FONCTIONS 12.6 :

Si f admet une limite en a alors elle est unique.� �
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DÉFINITION 12.6 :

Avec les notations de la définition précédente, le vecteur ℓ est noté lim
a
f ou lim

x→a
f(x) : limite de f en a.

EXEMPLE 12.9 : Soit f : R2 \ {(0, 0)} → R définie par f(x, y) =
xy(x− y)

x2 + 2|x| |y|+ y2
.

Déterminer la limite de la fonction f en (0, 0).

DÉFINITION 12.7 :

Soit f : A→ R, où A est une partie d’un espace vectoriel normé E, et a un point de E adhérent à A ;
(i) lim

a
f = +∞ si ∀K ∈ R, ∃α > 0, ∀x ∈ A, ||x− a||E < α =⇒ f(x) > K.

(ii) lim
a
f = −∞ si ∀K ∈ R, ∃α > 0, ∀x ∈ A, ||x− a||E < α =⇒ f(x) < K.

Soit I un intervalle de R, F un espace vectoriel normé, f : I→ F et ℓ ∈ F ;
(i) Si I n’est pas majoré, lim

+∞
f = ℓ si ∀ε > 0, ∃K ∈ R, ∀x ∈ I, x > K =⇒ ||f(x)− ℓ||F < ε.

(ii) Si I n’est pas minoré, lim
−∞

f = ℓ si ∀ε > 0, ∃K ∈ R, ∀x ∈ I, x < K =⇒ ||f(x)− ℓ||F < ε.
Ce sont les limites infinies ou les limites en l’infini.

REMARQUE 12.10 : Dans la suite, si I est un intervalle non majoré, on dit (par abus) que +∞ est

adhérent à I. De même, si I est non minoré, on dit que −∞ est adhérent à I.

12.2.2 : Continuité en un point

DÉFINITION 12.8 :

Soit A est une partie de E, f : A→ F, a ∈ A, on dit que f est continue en a si lim
a
f = f(a).

REMARQUE 12.11 : Soit A est une partie de E, f : A → F, a ∈ A \ A, on suppose que f admet une

limite en a, on dit que f est prolongeable par continuité en a. La fonction f̃ définie sur A ∪ {a} par

f̃(x) = f(x) si x ∈ A et f̃(a) = lim
a
f est continue en a (prolongement par continuité de f en a).

THÉORÈME DE CARACTÉRISATION SÉQUENTIELLE DE LA LIMITE DES
FONCTIONS ET DE LA CONTINUITÉ 12.7 :

Soit f : A → F, a adhérent à A et b ∈ F, alors on a l’équivalence qui constitue la caractérisation

séquentielle de la limite :
(
lim
a
f = b

)
⇐⇒

(
∀(un) ∈ AN, lim

n→+∞
un = a =⇒ lim

n→∞
f(un) = b

)
.

Soit f : A → F et a ∈ A, alors on adapte pour obtenir la caractérisation séquentielle de la

continuité :
(
f continue en a

)
⇐⇒

(
∀(un) ∈ AN, lim

n→+∞
un = a =⇒ lim

n→∞
f(un) = f(a)

)
.

EXEMPLE 12.10 : f : R2 → R définie par f(x, y) = x2y

x4 + y2
, f(0, 0) = 0 est-elle continue en (0, 0) ?

� �
PROPOSITION DE CARACTÉRISATION DE LIMITE PAR LES COORDONNÉES 12.8 :

Soit E et F des espaces vectoriels normés, A ⊂ E, B = (v1, · · · , vp) une base de F de dimension p,

f : A→ F et, pour k ∈ [[1; p]], b =
p∑

k=1

bkvk ∈ F et les fk : A→ K telles que : ∀x ∈ A, f(x) =
p∑

k=1

fk(x)vk.

Alors on a l’équivalence : lim
a
f = b⇐⇒ ∀k ∈ [[1; p]], lim

a
fk = bk.� �
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REMARQUE 12.12 : • dimF = p : l’étude de f sur A équivaut à l’étude de p applications de A dans K.
• Par contre, si E de dimension finie et si B = (e1, · · · , en) une base de E, l’étude de f : E → F au

voisinage de a =
n∑

k=1

akek n’est pas équivalente à l’étude des n applications partielles fk : K → F (pour

k ∈ [[1;n]]) définies par fk(xk) = f(a1e1 + · · ·+ xkek + · · ·+ anen) au voisinage de ak.

EXEMPLE 12.11 : Soit f : R2 → R définie par f(x, y) = x2 + y2

(|x|+ |y|)2
si (x, y) ̸= (0, 0) et f(0, 0) = 1.

Alors f n’est pas continue en (0, 0) malgré l’étude des applications partielles au voisinage de (0, 0).� �
PROPOSITION 12.9 :

Si f : A→ F admet une limite en a adhérent à A alors f est bornée au voisinage de a, ce qui se

traduit par : ∃r > 0, ∃K ∈ R+, ∀x ∈ A, ||x− a||E < r =⇒ ||f(x)||F 6 K.

Soit f : A→ F, a adhérent à A, b ∈ F et φ : A→ R+ telle que ||f(x)− b||F 6 φ(x) au voisinage de a.

On a alors l’implication : lim
a
φ = 0 =⇒ lim

a
f = b.� �

REMARQUE 12.13 : • Cela permet de se ramener à des fonctions de référence grâce aux majorations.
• On a même (et grâce à ce qui précède), si lim

a
f = b, alors lim

a
||f||F = ||b||F.� �

PROPOSITION OPÉRATOIRE SUR LES LIMITES ET LA CONTINUITÉ 12.10 :

Soit f et g définies de A dans F et a adhérent à A :
• si f et g admettent des limites (finies) en a alors : ∀(α, β) ∈ K2, l’application αf + βg

admet aussi une limite (finie) en a et on a : lim
a

(αf+ βg) = α lim
a
f+ β lim

a
g ;

• si f et g sont continues en a alors : ∀(α, β) ∈ K2, αf+ βg est aussi continue en a.
Soit E, F et G des espaces vectoriels normés, A une partie de E et B une partie de F, f : A → F

et g : B→ G telles que f(A) ⊂ B :
• si a est adhérent à A, b = lim

a
f existe (finie ou non), b est adhérent à B et lim

b
g existe

(finie ou non), alors g ◦ f admet une limite en a et lim
a
g ◦ f = lim

b
g ;

• si f est continue en a et si g continue en f(a) alors g ◦ f est continue en a.
Soit λ : A→ K, f : A→ F et a adhérent à A :

• si λ et f admettent des limites (finies) en a alors λf aussi et lim
a

(λf) = lim
a
λ× lim

a
f ;

• si λ et f sont continues en a alors λf est continue en a.
Soit f : A→ K et a adhérent à A :

• si f admet une limite (finie) non nulle en a alors f ne s’annule pas au voisinage de a,

1

f
admet une limite en a et lim

a

1

f
=

(
lim
a
f

)−1

.

• si f est continue en a et si f(a) ̸= 0 alors 1
f
est continue en a.� �

REMARQUE 12.14 : Si f : A→ F, a ∈ A, si f est continue en a alors ||f||F est continue en a.

EN PRATIQUE : Soit A une partie de E, f : A→ F et a adhérent à A et b ∈ F, pour montrer que :
• lim

a
f = b, on vérifie que ∀ε > 0, ∃α > 0, ∀x ∈ A, ||x− a|| < α =⇒ ||f(x)− b|| < ε.

• lim
a
f = b, on établit que si (un)n∈N ∈ AN tend vers a, alors lim

n→+∞
f(un) = b.

• lim
a
f = b, si dim(F) < +∞, f = (f1, · · · , fp), ℓ = (ℓ1, · · · , ℓp), on prouve ∀k ∈ [[1; p]], lim

a
fk = ℓk.

• lim
a
f = b, on utilise les propriétés algébriques des limites en exprimant f différemment ou f est

carrément continue en a ∈ A par opérations algébriques et b = f(a).
• f ne tend pas vers b en a, on trouve une suite (un)n∈N ∈ AN qui tend vers a alors que pourtant(
f(un)

)
n∈N ne tend pas vers b.
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PARTIE 12.3 : CONTINUITÉ SUR UNE PARTIE� �

12.3.1 : Applications continues

DÉFINITION 12.9 :

Soit E et F deux espaces vectoriels normés, A une partie de E et f : A→ F.
On dit que f est continue sur A si f est continue en tout point (ou vecteur) a de A.
On note C0(A, F) l’ensemble des fonctions continues sur A et à valeurs dans F.

REMARQUE 12.15 : Le caractère continu ou non des applications dépend des normes employées, mais
ne change pas si on prend des normes équivalentes. En dimension finie, cela ne dépend pas des normes.

THÉORÈME DE CARACTÉRISATION SÉQUENTIELLE DE LA CONTINUITÉ 12.11 :

Soit f : A→ F, la fonction f est continue sur A si et seulement si pour toute suite (un) ∈ AN qui
converge vers un vecteur a ∈ A, on a lim

n→∞
f(un) = f(a).

REMARQUE 12.16 : Soit E un espace vectoriel normé, f : E → E, et (un)n∈N définie par u0 ∈ E,

∀n ∈ N, un+1 = f(un). Si (un)n∈N converge vers ℓ où f est continue alors f(ℓ) = ℓ (vecteur fixe de f).� �
PROPOSITION OPÉRATOIRE SUR LA CONTINUITÉ 1 12.12 :

Si (f, g) ∈ C0(A, F)2 et (α, β) ∈ K2 alors αf+ βg ∈ C0(A, F) (combinaison linéaire).

Ainsi C0(A, F) est un sous-espace vectoriel de F(A, F).

Si f ∈ C0(A, F), si g ∈ C0(B,G) et si f(A) ⊂ B alors g ◦ f ∈ C0(A,G) (composition).

Si f ∈ C0(A, F) et B ⊂ A alors f|B ∈ C0(B, F) (restriction).

Si f ∈ C0(A, F) alors ||f|| ∈ C0(A, R) (norme).� �� �
PROPOSITION DE CONTINUITÉ PAR LES FONCTIONS COORDONNÉES 12.13 :

Soit A une partie d’un espace vectoriel normé, F un espace vectoriel normé de dimension finie

p et B = (e1, · · · , ep) une base de F. Si f : A → F, on note f1, · · · , fp les applications de A dans K

définies par ∀x ∈ A, f(x) =
p∑

k=1

fk(x)ek. Alors on dispose de l’équivalence suivante :(
f est continue sur A

)
⇐⇒

(
f1, · · · , fp sont continues sur A

)
.� �� �

PROPOSITION OPÉRATOIRE SUR LA CONTINUITÉ 2 12.14 :

Si λ ∈ C0(A, K) et f ∈ C0(A, F) alors λf ∈ C0(A, F) (multiplication par un scalaire).

Si λ ∈ C0(A, K) et µ ∈ C0(A, K) alors λµ ∈ C0(A, K) (produit de fonctions scalaires).

Par conséquent : C0(A, K) est une sous-algèbre de F(A, K).

Si f ∈ C0(A, K) vérifie ∀x ∈ A, f(x) ̸= 0 alors 1
f
∈ C0(A, K) (inverse d’une fonction scalaire).� �

EXEMPLE 12.12 : f : R3 → R définie par f(x, y, z) =
ln(1+ y2x2)

√
z2y4 + 1

cos(xy2) + ez + 1
est continue.
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REMARQUE HP 12.17 : Soit E, F deux espaces normés et f : E→ F une application continue sur E :

• Si U est un ouvert de F alors f−1(U) est un ouvert de E.

• Si V est un fermé de F alors f−1(V) est un fermé de E.

Ce théorème est hors programme, on utilisera seulement sa conséquence essentielle au programme.

THÉORÈME SUR LES IMAGES RÉCIPROQUES PAR UNE APPLICATION RÉELLE
CONTINUE D’OUVERTS OU DE FERMÉS 12.15 :

Soit E un espace vectoriel normé, f : E→ R une application continue sur E et a ∈ R :

• f−1( ]a; +∞[) et f−1( ]−∞;a[) sont des ouverts de E.

• f−1({a}), f−1([a; +∞[) et f−1( ]−∞;a]) sont des fermés de E.

REMARQUE 12.18 : Cette propriété est fausse pour les images directes :

• f : x 7→ x2 est continue sur R et f
(
]− 1; 1[

)
= [0; 1[ n’est pas ouvert.

• La fonction exponentielle est continue sur R et exp(R) = R∗
+ n’est pas fermé.

EXERCICE 12.13 : L’ensemble O(n) des matrices orthogonales de Mn(R) (celles qui vérifient
MTM = In) est un compact.

THÉORÈME DES BORNES ATTEINTES POUR UNE FONCTION RÉELLE SUR UN
COMPACT (ÉNORME) 12.16 :

Si E est un espace vectoriel normé de dimension finie, A ⊂ E et f : A → R continue sur A et

K ⊂ A une partie fermée bornée non vide de E, alors “f est bornée sur K et elle y atteint ses

bornes” : Min
K

f et Max
K

f existent.

Démonstration : hors programme.

REMARQUE 12.19 :

• Un corollaire : si E est un espace vectoriel normé de dimension finie, A ⊂ E et f : A → F et K ⊂ A

une partie fermée bornée de E (K ≠ ∅) : Min
K

||f||F et Max
K

||f||F existent.

• Une autre application classique : si K est une partie fermée bornée de E (espace vectoriel normé de

dimension finie) et f : K→ R∗
+ est continue sur K alors il existe α > 0 tel que ∀x ∈ K, f(x) > α.

12.3.2 : Applications lipschitziennes

DÉFINITION 12.10 :

Soit f : A→ F, où A est une partie d’un espace vectoriel normé E, F un espace normé et k ∈ R+.

On dit que f est k-lipschitzienne si ∀(x, y) ∈ A2, ||f(x)− f(y)||F 6 k||x− y||E.

On dit que f est lipschitzienne s’il existe k > 0 tel que f soit k-lipschitzienne.

REMARQUE 12.20 : • Bien sûr, la constante de Lipschitz dépend des normes employées.

• Par contre, le caractère lipschitzien ne dépend pas des normes équivalentes choisies.

EXEMPLE 12.14 : • L’application x 7→ ||x|| de E dans R est 1-lipschitzienne.

• Les applications ck : (x1, · · · , xn) ∈ Kn 7→ xk sont 1-lipschitziennes pour || . ||∞.
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EXERCICE CLASSIQUE 12.15 : Soit E un espace vectoriel normé de dimension finie, A est une

partie non vide de E et x ∈ E, on pose d(x, A) = Inf
({

||x− a|| | a ∈ A
})

.

a. Montrer l’application d : x ∈ E 7→ d(x, A) est 1-lipschitzienne.

b. Établir que : x ∈ A⇐⇒ d(x, A) = 0.

c. Justifier que si A est fermée, il existe un vecteur a0 ∈ A tel que d(x, A) = ||x− a0||.� �
PROPOSITION SUR LES APPLICATIONS LIPSCHITZIENNES 12.17 :

Si f, g sont lipschitziennes sur A : ∀(α, β) ∈ K2, (αf+ βg) est lipschitzienne sur A.

Si f est lipschitzienne sur A, g lipschitzienne sur B, f(A) ⊂ B : g ◦ f est lipschitzienne sur A.� �
REMARQUE 12.21 : Le produit d’applications lipschitziennes n’est pas toujours lipschitzien.

EXEMPLE 12.16 : idR est 1-lipschitzienne mais x 7→ x2 ne l’est pas (mais pourtant continue).

THÉORÈME DE CONTINUITÉ D’UNE APPLICATION LIPSCHITZIENNE 12.18 :

Si f est lipschitzienne sur A alors f est continue sur A.

EXEMPLE 12.17 : La fonction f : x→ ln(x) est continue mais pas lipschitzienne de R∗
+ dans R.

12.3.3 : Applications linéaires, multilinéaires et polynomiales

REMARQUE HP 12.22 : Seule la continuité en dimension finie est au programme, mais pour information

soit
(
E, || . ||E

)
,
(
F, || . ||F

)
deux espaces vectoriels normés avec E ̸= {0E}, f ∈ L(E, F), il y a équivalence de :

(i) f est continue sur E.

(ii) f est continue en 0E.

(iii) Il existe k ∈ R+ tel que ∀x ∈ E, ||f(x)||F 6 k||x||E.
(iv) f est lipschitzienne sur E.

Si f est continue, on définit sa norme subordonnée à || . ||E et || . ||F par |||f||| = Sup
x∈E\{0E}

||f(x)||F
||x||E

.

Ceci signifie que ∀x ∈ E, ||f(x)||F 6 |||f||| ||x||E et que si k ∈ R+ vérifie ∀x ∈ E, ||f(x)||F 6 k ||x||E, alors
k > |||f|||. Ainsi, |||f||| est la plus petite des constantes de lipschitzianité de f.

ORAL BLANC 12.18 : E = R[X] muni des normesN1(P) =
+∞∑
k=0

∣∣P(k)(0)∣∣∣ etN2(P) = Sup
t∈[−1;1]

|P(t)| :

• Montrer que la dérivation est continue dans E muni de N1 et calculer sa norme.

• Montrer que la dérivation n’est pas continue dans E muni de N2. Comparer N1 et N2.

THÉORÈME DE CONTINUITÉ DES APPLICATIONS LINÉAIRES EN DIMENSION
FINIE (ÉNORME) 12.19 :

Soit
(
E, || . ||E

)
un espace normé de dimension finie,

(
F, || . ||F

)
un espace normé de dimension

quelconque. Toute application linéaire de E vers F est lipschitzienne donc continue.

REMARQUE FONDAMENTALE 12.23 : En dimension finie, tout sous-espace vectoriel est fermé.

REMARQUE HP 12.24 : Avec les hypothèses du théorème ci-dessus, si f ∈ L(E, F), on a même mieux :

|||f||| = Max
||x||E=1

||f(x)||F. C’est-à-dire : ∃x ̸= 0E ∈ E, ||f(x)||F = |||f||| × ||x||E.

EXEMPLE 12.19 : P ∈ GLn(K) alors f ∈ L
(
Mn(K)

)
définie par f(M) = P−1MP est continue.



CONTINUITÉ SUR UNE PARTIE 205

EXERCICE 12.20 : Soit une forme linéaire f ∈ (Rn)∗ et A = (ai)16i6n ∈ M1,n(R) sa matrice

dans la base canonique, ce qui signifie que f(x1, · · · , xn) = a1x1 + · · ·+ anxn, alors f est continue sur
Rn et :

• si Rn est muni de || . ||∞, alors |||f|||∞ =
n∑

i=1

|ai| = ||a||1.

• si Rn est muni de || . ||1, alors |||f|||1 = Max
16i6n

|ai| = ||a||∞.

• si Rn est muni de || . ||2, alors |||f|||2 =
( n∑

i=1

|ai|2
)1/2

= ||a||2.

REMARQUE HP 12.25 :
• Soit E un espace vectoriel normé de dimension finie et F un espace vectoriel normé quelconque, alors

l’application f ∈ L(E, F) 7→ |||f||| est une norme sur L(E, F).

• Soit E et F deux espaces vectoriels de dimensions finies, G un espace vectoriel normé (de dimension

quelconque), f ∈ L(E, F) et g ∈ L(F, G) alors on a : |||g ◦ f||| 6 |||g||| × |||f|||.

• Si E est un espace vectoriel normé de dimension finie alors, d’après ce qui précède, l’application

f 7→ |||f||| est une norme d’algèbre sur L(E).� �
PROPOSITION 12.20 :

Soit E, F deux K-espaces vectoriels normés de dimensions finies, G un K-espace vectoriel
quelconque et B : E× F→ G une application bilinéaire :

• Il existe k ∈ R+ tel que ∀(x, y) ∈ E× F, ||B(x, y)||G 6 k× ||x||E × ||y||F.
• B est continue sur E× F.� �

REMARQUE 12.26 : • L’application φ : Mn(K)2 → Mn(K) définie par φ(A, B) = AB est continue.

• L’application θ : L(E)2 → L(E) définie par θ(u, v) = u ◦ v est continue si E de dimension finie.

• L’application ψ : K× E→ E telle que ψ(λ, x) = λx est continue si E est de dimension finie.

• Tout produit scalaire sur un espace euclidien est continu.

DÉFINITION 12.11 :

Soit p > 1, F, E1, · · · , Ep des espaces vectoriels normés. Alors f : E1 × · · · × Ep → F est dite p-linéaire si

pour tout k ∈ [[1; p]] et tout p − 1-uplets (x1, · · · , xk−1, xk+1, . . . , xp) ∈ E1 × · · · × Ek−1 × Ek+1 × · · · × Ep,

l’application φk : Ek → F définie par fk(x) = f(x1, · · · , xk−1, x, xk+1, · · · , xp) est linéaire.

REMARQUE 12.27 : La plus simple est le produit Pp : Rp → R défini par Pp(x1, · · · , xp) =
p∏

k=1

xk.� �
PROPOSITION 12.21 :

Toute application multilinéaire en dimension finie est continue.� �
EXEMPLE 12.21 : Si p ∈ N∗ alors Pp : Mn(K) → Mn(K) telle que Pp(A) = Ap est continue.

DÉFINITION 12.12 :

Soit p > 1, on dit que f : Kp → K est une application polynomiale si elle est combinaison linéaire

d’applications du type (x1, · · · , xp) 7→ x
k1

1 · · · xkp

p avec (k1, · · · , kp) ∈ Np.

EXEMPLE 12.22 : f : R3 → R définie par f(x, y, z) = x4y2z+ 5xy3z3 est polynomiale de degré 7.
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PROPOSITION 12.22 :

Toute application polynomiale est continue sur Kp.� �
REMARQUE 12.28 : L’application det : Mn(K) → K (par extension) est polynomiale en ses coefficients,

multilinéaire en ses colonnes donc continue.

EXERCICE CLASSIQUE 12.23 : Montrer que GLn(K) est un ouvert dense de Mn(K).

EN PRATIQUE : Soit E et F deux espaces normés, A ⊂ E et f : A→ F, pour montrer que :

• f est continue, on établit qu’elle est linéaire ou multilinéaire si dim(E) < +∞.

• f est continue, on vérifie qu’elle est polynomiale si E = Kp.

• f est continue, on vérifie qu’elle est lipschitzienne.

• f est continue, on la décompose et on utilise la stabilité de la continuité par opérations.

• f est continue, on vérifie la continuité de chaque fk si f = (f1, · · · , fp) et dim(F) = p < +∞.

• f n’est pas continue, on trouve (un) ∈ AN qui tend vers a ∈ A et
(
f(un)

)
n∈N qui diverge.

• f n’est pas continue, on trouve (un) ∈ AN qui tend vers a ∈ A avec lim
n→+∞

f(un) = ℓ ̸= f(a).

REMARQUE FONDAMENTALE 12.29 : On pose, pour p > 1 et A ∈ Mp(K), exp(A) =
+∞∑
n=0

An

n!
.

• La série converge absolument ce qui assure l’existence de exp(A).

• Si D = diag(λ1, · · · , λp), alors exp(D) = diag(eλ1 , · · · , eλp).

• exp(A) est un polynôme en A car K[A] est un sous-espace vectoriel fermé de Mp(K).

• Si A et B commutent : exp(A+B) = exp(A) exp(B). Ainsi exp(A) ∈ GLp(K) et exp(A)−1 = exp(−A).

• Si P ∈ GLp(K), exp
(
PAP−1

)
= P exp(A)P−1. Le calcul de exp(A) si A est diagonalisable est facile.

• Alors SpC
(
exp(A)

)
= exp

(
SpC(A)

)
et det

(
exp(A)

)
= exp

(
tr(A)

)
.

� �
COMPÉTENCES� �

• Mâıtriser les opérations entre parties ouvertes et fermées et savoir les caractériser.

• Penser prioritairement aux suites pour montrer qu’une partie est fermée.

• Comprendre les généralisations des propriétés des limites aux fonctions entre vecteurs.

• Utiliser la caractérisation séquentielle pour montrer une continuité ou l’utiliser pour une limite.

• Connâıtre les différentes structures d’ensembles de fonctions continues.

• Montrer qu’une partie est ouverte ou fermée avec les images réciproques d’intervalles.

• Penser sans modération au théorème des bornes atteintes pour établir l’aspect borné.

• Savoir montrer qu’une fonction est lipschitzienne pour établir sa continuité.

• Mâıtriser l’équivalence entre lipschitzianité et continuité pour des applications linéaires.

• Trouver la constante optimale de lipschitzianité pour une application linéaire en dimension finie.

• Reconnâıtre le cadre des applications bilinéaires ou polynomiales pour montrer la continuité.


