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CHAPITRE 13

ENDOMORPHISMES D’UN
ESPACE EUCLIDIEN

(® Apreés une premiere étude des espaces préhilbertiens dans lesquels le produit scalaire permettait
d’avoir certaines propriétés des familles de vecteurs (familles orthogonales, bases orthonormées...) et des
sous-espaces (projections orthogonales sur des sous-espaces de dimension finie, distance entre un sous-espace
de dimension finie et un vecteur,...), on va imposer la dimension finie pour avoir des espaces euclidiens et
se focaliser sur ’étude des endomorphismes de ces espaces, spécifiquement ceux qui permettent d’avoir des
invariants.

Dans un premier temps, on va étudier les endomorphismes qui conservent la norme (ou la distance) et
donc appelés isométries. Ce sont des opérations sur les objets de I'espace (I’étude affine dont on a besoin dans
le monde réel est cachée derriere ’aspect vectoriel) qui garantissent leur déplacement et leur non-déformation
(translation, rotation, vissage, réflexions). On en fera une étude plus détaillée pour I'application en physique
et en sciences de I'ingénieur dans le plan et dans ’espace donc en dimensions 2 et 3.

Dans une seconde partie, on traitera des endomorphismes qui vérifient une propriété de symétrie des
produits scalaires : ¥(x,y) € E%, (u(x)|y) = (x|u(y)). Ces endomorphismes dits symétriques sont notamment
utiles aux physiciens & travers les matrices d’inertie (tenseurs d’inertie) d’un solide, la matrice de LORENTZ
associée a la transformation du méme nom en relativité, les états en mécanique quantique, etc...

Le théoreme spectral, dans ces contextes, précise la réduction de ces endomorphismes et permet de
montrer les relations entre les axes principaux d’inertie d’un solide, de “visualiser” le cone de lumiere en
relativité, de déterminer les opérateurs décrivant les atomes et les molécules, etc...
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ENDOMORPHISMES D’UN ESPACE EUCLIDIEN

(PROGRAMME ]

Cette section vise les objectifs suivants :

- étudier les isométries vectorielles et matrices orthogonales, et les décrire en dimension deux et

trois en insistant sur les représentations

géométriques ;

- approfondir la thématique de réduction des endomorphismes dans le cadre euclidien en énongant

les formes géométrique et matricielle du théoréme spectral ;

- introduire la notion d’endomorphisme autoadjoint positif, qui trouvera notamment son application

au calcul différentiel d’ordre 2.

La notion d’adjoint est hors programme.

1 : Isométries vectorielles d’un espace euclidien

CONTENUS

CAPACITES & COMMENTAIRES

Un endomorphisme d’un espace euclidien est une
isométrie vectorielle s’il conserve la norme.
Caractérisations par la conservation du produit
scalaire, par I'image d’une base orthonormée.

Groupe orthogonal.

Stabilité de 'orthogonal d’un sous-espace stable.

Exemple : symétries orthogonales, cas particulier

des réflexions.

Notation O(E).
On vérifie les propriétés lui conférant une structure
de groupe, mais la définition axiomatique des groupes

est hors programme.

2 : Matrices orthogonales

CONTENUS

CAPACITES & COMMENTAIRES

Une matrice A de My, (R) est orthogonale
siATA =1,

Caractérisation d’'une isométrie vectorielle a ’aide
de sa matrice dans une base orthonormée.
Groupe orthogonal.

Déterminant d’une matrice orthogonale. Groupe
spécial orthogonal.

Orientation. Bases orthonormées directes.

Interprétation en termes de colonnes et de lignes.
Caractérisation comme matrice de changement de base
orthonormée.

On mentionne la terminologie “automorphisme

orthogonal”, tout en lui préférant celle d’“isométrie vectorielle”.
Notations On(R), O(n).

Notations SOy (R), SO(n).
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3 : Espace euclidien orienté de dimension 2 ou 3

CONTENUS CAPACITES & COMMENTAIRES

Déterminant d’une famille de vecteurs dans une base Notations [u,v], [u,v,w].

orthonormée directe : produit mixte. Interprétation géométrique comme aire ou volume.
Produit vectoriel. Calcul dans une base orthonormée

directe.

Orientation d’un plan ou d’une droite dans un espace

euclidien orienté de dimension 3.

4 : Isométries vectorielles d’un plan euclidien

CONTENUS CAPACITES & COMMENTAIRES

Description des matrices de O2(R), de SO2(R).  Commutativité de SO2(R).
Rotation vectorielle d'un plan euclidien orienté. On introduit & cette occasion, sans soulever de difficulté,

la notion de mesure d’un angle orienté de vecteurs non nuls.
Classification des isométries vectorielles d’un plan

euclidien.

5 : Isométries d’un espace euclidien de dimension 3

CONTENUS CAPACITES & COMMENTAIRES
Description des matrices de SO3(R).
Rotation vectorielle d’un espace euclidien orienté Axe et mesure de ’angle d’une rotation.

de dimension 3.

6 : Réduction des endomorphismes autoadjoints et des matrices symétriques réelles

CONTENUS CAPACITES & COMMENTAIRES

Endomorphisme autoadjoint d’un espace euclidien. Notation S(E).
Caractérisation des projecteurs orthogonaux.

Caractérisation d’'un endomorphisme autoadjoint & I’aide On mentionne la terminologie “endomorphisme

de sa matrice dans une base orthonormée. symétrique”, tout en lui préférant celle d’“endomorphisme
autoadjoint”.
Théoreme spectral : La démonstration n’est pas exigible.

tout endomorphisme autoadjoint d’un espace euclidien = Forme matricielle du théoreme spectral.
admet une base orthonormée de vecteurs propres.
Endomorphisme autoadjoint positif, défini positif. Caractérisation spectrale. Notations ST(E), STT(E).

Matrice symétrique positive, définie positive. Caractérisation spectrale. Notations S;7(R), S} (R).
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(® E est ici un espace euclidien, le produit scalaire est noté (.|.) et la norme euclidienne associée ||.||.

[PARTIE 13.1 : ISOMETRIES VECTORIELLES)

’13.1.1 : Automorphismes orthogonaux‘

DEFINITION 13.1 :

Soit u € L(E), on dit que u est une isométrie vectorielle de E ou un automorphisme orthogonal de E
siu conserve la norme, c¢’est-a-dire si ¥x € E, |[u(x)|| = ||x||-

Soit O(E) l'ensemble des isomélries vectorielles de E, O(E) est appelé le groupe orthogonal de E.

EXEMPLE 13.1 : Soit u € £(R3) tel que u(x,y,z) = %(x—&—Zg —2z,2x +y+2z,—2x + 2y +z).

Vérifier que u € O(R3). Déterminer u?. Que déduire sur u ?

THEOREME DE CARACTERISATION DES ISOMETRIES 13.1 :

Soit u un endomorphisme de E, les propositions suivantes sont équivalentes :
(i) u est une isométrie vectorielle.
(ii) u conserve le produit scalaire : V(x,y) € E%, (u(x)[u(y)) = (x|y).

(iii) u transforme toute base orthonormale de E en une base orthonormale de E.

(iv) u transforme une base orthonormale de E en une base orthonormale de E.

REMARQUE 13.1 : Si E est de dimension 1 : O(E) = {—1idg,idg }.

O(E) est un sous-groupe de GL(E).

{PROPOSITION SUR LA STRUCTURE DE O(E) 13.2 :

REMARQUE FONDAMENTALE 13.2 : Siu € O(E) et F stable par u, alors ur € O(F).

PROPOSITION SUR LA STABILITE DE L’ORTHOGONAL PAR UNE ISOMETRIE 13.3 :

Soit u € O(E), F un sous-espace vectoriel de E : (F est stable par u) = (FJ- est stable par u).
- J

DEFINITION 13.2 :

Soit F un sous-espace de E, la symétrie orthogonale par rapport a F est la symétrie sp par rapport a F

parallélement o F-. Une réflexion est une symétrie orthogonale par rapport a un hyperplan de E.

REMARQUE 13.3 : e (s est une symétrie orthogonale) <= (s> = idg et Ker(s —idg) L Ker(s +idg)).
e Si pr est la projection orthogonale sur F alors sf = 2pf — idg.

e SiH= (Vect(e))J' est un hyperplan de E alors sy : x — x — 2|(|e|‘x% e (réflexion d’hyperplan H).
e

PROPOSITION DE CARACTERISATION DES SYMETRIES ORTHOGONALES 13.4 :

Si s est une symétrie de E : (s est orthogonale) <= (s est une isométrie).

REMARQUE 13.4 : Une projection orthogonale, autre que idg, n’est pas un automorphisme orthogonal.
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13.1.2 : Matrices orthogonales‘

DEFINITION 13.3 :

Soit n > 1, une matrice A € M, (R) est appelée une matrice orthogonale si ATA = 1,,.

REMARQUE 13.5 : En notant Cy,---,Cy les colonnes de A, qui forment une famille de n vecteurs
de Mn.1(R) (ou R™), le calcul des matrices de GRAM montre que ATA = ((C1|Ci)>1gi,j<n' Ainsi,
A € My (R) est orthogonale si et seulement si (Cq,---,Cy) est une base orthonormale de R™.
0 0 1
EXEMPLE 13.2 : Vérifier que A= |1 0 0 | est une matrice orthogonale.
0 1 0

Quel est 'endomorphisme de R3 canoniquement associé & la matrice A ?

REMARQUE 13.6 : Soit E un espace euclidien et B une base orthonormale, B’ une base quelconque, on
note P la matrice de passage entre B et B’. Alors P est orthogonale ssi B’ est une base orthonormale.

PROPOSITION DE CARACTERISATION DES MATRICES ORTHOGONALES 13.5 :
Soit n € N* et M € M,,(R), les propriétés suivantes sont équivalentes :
(i) M™™ =1, (M est orthogonale).
(i) MMT =1,.
(iii) M est inversible et M~" = MT.

(iv) Les vecteurs lignes de M forment une base orthonormée de R™ euclidien canonique.

(v) Les vecteurs colonnes de M forment une base orthonormée de R™ eucl. canon..

DEFINITION 13.4 :
On note On(R) ou O(n) l'ensemble des matrices orthogonales de M (R).
Cet ensemble O, (R) est appelé le groupe orthogonal d’ordre n.

EXEMPLE 13.3 : La matrice de HADAMARD A = % appartient a O4(R).

1

1 1
T 1 -1 -1
1T -1 =1 1

THEOREME DE CARACTERISATION D’UNE ISOMETRIE PAR SA MATRICE DANS
UNE BASE ORTHONORMALE (ENORME) 13.6 :

Soit u € £(E) et B une base orthonormée de E, alors : u € O(E) <= Matz(u) € On(R).

PROPOSITION SUR LA STRUCTURE DE 0, (R) 13.7 :
On(R) est un sous-groupe de GL,(R).

De plus, si M € O»(R) alors det(M) = +1.
-

DEFINITION 13.5 :
Soit SOn(R) = {M € On(R) | det(M) =1} (ou SO(n)) le groupe spécial orthogonal d’ordre n.
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PROPOSITION SUR LA STRUCTURE DE SO, (R) 13.8 :
SOn(R) est un sous-groupe de O, (R) (donc de GL,(R)).

REMARQUE 13.7 :

e (HP) Avec les hypothéses du théoréme, I'application 8 : O(E) — Oy, (R) définie par 8(u) = Matg (u)
est un isomorphisme de groupes qui est la restriction de 8 : GL(E) — GLn(R) qui en était déja un.

e Soit B et B’ deux bases orthonormées d’un espace euclidien E, u un endomorphisme de E et P = Pg 5/
la matrice de passage de la base B a la base B’ :

(i) P € 0n(R) donc P~! =PT.
(ii) Matgp:(u) = PT Matp(u) P.
REMARQUE FONDAMENTALE 13.8 : Grace a GRAM-SCHMIDT, on a une décomposition des matrices

inversibles : soit A € GL,(R), il existe un unique couple (Q,R) ou Q est orthogonale et R triangulaire

supérieure avec des termes strictement positifs sur la diagonale tel que A = QR (décomposition QR).

1
EXEMPLFE 13.4 : Décomposer la matrice A = | 1
1

sous cette forme.

NN =
w N =

113.1.3 : Isométries vectorielles directes]

REMARQUE 13.9 : On rappelle que dans un espace euclidien E, une orientation de E est le choix d’une

base By de référence qu’on dira directe et que pour tout autre base B de E :
e B est directe si det(Pg, 3) > 0.
e B est indirecte si det(Ps, 5) < 0.
“Avoir la méme orientation” est une relation d’équivalence sur les bases de E avec 2 classes d’équivalence.

Dans R™, M (R), Ry [X] munis de leur produit scalaire canonique, on choisira la base canonique comme

base directe de référence et on dira que E est euclidien orienté canonique.

PROPOSITION CONCERNANT LE DETERMINANT D’UNE ISOMETRIE 13.9 :
Siue€ O(E), on a det(u) = £1.

DEFINITION 13.6 :
SO(E) = {u € O(E) | det(u) = 1} est appelé le groupe spécial orthogonal de E ou groupe des rotations

de E. Les éléments de SO(E) sont aussi appelées isométries directes (vectorielles).

(PROPOSITION SUR LA STRUCTURE DE SO(E) 13.10 :
SO(E) est un sous-groupe de O(E) (donc de GL(E)).

REMARQUE 13.10 : Pour les isométries directes dans un espace euclidien orienté :
(i) w e SO(E).

(ii) w transforme toute base orthonormale directe de E en une base orthonormale directe de E.

(iii) u transforme une base orthonormale directe de E en une base orthonormale directe de E.

(iv) la matrice de u dans une base orthonormale de E est dans SO, (R).
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REMARQUE FONDAMENTALE 18.11 : Soit n un entier naturel supérieur ou égal 41 et A € O(n).

e Si A est une valeur propre réelle de A, alors A = +1.

e Si A est une valeur propre complexe de A, alors |A| = 1.

e Sin est impair, 1 est une valeur propre de A.

e Sin est impair et A € SO(n), alors 1 est valeur propre de A.
e Si A €0(n)\SO(n), alors —1 est valeur propre de A.

e A est donc diagonalisable dans M, (R) si et seulement si A2 = 1,,.

’13.1.4 : Espaces euclidiens orientés de dimension 2 ou 3

( L, 7
PROPOSITION SUR I’ INVARIANCE DU DETERMINANT D’UNE FAMILLE DANS UNE
BASE ORTHONORMEE DIRECTE 13.11 :

Soit ¥ = (v1,--,vn) une famille de n vecteurs d’un espace euclidien orienté de dimension n,

alors dets(F) ne dépend pas de la base orthonormale directe B choisie.
- J

DEFINITION 13.7 :

La valeur commune du déterminant de la famille F = (v1,---,vy) dans n’importe quelle base orthonormale

directe de E est appelée le produit mixte de F, et noté [vi,---,vn].

(® Le programme se restreint aux espaces euclidiens orientés de dimension 2 et 3 pour la définition du produit
mixte mais cette notion est générale.

REMARQUE 13.12 :

e Dans un plan euclidien E orienté : soit deux vecteurs u = (x,y) et v = (x',y’) (coordonnées dans une

base orthonormale directe B = (a,b) du plan E), alors [u,v] = xy’ — x'y.
e Dans le plan : ’[u, vH est laire du parallélogramme formé par les vecteurs u et v.
e Dans un espace euclidien E orienté : soit uw = (x,y,z), v = (x',y,2') et w = (x",y”,2z”) (coordonnées
dans une B.O.N.D. B = (a,b,c)), alors [u,v,w]| = xy’z" +x'y"z + x"yz' — xy"z’ —x'yz” — x"y’z. Dans
Pespace, on montre que |[u,v,w]| est le volume du parallélépipéde formé par u, v et w.

(© Daus la suite de ce paragraphe, E désignera un espace euclidien orienté de dimension 3.

REMARQUE 13.13 : Soit D = Vect(e) et P = Vect(ez,e3) = D une droite et un plan dans E :

)

e On définit une orientation dans P si “on oriente D par e1”, en disant que B’ = (ez,e3) est directe

dans P si et seulement si B = (eq, ez, e3) est directe dans E : cette orientation de P est dite orientation
induite dans P par celle de D.

e On définit une orientation dans D si “on oriente P par B’ = (ez,e3)” directe, en disant que (e1) est
directe dans D (ou ey dirige D) si et seulement si B = (e, ez, e3) est directe dans E : cette orientation

de D est dite orientation induite dans D par celle de P.

DEFINITION 13.8 :
Soit a et b deux vecteurs de E, on appelle produit vectoriel de a et b, qu’on note a Ab, l'unique vecteur
de E qui vérifie Vx € E, [a,b,x] = [b,x,a] = [x,a,b] = (e Ab|x) = (x|]a A'b).
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( ’ ,
PROPOSITION SUR LES PROPRIETES DU PRODUIT VECTORIEL 13.12 :

L’application produit vectoriel est bilinéaire antisymétrique donc alternée :
(i) Y(a,a’) €E%, Vb €E, V(A n) € R2, (Aa+pua’)Ab=2AaAb+ pa’ Ab.
(ii) Va € E, VY(b,b’) € E2, V(A,u) € R?, a A(Ab+pub’) =AaAb+ paAb'.
(iii) Y(a,b) €E%, aAb= —bAa.
(iv) ¥(a,b) € E2, a Ab = 0g <= (a,b) lide.
(v) V(a,b) EE?, aAbE (Vect(a,b))J'
Soit maintenant B = (v1,v2,v3) une base orthonormée directe de E :

(vi) Soit a = xvi + yva +zv3, b = x'vi + y’v2 + z'v3, a A b dans la base B est donné par :
/ /

!
aAb=(yz —zy)vi + (&' —x2"Wva + (xy —yx' vz = z Yilv - | v2 Tt ; v
(vii) On a aussi les produits vectoriels : vi Avy, =v3, v2 Avy =vy et vz Avy =vy.
REMARQUE 13.14 : Soit (a,b) une famille libre de vecteurs de E :
e La famille (a,b,a A b) est une base directe de E.
e Sik est un vecteur unitaire qui oriente la droite D = (Vect(a,b))l, alors on a aAb = ||a||||b]| sin(0)k

ol  est 'angle orienté (pour l'orientation induite dans le plan P = D+ = Vect(a,b) par k) 6 = (a,b).

e Si (e1,e2) est une famille orthonormale de E, (e, ez2,e1 Aez) est une base orthonormale directe de E.

PROPOSITION SUR D’AUTRES PROPRIETES DU PRODUIT VECTORIEL 13.13 :
Soit a, b et ¢ trois vecteurs de E, alors on a les formules :
(i) |le Ab]] =|a|l]|b]||sin(®)| (norme du produit vectoriel).
(ii) aA(dAc)=(alc)b—(a]b)c et (a Ab)Ac=(al]c)b— (b|c)a (double produit vectoriel).
(iii) (ab)? +[la Ab|]? = |]a||? ||b]|* (identité de LAGRANGE).

REMARQUE HP 13.15 : Dans un espace euclidien orienté de dimension n quelconque, on dispose d’une
définition équivalente de produit vectoriel mais il faut n — 1 vecteurs x1,--+,xn_1 de E pour qu’il existe
un unique vecteur de E, noté x1 A -+ Axn_1, qui vérifie : ¥x € E, [x1, -, xn_1,x| = (x1 A AXno1 \x)

’13.1.5 : Isométries d’un espace euclidien de dimension 2‘

(® Dans ce paragraphe, E désignera un plan euclidien orienté.

THEOREME SUR LA DESCRIPTION DE 0(2) 13.14 :
. ([ cos(B) —sin(0) ([ cos(B)  sin(9) . . .
Soit Rg = (Sm(e> cos(0) et Sg = sin(8) —cos(0) )" Soit A une matrice de O(2) :
e Si A € SO,(R), il existe 8 € R tel que A = Rg.
e Si A € 02(R)\SO2(R), il existe 0 € R tel que A = Sp.

REMARQUE 13.16 : ¢ V8 € R, S} =1,. Ainsi : V6 € R, Sy = Se.
e V(0,0') € R?, RgRo: = Rgo/. Comme Ry =15, 0na: Ve € R, Rg1 =R_g.
L] V(e,e/) € Rz, 5939/ = Re_el. Ou encore : V(e,el) S Rz, SeRe/ = Se_e/ et RQSQ/ = 59+e/.

PROPOSITION SUR LA STRUCTURE PARTICULIERE DE S0O(2) 13.15 :
SO2(R) est un groupe abélien.
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REMARQUE 13.17 : o Attention : O2(R) n’est pas commutatif !

e Le groupe SO,(R) est méme isomorphe a U. “C’est pas faux !”

PROPOSITION SUR L’INVARIANCE DE LA MATRICE D’UNE ROTATION DANS
TOUTE BASE ORTHONORMEE DIRECTE 13.16 :

Toute rotation u de E (c’est-a-dire u € SO(E)) a la méme matrice dans toute base orthonormée

directe : Rg avec 6 € R défini modulo 2n qu’on choisit souvent dans [0;2n] (ou dans | — ;7).

REMARQUE 13.18 : Si la matrice de uw € SO(E) est Rg dans une base orthonormée directe alors la

matrice de u dans toute base orthonormée indirecte est R_g.

DEFINITION 13.9 :
Siuw € SO(E), le réel © défini ci-dessus est appelé l’'angle de la rotation .

PROPOSITION SUR LA COMPOSEE DE DEUX ROTATIONS 13.17 :

kLa composée de la rotation d’angle 6 et de la rotation d’angle 0’ est la rotation d’angle 0 + 6’.)

REMARQUE 13.19 :
e Soit u la rotation de E d’angle 0 et a € E unitaire : cos(0) = (afu(a)) et sin(0) = [a,u(a)].

e Si on prend deux vecteurs non nuls a et b de E, I'angle orienté 0 entre a et b est I'unique 0 (dans

[0; 27[) par exemple) tel que la rotation d’angle 8 transforme ﬁ en W:%H
a
Alors on a les relations : (a|b) = ||a||||b]| cos(0) et [a,b] = ||a||||b]| sin(0).

PROPOSITION CARACTERISANT UNE REFLEXION PAR SA MATRICE 13.18 :
Les isométries indirectes u de E sont les réflexions. Soit B = (vi,v,) une base orthonormée de E,

alors si Sg = Matz(u) olt u est une réflexion, alors elle se fait par rapport a la droite engendrée

par le vecteur unitaire a = cos <%)v1 + sin (%)vz.

REMARQUE 13.20 : Toute rotation v est d’une infinité de maniéeres la composée de deux réflexions :

e Soit s une réflexion, il existe une unique réflexion s’ de E telle que r = sos’.

e Soit s une réflexion, il existe une unique réflexion s” de E telle que r = s” o's.

PROPOSITION SUR LES GENERATEURS DU GROUPE DES ISOMETRIES 13.19 :
Le groupe O(E) est engendré par les réflexions et toute isométrie de E est la composée de 0

(identité), 1 (réflexion) ou 2 réflexions (rotation).

REMARQUE 13.21 : On peut “modéliser” ces isométries vectorielles en complexe par (on se donne une

base orthonormale B = (e1,ez) pour identifier vecteurs et affixes) :

e z — ¢'92 pour la rotation d’angle 0.

e 2 — ¢'®Z pour la réflexion par rapport a la droite engendrée par a = cos (%)el + sin (%)ez (HP).
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THEOREME DE CLASSIFICATION DES ISOMETRIES DU PLAN 13.20 :

Classification des isométries d’un plan euclidien orienté E (E; = Ej(A) et E_1 = E_1(A)) :
isométrie dim(Eq) | dim(E—;) | nb de réfl. | det(A)| € SO(E) |tr(A)
identité : rotation d’angle 0 2 0 0 1 ouIr 2
réflexion 1 1 1 —1 NON 0
(vraie) rotation d’angle +6 €]0; 7| 0 0 2 1 Oul  |2cos®
symétrie centrale (rotation d’angle ) 0 2 2 1 our -2

EXEMPLE 13.5 : o Qu’est 'application canoniquement associée a 1 <: - ) ?

/2 1

e Qu’est I'application canoniquement associée a % (\}g \_[?) ?

’13.1.6 : Isométries d’un espace euclidien de dimension 3‘

(© Dans ce paragraphe, E désignera un espace euclidien orienté de dimension 3.

REMARQUE 13.22 :

e Soit uw € O(E) une isométrie de E, alors 1 ou —1 est valeur propre de u.

e Soit u € SO(E) une rotation, alors 1 est valeur propre de .

THEOREME : DESCRIPTION D’UNE ROTATION SPATIALE (ENORME) 13.21 :
Soit u € SO(E) une isométrie directe (une rotation de E), on a deux cas :
(i) Si dim (Eq(u)) =3 alors u = idg.
(i) Si dim (Eq(u)) =1 alors D = E;(u) = Vect(a) avec a unitaire, il existe 0 € R tel que dans
1 0 0

toute base orthonormée directe B = (a,b,c) de E : Matg(u)=| 0 cos® —sind
0 sin® cos 6

REMARQUE 13.23 : 1l faut absolument orienter la droite D pour que I'orientation induite dans le plan

orthogonal nous permette de déterminer ’angle © sans ambiguité.

DEFINITION 13.10 :

Siu € SO(E) vérifie uw # ide, on dit que la (vraie) rotation w admet la droite D pour axe de la rotation u

(qu’on oriente par a) et 0 est appelé 'angle de la rotation wu.

PROPOSITION SUR LE CALCUL DE I’ANGLE D’UNE ROTATION SPATTALE 13.22 :
Soit la rotation u d’axe D orienté par a unitaire et d’angle 0, alors, si A = Matg(u) avec B une

base orthonormée directe :

tr(A) — 1

® cosf = puisque tr(A) =tr(u) =1+ 2cos6.

e sin 0 est du méme signe que [x,u(x), a] = [a,x,u(x)] si x € D.
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REMARQUE 15.24 : e Ceci nous permet de déterminer les éléments caractéristiques d’une rotation.

e Comme souvent u est donnée par sa matrice dans la base canonique de R3, on prend habituellement

pour x un des vecteurs de la base canonique.

ORAL BLANC 13.6 : CCP PSI 2015 Jean-Raphaél Biehler

2 2 -1
On considére la matrice A = 1 -2 1 =2
-1 2 2

Montrer qu’elle est orthogonale et caractérisez cette transformation.

PROPOSITION : ECRITURE VECTORIELLE D’UNE ROTATION SPATIALE 13.23 :

(HP) Soit la rotation u d’axe D orienté par a unitaire et d’angle 6, vectoriellement :

Vx € E, u(x) = (cos0)x + (sin0)(a Ax) + (1 — cos 0)(alx)a.

REMARQUE 13.25 : En particulier, si x € D+, la formule se réduit a u(x) = (cos 0)x + (sin 0)(a A x) ce

qui nous donne les relations : (x[u(x)) = (cos0)|[x||* et x Au(x) = (sin0)][x]|?a.

EXEMPLE 13.7 : Déterminer la matrice dans la base canonique de R3 de la rotation d’axe D

orienté par a = (o, B,7y) unitaire et d’angle %

REMARQUE HP 13.26 : Soit B = (v1,v2,v3) une base orthonormée directe de E, u la rotation d’axe D

o —v B
orienté par a = avq+Bva+yv3 unitaire et d’angle 8, si A = Matgp (u), A—AT =2sin0 [ vy 0 -«
—B « 0
on peut donc déterminer a et sin® ; bien sir on a toujours recours a tr(A) pour découvrir cos 0.
-2 6 3
EXEMPLE 13.8 : Caractériser u canoniquement associé a A = 17 6 3 -2
-3 2 -6

( L, 7
PROPOSITION SUR LA RECONNAISSANCE D’UNE SYMETRIE ORTHOGONALE DE
L’ESPACE PAR SA TRACE 13.24 :

Si B est orthonormée de E, A = Matg(u) € O3(R) et AT = A : u est une symétrie orthogonale :

(i) tr(A) = =3 <= dim (E1(u)) =0 <= dim (E_1(u)) =3 <= u = —ide (symétrie centrale).
(i) tr(A) = -1 <= dim (E;(u)) =1 <= dim (E_1(u)) =2 <= u est un demi-tour.
(iii) tr(A) =1 <= dim (Ei(u)) =2 <= dim (E_;(u)) = 1 <= u est une réflexion de plan E;(u).
(iv) tr(A) =3 <= dim (E1(u)) =3 <= dim (E_1(u)) =0 <= u = ide

REMARQUE 13.27 : 1l reste les isométries indirectes u € O(E) \ SO(E) qui ne sont pas des réflexions :

e On sait qu’alors —u € SO(E) donc il existe un axe D = Vect(a) avec a unitaire et un angle 8 € R tel

—1 0 0
que dans toute base orthonormée directe B = (a,b,c), on ait Matg(uw)=| 0 cos® —sind
0 sin® cosH
e u est la composée commutative de la rotation d’axe D et d’angle 0 et de la réflexion de plan D*.

e On détermine cos(0) avec la trace : tr(A) = —1 + 2cos(0).

e On détermine de méme le signe de sin(0) qui est égal au signe de [a,x,u(x)] ot x ¢ D.
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REMARQUE HP 13.28 : Une isométrie indirecte de la forme précédente (si © = 0 u est une réflexion et

si 0 =mon au= —1idg) est appelée une rotation-miroir autour de la droite D orientée par le vecteur
unitaire a et d’angle 6. Comme pour les rotations, on montre que :

Vx € E, u(x) = (cos0)x + (sin0)(a Ax) — (1 + cos 0)(alx)a.

THEOREME CLASSIFIANT LES ISOMETRIES DE L’ESPACE (ENORME) 13.25 :

Classification des isométries d’un espace euclidien orienté E de dimension 3 (en adoptant a
nouveau les abréviations £y = Ej(A) et E_; = E_;(A)):

isométrie dim(E7) | dim(E—q) | nb de réfl. | det(A)| € SO(3) tr(A)
identité 3 0 0 1 ouIl 3
réflexion 2 1 1 —1 NON 1
rotation d’angle +60 €]0; x| 1 0 2 1 oul 14 2cosb €] —1;3]
demi-tour, retournement 1 2 2 1 oul —1
symétrie centrale 0 3 3 —1 NON -3
rotation-miroir 0 1 3 -1 NON  |—142cos0 €] —3;1]

EN PRATIQUE : Soit A € O3(R) et u canoniquement associée a A :
e Si A =13 alors u = idg (identité).
e Si A = —I3 alors u = —idg (symétrie centrale).
e SiA#+I3 et A=AT alors u est une symétrie orthogonale et tr(A) = tr(u) = £1.
o Sitr(A) =1 alors u est la réflexion par rapport au plan Ker(A — I3).
o Sitr(A) = —1 alors u est le demi-tour autour de la droite Ker(A + I3)1 = Ker(A — I3).
e Si A#AT et det(A) =1 (c’est le cas si tr(A) > 1) alors u est une “vraie” rotation.

o L’axe de u est la droite Ker(A — I3) qu’on oriente par un vecteur a unitaire.

o L’angle 0 de u vérifie cos(0) = %, sgn (sin(0)) = sgn ([a,x, u(x)]) ((x, a) libre).
e SiA#AT et det(A) = —1 (clest le cas si tr(A) < —1) alors u est une “vraie” rotation-miroir.

o L’axe de u est la droite Ker(A + 13) qu’on oriente par un vecteur a unitaire.

o L’angle 0 de u vérifie cos(0) = %, sgn (sin(0)) = sgn ([a,x,u(x)]) ((x,a) libre).
7 —4 4
EXEMPLFE 13.9 : Reconnaitre u canoniquement associée a A = % 4 8 1
4 -1 -8

13.1.7 : (HP) Matrices et déterminants de GRAM‘

REMARQUE HP 13.29 : Dans un espace préhilbertien réel E, on se donne une famille finie de p vecteurs

deE notée F = (v1,---,vp). On appelle matrice de GRAM de J la matrice G = ((vi|vj))1<i‘j<p € My (R).
e On a I’équivalence : (¥ = (vi,--,vp) est libre ) <= G € GLy(R).
e Si F est libre, soit v € E, on note d = d(v,F) la distance de v & F = Vect(vy,---,vp). Alors en
notant G(vi,--+,vp) le déterminant (dit de GRAM) de la matrice de G : d* = H
) )

EXEMPLE 13.10 : Calculer la distance de v = (1,0,1,0) au plan P d’équation x +t =y + z = 0.
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PARTIE 13.2 : ENDOMORPHISMES AUTOADJOINTS ET
MATRICES SYMETRIQUES REELLES

’13.2.1 : Endomorphismes autoadjoints‘

DEFINITION 13.11 :
Soit u € L(E), on dit que u est un endomorphisme autoadjoint si V(x,y) € E2, (u(x)|y) = (x[u(y)).

On note S(E) l’ensemble des endomorphismes autoadjoints.

REMARQUE 13.30 : e On dit aussi que u autoadjoint est symétrique (ancienne terminologie).

e Cette autre appellation justifie la notation S(E).
e Si u est endomorphisme autoadjoint de E et F un sous-espace vectoriel de E stable par u, alors ur
est aussi un endomorphisme autoadjoint de F.

ORAL BLANC 13.11 : Soit E euclidien de dimension n > 2, a € E unitaire et k € R\ {—1}.

a. Montrer que u(x) = x + k(x|a)a définit un endomorphisme symétrique de E.

b. Montrer que u est un automorphisme.

c. Etudier les valeurs propres et les sous-espaces propres de u.

THEOREME DE CARACTERISATION DES ENDOMORPHISMES AUTOADJOINTS PAR
LEURS MATRICES DANS LES BASES ORTHONORMEES (ENORME) 13.26 :

Soit E euclidien de dimension n, u € £(E) et B une base orthonormale de E, alors :

u est un endomorphisme autoadjoint de E <= Matz(u) est une matrice symétrique de M, (R).

REMARQUE 13.31 : Le terme “endomorphisme symétrique” devient plus clair avec cette caractérisation.

Les endomorphismes autoadjoints de E forment un sous-espace vectoriel de dimension M

PROPOSITION SUR LES PROJECTEURS ET SYMETRIES AUTOADJOINTS 13.27 :
Soit p un projecteur de E : (p est un projecteur orthogonal) = (p est autoadjoint).

Soit s une symétrie de E : (s est une symétrie orthogonale) <= (s est autoadjoint).

13 -2 -3
EXEMPLE 13.12 : Qu’est p dont la matrice dans la base canon. de R3 est ]1—4 -2 10 —-6]7
-3 —6 5

PROPOSITION SUR LA STABILITE DE L’ORTHOGONAL PAR UN ENDOMORPHISME
AUTOADJOINT 13.28 :

Si u € £(E) est autoadjoint et si F est un sous-espace vectoriel de E stable par u, alors le

sous-espace F- est aussi stable par u.
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REMARQUE HP 13.32 : Soit E un espace euclidien :
e On dit que u € £(E) est antisymétrique si et seulement si : Vx € E, (x[u(x))

=0.
e On a I'équivalence : u antisymétrique <= (V(x,y) € B, (u(x)|y) = —(x|u(g))).

n(n—]).

e Les endomorphismes antisymétriques de E forment un sous-espace vectoriel de dimension 7

o Si A € Mn(R) est antisymétrique, alors Sp(A) C iR (imaginaires purs).
e Soit B une base orthonormée de E : u antisymétrique <= Mats (1) antisymétrique.
e Si E euclidien orienté de dimension 3 et u endomorphisme antisymétrique de E, alors il existe un

unique vecteur a de E tel que : ¥x € E, u(x) = a Ax.

PROPOSITION SUR L’'ORTHOGONALITE ENTRE DEUX SOUS-ESPACES PROPRES
POUR UN ENDOMORPHISME AUTOADJOINT 13.29 :

Soit A1 et A, deux valeurs propres distinctes de u autoadjoint, Ej, (u) L Ej, (u).

13.2.2 : Le théoreme spectral

THEOREME SPECTRAL VERSION VECTORIELLE (ENORME) 13.30 :
Soit u un endomorphisme autoadjoint de E, alors x, est scindé sur R.

Il existe une base orthonormale de E formée de vecteurs propres de u.
1L

Autrement dit, u est diagonalisable dans une base orthonormale et donc E = @ Ea(u).
AESP(u)

( L, 7
PROPOSITION SUR L’ORTHOGONALITE ENTRE IMAGE ET NOYAU POUR UN
ENDOMORPHISME autoadjoint 13.31 :

Si E est euclidien et u € £(E) autoadjoint, alors Im(u) = Ker(u)* (le noyau et I’image de u sont

supplémentaires orthogonaux ’un de l’autre).
- J

THEOREME SPECTRAL VERSION MATRICIELLE (ENORME) 13.32 :
Si A € S,(R) alors xa est scindé dans R[X] et il existe une matrice P € O,,(R) telle que P' AP soit

diagonale réelle.

REMARQUE 13.33 : e On dit que la matrice A est orthosemblable a une matrice diagonale.
e La réciproque est vraie : si la matrice P est orthogonale et si PTAP est diagonale alors A € S (R).

6 -2 2
EXEMPLFE 13.13 : Diagonaliser A= | —2 5 0 | dans une base orthonormale.
2 0o 7

REMARQUE 13.34 : Les matrices symétriques complexes ne sont pas forcément diagonalisables !

EXEMPLE FONDAMENTAL 13.14 : Soit la matrice symétrique complexe A = (1 :] )
Justifier que A n’est pas diagonalisable dans M;( C).
ORAL BLANC 13.15 : CCP PSI 2014 Mickagl

"
Soit A € M, (R), on pose S = % Soit A1 < Ay < -+ < Ap les valeurs propres de S.

On suppose que A est une valeur propre réelle de A. Montrer que A7 < A < Ay,
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13.2.3 : Endomorphismes autoadjoints

positifs et définis positifs

DEFINITION 13.12 :
Soit E un espace euclidien et uw € L(E) un endomorphisme autoadjoint.

e On dit que u est un endomorphisme autoadjoint positif si Vx € E, (u(x)\x) > 0.

e On dit que u est un endomorphisme autoadjoint défini positif si Vx € E\ {0g}, (u(x)[x) > 0.
Soitn € N* et A € My (R) une matrice symétrique.

e On dit que A est une matrice symétrique positive si VX € My, 1(R), XTAX > 0.

e On dit que A est une matrice symétrique définie positive si VX € M, 1(R)\ {0}, XTAX > 0.

REMARQUE 13.35 : Soit E euclidien de base orthonormée B = (e1,---,en), (E1, -, En) base canonique
(dOHC bOIl) de MnJ(R) et A = Matg (u) = (‘H,j)]gi,jgn avec u € L(E) Daiy = EIAE]' = (ei|u(e]-)).

DEFINITION 13.13 :
On note ST(E) (resp. STT(E)) ’ensemble des endomorphismes autoadjoints positifs (resp. définis positifs).

On note S} (R) (resp. S;T(R)) l'ensemble des matrices symétriques positives (resp. définies positives).

REMARQUE FONDAMENTALE 15.36 : Trois équivalences essentielles :
e Si B est une base orthonormale de E, u € L(E) et A = Mats(u) € Mn(R) avec n = dim(E), alors

u € SH(E) <= A € S}/ (R) car Sp(u) = Sp(A) et, bien sir, on a aussi u € STH(E) <= A € S} T (R).

e Siu est un endomorphisme de E, on a I'équivalence :

u € STH(E) <= (¢ : (x,y) — (u(x)|y) est un produit scalaire sur E).

THEOREME CARACTERISANT LES AUTOADJOINTS DEFINIS POSITIFS 13.33 :
Soit u un endomorphisme autoadjoint de E, il y a équivalence entre :
(i) ¥ € E, (u(x)[x) >0 et (ii) Sp(u) C RT,
mais aussi entre les deux assertions :
(i) Vx € E, x # 0g = (u(x)[x) > 0 et (ii) Sp(u) C Ri.

THEOREME CARACTERISANT LES MATRICES SYMETRIQUES POSITIVES 13.34 :
Soit A € M;,(R) une matrice symétrique, il y équivalence entre :
(i) VX € My 1(R), XTAX >0  (ii) Sp(A) C Ry  (iii) 3B € M, (R) (ou S;;(R)), A=B'B.
mais aussi entre les trois assertions :
(i) VX € Mn,1(R)\ {0}, XTAX >0 (ii) Sp(A) C R* (iii) 3B € GLn(R) (ou S;*(R)), A=BTB.
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REMARQUE FONDAMENTALE 13.87 : Si A est une matrice symétrique positive, alors il existe une

unique matrice B symétrique positive telle que A = B2. On appelle cette matrice la racine carrée de A.

REMARQUE 13.38 : Siu € ST(E) (resp. uw € STT(E)) : tr(u) > 0 et det(u) > 0 (resp. tr(u),det(u) > 0).

EXFERCICE CONCOURS 13.16 : Mines PSI 2015 Arnaud Dubessay
a. Montrer que M € S} <= VX € My 1(R), XTMX > 0.
b. Montrer que si A € M (R) est symétrique positive, V(i,j) € [1;n]?, i #j = ai,iqj,; — (112)j > 0.

c. Montrer que si A € M, (R) est symétrique positive et de rang 1, alors JU € R™, A =uu’.
d. Montrer que si A € My (R) est symétrique positive, IM € M, (R), A = MTM.
e. Montrer que si (A,B) € (S;7(R))?, tr(AB) > 0.

Soit A = (aij)1<ij<n € Mn(R) symétrique positive avec ajj # 0. On pose B = (a_1

i, )1<i,j<n'
f. Montrer que A de rang 1 <= B € S}\.
REMARQUE HP 13.39 : A € GL,(R), 3/(0,S) € On(R) x STT(R) tel que A = OS.

C’est la décomposition polaire d’une matrice inversible de GL,(R).

—_ —_ o

1
EXEMPLE 13.17 : Trouver Oet SsiA= | 0
1

[ R p—

(COMPETENCES|

e Etudier 'image d’une base orthonormée pour savoir si on a affaire & une isométrie.

e Vérifier sur la matrice d’'un endomorphisme dans une base orthonormée que c’est une isométrie.

e Savoir reconnaitre géométriquement les symétries orthogonales.

e Connaitre la structure de groupes des matrices orthogonales ou des isométries vectorielles.

e Maitriser la définition et les propriétés du produit vectoriel dans I'espace.

e Réviser les différentes isométries vectorielles du plan et leur classification.

e Apprendre lalgorithme de caractérisation d’une isométrie directe (une rotation) de I’espace.

e Se familiariser avec le méme algorithme (méme si hors programme) pour les isométries indirectes.
e En particulier, savoir facilement reconnaitre géométriquement une symétrie orthogonale de I'espace.
e Savoir établir qu'un endomorphisme est autoadjoint.

o Utiliser le théoreme spectral pour la recherche des éléments propres d’un endomorphisme autoadjoint.

e Etre a l'aise avec les différentes caractérisations des matrices symétriques positives.



