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CHAPITRE 13

ENDOMORPHISMES D’UN

ESPACE EUCLIDIEN⊙
Après une première étude des espaces préhilbertiens dans lesquels le produit scalaire permettait

d’avoir certaines propriétés des familles de vecteurs (familles orthogonales, bases orthonormées...) et des
sous-espaces (projections orthogonales sur des sous-espaces de dimension finie, distance entre un sous-espace
de dimension finie et un vecteur,...), on va imposer la dimension finie pour avoir des espaces euclidiens et
se focaliser sur l’étude des endomorphismes de ces espaces, spécifiquement ceux qui permettent d’avoir des
invariants.

Dans un premier temps, on va étudier les endomorphismes qui conservent la norme (ou la distance) et
donc appelés isométries. Ce sont des opérations sur les objets de l’espace (l’étude affine dont on a besoin dans
le monde réel est cachée derrière l’aspect vectoriel) qui garantissent leur déplacement et leur non-déformation
(translation, rotation, vissage, réflexions). On en fera une étude plus détaillée pour l’application en physique
et en sciences de l’ingénieur dans le plan et dans l’espace donc en dimensions 2 et 3.

Dans une seconde partie, on traitera des endomorphismes qui vérifient une propriété de symétrie des
produits scalaires : ∀(x, y) ∈ E2,

(
u(x)|y

)
=

(
x|u(y)

)
. Ces endomorphismes dits symétriques sont notamment

utiles aux physiciens à travers les matrices d’inertie (tenseurs d’inertie) d’un solide, la matrice de Lorentz
associée à la transformation du même nom en relativité, les états en mécanique quantique, etc...

Le théorème spectral, dans ces contextes, précise la réduction de ces endomorphismes et permet de
montrer les relations entre les axes principaux d’inertie d’un solide, de “visualiser” le cône de lumière en
relativité, de déterminer les opérateurs décrivant les atomes et les molécules, etc...
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PROGRAMME� �

Cette section vise les objectifs suivants :

- étudier les isométries vectorielles et matrices orthogonales, et les décrire en dimension deux et

trois en insistant sur les représentations géométriques ;

- approfondir la thématique de réduction des endomorphismes dans le cadre euclidien en énonçant

les formes géométrique et matricielle du théorème spectral ;

- introduire la notion d’endomorphisme autoadjoint positif, qui trouvera notamment son application

au calcul différentiel d’ordre 2.

La notion d’adjoint est hors programme.

1 : Isométries vectorielles d’un espace euclidien

Contenus Capacités & Commentaires

Un endomorphisme d’un espace euclidien est une Exemple : symétries orthogonales, cas particulier

isométrie vectorielle s’il conserve la norme. des réflexions.

Caractérisations par la conservation du produit

scalaire, par l’image d’une base orthonormée.

Groupe orthogonal. Notation O(E).

On vérifie les propriétés lui conférant une structure

de groupe, mais la définition axiomatique des groupes

est hors programme.

Stabilité de l’orthogonal d’un sous-espace stable.

2 : Matrices orthogonales

Contenus Capacités & Commentaires

Une matrice A de Mn(R) est orthogonale Interprétation en termes de colonnes et de lignes.

si AT A = In. Caractérisation comme matrice de changement de base

orthonormée.

Caractérisation d’une isométrie vectorielle à l’aide On mentionne la terminologie “automorphisme

de sa matrice dans une base orthonormée. orthogonal”, tout en lui préférant celle d’“isométrie vectorielle”.

Groupe orthogonal. Notations On(R), O(n).

Déterminant d’une matrice orthogonale. Groupe Notations SOn(R), SO(n).

spécial orthogonal.

Orientation. Bases orthonormées directes.
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3 : Espace euclidien orienté de dimension 2 ou 3

Contenus Capacités & Commentaires

Déterminant d’une famille de vecteurs dans une base Notations [u, v], [u, v, w].

orthonormée directe : produit mixte. Interprétation géométrique comme aire ou volume.

Produit vectoriel. Calcul dans une base orthonormée

directe.

Orientation d’un plan ou d’une droite dans un espace

euclidien orienté de dimension 3.

4 : Isométries vectorielles d’un plan euclidien

Contenus Capacités & Commentaires

Description des matrices de O2(R), de SO2(R). Commutativité de SO2(R).

Rotation vectorielle d’un plan euclidien orienté. On introduit à cette occasion, sans soulever de difficulté,

la notion de mesure d’un angle orienté de vecteurs non nuls.

Classification des isométries vectorielles d’un plan

euclidien.

5 : Isométries d’un espace euclidien de dimension 3

Contenus Capacités & Commentaires

Description des matrices de SO3(R).

Rotation vectorielle d’un espace euclidien orienté Axe et mesure de l’angle d’une rotation.

de dimension 3.

6 : Réduction des endomorphismes autoadjoints et des matrices symétriques réelles

Contenus Capacités & Commentaires

Endomorphisme autoadjoint d’un espace euclidien. Notation S(E).

Caractérisation des projecteurs orthogonaux.

Caractérisation d’un endomorphisme autoadjoint à l’aide On mentionne la terminologie “endomorphisme

de sa matrice dans une base orthonormée. symétrique”, tout en lui préférant celle d’“endomorphisme

autoadjoint”.

Théorème spectral : La démonstration n’est pas exigible.

tout endomorphisme autoadjoint d’un espace euclidien Forme matricielle du théorème spectral.

admet une base orthonormée de vecteurs propres.

Endomorphisme autoadjoint positif, défini positif. Caractérisation spectrale. Notations S+(E), S++(E).

Matrice symétrique positive, définie positive. Caractérisation spectrale. Notations S+n(R), S++
n (R).
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E est ici un espace euclidien, le produit scalaire est noté ( . | . ) et la norme euclidienne associée || . ||.� �

PARTIE 13.1 : ISOMÉTRIES VECTORIELLES� �
13.1.1 : Automorphismes orthogonaux

DÉFINITION 13.1 :

Soit u ∈ L(E), on dit que u est une isométrie vectorielle de E ou un automorphisme orthogonal de E

si u conserve la norme, c’est-à-dire si ∀x ∈ E, ||u(x)|| = ||x||.
Soit O(E) l’ensemble des isométries vectorielles de E, O(E) est appelé le groupe orthogonal de E.

EXEMPLE 13.1 : Soit u ∈ L(R3) tel que u(x, y, z) = 1

3

(
x+ 2y− 2z, 2x+ y+ 2z,−2x+ 2y+ z

)
.

Vérifier que u ∈ O(R3). Déterminer u2. Que déduire sur u ?

THÉORÈME DE CARACTÉRISATION DES ISOMÉTRIES 13.1 :

Soit u un endomorphisme de E, les propositions suivantes sont équivalentes :

(i) u est une isométrie vectorielle.

(ii) u conserve le produit scalaire : ∀(x, y) ∈ E2,
(
u(x)|u(y)

)
= (x|y).

(iii) u transforme toute base orthonormale de E en une base orthonormale de E.

(iv) u transforme une base orthonormale de E en une base orthonormale de E.

REMARQUE 13.1 : Si E est de dimension 1 : O(E) = {− idE, idE}.� �
PROPOSITION SUR LA STRUCTURE DE O(E) 13.2 :

O(E) est un sous-groupe de GL(E).� �
REMARQUE FONDAMENTALE 13.2 : Si u ∈ O(E) et F stable par u, alors uF ∈ O(F).� �

PROPOSITION SUR LA STABILITÉ DE L’ORTHOGONAL PAR UNE ISOMÉTRIE 13.3 :

Soit u ∈ O(E), F un sous-espace vectoriel de E :
(
F est stable par u

)
⇐⇒

(
F⊥ est stable par u

)
.� �

DÉFINITION 13.2 :

Soit F un sous-espace de E, la symétrie orthogonale par rapport à F est la symétrie sF par rapport à F

parallèlement à F⊥. Une réflexion est une symétrie orthogonale par rapport à un hyperplan de E.

REMARQUE 13.3 : •
(
s est une symétrie orthogonale

)
⇐⇒

(
s2 = idE et Ker(s− idE) ⊥ Ker(s+ idE)

)
.

• Si pF est la projection orthogonale sur F alors sF = 2pF − idE.

• Si H =
(
Vect(e)

)⊥
est un hyperplan de E alors sH : x 7→ x− 2

(e|x)
||e||2

e (réflexion d’hyperplan H).� �
PROPOSITION DE CARACTÉRISATION DES SYMÉTRIES ORTHOGONALES 13.4 :

Si s est une symétrie de E :
(
s est orthogonale

)
⇐⇒

(
s est une isométrie

)
.� �

REMARQUE 13.4 : Une projection orthogonale, autre que idE, n’est pas un automorphisme orthogonal.
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13.1.2 : Matrices orthogonales

DÉFINITION 13.3 :

Soit n > 1, une matrice A ∈ Mn(R) est appelée une matrice orthogonale si ATA = In.

REMARQUE 13.5 : En notant C1, · · · , Cn les colonnes de A, qui forment une famille de n vecteurs

de Mn,1(R) (ou Rn), le calcul des matrices de Gram montre que ATA =
(
(Ci|Cj)

)
16i,j6n

. Ainsi,

A ∈ Mn(R) est orthogonale si et seulement si (C1, · · · , Cn) est une base orthonormale de Rn.

EXEMPLE 13.2 : Vérifier que A =

 0 0 1

1 0 0

0 1 0

 est une matrice orthogonale.

Quel est l’endomorphisme de R3 canoniquement associé à la matrice A ?

REMARQUE 13.6 : Soit E un espace euclidien et B une base orthonormale, B′ une base quelconque, on

note P la matrice de passage entre B et B′. Alors P est orthogonale ssi B′ est une base orthonormale.� �
PROPOSITION DE CARACTÉRISATION DES MATRICES ORTHOGONALES 13.5 :

Soit n ∈ N∗ et M ∈ Mn(R), les propriétés suivantes sont équivalentes :

(i) MTM = In (M est orthogonale).

(ii) MMT = In.

(iii) M est inversible et M−1 = MT .

(iv) Les vecteurs lignes de M forment une base orthonormée de Rn euclidien canonique.

(v) Les vecteurs colonnes de M forment une base orthonormée de Rn eucl. canon..� �
DÉFINITION 13.4 :

On note On(R) ou O(n) l’ensemble des matrices orthogonales de Mn(R).
Cet ensemble On(R) est appelé le groupe orthogonal d’ordre n.

EXEMPLE 13.3 : La matrice de Hadamard A = 1

2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 appartient à O4(R).

THÉORÈME DE CARACTÉRISATION D’UNE ISOMÉTRIE PAR SA MATRICE DANS
UNE BASE ORTHONORMALE (ÉNORME) 13.6 :

Soit u ∈ L(E) et B une base orthonormée de E, alors : u ∈ O(E) ⇐⇒ MatB(u) ∈ On(R).

� �
PROPOSITION SUR LA STRUCTURE DE On(R) 13.7 :

On(R) est un sous-groupe de GLn(R).
De plus, si M ∈ On(R) alors det(M) = ±1.� �
DÉFINITION 13.5 :

Soit SOn(R) =
{
M ∈ On(R) | det(M) = 1

}
(ou SO(n)) le groupe spécial orthogonal d’ordre n.
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PROPOSITION SUR LA STRUCTURE DE SOn(R) 13.8 :

SOn(R) est un sous-groupe de On(R) (donc de GLn(R)).� �
REMARQUE 13.7 :

• (HP) Avec les hypothèses du théorème, l’application θ̃ : O(E) → On(R) définie par θ̃(u) = MatB(u)
est un isomorphisme de groupes qui est la restriction de θ : GL(E) → GLn(R) qui en était déjà un.

• Soit B et B′ deux bases orthonormées d’un espace euclidien E, u un endomorphisme de E et P = PB,B′

la matrice de passage de la base B à la base B′ :

(i) P ∈ On(R) donc P−1 = PT .

(ii) MatB′(u) = PT MatB(u) P.

REMARQUE FONDAMENTALE 13.8 : Grâce à Gram-Schmidt, on a une décomposition des matrices

inversibles : soit A ∈ GLn(R), il existe un unique couple (Q, R) ou Q est orthogonale et R triangulaire

supérieure avec des termes strictement positifs sur la diagonale tel que A = QR (décomposition QR).

EXEMPLE 13.4 : Décomposer la matrice A =

 1 1 1

1 2 2

1 2 3

 sous cette forme.

13.1.3 : Isométries vectorielles directes

REMARQUE 13.9 : On rappelle que dans un espace euclidien E, une orientation de E est le choix d’une

base B0 de référence qu’on dira directe et que pour tout autre base B de E :

• B est directe si det(PB0,B) > 0.

• B est indirecte si det(PB0,B) < 0.

“Avoir la même orientation” est une relation d’équivalence sur les bases de E avec 2 classes d’équivalence.

Dans Rn, Mn(R), Rn[X] munis de leur produit scalaire canonique, on choisira la base canonique comme

base directe de référence et on dira que E est euclidien orienté canonique.� �
PROPOSITION CONCERNANT LE DÉTERMINANT D’UNE ISOMÉTRIE 13.9 :

Si u ∈ O(E), on a det(u) = ±1.� �
DÉFINITION 13.6 :

SO(E) =
{
u ∈ O(E) | det(u) = 1

}
est appelé le groupe spécial orthogonal de E ou groupe des rotations

de E. Les éléments de SO(E) sont aussi appelées isométries directes (vectorielles).

� �
PROPOSITION SUR LA STRUCTURE DE SO(E) 13.10 :

SO(E) est un sous-groupe de O(E) (donc de GL(E)).� �
REMARQUE 13.10 : Pour les isométries directes dans un espace euclidien orienté :

(i) u ∈ SO(E).

(ii) u transforme toute base orthonormale directe de E en une base orthonormale directe de E.

(iii) u transforme une base orthonormale directe de E en une base orthonormale directe de E.

(iv) la matrice de u dans une base orthonormale de E est dans SOn(R).
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REMARQUE FONDAMENTALE 13.11 : Soit n un entier naturel supérieur ou égal à 1 et A ∈ O(n).

• Si λ est une valeur propre réelle de A, alors λ = ±1.

• Si λ est une valeur propre complexe de A, alors |λ| = 1.

• Si n est impair, ±1 est une valeur propre de A.

• Si n est impair et A ∈ SO(n), alors 1 est valeur propre de A.

• Si A ∈ O(n) \ SO(n), alors −1 est valeur propre de A.

• A est donc diagonalisable dans Mn(R) si et seulement si A2 = In.

13.1.4 : Espaces euclidiens orientés de dimension 2 ou 3� �
PROPOSITION SUR L’INVARIANCE DU DÉTERMINANT D’UNE FAMILLE DANS UNE
BASE ORTHONORMÉE DIRECTE 13.11 :

Soit F = (v1, · · · , vn) une famille de n vecteurs d’un espace euclidien orienté de dimension n,

alors detB(F) ne dépend pas de la base orthonormale directe B choisie.� �
DÉFINITION 13.7 :

La valeur commune du déterminant de la famille F = (v1, · · · , vn) dans n’importe quelle base orthonormale

directe de E est appelée le produit mixte de F, et noté [v1, · · · , vn].⊙
Le programme se restreint aux espaces euclidiens orientés de dimension 2 et 3 pour la définition du produit

mixte mais cette notion est générale.

REMARQUE 13.12 :

• Dans un plan euclidien E orienté : soit deux vecteurs u = (x, y) et v = (x′, y′) (coordonnées dans une

base orthonormale directe B = (a, b) du plan E), alors [u, v] = xy′ − x′y.

• Dans le plan :
∣∣[u, v]∣∣ est l’aire du parallélogramme formé par les vecteurs u et v.

• Dans un espace euclidien E orienté : soit u = (x, y, z), v = (x′, y′, z′) et w = (x′′, y′′, z′′) (coordonnées

dans une B.O.N.D. B = (a, b, c)), alors [u, v, w] = xy′z′′ + x′y′′z+ x′′yz′ − xy′′z′ − x′yz′′ − x′′y′z. Dans

l’espace, on montre que
∣∣[u, v, w]

∣∣ est le volume du parallélépipède formé par u, v et w.⊙
Dans la suite de ce paragraphe, E désignera un espace euclidien orienté de dimension 3.

REMARQUE 13.13 : Soit D = Vect(e1) et P = Vect(e2, e3) = D⊥ une droite et un plan dans E :

• On définit une orientation dans P si ”on oriente D par e1”, en disant que B′ = (e2, e3) est directe

dans P si et seulement si B = (e1, e2, e3) est directe dans E : cette orientation de P est dite orientation

induite dans P par celle de D.

• On définit une orientation dans D si ”on oriente P par B′ = (e2, e3)” directe, en disant que (e1) est

directe dans D (ou e1 dirige D) si et seulement si B = (e1, e2, e3) est directe dans E : cette orientation

de D est dite orientation induite dans D par celle de P.

DÉFINITION 13.8 :

Soit a et b deux vecteurs de E, on appelle produit vectoriel de a et b, qu’on note a ∧ b, l’unique vecteur

de E qui vérifie ∀x ∈ E, [a, b, x] = [b, x, a] = [x, a, b] = (a ∧ b|x) = (x|a ∧ b).
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PROPOSITION SUR LES PROPRIÉTÉS DU PRODUIT VECTORIEL 13.12 :

L’application produit vectoriel est bilinéaire antisymétrique donc alternée :

(i) ∀(a, a′) ∈ E2, ∀b ∈ E, ∀(λ, µ) ∈ R2, (λa+ µa′) ∧ b = λa ∧ b+ µa′ ∧ b.

(ii) ∀a ∈ E, ∀(b, b′) ∈ E2, ∀(λ, µ) ∈ R2, a ∧ (λb+ µb′) = λa ∧ b+ µa ∧ b′.

(iii) ∀(a, b) ∈ E2, a ∧ b = −b ∧ a.

(iv) ∀(a, b) ∈ E2, a ∧ b = 0E ⇐⇒ (a, b) liée.

(v) ∀(a, b) ∈ E2, a ∧ b ∈
(
Vect(a, b)

)⊥
.

Soit maintenant B = (v1, v2, v3) une base orthonormée directe de E :

(vi) Soit a = xv1 + yv2 + zv3, b = x′v1 + y′v2 + z′v3, a ∧ b dans la base B est donné par :

a ∧ b = (yz′ − zy′)v1 + (zx′ − xz′)v2 + (xy′ − yx′)v3 =

∣∣∣∣ y y′

z z′

∣∣∣∣ v1 − ∣∣∣∣ x x′

z z′

∣∣∣∣ v2 + ∣∣∣∣ x x′

y y′

∣∣∣∣ v3.
(vii) On a aussi les produits vectoriels : v1 ∧ v2 = v3, v2 ∧ v3 = v1 et v3 ∧ v1 = v2.� �
REMARQUE 13.14 : Soit (a, b) une famille libre de vecteurs de E :

• La famille (a, b, a ∧ b) est une base directe de E.

• Si k est un vecteur unitaire qui oriente la droite D =
(
Vect(a, b)

)⊥
, alors on a a∧b = ||a|| ||b|| sin(θ)k

où θ est l’angle orienté (pour l’orientation induite dans le plan P = D⊥ = Vect(a, b) par k) θ = (a, b).

• Si (e1, e2) est une famille orthonormale de E, (e1, e2, e1 ∧ e2) est une base orthonormale directe de E.� �
PROPOSITION SUR D’AUTRES PROPRIÉTÉS DU PRODUIT VECTORIEL 13.13 :

Soit a, b et c trois vecteurs de E, alors on a les formules :

(i) ||a ∧ b|| = ||a|| ||b|| | sin(θ)| (norme du produit vectoriel).

(ii) a ∧ (b ∧ c) = (a|c)b− (a|b)c et (a ∧ b) ∧ c = (a|c)b− (b|c)a (double produit vectoriel).

(iii) (a|b)2 + ||a ∧ b||2 = ||a||2 ||b||2 (identité de Lagrange).� �
REMARQUE HP 13.15 : Dans un espace euclidien orienté de dimension n quelconque, on dispose d’une
définition équivalente de produit vectoriel mais il faut n− 1 vecteurs x1, · · · , xn−1 de E pour qu’il existe
un unique vecteur de E, noté x1 ∧ · · · ∧ xn−1, qui vérifie : ∀x ∈ E, [x1, · · · , xn−1, x] =

(
x1 ∧ · · · ∧ xn−1|x

)
.

13.1.5 : Isométries d’un espace euclidien de dimension 2⊙
Dans ce paragraphe, E désignera un plan euclidien orienté.

THÉORÈME SUR LA DESCRIPTION DE O(2) 13.14 :

Soit Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
et Sθ =

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
. Soit A une matrice de O(2) :

• Si A ∈ SO2(R), il existe θ ∈ R tel que A = Rθ.

• Si A ∈ O2(R) \ SO2(R), il existe θ ∈ R tel que A = Sθ.

REMARQUE 13.16 : • ∀θ ∈ R, S2θ = I2. Ainsi : ∀θ ∈ R, S
−1
θ = Sθ.

• ∀(θ, θ′) ∈ R2, RθRθ′ = Rθ+θ′ . Comme R0 = I2, on a : ∀θ ∈ R, R
−1
θ = R−θ.

• ∀(θ, θ′) ∈ R2, SθSθ′ = Rθ−θ′ . Ou encore : ∀(θ, θ′) ∈ R2, SθRθ′ = Sθ−θ′ et RθSθ′ = Sθ+θ′ .� �
PROPOSITION SUR LA STRUCTURE PARTICULIÈRE DE SO(2) 13.15 :

SO2(R) est un groupe abélien.� �
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REMARQUE 13.17 : • Attention : O2(R) n’est pas commutatif !

• Le groupe SO2(R) est même isomorphe à U. “C’est pas faux !”� �
PROPOSITION SUR L’INVARIANCE DE LA MATRICE D’UNE ROTATION DANS
TOUTE BASE ORTHONORMÉE DIRECTE 13.16 :

Toute rotation u de E (c’est-à-dire u ∈ SO(E)) a la même matrice dans toute base orthonormée

directe : Rθ avec θ ∈ R défini modulo 2π qu’on choisit souvent dans [0; 2π[ (ou dans ]− π;π]).� �
REMARQUE 13.18 : Si la matrice de u ∈ SO(E) est Rθ dans une base orthonormée directe alors la

matrice de u dans toute base orthonormée indirecte est R−θ.

DÉFINITION 13.9 :

Si u ∈ SO(E), le réel θ défini ci-dessus est appelé l’angle de la rotation u.

� �
PROPOSITION SUR LA COMPOSÉE DE DEUX ROTATIONS 13.17 :

La composée de la rotation d’angle θ et de la rotation d’angle θ′ est la rotation d’angle θ+ θ′.� �
REMARQUE 13.19 :

• Soit u la rotation de E d’angle θ et a ∈ E unitaire : cos(θ) =
(
a|u(a)

)
et sin(θ) =

[
a, u(a)

]
.

• Si on prend deux vecteurs non nuls a et b de E, l’angle orienté θ entre a et b est l’unique θ (dans

[0; 2π[) par exemple) tel que la rotation d’angle θ transforme a

||a|| en
b

||b|| .

Alors on a les relations : (a|b) = ||a|| ||b|| cos(θ) et [a, b] = ||a|| ||b|| sin(θ).� �
PROPOSITION CARACTÉRISANT UNE RÉFLEXION PAR SA MATRICE 13.18 :

Les isométries indirectes u de E sont les réflexions. Soit B = (v1, v2) une base orthonormée de E,

alors si Sθ = MatB(u) où u est une réflexion, alors elle se fait par rapport à la droite engendrée

par le vecteur unitaire a = cos

(
θ

2

)
v1 + sin

(
θ

2

)
v2.� �

REMARQUE 13.20 : Toute rotation r est d’une infinité de manières la composée de deux réflexions :

• Soit s une réflexion, il existe une unique réflexion s′ de E telle que r = s ◦ s′.

• Soit s une réflexion, il existe une unique réflexion s′′ de E telle que r = s′′ ◦ s.� �
PROPOSITION SUR LES GÉNÉRATEURS DU GROUPE DES ISOMÉTRIES 13.19 :

Le groupe O(E) est engendré par les réflexions et toute isométrie de E est la composée de 0

(identité), 1 (réflexion) ou 2 réflexions (rotation).� �
REMARQUE 13.21 : On peut “modéliser” ces isométries vectorielles en complexe par (on se donne une

base orthonormale B = (e1, e2) pour identifier vecteurs et affixes) :

• z 7→ eiθz pour la rotation d’angle θ.

• z 7→ eiθz pour la réflexion par rapport à la droite engendrée par a = cos

(
θ

2

)
e1 + sin

(
θ

2

)
e2 (HP).



216 ENDOMORPHISMES D’UN ESPACE EUCLIDIEN

THÉORÈME DE CLASSIFICATION DES ISOMÉTRIES DU PLAN 13.20 :

Classification des isométries d’un plan euclidien orienté E (E1 = E1(A) et E−1 = E−1(A)) :

isométrie dim(E1) dim(E−1

)
nb de réfl. det(A) ∈ SO(E) tr(A)

identité : rotation d’angle 0 2 0 0 1 OUI 2

réflexion 1 1 1 −1 NON 0

(vraie) rotation d’angle ±θ ∈]0;π[ 0 0 2 1 OUI 2 cos θ

symétrie centrale (rotation d’angle π) 0 2 2 1 OUI −2

EXEMPLE 13.5 : • Qu’est l’application canoniquement associée à 1√
2

(
1 −1

1 1

)
?

• Qu’est l’application canoniquement associée à 1

2

(
1

√
3√

3 −1

)
?

13.1.6 : Isométries d’un espace euclidien de dimension 3⊙
Dans ce paragraphe, E désignera un espace euclidien orienté de dimension 3.

REMARQUE 13.22 :

• Soit u ∈ O(E) une isométrie de E, alors 1 ou −1 est valeur propre de u.

• Soit u ∈ SO(E) une rotation, alors 1 est valeur propre de u.

THÉORÈME : DESCRIPTION D’UNE ROTATION SPATIALE (ÉNORME) 13.21 :

Soit u ∈ SO(E) une isométrie directe (une rotation de E), on a deux cas :

(i) Si dim
(
E1(u)

)
= 3 alors u = idE.

(ii) Si dim
(
E1(u)

)
= 1 alors D = E1(u) = Vect(a) avec a unitaire, il existe θ ∈ R tel que dans

toute base orthonormée directe B = (a, b, c) de E : MatB(u) =

 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

.

REMARQUE 13.23 : Il faut absolument orienter la droite D pour que l’orientation induite dans le plan

orthogonal nous permette de déterminer l’angle θ sans ambigüıté.

DÉFINITION 13.10 :

Si u ∈ SO(E) vérifie u ̸= idE, on dit que la (vraie) rotation u admet la droite D pour axe de la rotation u

(qu’on oriente par a) et θ est appelé l’angle de la rotation u.

� �
PROPOSITION SUR LE CALCUL DE L’ANGLE D’UNE ROTATION SPATIALE 13.22 :

Soit la rotation u d’axe D orienté par a unitaire et d’angle θ, alors, si A = MatB(u) avec B une

base orthonormée directe :

• cos θ =
tr(A)− 1

2
puisque tr(A) = tr(u) = 1+ 2 cos θ.

• sin θ est du même signe que [x, u(x), a] = [a, x, u(x)] si x /∈ D.� �



ISOMÉTRIES VECTORIELLES 217

REMARQUE 13.24 : • Ceci nous permet de déterminer les éléments caractéristiques d’une rotation.

• Comme souvent u est donnée par sa matrice dans la base canonique de R3, on prend habituellement

pour x un des vecteurs de la base canonique.

ORAL BLANC 13.6 : CCP PSI 2015 Jean-Raphaël Biehler

On considère la matrice A = 1

3

 2 2 −1

−2 1 −2

−1 2 2

.

Montrer qu’elle est orthogonale et caractérisez cette transformation.� �
PROPOSITION : ÉCRITURE VECTORIELLE D’UNE ROTATION SPATIALE 13.23 :

(HP) Soit la rotation u d’axe D orienté par a unitaire et d’angle θ, vectoriellement :

∀x ∈ E, u(x) = (cos θ)x+ (sin θ)(a ∧ x) + (1− cos θ)(a|x)a.� �
REMARQUE 13.25 : En particulier, si x ∈ D⊥, la formule se réduit à u(x) = (cos θ)x+ (sin θ)(a ∧ x) ce

qui nous donne les relations :
(
x|u(x)

)
= (cos θ)||x||2 et x ∧ u(x) = (sin θ)||x||2a.

EXEMPLE 13.7 : Déterminer la matrice dans la base canonique de R3 de la rotation d’axe D

orienté par a = (α, β, γ) unitaire et d’angle π

2
.

REMARQUE HP 13.26 : Soit B = (v1, v2, v3) une base orthonormée directe de E, u la rotation d’axe D

orienté par a = αv1+βv2+γv3 unitaire et d’angle θ, si A = MatB(u), A−AT = 2 sin θ

 0 −γ β

γ 0 −α

−β α 0

 :

on peut donc déterminer a et sin θ ; bien sûr on a toujours recours à tr(A) pour découvrir cos θ.

EXEMPLE 13.8 : Caractériser u canoniquement associé à A = 1

7

−2 6 3

6 3 −2

−3 2 −6

.

� �
PROPOSITION SUR LA RECONNAISSANCE D’UNE SYMÉTRIE ORTHOGONALE DE
L’ESPACE PAR SA TRACE 13.24 :

Si B est orthonormée de E, A = MatB(u) ∈ O3(R) et AT = A : u est une symétrie orthogonale :

(i) tr(A) = −3 ⇐⇒ dim
(
E1(u)

)
= 0 ⇐⇒ dim

(
E−1(u)

)
= 3 ⇐⇒ u = − idE (symétrie centrale).

(ii) tr(A) = −1 ⇐⇒ dim
(
E1(u)

)
= 1 ⇐⇒ dim

(
E−1(u)

)
= 2 ⇐⇒ u est un demi-tour.

(iii) tr(A) = 1 ⇐⇒ dim
(
E1(u)

)
= 2 ⇐⇒ dim

(
E−1(u)

)
= 1 ⇐⇒ u est une réflexion de plan E1(u).

(iv) tr(A) = 3 ⇐⇒ dim
(
E1(u)

)
= 3 ⇐⇒ dim

(
E−1(u)

)
= 0 ⇐⇒ u = idE.� �

REMARQUE 13.27 : Il reste les isométries indirectes u ∈ O(E) \ SO(E) qui ne sont pas des réflexions :

• On sait qu’alors −u ∈ SO(E) donc il existe un axe D = Vect(a) avec a unitaire et un angle θ ∈ R tel

que dans toute base orthonormée directe B = (a, b, c), on ait MatB(u) =

−1 0 0

0 cos θ − sin θ

0 sin θ cos θ

.

• u est la composée commutative de la rotation d’axe D et d’angle θ et de la réflexion de plan D⊥.

• On détermine cos(θ) avec la trace : tr(A) = −1+ 2 cos(θ).

• On détermine de même le signe de sin(θ) qui est égal au signe de [a, x, u(x)] où x /∈ D.
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REMARQUE HP 13.28 : Une isométrie indirecte de la forme précédente (si θ = 0 u est une réflexion et

si θ = π on a u = − idE) est appelée une rotation-miroir autour de la droite D orientée par le vecteur

unitaire a et d’angle θ. Comme pour les rotations, on montre que :

∀x ∈ E, u(x) = (cos θ)x+ (sin θ)(a ∧ x)− (1+ cos θ)(a|x)a.

THÉORÈME CLASSIFIANT LES ISOMÉTRIES DE L’ESPACE (ÉNORME) 13.25 :

Classification des isométries d’un espace euclidien orienté E de dimension 3 (en adoptant à
nouveau les abréviations E1 = E1(A) et E−1 = E−1(A)):

isométrie dim(E1) dim(E−1) nb de réfl. det(A) ∈ SO(3) tr(A)

identité 3 0 0 1 OUI 3

réflexion 2 1 1 −1 NON 1

rotation d’angle ±θ ∈]0;π[ 1 0 2 1 OUI 1+ 2 cos θ ∈]− 1; 3[

demi-tour, retournement 1 2 2 1 OUI −1

symétrie centrale 0 3 3 −1 NON −3

rotation-miroir 0 1 3 −1 NON −1+ 2 cos θ ∈]− 3; 1[

EN PRATIQUE : Soit A ∈ O3(R) et u canoniquement associée à A :
• Si A = I3 alors u = idE (identité).
• Si A = −I3 alors u = − idE (symétrie centrale).
• Si A ̸= ±I3 et A = AT alors u est une symétrie orthogonale et tr(A) = tr(u) = ±1.

⋄ Si tr(A) = 1 alors u est la réflexion par rapport au plan Ker(A− I3).

⋄ Si tr(A) = −1 alors u est le demi-tour autour de la droite Ker(A+ I3)
⊥ = Ker(A− I3).

• Si A ̸= AT et det(A) = 1 (c’est le cas si tr(A) > 1) alors u est une “vraie” rotation.

⋄ L’axe de u est la droite Ker(A− I3) qu’on oriente par un vecteur a unitaire.

⋄ L’angle θ de u vérifie cos(θ) =
tr(A)− 1

2
, sgn

(
sin(θ)

)
= sgn

(
[a, x, u(x)]

)
((x, a) libre).

• Si A ̸= AT et det(A) = −1 (c’est le cas si tr(A) < −1) alors u est une “vraie” rotation-miroir.

⋄ L’axe de u est la droite Ker(A+ I3) qu’on oriente par un vecteur a unitaire.

⋄ L’angle θ de u vérifie cos(θ) =
tr(A) + 1

2
, sgn

(
sin(θ)

)
= sgn

(
[a, x, u(x)]

)
((x, a) libre).

EXEMPLE 13.9 : Reconnâıtre u canoniquement associée à A = 1

9

 7 −4 4

4 8 1

4 −1 −8

.

13.1.7 : (HP) Matrices et déterminants de Gram

REMARQUE HP 13.29 : Dans un espace préhilbertien réel E, on se donne une famille finie de p vecteurs

de E notée F = (v1, · · · , vp). On appellematrice de Gram de F la matrice G =
(
(vi|vj)

)
16i,j6p

∈ Mp(R).

• On a l’équivalence :
(
F = (v1, · · · , vp) est libre

)
⇐⇒ G ∈ GLp(R).

• Si F est libre, soit v ∈ E, on note d = d(v, F) la distance de v à F = Vect(v1, · · · , vp). Alors en

notant G(v1, · · · , vp) le déterminant (dit de Gram) de la matrice de G : d2 =
G(v1, · · · , vp, v)
G(v1, · · · , vp)

.

EXEMPLE 13.10 : Calculer la distance de v = (1, 0, 1, 0) au plan P d’équation x+ t = y+ z = 0.
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PARTIE 13.2 : ENDOMORPHISMES AUTOADJOINTS ET

MATRICES SYMÉTRIQUES RÉELLES� �
13.2.1 : Endomorphismes autoadjoints

DÉFINITION 13.11 :

Soit u ∈ L(E), on dit que u est un endomorphisme autoadjoint si ∀(x, y) ∈ E2,
(
u(x)|y

)
=

(
x|u(y)

)
.

On note S(E) l’ensemble des endomorphismes autoadjoints.

REMARQUE 13.30 : • On dit aussi que u autoadjoint est symétrique (ancienne terminologie).

• Cette autre appellation justifie la notation S(E).

• Si u est endomorphisme autoadjoint de E et F un sous-espace vectoriel de E stable par u, alors uF

est aussi un endomorphisme autoadjoint de F.

ORAL BLANC 13.11 : Soit E euclidien de dimension n > 2, a ∈ E unitaire et k ∈ R \ {−1}.
a. Montrer que u(x) = x+ k(x|a)a définit un endomorphisme symétrique de E.

b. Montrer que u est un automorphisme.

c. Étudier les valeurs propres et les sous-espaces propres de u.

THÉORÈME DE CARACTÉRISATION DES ENDOMORPHISMES AUTOADJOINTS PAR
LEURS MATRICES DANS LES BASES ORTHONORMÉES (ÉNORME) 13.26 :

Soit E euclidien de dimension n, u ∈ L(E) et B une base orthonormale de E, alors :

u est un endomorphisme autoadjoint de E ⇐⇒ MatB(u) est une matrice symétrique de Mn(R).

REMARQUE 13.31 : Le terme “endomorphisme symétrique” devient plus clair avec cette caractérisation.

Les endomorphismes autoadjoints de E forment un sous-espace vectoriel de dimension
n(n+ 1)

2
.

� �
PROPOSITION SUR LES PROJECTEURS ET SYMÉTRIES AUTOADJOINTS 13.27 :

Soit p un projecteur de E :
(
p est un projecteur orthogonal

)
⇐⇒

(
p est autoadjoint

)
.

Soit s une symétrie de E :
(
s est une symétrie orthogonale

)
⇐⇒

(
s est autoadjoint

)
.� �

EXEMPLE 13.12 : Qu’est p dont la matrice dans la base canon. de R3 est 1

14

 13 −2 −3

−2 10 −6

−3 −6 5

 ?

� �
PROPOSITION SUR LA STABILITÉ DE L’ORTHOGONAL PAR UN ENDOMORPHISME
AUTOADJOINT 13.28 :

Si u ∈ L(E) est autoadjoint et si F est un sous-espace vectoriel de E stable par u, alors le

sous-espace F⊥ est aussi stable par u.� �
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REMARQUE HP 13.32 : Soit E un espace euclidien :

• On dit que u ∈ L(E) est antisymétrique si et seulement si : ∀x ∈ E,
(
x|u(x)

)
= 0.

• On a l’équivalence : u antisymétrique ⇐⇒
(
∀(x, y) ∈ E2,

(
u(x)|y

)
= −

(
x|u(y)

))
.

• Les endomorphismes antisymétriques de E forment un sous-espace vectoriel de dimension
n(n− 1)

2
.

• Si A ∈ Mn(R) est antisymétrique, alors Sp(A) ⊂ iR (imaginaires purs).

• Soit B une base orthonormée de E : u antisymétrique ⇐⇒ MatB(u) antisymétrique.

• Si E euclidien orienté de dimension 3 et u endomorphisme antisymétrique de E, alors il existe un

unique vecteur a de E tel que : ∀x ∈ E, u(x) = a ∧ x.� �
PROPOSITION SUR L’ORTHOGONALITÉ ENTRE DEUX SOUS-ESPACES PROPRES
POUR UN ENDOMORPHISME AUTOADJOINT 13.29 :

Soit λ1 et λ2 deux valeurs propres distinctes de u autoadjoint, Eλ1
(u) ⊥ Eλ2

(u).� �
13.2.2 : Le théorème spectral

THÉORÈME SPECTRAL VERSION VECTORIELLE (ÉNORME) 13.30 :

Soit u un endomorphisme autoadjoint de E, alors χu est scindé sur R.
Il existe une base orthonormale de E formée de vecteurs propres de u.

Autrement dit, u est diagonalisable dans une base orthonormale et donc E =
⊥⊕

λ∈Sp(u)

Eλ(u).

� �
PROPOSITION SUR L’ORTHOGONALITÉ ENTRE IMAGE ET NOYAU POUR UN
ENDOMORPHISME autoadjoint 13.31 :

Si E est euclidien et u ∈ L(E) autoadjoint, alors Im(u) = Ker(u)⊥ (le noyau et l’image de u sont

supplémentaires orthogonaux l’un de l’autre).� �
THÉORÈME SPECTRAL VERSION MATRICIELLE (ÉNORME) 13.32 :

Si A ∈ Sn(R) alors χA est scindé dans R[X] et il existe une matrice P ∈ On(R) telle que PTAP soit

diagonale réelle.

REMARQUE 13.33 : • On dit que la matrice A est orthosemblable à une matrice diagonale.
• La réciproque est vraie : si la matrice P est orthogonale et si PTAP est diagonale alors A ∈ Sn(R).

EXEMPLE 13.13 : Diagonaliser A =

 6 −2 2

−2 5 0

2 0 7

 dans une base orthonormale.

REMARQUE 13.34 : Les matrices symétriques complexes ne sont pas forcément diagonalisables !

EXEMPLE FONDAMENTAL 13.14 : Soit la matrice symétrique complexe A =

(
1 i

i −1

)
.

Justifier que A n’est pas diagonalisable dans M2(C).
ORAL BLANC 13.15 : CCP PSI 2014 Mickaël

Soit A ∈ Mn(R), on pose S = A+ AT

2
. Soit λ1 6 λ2 6 · · · 6 λn les valeurs propres de S.

On suppose que λ est une valeur propre réelle de A. Montrer que λ1 6 λ 6 λn.
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13.2.3 : Endomorphismes autoadjoints

positifs et définis positifs

DÉFINITION 13.12 :

Soit E un espace euclidien et u ∈ L(E) un endomorphisme autoadjoint.

• On dit que u est un endomorphisme autoadjoint positif si ∀x ∈ E,
(
u(x)|x

)
> 0.

• On dit que u est un endomorphisme autoadjoint défini positif si ∀x ∈ E \ {0E},
(
u(x)|x

)
> 0.

Soit n ∈ N∗ et A ∈ Mn(R) une matrice symétrique.

• On dit que A est une matrice symétrique positive si ∀X ∈ Mn,1(R), XTAX > 0.

• On dit que A est une matrice symétrique définie positive si ∀X ∈ Mn,1(R) \ {0}, XTAX > 0.

REMARQUE 13.35 : Soit E euclidien de base orthonormée B = (e1, · · · , en), (E1, · · · , En) base canonique

(donc bon) de Mn,1(R) et A = MatB(u) = (ai,j)16i,j6n avec u ∈ L(E) : ai,j = ET
i AEj =

(
ei|u(ej)

)
.

DÉFINITION 13.13 :

On note S+(E) (resp. S++(E)) l’ensemble des endomorphismes autoadjoints positifs (resp. définis positifs).

On note S+n(R) (resp. S++
n (R)) l’ensemble des matrices symétriques positives (resp. définies positives).

REMARQUE FONDAMENTALE 13.36 : Trois équivalences essentielles :

• Si B est une base orthonormale de E, u ∈ L(E) et A = MatB(u) ∈ Mn(R) avec n = dim(E), alors

u ∈ S+(E) ⇐⇒ A ∈ S+n(R) car Sp(u) = Sp(A) et, bien sûr, on a aussi u ∈ S++(E) ⇐⇒ A ∈ S++
n (R).

• Si u est un endomorphisme de E, on a l’équivalence :

u ∈ S++(E) ⇐⇒
(
φ : (x, y) 7→

(
u(x)|y

)
est un produit scalaire sur E

)
.

THÉORÈME CARACTÉRISANT LES AUTOADJOINTS DÉFINIS POSITIFS 13.33 :

Soit u un endomorphisme autoadjoint de E, il y a équivalence entre :

(i) ∀x ∈ E,
(
u(x)|x

)
> 0 et (ii) Sp(u) ⊂ R+,

mais aussi entre les deux assertions :

(i) ∀x ∈ E, x ̸= 0E =⇒
(
u(x)|x

)
> 0 et (ii) Sp(u) ⊂ R∗

+.

THÉORÈME CARACTÉRISANT LES MATRICES SYMÉTRIQUES POSITIVES 13.34 :

Soit A ∈ Mn(R) une matrice symétrique, il y équivalence entre :

(i) ∀X ∈ Mn,1(R), XTAX > 0 (ii) Sp(A) ⊂ R+ (iii) ∃B ∈ Mn(R) (ou S+n(R)), A = BTB.

mais aussi entre les trois assertions :

(i) ∀X ∈ Mn,1(R) \ {0}, XTAX > 0 (ii) Sp(A) ⊂ R∗
+ (iii) ∃B ∈ GLn(R) (ou S++

n (R)), A = BTB.
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REMARQUE FONDAMENTALE 13.37 : Si A est une matrice symétrique positive, alors il existe une

unique matrice B symétrique positive telle que A = B2. On appelle cette matrice la racine carrée de A.

REMARQUE 13.38 : Si u ∈ S+(E) (resp. u ∈ S++(E)) : tr(u) > 0 et det(u) > 0 (resp. tr(u), det(u) > 0).

EXERCICE CONCOURS 13.16 : Mines PSI 2015 Arnaud Dubessay

a. Montrer que M ∈ S+n ⇐⇒ ∀X ∈ Mn,1(R), XTMX > 0.

b. Montrer que si A ∈ Mn(R) est symétrique positive, ∀(i, j) ∈ [[1;n]]2, i ̸= j =⇒ ai,iaj,j − a2
i,j > 0.

c. Montrer que si A ∈ Mn(R) est symétrique positive et de rang 1, alors ∃U ∈ Rn, A = UUT .

d. Montrer que si A ∈ Mn(R) est symétrique positive, ∃M ∈ Mn(R), A = MTM.

e. Montrer que si (A, B) ∈ (S+n(R))2, tr(AB) > 0.

Soit A = (ai,j)16i,j6n ∈ Mn(R) symétrique positive avec ai,j ̸= 0. On pose B =
(
a
−1
i,j

)
16i,j6n

.

f. Montrer que A de rang 1 ⇐⇒ B ∈ S+n .

REMARQUE HP 13.39 : A ∈ GLn(R), ∃!(O, S) ∈ On(R)× S++
n (R) tel que A = OS.

C’est la décomposition polaire d’une matrice inversible de GLn(R).

EXEMPLE 13.17 : Trouver O et S si A =

 1 1 0

0 1 1

1 0 1

.

� �
COMPÉTENCES� �

• Étudier l’image d’une base orthonormée pour savoir si on a affaire à une isométrie.

• Vérifier sur la matrice d’un endomorphisme dans une base orthonormée que c’est une isométrie.

• Savoir reconnâıtre géométriquement les symétries orthogonales.

• Connâıtre la structure de groupes des matrices orthogonales ou des isométries vectorielles.

• Mâıtriser la définition et les propriétés du produit vectoriel dans l’espace.

• Réviser les différentes isométries vectorielles du plan et leur classification.

• Apprendre l’algorithme de caractérisation d’une isométrie directe (une rotation) de l’espace.

• Se familiariser avec le même algorithme (même si hors programme) pour les isométries indirectes.

• En particulier, savoir facilement reconnâıtre géométriquement une symétrie orthogonale de l’espace.

• Savoir établir qu’un endomorphisme est autoadjoint.

• Utiliser le théorème spectral pour la recherche des éléments propres d’un endomorphisme autoadjoint.

• Être à l’aise avec les différentes caractérisations des matrices symétriques positives.


