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CHAPITRE 14

ÉQUATIONS DIFFÉRENTIELLES
⊙

L’étude des équations différentielles débute à la fin du XVIIe siècle avec la création, par Newton
et Leibniz, du calcul différentiel qui permet leur manipulation. Pour ce qui est des équations linéaires,
les principales méthodes de résolution théoriques exposées dans ce chapitre datent du XVIIIe : Euler
sait résoudre l’équation homogène d’ordre n à coefficients constants et Lagrange connâıt la structure de
l’ensemble des solutions d’une équation homogène et met en place la méthode de variation des constantes
qui porte son nom pour l’équation complète.

Pendant toute cette période, le besoin de prouver de manière générale l’existence de solutions à une
équation différentielle ne se fait pas sentir. En effet, le concept de fonction est encore assez flou et, de
manière plus ou moins explicite, les fonctions sont toutes supposées être localement la somme de leur série
de Taylor. Dans ces conditions, il semble clair que l’équation (E) : y(n) = f(t, y, y′, · · · , y(n−1)), jointe à
la donnée des conditions initiales y(t0), y

′(t0), · · · , y(n−1)(t0), qui fournit les n premiers coefficients, permet
de calculer par récurrence tous les coefficients du développement en série entière d’une solution y de (E) au
voisinage de t0, la convergence étant implicitement admise.

C’est Cauchy qui, vers 1820, prouve le premier théorème garantissant l’existence et l’unicité locales de
solutions pour l’équation (E) : y′ = f(t, y) en montrant que, si f est suffisamment régulière, la méthode
d’approximation d’Euler converge vers une solution sur un voisinage de t0. Lipschitz prouve le même
résultat en 1876, sous des hypothèses plus faibles sur f, en mettant en lumière l’importance des conditions
qui portent maintenant son nom.

Après la méthode d’Euler d’approximation des solutions d’une équation différentielle, les allemands
Runge et Kutta ont développé une méthode beaucoup plus rapide pour approcher numériquement les
solutions d’un problème de Cauchy d’une équation différentielle et qui, de plus, a le mérite d’être plus
stable par rapport aux conditions initiales.

I désignera un intervalle de R contenant au moins deux points distincts, K désignera soit R soit C.
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PROGRAMME� �

1 : Équations différentielles linéaires scalaires

Contenus Capacités & Commentaires

Équation différentielle scalaire d’ordre 2 à coefficients

continus y′′ + a(t)y′ + b(t)y = c(t).

Forme des solutions : somme d’une solution particulière La résolution explicite de l’équation différentielle

et de la solution générale de l’équation homogène. doit comporter des indications.

Théorème de Cauchy linéaire : existence et unicité de la

solution d’un problème de Cauchy.

Espace vectoriel des solutions de l’équation homogène, Exemples d’utilisation de développements en série

dimension. entière pour la recherche de solutions.

(rappel chapitre réduction : en ce qui concerne les Application au calcul des puissances d’une matrice

matrices diagonalisables) diagonalisable, à des exemples de systèmes diffé-

-rentiels à coefficients constants. Dans la pratique

des cas numériques, on se limite à n = 2 ou n = 3.

� �
PARTIE 14.1 : ÉQUATIONS DIFFÉRENTIELLES

LINÉAIRES SCALAIRES� �
14.1.1 : Équations différentielles scalaires du premier ordre (révision)

DÉFINITION 14.1 :

Soit α, β, γ trois applications continues sur un intervalle I et à valeurs dans K.

(i) L’équation (E) : αy′ + βy = γ est une équation différentielle linéaire scalaire d’ordre 1.

(ii) Une solution de (E) est y : I → K dérivable sur I telle que ∀t ∈ I, α(t)y′(t) + β(t)y(t) = γ(t).

(iii) L’équation (E0) : αy′ + βy = 0 est l’équation homogène associée à (E).

REMARQUE 14.1 : On peut considérer des solutions y : J → K de (E) où J ⊂ I.� �
PROPOSITION SUR LA STRUCTURE DE L’ENSEMBLE DES SOLUTIONS 14.1 :

L’ensemble S0 des solutions de (E0) est un sous-espace vectoriel de D1(I, K).

Si yp est une solution particulière de l’équation (E) alors l’ensemble S des solutions de (E) est

S = yp + S0 : c’est un sous-espace affine de D1(I, K) (fonctions dérivables de I dans K).� �
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REMARQUE 14.2 : Si la fonction α ne s’annule pas sur I, y est solution de αy′ +βy = γ si et seulement

si y est solution de y′ − ay = b avec a = −β

α
et b = γ

α
; a et b sont alors continues sur I : on dit alors

que l’équation est mise sous forme normalisée.

� �
PROPOSITION SUR LA FORME DES SOLUTIONS DE L’ÉQUATION y′ = ay 14.2 :

Soit a et b deux fonctions continues sur un intervalle I et à valeurs dans K.

(i) Les solutions de l’équation homogène (E0) : y′ − ay = 0 sont les fonctions yλ définies

sur I par ∀t ∈ I, yλ(t) = λeA(t) où λ ∈ K et A est une primitive de a sur I.

(ii) S0 est la droite vectorielle engendrée par t 7→ eA(t) : S0 = Vect(eA).� �
Démonstration : (i) Soit y : I → K dérivable, définissons alors z : I → K par z(t) = e−A(t)y(t). Alors

la fonction z est dérivable sur I par composée et produit et on a l’équivalence, comme I est un intervalle :

y′ − ay = 0 ⇐⇒ e−Ay′ − ae−Ay = 0 ⇐⇒ z′ = 0 ⇐⇒ ∃λ ∈ K, z = λ (z est constante).

Ainsi, y ∈ S0 ⇐⇒ ∃λ ∈ K, ∀t ∈ I, y(t) = λeA(t).

(ii) Ce qui précède montre que y est solution de (E) si et seulement si y est proportionnelle à la fonction t 7→ eA(t).

REMARQUE FONDAMENTALE 14.3 : Méthode de la variation de la constante :

• Soit a, b : I → K continues et y0 une solution non nulle de l’équation homogène y′ − ay = 0 alors il

existe une solution de l’équation (E) : y′ − ay = b de la forme y = λy0, où λ est dérivable sur I.

• y solution de (E) ⇐⇒ λ′ = b

y0

ce qui permet de trouver (en intégrant) une solution particulière.

Démonstration : On sait que y0 étant non nulle et solution de S0, elle ne s’annule pas sur I, ainsi, pour une

fonction y : I → K dérivable, on peut poser λ = y

y0

qui est aussi dérivable sur I. Ainsi y = λy0 et, si t0 ∈ I :

y ∈ S ⇐⇒ (λ′y0 + λy′
0)− aλy0 = b ⇐⇒ λ′ = b

y0

⇐= ∀t ∈ I, λ(t) =
∫ t

t0

b(u)
y0(u)

du.

THÉORÈME SUR LA FORME DES SOLUTIONS DE L’ÉQUATION y′ − ay = b 14.3 :

Si a et b sont continues sur I, les solutions de y′ − ay = b sont les fonctions yλ définies par

∀t ∈ I, yλ(t) = λeA(t) + eA(t)
∫ t

t0
b(u)e−A(u)du où A est une primitive de a sur I, λ ∈ K et t0 ∈ I.

Démonstration : Définissons yp : I → K par yp(t) = eA(t)
∫ t

t0
b(u)e−A(u)du où t0 ∈ I. D’après le

théorème fondamental de l’intégration, yp est dérivable sur I par produit car u 7→ b(u)e−A(u) est continue sur I.

On dérive yp et on obtient y′
p(t) = A′(t)eA(t)

∫ t

t0
b(u)e−A(u)du + eA(t)b(t)e−A(t) = a(t)yp(t) + b(t)

car A′(t) = a(t). Ainsi, yp est une solution particulière de (E). D’après les propositions 13.1 et 13.2, les solutions

de (E) s’écrivent y : I → K avec y(t) = λeA(t)︸ ︷︷ ︸
sol. équa. hom.

+ eA(t)
∫ t

t0
b(u)e−A(u)du︸ ︷︷ ︸

sol. part.

où λ ∈ K.
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REMARQUE 14.4 : Dans ce cadre restreint, on démontre le théorème de Cauchy-Lipschitz linéaire.

THÉORÈME DE CAUCHY-LIPSCHITZ LINÉAIRE D’ORDRE 1 (ÉNORME) 14.4 :

Soit a et b deux fonctions continues sur un intervalle I et (t0, y0) ∈ I× K, le problème de Cauchy{
y′ = a(t).y+ b(t)

y(t0) = y0

admet une unique solution y définie sur I en entier.

Démonstration : D’après le théorème précédent, en prenant pour primitive de la fonction a sur I la fonction

A : I → K définie par A(t) =
∫ t

t0
a(u)du, les solutions de (E) sur I sont, si t0 ∈ I, les fonctions y : I → K qui

s’écrivent, avec λ ∈ K, y(t) = λeA(t) + eA(t)
∫ t

t0
b(u)e−A(u)du. La condition y(t0) = y0 est équivalente à

λ = y0 car A(t0) = 0 donc eA(t0) = 1 et

∫ t

t0
b(u)e−A(u)du = 0. Ainsi, la seule solution de (E) sur I qui

vérifie y(t0) = y0 est la fonction y : t 7→ y0e
A(t) + eA(t)

∫ t

t0
b(u)e−A(u)du avec A(t) =

∫ t

t0
a(u)du.

REMARQUE 14.5 : • Sous ces conditions, φt0 : S0 → K définie par φt0(y) = y(t0) est un isomorphisme.

• L’espace vectoriel des solutions de (E0) sur un intervalle I où l’équation est résolue est une droite.

• Si l’équation n’est pas sous forme normalisée sur I, on la résout sur tous les intervalles où α ne

s’annule pas et on essaie de raccorder les solutions en les points singuliers.

• Il peut y avoir sur I une infinité de solutions, une seule ou aucune.

EXERCICE CONCOURS 14.1 : CCINP PSI 2024 Romane Mioque II (note 19,37)

On considère l’équation différentielle (E) : t(t2 − 1)y′ + 2y = t2.

a. Trouver des réels a, b, c, tels que ∀t /∈ {−1, 0, 1}, 1

t(t2 − 1)
= a

t
+ b

t+ 1
+ c

t− 1
.

b. Résoudre (E) sur les intervalles où elle est sous forme normalisée. Et sur ]− 1; 1[, puis sur R.

ORAL BLANC 14.2 : CCP PSI 2014 Lucie
Soit (E) : x(x− 1)y′ + y = ln(x).
a. Montrer que (E) admet une unique solution dans R∗

+ notée f.

b. Soit In =
∫ 1

0
xn ln(x)dx. Montrer son existence et calculer sa valeur.

c. Calculer
∫ 1

0
f(x)dx après avoir justifié son existence. On rappelle que

+∞∑
k=1

1

n2 = π2

6
.

14.1.2 : Équations différentielles scalaires du second ordre

DÉFINITION 14.2 :

Soit α, β, γ et δ quatre applications continues sur I et à valeurs dans K.

(i) (E) : αy′′ + βy′ + γy = δ est une équation différentielle linéaire scalaire d’ordre 2.

(ii) y : I → K deux fois dérivable est solution de (E) si ∀t ∈ I, α(t)y′′(t)+β(t)y′(t)+γ(t)y(t) = δ(t).

(iii) L’équation (E0) : αy′′ + βy′ + γy = 0 est l’équation homogène associée à (E).

REMARQUE 14.6 : Si la fonction α ne s’annule pas sur I, y est solution de αy′′ + βy′ + γy = δ si et

seulement si y est solution de y′′ − ay′ − by = c avec a = −β

α
, b = −γ

α
et c = δ

α
; a, b et c sont alors

continues sur I. On dit qu’elle est mise sous forme normalisée.
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THÉORÈME DE CAUCHY-LIPSCHITZ LINÉAIRE ORDRE 2 (ÉNORME) 14.5 :

Soit a, b et c trois applications continues sur un intervalle I et (t0, y0, y
′
0) ∈ I× K2, le problème

de Cauchy

 y′′ = ay′ + by+ c

y(t0) = y0

y′(t0) = y′
0

admet une unique solution définie sur I en entier.

Démonstration : hors programme.� �
PROPOSITION SUR LA STRUCTURE DE L’ENSEMBLE DES SOLUTIONS 14.6 :

Soit a, b et c trois applications continues sur un intervalle I, l’équation (E) : y′′ = ay′ + by+ c

et l’équation homogène associée (E0) : y′′ = ay′ + by.

(i) L’ensemble S0 des solutions de (E0) est un espace de dimension 2.

(ii) Deux solutions y1 et y2 de (E0) linéairement indépendantes forment une base de S0.

(iii) Si yp est une solution “particulière” de l’équation (E) alors l’ensemble S des solutions

de (E) est S = yp + S0 : c’est un sous-espace affine de C2(I, K).� �
REMARQUE FONDAMENTALE 14.7 :

• La famille (y1, y2) est alors appelée système fondamental de solutions de (E0).

• Si on ne connâıt qu’une solution y1 de (E0) sur I et qu’on suppose que y1 ne s’annule pas sur I, on

peut résoudre (E) par une “variation de la constante” en posant y = zy1 avec z : I → K de classe

C2 : c’est la méthode de Lagrange qui ramène la détermination de y à la résolution d’une équation

différentielle linéaire d’ordre 1 vérifiée par z′. Il existe donc une base de S0 de la forme (y1, y2), où

y2 = zy1 avec z de classe C2 sur I.

Démonstration : D’abord, si y est une solution de (E) (ou de (E0)), alors y est au moins deux fois dérivable

sur I par définition donc, comme y′′ = ay′ + by+ c est continue par opérations puisque a, b et c sont supposées

continues sur I, la fonction y′′ est continue sur I et y est C2 sur I. Réciproquement, si y : I → K de classe C2,

en posant z = y

y1

, z est aussi de classe C2 sur I par opérations et y = zy1.

Ainsi, y′ = z′y1 + zy′1 et y′′ = z′′y1 + 2z′y′
1 + zy′′

1 donc, comme y′′
1 = ay′1 + by1, en reportant dans (E), on

a y′′−ay′−by = c ⇐⇒ z′′y1+ 2z′y′
1+ zy′′

1 −a(z′y1+ zy′
1)−bzy1 = c ⇐⇒ z′′y1+ 2z′y′

1−az′y1 = c

d’où y′′ − ay′ − by = c ⇐⇒ y1z
′′ +(2y′

1 − ay1)z
′ = c ⇐⇒ y1w

′ +(2y′1 − ay1)w = c en posant w = z′.

Si A est une primitive de a sur I et t0 ∈
◦
I , si y est une solution de (E) sur I, w′ +

(
2
y′
1

y1

− a

)
w = c

y1

donc e−Ay2
1w

′ + 2y′1y1e
−Aw − 2ae−Ay2

1w = (e−Ay2
1w)′ = ce−Ay1 et il existe alors λ2 ∈ K tel que

∀t ∈ I, e−A(t)y2
1(t)w(t) = λ2 +

∫ t

t0
c(u)e−A(u)y1(u)du = λ2 + B(t) d’où z′(t) =

(λ2 + B(t))eA(t)

y2
1(t)

et

il existe λ1 ∈ K avec ∀t ∈ I, z(t) = λ2

∫ t

t0

eA(u)

y1(u)
2 du+

∫ t

t0

B(u)eA(u)

y1(u)
2 du+ λ1.

En définissant y0, y2 : I → K par ∀t ∈ I, y0(t) = y1(t)
∫ t

t0

B(u)eA(u)

y1(u)
2 du et y2(t) = y1(t)

∫ t

t0

eA(u)

y1(u)
2 du,

y est solution de (E) sur I si et seulement si y = y0+λ1y1+λ2y2 avec (λ1, λ2) ∈ K2 (la réciproque se fait bien).

Comme on sait que l’ensemble des solutions de (E) est un plan affine, ceci justifie que (y1, y2) est libre. Néanmoins,

si on veut le vérifier indépendamment, si y2 était proportionnelle à y1 ̸= 0, alors la fonction t 7→
∫ t

t0

eA(u)

y1(u)
2 du

serait constante et sa dérivée eA

y2
1

serait la fonction nulle sur I : NON !

Le plan affine S des solutions de (E) sur I est donc S = {y0}+ Vect(y1, y2) et le plan vectoriel S0 des solutions

de (E0) sur I est S = Vect(y1, y2) donc (y1, y2) est un système fondamental de solutions de (E).
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EXEMPLE 14.3 : CCP PSI 2019 Pierre Fabre I

Résoudre (E) : x(1− x)y′′ + (1− 3x)y′ − y = 0 en vérifiant que x 7→ 1

1− x
est solution.

REMARQUE 14.8 : Des indications seront données pour trouver une/les solution(s) de (E0) :

• Comme dans l’exemple précédent, on pourra changer de fonction en considérant l’équation vérifiée

par u : t 7→
(
f(y(t)

)
ou de variable en trouvant l’équation satisfaite par v : t 7→ y(φ(t)).

• Comme dans l’exemple suivant, on peut aussi chercher des solutions y de (E0) qui sont développables

en série entière au voisinage de 0.

EXERCICE 14.4 : Soit l’équation (E) : (2t+ 1)y′′ + (4t− 2)y′ − 8y = 0.

Résoudre (E) en cherchant les solutions développables en série entière.

Résoudre (E) en sachant qu’elle admet une solution de la forme y : t 7→ eαt.

ORAL BLANC 14.5 : Centrale PSI 2015 Agatha Courtenay

Soit a ∈ C0(R+, R) intégrable sur R+. Soit f une solution sur R+ de l’équation (E) : y′′+(1+a)y = 0.

Posons g : x 7→ f(x) +
∫ x

0
sin(x− t)a(t)f(t)dt.

a. Que peut-on dire de la limite de la fonction a en +∞ ?

b. Montrer que g′′ + g = 0. En déduire qu’il existe C ∈ R∗
+ tel que |f(x)| 6 C+

∫ x

0
|a(t)f(t)|dt.

c. Conclure quant aux solutions de (E) sur R+.

14.1.3 : Équations différentielles du second ordre à coefficients constants

THÉORÈME SUR LA FORME DES SOLUTIONS DE ay′′ + by′ + cy = 0 ((a, b, c) ∈ C3) 14.7 :

Soit (a, b, c) ∈ C∗ × C2, alors les solutions de (E0) : ay′′ + by′ + cy = 0 sont :

(i) y = α1e
λ1t + α2e

λ2t avec (α1, α2) ∈ C2 si λ1 ̸= λ2 sont les racines de aX2 + bX+ c.

(ii) y = (α1t+ α2)e
λ1t avec (α1, α2) ∈ C2 si λ1 est la racine double de aX2 + bX+ c.

REMARQUE 14.9 : • L’équation (C) : az2 + bz+ c = 0 s’appelle l’équation caractéristique de (E).

• La matrice associée à cette équation dans le système Y′ = AY où Y =

(
y

y′

)
est A =

(
0 1

− c

a
−b

a

)
et son polynôme caractéristique vérifie aX2 + bX+ c = aχA : cohérent !

• Le cas (i) est le cas où A est diagonalisable et (ii) celui où elle est seulement trigonalisable.

REMARQUE HP 14.10 : Si (a, b, c) ∈ C∗ × C2, P ∈ C[X] et m ∈ C, il existe une solution particulière

de (E) : ay′′ + by′ + cy = P(t)emt de la forme y : t 7→ tαQ(t)emt avec Q ∈ C[X], deg(Q) = deg(P) et :

(i) α = 0 si m n’est pas racine de aX2 + bX+ c.

(ii) α = 1 si m est racine simple (et ∆ = b2 − 4ac ̸= 0) de aX2 + bX+ c.

(iii) α = 2 si m est racine double (∆ = 0) de aX2 + bX+ c.
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Le cas réel est plus complexe.

THÉORÈME SUR LA FORME DES SOLUTIONS DE ay′′ + by′ + cy = 0 ((a, b, c) ∈ R3) 14.8 :

Soit (a, b, c) ∈ R∗ × R2, les solutions réelles de (E0) : ay′′ + by′ + cy = 0 sont (∆ = b2 − 4ac) :

(i) y = α1e
λ1t + α2e

λ2t avec (α1, α2) ∈ R2 si λ1 ̸= λ2 racines réelles de aX2 + bX+ c et ∆ > 0.

(i) y = (α1t+ α2)e
λ1t avec (α1, α2) ∈ R2 si λ1 = − b

2a
racine double de aX2 + bX+ c et ∆ = 0.

(iii) y =
(
α1 cos(βt)+α2 sin(βt)

)
eαt avec (α1, α2) ∈ R2 si z1 = α+ iβ ∈ C et z2 = α− iβ ((α, β) ∈ R2)

sont les racines complexes de aX2 + bX+ c quand ∆ < 0.

REMARQUE 14.11 : Pour les solutions particulières de l’équation avec second membre, on passe par le

cas complexe et on prend la partie réelle d’une solution particulière.

� �
PARTIE 14.2 : ANNEXES� �

14.2.1 : Systèmes différentiels linéaires du premier ordre

REMARQUE 14.12 : Si X : I → Mn,1(K) est défini par X(t) =
(
x1(t) · · · xn(t)

)T
∈ Mn,1(K), alors

X est dérivable en t0 ∈ I si et seulement si t 7→ X(t)− X(t0)
t− t0

admet une limite finie quand t tend vers t0.

Puisque
X(t)− X(t0)

t− t0
=

(
x1(t)− x1(t0)

t− t0
· · · xn(t)− xn(t0)

t− t0

)T

, X dérivable en t0 ∈ I si et seulement

si toutes les xk : I → K sont dérivables en t0 et on a alors X′(t0) =
(
x′1(t0) · · · x′n(t0)

)T
.

DÉFINITION 14.3 :

Soit n > 1, deux applications A : I → Mn(K) et B : I → Mn,1(K) continues sur I.

(i) Un système différentiel linéaire d’ordre 1 est de la forme (E) : X′ = A(t)X+ B(t).

(ii) Une solution de (E) est X : I → Mn,1(K) dérivable sur I telle que ∀t ∈ I, X′(t) = A(t)X(t)+B(t).

(iii) Le système homogène associée à (E) est le système (E0) : X′ = A(t)X.

REMARQUE 14.13 : Écriture du système différentiel :

Si on note, pour t ∈ I, B(t) =
(
b1(t) · · · bn(t)

)T
∈ Mn,1(K) et A(t) =

(
ai,j(t)

)
16i,j6n

∈ Mn(K),

le système (E) est équivalent à


x′1 = a1,1(t)x1 + · · · + a1,n(t)xn + b1(t)
...

...
...

...
...

...
x′n = an,1(t)x1 + · · · + an,n(t)xn + bn(t)

, c’est-à-dire

que : X est solution de (E) ⇐⇒ ∀t ∈ I, ∀i ∈ [[1;n]], x′i(t) =
n∑

j=1

ai,j(t)xj(t) + bi(t).

EXEMPLE 14.6 : Résoudre le système réel

{
x′ = 2t x− y

y′ = x+ 2t y
.

Indication : on pourra passer en complexes en posant z = x+ iy.
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REMARQUE 14.14 : Une équation différentielle linéaire scalaire d’ordre n, c’est-à-dire une équation

différentielle du type (E) : y(n) − an−1(t)y
(n−1) − · · · − a0(t)y = b(t) avec y : I → K n fois dérivable et

les fonctions a0, · · · , an−1, b continues sur I, peut se traduire par un système différentiel d’ordre 1.

Démonstration : On pose X =
(
y y′ · · · y(n−1)

)T
et on a X′ = AX+ B avec B(t) = (0 0 · · · 0 b(t))T .

A est la matrice compagnon dont le polynôme caractéristique est Xn − an−1X
n−1 − · · · − a1X− a0.

EXEMPLE 14.7 : Représenter matriciellement l’équation (E) : y′′ + cos(t)y′ + ty = et.

THÉORÈME DE CAUCHY-LIPSCHITZ LINÉAIRE (ÉNORME) 14.9 :

Soit A : I → Mn(K) et B : I → Mn,1(K) continues sur I et (t0, X0) ∈ I×Mn,1(K), alors le problème

de Cauchy

{
X′ = A(t)X+ B(t)

X(t0) = X0

admet une unique solution X définie sur I en entier.

Démonstration : hors programme.� �
PROPOSITION SUR LA STRUCTURE DE L’ENSEMBLE DES SOLUTIONS 14.10 :

Soit A : I → Mn(K) et B : I → Mn,1(K) continues sur I et (E) : X′ = A(t)X + B(t) un système

différentiel linéaire d’ordre 1, S l’ensemble des solutions sur I de (E) et S0 l’ensemble des

solutions sur I du système homogène (E0).

(i) S0 est un sous-espace vectoriel de C1
(
I,Mn,1(K)

)
.

(ii) Pour tout t0 ∈ I, φt0 : S0 → Mn,1(K) définie par φt0(X) = X(t0) est un isomorphisme

donc S0 est un espace de dimension n.

(iii) Les solutions non nulles de (E0) ne s’annulent pas sur I.

(iv) Si Xp ∈ S (solution particulière) alors S = Xp + S0 (sous-espace affine).� �
14.2.2 : Systèmes différentiels linéaires à coefficients constants⊙

On se limite en pratique à des systèmes (E) : X′ = AX + B(t) où A ∈ Mn(K) et B : I → Mn,1(K) est

continue sur I. Et même, d’après le programme, à des systèmes différentiels linéaires avec n = 2 ou n = 3.

REMARQUE 14.15 : Soit A ∈ Mn(R) réelle et les équations (E0) : X′ = AX (réel) et (E′
0) : Z′ = AZ

(complexe). Une fonction X : I → Mn,1(R) est solution réelle de (E0) si et seulement s’il existe une

fonction Z : I → Mn,1(C) solution complexe de (E′
0) telle que X = Re(Z).

Cela signifie que pour déterminer les solutions réelles de X′ = AX où A est réelle, on peut commencer par

déterminer les solutions complexes dont on prendra les parties réelles.

EXERCICE 14.8 : Résoudre le système

{
x′ = − y

y′ = x
.� �

PROPOSITION SUR LA RÉSOLUTION D’UN SYSTÈME DIAGONALISABLE 14.11 :

Si A est diagonalisable (sur K), il existe P ∈ GLn(K) et D = diag(λ1, · · · , λn) diagonale telles que

A = PDP−1 donc le système X′ = AX équivaut à Y′ = DY où on a posé X = PY.

De plus, si on pose Y(t) =
(
y1(t) · · · yn(t)

)T
alors Y′ = DY si et seulement si pour tout

k ∈ [[1;n]], il existe une constante αk ∈ K telle que yk : t 7→ αke
λkt.� �
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REMARQUE 14.16 : Le calcul de la matrice P−1 n’est pas nécessaire pour la résolution de X′ = AX.

EXERCICE 14.9 : Résoudre le système différentiel suivant

{
x′ = 4x− 2y

y′ = x+ y
.

REMARQUE 14.17 : On peut faire la même chose avec un second membre.

EXERCICE 14.10 : Résoudre le système différentiel

 x′ = y+ z− 1

y′ = x+ y− 1

z′ = x+ z− 2

.

� �
PROPOSITION SUR LA RÉSOLUTION D’UN SYSTÈME TRIGONALISABLE 14.12 :

Si A n’est que trigonalisable (sur K), on pose encore X = PY avec P ∈ GLn(C) telle que A = PTP−1

et T triangulaire supérieure et on a de nouveau X′ = AX si et seulement si Y′ = T Y. Ce système

Y′ = T Y est un système différentiel qui se résout en partant de la dernière ligne et en remontant

en reportant les résultats intermédiaires.� �
ORAL BLANC 14.11 : Résoudre le système différentiel

 x′ = 2x− y+ 2z

y′ = 10x− 5y+ 7z

z′ = 4x− 2y+ 2z

.

REMARQUE 14.18 : Cette méthode fonctionne encore si A n’est pas constante mais si P l’est.

EXERCICE 14.12 : Résoudre le système différentiel

{
x′ = (2− t) x+ (t− 1) y

y′ = 2(1− t) x+ (2t− 1) y
.

14.2.3 : Équations à variables séparables (HP)

REMARQUE 14.19 : Ce sont des équations du premier ordre de la forme (E) : y′f(y) = g(t) où f et
g sont des fonctions continues de I dans K = R ou C. Si F (resp. G) est une primitive de f (resp. g)
sur des bons intervalles, une solution y de (E) sur J ⊂ I vérifie F(y) = G(t) + k avec k ∈ K ; il faut

espérer ensuite que F soit bijective pour qu’on puisse écrire y = F−1(G(t) + k) qu’il faut ensuite tracer.
Les solutions maximales ne sont pas forcément définies sur les mêmes intervalles comme c’était le cas
pour les équations linéaires.

EXERCICE 14.13 : Résoudre l’équation (E) : y′

1+ y2 = 1

1+ t2
sur R2.

14.2.4 : Équations de Bernoulli (HP)

REMARQUE 14.20 : Ce sont des équations du type (E) : ay′ + by + cyα = 0 où a, b et c sont des

fonctions continues de I dans R et α ∈ R \ {0, 1}. Sur des intervalles où ni a ni y ne s’annule, on pose

z = y1−α si y solution de (E) et y n’est pas la fonction nulle, on trouve alors z′ = (α − 1)bz+ c

a
qu’on

sait de nouveau résoudre.

EXERCICE 14.14 : Résoudre l’équation (E) : ty′ + y = y3.
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14.2.5 : Équations de Riccati (HP)

REMARQUE 14.21 : Ce sont des équations de la forme (E) : ay′ + by + cy2 = d où a, b, c et d sont

des fonctions de I dans R. Si on trouve une solution particulière y0 de (E) alors en posant z = y− y0, la

fonction z vérifie une équation de Bernoulli qu’on sait maintenant résoudre.

EXERCICE 14.15 : Résoudre l’équation (E) : t2y′ = t2y2 + ty+ 1.

� �
COMPÉTENCES� �

• Mâıtriser la terminologie des équations et systèmes différentiels, leur ordre et leur linéarité.

• Se rappeler des structures de l’ensemble des solutions d’une équation différentielle linéaire.

• Connâıtre les conditions de Cauchy-Lipschitz qui assurent l’existence et l’unicité d’une solution.

• Savoir résoudre un système différentiel carré linéaire en trigonalisant la matrice du système.

• Connâıtre les méthodes de résolution d’une équation linéaire scalaire d’ordre 1...

• ... et discuter des éventuels raccords en les points singuliers (avec la structure vectorielle associée).

• Mâıtriser la structure des solutions d’une équation différentielle scalaire d’ordre 2...

• ... et savoir trouver une seconde solution de l’équation homogène si on en connâıt une non nulle.

• Penser à chercher les solutions des équations linéaires qui sont développables en série entière.

• Se rappeler des équations différentielles scalaires du second ordre à coefficients constants.


