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CHAPITRE 14
EQUATIONS DIFFERENTIELLES

® L’étude des équations différentielles débute & la fin du XVII® siecle avec la création, par NEWTON
et LEIBNIZ, du calcul différentiel qui permet leur manipulation. Pour ce qui est des équations linéaires,
les principales méthodes de résolution théoriques exposées dans ce chapitre datent du XVIII® : EULER
sait résoudre I’équation homogene d’ordre n a coeflicients constants et LAGRANGE connait la structure de
I’ensemble des solutions d’une équation homogene et met en place la méthode de variation des constantes
qui porte son nom pour ’équation complete.

Pendant toute cette période, le besoin de prouver de maniere générale I'existence de solutions a une
équation différentielle ne se fait pas sentir. En effet, le concept de fonction est encore assez flou et, de
maniere plus ou moins explicite, les fonctions sont toutes supposées étre localement la somme de leur série
de TAYLOR. Dans ces conditions, il semble clair que 1’équation (E) : y™ = f(t,y,y’,---,y™= 1), jointe &
la donnée des conditions initiales y(to),y’(to), - - -,y ™ (o), qui fournit les n premiers coefficients, permet
de calculer par récurrence tous les coefficients du développement en série entiere d’une solution y de (E) au
voisinage de to, la convergence étant implicitement admise.

C’est CAUCHY qui, vers 1820, prouve le premier théoreme garantissant l’existence et 'unicité locales de
solutions pour I’équation (E) : y’ = f(t,y) en montrant que, si f est suffisamment réguliere, la méthode
d’approximation d’EULER converge vers une solution sur un voisinage de to. LIPSCHITZ prouve le méme
résultat en 1876, sous des hypotheses plus faibles sur f, en mettant en lumiere 'importance des conditions
qui portent maintenant son nom.

Apres la méthode d’EULER d’approximation des solutions d’une équation différentielle, les allemands
RUNGE et KUuTTA ont développé une méthode beaucoup plus rapide pour approcher numériquement les
solutions d’un probleme de CAUCHY d’une équation différentielle et qui, de plus, a le mérite d’étre plus
stable par rapport aux conditions initiales.

I désignera un intervalle de R contenant au moins deux points distincts, K désignera soit R soit C.
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(PROGRAMME ]

1 : Equations différentielles linéaires scalaires

CONTENUS CAPACITES & COMMENTAIRES

Equation différentielle scalaire d’ordre 2 & coefficients

continus y” 4 a(t)y’ + b(t)y = c(t).

Forme des solutions : somme d’une solution particuliere La résolution explicite de I’équation différentielle
et de la solution générale de I’équation homogene. doit comporter des indications.

Théoreme de CAUCHY linéaire : existence et unicité de la

solution d’un probléme de CAUCHY.

Espace vectoriel des solutions de I’équation homogene, Exemples d’utilisation de développements en série
dimension. entiere pour la recherche de solutions.

(rappel chapitre réduction : en ce qui concerne les Application au calcul des puissances d’une matrice
matrices diagonalisables) diagonalisable, & des exemples de systemes diffé-

-rentiels & coefficients constants. Dans la pratique

des cas numériques, on se limite a n =2 oun = 3.

PARTIE 14.1 : EQUATIONS DIFFERENTIELLES
LINEAIRES SCALAIRES

14.1.1 : Equations différentielles scalaires du premier ordre (révision)

DEFINITION 14.1 :

Soit «, B, v trois applications continues sur un intervalle 1 et a valeurs dans K.
(i) L’équation (E) : oy’ + By = v est une équation différentielle linéaire scalaire d’ordre 1.

(i1) Une solution de (E) esty : 1 — K dérivable sur 1 telle que ¥t € 1, o(t)y’(t) + B(t)y(t) = v(t).

(iii) L’équation (Ep) : oy’ + By = 0 est l’équation homogene associée d (E).

REMARQUE 14.1 : On peut considérer des solutionsy : ] — K de (E) ou ] C L

PROPOSITION SUR LA STRUCTURE DE L’ENSEMBLE DES SOLUTIONS 14.1 :

L’ensemble S, des solutions de (E) est un sous-espace vectoriel de D' (I, K).

Si yp est une solution particuliére de ’équation (E) alors I’ensemble S des solutions de (E) est

S =1yp +So : c’est un sous-espace affine de D'(I, K) (fonctions dérivables de I dans K).
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REMARQUE 14.2 : Si la fonction « ne s’annule pas sur 1, y est solution de oy’ + By = v si et seulement

siy est solution dey’ — ay = b avec a = Bootp=2 ; a et b sont alors continues sur I : on dit alors
o o

que I’équation est mise sous forme normalisée.

PROPOSITION SUR LA FORME DES SOLUTIONS DE L’EQUATION y =ay 14.2 :
Soit a et b deux fonctions continues sur un intervalle I et a valeurs dans K.

(i) Les solutions de 1’équation homogeéne (Ey) : y’' — ay = 0 sont les fonctions y, définies

sur [ par Vt € I, ya(t) =Ae*® o1 A € K et A est une primitive de a sur I.

(ii) So est la droite vectorielle engendrée par t — e*(V) : S5 = Vect(e?).

DEMONSTRATION : (i) Soit y : I — K dérivable, définissons alors z : I — K par z(t) = e_A(t)y(t). Alors
la fonction z est dérivable sur I par composée et produit et on a I’équivalence, comme I est un intervalle :
Y-—ay=0<=e M —aeMy=0<=2 =0<= Ir € K, z=A (2 est constante).

Ainsi, y € So <= I € K, Vt € I, y(t) = rerV).

(ii) Ce qui précéde montre que Y est solution de (E) si et seulement si Yy est proportionnelle a la fonction t > MY,

REMARQUE FONDAMENTALE 14.3 : Méthode de la variation de la constante :

e Soit a,b : I — K continues et yo une solution non nulle de I’équation homogéne y' — ay = 0 alors il

existe une solution de I’équation (E) : y' — ay = b de la forme y = Ayp, ot A est dérivable sur 1.

e y solution de (E) <=\ = b ce qui permet de trouver (en intégrant) une solution particuliére.
Yo

DEMONSTRATION : On sait que Yo étant non nulle et solution de Sg, elle ne s’annule pas sur I, ainsi, pour une

fonction y : I — K dérivable, on peut poser A = Y qui est aussi dérivable sur I. Ainsiy = Ayp et,sitg € 1:
Yo

t b(u)
€S << (Myp +Ayh) — ar ——b<:>7\’———bc tel, A(t) = du.
y (Myo + Ayp) — adyo oy Ve A fto o)

THEOREME SUR LA FORME DES SOLUTIONS DE L’EQUATION y' —ay =b 14.3 :
Si a et b sont continues sur I, les solutions de y' — ay = b sont les fonctions y, définies par
Ve e, ya(t) =AM 4 A f b(u)e"A(Wdu o1 A est une primitive de a sur I, A € K et to € L.

DEMONSTRATION : Définissons Yp : I — K par yp f b “AWau on to € [. D’apres le
—A(u)

théoréme fondamental de l'intégration, Yp est dérivable sur I par produit car u +—> b( ) est continue sur 1.

t

On dérive Yp et on obtient y, (t) = A’(t)er() ft b(w)e AW du + eAWb(t)e A = a(t)y,(t) + b(t)
0

car A/(t) = a(t). Ainsi, Yp est une solution particuliere de (E) D’apres les propositions 13.1 et 13.2, les solutions

t
de (E) s’écrivent y : I = Kavec y(t) = AerV) + MY j; b(u)e_A(u)du ou A € K.
— 0

sol. équa. hom.

sol. part.
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REMARQUE 14.4 : Dans ce cadre restreint, on démontre le théoréme de CAUCHY-LIPSCHITZ lindaire.

THEOREME DE CAUCHY-LIPSCHITZ LINEAIRE D’ORDRE 1 (ENORME) 14.4 :

Soit a et b deux fonctions continues sur un intervalle I et (to,yo) € I x K, le probléme de CAUCHY

1o
{ ( y) = a(t)y +b(t) admet une unique solution y définie sur I en entier.
ylto) = Yo

DEMONSTRATION : D’apres le théoréme précédent, en prenant pour primitive de la fonction a sur I la fonction

t
A : I — K définie par A(t) = ft a(u) du, les solutions de (E) sur [ sont, si tg € I, les fonctions y : [ — K qui
0

t
s’écrivent, avec A € K, y(t) =AerV) 4 A . b(u)e_A(u) du. La condition y(to) = Yo est équivalente &
0

t
A = yo car A(to) = 0 donc e0) =1 ot ﬁ b(u)e_A(“)du = 0. Ainsi, la seule solution de (E) sur I qui
0
t t
vérifie y(to) = yo est la fonction y : t yoeA(t) + A ft b(u)e_A(u) du avec A(t) = ‘L a(u)du.
0

0

REMARQUE 14.5 : e Sous ces conditions, ¢+, : So — K définie par ¢+, (y) = y(to) est un isomorphisme.

e L’espace vectoriel des solutions de (Eg) sur un intervalle 1 ou I'équation est résolue est une droite.
e Si I’équation n’est pas sous forme normalisée sur I, on la résout sur tous les intervalles oti « ne
s’annule pas et on essaie de raccorder les solutions en les points singuliers.

e [l peut y avoir sur I une infinité de solutions, une seule ou aucune.

EXERCICE CONCOURS 14.1 : CCINP PSI 2024 Romane Mioque II (note 19,37)
On considere I'équation différentielle (E) : t(t*> — 1)y’ + 2y = t2.

. 1 a b c
a. Trouver des réels a,b,c, tels que Vt -1,0,1}, —5——===+ —+ .
K a } tt2—1) t t+1  t—1
b. Résoudre (E) sur les intervalles ou elle est sous forme normalisée. Et sur | — 1; 1], puis sur R.

ORAL BLANC 14.2 : CCP PSI 2014 Lucie
Soit (E) : x(x — 1y’ +y = In(x).
a. Montrer que (E) admet une unique solution dans R notée f.

1
b. Soit I, = fo x™ In(x)dx. Montrer son existence et calculer sa valeur.

1 +oo 2
c. Calculer fo f(x)dx apres avoir justifié son existence. On rappelle que > iz = %
k=1T

14.1.2 : Equations différentielles scalaires du second ordre

DEFINITION 14.2 :
Soit «, B, v et & quatre applications continues sur 1 et a valeurs dans K.

(i) (E) : ay’ + By +vy =& est une équation différentielle linéaire scalaire d’ordre 2.

(i) y: 1 — K deuz fois dérivable est solution de (E) si Vt € I, o(t)y”(t) + B (t)y’(t) +v(t)y(t) = 5(t).

(i11) L’équation (Eo) : oy” + By’ + vy = 0 est I’équation homogene associée a (E).

REMARQUE 14.6 : Si la fonction o ne s’annule pas sur 1, y est solution de ay” + By’ + vy = & si et
B

seulement si y est solution de y”’ —ay —by =c aveca = —2, b= —Y et ¢ = S .4, b et c sont alors
o o o

continues sur I. On dit qu’elle est mise sous forme normalisée.
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THEOREME DE CAUCHY-LIPSCHITZ LINEAIRE ORDRE 2 (ENORME) 14.5 :

Soit a, b et ¢ trois applications continues sur un intervalle I et (to,yo,yp) € I K2, le probleme

y' = ay'+byte
de CAUCHY ¢ y(to) = yo admet une unique solution définie sur I en entier.
I /
y'(to) = o

DEMONSTRATION : hors programme.

PROPOSITION SUR LA STRUCTURE DE L’ENSEMBLE DES SOLUTIONS 14.6 :
Soit a, b et ¢ trois applications continues sur un intervalle 1, I’équation (E) : y”" =ay’ + by +c
et I’équation homogene associée (Eg) : y” = ay’ + by.

(i) L’ensemble Sy des solutions de (Ey) est un espace de dimension 2.

(ii) Deux solutions y; et y2 de (Eo) linéairement indépendantes forment une base de So.

(iii) Si yp, est une solution “particuliere” de I’équation (E) alors I’ensemble S des solutions

de (E) est S =y, +So : c’est un sous-espace affine de C2(I, K).

REMARQUE FONDAMENTALE 14.7 :

e La famille (y1,y2) est alors appelée systéme fondamental de solutions de (Eo).

e Si on ne connait qu’une solution y; de (Eo) sur 1 et qu’on suppose que y; ne s’annule pas sur 1, on
peut résoudre (E) par une “variation de la constante” en posant y = zy; avec z : I — K de classe

C? : c’est la méthode de LAGRANGE qui raméne la détermination de y a la résolution d’une équation
différentielle linéaire d’ordre 1 vérifiée par z'. Il existe donc une base de Sy de la forme (y1,y2), ou

y2 = zy; avec z de classe C? sur 1.

DEMONSTRATION : D’abord, si Y est une solution de (E) (ou de (Ep)), alors y est au moins deux fois dérivable

sur I par définition donc, comme y” = ay’ + by + ¢ est continue par opérations puisque a, b et ¢ sont supposées

continues sur I, la fonction y” est continue sur I et y est C2 sur L. Réciproquement, si y : I — K de classe Cz,

en posant z = l‘,—, Z est aussi de classe CZsurl par opérations et y = zy7.
Y1

Ainsi, y' = z'y1 +zy] et y” = z"y1 + 22"y} + zyY donc, comme y{ = ay} + by, en reportant dans (E), on
ay’ —ay’ —by = ¢ <= 2"y + 22y} + 2y —a(Zy1 +2y)) —bzy1 = c <= 2"y1 + 22y —aZ'y1 =¢
douy” —ay —by =c <= y1z’ + (2y} —ay1)z' = c <= y1w' + (2y} — ay1)w = c en posant w = 2/,
o ’

Si A est une primitive de a sur I et to €I, si Yy est une solution de (E) sur I, w + (213*1 — a)w = £

U1 Y1
w — Zae_Ay%w = (e_Ay%w)’ = ce_Ay1 et il existe alors A2 € K tel que
(A2 +B(1)erV

donc e_Ay%w’ + 2yiy e A

t
vt €1, e_A(t)y%(t)w(t) =N+ ft c(we AWy (u)du = A, + B(t) don 2/ (t) =
0

“ yi(t)
t AW t B(u)eA u
il existe A7 € K Vel z(t) =A € d 2 du+Ag.
il existe Aq avec z(t) zﬁo y1(u)2 u —+ j;o y1(u)2 u—+ A
t Au) t _A(u)
En définissant yo,y2 : [ = KparVt € I, yo(t) :y1(t) ‘[:co %duetyz(t) = U](t) j:to ye (uu)z du,
1 1

Y est solution de (E) sur [ si et seulement siy = yo-+A1Yy1+A2y2 avec (7\1 s 7\2) e K2 (la réciproque se fait bien).

Comme on sait que I’ensemble des solutions de (E) est un plan affine, ceci justifie que (y1 R yz) est libre. Néanmoins,
t JA(uw)
e

to Y (u)z

si on veut le vérifier indépendamment, si Y, était proportionnelle a Y1 75 0, alors la fonction t +—> u

A
serait constante et sa dérivée % serait la fonction nulle sur I : NON !
Y1
Le plan affine S des solutions de (E) sur I est donc S = {yo} + Vect(y1,yz2) et le plan vectoriel So des solutions

de (Ep) sur L est S = Vect(y1,y2) donc (y1,Y2) est un systeme fondamental de solutions de (E).
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EXEMPLE 14.3 : CCP PSI 2019 Pierre Fabre I

1

est solution.

Résoudre (E) : x(1 —x)y” + (1 —3x)y’ —y = 0 en vérifiant que x — .

REMARQUE 14.8 : Des indications seront données pour trouver une/les solution(s) de (Eo) :

e Comme dans I'exemple précédent, on pourra changer de fonction en considérant I’équation vérifiée
parw:t— (f(y(t)) ou de variable en trouvant I'équation satisfaite par v : t — y(@(t)).

e Comme dans I'exemple suivant, on peut aussi chercher des solutionsy de (Eo) qui sont développables
en série entiere au voisinage de 0.

EXERCICE 14.4 : Soit 'équation (E) : (2t +1)y” + (4t —2)y’ — 8y = 0.
Résoudre (E) en cherchant les solutions développables en série entiere.

Résoudre (E) en sachant qu’elle admet une solution de la forme y : t — e**.

ORAL BLANC 14.5 : Centrale PSI 2015 Agatha Courtenay
Soit a € C°(Ry, R) intégrable sur R, . Soit f une solution sur R, de I’équation (E) : y”+(14+a)y = 0.

Posons g : x — f(x) + fox sin(x — t)a(t)f(t)dt.
a. Que peut-on dire de la limite de la fonction a en +o0o ?
b. Montrer que ¢g” + g = 0. En déduire qu'il existe C € R* tel que |f(x)] < C + fox la(t)f(t)|dt.

c. Conclure quant aux solutions de (E) sur R;.

14.1.3 : Equations différentielles du second ordre A coefficients constants

THEOREME SUR LA FORME DES SOLUTIONS DE ay” + by’ +cy =0 ((a,b,¢) € C3) 14.7 :
Soit (a,b,c) € C* x C2, alors les solutions de (Eo) : ay” + by’ +cy =0 sont :
(i) y=areMt + azer?t avec (a1,x2) € C? si Aj # A, sont les racines de aX? + bX +c.

(ii) y = (1t + az)eMt avec (a7, x2) € C? si Ay est la racine double de aX? + bX + c.

REMARQUE 14.9 : e L’équation (C) : az? + bz + ¢ = 0 s’appelle I'équation caractéristique de (E).

0 1
e La matrice associée a cette équation dans le systéme Y = AY oY = (5,) est A = <_C _b>
a a

et son polynéme caractéristique vérifie aX?> +bX 4+ ¢ = axa : cohérent !

e Le cas (i) est le cas ou A est diagonalisable et (ii) celui ot elle est seulement trigonalisable.

REMARQUE HP 14.10 : Si (a,b,c) € C* x C%, P € C[X] et m € C, il existe une solution particuliére
de (E) : ay” + by’ +cy =P(t)e™" de la formey : t — t*Q(t)e™" avec Q € C[X], deg(Q) = deg(P) et :

(i) o =0 si m n’est pas racine de aX? 4+ bX + c.
(ii) o =1 si m est racine simple (et A = b? —4ac # 0) de aX? + bX +c.

(iii) o =2 si m est racine double (A = 0) de aX? + bX +c.
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(© Le cas réel est plus complexe.

THEOREME SUR LA FORME DES SOLUTIONS DE ay” + by’ +cy =0 ((a,b,c) € R3) 14.8 :
Soit (a,b,c) € R* x R2, les solutions réelles de (Eo) : ay” + by’ +cy =0 sont (A =b? —4ac) :
(i) y=areMt + azeP?t avec (a1, x2) € R? si A\j # A, racines réelles de aX? +bX +c et A > 0.

(i) y=(a1t+ az)eMt avec (a7, 02) € R? si Ay = _ZL racine double de aX? +bX +c et A =0.
a

(iii) y = (o1 cos(Bt) + oz sin(Bt))e™* avec (a1, 02) € R? sizy = a+ip € Cet z; = a—ip ((«, B) € R?)

sont les racines complexes de aX? 4+ bX + ¢ quand A < 0.

REMARQUE 14.11 : Pour les solutions particulieres de I'équation avec second membre, on passe par le

cas complexe et on prend la partie réelle d’une solution particuliéere.

(PARTIE 14.2 : ANNEXES)

’14.2.1 : Systémes différentiels linéaires du premier ordre‘

T
REMARQUE 14.12 : Si X : 1 = Mn,1(K) est défini par X(t) = (x1 (t) - Xn(t)) € Mn,1(K), alors

X(t) = X(to)

— admet une limite finie quand t tend vers tg.
—to

X est dérivable en to € 1 si et seulement si t —
Puisque X =X(to) _ (Xl(t)m(to) . xa(t) = xn(to)

-
, X dérivable en ty € 1 si et seulement
t —to t —to

t—1to

-
si toutes les xy : I — K sont dérivables en to et on a alors X'(to) = (x’] (to) -+ xﬁl(to)> .

DEFINITION 14.3 :
Soitn > 1, deuz applications A : 1 — Mn(K) et B : I — My, 1(K) continues sur L.
(i) Un systéme différentiel linéaire d’ordre 1 est de la forme (E) : X' = A(t)X + B(t).
(i1) Une solution de (E) est X : I — My, 1(K) dérivable sur 1 telle que Vt € 1, X'(t) = A(t)X(t) +B(t).

(iii) Le systéme homogene associée a (E) est le systeme (Eo) : X' = A(t)X.

REMARQUE 14.13 : Ecriture du systeme différentiel :

T

Si on note, pour t € I, B(t) = (b1 (t) -~ bn(t)) € Mn,1(K) et A(t) = (ai; (t))lgi j<n € Mn (K),
i = anita + 0+ aa(t)xa + bi(t)

le systéme (E) est équivalent a , Cest-a-dire
X = ana(t)x1 + -+ ann(t)xn + bn(t)

que : X est solution de (E) <=Vt € I, Vi € [1;n], x{(t) = > aij(t)xj(t) + bi(t).
=1

. . ) x = 2tx—y
EXEMPLE 14.6 : Résoudre le systeme réel , .
Yy = x-+2ty

Indication : on pourra passer en complexes en posant z = x + iy.
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REMARQUE 14.14 : Une équation différentielle linéaire scalaire d’ordre n, c’est-a-dire une équation

différentielle du type (E) : y™ —an_1(t)y™ 1 — ... —ao(t)y = b(t) avecy : I — K n fois dérivable et

les fonctions agp, - --,an—_1,b continues sur 1, peut se traduire par un systéme différentiel d’ordre 1.

DEMONSTRATION : On pose X = (y y' - y(n_U)T etonaX =AX+BavecB(t)=(00--- 0 b(t))T.

A est la matrice compagnon dont le polynéme caractéristique est X™ — an_1 Xl a1 X — ap.

EXEMPLE 14.7 : Représenter matriciellement 1’équation (E) : y” + cos(t)y’ +ty = e*.

THEOREME DE CAUCHY-LIPSCHITZ LINEAIRE (ENORME) 14.9 :
Soit A: I — M, (K) et B:I— My 1(K) continues sur I et (to,Xo) € I X Mn,1(K), alors le probleme
X' = A(U)X+B(Y) . . s .
de CAUCHY admet une unique solution X définie sur I en entier.
X(to) = Xo

DEMONSTRATION : hors programme.

~

(PROPOSITION SUR LA STRUCTURE DE L’ENSEMBLE DES SOLUTIONS 14.10 :
Soit A : 1 = Mn(K) et B : I — My,1(K) continues sur I et (E) : X' = A(t)X + B(t) un systéme
différentiel linéaire d’ordre 1, S l’ensemble des solutions sur I de (E) et Sy ’ensemble des
solutions sur I du systéme homogeéne (Eo).

(i) So est un sous-espace vectoriel de C' (I, My 1 (K)).

(ii) Pour tout ty € I, ¢, : So = Mn,1(K) définie par ¢,(X) = X(to) est un isomorphisme

donc Sy est un espace de dimension n.
(iii) Les solutions non nulles de (Ep) ne s’annulent pas sur I.

(iv) Si X, € S (solution particuliére) alors S = X, + Sy (sous-espace affine).

’14.2.2 : Systemes différentiels linéaires a coefficients Constants‘

( On se limite en pratique & des systemes (E) : X' = AX+B(t) ot A € Mn(K) et B : I = Mn,1(K) est
continue sur I. Et méme, d’apres le programme, a des systemes différentiels linéaires avec n =2 ou n = 3.
REMARQUE 14.15 : Soit A € Mn(R) réelle et les équations (Eg) : X' = AX (réel) et (Ey) : Z' = AZ

(complexe). Une fonction X : I — My 1(R) est solution réelle de (Eo) si et seulement s’il existe une

fonction Z : 1 — My 1(C) solution complexe de (Ej) telle que X = Re(Z).
Cela signifie que pour déterminer les solutions réelles de X' = AX ot A est réelle, on peut commencer par

déterminer les solutions complexes dont on prendra les parties réelles.

!

EXERCICE 14.8 : Résoudre le systeme {;(, - 7y,

== X

PROPOSITION SUR LA RESOLUTION D’UN SYSTEME DIAGONALISABLE 14.11 :
Si A est diagonalisable (sur K), il existe P € GL,(K) et D = diag(A1,---,An) diagonale telles que
A = PDP~! donc le systéeme X' = AX équivaut & Y/ = DY oi1 on a posé X = PY.
T
De plus, si on pose Y(t) = <y1(t) yn(t)> alors Y/ = DY si et seulement si pour tout

k € [1;n], il existe une constante oy € K telle que yy : t — ae <",
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REMARQUE 14.16 : Le calcul de la matrice P~ n’est pas nécessaire pour la résolution de X' = AX.

/ — —
EXERCICE 14.9 : Résoudre le systeme différentiel suivant {:/ B iX+ yZy .

REMARQUE 14.17 : On peut faire la méme chose avec un second membre.

X = y+z-—1
EXERCICE 14.10 : Résoudre le systeme différentiel < vy = x+y—1.
Z = x+z-2

r ’ .
PROPOSITION SUR LA RESOLUTION D’UN SYSTEME TRIGONALISABLE 14.12 :
Si A n’est que trigonalisable (sur K), on pose encore X = PY avec P € GL,(C) telle que A = PTP~!

et T triangulaire supérieure et on a de nouveau X' = AX si et seulement si Y = TY. Ce systéme
Y = TY est un systéme différentiel qui se résout en partant de la derniére ligne et en remontant

en reportant les résultats intermédiaires.

X = 2x—y+22
ORAL BLANC 14.11 : Résoudre le systeme différentiel { y* = 10x —5y +7z.
Z = dx—2y+2z

REMARQUE 14.18 : Cette méthode fonctionne encore si A n’est pas constante mais si P ’est.

: = @=Ox+(t=1)y
EXFERCICE 14.12 : Résoudre le systeme différentiel .
y = 20—t)x+(2t—1)y

14.2.3 : Equations & variables séparables (HP)

REMARQUE 14.19 : Ce sont des équations du premier ordre de la forme (E) : y'f(y) = g(t) ou f et
g sont des fonctions continues de 1 dans K = R ou C. Si F (resp. G) est une primitive de f (resp. g)
sur des bons intervalles, une solution y de (E) sur | C I vérifie F(y) = G(t) + k avec k € K ; il faut

espérer ensuite que F soit bijective pour qu’on puisse écrire y = F~'(G(t) + k) qu’il faut ensuite tracer.
Les solutions maximales ne sont pas forcément définies sur les mémes intervalles comme c’était le cas
pour les équations linéaires.

/

EXERCICE 14.13 : Résoudre 'équation (E) : ﬁr—z =1 J:tz sur RZ.
Y

14.2.4 : Equations de Bernour (HP)

REMARQUE 14.20 : Ce sont des équations du type (E) : ay’ +by—+cy® =0 o a, b et c sont des

fonctions continues de 1 dans R et o« € R\ {0,1}. Sur des intervalles ott ni a ni y ne s’annule, on pose

bz+c
a

z = y'~% siy solution de (E) et y n’est pas la fonction nulle, on trouve alors z’ = (« — 1) qu’on
sait de nouveau résoudre.

EXERCICE 14.14 : Résoudre I'équation (E) : ty’ +y = y>.
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14.2.5 : Equations de Riccar: (HP)

REMARQUE 14.21 : Ce sont des équations de la forme (E) : ay’ +by+cy? =doiia, b, ¢ et d sont

des fonctions de I dans R. Si on trouve une solution particuliére yo de (E) alors en posant z =y — yo, la

fonction z vérifie une équation de BERNOULLI qu’on sait maintenant résoudre.

EXERCICE 14.15 : Résoudre I'équation (E) : t*y’ = t?y? +ty + 1.

(COMPETENCES|

e Maitriser la terminologie des équations et systemes différentiels, leur ordre et leur linéarité.

e Se rappeler des structures de I’ensemble des solutions d’une équation différentielle linéaire.

e Connaitre les conditions de CAUCHY-LIPSCHITZ qui assurent l’existence et I'unicité d’une solution.
e Savoir résoudre un systéme différentiel carré linéaire en trigonalisant la matrice du systeme.

e Connaitre les méthodes de résolution d’'une équation linéaire scalaire d’ordre 1...

e ... et discuter des éventuels raccords en les points singuliers (avec la structure vectorielle associée).
e Maitriser la structure des solutions d’une équation différentielle scalaire d’ordre 2...

e ... et savoir trouver une seconde solution de I’équation homogene si on en connait une non nulle.

e Penser a chercher les solutions des équations linéaires qui sont développables en série entiere.

e Se rappeler des équations différentielles scalaires du second ordre & coefficients constants.



