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CHAPITRE 15
FONCTIONS DE PLUSIEURS VARIABLES

(© Ce chapitre est consacré a 1’étude des fonctions f de RP dans R. On a parlé de leur continuité dans
le chapitre sur les espaces vectoriels normés et on va maintenant voir leur aspect “dérivable”. Par contre, un
f(Xo +h)— f(xo)

h
va donc considérer des dérivées partielles (en cas d’existence) qui correspondent a la dérivée d’une fonction
vectorielle dans une direction donnée.

taux d’accroissement n’a pas de sens en général pour un vecteur h € RP dés quep > 2. On

Ces notions de dérivées successives des fonctions vectorielles interviennent dans la détermination des
extrema des fonctions vectorielles et dans les équations aux dérivées partielles.

Une équation aux dérivées partielles (abrégé en EDP) est une équation différentielle dont les solutions
sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs
dérivées partielles. Elle a souvent de trés nombreuses solutions, les conditions étant moins strictes que dans
le cas d'une équation différentielle ordinaire a une seule variable. Les problemes comportent souvent des
conditions aux limites qui restreignent I'ensemble des solutions. Alors que les ensembles de solutions d’une
équation différentielle ordinaire sont paramétrées par un ou plusieurs parametres correspondant aux condi-
tions supplémentaires, dans le cas des EDP, les conditions aux limites permettent de paramétrer les solutions
par l'intermédiaire de fonctions ; intuitivement cela signifie que 1’ensemble des solutions est beaucoup plus
grand (de dimension infinie dans le cas des équations linéaires), ce qui est vrai dans beaucoup de problémes.

Les EDP sont omniprésentes dans les sciences puisqu’elles apparaissent aussi bien en dynamique des
structures ou en mécanique des fluides que dans les théories de la gravitation, de 1’électromagnétisme
(équations de MAXWELL), ou des mathématiques financiéres (équation de BLACK-SCHOLES). Elles sont
primordiales dans des domaines tels que la simulation aéronautique, la synthese d’images, ou la prévision
météorologique. Enfin, les équations les plus importantes de la relativité générale et de la mécanique quan-
tique sont également des EDP (équation de champ d’EINSTEIN et de SCHRODINGER).

L’un des sept problemes du prix du millénaire consiste a montrer I’existence et la continuité par rapport
aux données initiales d’un systeme d’EDP appelé équations de NAVIER-STOKES.
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(PROGRAMME]

Les dérivées partielles d’une fonction numérique définie sur un ouvert de R? ont été introduites en

premiére année. L’objectif de cette section est d’approfondir et de généraliser cette étude aux fonctions de
p = 2 variables.

L’étude d’une fonction de RP dans R™ se ramenant a celle de ses coordonnées, cette section se consacre

a I'étude des fonctions de RP dans R. Elle est axée sur la mise en place d’outils permettant de traiter des

applications du calcul différentiel a I'analyse et la géométrie. On se limite en pratique au casp =2 oup = 3.

1 : Fonctions de classe C'

CONTENUS CAPACITES & COMMENTAIRES
Dérivée en un point selon un vecteur. Notation D, f(a).
Dérivées partielles d’ordre 1 en un point d’une fonction Notation aa—)j(a). On peut aussi utiliser 9;f(a).
1

définie sur un ouvert 2 de RP a valeurs dans R.

Une fonction est dite de classe C! sur € si ses dérivées

partielles d’ordre 1 existent et sont continues sur 2.

Opérations sur les fonctions de classe C'.

Une fonction de classe C! sur £ admet en tout point a La démonstration n’est pas exigible.

de 2 un développement limité d’ordre 1. Une fonction de classe C! sur Q est continue sur €.

Différentielle de f en a. Elle est définie comme la forme linéaire sur RP :
P
af(a) = (h1yeo hp) = 30 A (a)his
i=1

Notation df(a) - h.

2 : Reégle de la chaine

CONTENUS CAPACITES & COMMENTAIRES
Dérivée de t — f(x1(t), -, xp(t)). Interprétation géométrique.
Application au calcul des dérivées partielles de : En pratique, on se limite a n <3 et p < 3.
(w1, yun) — f()q (w1, oy un )y ooy xp (W, oy un)). Les étudiants doivent connaitre le cas particulier

des coordonnées polaires.
Caractérisation des fonctions constantes sur un ouvert

convexe.

3 : Gradient

CONTENUS CAPACITES & COMMENTAIRES

Dans RP muni de sa structure euclidienne Le gradient est défini par la relation df(a) - h = (Vf(a),h)
canonique, gradient d’une fonction de classe C'. pour h € RP,

Coordonnées du gradient. Notation Vf(a).
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4 : Applications géométriques

CONTENUS CAPACITES & COMMENTAIRES

Courbe du plan définie par une équation Lignes de niveau de f.

f(x,y) = 0 ot f est de classe C'.

Point régulier. Le gradient est normal a la On admet que la courbe admet un paramétrage local de classe C'.

tangente en un point régulier. Détermination d’une équation de la tangente en un point régulier.
Lorsqu’il est non nul, le gradient de f est orthogonal aux lignes
de niveau et orienté dans le sens des valeurs croissantes de f.

Surface définie par une équation f(x,y,z) =0

otl f est de classe C'.

Point régulier. Le plan tangent en ce point

est défini comme orthogonal au gradient.

Courbe tracée sur une surface. Dans le cas d’une courbe réguliere, la tangente a la courbe est

incluse dans le plan tangent a la surface.

5 : Fonctions de classe C?2

CONTENUS CAPACITES & COMMENTAIRES
Dérivées partielles d’ordre 2 d’une fonction définie sur  Notations %aij
un ouvert de RP a valeurs dans R.
Fonction de classe C? sur un ouvert de RP.
Théoreme de SCHWARZ. La démonstration est hors programme.
Matrice hessienne en un point a d’une fonction de Notation H¢(a).
classe C? sur un ouvert de RP & valeurs dans R.
Formule de TAYLOR-YOUNG & lordre 2 : La démonstration est hors programme.

fla+h) =, f(a) + (Vf(a))Th + %hTHf(a)h + o(||h|[?). Expression en termes de produit scalaire.

6 : Extremums d’une fonction de RP dans R

CONTENUS CAPACITES & COMMENTAIRES

Extremum local, global.
Point critique d’une application de classe C'.
Si une fonction de classe C! sur un ouvert de RP admet un
extremum local en un point a, alors a est un point critique.
Si f est une fonction de classe C? sur un ouvert de RP et Adaptation & I’étude d’un maximum local.
a un point critique de f: Explicitation si p = 2 (trace, déterminant).

- si He(a) € SFT(R), alors f atteint un minimum

local strict en a;
- si He(a) ¢ S (R), alors f n’a pas de minimum en a.
Exemples de recherche d’extremums

globaux sur une partie de RP.
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[PARTIE 15.1 : FONCTIONS DE CLASSE C°)

REMARQUE 15.1 : Rappels, soit p € N*, un ouvert 2 de RP, une fonction f: 1 - Ret a € Q :
e f est continue en a si et seulement si Ve > 0, Ja > 0, Vx € Q, ||x — a|| < « = [f(x) — f(a)| < e.

e Cette définition ne dépend pas de la norme employée dans RP car elles sont toutes équivalentes.

e Sif est lipschitzienne sur B(a,r) N Y, pour r > 0 alors f est continue en a.

e Pour h € RP, lapplication ¢n : t € R +— f(a+ th) est définie sur un intervalle | — ;7| et si f est
continue en a, l'application ¢y est continue en 0 pour tout h € E (continuité partielle selon h).

e f partiellement continue (selon toute direction) en a n’y est pas forcément continue.

3 2 2 3
EXEMPLE 15.1 : o f1(x,y) = % + 3xy2 _T_zé Y=Y _ est prolongeable par continuité en (0,0).
x Yy

o f2(x,y) = W "|)|:|J’I|y‘) si (x,y) # (0,0) et £(0,0) = 0 est continue sur R?.

o f3(x,y) = ﬁy? n’est pas prolongeable par continuité en (0,0) bien que bornée.

2
o f4(x,y) = Tx_yF? non plus en (0,0) méme si elle partiellement continue en (0,0) et ceci dans

toutes les directions (c’est-a-dire t — f4(ta, tb) tend vers 0 si (a,b) € R? est un vecteur non nul).

[PARTIE 15.2 : FONCTIONS DE CLASSE C'|

REMARQUE 15.2 : On se donne un ouvert ) de RP (muni de n’importe quelle norme) et a € RP :

e Comme () est un ouvert, il existe un réel r > 0 tel que B(a,r) C Q.

e Pour un vecteur non nul v de RP, il existe un réel oo > 0 tel que Vt €] — a; [, a +tv € Q.

15.2.1 : Dérivées partielles et selon un vecteur non nul‘

DEFINITION 15.1 :

Avec ces notations, sif:Q — R et siv#0¢€ RP, on dit que f admet en a une dérivée selon le vecteur

v si la fonction @q,y ] — o «[— R définie par ¢ q(t) = f(a + tv) admet une dérivée en 0. Dans ce cas, on
fla+ tv) — f(a)

note Dyf(a) cette dérivée, qui vaut donc Dyf(a) = lin(1) —
t—

EXEMPLE 15.2 : Soit f: R? — R définie par f(x,y) = x? — y? +x3 + y*, calculer la dérivée de f

en (0,0) selon les vecteurs vi = (1,1) et vo = (1, —1).

REMARQUE 15.3 : Soit f: 2 — R et a € Q avec v > 0 tel que B(a,7) C Q. Si B = (e1,---,ep) est la
base canonique de RP, pour k € [1;p], s0it @q,k :] —T;7[— R telle que Vt €] —7;7], @qx(t) = f(a+tex).

DEFINITION 15.2 :
Soit f: Q — R et a € Q, avec les notations précédentes, on dit que f admet en a une dérivée partielle

d’ordre 1 par rapport & la k-ieme variable si ¢ i est dérivable en 0 et on définit alors cette dérivée

. p . fla+tex)—f(a
partielle par, notée dyf(a) ou a%((a) par 3xf(a) = %(a) = @ x(0) = ll_?}) ( :) (a)

= D, f(a).
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REMARQUE 15.4 : Dans le cas d’une fonction de deux variables f

237

: RZ — R souvent introduite dans

les exercices par f : (x,y) — f(x,y), si a = (a7,az2) € R? :

. ay +t,az) —flar,a
(31f(a) = 01f(ar, az) = aaxfl (@) =) %(a"az):lﬁ% flas zi (a1,02)
. t
(32f(a) = 32f(ar,a2) = aaxfz(a):) %(ahaz):g}q}) flar, a2 + J)[ fla1,a2),

(© Par exemple, en dehors de tout point singulier (ou la fonction est prolongée par continuité par exemple),

les dérivées partielles se calculent naturellement en “fixant” une des variables et en dérivant par rapport a

Pautre : pour calculer 51f(a), on fixe az et on dérive par rapport & x (en prenant la valeur finale en (a7, az)).

( ’ ’ ’
PROPOSITION OPERATOIRE SUR LES DERIVEES PARTIELLES 15.1 :
Soit a € Q et f,g

: Q2 — R des fonctions qui admettent des dérivées partielles d’ordre 1 en a

telles que g(a) # 0. Soit ¢ : I - R dérivable en f(a) avec 1 intervalle ouvert :

EXERCICE CLASSIQUE 15.3 : Soit f: R?2 — R définie par f(x,y) =

; o A +9) ) of 29

f+ g en admet aussi et Vk € [1;p], W(a) = axk(a) + axk(a).

; o1 9(Af) of
Af en admet aussi et Vk € [1;p]), Xy (a) = Am(a .

; o1 209) oy = of g
fg en admet aussi et Vk € [1;p]), Xy (a) =g(a) axk(a) + f(a) axk(a).

. o(f 1 el
f en admet aussi et Vk € [1;p], éx/kg) (a) = o(a)? (g(a)a?(—i(a) - f(a)ﬁ%(a)).
¢ of en admet aussi et Vk € [1;p], a(épxo ) (a) = ?(‘; (a) x ¢’(f(a))
DEMONSTRATION : Pour a € , k € [[1;‘pﬂ, notons comme dans la définition ci-dessus les deux fonctions
@a,k :] —T; T[—> Ret Pg,x :] -3 T[—) R définies par (payk(t) = f(a + tex) et ll’a,k(t) = g(a + tey), elles
sont, par hypothese, dérivables en 0 avec (playk(O) = aaT];(a) et 1|)la,k<0) = a—ax%(a).

Pour les cing points de la proposition, par opérations sur les fonctions dérivables, les fonctions t +> (f—|—g) (a—l—tek),
— (Af)(a + tex), t — (fg)(a + tex), t — (f/g)(a + tex) et t — (@ o f)(a + teyx) sont dérivables en 0
car elles sont définies au moins sur } —T; r[ et qu’elles valent respectivement ©q x + wa,ky A a,k> Pa,k X u’a,k7

lbLa L ® 0 @q k- De plus, leurs dérivées en 0 valent bien, respectivement, (,Ola k(o) + ll)la k(0)7 }\(Pla k(o)v
a,k ' ' ’
(0 0) — 0) Wl 4 (0
01e(0) X W k(0) + @ (0) x Wy  (0), Lokl )‘ba"zfp) - (“;c)gk( Wax o o1 (0) x ¢ (0ai(0)).
a
Clest-a-dire, puisque (Pa,k(o) — f(a) ot U)a,k(o) = g( ) 2 0, les valeurs attendues, & savoir ai ( )Jr R%( ),
) 3}
AR (@) 0@ (@) + @) 38 (@) iz (9(0) S (@) — (@5 (@)) e S (@) x /(1)

EITR

Xz_,_yz i(x,y)# (0,0)

et £(0,0) = 0. Calculer en tout point (x,y) € R? les dérivées partielles d’ordre 1 de f.

DEMONSTRATION :

Sur Pouvert U = RZ \ {(O 0)}, I’expression de f montre qu on peut dériver en fixant
2

3 B 3.2 .2
I'une des deux variables. Ainsi, pour (X,y) u, gi (X,y) _Y (X (‘|‘H+) )ZX(XU ) y( (2y+ ZX)Z par les
Yy X Yy
2 B 2022 2
formules classiques de dérivation, et aussi g—f(x,y) = 3xy (X Ty ) ZU (Xl_,] ) ) (23X tyz )
Y (" +y%)? (x* +y7)
e Of _ o f(60) —(0,0) df _ . f(0,t) — £(0,0)
n (0,0), par définition : ﬁ(0,0) = J}l_’r}% % =0et @(0,0) = ll_t% % =0.
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REMARQUE 15.5 : Sif: R3 — R est présentée par f : (x,y,z) + f(x,y,z), si a = (a7,a2,a3) € R3 :

. f t —f

(31f(a) =31f(ar, az2,a3) = —aa;: (a) =) fgi(ahaz, az) = lim (a1 +t a3, a3J)E (a1,02,03)
. flay,az +t,a3) — f(aj,az,a

(azf(a) = aZf(a'I) az, a3) = aanZ(a) = ) %(ah az, Cl3) — E‘L_T:é ( 1,42 32 ( 1,02 3) .
. f t)—f

(95f(a) = 33f(ar, az,a3) = 766-):3 (a)=) %(anaz, az) = lim (a1, 02,03 + J)[ (a1,02,03)

’15.2.2 : Classe ', développement limité et diﬁ'érentielle‘

DEFINITION 15.3 :
Soit f: Q — R, on dit que f est de classe C' sur Q si ses dérivées partielles d’ordre 1 existent et

sont continues sur . On note C'(Q, R) l’ensemble des fonctions de classe C' sur Q.

EXERCICE CLASSIQUE 15.4 : Montrer que f de I'exercice 15.3 est de classe c! sur R2.

DEMONSTRATION : Par opérations, les fonctions %

et % sont continues sur louvert U = R2 \ {(0’0)}

car ce sont des fractions rationnelles. Reste & voir ce qui se passe au voisinage de (0,0). Pour (x,y) € u,

comme |x| < VX2 +y2 = H( )y)Hz et |y| < Vx2+y? = ||( ,y)||27 on majore les dérivées partielles :

5 2.3 5
o ’ [l” + <" lyl®  2llaullz _ o ( 4|\( »U)Hz _ :
Y| < o £ =2l[(xy)l]2 et y) = 4|(x,y)ll2 qui
e N ) H( yll2 ’ oy V)] < 166 )lI2 ®
montrent les continuité de % et ay (0 0) Prendre ot = E pour % ou x = Z pour g;
DEFINITION 15.4 :
f:Q — R admet en a € ) un développement limité d’ordre 1 sl existe o1, - -, xp Téels tels que :
fla+h)=f(a) +arhi +- -+ aphy +o([[h]]) sih=(hy, -, hp),
c’est-a-dire Ve > 0, 3o > 0, Vh € RP, (|[h]| < a et a+h € Q) => |f(a+h)—f(a)—arhy— - —aphy| < el[h]].

THEOREME SUR L’EXISTENCE D’UN DEVELOPPEMENT LIMITE D’ORDRE 1 POUR
UNE FONCTION DE CLASSE C' SUR UN OUVERT (ENORME) 15.2 :

Soit f: Q2 — R de classe C', alors f admet en tout point a € Q un développement limité :

f(a+h)§f( a) + hy af( )+--+hp af( )+o(|[h]]) si h=(hy, -, hp).

DEMONSTRATION : Elle est non exigible. On va faire la preuve avec p = 2, le cas général se fait de méme.

Soit B = (61 R ez) la base canonique de Rz, a = aje] +azez. On choisit la norme 1 dans R2. Soit T > 0 tel que

B1(a,r) C €, pour h = (h1,hy) € R2, i |[h][y < Tet A =|f(a+h)— f(a) — hy a’fj( ) — hzaaxfz( ) -

A< f(a+h)_f(‘11+h1»a2)—hzaanz(a)‘+‘f(a1—i—h],az)—f(a)—h]a%(a)

par inégalité triangulaire.

Par le théoréme des accroissements finis, dc1 € ]a1 ;a1 + hg [, f(a1 + hi, az) — f(a1 s az) = hy aan](C] N az)

et dey € ](12; a + hz[, f((l] + hy,a2 + hz) — f(a1 + hiy,az) = hz%((ﬂ + hiq, Cz) Par continuité de

A ena(j=10u2):Ve>0, 3oy >0, ¥k € R, [[K[]s gajj,,‘aa; a+k)— ax f(a)] <.
)

Pour ¢ > 0 et &1 et &) associés dans I'implication ci-dessus, si h € R? et HhH] B = Min(r, a1, x2),
alors Ay = ’f(a-ﬁ-h) — f(a1 —l—h1,a2) — hzaanz(a)‘ = hzaanZ((u + h],Cz) — hzaanz(a)‘ < £|h2‘. On

majore aussi A7 = ‘f(m + h],az) — f(a) — h1aan]<a>‘ = ‘h] aan](Chaz) - h]%(ﬂ)‘ < £‘h1| donc

|f((1 + h) - f(a) —hy aan](a) — hzaanz(aH < S‘ |hH1 ce qui est la définition du développement limité attendu.
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PROPOSITION SUR UNE CONDITION SUFFISANTE DE CONTINUITE 15.3 :
Une fonction de classe C! sur ) est continue sur Q.

DEMONSTRATION : Revenons en dimension P quelconque. Soit a € €). L’application ¢ : RP — R définie par
_ of
(p(h) = 0X1

()4 -+ hpaanp(a) est linéaire donc continue (dimension finie) : }lll_‘r)rb o(h) = ¢(0) = 0.
D’apres le développement limité du théoréme précédent, }lllmé (f(a +h) —f(a) — (p(h)) = 0 car, par exemple
—

pour ¢ = 1, 0on a ’f(a + h) — f(a) — (p(h)| < ||h|| dés que HhH est assez petit. Ainsi, par somme, comme
fla+h)—f(a) = (f(a +h)—f(a) — (p(h)) + ¢(h), }]iin})(f(a +h)— f(a)) = 0 : f est continue en a.
—

REMARQUE 15.6 : Attention : si f admet en tout point de Q) des dérivées partielles sans qu’elles soient

continues, cela n’implique méme pas la continuité de f sur ().

THEOREME OPERATOIRE SUR LES FONCTIONS DE CLASSE C' 15.4 :

Soit f,g : & — R des fonctions de classe C' sur () telles que g ne s’annule pas sur Q. Soit
@ :1— R de classe C' sur I intervalle ouvert avec f(2) C I :

e f+ g est de classe C' sur Q et Vk € [[1;p], olt+g) _ of | 09

0Xy Xk oxy *
e Af est de classe C' sur et Vk € [1;p], aag\::) = )‘axfk
e fg est de classe C' sur Q et Vk € [1;p], aa(ii) =gx ﬁ +fx a—ax%
o L est de classe C' sur Q et Vk € [1;p], ag;/,?) = iz g X ai—fk —fx a%%)
g9 9
e ¢pof est de classe C' sur 2 et Vk € [1;p], a(épfif) = % x (¢’ of).

DEMONSTRATION : D’apres la proposition 15.1, avec ces hypotheses, les dérivées partielles de ces fonctions f+ g,

Af, f X g, f/g, @ o f existent et leurs expressions ponctuelles se traduisent globalement sur Q) par les relations
ci-dessus. D’apres ces relations, les p dérivées partielles sont continues sur Q) par opérations (somme, multiplication

par une constante, produit, rapport, composée). Ainsi, par définition, ces cinq fonctions sont de classe C! sur 0.
REMARQUE 15.7 :  C' (£, R) est donc une algébre.

e Les fonctions polynomiales, les fonctions rationnelles (Ia ou le dénominateur ne s’annule pas) et

les composées par des fonctions usuelles sont de classe C' par ces opérations car les applications

coordonnées cy : (x1,+++,xp) F> xk sont clairement de classe C! sur RP.

3 2
EXEMPLE 15.5 : f: R3 — R définie par f(x,y,z) = xyz + érctfm(x z—|—2y x) est de classe C'.
2e Y 4 sin(z%)

DEMONSTRATION : Les fonctions (X,y,z) = X, (X,y,z) — Y et (X,y,z) > z sont continues sur R3 car

linéaires (en dimension finie) et Arctan, exp, sin sont continues sur R. f est donc continue sur R3 par composée,

2, 4
somme, produit, rapport de fonctions continues car si (x,y,z) S R3, 2 YT sin(zz) >2%—-1=1>0.

DEFINITION 15.5 :
Sif:Q — R estdeclasse C' et a € Q, on définit la différentielle de f en a, notée df(a), c’est Uapplication

P
df(a) : RP — R vérifiant Vh = (hy,---,hy) € RP, df(a)(h) = k; hka%(a).

REMARQUE 15.8 : e On note aussi df(a).h a la place de df(a)(h).

e La différentielle de f en a est donc une forme linéaire sur RP.
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15.2.3 : Regle de la chaine et gradient\

THEOREME DIT REGLE DE LA CHAINE (ENORME) 15.5 :

Soit f : © — R de classe C', I un intervalle de R, des fonctions X1, +,xp de I dans R de
classe C' telles que Vt € I, x(t) = (x1(t),--,xp(t)) € Q. Alors la fonction g : I - R définie par
g(t) =f(x1(t), -+, xp(t)) est de classe C' sur I et on a :

TET g'(t) =X (0555 ((B) + - xR (x(D)-

DEMONSTRATION : A nouveau, on ne le montre que pour p = 2, on adapte si p > 2. Pour tg € I et
te I\ {to},onag(t) —g(to) = f(x1(t),x2(t)) — f(x1(t),xa(to)) + f(x1(t),x2(t0)) — f(x1(to),x2(t0))-

A nouveau, on utilise le théoréme des accroissements finis qui nous donne ’existence de ¢y € [Xz (to);xz (t)]

—_~

tel que f(X] (t),xz(t)) — f(X] (t),xz(to)) = (Xz(t) - Xz(to))aanz()q (t),cz) et de c1 € [X1 (to);)q (t)]

tel que f()q (t), X2 (to)) — f()q (to),xz(to)) = (X] (t) — X1 (to)) aan] (C] ,Xz(to)) (ceci fonctionne méme si

X1 (to) =X (t) ou si X2 (to) = X2 (t) grace aux segments qui ont remplacé les intervalles ouverts).

Ainsi, g(t) — g(to) = (Xz(t) — Xz(to)> aanz (X] (t), Cz) + (X] (t) — X1 (to)) aan] (C],Xz(to)). Par le théoréme

des accroissements finis g(t) — g(to) = (t — tQ)Xlz (tz)aanz (X] (t), Cz) + (t — to)xq (t1 )aan] (C] y X2 (to)) avec
] , s g(t) —glto) of of
t1 et t2 dans ]to, t[, qu’on a intérét a écrire (’)tfito() = Xlz(tz)m (X1 (t), Cz) + X/1 (t1 )W (C] ,Xz(to)).
Par continuité des fonctions X1, X/1 et X/Z sur | et de 66Tf]’ % sur U, comme tlinti t1 = to, tli‘ntl ty = to,
—to —to

lim x1 (t) =X (to), Um ¢ = xq (to), Um cp =x2 (to), ce qui implique (par les coordonnées en dimension
t—=to t—=to t—to
finie) tli)TI[lo (C] ,Xz(to)) = (X] (to),Xz(to)) = X(to), tli;r& (X] (t), Cz) = (X] (to))Xz(to)) = X(to), on a aussi

les limites a—l}xTPio) aa?f](a) = 6671:1<X(t0)) et a—lij?:co) aanz(a) = aanZ(X(to)), on obtient finalement la dérivée

s . t) — gt
soutaitée (t0) = tim LI=910) — ) (10) 2L (x(10)) + x) 1) R (x(10)).

EXEMPLE 15.6 : Soit x(t) =1+ cos(t), y(t) = sin(t), z(t) = 2sin (%), f(x,y,z) = x? +y% + 22.

Calculer g¢'(t) si g(t) = f(x(t),y(t),z(t)). Quelle interprétation donner & ce résultat ?

DEMONSTRATION : f est de classe C! sur R3 car polynomiale. De plus, X, Yy et z étant de classe Cl et
4m-périodique sur RZ, ¢: R — R3 définie par (p(t) = (X(t),y(t),z(t)) étant de classe C! et 4m-périodique
sur R. On peut donc utiliser la régle de la chaine pour affirmer quefg est dérivable sur R et obtenir la relation,
pour t € R, g/(‘t) = x'(t)%(q}(t)) + y'(t)g—;(m(t)) + z'(t)%((p(t) ce qui donne facilement ’expression
g'(t) = (—sin(t))(2(1 4 cos(t))) + cos(t)(2sin(t)) + cos(t/2)(4sin(t/2)) donc, avec des formules de
trigonométrie, g/(t) = —2sin(t) — 2sin(t) cos(t) + 2 sin(t) cos(t) + 2 sin(t) = 0. Ainsi, comme R est un
intervalle, g est constante et vaut g(0) = 4. Cette courbe est donc tracée sur la sphére S de centre (0,0,0) et de
rayon 2. C’est D'intersection de S et d’un cylindre & base circulaire (x — 1)2 + yz =1 qui est tangent en (2,0,0)
4 la sphere S. C’est la courbe de VIVIANI qui est un cas particulier d’hippopede I’ EUDOXE.

REMARQUE 15.9 : La régle de la chaine permet la dérivée d’une quantité physique (température,

altitude, pression, ...) le long d’une courbe paramétrée de classe C' donnée par t — (x1 (t),- -y xp (t)) qui

représente un point en fonction du temps donc une “trajectoire” ponctuelle.
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THEOREME DE CHANGEMENT DE COORDONNEES (ENORME) 15.6 :
Soit Q et I des ouverts de R? et x,y :  — R de classe C', f: ' = R de classe C', le tout vérifiant
Y(u,v) € Q, (x(u,v),y(u,v)) €. Alors g:Q — R définie par g(u,v) = f(x(u,v),y(u,v)) est de classe

C! sur Q avec les relations :

V) € 0 %&(u v o= () A (x(u,v), y(uv) + %(u,\))%(x(u,v),y(u,\;))
) ' %%(u v o= )& (x(wv),y(uv)) + %(uyv)%(x(u,\)),y(u)v))

DEMONSTRATION : D’abord, g est bien définie avec les conditions imposées ci-dessus.

Par définition, g est de classe C! si et seulement si g admet des dérivées partielles par rapport a U et a v et si
celles-ci sont continues sur §2. g admet une dérivée partielle d’ordre 1 par rapport & U en (u,v) si et seulement
sipr:t—glut+tv) = f(x(u +t4,v),y(u+ t,v)) est dérivable en 0 et on aura alors %(u,v) = (p/] (0).
Posons donc p : t +— (x(u + t,v),y(u + t,\))) = (p1 (t),pz(t)) de sorte que @1 = f o p. D’apres la regle de

la chaine, comme f, P71 et p2 donc p sont de classe C' par hypothése, la fonction @1 est elle-méme de classe C!

et on a 94 (1) = 1 () §E(p(1) + P2 L (1) = T+t L E®) + G+ 1) (p(r). on

prend maintenant t = 0 dans cette formule et @’ (0) = ZLl(u,v) gi(u v) gi( 0) + au( ) )%(p(O))

ou
ce qui est la relation attendue sachant que p(O) = (x(u,v),y(u,v)).

On fait de méme pour la seconde dérivée partielle qui vaut, si elle existe, %(u,\)) = (p/Z(O) avec la fonction

@2t g(u,v+t) = f(x(u,v +t),y(u,v+ 1)) = foq(t) avec q : t — (x(u,v +t),y(u,v +t)).

REMARQUE 15.10 :

e Comme on écrit (méme en mathématique) rarement les po1nts en lesquels on calcule les dérivées

m gy
; 2o T ) u u 0x u dy
partielles, ces deux formules s’abrégent en : { 3¢ oxof N dy of -
ov. —  0Jvox ' dvoy
e En trois variables, si g : (u,v,w) = f(x(u,v,w),y(u,v,w),z(u,v,w)) (toutes les fonctions étant C'
9 _ "oxdf  dydf | 9z df
ou ~ Juodx ' Juody ' Oouoz
sur des ouverts idoines), cela se transforme sans peine en %3 = gz}‘ gi + ﬁ%% + gé gi
99 _ axaf_'_iaf 0z Of

ow ow 0x ' Ow dy T ow oz

REMARQUE FONDAMENTALE 15.11 : Coordonnées polaires :

e Le passage en polaires correspond a la fonction ¢ : (r,0) — (r cos 8, 1sin 8) définie sur R?.
e Ainsi ¢(r,0) = (x(r,0),y(r,0)) avec x(r,0) = rcos 0 et y(r,0) = rsin 6. ¢ n’est pas du tout injective.
e Si on se donne f: R> — R, on pose g = fo ¢ ce qui revient & : g(r,0) = f(rcos B,rsine).

e Les fonctions f et g représentent la méme quantité physique (température, enthalpie, pression,...)

mais pas avec les mémes coordonnées : f(1,1) =g (ﬁ, %)

e Sif est de classe C' sur R?, alors g est aussi de classe C' sur R? par le théoréme precedent, on obtient

of j sin @ 0g

%‘rl = coseaf +sm9§1j Siv ox cos ® r 00
. Sir # 0, on peut inverser en .

%g = —r51neaf+rc056§£ g—; = Slnej+co:9%g
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DEMONSTRATION : @ On constate qu’en maths, a priori, on peut tolérer des rayons négatifs pour les coordonnées

polaires. On dit juste qu'un point M = (x,y) € R? admet des coordonnées polaires (r,0) si x = rcos(0) et
y = 15in(0), ce qui équivaut géométriquement au fait que oM = Te7 en posant & = (cos(0),sin(9)).

® (© n'est pas injective car (p(O,G) = (0)0) quel que soit Pangle 0 choisi dans R. De plus, pour un point
Mo = (Xo,yo) € R? \ {(0,0)}, en notant Tg = 1/X% —|—yé > 0 et Op Pargument de zp = Xo + iyo dans
] — T 7'(} (par exemple), on a Vk € Z, (p(ro, 0o + 2kn) = @(—r0,00 + 2k + 7'[) = (x0,Y0)-

® Puisque toutes les fonctions sont de classe CI, on utilise la formule du changement de coordonnées du théoréme

. 0g _ ox of , Oy of of of . 0g _ oxof , 9y of _ of af
15.6 : oy = araeraray fcosﬁ +51neay et 35 = aeaﬁaeay r31n6 +rc036

® SiT # 0, on remplace COS 972 sme j = cose(cose of L sino af)—M<—rsm9 af +rcos6 af)
T

T dy dy
qui se simplifie, étant donné que cosZ 0+sin? 0 = 1, en cos 952 sin 0 gg T On fait de méme avec 'autre
T

£ 1 - ej Cosej: 9( 0 of e ) COSG( e eaf) af
ormule et sin + . 0 sin cos 05, + sin + Tsin X +Tcos 3 3y

EXERCICE 15.7 : En passant en polaires, déterminer les f : R} x R — R de classe C' solutions

de I’équation aux dérivées partielles (E) : xgi +y glj Vx% +y2.

DEMONSTRATION : Sif : R* X R — R de classe C' est solution de ng +vy glj Vx% +y? sur Ri x R.

Définissons alors g : R x } - g E{ — Ropar V(r,0) € R} x } - z; 5 [, g(r,8) = f(rcos0,rsin0).
On le peut car @ : R% X } - % ﬂ — RZ% X R est bien définie, c’est méme une fonction bijective avec
la réciproque @' (r,0) = ( x2 +yZ, Arctan (%)) D’aprés la remarque précédente, on a la relation
%g(r,e) = cosea < (rcos0,1sin0) + sin 6 alj (rcos6,rsin ) donc r%rq =71 <= %2 = 1 d’apres (E).
On résout, 4 0 € ] - Z 5 [ fixé, cette équation différentielle sur RY : IA(0) € R, Vr >0, g(r,0) = r+A(6).

Mais, comme f est de classe C', g est elle aussi de classe C' donc A doit étre de classe C! sur Pintervalle

} 2 2 |: puisque %g doit exister et étre continue. Revenons a f, pour tout (X y) S R* X R on a donc

la relation f(x,y) = g(\/xz+y \/X +y2 + AMArctan(y/x)) = /x% +y2 + h(y/x) en ayant posé
h = Ao Arctan de classe C! sur R. Fin de la partie analyse.

Réciproquement, s’il existe une fonction h : R — R de classe C! telle que 'on ait, pour (x,y) € Ri x R,
f(x, y) =/ xZ 4 yz + h(y/x), alors f est de classe C sur R* X R par composée et on a les dérivées partielles
o

% = ﬁ — X%h/(y/x) et dy = \/4}7}—}}2 + h’(y/x) donc f vérifie (E) sur R} X R car

2

2
Xt Hh/(3> Yy Eh/(ﬁ) 4y a2 L
Xax+9 X2+y2 - . + X2+92+x " \/7 —|—y en simplifiant.

PROPOSITION SUR UNE CONDITION SUFFISANTE DE CONSTANCE 15.7 :

Soit f: C — R de classe C! ol C est un ouvert convexe.
Alors : f est constante sur C < (Vk € [1;9], Of — 0 sur C).

0X)

DEMONSTRATION : (ﬁ) si f est nulle, ses dérivées partielles sont clairement nulles dans toutes les directions.

(<:) soit (a,b) S Cz7 on crée le chemin @ : t — a + t(b — a) qui est de classe C! car affine, et vérifie
©(0) = aet (1) = b : on se déplace sur le segment [a;b] C C car C est convexe. Alors, on a la relation
f(b) — f(a) = g(1) — g(0) si g :t>—>f((p(t)). Si on écrit a = (a1,---,ap) et b = (b1,~--,bp),alors
g( ) = f((11 + t(b1 —aj ), “tyap th(bp — ap)) donc, avec la regle de la chaine, la fonction g est dérivable sur

[0;1] et g'(t) = (b1 — a3 )%( (t)+- -+ (bp — ap)aanp((p(t)) = 0 donc g est constante sur cet intervalle
9(

[0; 1] et on a bien g(0) = g(1) donc f(a) = f(b). Ainsi, f est bien constante sur C.
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DEFINITION 15.6 :
Soit f: Q2 — R de classe C', pour tout a € Q on définit le gradient de f en a, noté Vf(a) ou grad f(a),
par la relation Yh € RP, Va € Q, df(a).h = df(a)(h) = (grad’f(a)|h) = (Vf(a)|h).

( ’
PROPOSITION SUR LES COORDONNEES DU GRADIENT 15.8 :

P
Avec ces notations, Va € Q, Vf(a) = grad'f(a) = > %(a)ek.
k=1

N

DEMONSTRATION : Avec la définition 15.6, comme on travaille avec le produit scalaire canonique sur RP, on a
—
par pour tout vecteur h = (hy, - - ,hp) € RP, df(a)(h) = Z hy axk( a) = (grad f(a)|h).

99 _  2xof , 0y of
REMARQUE HP 15.12 : Avec les notations de la remarque 15.10 T 0udx T oudy g o
e ane 2o Y 09 axaf |y af
ov ~—  0vox ' 0voy

of 99 x - 9y
définit les vecteurs colonnes X = %X etY=| QU | alorsonaY=]Xenposant]= | o4 Qu | |y

of 99 x dy

ay v v v

matrice jacobienne du changement de variables (u,v) — (x(u,v),y(u,v)). Méme chose en dimension 3.

REMARQUE FONDAMENTALE 15.13 :
Soit  : R?\ {(0,0)} — R une fonction de classe C'. On pose donc g = fo ¢ ou g(r,0) = f(rcos 6,1sin 0)

avec g : RY x R — R (on peut imposer le rayon v > 0 ce qui permet d’avoir au moins unicité de r dans
les coordonnées polaires). On pose e, = (cos 0, sin 9) et eg = ( — sin 0, cos 6) et alors la base (e, ep)
est aussi une base orthonormale directe de R?. Alors, on peut exprimer le gradient grad f(x,y) (pour

(x,y) € R%\ {(0,0)}) en coordonnées polaires avec la relation classique : Vf = %ger +1 ﬁgee

DEMONSTRATION : Pour (x,y) € R?\{(0,0)} avec (r,0) € R x R tel que x = rcos(0) ety = 15in(0),

Vix,y) = %(x,y)m + g—;(x,y)ez par la proposition 15.8. Avec g(r,0) = f(rcos0,1sin0) = f(x,y),
ﬂ—cosegg sin 6 99 —smei+°039

h ¢ d données, ot Ainsi, lacant,
par changement de coordonnées, 7 or . 00 a insi, en remplagan
on a Vf = (COS Gj %)m + (stn 9#q + M)ez ce qui devient en regroupant les termes :

T
0 0 . 0 0
Vf= ﬁ?(cos Beq + sin Sez) + %7‘1( — sinBeq + cos Gez) = gg(r, 0)er + %%(r,e)ee

~

( ’
PROPOSITION OPERATOIRE SUR LE GRADIENT 15.9 :
Soit f,g: Q2 — R sont de classe C' sur (2, g ne s’annulant pas sur Q, ¢ : I — R de classe C! sur I
intervalle ouvert avec f(Q2) C I, alors :

e Si (A\,n) € R? alors grad (Af + pug) = Agrad f + pgrad g.

e grad’(fg) =f x grad'g + g X grad’f.

e grad (f> = 1*2(9 X grad f — f X grad g).

g
9
e grad (¢ of) = (¢’ o f)grad’f.

DEMONSTRATION : Passer par les coordonnées du gradient dans la base canonique, c’est-a-dire les dérivées

partielles avec la proposition 15.8 dont on connait les expressions avec le théoréme 15.4.
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[PARTIE 15.3 : FONCTIONS DE CLASSE C2)

’15.3.1 : Définition et propriétés‘

DEFINITION 15.7 :

Soit f:Q — R, a€Q et(i,j) € [1;p]%, on dit que f admet en a une dérivée partielle d’ordre 2 par
rapport aux variables x; puis x; si 6an ezriste sur un voisinage de a et aan admet une dérivée partielle
j j

2
d’ordre 1 par rapport a xi en a, on note alors afjf(a) ou 87?- an. (a) cette valeur.
b 1 ]

REMARQUE 15.14 : e Il y a donc a priori p> dérivées partielles d’ordre 2 différentes.

e Sii=j, on note 32f(a) ou 0%f (a) a Ia place de 9% f(a) = % (a)
- t axiz p Lt T 0xi0%4 .

e On se restreint en pratique a p =2 oup = 3 ce qui fait 4 ou 9 dérivées partielles a considérer.

DEFINITION 15.8 :

On dit que f est de classe C? sur Q si toutes les dérivées partielles d’ordre 2 existent et sont continues sur
Q. On note C*(Q, R) l’ensemble des fonctions de classe C* de 0 dans R.

PROPOSITION SUR LA LUTTE DES CLASSES 15.10 :

Une fonction de classe C? est de classe C'.
-

DEMONSTRATION : Soit f de classe C2 sur ), alors par définition, toutes ses dérivées partielles d’ordre 1 existent

en tout point de §2 et admettent elles-mémes des dérivées partielles qui sont elles aussi continues sur €). Ainsi, pour

k € [[1 ; 'p]], la dérivée partielle a?:; est de classe C! sur donc, d’apres la proposition 15.3, les fonctions

axk
sont continues sur §). Mais cela est la définition du fait que f est de classe C!sur Q

THEOREME OPERATOIRE SUR LES DERIVEES PARTIELLES D’ORDRE 2 15.11 :

Soit f,g : & — R des fonctions de classe C? sur ) telles que g ne s’annule pas sur ). Soit
¢ :1— R de classe C? sur I intervalle ouvert avec f(Q) C I :

. % (f + 02f o2
e f+gest C2sur Q et V(i,j) € [1;p]?, aSc-lax]-g) = %05 axiang .
2 s 2 9%(A) %f
o Af est C~ sur Q et V(i,j) € [1;p]°, o Aaxiax]- .
. 9% (fg) ) d 2 22
2 T2 9) _ (909 \(.of of (99 o f g
° fg est C sur () et V(l,)) < H]’p]] ’ aXian - (axi> (ax]') + (axi) (an> + gaXian +faXian .

o fet ¢ o f sont aussi de classe C? sur Q.
9

REMARQUE 15.15 : L’ensemble C%(, R) est donc une sous-algébre de C'(Q, R) qui contient les

fonctions polynomiales et les fonctions rationnelles (1a ot elles sont définies).
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15.3.2 : Schwarz et changement de coordonnées‘

THEOREME DE SCHWARZ (ENORME) 15.12 :

[;p]2, OSf = %

Si f:Q — F de classe C? sur un ouvert ) alors V(i,j) € = .
axian aX]' aXi

DEMONSTRATION : hors programme.

EXERCICE CLASSIQUE 15.8 : f de I'exemple 15.3 est-elle de classe C%sur R2?

5
DEMONSTRATION : D’aprés Uexercice 15.3, pour t #0,ona %(0, t) = (tt2> = tet que aa; (t, O) = 0. Ainsi,
of of of of
52 oy b0~ 5,00 52 (0,0 = =-(0,0)
par définition, m(o, 0) = ll_‘l;T(l) t =0et W(0,0) = 11_1;% X t X =1.

22f . PN , 2
Comme ay ax (O O) 7'é axay ( ) par contre-apposée du théoreme de SCHWARZ, f n’est pas de classe C~ sur
R? méme si, par opérations, f est de classe C? sur R? \ {(0, 0)}

REMARQUE 15.16 : Changement linéaire de coordonnées :
e On considére f : R? — R de classe C%, ¢ : (u,v) = (au+ bv,cu + dv) oit (a,b,c,d) € R*. On pose
alors g : R? — R définie par g(u,v) = f(@(u,v)) = f(x,y) si on pose (x,y) = @(u,v).

-1

e ¢ € GL(R?) si et seulement si ad —bc # 0 et alors f = go @~ avec les mémes propriétés.

2
g _ a2 a f 4 2ac 42 a
o g | o
u X y . _ ﬁ 9?2 f
e Par exemple { 9 _ of , 4o puis ¢ 5y = ab o2 + (ad + bc) axay + cd avec la
v~ Px Jdy 2 2
g = w20 4 opa 0 4 g2 a—
v’ ox? 6xay ayz
régle de la chaine en remplacant f par ax ou aalj
EXERCICE 15.9 : Avec le changement de coordonnées {: i ii—ﬁ , déterminer les fonctions

2 2
f: R? — R de classe C? solutions de 1’équation aux dérivées partielles (E) : —g }C 5 ; 0.

x Yy
DEMONSTRATION : Soit @ R? — R? défini par (p(x,y) = (X +yY,x — l_,j), alors @ est clairement linéaire
1 1
1 —1
@ est un automorphisme de RZ. Pour f : RZ2 — R, on pose g : R2 — R défini par g = fo (p71 donc

f(x,y) = g(x +y,x — y) ou, puisque (pf1 (w,v) = (uT—’_v, %), glu,v) = f(uT—’—v, %) Comme

-1 . .
© et @ sont clairement de classe C! car les fonctions coordonnées sont polynomiales, on a par formule de

changement de coordonnées : %% gzi gi + % glj et 6% gﬁ gi + 9y of en notant X : (u,v) — utv et

et comme sa matrice dans la base canonique de R* est < ) qui est inversible car de déterminant —2,

ov dy 2
y:(wv) — L=V jes deux fonctions coordonnées de (p_]. Ainsi, g& = %%ﬁ + %% et %3 = %gi — %%

On recommence a dériver partiellement en écrivant par exemple %% (u v) ; gi ((p (u, \)))-‘r; glj ((p (u V))

de maniere plus développée et en utilisant & nouveau la formule de changement de coordonnées en remplagant dans
2 2 2

ce qui précede f par % ou % Toujours est-il que g—u% = % [% % % a% afx + %/0?(76]; — % gyg} et, de méme,

e 20— 1[10% 1% 1 0% 10%] 2% _1[10% 120 _(10% 10t

WEvou T 21202 2 200y~ 2 y? B

e 2 20x3y  29y?
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Cela donne, aprés simplification avec le théoreme de SCHWARZ puisque toutes les fonctions sont de classe c?

o%g _10%f , 1.0% _ 12%f 0d%g :lazf_lazfetazg:lazf_l % | 19%f

ou? T 40x® T 20Y0x 49yt OVOU T 4%t 49yt vt 40x® 20Y0x T 49y?’

Analyse : supposons que f: RZ — R de classe C? soit solution de (E), alors, pour (u,v) € Rz, on a

a%f

dx 3.2
g

(=
(%)

%g est de classe CI, a est elle-méme de classe C! sur R. On intégre & nouveau, en notant A une primitive de a

sur R, et il existe une fonction B : R — R telle que V(u,v) S Rz, g(u,v) = A(u) + B(v). Comme ¢ est

(¢~ (u,v)) gyg (@~ (u v)) = 0 qui s’écrit, avec les calculs précédents : aa—ua% = 0 sur R?. On Pécrit

= 0 de sorte qu'il existe une fonction a : R — R telle que V(u)\/), %%(u,v) = a(u). Mais comme

de classe CZ, la fonction B est de classe CZ sur R car % doit exister et étre continue sur RZ. Ainsi, il existe
A,B: R — R de classe C2 sur R telles que V(u,v) S RZ, g(u,v) = A(u) —I-B(v) qui implique, en composant
par @ qui est surjective de R? dans RZ, V(X,y) S RZ, f(x,y) = A(X +y) + B(x — y).

Synthése : réciproquement, soit A,B : R — R deux fonctions de classe C? et f: R? - R définie par
f(X,y) = A(X + y) + B(X - y) alors f est aussi de classe C? par composée et somme et on a facilement

U= Al +y) + B —y) SF = At y) + 87— ), 8 = A y) = Bx — ) et s
Lz A"(x +y) — (— B”(x—y)):A"(x+y)+1a~(x—y)doncL§ 0% ot £ vérifie bien (E).
oy ox ay

REMARQUE 15.17 : Soit f: P — R de classe C? ot1 P = R?\ {(x,y) € R? |y =0 et x < 0}.

e Soit ¢ : U= R x| — m;n[— P définie par ¢(r,0) = (r cos 8, rsin 9). Le passage en polaires est enfin
bijectif. Si (x,y) = (rcos0,rsin@) pour (x,y) €P : v = y/xZ +y2 et 8 = 2 Arctan (J;>

x+ v/ x% +y?
%g = cosegi—l—mnegf
e Soit g : (1,0) € U g(r,0) = f(rcos0,7sin0) = f(x,y). Alors, | 3 y
49 = —r51n9 +rcosG
5 86 a
a—g = cos 6 —1—2517160056a + sin? 6
e Encore : g; 2
E% = —rcoseg rsme +r sin? ea +r cos? eay — 22 sinGcosGa?c—afy
2
REMARQUE HP 15.18 : On définit le laplacien de f par Af = g— + g—ﬁ
x Yy
2
Ce donne en polaires : Af_J 199 , 1079
qui donne en polair oy +rar+r2aez
DEMONSTRATION : Avec les relations de la remarque précédente,
2 .
J 199 | LM _ cos0 df | sin@ Of
o +rar Zogl cos? Ga —i—ZsuLGcosGa ay—|—51n Gaz—i— 6x+ . 0y
2
—%% snrleaf + sin Ga—Jrcos Ggy fZStnecosea?(a];
d 2%
= S5+ == =Af
ox” ayz

15.3.3 : Matrice hessienne et développement limité

DEFINITION 15.9 :
Soit f: Q — R de classe C? sur Q et a € Q, on appelle matrice hessienne de f en a, qu’on note H¢(a),

, 0%f
la matrice He(a) = ( ((1))1<iyj<]D € My (R).

0x10%;j
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REMARQUE 15.19 : D’aprés le théoréme de SCHWARZ, la matrice H¢(a) est symétrique.

DEFINITION 15.10 :

On dit que la fonction f: Q@ — R admet en a € Q un développement limité d’ordre 2 donné par la relation

f(a+h) ?f(a) + (ulh) + (Ah|h) + o(|[n]|?) avec un vecteur w € RP et une matrice carrée A € M, (R) si on

aVe >0, Ju >0, Yh € RP, ||h|| < « = [f(a +h) — f(a) — (u|h) — (Ah[n)| < ¢|[n]|?.

( L, L, 7
PROPOSITION SUR LE DEVELOPPEMENT LIMITE D’'UNE FONCTION C? 15.13 :

Sif:Q — R est de classe C? et a € ), alors f admet en a un développement limité d’ordre 2
donné par f(a +h)=f(a) + (Vf(a))Th+ %hTHf(a)h + o(|[n]2).

DEMONSTRATION : hors programme.

REMARQUE 15.20 : Avec des produits scalaires, f(a + h) if(a) + (Vf(a)|h) + %(h\Hf(a)h) + o(|[n||?).

(PARTIE 15.4 : EXTREMA|

[15.4.1 : Définitions et condition nécessaire

DEFINITION 15.11 :
Soit f: Q0 — R et a €, on dit que f admet en a :
(i) un maximum (resp. minimum) local si 3r > 0, Vx € B(a,1), f(x) < f(a) (resp. f(x) = f(a)).
(i) un extremum local si f posséde en a un maximum local ou un minimum local.
(#i) un maximum (resp. minimum) global si Vx € Q, f(x) < f(a) (resp. f(x) = f(a)).

(iv) un extremum global si f posséde en a un mazimum global ou un minimum global.

-

( L 7
PROPOSITION SUR UNE CONDITION NECESSAIRE D’EXTREMUM LOCAL 15.14 :

Soit © un ouvert de RP, f: Q) — R de classe C' sur Q et a € , si f admet un extremum local en
a alors grad’f(a) = 0, c’est-a-dire Vk € [[1;p], of (a) =0.

X

DEMONSTRATION : On a vu avant que, pour kK € [[1;]3]], comme {) est un ouvert, il existe Tx > 0 tel que
Vt 6] —Tk; ‘rk[, a+tex € Q (si (61 s ep) est la base canonique de RP). Comme f admet en a un extremum
local (par exemple un maximum local), il existe ot > 0 tel que Vb € £, Hb — a|| < 06 = f(b) < f(a). Ainsi,
en notant g = Min(r, «) > 0, on a Vt E] — ok} ock[, b=a+tex € Qet f(b) < f(a). Par conséquent,
la fonction fy :] — ok; (Xk[—> R définie par fk(t) = f(a + tek) est de classe C! car f l’est et admet en O un

maximum local. On sait alors, par le lemme précédent le théoreme de ROLLE, que f%(O) = aank ((1) =0.

REMARQUE 15.21 : 1l y a des extrema locaux selon les axes canoniques a partir de a.

DEFINITION 15.12 :

Sif:Q— R est de classe C' sur Q, on dit a € Q est un point critique de f si Vf(a) = 0.
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REMARQUE 15.22 : e Cette propriété est fausse sur un ensemble non ouvert.

e Ainsi, avec ces conditions : (f admet un extremum local en a) - (a est un point critique de f).
e La réciproque de cette implication est fausse.

EXEMPLE 15.10 : Soit f : (x,y) + sin(x) + cos(y) définie sur [0;7]?.
Quel est son maximum absolu 7 son minimum absolu 7 Ses points critiques ?

DEMONSTRATION : La fonction f est bien de classe C' sur le compact K = [0;7'[]2

continue sur K, elle y est bornée et elle y atteint ses bornes. on peut donc définir M = Max(f) et m = Min(f).
K K

. Ainsi, comme elle est

On calcule grad f(X,y) = (COS(X), — sin(y)), donc les seuls points critiques de f sur le domaine K sont en

(%, 0) et en %, 7). Ces deux points sont sur la frontiere de K.

Ainsi, la fonction f ne peut pas atteindre ses extrema absolus en des points intérieurs & K d’aprés la proposition
précédente. Il reste & étudier f sur les quatre arétes du carré K :

o f1 :x — f(x,0) = 1+ sin(x) est minimale en 0 ou 7 sur [0; 7] ot elle vaut 1 et maximale en % ol elle vaut 2.
o fy:x > f(x,7m) = —1+ sin(x) est minimale en 0 ou 7t sur [0; 7] ot elle vaut —1, maximale en % et y vaut 0.

e f3:y— f(0,y) = cos(y) est minimale en 7t sur [0; 7] o1 elle vaut —1 et maximale en 0 ot elle vaut 1.
o fy:y— f(m,y) = cos(y) est minimale en 7t sur [0; 7] o1 elle vaut —1 et maximale en 0 ot elle vaut 1.

Par conséquent, f est maximale sur K en (%, O) ot elle vaut M = 2 et f est minimale en (0,7t) ou (7, 7) ol elle
vaut m = —1. Parmi ces trois points, seul (g, 0) est un point critique. De plus, f n’admet pas en ’autre point

critique (g, Tt) d’extremum local (a fortiori absolu).

15.4.2 : Recherche pratique des extrema‘

EXERCICE 15.11 : Trouver les extrema sur R? de f: (x,y) = x% + 2y — 2xy — 2y +5.

DEMONSTRATION : La fonction f est polynomiale donc de classe C! (en fait de classe C°°) sur R? et on calcule

%(x,y) =2x —2y et %(X,y) = 4y — 2x — 2. Ainsi, si (x,Y) est un point critique pour f, on a le systéme

linéaire x —y = 2y — x — 1 = 0 qui est un systéme de CRAMER dont I'unique solution est (x,y) = (1,1).

On étudie f au voisinage de ce point critique pour voir si c’est un extremum local (voire plus). Soit (h, k) S Rz,
onaf(l+h1+k)=(0+h)2+2(1+k)?—=2(1+h)(1+%)—2(1+k)+5=4+ (h—k)* + k? (apres
calculs) donc f(1+h,14k) >4 = £(1,1) ce qui prouve que f admet en (1,1) un minimum absolu.

Comme f(X, 0) =x% 4+ 5,ona XETOO f(x, 0) = +00 donc f n’admet pas de majorant sur RZ.

La surface z = f(x, y) est un paraboloide elliptique (parabole si X ou Y sont fixés et ellipse si z > 4 est fixé).

THEOREME SUR UNE CONDITION SUFFISANTE D’EXTREMALITE D’UNE FONC-
TION EN UN POINT CRITIQUE 15.15 :

Soit Q un ouvert de R?, f: Q — R une fonction de classe C? et a un point critique de f :
(1) si He(a) € STT(R), alors f admet en a un minimum local.

(i

(iii

i) si He(a) €S, (R) (—H¢(a) € S{T(R)), alors f admet en a un maximum local.

' )

i a) ¢ S} (R), alors f n’a pas de minimum local en a.

(iv) si H¢(a) ¢
)€

(v

Sy (R) (=H¢(a) £ S{(R)), alors f n’a pas de maximum local en a.

P
si He(a) € (SH(R)\ SH(R)) U (S, (R)\ S, (R)), alors on ne peut rien dire.

)
)
) si Hg
)
)

~ o~ o~ o~
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DEMONSTRATION : Les cing cas recouvrent ’ensemble des possibilités pour la matrice symétrique Hf(a).
(1) si He(a) est définie positive, son spectre est inclus dans Rj_, notons A = Min(Sp(H¢(a)) > 0 la plus

petite des valeurs propres de Hf(a) et A1, -+, Ap les valeurs propres de Hf((l) (éventuellement répétées). Comme

Vi(a) = 0, pour € € }o; A [ il existe a > 0 tel que Vh € B(0, ), [f(a+h) = f(a) = ThTHe(a)h| < el 0|2

1

P
ce qui implique que f(a + h) > f(a) + thHf(a)h - £Hh||2. Or, si h = Z hxvk ot (vi,--- ,Vp) est
k=1

une base orthonormée de vecteurs propres de Hf(a) associés aux valeurs propres A1, - - -, 7\p respectivement, on
p P P
a He(a)h = Y hihevk et hTHe(a)h = (h|He(a)h) = D AxhZ = A D hi = Al|h||? (avec la norme
k=1 k=1 k=1
cuclidienne). Ainsi, Vh € B2 (0, «), f(a-+h) > f(a)—l—%hTHf(a)h—eHth > f(a)+%|\h|\2—e||h||2 > (a)
avec la minoration précédente. Par conséquent, f admet en a un minimum local.

(iii) Si Hf(a) n’est pas positive, il existe une valeur propre strictement négative A de Hf(a), soit V un vecteur
2
propre unitaire associé a A. Alors f(a + tv) = f(a) + %(tv|Hf(a)(tv)) +o([[tv]|?) =(a) + % +o(t2).
Comme avant, pour t assez petit et non nul, f(a + tv) — f(a) < 0 donc f n’admet pas en @ de minimum local.
(ii) et (iv) se montrent avec (l) et (iii) en remplagant f par —f.
(v) est le complémentaire de la réunion des quatre cas précédents.
ORAL BLANC 15.12 : Centrale PSI 2012

Soit D = {(x,y) € R? | —1<y<x<1}etf:D— R définie par f(x,y) = (x —y)> + éxy.
Prouver que f admet un maximum et un minimum sur D et calculer explicitement ces valeurs.

REMARQUE 15.23 : Supposons que f : Q — R (avec Q ouvert de R?) de classe C? admette un point

critique en a € €, avec les notations de MONGE : r = a—Zf(a) s = o°f (a), t = a—Zf(a) :
) . aXZ ) axay ) ayz .

(i) Sirt —s2>0etr>0 (out>0), fadmet en a un minimum local,
(ii) Sirt—s?>>0etr <0 (out<0), fadmet en a un maximum local,
(iii) Sirt —s% <0, f admet en a un point selle (ou point col).

(iv) Sirt —s? =0, on ne peut pas conclure.

DEMONSTRATION : H¢(a) = (: i) et xu = X2 — (r+ )X + 1t — 52 = (X — A1)(X — A2) si A1, A2

sont les valeurs propres de Hf(a) donc det(Hf(a)) =MA2 =1t — s2 et tT(Hf(a)) =N +A=71+t.

(i) sitt—s2 > 0etT > 0, alors A7A2 > 0 donc A1 et A ont méme signe strict. Puisque —s2 < 0, on a forcément
t > 0. Ainsi, tT(Hf(a)) =714+t=A1+A2 >0donc A} >0et A2 >0et Hf(a) est définie positive. D’apres
le théoreme 15.15, f admet en @ un minimum local. Idem pour (ii).

(iii) sitt —s2 < 0, alors det(Hf(a)) =MA2 =1t — s2 < 0 donc A1 et A2 ont des signes stricts opposés donc

f n’admet en a ni un maximum local ni un minimum local d’aprés le théoréme 15.15.

EXERCICE 15.18 : Trouver les extrema sur R? de f : (x,y) = x* +y% — 2(x —y)?.

DEMONSTRATION : f est polynomiale sur R? donc admet des dérivées partielles en tout point a tout ordre, en
fait  est de classe C*° sur R? : %(X,y) =4x3 — 4(x —y) et %(X)y) = 4y3 +4(x —y).

Ainsi, si grad f(x,y) = ?, alors x> — (x—y) = y3 + (x —y) = 0 ce qui prouve que x3 = 7y3 = (7}})3
donc que x = —y car t — t3 est une bijection de R dans R. Le systéme x3 — (X - y) =y’ + (X - y) =
équivaut donc & X +y = x3—2x=0.1 y a donc trois points critiques de f : (O, 0), (\/i, —ﬁ) et (—\/i, \ﬁ)
2
® En (0,0), f n’admet pas d’extremum local car f(l, l) = % > 0et f(l,O) = i4 — % =1= %n <0
nn n n n

sin > 1: f est & la fois strictement positive et strictement négative au voisinage de (0, 0) : c’est un point selle.
o Comme f(—x, —y) = f(x, y), ce qui se passe au voisinage de (—\ﬁ, \/Z) est équivalent par symétrie & ce qui se
passe au voisinage de (\/E, —\/E) : la surface z = f(X, y) est stable par le demi-tour d’axe ® Comme la hessienne
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est hors programme et que f est polynomiale de degré 4, on va se ramener & un compact pour justifier que f admet

en un minimum absolu.
1

A nouveau, x* +y* > E(Xz +y2)? (car x* +y? > 2x%y? = (x2 —y?)? = 0) et 2(x —y)? < 4(x% +y?)

(car 2x% +2y? > —4xy <= (x +y)? = 0) donc f(x,y) > %H(x,y)“‘z‘ — 4||(x,y)||3 en sommant ces deux

2
inégalités. Ainsi, si |[(x,y)|l2 = 2\/27 on a f(x,y) > M(H(X,y)”% — 8) > 0. La fonction f est

continue sur le fermé borné (compact) K = B zyf((O, 0), Zﬁ) donc y est bornée et y atteint ses bornes. Notons,
m= MKin(f). Comme (f, 7\&) € K et que f([, 7\&) = —38, il vient m < —8 donc m < 0.

Pour (x,y) € RZ, considérons deux cas :

- si (X,y) € K, alors f(X,y) = m d’apres ce qui précede.

- si (X,y) ¢ K, on a vu ci-dessus, puisque ||(X,y)||2 > 2\/2, que f(X,y) =>0>m.

Ainsi, M est un minorant de f sur R“, et comme il est atteint sur K, c’est le minimum de f sur RZ.

Comme RZ est un ouvert et que f est de classe C! sur Rz, en notant (Xo,yo) € K un point en lequel on a
f(x0,y0) = m, on sait que grad f(xo,yo) = O done (x0,y0) = (—v/2,v/2) ou (x0,y0) = (v2,~v/2)
d’apres les résultats précédents. Comme en ces points, la fonction f vaut —8, on en déduit que m = —8, que le
minimum de f vaut —8 et qu’il est atteint en deux points exactement : les points (—\/E, \ﬁ) ou (\[, —ﬁ)
Ici, si on effectue un DL, de f au voisinage de (O, O), on obtient f(h, k) ? —Z(h — k)z + O(h2 + kz) et “on
pourrait se méprendre, et on jaserait. Nous venons déja de froler I'incident.” En effet, q7 : (h, k) — —Z(h — k)z
est une forme quadratique négative, ce qui laisse penser que f admet en (O, O) un maximum local. Il n’en est rien
car cette forme quadratique n’est pas définie, la droite x = y fait partie du cone isotrope de (1.

Par contre, si on effectue un DL, de f au voisinage de (f, 7\/2), en changeant l'origine et avec (h, k) S Rz,

onaf(v2+h—v2+k) —f(v2,-v2) = (V2+n)* + (—vV2 + k)* —2(2@+h—k)2+8 done
f(ﬁ+h,—ﬁ+k)—f([,fﬁ)§10h2+4hk+10k2+0(h2+k2)§10<h+§) +45—8k2+o(h2+k2)

et cette fois-ci, cela prouve que f admet bien en (\/i —\/2) minimum local car 2 : (h, k) — 10h2 +4hk + 10k2
est une forme quadratique définie positive (positive c’est clair et seul le vecteur nul est dans son céne isotrope car

on a l’équivalence h + % =k=0<=h=k=0).

EN PRATIQUE : Soit f: Q — R de classe C' ott Q est un ouvert de RP :

e On calcule les points critiques, les extrema, s’ils existent, sont parmi ces points.
e Au voisinage des points critiques, on détermine si c’est un extremum local avec la matrice hessienne.

Soit f: K — R de classe C! o1l K est un fermé borné de RP :

e On sait que f est bornée et atteint ses bornes sur K.

e On parametre avec une seule variable le bord de X et on étudie la fonction.

e On cherche les points critiques a l'intérieur du compact, le fait qu’on sache qu’un extremum existe
peut nous éviter de faire I'étude de la hessienne en ces points.
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[PARTIE 15.5 : APPLICATIONS GEOMETRIQUES

[15.5.1 : Courbes]

REMARQUE 15.24 : Soit Q un ouvert de R?, f:Q — R de classe C' et I' = {(x,y) € Q | f(x,y) = 0}.

Si (x0,yo0) € I et grad'f(xo0,y0) # 0 alors il existe un paramétrage local de T de classe C' au voisinage de

(x0,Y0) : il existe T > 0 tel que B(Mo, ) C ), un intervalle ouvert I contenant 0, x : I - Rety:1— R de
classe C! telles que (x(0),y(0)) = Mo et V(x,y) € B(Mo,1), (x,y) €T < (3t e, x =x(t) et y =y(t)).
Il s’agit du théoréme des fonctions implicites explicitement hors programme.

Ceci signifie, en voyant f comme une fonction altitude, que si f est de classe C', les cotes (altitude 0)

forment une “gentille” courbe au voisinage des points qui ne sont pas des points critiques.

DEFINITION 15.13 :

Soit Q un ouvert de R?, f : @ — R de classe C' et la courbe I' définie par T = {(x,y) € Q| f(x,y) = 0}

(équation implicite). On dit qu’un point Mo = (x0,yo) de I' est un point régulier si grad f(My) # 7.

PROPOSITION SUR LE RAPPORT GRADIENT / LIGNES DE NIVEAUX 15.16 :
Pour f: Q2 — R et A € R, en un point My d’une ligne de niveau Ny = {(x,y) € Q | f(x,y) = A}, si

f est C! sur et si grad f(Mo) # T, ce vecteur est orthogonal & Ny (4 la tangente en My & N3)

et orienté dans le sens des valeurs croissantes de f.
\ J

DEMONSTRATION : ® En un point régulier My d’une courbe de niveau Nj dont I’équation peut étre réécrite

g(x,y) = 0 en posant g(x,y) = f(x,y) — A, on peut paramétrer localement au voisinage de Mo la courbe Ny
par x = x(t), y = y(t). Puisque Vt € I, g(x(t),y(t)) = 0, d’apres la regle de la chaine, on a la relation
Ve L (g(x(1),y(1) = 0 =¥ () §E (x(1), y(V) +v' () (x(1), y(1)):

1l suffit de prendre maintenant t = 0 dans cette relation pour avoir x'(O)%(Mo) + y’(O)g—;(Mo) = 0 qui

traduit que (x'(0),y’(0)) L grad f(Mo). Ainsi, grad f(Mg) est orthogonal au vecteur dérivé (x'(0),y’(0))

qui dirige une tangente 3 N au point Mg : on dit que grad f(Mo) est orthogonal & N en M.

N —
® A partir du point My de Ny, évoluons dans la direction du vecteur grad f(Mo) et regardons ce qui se passe

localement au voisinage de M g. Posons donc @ : t + f (Mo +tgrad f(Mo)) et étudions sa dérivée en 0. Comme

— of of
Ve, o(t) = f(Xo + 5y (Mo),yo + 15, (
régle de la chaine et Vt € ], ¢'(t) = %(Mo)%

On a done /(0) = (3 (M) + (3 (Mo))” = llgrad r(Mo)|2 > 0

(Mo +tgrad f(Mo)) +%(Mo) of (Mo —&—tgrad}f(Mo)).

MQ)), @ est dérivable sur ] (intervalle ouvert et 0 € J) d’apres la
f of
X dy

2

Ainsi, @ est localement croissante (car (p/ est continue sur | puisque f est de classe C! par hypothese) au voisinage

de O ce qui signifie que f croit dans la direction grad f(Mg) au départ de M.
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REMARQUE 15.25 : Soit u unitaire et @, : t — f(Mo + tu), alors |}, (0)| = |us %(Mo) + uzg—;(Moﬂ

2 2
done, d’apres I'inégalité de CAUCHY-SCHWARZ, ¢, (0)| < \/(gi(Mo)> + (%(Mo)) et @7, (0) devient

maximal si on prend u colinéaire de méme sens avec le vecteur gradient : a partir de My, si on voit la

fonction f comme la fonction altitude, la direction grad f(Mg) est la ligne de plus grande pente.

PROPOSITION SUR UNE EQUATION DE LA TANGENTE AVEC LE GRADIENT 15.17 :
Le vecteur grad f(Mo) # 0 est donc un vecteur normal i la tangente a I' au point My ce qui

fait que la tangente & I en My a pour équation : (x — xo)%(xo,yo) + (v —yo)g—;(xo,yo) =0.

DEMONSTRATION : Mg € I est donc un point régulier de la courbe et on a vu & la proposition précédente

(pour A = 0) que la vecteur dérivé v = (X/(O),y/(O)) (qui est un vecteur directeur de la tangente Top en Mo &

—
I' = Ny) est orthogonal & grad f(Mo). Ainsi, pour un point M € Rz, on a ’équivalence suivante :

of
=y — 3% (X0, Yo
M e Ty < (MQN[,W) est liée<— Mo)q L grad' f(My) — (X xo ) . %715( ) =0.1
Y —Yo @(XO»UO)
suffit de calculer ce produit scalaire pour avoir M € Ty <= (X — Xo)%(xo,yo) + (y — UO)%(XOJJO) = 0.
EXERCICE 15.14 :
Quels sont les points réguliers de la cardioide C d’équation implicite (x2 +y? —x)? — (x> +y2) =0 7?

En l'un de ces points Mg, donner une équation cartésienne de la tangente a C en My.
DEMONSTRATION : Tout d’abord, cette cardioide a une équation plus simple en polaires qu’en cartésiennes, en
effet, si x = rcos(8) et y = rsin(), on a (x? +y? —x)2 — (x> +y%) = 0 = (12 —rcos(0))? = 12
donc (Xz —|—y2 - X)z - (Xz +yZ) =0<= (|T —cos(@)|==£lour= 0). Or on trouve 1 = 0 (P'origine du

repére) pou & = 0 ou © = 7 donc (Xz +y? —X)z - (Xz +y2) =0<=r1=1+cos(0) our = —1+4cos(0).

De plus, T = —1 + cos(0) donne la méme courbe que 1 = 1 4 c0s(0) car les points de coordonnées polaires (en
maths) (1,0) et (—7,0 + 7) sont les mémes et que T = —1 + cos(0) <= —r =1+ cos(0 + 7).

On présente traditionnellement la cardioide par son équation 1 = 1+ cos(0).

Ici, la cardioide est donnée sous forme implicite par C : f(x,y) = 0 avec f : (x,y) — (x2+yZ—x)%— (x> +y2).
Or, %(x,y) =2(2x—1)(x* +y? —x) — 2x et %(x,y) =dy(x? +y? —x) =2y = y(4x? +4y? —4x —2).
Si (x,y) € C et grad f(M) = 0, alors (y = 0 et 2x((2x — 1)(x = 1) = 1) = 2x2(2x — 3) = 0) ou
(x> +yZ—x=1/2et (2x—1) —2x = 0). Ainsi, les deux seuls points critiques de f sur R? sont (0,0), (3/2,0).
Comme (0,3/2) & C, le seul point non régulier de C est le point (0,0) € C. Soit donc (xg,Yo) € C tel que
(x0,Y0) # (0,0), alors une équation de la tangente Ty & C en My = (x0,Yo) est donc d’apres la proposition

précédente T @ (2(2x0 — 1)(x% —&—yé —x0) — 2x0)(x — x0) + (4yo(xé —l—yé —x0) —2yo)(y —yo) =0

(qu’on peut certainement simplifier).
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[15.5.2 : Surfaces|

DEFINITION 15.14 :

Soit Q un ouvert de R?, f: Q — R de classe C' et la surface S = {(x,y,z) € Q | f(x,y,z) = 0} (équation

implicite). On dit qu’un point Mo = (x0,Yo0,20) de S est un point régulier si grad f(My) # 7.

EXEMPLE 15.15 : Soit S d’équation S : x? +y? —z2 — 1 = 0. Tous ses points sont réguliers.

DEMONSTRATION : En définissant f : R3 — R par f(x,y,z) = x? + 1_,] — 2% — 1, la surface S est définie

implicitement par S : f(x,y,z) = 0. Comme grad f(x,y,z) = (2x,2y, —2z), le seul point (x,y,z) tel que
grad f(x,y, Z) = (O, 0, 0) est le point (0, 0, O) qui n’appartient pas & S donc tous les points de S sont réguliers.

On peut paramétrer cette surface par x = va? + 1cos8, y = vVaZ + 1sin@, z = a.

La surface S est appelée un hyperboloide & une nappe (H1 pour les intimes).

DEFINITION 15.15 :
Soit une surface S d’équation f(x,y,z) = 0 avec f: Q — R de classe C', 1 un intervalle, x,y,z : 1 — R trois
fonctions de classe C' telles que Vt € 1, (x(t),y(t),z(t)) € S.

En notant T' = {(x(t),y(t),z(t)) | t € I}, on dit que la courbe I est tracée sur la surface S.

EXEMPLE 15.16 : Soit la terre d’équation x* +y? 4+ z2 — 1 = 0 (assimilée & une sphere) :

e La courbe d’équation x(t) = sint, y(t) = cost, z(t) = 0 représente I’équateur.

e La courbe d’équation x(t) = sint, y(t) =0, z(t) = cost représente le méridien de GREENWICH.

REMARQUE 15.26 : Pour une surface S d’équation explicite z = g(x,y) (le “graphe” d’une fonction de

R? dans R), les courbes coordonnées sont les courbes d’équation :
o x(t) =xo, y(t) =1, z(t) = g(xo,t) (x = xp est fixé et c’est y qui bouge).
(

t) =yo, z(t) = g(t,yo0) (y = yo est fixé et c’est x qui bouge).

EXEMPLE 15.17 : Pour la surface d’équation z = x> — y2 <= x? —y? — z = 0 (un paraboloide

hyperbolique), les courbes coordonnées sont :
e x(t) =x0, y(t) =t, z(t) = xo — t* (c’est une parabole).
e x(t) =t, y(t) =yo, z(t) = t> —yo (c’est une parabole).

D’autres courbes sont tracées sur cette surface :
e x(t) = ch(t), y(t) = sh( ), z(t) =1 (c’est une hyperbole).

ox(t)=1 + 1 ylt) = ] , z(t) =t (c’est une droite).

REMARQUE 15.27 : Soit une surface S : f(x,y,z) = 0 avec f :  — R de classe C'. Les tangentes en

un point Mo régulier de S aux courbes de classe C' tracées sur S sont orthogonales a grad f(My).
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DEMONSTRATION : Soit une courbe I' paramétrée par g:telmw (X(t),y(t),z(t)) de classe C! tracée
sur la surface S, ce qui signifie que Vt € I, (x(t),y(t),z(t)) €S f(x(t),y(t),z(t)) = 0 par hypothese

puisque S est définie implicitement. On dérive avec la régle de la chaine car f est aussi de classe C! par hypothese.
Ainsi, Vt € 1, X' (1) 3L (g(1)) + y'(t)%(g(t)) + ()8 (g(1) = 0. $i Mo = g(to), prenons t = to

dans la relation précédente : X/(to)%(Mo) + y/(to)%(Mo) + z/(to)%(Mo) =0 (R). Le vecteur dérivé
W = (Xl(to),y/(to), Z/(‘to)) (supposé non nul) engendre la tangente Tp & la courbe I' en M. Alors, la relation

(R) montre que v§ L grad f(Mo) donc la tangente Tg est orthogonales & grad f(Mo) comme attendu.

DEFINITION 15.16 :

Le plan tangent d la surface S en un point régulier Mo est le plan orthogonal ¢ grad f(Mo) passant par Mo.

D : La remarque précédente montre que toutes les courbes “régulieres” tracées sur la surface
DEMONSTRATION : L que précédent tre que toutes 1 bes “régul 7t 1 face S

ont en Mo € S un vecteur dérivé (donc une tangente) orthogonal(e) & grad f(Mg). Il est donc logique de définir

comme plan tangent en M & la surface S le plan contenant toutes ces tangentes, donc le plan contenant le point

My et de vecteur normal grad’f(Mo).

REMARQUE 15.28 : Soit deux surfaces S et S’ définies par S : f(x,y,z) =0 et S : g(x,y,z) =0 avec

f,g: Q — R de classe C'. Si un point M appartient 4 S NS’ et que grad f(My) et grad’ g(Mo) ne sont

pas colinéaires, alors SNS' est localement (au voisinage de My ), une courbe T tracée a la fois sur S et sur

S’. La tangente a cette courbe I' en My est alors engendrée par le vecteur grad f(Mo) A grad g(Mo).

DEMONSTRATION : La définition précédente montre que les deux plans tangents Py (3 S en Mo) et Pg (S’

en M) ont des vecteurs normaux non colinéaires donc sont sécants (pas paralleles) selon une droite D = Po M P6
qui est donc orthogonale aux deux vecteurs mf(Mo) et mg(Mo) non colinéaires. On admet que ceci
implique, localement au voisinage de Mg, que lensemble I' = S NS’ est une courbe de classe c! (comme f et
g) : c’est une version du théoréme des fonctions implicites. Cette courbe I' est donc tracée a la fois sur S et sur
S’ donc un vecteur tangent (non nul) Valen My est donc, d’apres la remarque précédente, & la fois orthogonal
a M}f(Mo) et a WQ(M()). D’aprés les propriétés du produit vectoriel, on sait que V est colinéaire &

grad f(Mo) A grad g(Mg) qui est donc bien un vecteur tangent & I' en Mg (c’est un vecteur directeur de D).

PROPOSITION SUR UNE EQUATION DU PLAN TANGENT A UNE SURFACE 15.18 :

Ce plan tangent & S en My point régulier a pour équation :

(x = x0) §F (x0,0,20) + (4 — o) g5 (x0,Y0,20) + (2 = z0) §E (x0,0,20) = 0

DEMONSTRATION : Par définition, en notant Pg ce plan tangent & Mg & S, on a, pour un point M € Rg,

I’équivalence M € Py <= MQN[ 1 grad f(Mo) <~ (MowngTad f(Mo)) = 0 ce qui nous permet d’avoir

of

équation : M € Po <= (x —x0) §F (x0,y0,20) + (4 — o) §5 (x0,¥0,20) + (2 = z0) §E (0,0, 20) = 0.
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EXEMPLFE 15.18 :

Trouver une équation du plan tangent P au Hy (hyperboloide & une nappe) d’équation cartésienne

S

: x> +y2 —22 —1 =0 en un point de S. Montrer que PN S contient exactement deux droites.

DEMONSTRATION : @ Soit un point Mg = (x0,Y0,20) € S, cest-a-dire Xé —I—y% — Z% — 1 = 0. Vérifions que
My est un point régulier de S. Comme S est définie par 1’équation implicite f(x,y, Z) =x% 4+ yz —22-1= 0,
on a Wf(Mo) = (2x0,2y0, —2z0) # (0,0,0) car si on avait (2x0,2yo, —2z0) # (0,0,0), on aurait
X(Z) + y% — Z% — 1 = —1 # 0. Ainsi, M est bien un pont régulier de S. D’aprés la proposition précédente, le
plan tangent Pg en Mg & la surface S & pour équation Pg : 2x(x — x0) + 2yo(y — yo) — 2z0(z — z9) = 0.

Comme X% + y% — Z% — 1 = 0, apres simplification et division par 2, cette équation de Pp se transforme en

Po : xox+Yoy —zoz = 1 et encore une fois on se rend compte que cette équation est obtenue par dédoublement
au sens ot X2 devient X0X, yz devient Yoy, 2% devient 20z, 2xy devient Xoy + Xyo, 2xz devient xoz 4 Xz, 2yz
devient Yoz +yzo, 2x devient xo + X, 2y devient Yo +y, 2z devient zp + z et les constantes restent telles quelles.
® Le plan Py est le plan passant par Mg et de vecteur normal ﬁ = (Xo, Yo, 720). Considérons deux cas :

Ssizg =0, V] = (0,0, 1) et V3 = (—yY0,%0,0) sont des vecteurs directeurs indépendants de Po qu’on peut
paramétrer X = X0 —A2Yo, Y = Yo +A2X0,Zz = Aj car M € Py <= 3(?\1,)\2) S Rz, Mo];[ = MV +A293.
- sizg §é 0, W = (Zo, 0, Xo) et \3 = (O,Zo,yo) sont des vecteurs directeurs indépendants de Pg qui a donc
comme paramétrage X = Xo + A120, Y = Yo + A220, z = 20 + A1Xx0 + A2Yo comme ci-dessus.

Ainsi, pour trouver Po N S, on se donne M = (X, v, Z) S R3 et on remplace ces coordonnées dans I’équation de
S avec le paramétrage précédent selon les deux cas étudiés, cela donne, avec (7\1 y 7\2) € R? introduits ci-dessus :
-sizg =0,M € PpNS < (x0 —}\zyo)z + (yo —‘r}\zxo)z — (20 —|—)\1)2 —1=0<= A= (X(z) —i—y%))\%
Or cette derniere condition équivaut & A7 = :l:\/X% +y% A2. Ainsi, M € Po NS < M € Dy UD; si

D7 : x =%0—Ayo, Yy = yo+Axp, z = M/x% —l—y% et D2 : x =%x0—AyYo, Y = yo+Axp, z = —Am
sont les deux droites attendues et définies paramétriquement.
-sizg Z0,MEPyNS < (x0+ 7\120)2 + (yo + 7\220)2 — (z0 + Mx0 + 7\290)2 — 1 = 0 qui se simplifie
en M € PyNS <— (Zé — X%)?\% + (Zé — yé)?\% — 2MA2x0Yo = 0. Traitons & nouveau deux cas :
-sizg = £xg et zo0 = Fyg, alors xg = £1,yo = £1 et zo = %1 car X(Z) —i—yé —zg — 1 = 0. Cela concerne
huit points de S. Alors (Z(z) — X%)?\% + (Z% — y%)%% — 2MA2xpyo = 0 <= (A1 = 0 ou Az = 0) donc
PoNS =D1UDzouDq : x = x0,y = yYo+Az0,2 = 20+Ayo ; D2 : x = x0+Az0,Y = Yo, 2z = z0+Axp.

- sizg = £xg et Z% —u% # 0, Ainsi, (Z(Z) — Xg))\% + (Z% — y%))\% — 2MA2xoyp = O équivaut aussi a

(Zé —yé)A% —2MAxoyo =0 <= A2 =0o0ui; = %7\1 = A1. La encore, PoNS =D71UD3 ot
Zo — Yo

D1 :x =x0+A120,Yy = Yo,z = zo+A1%x0; D2 : x = x0+A120,Y = yo+aAizp,z = zo+A1x0+xA1Yo.-

- si 229 — XZQ # 0, si on pose le polynéme Q = (Zé — Xé)XZ — 2xoyoX + (zé — y(z)), alors son discriminant

A= 4X(2)y% — 4(2(2) — X%)(Z(z) — y(z)) = 42(2) apres calculs car X% + y% — Z(Z) — 1 = 0. Ainsi, Q admet

deux racines réelles distinctes o¢1 et &2 qu’il est inutile d’exprimer précisément. Par conséquent, on peut
écrire Q = (Z% — X%)(X — ® )(X — 0(2) donc, comme d’aprés les relations coefficients-racines, on a les
relations (Zé — yé) = x1x2 (Zé — Xé) et 2xpoyo = (oq + (xz)(z% - Xé), il vient I’équivalence suivante
(zé - X%))\% + (zé — yé)A% — 2MA2xoyo = 0 <= (A1 — x1A2)(A\1 — ®2A2) = 0 qui se traduit par
A = a1A2 ou A7 = &2A2. A nouveau, Pg N'S = D7 U D> ot 'on définit paramétriquement les deux
droites D1 : x = X0 + ®1Az0, Yy = Yo + Azp, z = z0 + ®1Axp + AYp (correspondant & A1 = x1A2) et
Dy : x =x0 + a2Az0, Yy = Yo + Azp, z = z0 + x2AX0 + AYp (correspondant & A1 = apA2).

Dans tous les cas, et donc quel que soit le point Mg de S, si on note Pg le plan tangent & S en Mg, 'intersection

de Pg et de S contient exactement deux droites sécantes en M.
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(COMPETENCES|

e Etablir Iexistence des dérivées partielles et les calculer dans ce cas.

e Montrer qu’une fonction est de classe C' en étudiant la continuité des dérivées partielles.

e Connaitre les différentes opérations algébriques sur les fonctions de classe C'.

e Savoir par ceeur la regle de la chaine et la formule de changement de coordonnées.

e Déterminer le gradient d’une fonction scalaire et sa différentielle.

e Montrer qu’une fonction est de classe C? en étudiant la continuité des dérivées secondes.

e Connaitre les différentes opérations algébriques sur les fonctions de classe C2.

o Utiliser le théoreme de SCHWARZ pour prouver qu’une fonction n’est pas de classe C2.

e Maitriser le passage en coordonnées polaires, les dérivées partielles, le gradient, le laplacien associés.
e Connaitre les différentes notions d’extrema (locaux, absolus) de fonctions scalaires.

e Trouver avec le gradient les points critiques ot1 on a éventuellement un extremum local sur un ouvert.
e Etablir si on a bien un extrema en un point critique avec la matrice hessienne.

e Montrer I'existence d’'un extrema de f sur une partie fermée bornée par la continuité de f.

e Utiliser le gradient pour trouver les points réguliers d’une courbe définie de maniere implicite....

e ... et déterminer une équation de la tangente & cette courbe en un point régulier

e Utiliser le gradient pour trouver les points réguliers d’une surface définie de maniere implicite....

e ... et déterminer une équation du plan tangent a cette surface en un point régulier



