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CHAPITRE 15

FONCTIONS DE PLUSIEURS VARIABLES⊙
Ce chapitre est consacré à l’étude des fonctions f de Rp dans R. On a parlé de leur continuité dans

le chapitre sur les espaces vectoriels normés et on va maintenant voir leur aspect “dérivable”. Par contre, un

taux d’accroissement
f(x0 + h)− f(x0)

h
n’a pas de sens en général pour un vecteur h ∈ Rp dès que p > 2. On

va donc considérer des dérivées partielles (en cas d’existence) qui correspondent à la dérivée d’une fonction
vectorielle dans une direction donnée.

Ces notions de dérivées successives des fonctions vectorielles interviennent dans la détermination des
extrema des fonctions vectorielles et dans les équations aux dérivées partielles.

Une équation aux dérivées partielles (abrégé en EDP) est une équation différentielle dont les solutions
sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs
dérivées partielles. Elle a souvent de très nombreuses solutions, les conditions étant moins strictes que dans
le cas d’une équation différentielle ordinaire à une seule variable. Les problèmes comportent souvent des
conditions aux limites qui restreignent l’ensemble des solutions. Alors que les ensembles de solutions d’une
équation différentielle ordinaire sont paramétrées par un ou plusieurs paramètres correspondant aux condi-
tions supplémentaires, dans le cas des EDP, les conditions aux limites permettent de paramétrer les solutions
par l’intermédiaire de fonctions ; intuitivement cela signifie que l’ensemble des solutions est beaucoup plus
grand (de dimension infinie dans le cas des équations linéaires), ce qui est vrai dans beaucoup de problèmes.

Les EDP sont omniprésentes dans les sciences puisqu’elles apparaissent aussi bien en dynamique des
structures ou en mécanique des fluides que dans les théories de la gravitation, de l’électromagnétisme
(équations de Maxwell), ou des mathématiques financières (équation de Black-Scholes). Elles sont
primordiales dans des domaines tels que la simulation aéronautique, la synthèse d’images, ou la prévision
météorologique. Enfin, les équations les plus importantes de la relativité générale et de la mécanique quan-
tique sont également des EDP (équation de champ d’Einstein et de Schrödinger).

L’un des sept problèmes du prix du millénaire consiste à montrer l’existence et la continuité par rapport
aux données initiales d’un système d’EDP appelé équations de Navier-Stokes.� �
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Les dérivées partielles d’une fonction numérique définie sur un ouvert de R2 ont été introduites en

première année. L’objectif de cette section est d’approfondir et de généraliser cette étude aux fonctions de

p > 2 variables.

L’étude d’une fonction de Rp dans Rn se ramenant à celle de ses coordonnées, cette section se consacre

à l’étude des fonctions de Rp dans R. Elle est axée sur la mise en place d’outils permettant de traiter des

applications du calcul différentiel à l’analyse et la géométrie. On se limite en pratique au cas p = 2 ou p = 3.

1 : Fonctions de classe C1

Contenus Capacités & Commentaires

Dérivée en un point selon un vecteur. Notation Dvf(a).

Dérivées partielles d’ordre 1 en un point d’une fonction Notation ∂f
∂xi

(a). On peut aussi utiliser ∂if(a).

définie sur un ouvert Ω de Rp à valeurs dans R.

Une fonction est dite de classe C1 sur Ω si ses dérivées

partielles d’ordre 1 existent et sont continues sur Ω.

Opérations sur les fonctions de classe C1.

Une fonction de classe C1 sur Ω admet en tout point a La démonstration n’est pas exigible.

de Ω un développement limité d’ordre 1. Une fonction de classe C1 sur Ω est continue sur Ω.

Différentielle de f en a. Elle est définie comme la forme linéaire sur Rp :

df(a) : (h1, · · · , hp) 7→
p∑

i=1

∂f
∂xi

(a)hi.

Notation df(a) · h.

2 : Règle de la châıne

Contenus Capacités & Commentaires

Dérivée de t 7→ f
(
x1(t), · · · , xp(t)

)
. Interprétation géométrique.

Application au calcul des dérivées partielles de : En pratique, on se limite à n 6 3 et p 6 3.

(u1, · · · , un) 7→ f
(
x1(u1, · · · , un), · · · , xp(u1, · · · , un)

)
. Les étudiants doivent connâıtre le cas particulier

des coordonnées polaires.

Caractérisation des fonctions constantes sur un ouvert

convexe.

3 : Gradient

Contenus Capacités & Commentaires

Dans Rp muni de sa structure euclidienne Le gradient est défini par la relation df(a) · h = ⟨∇f(a), h⟩
canonique, gradient d’une fonction de classe C1. pour h ∈ Rp.

Coordonnées du gradient. Notation ∇f(a).
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4 : Applications géométriques

Contenus Capacités & Commentaires

Courbe du plan définie par une équation Lignes de niveau de f.

f(x, y) = 0 où f est de classe C1.

Point régulier. Le gradient est normal à la On admet que la courbe admet un paramétrage local de classe C1.

tangente en un point régulier. Détermination d’une équation de la tangente en un point régulier.

Lorsqu’il est non nul, le gradient de f est orthogonal aux lignes

de niveau et orienté dans le sens des valeurs croissantes de f.

Surface définie par une équation f(x, y, z) = 0

où f est de classe C1.

Point régulier. Le plan tangent en ce point

est défini comme orthogonal au gradient.

Courbe tracée sur une surface. Dans le cas d’une courbe régulière, la tangente à la courbe est

incluse dans le plan tangent à la surface.

5 : Fonctions de classe C2

Contenus Capacités & Commentaires

Dérivées partielles d’ordre 2 d’une fonction définie sur Notations ∂2f
∂xi∂xj

.

un ouvert de Rp à valeurs dans R.

Fonction de classe C2 sur un ouvert de Rp.

Théorème de Schwarz. La démonstration est hors programme.

Matrice hessienne en un point a d’une fonction de Notation Hf(a).

classe C2 sur un ouvert de Rp à valeurs dans R.

Formule de Taylor-Young à l’ordre 2 : La démonstration est hors programme.

f(a+ h) =
h→0

f(a) + (∇f(a))Th+ 1

2
hTHf(a)h+ o

(
||h||2

)
. Expression en termes de produit scalaire.

6 : Extremums d’une fonction de Rp dans R

Contenus Capacités & Commentaires

Extremum local, global.

Point critique d’une application de classe C1.

Si une fonction de classe C1 sur un ouvert de Rp admet un

extremum local en un point a, alors a est un point critique.

Si f est une fonction de classe C2 sur un ouvert de Rp et Adaptation à l’étude d’un maximum local.

a un point critique de f: Explicitation si p = 2 (trace, déterminant).

- si Hf(a) ∈ S++
p (R), alors f atteint un minimum

local strict en a;

- si Hf(a) /∈ S+p (R), alors f n’a pas de minimum en a.

Exemples de recherche d’extremums

globaux sur une partie de Rp.
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PARTIE 15.1 : FONCTIONS DE CLASSE C0� �

REMARQUE 15.1 : Rappels, soit p ∈ N∗, un ouvert Ω de Rp, une fonction f : Ω → R et a ∈ Ω :

• f est continue en a si et seulement si ∀ε > 0, ∃α > 0, ∀x ∈ Ω, ||x− a|| < α =⇒ |f(x)− f(a)| < ε.
• Cette définition ne dépend pas de la norme employée dans Rp car elles sont toutes équivalentes.

• Si f est lipschitzienne sur B(a, r) ∩ Ω, pour r > 0 alors f est continue en a.

• Pour h ∈ Rp, l’application φh : t ∈ R 7→ f(a+ th) est définie sur un intervalle ]− r; r[ et si f est
continue en a, l’application φh est continue en 0 pour tout h ∈ E (continuité partielle selon h).

• f partiellement continue (selon toute direction) en a n’y est pas forcément continue.

EXEMPLE 15.1 : • f1(x, y) = x3 + 3xy2 − 2x2y− y3

x2 + y2
est prolongeable par continuité en (0, 0).

• f2(x, y) =
x
√
|y|

Max(|x|, |y|) si (x, y) ̸= (0, 0) et f(0, 0) = 0 est continue sur R2.

• f3(x, y) = 2xy

x2 + y2
n’est pas prolongeable par continuité en (0, 0) bien que bornée.

• f4(x, y) = xy2

x2 + y4
non plus en (0, 0) même si elle partiellement continue en (0, 0) et ceci dans

toutes les directions (c’est-à-dire t 7→ f4(ta, tb) tend vers 0 si (a, b) ∈ R2 est un vecteur non nul).

� �
PARTIE 15.2 : FONCTIONS DE CLASSE C1� �

REMARQUE 15.2 : On se donne un ouvert Ω de Rp (muni de n’importe quelle norme) et a ∈ Rp :

• Comme Ω est un ouvert, il existe un réel r > 0 tel que B(a, r) ⊂ Ω.

• Pour un vecteur non nul v de Rp, il existe un réel α > 0 tel que ∀t ∈]− α;α[, a+ tv ∈ Ω.

15.2.1 : Dérivées partielles et selon un vecteur non nul

DÉFINITION 15.1 :

Avec ces notations, si f : Ω → R et si v ̸= 0 ∈ Rp, on dit que f admet en a une dérivée selon le vecteur

v si la fonction φa,v :]− α;α[→ R définie par φa,v(t) = f(a+ tv) admet une dérivée en 0. Dans ce cas, on

note Dvf(a) cette dérivée, qui vaut donc Dvf(a) = lim
t→0

f(a+ tv)− f(a)
t

.

EXEMPLE 15.2 : Soit f : R2 → R définie par f(x, y) = x2 − y2 + x3 + y4, calculer la dérivée de f

en (0, 0) selon les vecteurs v1 = (1, 1) et v2 = (1,−1).

REMARQUE 15.3 : Soit f : Ω → R et a ∈ Ω avec r > 0 tel que B(a, r) ⊂ Ω. Si B = (e1, · · · , ep) est la

base canonique de Rp, pour k ∈ [[1; p]], soit φa,k :]− r; r[→ R telle que ∀t ∈]− r; r[, φa,k(t) = f(a+ tek).

DÉFINITION 15.2 :

Soit f : Ω → R et a ∈ Ω, avec les notations précédentes, on dit que f admet en a une dérivée partielle

d’ordre 1 par rapport à la k-ième variable si φa,k est dérivable en 0 et on définit alors cette dérivée

partielle par, notée ∂kf(a) ou
∂f
∂xk

(a) par ∂kf(a) =
∂f
∂xk

(a) = φ′
a,k(0) = lim

t→0

f(a+ tek)− f(a)
t

= Dek
f(a).
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REMARQUE 15.4 : Dans le cas d’une fonction de deux variables f : R2 → R souvent introduite dans

les exercices par f : (x, y) 7→ f(x, y), si a = (a1, a2) ∈ R2 :(
∂1f(a) = ∂1f(a1, a2) =

∂f
∂x1

(a) =
)
∂f
∂x

(a1, a2) = lim
t→0

f(a1 + t, a2)− f(a1, a2)
t

.(
∂2f(a) = ∂2f(a1, a2) =

∂f
∂x2

(a) =
)
∂f
∂y

(a1, a2) = lim
t→0

f(a1, a2 + t)− f(a1, a2)
t

.⊙
Par exemple, en dehors de tout point singulier (ou la fonction est prolongée par continuité par exemple),

les dérivées partielles se calculent naturellement en “fixant” une des variables et en dérivant par rapport à

l’autre : pour calculer δ1f(a), on fixe a2 et on dérive par rapport à x (en prenant la valeur finale en (a1, a2)).� �
PROPOSITION OPÉRATOIRE SUR LES DÉRIVÉES PARTIELLES 15.1 :

Soit a ∈ Ω et f, g : Ω → R des fonctions qui admettent des dérivées partielles d’ordre 1 en a

telles que g(a) ̸= 0. Soit φ : I→ R dérivable en f(a) avec I intervalle ouvert :

• f+ g en admet aussi et ∀k ∈ [[1; p]],
∂(f+ g)
∂xk

(a) = ∂f
∂xk

(a) + ∂g
∂xk

(a).

• λf en admet aussi et ∀k ∈ [[1; p]],
∂(λf)
∂xk

(a) = λ ∂f
∂xk

(a).

• fg en admet aussi et ∀k ∈ [[1; p]],
∂(fg)
∂xk

(a) = g(a) ∂f
∂xk

(a) + f(a) ∂g
∂xk

(a).

• f

g
en admet aussi et ∀k ∈ [[1; p]],

∂(f/g)
∂xk

(a) = 1

g(a)2

(
g(a) ∂f

∂xk
(a)− f(a) ∂g

∂xk
(a)
)
.

• φ ◦ f en admet aussi et ∀k ∈ [[1; p]],
∂(φ ◦ f)
∂xk

(a) = ∂f
∂xk

(a)× φ′(f(a)).� �
Démonstration : Pour a ∈ Ω, k ∈ [[1; p]], notons comme dans la définition ci-dessus les deux fonctions

φa,k :]− r; r[→ R et ψa,k :]− r; r[→ R définies par φa,k(t) = f(a+ tek) et ψa,k(t) = g(a+ tek), elles

sont, par hypothèse, dérivables en 0 avec φ′
a,k(0) =

∂f
∂xk

(a) et ψ′
a,k(0) =

∂g
∂xk

(a).

Pour les cinq points de la proposition, par opérations sur les fonctions dérivables, les fonctions t 7→ (f+g)(a+tek),
t 7→ (λf)(a + tek), t 7→ (fg)(a + tek), t 7→ (f/g)(a + tek) et t 7→ (φ ◦ f)(a + tek) sont dérivables en 0

car elles sont définies au moins sur ]− r; r[ et qu’elles valent respectivement φa,k +ψa,k, λφa,k, φa,k ×ψa,k,
φa,k

ψa,k

et φ ◦ φa,k. De plus, leurs dérivées en 0 valent bien, respectivement, φ′
a,k(0) + ψ′

a,k(0), λφ
′
a,k(0),

φ′
a,k(0)× ψa,k(0) + φa,k(0)× ψ′

a,k(0),
φ′

a,k(0)ψa,k(0)− φa,k(0)ψ
′
a,k(0)

(ψa,k(0))
2 et φ′

a,k(0)× φ′(φa,k(0)),

c’est-à-dire, puisque φa,k(0) = f(a) et ψa,k(0) = g(a) ̸= 0, les valeurs attendues, à savoir ∂f
∂xk

(a)+ ∂g
∂xk

(a),

λ ∂f
∂xk

(a), g(a) ∂f
∂xk

(a) + f(a) ∂g
∂xk

(a), 1

g(a)2

(
g(a) ∂f

∂xk
(a)− f(a) ∂g

∂xk
(a)
)

et ∂f
∂xk

(a)× φ′(f(a)).
EXERCICE CLASSIQUE 15.3 : Soit f : R2 → R définie par f(x, y) = xy3

x2 + y2
si (x, y) ̸= (0, 0)

et f(0, 0) = 0. Calculer en tout point (x, y) ∈ R2 les dérivées partielles d’ordre 1 de f.

Démonstration : Sur l’ouvert U = R2 \ {(0, 0)}, l’expression de f montre qu’on peut dériver en fixant

l’une des deux variables. Ainsi, pour (x, y) ∈ U, ∂f
∂x

(x, y) =
y3(x2 + y2)− 2x(xy3)

(x2 + y2)2
=
y3(y2 − x2)

(x2 + y2)2
par les

formules classiques de dérivation, et aussi ∂f
∂y

(x, y) =
3xy2(x2 + y2)− 2y(xy3)

(x2 + y2)2
=
xy2(3x2 + y2)

(x2 + y2)2
.

En (0, 0), par définition : ∂f
∂x

(0, 0) = lim
t→0

f(t, 0)− f(0, 0)
t

= 0 et ∂f
∂y

(0, 0) = lim
t→0

f(0, t)− f(0, 0)
t

= 0.
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REMARQUE 15.5 : Si f : R3 → R est présentée par f : (x, y, z) 7→ f(x, y, z), si a = (a1, a2, a3) ∈ R3 :(
∂1f(a) = ∂1f(a1, a2, a3) =

∂f
∂x1

(a) =
)
∂f
∂x

(a1, a2, a3) = lim
t→0

f(a1 + t, a2, a3)− f(a1, a2, a3)
t

.(
∂2f(a) = ∂2f(a1, a2, a3) =

∂f
∂x2

(a) =
)
∂f
∂y

(a1, a2, a3) = lim
t→0

f(a1, a2 + t, a3)− f(a1, a2, a3)
t

.(
∂3f(a) = ∂3f(a1, a2, a3) =

∂f
∂x3

(a) =
)
∂f
∂z

(a1, a2, a3) = lim
t→0

f(a1, a2, a3 + t)− f(a1, a2, a3)
t

.

15.2.2 : Classe C1, développement limité et différentielle

DÉFINITION 15.3 :

Soit f : Ω → R, on dit que f est de classe C1 sur Ω si ses dérivées partielles d’ordre 1 existent et

sont continues sur Ω. On note C1(Ω, R) l’ensemble des fonctions de classe C1 sur Ω.

EXERCICE CLASSIQUE 15.4 : Montrer que f de l’exercice 15.3 est de classe C1 sur R2.

Démonstration : Par opérations, les fonctions ∂f
∂x

et ∂f
∂y

sont continues sur l’ouvert U = R2 \ {(0, 0)}
car ce sont des fractions rationnelles. Reste à voir ce qui se passe au voisinage de (0, 0). Pour (x, y) ∈ U,

comme |x| 6
√
x2 + y2 = ||(x, y)||2 et |y| 6

√
x2 + y2 = ||(x, y)||2, on majore les dérivées partielles :∣∣∣ ∂f∂x (x, y)∣∣∣ 6 |y|5 + |x|2|y|3

(x2 + y2)2
6 2||(x, y)||52

||(x, y)||42
= 2||(x, y)||2 et

∣∣∣ ∂f∂y (x, y)∣∣∣ 6 4||(x, y)||52
||(x, y)||42

= 4||(x, y)||2 qui

montrent les continuité de ∂f
∂x

et ∂f
∂y

en (0, 0). Prendre α = ε

2
pour ∂f

∂x
ou α = ε

4
pour ∂f

∂y
.

DÉFINITION 15.4 :

f : Ω → R admet en a ∈ Ω un développement limité d’ordre 1 s’il existe α1, · · · , αp réels tels que :

f(a+ h)=
0
f(a) + α1h1 + · · ·+ αphp + o

(
||h||

)
si h = (h1, · · · , hp),

c’est-à-dire ∀ε > 0, ∃α > 0, ∀h ∈ Rp, (||h|| 6 α et a+h ∈ Ω) =⇒
∣∣f(a+h)−f(a)−α1h1−· · ·−αphp

∣∣ 6 ε||h||.

THÉORÈME SUR L’EXISTENCE D’UN DÉVELOPPEMENT LIMITÉ D’ORDRE 1 POUR
UNE FONCTION DE CLASSE C1 SUR UN OUVERT (ÉNORME) 15.2 :

Soit f : Ω → R de classe C1, alors f admet en tout point a ∈ Ω un développement limité :

f(a+ h)=
0
f(a) + h1

∂f
∂x1

(a) + · · ·+ hp
∂f
∂xp

(a) + o
(
||h||

)
si h = (h1, · · · , hp).

Démonstration : Elle est non exigible. On va faire la preuve avec p = 2, le cas général se fait de même.

Soit B = (e1, e2) la base canonique de R2, a = a1e1+a2e2. On choisit la norme 1 dans R2. Soit r > 0 tel que

B1(a, r) ⊂ Ω, pour h = (h1, h2) ∈ R2, si ||h||1 < r et ∆ = |f(a+ h)− f(a)− h1
∂f
∂x1

(a)− h2
∂f
∂x2

(a)| :

∆ 6
∣∣∣f(a+h)−f(a1+h1, a2)−h2 ∂f∂x2 (a)∣∣∣+∣∣∣f(a1+h1, a2)−f(a)−h1 ∂f∂x1 (a)∣∣∣ par inégalité triangulaire.

Par le théorème des accroissements finis, ∃c1 ∈ ˜]a1;a1 + h1[, f(a1 + h1, a2) − f(a1, a2) = h1
∂f
∂x1

(c1, a2)

et ∃c2 ∈ ˜]a2;a2 + h2[, f(a1 + h1, a2 + h2) − f(a1 + h1, a2) = h2
∂f
∂x2

(a1 + h1, c2). Par continuité de

∂f
∂xj

en a (j = 1 ou 2) : ∀ε > 0, ∃αj > 0, ∀k ∈ R2, ||k||1 6 αj =⇒
∣∣∣ ∂f∂xj (a+ k)− ∂f

∂xj
(a)
∣∣∣ 6 ε.

Pour ε > 0 et α1 et α2 associés dans l’implication ci-dessus, si h ∈ R2 et ||h||1 6 β = Min(r, α1, α2),

alors ∆2 =
∣∣∣f(a + h) − f(a1 + h1, a2) − h2

∂f
∂x2

(a)
∣∣∣ = ∣∣∣h2 ∂f∂x2 (a1 + h1, c2) − h2

∂f
∂x2

(a)
∣∣∣ 6 ε|h2|. On

majore aussi ∆1 =
∣∣∣f(a1 + h1, a2) − f(a) − h1

∂f
∂x1

(a)
∣∣∣ = ∣∣∣h1 ∂f∂x1 (c1, a2) − h1

∂f
∂x1

(a)
∣∣∣ 6 ε|h1| donc

|f(a+ h)− f(a)− h1 ∂f∂x1 (a)− h2
∂f
∂x2

(a)| 6 ε||h||1 ce qui est la définition du développement limité attendu.
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PROPOSITION SUR UNE CONDITION SUFFISANTE DE CONTINUITÉ 15.3 :

Une fonction de classe C1 sur Ω est continue sur Ω.� �
Démonstration : Revenons en dimension p quelconque. Soit a ∈ Ω. L’application φ : Rp → R définie par

φ(h) = h1
∂f
∂x1

(a) + · · · + hp
∂f
∂xp

(a) est linéaire donc continue (dimension finie) : lim
h→0

φ(h) = φ(0) = 0.

D’après le développement limité du théorème précédent, lim
h→0

(
f(a + h) − f(a) − φ(h)

)
= 0 car, par exemple

pour ε = 1, on a
∣∣f(a + h) − f(a) − φ(h)

∣∣ 6 ||h|| dès que ||h|| est assez petit. Ainsi, par somme, comme

f(a+ h)− f(a) =
(
f(a+ h)− f(a)− φ(h)

)
+ φ(h), lim

h→0
(f(a+ h)− f(a)

)
= 0 : f est continue en a.

REMARQUE 15.6 : Attention : si f admet en tout point de Ω des dérivées partielles sans qu’elles soient

continues, cela n’implique même pas la continuité de f sur Ω.

THÉORÈME OPÉRATOIRE SUR LES FONCTIONS DE CLASSE C1 15.4 :

Soit f, g : Ω → R des fonctions de classe C1 sur Ω telles que g ne s’annule pas sur Ω. Soit
φ : I→ R de classe C1 sur I intervalle ouvert avec f(Ω) ⊂ I :

• f+ g est de classe C1 sur Ω et ∀k ∈ [[1; p]],
∂(f+ g)
∂xk

= ∂f
∂xk

+ ∂g
∂xk

.

• λf est de classe C1 sur Ω et ∀k ∈ [[1; p]],
∂(λf)
∂xk

= λ ∂f
∂xk

.

• fg est de classe C1 sur Ω et ∀k ∈ [[1; p]],
∂(fg)
∂xk

= g× ∂f
∂xk

+ f× ∂g
∂xk

.

• f

g
est de classe C1 sur Ω et ∀k ∈ [[1; p]],

∂(f/g)
∂xk

= 1

g2

(
g× ∂f

∂xk
− f× ∂g

∂xk

)
.

• φ ◦ f est de classe C1 sur Ω et ∀k ∈ [[1; p]],
∂(φ ◦ f)
∂xk

= ∂f
∂xk

×
(
φ′ ◦ f

)
.

Démonstration : D’après la proposition 15.1, avec ces hypothèses, les dérivées partielles de ces fonctions f+g,
λf, f × g, f/g, φ ◦ f existent et leurs expressions ponctuelles se traduisent globalement sur Ω par les relations

ci-dessus. D’après ces relations, les p dérivées partielles sont continues sur Ω par opérations (somme, multiplication

par une constante, produit, rapport, composée). Ainsi, par définition, ces cinq fonctions sont de classe C1 sur Ω.

REMARQUE 15.7 : • C1(Ω, R) est donc une algèbre.

• Les fonctions polynomiales, les fonctions rationnelles (là où le dénominateur ne s’annule pas) et

les composées par des fonctions usuelles sont de classe C1 par ces opérations car les applications

coordonnées ck : (x1, · · · , xp) 7→ xk sont clairement de classe C1 sur Rp.

EXEMPLE 15.5 : f : R3 → R définie par f(x, y, z) =
xyz+ Arctan(x3z+ y2x)

2ex
2+y4

+ sin(z2)
est de classe C1.

Démonstration : Les fonctions (x, y, z) 7→ x, (x, y, z) 7→ y et (x, y, z) 7→ z sont continues sur R3 car

linéaires (en dimension finie) et Arctan, exp, sin sont continues sur R. f est donc continue sur R3 par composée,

somme, produit, rapport de fonctions continues car si (x, y, z) ∈ R3, 2ex
2+y4

+ sin(z2) > 2e0 − 1 = 1 > 0.

DÉFINITION 15.5 :

Si f : Ω → R est de classe C1 et a ∈ Ω, on définit la différentielle de f en a, notée df(a), c’est l’application

df(a) : Rp → R vérifiant ∀h = (h1, · · · , hp) ∈ Rp, df(a)(h) =
p∑

k=1

hk
∂f
∂xk

(a).

REMARQUE 15.8 : • On note aussi df(a).h à la place de df(a)(h).

• La différentielle de f en a est donc une forme linéaire sur Rp.
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15.2.3 : Règle de la châıne et gradient

THÉORÈME DIT RÈGLE DE LA CHAÎNE (ÉNORME) 15.5 :

Soit f : Ω → R de classe C1, I un intervalle de R, des fonctions x1, · · · , xp de I dans R de

classe C1 telles que ∀t ∈ I, x(t) =
(
x1(t), · · · , xp(t)

)
∈ Ω. Alors la fonction g : I → R définie par

g(t) = f
(
x1(t), · · · , xp(t)

)
est de classe C1 sur I et on a :

∀t ∈ I, g′(t) = x′1(t)
∂f
∂x1

(
x(t)

)
+ · · ·+ x′p(t)

∂f
∂xp

(
x(t)

)
.

Démonstration : À nouveau, on ne le montre que pour p = 2, on adapte si p > 2. Pour t0 ∈ I et

t ∈ I \{t0}, on a g(t)−g(t0) = f
(
x1(t), x2(t)

)
− f
(
x1(t), x2(t0)

)
+ f
(
x1(t), x2(t0)

)
− f
(
x1(t0), x2(t0)

)
.

À nouveau, on utilise le théorème des accroissements finis qui nous donne l’existence de c2 ∈ ˜[x2(t0); x2(t)]

tel que f
(
x1(t), x2(t)

)
− f
(
x1(t), x2(t0)

)
=
(
x2(t) − x2(t0)

)
∂f
∂x2

(
x1(t), c2

)
et de c1 ∈ ˜[x1(t0); x1(t)]

tel que f
(
x1(t), x2(t0)

)
− f
(
x1(t0), x2(t0)

)
=
(
x1(t) − x1(t0)

)
∂f
∂x1

(
c1, x2(t0)

)
(ceci fonctionne même si

x1(t0) = x1(t) ou si x2(t0) = x2(t) grâce aux segments qui ont remplacé les intervalles ouverts).

Ainsi, g(t)− g(t0) =
(
x2(t)− x2(t0)

)
∂f
∂x2

(
x1(t), c2

)
+
(
x1(t)− x1(t0)

)
∂f
∂x1

(
c1, x2(t0)

)
. Par le théorème

des accroissements finis g(t)− g(t0) = (t− t0)x′2(t2) ∂f∂x2
(
x1(t), c2

)
+ (t− t0)x′1(t1) ∂f∂x1

(
c1, x2(t0)

)
avec

t1 et t2 dans ]̃t0; t[, qu’on a intérêt à écrire
g(t)− g(t0)
t− t0

= x′2(t2)
∂f
∂x2

(
x1(t), c2

)
+ x′1(t1)

∂f
∂x1

(
c1, x2(t0)

)
.

Par continuité des fonctions x1, x
′
1 et x′2 sur I et de ∂f

∂x1
, ∂f
∂x2

sur U, comme lim
t→t0

t1 = t0, lim
t→t0

t2 = t0,

lim
t→t0

x1(t) = x1(t0), lim
t→t0

c1 = x1(t0), lim
t→t0

c2 = x2(t0), ce qui implique (par les coordonnées en dimension

finie) lim
t→t0

(c1, x2(t0)) = (x1(t0), x2(t0)) = x(t0), lim
t→t0

(x1(t), c2) = (x1(t0), x2(t0)) = x(t0), on a aussi

les limites lim
a→x(t0)

∂f
∂x1

(a) = ∂f
∂x1

(x(t0)) et lim
a→x(t0)

∂f
∂x2

(a) = ∂f
∂x2

(x(t0)), on obtient finalement la dérivée

souhaitée g′(t0) = lim
t→t0

g(t)− g(t0)
t− t0

= x′1(t0)
∂f
∂x1

(x(t0)) + x′2(t0)
∂f
∂x2

(x(t0)).

EXEMPLE 15.6 : Soit x(t) = 1+ cos(t), y(t) = sin(t), z(t) = 2 sin

(
t

2

)
, f(x, y, z) = x2 + y2 + z2.

Calculer g′(t) si g(t) = f
(
x(t), y(t), z(t)

)
. Quelle interprétation donner à ce résultat ?

Démonstration : f est de classe C1 sur R3 car polynomiale. De plus, x, y et z étant de classe C1 et

4π-périodique sur R2, φ : R → R3 définie par φ(t) = (x(t), y(t), z(t)) étant de classe C1 et 4π-périodique

sur R. On peut donc utiliser la règle de la châıne pour affirmer que g est dérivable sur R et obtenir la relation,

pour t ∈ R, g′(t) = x′(t) ∂f
∂x

(φ(t)) + y′(t) ∂f
∂y

(φ(t)) + z′(t)∂f
∂z

(φ(t) ce qui donne facilement l’expression

g′(t) = (− sin(t))(2(1 + cos(t))) + cos(t)(2 sin(t)) + cos(t/2)(4 sin(t/2)) donc, avec des formules de

trigonométrie, g′(t) = −2 sin(t)− 2 sin(t) cos(t) + 2 sin(t) cos(t) + 2 sin(t) = 0. Ainsi, comme R est un

intervalle, g est constante et vaut g(0) = 4. Cette courbe est donc tracée sur la sphère S de centre (0, 0, 0) et de

rayon 2. C’est l’intersection de S et d’un cylindre à base circulaire (x− 1)2 + y2 = 1 qui est tangent en (2, 0, 0)
à la sphère S. C’est la courbe de Viviani qui est un cas particulier d’hippopède d’Eudoxe.

REMARQUE 15.9 : La règle de la châıne permet la dérivée d’une quantité physique (température,

altitude, pression, ...) le long d’une courbe paramétrée de classe C1 donnée par t 7→
(
x1(t), · · · , xp(t)

)
qui

représente un point en fonction du temps donc une “trajectoire” ponctuelle.
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THÉORÈME DE CHANGEMENT DE COORDONNÉES (ÉNORME) 15.6 :

Soit Ω et Γ des ouverts de R2 et x, y : Ω → R de classe C1, f : Γ → R de classe C1, le tout vérifiant

∀(u, v) ∈ Ω,
(
x(u, v), y(u, v)

)
∈ Γ. Alors g : Ω → R définie par g(u, v) = f

(
x(u, v), y(u, v)

)
est de classe

C1 sur Ω avec les relations :

∀(u, v) ∈ Ω,


∂g
∂u

(u, v) = ∂x
∂u

(u, v) ∂f
∂x

(
x(u, v), y(u, v)

)
+ ∂y
∂u

(u, v) ∂f
∂y

(
x(u, v), y(u, v)

)
∂g
∂v

(u, v) = ∂x
∂v

(u, v) ∂f
∂x

(
x(u, v), y(u, v)

)
+ ∂y
∂v

(u, v) ∂f
∂y

(
x(u, v), y(u, v)

)

Démonstration : D’abord, g est bien définie avec les conditions imposées ci-dessus.

Par définition, g est de classe C1 si et seulement si g admet des dérivées partielles par rapport à u et à v et si

celles-ci sont continues sur Ω. g admet une dérivée partielle d’ordre 1 par rapport à u en (u, v) si et seulement

si φ1 : t 7→ g(u + t, v) = f
(
x(u + t, v), y(u + t, v)

)
est dérivable en 0 et on aura alors

∂g
∂u

(u, v) = φ′
1(0).

Posons donc p : t 7→
(
x(u+ t, v), y(u+ t, v)

)
= (p1(t), p2(t)) de sorte que φ1 = f ◦ p. D’après la règle de

la châıne, comme f, p1 et p2 donc p sont de classe C1 par hypothèse, la fonction φ1 est elle-même de classe C1

et on a φ′
1(t) = p′1(t)

∂f
∂x

(p(t)) + p′2(t)
∂f
∂y

(p(t)) = ∂x
∂u

(u + t, v) ∂f
∂x

(p(t)) + ∂y
∂u

(u + t, v) ∂f
∂y

(p(t)). On

prend maintenant t = 0 dans cette formule et φ′(0) = ∂g
∂u

(u, v) = ∂x
∂u

(u, v) ∂f
∂x

(p(0)) + ∂y
∂u

(u, v) ∂f
∂y

(p(0))

ce qui est la relation attendue sachant que p(0) = (x(u, v), y(u, v)).

On fait de même pour la seconde dérivée partielle qui vaut, si elle existe,
∂g
∂v

(u, v) = φ′
2(0) avec la fonction

φ2 : t 7→ g(u, v+ t) = f
(
x(u, v+ t), y(u, v+ t)

)
= f ◦ q(t) avec q : t 7→

(
x(u, v+ t), y(u, v+ t)

)
.

REMARQUE 15.10 :

• Comme on écrit (même en mathématique) rarement les points en lesquels on calcule les dérivées

partielles, ces deux formules s’abrègent en :

{ ∂g
∂u

= ∂x
∂u

∂f
∂x

+ ∂y
∂u

∂f
∂y

∂g
∂v

= ∂x
∂v
∂f
∂x

+ ∂y
∂v
∂f
∂y

.

• En trois variables, si g : (u, v, w) 7→ f
(
x(u, v, w), y(u, v, w), z(u, v, w)

)
(toutes les fonctions étant C1

sur des ouverts idoines), cela se transforme sans peine en


∂g
∂u

= ∂x
∂u

∂f
∂x

+ ∂y
∂u

∂f
∂y

+ ∂z
∂u

∂f
∂z

∂g
∂v

= ∂x
∂v
∂f
∂x

+ ∂y
∂v
∂f
∂y

+ ∂z
∂v
∂f
∂z

∂g
∂w

= ∂x
∂w

∂f
∂x

+ ∂y
∂w

∂f
∂y

+ ∂z
∂w

∂f
∂z

.

REMARQUE FONDAMENTALE 15.11 : Coordonnées polaires :

• Le passage en polaires correspond à la fonction φ : (r, θ) 7→
(
r cos θ, r sin θ) définie sur R2.

• Ainsi φ(r, θ) = (x(r, θ), y(r, θ)) avec x(r, θ) = r cos θ et y(r, θ) = r sin θ. φ n’est pas du tout injective.

• Si on se donne f : R2 → R, on pose g = f ◦ φ ce qui revient à : g(r, θ) = f
(
r cos θ, r sin θ

)
.

• Les fonctions f et g représentent la même quantité physique (température, enthalpie, pression,...)

mais pas avec les mêmes coordonnées : f(1, 1) = g

(√
2, π

4

)
.

• Si f est de classe C1 sur R2, alors g est aussi de classe C1 sur R2 par le théorème précédent, on obtient{ ∂g
∂r

= cos θ ∂f
∂x

+ sin θ ∂f
∂y

∂g
∂θ

= −r sin θ ∂f
∂x

+ r cos θ ∂f
∂y

. Si r ̸= 0, on peut inverser en


∂f
∂x

= cos θ
∂g
∂r

− sin θ

r

∂g
∂θ

∂f
∂y

= sin θ
∂g
∂r

+ cos θ

r

∂g
∂θ

.
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Démonstration : • On constate qu’en maths, a priori, on peut tolérer des rayons négatifs pour les coordonnées

polaires. On dit juste qu’un point M = (x, y) ∈ R2 admet des coordonnées polaires (r, θ) si x = r cos(θ) et

y = r sin(θ), ce qui équivaut géométriquement au fait que
−−→
OM = r−→er en posant −→er = (cos(θ), sin(θ)).

• φ n’est pas injective car φ(0, θ) = (0, 0) quel que soit l’angle θ choisi dans R. De plus, pour un point

M0 = (x0, y0) ∈ R2 \ {(0, 0)}, en notant r0 =
√
x20 + y20 > 0 et θ0 l’argument de z0 = x0 + iy0 dans

]− π;π] (par exemple), on a ∀k ∈ Z, φ(r0, θ0 + 2kπ) = φ(−r0, θ0 + 2kπ+ π) = (x0, y0).
• Puisque toutes les fonctions sont de classe C1, on utilise la formule du changement de coordonnées du théorème

15.6 :
∂g
∂r

= ∂x
∂r
∂f
∂x

+ ∂y
∂r
∂f
∂y

= cos θ ∂f
∂x

+ sin θ ∂f
∂y

et
∂g
∂θ

= ∂x
∂θ
∂f
∂x

+ ∂y
∂θ

∂f
∂y

= −r sin θ ∂f
∂x

+ r cos θ ∂f
∂y

.

• Si r ̸= 0, on remplace cos θ
∂g
∂r

− sin θ
r

∂g
∂θ

= cos θ

(
cos θ ∂f

∂x
+sin θ ∂f

∂y

)
− sin θ

r

(
−r sin θ ∂f

∂x
+r cos θ ∂f

∂y

)
qui se simplifie, étant donné que cos2 θ+sin2 θ = 1, en cos θ

∂g
∂r

− sin θ
r

∂g
∂θ

= ∂f
∂x

. On fait de même avec l’autre

formule et sin θ
∂g
∂r

+ cos θ

r

∂g
∂θ

= sin θ

(
cos θ ∂f

∂x
+ sin θ ∂f

∂y

)
+ cos θ

r

(
− r sin θ ∂f

∂x
+ r cos θ ∂f

∂y

)
= ∂f
∂y

.

EXERCICE 15.7 : En passant en polaires, déterminer les f : R∗
+ × R → R de classe C1 solutions

de l’équation aux dérivées partielles (E) : x ∂f
∂x

+ y ∂f
∂y

=
√
x2 + y2.

Démonstration : Si f : R∗
+× R → R de classe C1 est solution de x ∂f

∂x
+y ∂f

∂y
=
√
x2 + y2 sur R∗

+× R.

Définissons alors g : R∗
+ ×

]
− π

2
; π
2

[
→ R par ∀(r, θ) ∈ R∗

+ ×
]
− π

2
; π
2

[
, g(r, θ) = f(r cos θ, r sin θ).

On le peut car φ : R∗
+ ×

]
− π

2
; π
2

[
→ R∗

+ × R est bien définie, c’est même une fonction bijective avec

la réciproque φ−1(r, θ) =
(√

x2 + y2, Arctan

(
y

x

))
. D’après la remarque précédente, on a la relation

∂g
∂r

(r, θ) = cos θ ∂f
∂x

(r cos θ, r sin θ) + sin θ ∂f
∂y

(r cos θ, r sin θ) donc r
∂g
∂r

= r ⇐⇒ ∂g
∂r

= 1 d’après (E).

On résout, à θ ∈
]
− π

2
; π
2

[
fixé, cette équation différentielle sur R∗

+ : ∃λ(θ) ∈ R, ∀r > 0, g(r, θ) = r+λ(θ).

Mais, comme f est de classe C1, g est elle aussi de classe C1 donc λ doit être de classe C1 sur l’intervalle]
− π

2
; π
2

[
puisque

∂g
∂θ

doit exister et être continue. Revenons à f, pour tout (x, y) ∈ R∗
+ × R, on a donc

la relation f(x, y) = g(
√
x2 + y2) =

√
x2 + y2 + λ(Arctan(y/x)) =

√
x2 + y2 + h(y/x) en ayant posé

h = λ ◦ Arctan de classe C1 sur R. Fin de la partie analyse.

Réciproquement, s’il existe une fonction h : R → R de classe C1 telle que l’on ait, pour (x, y) ∈ R∗
+ × R,

f(x, y) =
√
x2 + y2 + h(y/x), alors f est de classe C1 sur R∗

+ × R par composée et on a les dérivées partielles

∂f
∂x

= x√
x2 + y2

− y

x2
h′(y/x) et ∂f

∂y
= y√

x2 + y2
+ 1

x
h′(y/x) donc f vérifie (E) sur R∗

+ × R car

x ∂f
∂x

+ y ∂f
∂y

= x2√
x2 + y2

− y

x
h′
(
y

x

)
+ y2√

x2 + y2
+ y

x
h′
(
y

x

)
= x2 + y2√

x2 + y2
=
√
x2 + y2 en simplifiant.

� �
PROPOSITION SUR UNE CONDITION SUFFISANTE DE CONSTANCE 15.7 :

Soit f : C→ R de classe C1 où C est un ouvert convexe.

Alors : f est constante sur C ⇐⇒
(
∀k ∈ [[1; p]], ∂f

∂xk
= 0 sur C

)
.� �

Démonstration : (=⇒) si f est nulle, ses dérivées partielles sont clairement nulles dans toutes les directions.

(⇐=) soit (a, b) ∈ C2, on crée le chemin φ : t 7→ a + t(b − a) qui est de classe C1 car affine, et vérifie

φ(0) = a et φ(1) = b : on se déplace sur le segment [a; b] ⊂ C car C est convexe. Alors, on a la relation

f(b) − f(a) = g(1) − g(0) si g : t 7→ f
(
φ(t)

)
. Si on écrit a = (a1, · · · , ap) et b = (b1, · · · , bp), alors

g(t) = f(a1+ t(b1−a1), · · · , ap+ t(bp−ap)) donc, avec la règle de la châıne, la fonction g est dérivable sur

[0; 1] et g′(t) = (b1−a1) ∂f∂x1 (φ(t))+ · · ·+(bp−ap) ∂f∂xp (φ(t)) = 0 donc g est constante sur cet intervalle

[0; 1] et on a bien g(0) = g(1) donc f(a) = f(b). Ainsi, f est bien constante sur C.
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DÉFINITION 15.6 :

Soit f : Ω → R de classe C1, pour tout a ∈ Ω on définit le gradient de f en a, noté ∇f(a) ou
−−−→
grad f(a),

par la relation ∀h ∈ Rp, ∀a ∈ Ω, df(a).h = df(a)(h) =
(−−−→
grad f(a)|h

)
=
(
∇f(a)|h

)
.

� �
PROPOSITION SUR LES COORDONNÉES DU GRADIENT 15.8 :

Avec ces notations, ∀a ∈ Ω, ∇f(a) = −−−→
grad f(a) =

p∑
k=1

∂f
∂xk

(a)ek.� �
Démonstration : Avec la définition 15.6, comme on travaille avec le produit scalaire canonique sur Rp, on a

par pour tout vecteur h = (h1, · · · , hp) ∈ Rp, df(a)(h) =
p∑

k=1

hk
∂f
∂xk

(a) =
(−−−→
grad f(a)|h

)
.

REMARQUE HP 15.12 : Avec les notations de la remarque 15.10,

{ ∂g
∂u

= ∂x
∂u

∂f
∂x

+ ∂y
∂u

∂f
∂y

∂g
∂v

= ∂x
∂v
∂f
∂x

+ ∂y
∂v
∂f
∂y

. Si on

définit les vecteurs colonnes X =

(
∂f
∂x
∂f
∂y

)
et Y =

(
∂g
∂u
∂g
∂v

)
, alors on a Y = JX en posant J =

(
∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

)
la

matrice jacobienne du changement de variables (u, v) 7→ (x(u, v), y(u, v)). Même chose en dimension 3.

REMARQUE FONDAMENTALE 15.13 :

Soit f : R2 \ {(0, 0)} → R une fonction de classe C1. On pose donc g = f ◦φ ou g(r, θ) = f
(
r cos θ, r sin θ

)
avec g : R∗

+ × R → R (on peut imposer le rayon r > 0 ce qui permet d’avoir au moins unicité de r dans

les coordonnées polaires). On pose er =
(
cos θ, sin θ

)
et eθ =

(
− sin θ, cos θ

)
et alors la base (er, eθ)

est aussi une base orthonormale directe de R2. Alors, on peut exprimer le gradient
−−−→
grad f(x, y) (pour

(x, y) ∈ R2 \ {(0, 0)}) en coordonnées polaires avec la relation classique : ∇f = ∂g
∂r
er +

1

r

∂g
∂θ
eθ.

Démonstration : Pour (x, y) ∈ R2 \{(0, 0)} avec (r, θ) ∈ R∗
+× R tel que x = r cos(θ) et y = r sin(θ),

∇f(x, y) = ∂f
∂x

(x, y)e1 + ∂f
∂y

(x, y)e2 par la proposition 15.8. Avec g(r, θ) = f
(
r cos θ, r sin θ

)
= f(x, y),

par changement de coordonnées, ∂f
∂x

= cos θ
∂g
∂r

− sin θ

r

∂g
∂θ

et ∂f
∂y

= sin θ
∂g
∂r

+ cos θ

r
. Ainsi, en remplaçant,

on a ∇f =
(
cos θ

∂g
∂r

− sin θ

r

∂g
∂θ

)
e1 +

(
sin θ

∂g
∂r

+ cos θ

r

)
e2 ce qui devient en regroupant les termes :

∇f = ∂g
∂r

(
cos θe1 + sin θe2

)
+ 1

r

∂g
∂θ

(
− sin θe1 + cos θe2

)
= ∂g
∂r

(r, θ)er +
1

r

∂g
∂θ

(r, θ)eθ.� �
PROPOSITION OPÉRATOIRE SUR LE GRADIENT 15.9 :

Soit f, g : Ω → R sont de classe C1 sur Ω, g ne s’annulant pas sur Ω, φ : I→ R de classe C1 sur I

intervalle ouvert avec f(Ω) ⊂ I, alors :

• Si (λ, µ) ∈ R2 alors
−−−→
grad (λf+ µg) = λ

−−−→
grad f+ µ

−−−→
grad g.

• −−−→
grad (fg) = f×−−−→

grad g+ g×−−−→
grad f.

• −−−→
grad

(
f

g

)
= 1

g2

(
g×−−−→

grad f− f×−−−→
grad g

)
.

• −−−→
grad (φ ◦ f) =

(
φ′ ◦ f

)−−−→
grad f.� �

Démonstration : Passer par les coordonnées du gradient dans la base canonique, c’est-à-dire les dérivées

partielles avec la proposition 15.8 dont on connâıt les expressions avec le théorème 15.4.
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PARTIE 15.3 : FONCTIONS DE CLASSE C2� �

15.3.1 : Définition et propriétés

DÉFINITION 15.7 :

Soit f : Ω → R, a ∈ Ω et (i, j) ∈ [[1; p]]2, on dit que f admet en a une dérivée partielle d’ordre 2 par

rapport aux variables xj puis xi si ∂f
∂xj

existe sur un voisinage de a et ∂f
∂xj

admet une dérivée partielle

d’ordre 1 par rapport à xi en a, on note alors ∂2i,jf(a) ou
∂2f
∂xi∂xj

(a) cette valeur.

REMARQUE 15.14 : • Il y a donc a priori p2 dérivées partielles d’ordre 2 différentes.

• Si i = j, on note ∂2i f(a) ou
∂2f

∂xi
2 (a) à la place de ∂2i,if(a) =

∂2f
∂xi∂xi

(a).

• On se restreint en pratique à p = 2 ou p = 3 ce qui fait 4 ou 9 dérivées partielles à considérer.

DÉFINITION 15.8 :

On dit que f est de classe C2 sur Ω si toutes les dérivées partielles d’ordre 2 existent et sont continues sur

Ω. On note C2(Ω, R) l’ensemble des fonctions de classe C2 de Ω dans R.

� �
PROPOSITION SUR LA LUTTE DES CLASSES 15.10 :

Une fonction de classe C2 est de classe C1.� �
Démonstration : Soit f de classe C2 sur Ω, alors par définition, toutes ses dérivées partielles d’ordre 1 existent

en tout point de Ω et admettent elles-mêmes des dérivées partielles qui sont elles aussi continues sur Ω. Ainsi, pour

k ∈ [[1; p]], la dérivée partielle ∂f
∂xk

est de classe C1 sur Ω donc, d’après la proposition 15.3, les fonctions ∂f
∂xk

sont continues sur Ω. Mais cela est la définition du fait que f est de classe C1 sur Ω

THÉORÈME OPÉRATOIRE SUR LES DÉRIVÉES PARTIELLES D’ORDRE 2 15.11 :

Soit f, g : Ω → R des fonctions de classe C2 sur Ω telles que g ne s’annule pas sur Ω. Soit
φ : I→ R de classe C2 sur I intervalle ouvert avec f(Ω) ⊂ I :

• f+ g est C2 sur Ω et ∀(i, j) ∈ [[1; p]]2,
∂2(f+ g)
∂xi∂xj

= ∂2f
∂xi∂xj

+ ∂2g
∂xi∂xj

.

• λf est C2 sur Ω et ∀(i, j) ∈ [[1; p]]2,
∂2(λf)
∂xi∂xj

= λ ∂2f
∂xi∂xj

.

• fg est C2 sur Ω et ∀(i, j) ∈ [[1; p]]2,
∂2(fg)
∂xi∂xj

=
(
∂g
∂xi

)(
∂f
∂xj

)
+
(
∂f
∂xi

)(
∂g
∂xj

)
+ g ∂2f

∂xi∂xj
+ f

∂2g
∂xi∂xj

.

• f

g
et φ ◦ f sont aussi de classe C2 sur Ω.

REMARQUE 15.15 : L’ensemble C2(Ω, R) est donc une sous-algèbre de C1(Ω, R) qui contient les

fonctions polynomiales et les fonctions rationnelles (là où elles sont définies).
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15.3.2 : Schwarz et changement de coordonnées

THÉORÈME DE SCHWARZ (ÉNORME) 15.12 :

Si f : Ω → F de classe C2 sur un ouvert Ω alors ∀(i, j) ∈ [[1; p]]2, ∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
.

Démonstration : hors programme.

EXERCICE CLASSIQUE 15.8 : f de l’exemple 15.3 est-elle de classe C2 sur R2 ?

Démonstration : D’après l’exercice 15.3, pour t ̸= 0, on a ∂f
∂x

(0, t) = t5

(t2)2
= t et que ∂f

∂y
(t, 0) = 0. Ainsi,

par définition, ∂2f
∂x∂y

(0, 0) = lim
t→0

∂f

∂y
(t, 0)− ∂f

∂y
(0, 0)

t
= 0 et ∂2f

∂y∂x
(0, 0) = lim

t→0

∂f

∂x
(0, t)− ∂f

∂x
(0, 0)

t
= 1.

Comme ∂2f
∂y∂x

(0, 0) ̸= ∂2f
∂x∂y

(0, 0), par contre-apposée du théorème de Schwarz, f n’est pas de classe C2 sur

R2 même si, par opérations, f est de classe C2 sur R2 \ {(0, 0)}.

REMARQUE 15.16 : Changement linéaire de coordonnées :

• On considère f : R2 → R de classe C2, φ : (u, v) → (au+ bv, cu+ dv) où (a, b, c, d) ∈ R4. On pose

alors g : R2 → R définie par g(u, v) = f
(
φ(u, v)

)
= f(x, y) si on pose (x, y) = φ(u, v).

• φ ∈ GL(R2) si et seulement si ad− bc ̸= 0 et alors f = g ◦ φ−1 avec les mêmes propriétés.

• Par exemple

{ ∂g
∂u

= a ∂f
∂x

+ c ∂f
∂y

∂g
∂v

= b ∂f
∂x

+ d ∂f
∂y

puis



∂2g

∂u2
= a2 ∂

2f

∂x2
+ 2ac ∂

2f
∂x∂y

+ c2 ∂
2f

∂y2

∂2g
∂u∂v

= ab ∂
2f

∂x2
+ (ad+ bc) ∂

2f
∂x∂y

+ cd ∂
2f

∂y2

∂2g

∂v2
= b2 ∂

2f

∂x2
+ 2bd ∂2f

∂x∂y
+ d2 ∂

2f

∂y2

avec la

règle de la châıne en remplaçant f par ∂f
∂x

ou ∂f
∂y

.

EXERCICE 15.9 : Avec le changement de coordonnées

{
u = x+ y

v = x− y
, déterminer les fonctions

f : R2 → R de classe C2 solutions de l’équation aux dérivées partielles (E) : ∂2f

∂x2
− ∂2f

∂y2
= 0.

Démonstration : Soit φ : R2 → R2 défini par φ(x, y) = (x + y, x − y), alors φ est clairement linéaire

et comme sa matrice dans la base canonique de R2 est

(
1 1

1 −1

)
qui est inversible car de déterminant −2,

φ est un automorphisme de R2. Pour f : R2 → R, on pose g : R2 → R défini par g = f ◦ φ−1 donc

f(x, y) = g(x + y, x − y) ou, puisque φ−1(u, v) =
(
u+ v

2
, u− v

2

)
, g(u, v) = f

(
u+ v

2
, u− v

2

)
. Comme

φ et φ−1 sont clairement de classe C1 car les fonctions coordonnées sont polynomiales, on a par formule de

changement de coordonnées :
∂g
∂u

= ∂x
∂u

∂f
∂x

+ ∂y
∂u

∂f
∂y

et
∂g
∂v

= ∂x
∂v
∂f
∂x

+ ∂y
∂v
∂f
∂y

en notant x : (u, v) 7→ u+ v

2
et

y : (u, v) 7→ u− v

2
les deux fonctions coordonnées de φ−1. Ainsi,

∂g
∂u

= 1

2

∂f
∂x

+ 1

2

∂f
∂y

et
∂g
∂v

= 1

2

∂f
∂x

− 1

2

∂f
∂y

.

On recommence à dériver partiellement en écrivant par exemple
∂g
∂u

(u, v) = 1

2

∂f
∂x

(φ−1(u, v))+1
2

∂f
∂y

(φ−1(u, v))

de manière plus développée et en utilisant à nouveau la formule de changement de coordonnées en remplaçant dans

ce qui précède f par ∂f
∂x

ou ∂f
∂y

. Toujours est-il que
∂2g

∂u2
= 1

2

[
1

2

∂2f

∂x2
+ 1

2

∂2f
∂y∂x

+ 1

2

∂2f
∂x∂y

− 1

2

∂2f

∂y2

]
et, de même,

que
∂2g
∂v∂u

= 1

2

[
1

2

∂2f

∂x2
− 1

2

∂2f
∂y∂x

+ 1

2

∂2f
∂x∂y

− 1

2

∂2f

∂y2

]
et
∂2g

∂v2
= 1

2

[
1

2

∂2f

∂x2
− 1

2

∂2f
∂y∂x

−
(
1

2

∂2f
∂x∂y

− 1

2

∂2f

∂y2

)]
.
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Cela donne, après simplification avec le théorème de Schwarz puisque toutes les fonctions sont de classe C2 :

∂2g

∂u2
= 1

4

∂2f

∂x2
+ 1

2

∂2f
∂y∂x

− 1

4

∂2f

∂y2
,
∂2g
∂v∂u

= 1

4

∂2f

∂x2
− 1

4

∂2f

∂y2
et
∂2g

∂v2
= 1

4

∂2f

∂x2
− 1

2

∂2f
∂y∂x

+ 1

4

∂2f

∂y2
.

Analyse : supposons que f : R2 → R de classe C2 soit solution de (E), alors, pour (u, v) ∈ R2, on a

∂2f

∂x2
(φ−1(u, v))− ∂2f

∂y2
(φ−1(u, v)) = 0 qui s’écrit, avec les calculs précédents :

∂2g
∂u∂v

= 0 sur R2. On l’écrit

∂
(∂g
∂v

)
∂u

= 0 de sorte qu’il existe une fonction a : R → R telle que ∀(u, v), ∂g
∂v

(u, v) = a(u). Mais comme

∂g
∂v

est de classe C1, a est elle-même de classe C1 sur R. On intègre à nouveau, en notant A une primitive de a

sur R, et il existe une fonction B : R → R telle que ∀(u, v) ∈ R2, g(u, v) = A(u) + B(v). Comme g est

de classe C2, la fonction B est de classe C2 sur R car
∂g
∂v

doit exister et être continue sur R2. Ainsi, il existe

A, B : R → R de classe C2 sur R telles que ∀(u, v) ∈ R2, g(u, v) = A(u)+B(v) qui implique, en composant

par φ qui est surjective de R2 dans R2, ∀(x, y) ∈ R2, f(x, y) = A(x+ y) + B(x− y).
Synthèse : réciproquement, soit A, B : R → R deux fonctions de classe C2 et f : R2 → R définie par

f(x, y) = A(x + y) + B(x − y), alors f est aussi de classe C2 par composée et somme et on a facilement

∂f
∂x

= A′(x + y) + B′(x − y), ∂
2f

∂x2
= A′′(x + y) + B′′(x − y), ∂f

∂y
= A′(x + y) − B′(x − y) et aussi

∂2f

∂y2
= A′′(x+ y)− (−B′′(x− y)) = A′′(x+ y) + B′′(x− y) donc ∂

2f

∂x2
− ∂2f

∂y2
= 0 et f vérifie bien (E).

REMARQUE 15.17 : Soit f : P → R de classe C2 où P = R2 \ {(x, y) ∈ R2 | y = 0 et x 6 0}.
• Soit φ : U = R∗

+×]− π;π[→ P définie par φ(r, θ) =
(
r cos θ, r sin θ

)
. Le passage en polaires est enfin

bijectif. Si (x, y) = (r cos θ, r sin θ) pour (x, y) ∈ P : r =
√
x2 + y2 et θ = 2Arctan

(
y

x+
√
x2 + y2

)
.

• Soit g : (r, θ) ∈ U 7→ g(r, θ) = f(r cos θ, r sin θ) = f(x, y). Alors,

{ ∂g
∂r

= cos θ ∂f
∂x

+ sin θ ∂f
∂y

∂g
∂θ

= −r sin θ ∂f
∂x

+ r cos θ ∂f
∂y

• Encore :


∂2g

∂r2
= cos2 θ ∂

2f

∂x2
+ 2 sin θ cos θ ∂

2f
∂x∂y

+ sin2 θ ∂
2f

∂y2

∂2g

∂θ2
= −r cos θ ∂f

∂x
− r sin θ ∂f

∂y
+ r2 sin2 θ ∂

2f

∂x2
+ r2 cos2 θ ∂

2f

∂y2
− 2r2 sin θ cos θ ∂

2f
∂x∂y

REMARQUE HP 15.18 : On définit le laplacien de f par ∆f = ∂2f

∂x2
+ ∂2f

∂y2
.

Ce qui donne en polaires : ∆f = ∂2g

∂r2
+ 1

r

∂g

∂r
+ 1

r2
∂2g

∂θ2
.

Démonstration : Avec les relations de la remarque précédente,

∂2g

∂r2
+ 1

r

∂g

∂r
+ 1

r2
∂2g

∂θ2
= cos2 θ ∂

2f

∂x2
+ 2 sin θ cos θ ∂

2f
∂x∂y

+ sin2 θ ∂
2f

∂y2
+ cos θ

r

∂f
∂x

+ sin θ

r

∂f
∂y

−cos θ
r

∂f
∂x

− sin θ

r

∂f
∂y

+ sin2 θ ∂
2f

∂x2
+ cos2 θ ∂

2f

∂y2
− 2 sin θ cos θ ∂

2f
∂x∂y

= ∂2f

∂x2
+ ∂2f

∂y2
= ∆f.

15.3.3 : Matrice hessienne et développement limité

DÉFINITION 15.9 :

Soit f : Ω → R de classe C2 sur Ω et a ∈ Ω, on appelle matrice hessienne de f en a, qu’on note Hf(a),

la matrice Hf(a) =
(

∂2f
∂xi∂xj

(a)
)
16i,j6p

∈ Mp(R).
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REMARQUE 15.19 : D’après le théorème de Schwarz, la matrice Hf(a) est symétrique.

DÉFINITION 15.10 :

On dit que la fonction f : Ω → R admet en a ∈ Ω un développement limité d’ordre 2 donné par la relation

f(a+ h)=
0
f(a) + (u|h) + (Ah|h) + o(||h||2) avec un vecteur u ∈ Rp et une matrice carrée A ∈ Mp(R) si on

a ∀ε > 0, ∃α > 0, ∀h ∈ Rp, ||h|| 6 α =⇒
∣∣∣f(a+ h)− f(a)− (u|h)− (Ah|h)

∣∣∣ 6 ε||h||2.

� �
PROPOSITION SUR LE DÉVELOPPEMENT LIMITÉ D’UNE FONCTION C2 15.13 :

Si f : Ω → R est de classe C2 et a ∈ Ω, alors f admet en a un développement limité d’ordre 2

donné par f(a+ h)=
0
f(a) + (∇f(a))Th+ 1

2
hTHf(a)h+ o(||h||2).� �

Démonstration : hors programme.

REMARQUE 15.20 : Avec des produits scalaires, f(a+ h)=
0
f(a) + (∇f(a)|h) + 1

2
(h|Hf(a)h) + o(||h||2).

� �
PARTIE 15.4 : EXTREMA� �

15.4.1 : Définitions et condition nécessaire

DÉFINITION 15.11 :

Soit f : Ω → R et a ∈ Ω, on dit que f admet en a :

(i) un maximum (resp. minimum) local si ∃r > 0, ∀x ∈ B(a, r), f(x) 6 f(a) (resp. f(x) > f(a)).

(ii) un extremum local si f possède en a un maximum local ou un minimum local.

(iii) un maximum (resp. minimum) global si ∀x ∈ Ω, f(x) 6 f(a) (resp. f(x) > f(a)).

(iv) un extremum global si f possède en a un maximum global ou un minimum global.

� �
PROPOSITION SUR UNE CONDITION NÉCESSAIRE D’EXTREMUM LOCAL 15.14 :

Soit Ω un ouvert de Rp, f : Ω → R de classe C1 sur Ω et a ∈ Ω, si f admet un extremum local en

a alors
−−−→
grad f(a) = 0, c’est-à-dire ∀k ∈ [[1; p]], ∂f

∂xk
(a) = 0.� �

Démonstration : On a vu avant que, pour k ∈ [[1; p]], comme Ω est un ouvert, il existe rk > 0 tel que

∀t ∈]− rk; rk[, a+ tek ∈ Ω (si (e1, · · · , ep) est la base canonique de Rp). Comme f admet en a un extremum

local (par exemple un maximum local), il existe α > 0 tel que ∀b ∈ Ω, ||b− a|| < α =⇒ f(b) 6 f(a). Ainsi,

en notant αk = Min(rk, α) > 0, on a ∀t ∈] − αk;αk[, b = a + tek ∈ Ω et f(b) 6 f(a). Par conséquent,

la fonction fk :] − αk;αk[→ R définie par fk(t) = f(a + tek) est de classe C1 car f l’est et admet en 0 un

maximum local. On sait alors, par le lemme précédent le théorème de Rolle, que f′k(0) =
∂f
∂xk

(a) = 0.

REMARQUE 15.21 : Il y a des extrema locaux selon les axes canoniques à partir de a.

DÉFINITION 15.12 :

Si f : Ω → R est de classe C1 sur Ω, on dit a ∈ Ω est un point critique de f si ∇f(a) = 0.
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REMARQUE 15.22 : • Cette propriété est fausse sur un ensemble non ouvert.

• Ainsi, avec ces conditions :
(
f admet un extremum local en a

)
=⇒

(
a est un point critique de f

)
.

• La réciproque de cette implication est fausse.

EXEMPLE 15.10 : Soit f : (x, y) 7→ sin(x) + cos(y) définie sur [0;π]2.

Quel est son maximum absolu ? son minimum absolu ? Ses points critiques ?

Démonstration : La fonction f est bien de classe C1 sur le compact K = [0;π]2. Ainsi, comme elle est

continue sur K, elle y est bornée et elle y atteint ses bornes. on peut donc définir M =Max
K

(f) et m =Min
K

(f).

On calcule
−−−→
grad f(x, y) = (cos(x),− sin(y)), donc les seuls points critiques de f sur le domaine K sont en(

π

2
, 0

)
et en

(
π

2
, π

)
. Ces deux points sont sur la frontière de K.

Ainsi, la fonction f ne peut pas atteindre ses extrema absolus en des points intérieurs à K d’après la proposition

précédente. Il reste à étudier f sur les quatre arêtes du carré K :

• f1 : x 7→ f(x, 0) = 1+ sin(x) est minimale en 0 ou π sur [0;π] où elle vaut 1 et maximale en π

2
où elle vaut 2.

• f2 : x 7→ f(x, π) = −1+ sin(x) est minimale en 0 ou π sur [0;π] où elle vaut −1, maximale en π

2
et y vaut 0.

• f3 : y 7→ f(0, y) = cos(y) est minimale en π sur [0;π] où elle vaut −1 et maximale en 0 où elle vaut 1.

• f4 : y 7→ f(π, y) = cos(y) est minimale en π sur [0;π] où elle vaut −1 et maximale en 0 où elle vaut 1.

Par conséquent, f est maximale sur K en

(
π

2
, 0

)
où elle vaut M = 2 et f est minimale en (0, π) ou (π, π) où elle

vaut m = −1. Parmi ces trois points, seul

(
π

2
, 0

)
est un point critique. De plus, f n’admet pas en l’autre point

critique

(
π

2
, π

)
d’extremum local (a fortiori absolu).

15.4.2 : Recherche pratique des extrema

EXERCICE 15.11 : Trouver les extrema sur R2 de f : (x, y) 7→ x2 + 2y2 − 2xy− 2y+ 5.

Démonstration : La fonction f est polynomiale donc de classe C1 (en fait de classe C∞) sur R2 et on calcule
∂f
∂x

(x, y) = 2x − 2y et ∂f
∂y

(x, y) = 4y − 2x − 2. Ainsi, si (x, y) est un point critique pour f, on a le système

linéaire x− y = 2y− x− 1 = 0 qui est un système de Cramer dont l’unique solution est (x, y) = (1, 1).

On étudie f au voisinage de ce point critique pour voir si c’est un extremum local (voire plus). Soit (h, k) ∈ R2,

on a f(1+ h, 1+ k) = (1+ h)2 + 2(1+ k)2 − 2(1+ h)(1+ k)− 2(1+ k) + 5 = 4+ (h− k)2 + k2 (après

calculs) donc f(1+ h, 1+ k) > 4 = f(1, 1) ce qui prouve que f admet en (1, 1) un minimum absolu.

Comme f(x, 0) = x2 + 5, on a lim
x→+∞

f(x, 0) = +∞ donc f n’admet pas de majorant sur R2.

La surface z = f(x, y) est un parabolöıde elliptique (parabole si x ou y sont fixés et ellipse si z > 4 est fixé).

THÉORÈME SUR UNE CONDITION SUFFISANTE D’EXTRÉMALITÉ D’UNE FONC-
TION EN UN POINT CRITIQUE 15.15 :

Soit Ω un ouvert de R2, f : Ω → R une fonction de classe C2 et a un point critique de f :

(i) si Hf(a) ∈ S++
p (R), alors f admet en a un minimum local.

(ii) si Hf(a) ∈ S−−
p (R) (−Hf(a) ∈ S++

p (R)), alors f admet en a un maximum local.

(iii) si Hf(a) /∈ S+p (R), alors f n’a pas de minimum local en a.

(iv) si Hf(a) /∈ S−p (R) (−Hf(a) /∈ S+p (R)), alors f n’a pas de maximum local en a.

(v) si Hf(a) ∈
(
S+p (R) \ S++

p (R)
)

∪
(
S−p (R) \ S−−

p (R)
)
, alors on ne peut rien dire.
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Démonstration : Les cinq cas recouvrent l’ensemble des possibilités pour la matrice symétrique Hf(a).
(i) Si Hf(a) est définie positive, son spectre est inclus dans R∗

+, notons λ = Min(Sp(Hf(a)) > 0 la plus

petite des valeurs propres de Hf(a) et λ1, · · · , λp les valeurs propres de Hf(a) (éventuellement répétées). Comme

∇f(a) = 0, pour ε ∈
]
0; λ
2

[
, il existe α > 0 tel que ∀h ∈ B(0, α), |f(a+h)− f(a)− 1

2
hTHf(a)h| 6 ε||h||2

ce qui implique que f(a + h) > f(a) + 1

2
hTHf(a)h − ε||h||2. Or, si h =

p∑
k=1

hkvk où (v1, · · · , vp) est

une base orthonormée de vecteurs propres de Hf(a) associés aux valeurs propres λ1, · · · , λp respectivement, on

a Hf(a)h =
p∑

k=1

hkλkvk et hTHf(a)h = (h|Hf(a)h) =
p∑

k=1

λkh
2
k > λ

p∑
k=1

h2k = λ||h||2 (avec la norme

euclidienne). Ainsi, ∀h ∈ B2(0, α), f(a+h) > f(a)+ 1
2
hTHf(a)h−ε||h||2 > f(a)+ λ

2
||h||2−ε||h||2 > f(a)

avec la minoration précédente. Par conséquent, f admet en a un minimum local.

(iii) Si Hf(a) n’est pas positive, il existe une valeur propre strictement négative λ de Hf(a), soit v un vecteur

propre unitaire associé à λ. Alors f(a + tv)=
0
f(a) + 1

2
(tv|Hf(a)(tv)) + o(||tv||2)=

0
f(a) + λt2

2
+ o(t2).

Comme avant, pour t assez petit et non nul, f(a+ tv)− f(a) < 0 donc f n’admet pas en a de minimum local.

(ii) et (iv) se montrent avec (i) et (iii) en remplaçant f par −f.
(v) est le complémentaire de la réunion des quatre cas précédents.

ORAL BLANC 15.12 : Centrale PSI 2012

Soit D = {(x, y) ∈ R2 | − 1 6 y 6 x 6 1} et f : D→ R définie par f(x, y) = (x− y)3 + 6xy.
Prouver que f admet un maximum et un minimum sur D et calculer explicitement ces valeurs.

REMARQUE 15.23 : Supposons que f : Ω → R (avec Ω ouvert de R2) de classe C2 admette un point

critique en a ∈ Ω, avec les notations de Monge : r = ∂2f

∂x2
(a), s = ∂2f

∂x∂y
(a), t = ∂2f

∂y2
(a) :

(i) Si rt− s2 > 0 et r > 0 (ou t > 0), f admet en a un minimum local,

(ii) Si rt− s2 > 0 et r < 0 (ou t < 0), f admet en a un maximum local,

(iii) Si rt− s2 < 0, f admet en a un point selle (ou point col).

(iv) Si rt− s2 = 0, on ne peut pas conclure.

Démonstration : Hf(a) =

(
r s

s t

)
et χH = X2 − (r + t)X + rt − s2 = (X − λ1)(X − λ2) si λ1, λ2

sont les valeurs propres de Hf(a) donc det(Hf(a)) = λ1λ2 = rt− s2 et tr(Hf(a)) = λ1 + λ2 = r+ t.

(i) si rt−s2 > 0 et r > 0, alors λ1λ2 > 0 donc λ1 et λ2 ont même signe strict. Puisque −s2 6 0, on a forcément

t > 0. Ainsi, tr(Hf(a)) = r+ t = λ1 + λ2 > 0 donc λ1 > 0 et λ2 > 0 et Hf(a) est définie positive. D’après

le théorème 15.15, f admet en a un minimum local. Idem pour (ii).
(iii) si rt− s2 < 0, alors det(Hf(a)) = λ1λ2 = rt− s2 < 0 donc λ1 et λ2 ont des signes stricts opposés donc

f n’admet en a ni un maximum local ni un minimum local d’après le théorème 15.15.

EXERCICE 15.13 : Trouver les extrema sur R2 de f : (x, y) 7→ x4 + y4 − 2(x− y)2.

Démonstration : f est polynomiale sur R2 donc admet des dérivées partielles en tout point à tout ordre, en

fait f est de classe C∞ sur R2 : ∂f
∂x

(x, y) = 4x3 − 4(x− y) et ∂f
∂y

(x, y) = 4y3 + 4(x− y).

Ainsi, si
−−−→
grad f(x, y) =

−→
0 , alors x3 − (x − y) = y3 + (x − y) = 0 ce qui prouve que x3 = −y3 = (−y)3

donc que x = −y car t 7→ t3 est une bijection de R dans R. Le système x3 − (x − y) = y3 + (x − y) = 0

équivaut donc à x+ y = x3 − 2x = 0. Il y a donc trois points critiques de f : (0, 0), (
√
2,−

√
2) et (−

√
2,
√
2).

• En (0, 0), f n’admet pas d’extremum local car f

(
1

n
, 1

n

)
= 2

n4 > 0 et f

(
1

n
, 0

)
= 1

n4 − 2

n2 = 1− 2n2

n4 < 0

si n > 1 : f est à la fois strictement positive et strictement négative au voisinage de (0, 0) : c’est un point selle.

• Comme f(−x,−y) = f(x, y), ce qui se passe au voisinage de (−
√
2,
√
2) est équivalent par symétrie à ce qui se

passe au voisinage de (
√
2,−

√
2) : la surface z = f(x, y) est stable par le demi-tour d’axe • Comme la hessienne
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est hors programme et que f est polynomiale de degré 4, on va se ramener à un compact pour justifier que f admet

en un minimum absolu.

À nouveau, x4 + y4 > 1

2
(x2 + y2)2 (car x4 + y4 > 2x2y2 ⇐⇒ (x2 − y2)2 > 0) et 2(x− y)2 6 4(x2 + y2)

(car 2x2 + 2y2 > −4xy ⇐⇒ (x + y)2 > 0) donc f(x, y) > 1

2
||(x, y)||42 − 4||(x, y)||22 en sommant ces deux

inégalités. Ainsi, si ||(x, y)||2 > 2
√
2, on a f(x, y) > ||(x, y)||22

2

(
||(x, y)||22 − 8

)
> 0. La fonction f est

continue sur le fermé borné (compact) K = B2,f((0, 0), 2
√
2) donc y est bornée et y atteint ses bornes. Notons,

m =Min
K

(f). Comme (
√
2,−

√
2) ∈ K et que f(

√
2,−

√
2) = −8, il vient m 6 −8 donc m < 0.

Pour (x, y) ∈ R2, considérons deux cas :

- si (x, y) ∈ K, alors f(x, y) > m d’après ce qui précède.

- si (x, y) /∈ K, on a vu ci-dessus, puisque ||(x, y)||2 > 2
√
2, que f(x, y) > 0 > m.

Ainsi, m est un minorant de f sur R2, et comme il est atteint sur K, c’est le minimum de f sur R2.

Comme R2 est un ouvert et que f est de classe C1 sur R2, en notant (x0, y0) ∈ K un point en lequel on a

f(x0, y0) = m, on sait que
−−−→
grad f(x0, y0) =

−→
0 donc (x0, y0) = (−

√
2,
√
2) ou (x0, y0) = (

√
2,−

√
2)

d’après les résultats précédents. Comme en ces points, la fonction f vaut −8, on en déduit que m = −8, que le

minimum de f vaut −8 et qu’il est atteint en deux points exactement : les points (−
√
2,
√
2) ou (

√
2,−

√
2).

Ici, si on effectue un DL2 de f au voisinage de (0, 0), on obtient f(h, k)=
0
−2(h − k)2 + o(h2 + k2) et “on

pourrait se méprendre, et on jaserait. Nous venons déjà de frôler l’incident.” En effet, q1 : (h, k) 7→ −2(h− k)2

est une forme quadratique négative, ce qui laisse penser que f admet en (0, 0) un maximum local. Il n’en est rien

car cette forme quadratique n’est pas définie, la droite x = y fait partie du cône isotrope de q1.

Par contre, si on effectue un DL2 de f au voisinage de (
√
2,−

√
2), en changeant l’origine et avec (h, k) ∈ R2,

on a f(
√
2 + h,−

√
2 + k) − f(

√
2,−

√
2) = (

√
2 + h)4 + (−

√
2 + k)4 − 2(2

√
2 + h − k)2 + 8 donc

f(
√
2+h,−

√
2+k)− f(

√
2,−

√
2)=

0
10h2+4hk+10k2+o(h2+k2)=

0
10

(
h+ k

5

)2
+ 48

5
k2+o(h2+k2)

et cette fois-ci, cela prouve que f admet bien en (
√
2,−

√
2) minimum local car q2 : (h, k) 7→ 10h2+4hk+10k2

est une forme quadratique définie positive (positive c’est clair et seul le vecteur nul est dans son cône isotrope car

on a l’équivalence h+ k

5
= k = 0⇐⇒ h = k = 0).

EN PRATIQUE : Soit f : Ω → R de classe C1 où Ω est un ouvert de Rp :
• On calcule les points critiques, les extrema, s’ils existent, sont parmi ces points.
• Au voisinage des points critiques, on détermine si c’est un extremum local avec la matrice hessienne.

Soit f : K→ R de classe C1 où K est un fermé borné de Rp :

• On sait que f est bornée et atteint ses bornes sur K.
• On paramètre avec une seule variable le bord de K et on étudie la fonction.
• On cherche les points critiques à l’intérieur du compact, le fait qu’on sache qu’un extremum existe
peut nous éviter de faire l’étude de la hessienne en ces points.
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PARTIE 15.5 : APPLICATIONS GÉOMÉTRIQUES� �

15.5.1 : Courbes

REMARQUE 15.24 : Soit Ω un ouvert de R2, f : Ω → R de classe C1 et Γ =
{
(x, y) ∈ Ω | f(x, y) = 0

}
.

Si (x0, y0) ∈ Γ et
−−−→
grad f(x0, y0) ̸= −→

0 alors il existe un paramétrage local de Γ de classe C1 au voisinage de

(x0, y0) : il existe r > 0 tel que B(M0, r) ⊂ Ω, un intervalle ouvert I contenant 0, x : I→ R et y : I→ R de

classe C1 telles que
(
x(0), y(0)

)
=M0 et ∀(x, y) ∈ B(M0, r), (x, y) ∈ Γ ⇐⇒

(
∃t ∈ I, x = x(t) et y = y(t)

)
.

Il s’agit du théorème des fonctions implicites explicitement hors programme.

Ceci signifie, en voyant f comme une fonction altitude, que si f est de classe C1, les côtes (altitude 0)

forment une “gentille” courbe au voisinage des points qui ne sont pas des points critiques.

DÉFINITION 15.13 :

Soit Ω un ouvert de R2, f : Ω → R de classe C1 et la courbe Γ définie par Γ =
{
(x, y) ∈ Ω | f(x, y) = 0

}
(équation implicite). On dit qu’un point M0 = (x0, y0) de Γ est un point régulier si

−−−→
grad f(M0) ̸= −→

0 .

� �
PROPOSITION SUR LE RAPPORT GRADIENT / LIGNES DE NIVEAUX 15.16 :

Pour f : Ω → R et λ ∈ R, en un point M0 d’une ligne de niveau Nλ = {(x, y) ∈ Ω | f(x, y) = λ}, si
f est C1 sur Ω et si

−−−→
grad f(M0) ̸= −→

0 , ce vecteur est orthogonal à Nλ (à la tangente en M0 à Nλ)

et orienté dans le sens des valeurs croissantes de f.� �
Démonstration : • En un point régulier M0 d’une courbe de niveau Nλ dont l’équation peut être réécrite

g(x, y) = 0 en posant g(x, y) = f(x, y) − λ, on peut paramétrer localement au voisinage de M0 la courbe Nλ

par x = x(t), y = y(t). Puisque ∀t ∈ I, g(x(t), y(t)) = 0, d’après la règle de la châıne, on a la relation

∀t ∈ I,
(
g(x(t), y(t))

)′
= 0 = x′(t) ∂f

∂x
(x(t), y(t)) + y′(t) ∂f

∂y
(x(t), y(t)).

Il suffit de prendre maintenant t = 0 dans cette relation pour avoir x′(0) ∂f
∂x

(M0) + y′(0) ∂f
∂y

(M0) = 0 qui

traduit que (x′(0), y′(0)) ⊥ −−−→
grad f(M0). Ainsi,

−−−→
grad f(M0) est orthogonal au vecteur dérivé (x′(0), y′(0))

qui dirige une tangente à Nλ au point M0 : on dit que
−−−→
grad f(M0) est orthogonal à Nλ en M0.

• À partir du point M0 de Nλ, évoluons dans la direction du vecteur
−−−→
grad f(M0) et regardons ce qui se passe

localement au voisinage deM0. Posons donc φ : t 7→ f

(
M0+t

−−−→
grad f(M0)

)
et étudions sa dérivée en 0. Comme

∀t ∈ J, φ(t) = f

(
x0 + t

∂f
∂x

(M0), y0 + t
∂f
∂y

(M0)
)
, φ est dérivable sur J (intervalle ouvert et 0 ∈ J) d’après la

règle de la châıne et ∀t ∈ J, φ′(t) = ∂f
∂x

(M0)
∂f
∂x

(
M0+t

−−−→
grad f(M0)

)
+ ∂f
∂y

(M0)
∂f
∂y

(
M0+t

−−−→
grad f(M0)

)
.

On a donc φ′(0) =
(
∂f
∂x

(M0)
)2

+
(
∂f
∂y

(M0)
)2

= ||−−−→grad f(M0)||2 > 0.

Ainsi, φ est localement croissante (car φ′ est continue sur J puisque f est de classe C1 par hypothèse) au voisinage

de 0 ce qui signifie que f crôıt dans la direction
−−−→
grad f(M0) au départ de M0.
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REMARQUE 15.25 : Soit u unitaire et φu : t 7→ f(M0 + tu), alors |φ′
u(0)| = |u1 ∂f∂x (M0) + u2

∂f
∂y

(M0)|

donc, d’après l’inégalité de Cauchy-Schwarz, |φ′
u(0)| 6

√(
∂f
∂x

(M0)
)2

+
(
∂f
∂y

(M0)
)2

et φ′
u(0) devient

maximal si on prend u colinéaire de même sens avec le vecteur gradient : à partir de M0, si on voit la

fonction f comme la fonction altitude, la direction
−−−→
grad f(M0) est la ligne de plus grande pente.� �

PROPOSITION SUR UNE ÉQUATION DE LA TANGENTE AVEC LE GRADIENT 15.17 :

Le vecteur
−−−→
grad f(M0) ̸= −→

0 est donc un vecteur normal à la tangente à Γ au point M0 ce qui

fait que la tangente à Γ en M0 a pour équation : (x− x0)
∂f
∂x

(x0, y0) + (y− y0)
∂f
∂y

(x0, y0) = 0.� �
Démonstration : M0 ∈ Γ est donc un point régulier de la courbe et on a vu à la proposition précédente

(pour λ = 0) que la vecteur dérivé −→v0 = (x′(0), y′(0)) (qui est un vecteur directeur de la tangente T0 en M0 à

Γ = N0) est orthogonal à
−−−→
grad f(M0). Ainsi, pour un point M ∈ R2, on a l’équivalence suivante :

M ∈ T0 ⇐⇒ (
−−−→
M0M,

−→v0) est liée⇐⇒ −−−→
M0M ⊥ −−−→

grad f(M0) ⇐⇒
(
x− x0

y− y0

)
.

(
∂f
∂x

(x0, y0)
∂f
∂y

(x0, y0)

)
= 0. Il

suffit de calculer ce produit scalaire pour avoir M ∈ T0 ⇐⇒ (x− x0)
∂f
∂x

(x0, y0) + (y− y0)
∂f
∂y

(x0, y0) = 0.

EXERCICE 15.14 :

Quels sont les points réguliers de la cardiöıde C d’équation implicite (x2 + y2 − x)2 − (x2 + y2) = 0 ?

En l’un de ces points M0, donner une équation cartésienne de la tangente à C en M0.

Démonstration : Tout d’abord, cette cardiöıde a une équation plus simple en polaires qu’en cartésiennes, en

effet, si x = r cos(θ) et y = r sin(θ), on a (x2 + y2 − x)2 − (x2 + y2) = 0 ⇐⇒ (r2 − r cos(θ))2 = r2

donc (x2 + y2 − x)2 − (x2 + y2) = 0⇐⇒
(
|r− cos(θ)| = ±1 ou r = 0

)
. Or on trouve r = 0 (l’origine du

repère) pou θ = 0 ou θ = π donc (x2 + y2 − x)2 − (x2 + y2) = 0⇐⇒ r = 1+ cos(θ) ou r = −1+ cos(θ).

De plus, r = −1+ cos(θ) donne la même courbe que r = 1+ cos(θ) car les points de coordonnées polaires (en

maths) (r, θ) et (−r, θ+ π) sont les mêmes et que r = −1+ cos(θ) ⇐⇒ −r = 1+ cos(θ+ π).

On présente traditionnellement la cardiöıde par son équation r = 1+ cos(θ).

Ici, la cardiöıde est donnée sous forme implicite par C : f(x, y) = 0 avec f : (x, y) 7→ (x2+y2−x)2−(x2+y2).

Or, ∂f
∂x

(x, y) = 2(2x− 1)(x2+y2− x)− 2x et ∂f
∂y

(x, y) = 4y(x2+y2− x)− 2y = y(4x2+ 4y2− 4x− 2).

Si (x, y) ∈ C et
−−−→
grad f(M) =

−→
0 , alors (y = 0 et 2x((2x − 1)(x − 1) − 1) = 2x2(2x − 3) = 0) ou

(x2+y2−x = 1/2 et (2x−1)−2x = 0). Ainsi, les deux seuls points critiques de f sur R2 sont (0, 0), (3/2, 0).

Comme (0, 3/2) /∈ C, le seul point non régulier de C est le point (0, 0) ∈ C. Soit donc (x0, y0) ∈ C tel que

(x0, y0) ̸= (0, 0), alors une équation de la tangente T0 à C en M0 = (x0, y0) est donc d’après la proposition

précédente T0 : (2(2x0 − 1)(x20 + y20 − x0) − 2x0)(x − x0) + (4y0(x
2
0 + y20 − x0) − 2y0)(y − y0) = 0

(qu’on peut certainement simplifier).
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15.5.2 : Surfaces

DÉFINITION 15.14 :

Soit Ω un ouvert de R3, f : Ω → R de classe C1 et la surface S =
{
(x, y, z) ∈ Ω | f(x, y, z) = 0

}
(équation

implicite). On dit qu’un point M0 = (x0, y0, z0) de S est un point régulier si
−−−→
grad f(M0) ̸= −→

0 .

EXEMPLE 15.15 : Soit S d’équation S : x2 + y2 − z2 − 1 = 0. Tous ses points sont réguliers.

Démonstration : En définissant f : R3 → R par f(x, y, z) = x2 + y2 − z2 − 1, la surface S est définie

implicitement par S : f(x, y, z) = 0. Comme
−−−→
grad f(x, y, z) = (2x, 2y,−2z), le seul point (x, y, z) tel que

−−−→
grad f(x, y, z) = (0, 0, 0) est le point (0, 0, 0) qui n’appartient pas à S donc tous les points de S sont réguliers.

On peut paramétrer cette surface par x =
√
a2 + 1 cos θ, y =

√
a2 + 1 sin θ, z = a.

La surface S est appelée un hyperbolöıde à une nappe (H1 pour les intimes).

DÉFINITION 15.15 :

Soit une surface S d’équation f(x, y, z) = 0 avec f : Ω → R de classe C1, I un intervalle, x, y, z : I→ R trois

fonctions de classe C1 telles que ∀t ∈ I,
(
x(t), y(t), z(t)

)
∈ S.

En notant Γ = {
(
x(t), y(t), z(t)

)
| t ∈ I}, on dit que la courbe Γ est tracée sur la surface S.

EXEMPLE 15.16 : Soit la terre d’équation x2 + y2 + z2 − 1 = 0 (assimilée à une sphère) :

• La courbe d’équation x(t) = sin t, y(t) = cos t, z(t) = 0 représente l’équateur.

• La courbe d’équation x(t) = sin t, y(t) = 0, z(t) = cos t représente le méridien de Greenwich.

REMARQUE 15.26 : Pour une surface S d’équation explicite z = g(x, y) (le “graphe” d’une fonction de

R2 dans R), les courbes coordonnées sont les courbes d’équation :

• x(t) = x0, y(t) = t, z(t) = g(x0, t) (x = x0 est fixé et c’est y qui bouge).

• x(t) = t, y(t) = y0, z(t) = g(t, y0) (y = y0 est fixé et c’est x qui bouge).

EXEMPLE 15.17 : Pour la surface d’équation z = x2 − y2 ⇐⇒ x2 − y2 − z = 0 (un parabolöıde

hyperbolique), les courbes coordonnées sont :

• x(t) = x0, y(t) = t, z(t) = x0 − t2 (c’est une parabole).

• x(t) = t, y(t) = y0, z(t) = t2 − y0 (c’est une parabole).

D’autres courbes sont tracées sur cette surface :

• x(t) = ch(t), y(t) = sh(t), z(t) = 1 (c’est une hyperbole).

• x(t) = t+ 1

2
, y(t) = t− 1

2
, z(t) = t (c’est une droite).

REMARQUE 15.27 : Soit une surface S : f(x, y, z) = 0 avec f : Ω → R de classe C1. Les tangentes en

un point M0 régulier de S aux courbes de classe C1 tracées sur S sont orthogonales à
−−−→
grad f(M0).
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Démonstration : Soit une courbe Γ paramétrée par g : t ∈ I 7→ (x(t), y(t), z(t)) de classe C1 tracée

sur la surface S, ce qui signifie que ∀t ∈ I, (x(t), y(t), z(t)) ∈ S ⇐⇒ f(x(t), y(t), z(t)) = 0 par hypothèse

puisque S est définie implicitement. On dérive avec la règle de la châıne car f est aussi de classe C1 par hypothèse.

Ainsi, ∀t ∈ I, x′(t) ∂f
∂x

(g(t)) + y′(t) ∂f
∂y

(g(t)) + z′(t)∂f
∂z

(g(t)) = 0. Si M0 = g(t0), prenons t = t0

dans la relation précédente : x′(t0)
∂f
∂x

(M0) + y′(t0)
∂f
∂y

(M0) + z′(t0)
∂f
∂z

(M0) = 0 (R). Le vecteur dérivé

−→v0 = (x′(t0), y
′(t0), z

′(t0)) (supposé non nul) engendre la tangente T0 à la courbe Γ en M0. Alors, la relation

(R) montre que −→v0 ⊥ −−−→
grad f(M0) donc la tangente T0 est orthogonales à

−−−→
grad f(M0) comme attendu.

DÉFINITION 15.16 :

Le plan tangent à la surface S en un point régulier M0 est le plan orthogonal à
−−−→
grad f(M0) passant par M0.

Démonstration : La remarque précédente montre que toutes les courbes “régulières” tracées sur la surface S

ont en M0 ∈ S un vecteur dérivé (donc une tangente) orthogonal(e) à
−−−→
grad f(M0). Il est donc logique de définir

comme plan tangent en M0 à la surface S le plan contenant toutes ces tangentes, donc le plan contenant le point

M0 et de vecteur normal
−−−→
grad f(M0).

REMARQUE 15.28 : Soit deux surfaces S et S′ définies par S : f(x, y, z) = 0 et S′ : g(x, y, z) = 0 avec

f, g : Ω → R de classe C1. Si un point M0 appartient à S ∩ S′ et que −−−→
grad f(M0) et

−−−→
grad g(M0) ne sont

pas colinéaires, alors S∩ S′ est localement (au voisinage de M0), une courbe Γ tracée à la fois sur S et sur

S′. La tangente à cette courbe Γ en M0 est alors engendrée par le vecteur
−−−→
grad f(M0) ∧ −−−→

grad g(M0).

Démonstration : La définition précédente montre que les deux plans tangents P0 (à S en M0) et P′0 (à S′

en M0) ont des vecteurs normaux non colinéaires donc sont sécants (pas parallèles) selon une droite D = P0 ∩ P′0
qui est donc orthogonale aux deux vecteurs

−−−→
grad f(M0) et

−−−→
grad g(M0) non colinéaires. On admet que ceci

implique, localement au voisinage de M0, que l’ensemble Γ = S ∩ S′ est une courbe de classe C1 (comme f et

g) : c’est une version du théorème des fonctions implicites. Cette courbe Γ est donc tracée à la fois sur S et sur

S′ donc un vecteur tangent (non nul) −→v à Γ en M0 est donc, d’après la remarque précédente, à la fois orthogonal

à
−−−→
grad f(M0) et à

−−−→
grad g(M0). D’après les propriétés du produit vectoriel, on sait que −→v est colinéaire à

−−−→
grad f(M0) ∧ −−−→

grad g(M0) qui est donc bien un vecteur tangent à Γ en M0 (c’est un vecteur directeur de D).

� �
PROPOSITION SUR UNE ÉQUATION DU PLAN TANGENT À UNE SURFACE 15.18 :

Ce plan tangent à S en M0 point régulier a pour équation :

(x− x0)
∂f
∂x

(x0, y0, z0) + (y− y0)
∂f
∂y

(x0, y0, z0) + (z− z0)
∂f
∂z

(x0, y0, z0) = 0� �
Démonstration : Par définition, en notant P0 ce plan tangent à M0 à S, on a, pour un point M ∈ R3,

l’équivalence M ∈ P0 ⇐⇒ −−−→
M0M ⊥ −−−→

grad f(M0) ⇐⇒ (
−−−→
M0M|−−−→grad f(M0)) = 0 ce qui nous permet d’avoir

l’équation : M ∈ P0 ⇐⇒ (x− x0)
∂f
∂x

(x0, y0, z0) + (y− y0)
∂f
∂y

(x0, y0, z0) + (z− z0)
∂f
∂z

(x0, y0, z0) = 0.
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EXEMPLE 15.18 :

Trouver une équation du plan tangent P au H1 (hyperbolöıde à une nappe) d’équation cartésienne

S : x2 + y2 − z2 − 1 = 0 en un point de S. Montrer que P ∩ S contient exactement deux droites.

Démonstration : • Soit un pointM0 = (x0, y0, z0) ∈ S, c’est-à-dire x20 + y20 − z20 − 1 = 0. Vérifions que

M0 est un point régulier de S. Comme S est définie par l’équation implicite f(x, y, z) = x2 + y2 − z2 − 1 = 0,

on a
−−−→
grad f(M0) = (2x0, 2y0,−2z0) ̸= (0, 0, 0) car si on avait (2x0, 2y0,−2z0) ̸= (0, 0, 0), on aurait

x20 + y20 − z20 − 1 = −1 ̸= 0. Ainsi, M0 est bien un pont régulier de S. D’après la proposition précédente, le

plan tangent P0 en M0 à la surface S à pour équation P0 : 2x0(x− x0) + 2y0(y− y0) − 2z0(z − z0) = 0.

Comme x20 + y20 − z20 − 1 = 0, après simplification et division par 2, cette équation de P0 se transforme en

P0 : x0x+y0y− z0z = 1 et encore une fois on se rend compte que cette équation est obtenue par dédoublement

au sens où x2 devient x0x, y
2 devient y0y, z

2 devient z0z, 2xy devient x0y+ xy0, 2xz devient x0z+ xz0, 2yz
devient y0z+yz0, 2x devient x0+ x, 2y devient y0+y, 2z devient z0+ z et les constantes restent telles quelles.

• Le plan P0 est le plan passant par M0 et de vecteur normal −→n0 = (x0, y0,−z0). Considérons deux cas :

- si z0 = 0, −→v1 = (0, 0, 1) et −→v2 = (−y0, x0, 0) sont des vecteurs directeurs indépendants de P0 qu’on peut

paramétrer x = x0−λ2y0, y = y0+λ2x0, z = λ1 carM ∈ P0 ⇐⇒ ∃(λ1, λ2) ∈ R2,
−−−→
M0M = λ1

−→v1+λ2−→v2 .
- si z0 ̸= 0, −→v1 = (z0, 0, x0) et −→v2 = (0, z0, y0) sont des vecteurs directeurs indépendants de P0 qui a donc

comme paramétrage x = x0 + λ1z0, y = y0 + λ2z0, z = z0 + λ1x0 + λ2y0 comme ci-dessus.

Ainsi, pour trouver P0 ∩ S, on se donne M = (x, y, z) ∈ R3 et on remplace ces coordonnées dans l’équation de

S avec le paramétrage précédent selon les deux cas étudiés, cela donne, avec (λ1, λ2) ∈ R2 introduits ci-dessus :

- si z0 = 0, M ∈ P0 ∩ S⇐⇒ (x0 − λ2y0)
2 + (y0 + λ2x0)

2 − (z0 + λ1)
2 − 1 = 0⇐⇒ λ21 = (x20 + y20)λ

2
2.

Or cette dernière condition équivaut à λ1 = ±
√
x20 + y20 λ2. Ainsi, M ∈ P0 ∩ S ⇐⇒ M ∈ D1 ∪ D2 si

D1 : x = x0−λy0, y = y0+λx0, z = λ

√
x20 + y20 etD2 : x = x0−λy0, y = y0+λx0, z = −λ

√
x20 + y20

sont les deux droites attendues et définies paramétriquement.

- si z0 ̸= 0, M ∈ P0 ∩ S⇐⇒ (x0 + λ1z0)
2 + (y0 + λ2z0)

2 − (z0 + λ1x0 + λ2y0)
2 − 1 = 0 qui se simplifie

en M ∈ P0 ∩ S⇐⇒ (z20 − x20)λ
2
1 + (z20 − y20)λ

2
2 − 2λ1λ2x0y0 = 0. Traitons à nouveau deux cas :

- si z0 = ±x0 et z0 = ±y0, alors x0 = ±1, y0 = ±1 et z0 = ±1 car x20+y
2
0− z20−1 = 0. Cela concerne

huit points de S. Alors (z20 − x20)λ
2
1 + (z20 − y20)λ

2
2 − 2λ1λ2x0y0 = 0 ⇐⇒ (λ1 = 0 ou λ2 = 0) donc

P0∩S = D1∪D2 oùD1 : x = x0, y = y0+λz0, z = z0+λy0 ; D2 : x = x0+λz0, y = y0, z = z0+λx0.

- si z0 = ±x0 et z20 − y20 ̸= 0, Ainsi, (z20 − x20)λ
2
1 + (z20 − y20)λ

2
2 − 2λ1λ2x0y0 = 0 équivaut aussi à

(z20−y20)λ22−2λ1λ2x0y0 = 0⇐⇒ λ2 = 0 ou λ2 = 2x0y0

z20 − y20
λ1 = αλ1. Là encore, P0∩S = D1∪D2 où

D1 : x = x0+λ1z0, y = y0, z = z0+λ1x0 ;D2 : x = x0+λ1z0, y = y0+αλ1z0, z = z0+λ1x0+αλ1y0.

- si z20 − x20 ̸= 0, si on pose le polynôme Q = (z20 − x20)X
2 − 2x0y0X + (z20 − y20), alors son discriminant

∆ = 4x20y
2
0 − 4(z20 − x20)(z

2
0 − y20) = 4z20 après calculs car x20 + y20 − z20 − 1 = 0. Ainsi, Q admet

deux racines réelles distinctes α1 et α2 qu’il est inutile d’exprimer précisément. Par conséquent, on peut

écrire Q = (z20 − x20)(X − α1)(X − α2) donc, comme d’après les relations coefficients-racines, on a les

relations (z20 − y20) = α1α2(z
2
0 − x20) et 2x0y0 = (α1 + α2)(z

2
0 − x20), il vient l’équivalence suivante

(z20 − x20)λ
2
1 + (z20 − y20)λ

2
2 − 2λ1λ2x0y0 = 0 ⇐⇒ (λ1 − α1λ2)(λ1 − α2λ2) = 0 qui se traduit par

λ1 = α1λ2 ou λ1 = α2λ2. À nouveau, P0 ∩ S = D1 ∪ D2 où l’on définit paramétriquement les deux

droites D1 : x = x0 + α1λz0, y = y0 + λz0, z = z0 + α1λx0 + λy0 (correspondant à λ1 = α1λ2) et

D2 : x = x0 + α2λz0, y = y0 + λz0, z = z0 + α2λx0 + λy0 (correspondant à λ1 = α2λ2).

Dans tous les cas, et donc quel que soit le point M0 de S, si on note P0 le plan tangent à S en M0, l’intersection

de P0 et de S contient exactement deux droites sécantes en M0.
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• Établir l’existence des dérivées partielles et les calculer dans ce cas.

• Montrer qu’une fonction est de classe C1 en étudiant la continuité des dérivées partielles.

• Connâıtre les différentes opérations algébriques sur les fonctions de classe C1.

• Savoir par cœur la règle de la châıne et la formule de changement de coordonnées.

• Déterminer le gradient d’une fonction scalaire et sa différentielle.

• Montrer qu’une fonction est de classe C2 en étudiant la continuité des dérivées secondes.

• Connâıtre les différentes opérations algébriques sur les fonctions de classe C2.

• Utiliser le théorème de Schwarz pour prouver qu’une fonction n’est pas de classe C2.

• Mâıtriser le passage en coordonnées polaires, les dérivées partielles, le gradient, le laplacien associés.

• Connâıtre les différentes notions d’extrema (locaux, absolus) de fonctions scalaires.

• Trouver avec le gradient les points critiques où on a éventuellement un extremum local sur un ouvert.

• Établir si on a bien un extrema en un point critique avec la matrice hessienne.

• Montrer l’existence d’un extrema de f sur une partie fermée bornée par la continuité de f.

• Utiliser le gradient pour trouver les points réguliers d’une courbe définie de manière implicite....

• ... et déterminer une équation de la tangente à cette courbe en un point régulier

• Utiliser le gradient pour trouver les points réguliers d’une surface définie de manière implicite....

• ... et déterminer une équation du plan tangent à cette surface en un point régulier


