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CHAPITRE 16

FONCTIONS VECTORIELLES⊙
Contrairement au chapitre précédent, plutôt que d’étudier les fonctions scalaires définies dans l’espace

ou le plan (les fonctions de Rp dans R) qui représentent la pression, la température, etc.... on s’intéresse ici
aux fonctions vectorielles de la variable réelle (les fonctions de R dans Rp) qui représentent une trajectoire
d’un point dans le plan ou l’espace, ce qui va donner lieu à l’étude de la représentation des courbes paramétrées
(par le temps par exemple).

Les récents changements de programme en PSI ont vu la baisse conséquente des notions de géométrie,
on a ainsi vu disparâıtre l’étude des coniques, des quadriques, des abscisses curvilignes des courbes, des
repères de Frénet et des rayons de courbure dont on avait besoin pour la découpe à la fraise de plaque de
métal par exemple par l’intermédiaire des courbes parallèles. Il ne reste même plus les courbes définies en
coordonnées cartésiennes avec leurs tangentes, asymptotes, points multiples, point d’inflexion, longueur.

Il existe un nombre incalculable de courbes planes ou gauches (dans l’espace) : elles ont été répertoriées
depuis longtemps, qu’elles soient issues des domaines de la caustique (enveloppes de rayons lumineux issus
d’une réflexion par exemple) comme la cardiöıde qu’on peut voir dans son bol au petit déjeuner, de la
mécanique comme les ellipses ou hyperboles qui sont les trajectoires des planètes, de la dynamique comme
la cyclöıde qui est la courbe sur laquelle lâcher un point matériel pour qu’il aille par la gravité le plus vite
d’un point à un autre, etc...

Ces courbes possèdent des noms mystérieux traduisant leur origine ou leur forme : trèfle équilatère,
lemniscate, nœud de papillon, cissöıde, deltöıde, strophöıde, trifolium,.... et ce n’est qu’un tout petit
aperçu ! D’ailleurs vous pouvez admirer ces arcs et leurs origines et caractéristiques géométriques sur le
site https://mathcurve.com/ du confrère Robert Ferréol.

I désignera dans ce chapitre un intervalle de R contenant au moins deux points distincts.
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PROGRAMME� �

L’objectif de cette section est de généraliser aux fonctions à valeurs dans Rn la notion de dérivée d’une
fonction numérique.

Toutes les fonctions sont définies sur un intervalle I de R et à valeurs dans Rn.

2 : Dérivabilité des fonctions vectorielles

Contenus Capacités & Commentaires

Interprétation d’une fonction à valeurs dans Rn L’étude et le tracé d’arcs paramétrés sont hors

comme courbe paramétrée. programme.

Dérivabilité en un point. Définition par le taux d’accroissement, caractérisation

Dérivabilité sur un intervalle. par le développement limité d’ordre un.

Traduction par les coordonnées dans la base canonique.

Interprétation cinématique.

Combinaison linéaire de fonctions dérivables.

Dérivée de L(f), où L est linéaire et f à valeurs

dans Rn.

Dérivée de B(f, g), où B est bilinéaire, de La démonstration n’est pas exigible.

M(f1, . . . , fp), où M est p-linéaire, et f, g, Application au produit scalaire et au déterminant.

f1, . . . , fp à valeurs vectorielles.

Dérivée de f ◦ φ où φ est à valeurs réelles et f à

valeurs vectorielles.

Fonction de classe Ck, de C∞ sur un intervalle.
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PARTIE 16.1 : DÉFINITION DE LA DÉRIVATION� �

16.1.1 : Dérivée ponctuelle

DÉFINITION 16.1 :

Soit f : I → Rn et t0 ∈ I, si la fonction h ∈ R 7→ f(t0 + h)− f(t0)
h

admet une limite en 0, on dit que f est

dérivable en t0. Alors, on note f′(t0) = lim
h→0

f(t0 + h)− f(t0)
h

∈ Rn le vecteur dérivé de f en t0.

REMARQUE 16.1 :

• f est dérivable en t0 si et seulement si la fonction “taux d’accroissement” τt0 : I\{t0} → Rn définie

par τt0(t) =
f(t)− f(t0)

t− t0
est prolongeable par continuité en t0.

• f est dérivable en t0 si et seulement si f admet un DL1(t0), c’est-à-dire si et seulement s’il existe un

vecteur v ∈ Rn tel que f(t0 + h)=
0
f(t0) + hv+ o(h) ; dans ce cas on a f′(t0) = v.

• Interprétation géométrique : si f′(t0) ̸= 0 alors le vecteur f′(t0) dirige la tangente au point de

paramètre t0 de la courbe paramétrée par t 7→ f(t) (le point est régulier).

• Interprétation cinématique : si f(t) repère la position d’un mobile à l’instant t alors f′(t0) est le

vecteur vitesse instantané à l’instant t0.

Démonstration : Si f est dérivable en t0, en notant v = f′(t0), alors lim
h→0

f(t0 + h)− f(t0)
h

s’écrit aussi

f(t0 + h)− f(t0)
h

=
0
v+ o(1) ou encore, en multipliant par h, f(t0 + h)− f(t0)=

0
hv+ o(h) comme attendu.

Réciproquement, s’il existe v ∈ Rn tel que f(t0 + h)=
0
f(t0) + hv + o(h), alors en divisant par h, on a

f(t0 + h)− f(t0)
h

=
0
v+ o(1) d’où lim

h→0

f(t0 + h)− f(t0)
h

= v et f est dérivable en t0 avec f′(t0) = v.

� �
PROPOSITION SUR LA DÉRIVABILITÉ D’UNE FONCTION VECTORIELLE SUR SES
FONCTIONS COORDONNÉES 16.1 :

Soit t0 ∈ I, B = (e1, · · · , en) une base de Rn, f : I → Rn une fonction et f1, · · · , fn les fonctions de I

dans R telles que ∀t ∈ I, f(t) =
n∑

k=1

fk(t)ek. Alors f est dérivable en t0 si et seulement si f1, · · · , fn

sont dérivables en t0. Dans ce cas, on a f′(t0) =
n∑

k=1

f′k(t0)ek.� �
Démonstration : Il suffit d’écrire, pour t ∈ I\{t0},

f(t)− f(t0)
t− t0

=
n∑

k=1

fk(t)− fk(t0)
t− t0

ek (en regroupant

les termes) et on se rappelle que, puisqu’on est en dimension finie, t 7→ f(t)− f(t0)
t− t0

admet une limite finie en t0

si et seulement si toutes ses fonctions coordonnées t 7→ fk(t)− fk(t0)
t− t0

admettent des limites finies en t0. Dans

ce cas, on aura bien f′(t0) = lim
t→t0

f(t)− f(t0)
t− t0

=
n∑

k=1

lim
t→t0

fk(t)− fk(t0)
t− t0

ek =
n∑

k=1

f′k(t0)ek par définition.
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REMARQUE 16.2 :

• Une fonction vectorielle f : I → Rn est dérivable en un point t0 si et seulement si toutes les fonctions

coordonnées le sont (et ceci dans n’importe quelle base).

• Soit f : I → C et t0 ∈ I, alors f est dérivable en t0 si et seulement si Re (f) et Im(f) le sont.

Dans ce cas, f′(t0) = Re(f)′(t0) + i Im(f)′(t0). De plus f est dérivable en t0 et ( f )′(t0) = f′(t0).

• C’est un cas particulier de la proposition précédente en dimension 2.

Démonstration : Pour les fonctions à valeurs complexes, il suffit d’écrire, comme précédemment, pour t ̸= t0,

f(t)− f(t0)
t− t0

=
(
Re (f)(t)− Re (f)(t0)

t− t0

)
+ i

(
Im(f)(t)− Im(f)(t0)

t− t0

)
; on sait qu’une telle fonction admet

une limite finie en t0 si et seulement si sa partie réelle et sa partie imaginaire admettent des limites finies en t0, ce

qui donne l’équivalence de la remarque et, en cas de convergence, f′(t0) = Re(f)′(t0) + i Im(f)′(t0).

Même chose avec f si on écrit
f(t)− f(t0)

t− t0
=

(
Re (f)(t)− Re (f)(t0)

t− t0

)
− i

(
Im(f)(t)− Im(f)(t0)

t− t0

)
.

� �
PROPOSITION SUR LA CONTINUITÉ D’UNE FONCTION DÉRIVABLE 16.2 :

Soit f : I → Rn et t0 ∈ I, si f est dérivable en t0 alors f est continue en t0.� �
Démonstration : Si f est dérivable en t0, en notant comme avant τt0(t) =

f(t)− f(t0)
t− t0

, on a pour

t ̸= t0, f(t) = f(t0) + (t − t0)τt0(t) donc, comme lim
t→t0

τt0(t) = f′(t0) donc lim
t→t0

(t − t0)τt0(t) =
−→
0 et

lim
t→t0

f(t) = f(t0) ce qui prouve la continuité de f en t0.

DÉFINITION 16.2 :

Soit f : I → Rn et t0 ∈ I.

• Si t0 ̸= Sup(I), on dit que f est dérivable à droite en t0 si f|I∩[t0;+∞[ est dérivable en t0, c’est-à-dire

si la fonction h 7→ f(t0 + h)− f(t0)
h

admet une limite quand h tend vers 0 avec h > 0.

Dans ce cas, on note f′d(t0) = lim
h→0+

f(t0 + h)− f(t0)
h

le vecteur dérivé de f à droite en t0.

• Si t0 ̸= Inf(I), on dit que f est dérivable à gauche en t0 si f|I∩]−∞;t0] est dérivable en t0, c’est-à-dire

si la fonction h 7→ f(t0 + h)− f(t0)
h

admet une limite quand h tend vers 0 avec h < 0.

Dans ce cas, on note f′g(t0) = lim
h→0−

f(t0 + h)− f(t0)
h

le vecteur dérivé de f à gauche en t0.

� �
PROPOSITION SUR UNE CONDITION NÉCESSAIRE ET SUFFISANTE DE
DÉRIVABILITÉ SUR LA DÉRIVABILITÉ À GAUCHE ET À DROITE 16.3 :

Soit f : I → Rn et t0 à l’intérieur de I, alors f est dérivable en t0 si et seulement si f est dérivable

à gauche et à droite en t0 et si f′g(t0) = f′d(t0).� �
Démonstration : Comme pour les fonctions à valeurs réelles en se ramenant à chaque fonction coordonnée.
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16.1.2 : Fonctions dérivables, fonctions de classe C1

DÉFINITION 16.3 :

Soit f : I → Rn.
• On dit que f est dérivable sur I si f est dérivable en tout point t0 de I.

Dans ce cas, on note f′ : I → Rn la fonction dérivée de f qui à t0 ∈ I associe f′(t0).

• On dit que f est de classe C1 sur I si f est dérivable sur I et si f′ est continue sur I.

On note C1(I, Rn) l’ensemble des fonctions de classe C1 sur I et à valeurs dans Rn.

REMARQUE 16.3 : On a l’inclusion stricte C1(I, Rn) ⊂ C0(I, Rn).

EXEMPLE 16.1 : Soit un vecteur non nul −→v ∈ Rn, la fonction vectorielle f : R → Rn définie par

∀t ∈ R, f(t) = |t|−→v est continue en 0 et pourtant elle n’est pas dérivable en 0.

Démonstration : Pour t < 0, on a
f(t)− f(0)

t− 0
=

|t|−→v −−→
0

t− 0
= −−→v car |t| = −t donc f′g(0) = −−→v .

Pour t > 0, on a
f(t)− f(0)

t− 0
=

|t|−→v −−→
0

t− 0
= −→v car |t| = t donc f′d(0) =

−→v .

Comme f′g(0) ̸= f′d(0), f n’est par dérivable en 0 alors qu’elle est continue sur R par opérations.� �
PROPOSITION DE PASSAGE PAR LES COORDONNÉES 16.4 :

Soit f : I → Rn, et B = (e1, · · · , en) une base de Rn, et f1, · · · , fn les fonctions coordonnées de f

dans B, c’est-à-dire ∀t ∈ I, f(t) =
n∑

k=1

fk(t)ek :

f ∈ C1(I, Rn) ⇐⇒ (f1, · · · , fn) ∈ C1(I, R)n ; dans ce cas, f′ =
n∑

k=1

f′kek.

En particulier : f ∈ C1(I, C) ⇐⇒
(
Re (f), Im(f)

)
∈ C1(I, R)2.

Dans ce cas f′ = Re (f)′ + i Im(f)′ et, de plus, f ∈ C1(I, C) et ( f )′ = f′.� �
Démonstration : • D’après la proposition 16.1, f =

n∑
k=1

fkek est dérivable sur I si et seulement si toutes

ses coordonnées fk le sont. Dans ce cas, on a f′ =
n∑

k=1

f′kek. Or, on a vu dans le chapitre des espaces vectoriels

normés que f′ est continue si et seulement si toutes les fonctions f′k le sont, ce qui montre que f est de classe C1

sur I si et seulement si toutes les fonctions coordonnées fk sont elles-mêmes de classe C1 sur I.

• D’après la remarque 16.2, f = Re (f) + i Im(f) est dérivable sur I si et seulement si Re (f) et Im(f) le sont

et on a f′ = (Re (f))′ + i(Im(f))′. Une fonction complexe est continue si et seulement si ses parties réelle et

imaginaire sont continues. Ainsi, f est de classe C1 sur I si et seulement si Re (f) et Im(f) sont de classe C1 sur I.

• Comme f = Re (f)− i Im(f) et que Im(f) est de classe C1 sur I si et seulement si − Im(f) l’est, f est de classe

C1 sur I si et seulement si f l’est et on a alors (f)′ = Re (f)′ − i Im(f)′ = f′.

REMARQUE 16.4 : Cela nous permet de nous ramener à des fonctions numériques de I dans R.� �
PROPOSITION SUR LA LINÉARITÉ DE LA DÉRIVÉE 16.5 :

C1(I, Rn) est un sous-espace de F(I, Rn) et : ∀(f, g) ∈ C1(I, Rn)2, ∀(α, β) ∈ R2, (αf+βg)′ = αf′+βg′.� �
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Démonstration : Méthode 1 : pour t0 ∈ I et t ∈ I tel que t ̸= t0, on peut transformer le taux d’accroissement

(αf+ βg)(t)− (αf+ βg)(t0)
t− t0

= α
f(t)− f(t0)

t− t0
+ β

g(t)− g(t0)
t− t0

et, quand t tend vers t0, la limite existe

par hypothèse puisque f et g sont de classe C1 sur I et (αf + βg)′(t0) = αf′(t0) + βg′(t0) ce qui montre la

relation fonctionnelle (αf + βg)′ = αf′ + βg′. Comme f′ et g′ sont continues par hypothèse, (αf + βg)′ est

continue par combinaison linéaire donc αf+ bg est de classe C1 par définition.

Méthode 2 : on décompose f et g dans la base canonique B = (e1, · · · , en) de Rn et on se sert de l’équivalence de

la proposition précédente, ∀t ∈ I, f(t) =
n∑

k=1

fk(t)ek et g(t) =
n∑

k=1

gk(t)ek. Ainsi, pour (α, β) ∈ R2, on a

∀t ∈ I, (αf+βg)(t) =
n∑

k=1

(αfk(t)+βgk(t))ek et les fonctions αfk+βgk sont de classe C1 par combinaison

linéaire de telles fonctions de R dans R d’après la proposition 16.4, celle-ci montre aussi qu’alors αf+ βg est de

classeC1 avec (αf+βg)′(t) =
n∑

k=1

(αf′k(t)+βg′k(t))ek = α
n∑

k=1

f′k(t)ek+β
n∑

k=1

g′k(t))ek = αf′(t)+βg′(t).

� �
PARTIE 16.2 : PROPRIÉTÉS DE LA DÉRIVATION� �

16.2.1 : Composées� �
PROPOSITION SUR LA RELATION ENTRE DÉRIVABILITÉ ET COMPOSÉE À
GAUCHE PAR UNE APPLICATION LINÉAIRE 16.6 :

Soit f : I → Rn et L ∈ L(Rn, Rp). Si f ∈ C1(I, Rn) alors L ◦ f ∈ C1(I, Rp) et (L ◦ f)′ = L ◦ f′.� �
Démonstration : Méthode 1 : soit B = (e1, · · · , en) et B′ = (e′1, · · · , e′p) les bases canoniques de Rn

et de Rp, on pose A = MatB,B′(L) = (ai,j) 16i6p

16j6n

et on décompose f dans B en f(t) =
n∑

j=1

fj(t)ej, alors

L ◦ f(t) =
n∑

j=1

fj(t)
p∑

i=1

ai,je
′
i =

p∑
i=1

( n∑
j=1

ai,jfj(t)
)
e′i =

p∑
i=1

gi(t)e
′
i en posant gi(t) =

n∑
j=1

ai,jfj(t). Or,

d’après la proposition 1.5, toutes les fj sont de classe C1 sur I car f l’est, ainsi, avec cette même proposition, L ◦ f

est de classe C1 sur I car toutes les gi sont de classe C1 par combinaison linéaire de telles fonctions. De plus, on a

(L ◦ f)′(t) =
p∑

i=1

g′i(t)e
′
i =

p∑
i=1

( n∑
j=1

ai,jf
′
j(t)

)
e′i =

n∑
j=1

f′j(t)
p∑

i=1

ai,je
′
i = L(f′(t)) = L ◦ f′(t).

Méthode 2 : pour t0 ∈ I et t ∈ I tel que t ̸= t0, on écrit
L(f(t))− L(f(t0))

t− t0
= L

(
f(t)− f(t0)

t− t0

)
. Par

hypothèse, f est de classe C1 donc lim
t→t0

f(t)− f(t0)
t− t0

= f′(t0) et la fonction L est continue car linéaire en

dimension finie. Par composée, on obtient la limite lim
t→t0

L(f(t))− L(f(t0))
t− t0

= L(f′(t0)) ce qui garantit la

dérivabilité de L ◦ f sur I et que (L ◦ f)′ = L(f′). De plus, comme L et f′ sont continues, L ◦ f est continue par

composée d’où l’aspect C1 de L ◦ f sur I.

REMARQUE 16.5 : • Si v ∈ Rp est fixé et f ∈ C1(I, R), alors la dérivée de t 7→ f(t)v est t 7→ f′(t)v.

• On a déjà utilisé ce résultat sur les systèmes différentiels où on avait (PX)′ = PX′.

Démonstration : • Il suffit d’appliquer la proposition précédente avec L : R → Rp définie par L(u) = u.v

qui est clairement linéaire et on a, puisque f est supposée de classe C1 sur I, (L(f))′ = L(f′) ce qui s’écrit aussi,

avec abus de notation habituel, ∀t ∈ I, (f(t)v)′ = f′(t)v.
• Même chose, en identifiant Rp et Mp,1(R), avec L : U 7→ PU qui est linéaire et si X : R → Mp,1(R) de

classe C1 sur I, alors t 7→ PX(t) est de classe C1 sur I et, avec abus de notation classique, (PX(t))′ = PX′(t).
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PROPOSITION RELIANT DÉRIVABILITÉ ET APPLICATION BILINÉAIRE 16.7 :

Soit f ∈ C1(I, Rn), g ∈ C1(I, Rm) et B : Rn × Rm → Rp bilinéaire, alors la fonction B(f, g) : I → Rp

définie par B(f, g)(t) = B
(
f(t), g(t)

)
est de classe C1 sur I et B(f, g)′ = B(f′, g) + B(f, g′).� �

Démonstration : Méthode 1 : soit B = (e1, · · · , en) et B′ = (e′1, · · · , e′m) les bases canoniques de

Rn et Rm respectivement, alors pour t ∈ I, si on décompose f(t) =
n∑

i=1

fi(t)ei et g(t) =
m∑
j=1

gj(t)e
′
j,

on a par bilinéarité de B : B(f(t), g(t)) =
∑

16i6n

16j6m

fi(t)gj(t)B(ei, e
′
j). Or, en appliquant la proposition 16.6

avec l’application linéaire Li,j : R → Rp telle que Li,j(t) = tB(ei, e
′
j) (voir la remarque 16.4), toutes les

fonctions hi,j : t ∈ I 7→ fi(t)gj(t)B(ei, e
′
j) sont C1 (car fi et gj le sont d’après la proposition 16.4) sur

I avec h′
i,j(t) = (f′i(t)gj(t) + fi(t)g

′
j(t))B(ei, e

′
j) donc, B(f, g) est de classe C1 par combinaison linéaire

de telles fonctions et on a ∀t ∈ I, B(f, g)′(t) =
∑

16i6n

16j6m

(f′i(t)gj(t) + fi(t)g
′
j(t))B(ei, e

′
j) qu’on réécrit

B(f, g)′(t) =
∑

16i6n

16j6m

f′i(t)gj(t)B(ei, e
′
j) +

∑
16i6n

16j6m

fi(t)g
′
j(t)B(ei, e

′
j) et, à nouveau par bilinéarité de B :

B(f, g)′(t) = B

( n∑
i=1

f′i(t)ei,
m∑
j=1

gj(t)e
′
j

)
+ B

( n∑
i=1

fi(t)ei,
m∑
j=1

g′j(t)e
′
j

)
= B(f′(t), g(t)) + B(f(t), g′(t)).

Méthode 2 : pour t0 ∈ I et t ∈ I tel que t ̸= t0, on écrit le taux d’accroissement suivant en intercalant le

vecteur B(f(t0), g(t)) :
B(f(t), g(t))− B(f(t0), g(t0))

t− t0
= B

(
f(t)− f(t0)

t− t0
, g(t)

)
+B

(
f(t0),

g(t)− g(t0)
t− t0

)
.

Puisque f et g sont dérivables (donc continues) en t0 et que B est continue car bilinéaire en dimension finie, quand t

tend vers t0, on a B(f, g)′(t0) = lim
t→t0

B(f(t), g(t))− B(f(t0), g(t0))
t− t0

= B(f′(t0), g(t0)) + B(f(t0), g
′(t0))

d’où la relation de la proposition. De plus, comme f, f′, g, g′, B sont continues sur leurs ensembles de définition,

B(f, g)′ l’est aussi ce qui garantit l’aspect C1 de B(f, g).

Cette démonstration n’est pas exigible.� �
PROPOSITION RELIANT DÉRIVABILITÉ ET APPLICATION MULTILINÉAIRE 16.8 :

Soit (m,n, p) ∈ (N∗)3 et, pour k ∈ [[1; p]], des applications fk : I → Rn de classe C1 sur un intervalle

I. Si M : (Rn)p → Rm une application multilinéaire. Alors l’application g : I → Rm définie par

g(t) = M(f1(t), · · · , fp(t)) est de classe C1 et on a

∀t ∈ I, g′(t) = M(f′1(t), f2(t), · · · , fp(t)) +M(f1(t), f
′
2(t), f3(t), · · · , fp(t)) + · · ·+M(f1(t), · · · , fp−1(t), f

′
p(t)).� �

Démonstration : non exigible.� �
PROPOSITION SUR PRODUIT SCALAIRE, NORME, DÉTERMINANT 16.9 :

Avec le produit scalaire et la norme euclidienne canonique dans Rn :

(i) Si (f, g) ∈ C1(I, Rn)2 alors (f|g) ∈ C1(I, R) et (f|g)′ = (f′|g) + (f|g′).

(ii) Si f ∈ C1(I, Rn) est telle que ∀t ∈ I, f(t) ̸= 0 alors ||f|| ∈ C1(I, R) et ||f||′ = (f|f′)
||f|| .

Soit M : I 7→ Mn,p(K) de classe C1 avec M(t) = (Cj(t))16j6p (Cj est la fonction de t qui renvoie la

j-ième colonne de la matrice M(t). Alors det(M) : I → K est C1 et, sur I, on a la relation

(iii)
(
det(M)

)′
=

p∑
j=1

det
(
C1(t), · · · , Cj−1(t), C

′
j(t), Cj+1(t), · · · , Cp(t)

)
.� �
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Démonstration : (i) le produit scalaire B : (x, y) 7→ (x|y) étant bilinéaire sur (Rn)2, la proposition

précédente permet de conclure que (f|g) = B(f, g) est de classe C1 si f et g le sont avec la relation souhaitée

∀t ∈ I, (f|g)′(t) = B(f, g)′(t) = B(f′(t), g(t)) + B(f(t), g′(t)) = (f′(t)|g(t)) + (f(t)|g′(t)) : OK !

(ii) On écrit ||f|| =
√

(f|f) et par composition de t 7→
√
t qui est de classe C1 sur R∗

+ et t 7→ (f(t)|f(t)) qui

est de classe C1 d’après (i) et à valeurs dans R∗
+ par hypothèse, on en déduit que t 7→ ||f(t)|| est aussi de classe

C1 sur I avec ∀t ∈ I, ||f||′(t) = (f|f)′(t)× 1

2
√
(f(t)|f(t))

=
2(f(t)|f′(t))
2
√
(f(t)|f(t))

=
(f(t)|f′(t))
||f(t)|| comme attendu.

(iii) Il suffit de constater que la fonction det est multilinéaire et d’utiliser la proposition 16.8.

REMARQUE 16.6 : Application cinématique : soit un mouvement qui s’effectue à l’instant t ∈ I à
vitesse v = ||−→v || et à accélération −→a , la vitesse v est constante au cours du mouvement si et seulement
si ∀t ∈ I, −→v ⊥ −→a .

Démonstration : Supposons le mouvement au moins deux fois dérivable sur l’intervalle I.

(=⇒) supposons que v est constante sur I, alors on considère deux cas :

- si v est nulle, alors il n’y a pas de mouvement et −→v = −→a =
−→
0 donc −→v ⊥ −→a .

- si v = v0 n’est pas nulle, on dérive v avec la proposition 16.8.(ii) et v′ = (||−→v ||)′ = (−→v |−→a )
||−→v || = 0 donc−→v ⊥ −→a .

(⇐=) on utilise cette fois la proposition 16.8.(i) et on a (v2)′ = (||−→v ||2)′ = 2(−→v |−→a ) = 0 donc v2 est constante

sur l’intervalle I. Comme v est positive par définition v =
√
v2 est donc aussi constante sur I.

EXERCICE 16.2 : Calcul de D(x) =

∣∣∣∣∣∣
1 cos(x) sin(x)
1 cos(x+ a) sin(x+ a)
1 cos(x+ b) sin(x+ b)

∣∣∣∣∣∣ pour (a, b) ∈ R2.

Démonstration : Clairement, les fonctions ai,j sont ici toutes de classe C1 sur R car cos et sin le sont.

Ainsi, D est de classe C1 (et même de classe C∞ bien sûr) sur R et, avec la proposition 16.9, on a la formule

D′(x) =

∣∣∣∣∣∣
0 cos(x) sin(x)
0 cos(x+ a) sin(x+ a)
0 cos(x+ b) sin(x+ b)

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 − sin(x) sin(x)
1 − sin(x+ a) sin(x+ a)
1 − sin(x+ b) sin(x+ b)

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 cos(x) cos(x)
1 cos(x+ a) cos(x+ a)
1 cos(x+ b) cos(x+ b)

∣∣∣∣∣∣
donc, comme ces trois déterminants sont nuls, D′(x) = 0. Ainsi, D est constante sur l’intervalle R et vaut donc

D(0) =

∣∣∣∣∣∣
1 1 0

1 cos(a) sin(a)
1 cos(b) sin(b)

∣∣∣∣∣∣ = cos(a) sin(b)+ sin(a)− sin(a) cos(b)− sin(b). Par conséquent, avec les

formule de trigonométrie, ∀x ∈ R, D(x) = sin(a)− sin(b) + sin(b− a).

REMARQUE FONDAMENTALE 16.7 : Soit (E) : y′′−ay′−by = 0 une équation différentielle linéaire

scalaire homogène du second ordre ordre sur un intervalle I avec des fonctions continues a et b sur I. Si

y1, y2 sont deux solutions de (E) sur I, on pose le wronskien w(t) =

∣∣∣∣ y1(t) y′
1(t)

y2(t) y′
2(t)

∣∣∣∣.
Puisque y1 et y2 sont de classe C2 sur I, la fonction w est de classe C1 sur I et ∀t ∈ I, w′(t) = aw(t).

Si on note A une primitive de a sur I, alors ∃λ ∈ K, ∀t ∈ I, w(t) = λeA(t). Ceci nous donne une autre

méthode pour trouver une base de l’espace des solutions de (E) si on connâıt une solution y1 ̸= 0 de (E).

On peut généraliser avec une équation (E) : y(n) − a1y
(n−1) − · · · − any = 0 et poser, si y1, · · · , yn sont

des solutions de (E), le wronskien w(t) = det
(
(y

(j−1)
i )16i,j6n

)
. On aura alors ∀t ∈ I, w′(t) = a1(t)w(t).

EXERCICE CLASSIQUE 16.3 : Soit l’équation différentielle (E) : ty′′+(1−2t)y′+(t−1)y = 0.

Montrer que y1 : t 7→ et est solution de (E). Soit y une autre solution de (E), calculer W(t). En déduire

une solution y2 de (E) sur R∗
+ non colinéaire à y1.
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PROPOSITION SUR LA DÉRIVÉE DE FONCTIONS COMPOSÉES 16.10 :

Soit f : I → Rn de classe C1 et φ : J → I de classe C1.

Alors f ◦ φ est de classe C1 et on a : ∀u ∈ J,
(
f ◦ φ

)′
(u) = φ′(u)f′

(
φ(u)

)
.� �

Démonstration : On écrit, pour t ∈ I, f(t) =
n∑

k=1

fk(t)ek donc f(φ(u)) =
n∑

k=1

gk(u)ek en définissant les

gk : J → R par gk(u) = fk(φ(u)). Comme toutes les fk sont de classe C1 sur I d’après la proposition 16.4, les

gk sont aussi de classe C1 par composée donc g = f◦φ est aussi de classe C1 toujours avec la proposition 16.4. De

plus, ∀u ∈ J, g′(u) =
n∑

k=1

g′k(u)ek =
n∑

k=1

φ′(u)f′k(φ(u))ek = φ′(u)
n∑

k=1

f′k(φ(u))ek = φ′(u)f′(φ(u)).

16.2.2 : Fonctions de classe Ck

DÉFINITION 16.4 :

Soit f : I → Rn, on note f(0) = f et pour p ∈ N et si f(p) est dérivable sur I, la fonction f(p+1) =
(
f(p)

)′
:

cette fonction f(p) est alors la dérivée p-ième de f sur I.

Pour p ∈ N∗, on dit que f est de classe Cp sur I si f′ est de classe Cp−1 sur I.

On note Cp(I, Rn) l’ensemble des fonctions de classe Cp sur I et à valeurs dans Rn.

On dit que f est de classe C∞ sur I si f est de classe Cp sur I pour tout entier p ∈ N.

On note C∞(I, Rn) =
∩
p∈N

Cp(I, Rn) l’ensemble des fonctions de classe C∞ sur I et à valeurs dans F.

REMARQUE 16.8 : • f de classe C2 si f′ existe et est de classe C1 donc si f′′ = (f′)′ existe et est continue.

• Sous réserve d’existence, si f(n) existe et n = p+ q avec (p, q) ∈ N2, alors f(n) = (f(p))(q).

• Par récurrence, pour p ∈ N∗ :
(
f de classe Cp sur I

)
⇐⇒

(
f(p) existe et est continue sur I

)
.

Démonstration : • En notant D la fonction qui à une fonction associe sa dérivée, on a par définition f(n)

existe si et seulement f(n−1) existe et est dérivable avec la relation f(n) = (f(n−1))′ donc f(n) = D(f(n−1)).

On démontre la relation de la remarque par récurrence sur n. Si n = 0 ou n = 1, c’est clair car dériver 0 fois, c’est

ne rien faire (en effet D0 = id). Soit n > 1, supposons la relation vraie jusqu’à n − 1. Soit aussi (p, q) ∈ N2

tel que p + q = n et une fonction f : I → Rn telle que f(n) existe, alors par définition f(n−1) existe et, par

hypothèse de récurrence, comme p + (q − 1) = n − 1, on a f(n−1) = (f(p))(q−1) = Dq−1(f(p)). Or, par

définition f(n) = (f(n−1))′ = D(Dq−1(f(p))) = Dq(f(p)) = (f(p))(q) comme attendu.

• La propriété est vraie par définition si p = 1. Soit p ∈ N∗ pour lequel la propriété est vraie pour n’importe

quelle fonction définie sur I. Soit maintenant une fonction f : I → Rn.

(=⇒) Si f est de classe Cp sur I, alors par définition f′ est de classe Cp−1 sur I donc, par hypothèse de récurrence,

(f′)(p−1) existe et est continue sur I ce qui signifie que f(p) existe et que f(p) est continue sur I comme attendu.

(⇐=) Si f(p) existe et est continue sur I, on en déduit que (f′)(p−1) existe et est continue sur I donc, par hypothèse

de récurrence, que f′ est de classe Cp−1 sur I ce qui est la définition du fait que f est de classe Cp sur I.� �
PROPOSITION SUR LA LINÉARITÉ DES DÉRIVÉES SUCCESSIVES 16.11 :

Pour tout p ∈ N ∪ {∞}, Cp(I, Rn) est un sous-espace vectoriel de F(I, Rn) et :

∀(f, g) ∈ Cp(I, Rn)2, ∀(α, β) ∈ R2, (αf+ βg)(p) = αf(p) + βg(p).� �
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Démonstration : On le fait par récurrence sur p ∈ N. La propriété est claire pour p = 0 et elle provient de

la linéarité de la dérivation (proposition 16.4) pour p = 1.

Soit p > 1 tel que la formule soit vraie pour toutes fonctions f et g vérifiant les bonnes propriétés. Soit (α, β) ∈ R2

et f, g deux fonctions de I dans Rn de classe Cp+1, alors par définition, cela signifie que f et g sont dérivables sur

I et que f′ et g′ sont de classe Cp. Par hypothèse de récurrence, αf′ + βg′ est donc elle aussi de classe Cp sur I

avec (αf′+βg′)(p) = αf′(p)+βg′(p) = αf(p+1)+βg(p+1). Ainsi, (αf+βg)′ = αf′+βg′ est de classe Cp

ce qui justifie que αf+βg est de classe Cp+1 et que (αf+βg)(p+1) = (αf′ +βg′)(p) = αf(p+1) +βg(p+1).

Pour p = ∞, si f et g sont de classe C∞ sur I, alors ces deux fonctions sont de classe Cp sur I pour tout entier

p ∈ N donc, d’après ce qui précède, αf + βg est de classe Cp sur I. Ceci étant vrai pour tout entier p ∈ N, la

fonction αf+ βg est de classe C∞ sur I.� �
PROPOSITION SUR LA FORMULE DE LEIBNIZ 16.12 :

Soit p ∈ N ∪ {∞}, λ : I → R et f : I → Rn de classe Cp sur I.

Alors λf : I → Rn est de classe Cp et si p ∈ N : (λf)(p) =
p∑

k=0

(
p

k

)
λ(k)f(p−k).� �

Démonstration : Par récurrence sur p comme pour la formule de Leibniz valable pour les fonctions scalaires

ou en passant par les fonctions coordonnées en écrivant f =
n∑

k=1

fkek et en utilisant directement la formule de

Leibniz sur les λfk vues en sup. par rapport au produit de fonctions scalaires car λf =
n∑

k=1

(λfk)ek.� �
PROPOSITION SUR LA CLASSE DES FONCTIONS COMPOSÉES 16.13 :

Soit p ∈ N ∪ {∞}, f : I → Rn de classe Cp, φ : J → I de classe Cp. Alors f ◦ φ est de classe Cp.� �
Démonstration : En décomposant f =

n∑
k=1

fkek et en écrivant que f ◦φ =
n∑

k=1

(fk ◦φ) ek, comme on sait

que les fonctions fk ◦φ sont elles-mêmes de classe Cp sur J d’après le cours de sup., la fonction f ◦φ est aussi de

classe Cp sur J puisque toutes ses fonctions coordonnées le sont.

� �
COMPÉTENCES� �

• Dériver une fonction vectorielle en dimension finie en passant par les coordonnées.

• Savoir dériver des fonctions définies comme produit scalaire ou norme d’autres fonctions.

• Connâıtre la formule donnant la dérivée d’un déterminant de matrice dérivable.


