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CHAPITRE 16
FONCTIONS VECTORIELLES

(© Contrairement au chapitre précédent, plutot que d’étudier les fonctions scalaires définies dans ’espace
ou le plan (les fonctions de RP dans R) qui représentent la pression, la température, etc.... on s’intéresse ici
aux fonctions vectorielles de la variable réelle (les fonctions de R dans RP) qui représentent une trajectoire
d’un point dans le plan ou I’espace, ce qui va donner lieu a I’étude de la représentation des courbes paramétrées
(par le temps par exemple).

Les récents changements de programme en PSI ont vu la baisse conséquente des notions de géométrie,
on a ainsi vu disparaitre I’étude des coniques, des quadriques, des abscisses curvilignes des courbes, des
reperes de FRENET et des rayons de courbure dont on avait besoin pour la découpe 4 la fraise de plaque de
métal par exemple par I'intermédiaire des courbes paralleles. Il ne reste méme plus les courbes définies en
coordonnées cartésiennes avec leurs tangentes, asymptotes, points multiples, point d’inflexion, longueur.

Il existe un nombre incalculable de courbes planes ou gauches (dans Uespace) : elles ont été répertoriées
depuis longtemps, qu’elles soient issues des domaines de la caustique (enveloppes de rayons lumineux issus
d’une réflexion par exemple) comme la cardioide qu’on peut voir dans son bol au petit déjeuner, de la
mécanique comme les ellipses ou hyperboles qui sont les trajectoires des planetes, de la dynamique comme
la cycloide qui est la courbe sur laquelle lacher un point matériel pour qu’il aille par la gravité le plus vite
d’un point a un autre, etc...

Ces courbes possedent des noms mystérieux traduisant leur origine ou leur forme : trefle équilatere,
lemniscate, nceud de papillon, cissoide, deltoide, strophoide, trifolium,.... et ce n’est qu’'un tout petit
apercu ! D’ailleurs vous pouvez admirer ces arcs et leurs origines et caractéristiques géométriques sur le
site https://mathcurve.com/ du confrére Robert Ferréol.

I désignera dans ce chapitre un intervalle de R contenant au moins deux points distincts.
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(PROGRAMME ]

L’objectif de cette section est de généraliser aux fonctions a valeurs dans R™ la notion de dérivée d’une
fonction numérique.

Toutes les fonctions sont définies sur un intervalle I de R et a valeurs dans R™.

2 : Dérivabilité des fonctions vectorielles

CONTENUS CAPACITES & COMMENTAIRES

Interprétation d’une fonction a valeurs dans R™ L’étude et le tracé d’arcs paramétrés sont hors

comme courbe paramétrée. programme.
Dérivabilité en un point. Définition par le taux d’accroissement, caractérisation
Dérivabilité sur un intervalle. par le développement limité d’ordre un.

Traduction par les coordonnées dans la base canonique.
Interprétation cinématique.
Combinaison linéaire de fonctions dérivables.

Dérivée de L(f), ou L est linéaire et f & valeurs

dans R™.

Dérivée de B(f, g), ou B est bilinéaire, de La démonstration n’est pas exigible.
M(f1,...,fp), ot M est p-linéaire, et f, g, Application au produit scalaire et au déterminant.
f1,...,fp a valeurs vectorielles.

Dérivée de f o @ ou ¢ est a valeurs réelles et f a
valeurs vectorielles.

Fonction de classe C¥, de C* sur un intervalle.
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[PARTIE 16.1 : DEFINITION DE LA DERIVATION

]16.1.1 : Dérivée ponctuelle\

DEFINITION 16.1 :
Soit f: 1 — R™ et top €1, si la fonction h € R — M

f(to +h) — f(to)
h

admet une limite en 0, on dit que f est

dérivable en ty. Alors, on note f'(tp) = lim € R™ le vecteur dérivé de f en tg.

h—0

REMARQUE 16.1 :

e f est dérivable en to si et seulement si la fonction “taux d’accroissement” ty, : I\{to} — R™ définie
f(t) = f(to)
t—1to

par Ty, (t) = est prolongeable par continuité en tg.

e f est dérivable en tg si et seulement si f admet un DL (tg), ¢’est-a-dire si et seulement s’il existe un
vecteur v € R™ tel que f(to + h) jf(to) +hv+o(h) ; dans ce cas on a f'(tp) = v.

e Interprétation géométrique : si f'(to) # 0 alors le vecteur f'(to) dirige la tangente au point de
paramétre to de la courbe paramétrée par t — f(t) (le point est régulier).

e Interprétation cinématique : si f(t) repére la position d’un mobile & l'instant t alors f'(to) est le

vecteur vitesse instantané a l'instant tg.

f(to + h) — f(to)
h

DEMONSTRATION : Si f est dérivable en to, en notant v = f/(to), alors }11”% s’écrit aussi
—

f(to +h) — f(to)
h
Réciproquement, s’il existe v € R™ tel que f(to + h) if(to) + hv 4+ 0(]’1)7 alors en divisant par h, on a

f(to +h) — f(to) —v+o(1) don lim f(to +h) — f(to)
h 0 h—0 h

? v+ 0(1) ou encore, en multipliant par h, f(to + h) — f(to) ? hv + O(h) comme attendu.

= v et f est dérivable en tp avec f/(to) =v.

PROPOSITION SUR LA D}?;RIVABILITE D’UNE FONCTION VECTORIELLE SUR SES
FONCTIONS COORDONNEES 16.1 :

Soit to € I, B =(e1, -+, en) une base de R™, f: I — R™ une fonction et fy,---, f, les fonctions de I
n
dans R telles que Vt € I, f(t) = > fi(t)ex. Alors f est dérivable en t, si et seulement si f,---,f,
k=1
n
sont dérivables en to. Dans ce cas, on a f'(to) = > f} (to)ek.

k=1

J— n J—
DEMONSTRATION : 1I suffit d’écrire, pour t € I\ {to}, w = Z Me
— 1o k=1 — 1o
f(t) — f(to)
t—+to

k (en regroupant

les termes) et on se rappelle que, puisqu’on est en dimension finie, t — admet une limite finie en tg

fr (t) — fx (‘to)

P admettent des limites finies en tg. Dans
—to

si et seulement si toutes ses fonctions coordonnées t >

_ n _ n
ce cas, on aura bien f/ (to) = t]i:f]tflo W = kz] t],i}T][’lg) Wek = kZ] f;((to)ek par définition.
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REMARQUE 16.2 :

e Une fonction vectorielle f : 1 — R™ est dérivable en un point tg si et seulement si toutes les fonctions

coordonnées le sont (et ceci dans n’importe quelle base).

o Soit f: 1 — C et to €1, alors f est dérivable en to si et seulement si Re (f) et Im(f) le sont.

Dans ce cas, f'(tg) = Re(f)(to) +1iIm(f)'(to). De plus f est dérivable en to et () (to) = '(to).

e C’est un cas particulier de la proposition précédente en dimension 2.

DEMONSTRATION : Pour les fonctions & valeurs complexes, il suffit d’écrire, comme précédemment, pour t 75 to,
f(t) —f(to) _ (Re (f)(t) — Re(f) (tO)) " i( Im(f)(t) — Im(f)(to)

t—+1o t—+to t—+to
une limite finie en tp si et seulement si sa partie réelle et sa partie imaginaire admettent des limites finies en tg, ce

) ; on sait qu’une telle fonction admet

qui donne I’équivalence de la remarque et, en cas de convergence, f'(to) = Re(f)'(to) + i Im(f)'(to).

Méme chose avec f si on écrit ﬂt) — ¥(t0) = (Re (f) (t) —Re (f) (to)) — i( Im(f) (t) — Im(f) (to) )
t—to t—to t—to

PROPOSITION SUR LA CONTINUITE D’UNE FONCTION DERIVABLE 16.2 :

Soit f: I — R™ et tp € 1, si f est dérivable en ty alors f est continue en tg.

, f(t) — f(t
DEMONSTRATION : Si f est dérivable en tg, en notant comme avant Tt, (t) = w, on a pour
— 1o

t # to, f(t) = f(to) + (t — to)’tto (t) donc, comme Um Tg, (t) = fl<to) donc lim (t — tO)Tto (t) = 6) et
t—to t—to

tHT f(t) = f(to) ce qui prouve la continuité de f en tg.
—to

DEFINITION 16.2 :
Soit f:1— R™ et ty €1.
e Sity # Sup(I), on dit que f est dérivable & droite en to si f|in[ty;1o0[ €5t dérivable en to, c’est-a-dire

f(to + h) — f(to)
h

si la fonction h — admet une limite quand h tend vers 0 avec h > 0.

f(to+h) —f(to)
h

e Sito # Inf(I), on dit que f est dérivable & gauche en to si f|1n]_oc;t,] €st dérivable en to, c’est-a-dire

f(to + h) — f(to)
h

Dans ce cas, on note fi4(to) = lim le vecteur dérivé de f a droite en to.
h—0

si la fonction h — admet une limite quand h tend vers 0 avec h < 0.

Dans ce cas, on note fg(to) = lim flto +1) — f(to)

le vecteur dérivé de f a gauche en tg.
h—0— h

( L 7
PROPOSITION SUR UNE CONDITION NECESSAIRE ET SUFFISANTE DE
DERIVABILITE SUR LA DERIVABILITE A GAUCHE ET A DROITE 16.3 :

Soit f: I — R™ et to & ’'intérieur de I, alors f est dérivable en t( si et seulement si f est dérivable

fi gauche et a droite en to et si f(to) = f}(to)-

DEMONSTRATION : Comme pour les fonctions & valeurs réelles en se ramenant & chaque fonction coordonnée.
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16.1.2 : Fonctions dérivables, fonctions de classe C'

DEFINITION 16.3 :

Soit f: 1 — R™.
e On dit que f est dérivable sur 1 si f est dérivable en tout point to de 1.

Dans ce cas, on note ' : 1 — R™ la fonction dérivée de f qui d to € I associe f'(to).
e On dit que f est de classe C' sur I sif est dérivable sur 1 et si f' est continue sur 1.

On note C' (I, R™) l’ensemble des fonctions de classe C' sur 1 et a valeurs dans R™.

REMARQUE 16.3 : On a 'inclusion stricte C' (I, R™) C CO(I, R™).

EXEMPLE 16.1 : Soit un vecteur non nul ¥ € R™, la fonction vectorielle f : R — R™ définie par
Vt € R, f(t) = [t|V est continue en 0 et pourtant elle n’est pas dérivable en 0.

f(t) —7(0) _ [t|¥ =T
t—0  t—0
f(t) —£(0) _ [tV -7
t—0  t—0
Comme f/g (O) 75 f/d (O), f n’est par dérivable en O alors qu’elle est continue sur R par opérations.

DEMONSTRATION : Pour t < 0, on a

= —V car |t| = —t donc f/g(O) =—-V.

Pour t > 0, on a =V car [t| = t donc f’d(O) =7V.

( ’
PROPOSITION DE PASSAGE PAR LES COORDONNEES 16.4 :

Soit f: I — R™, et B = (e1,--,en) une base de R", et fy,---,f, les fonctions coordonnées de f

n
dans B, c’est-a-dire Vt € I, f(t) = ) fi(t)ex :
k=1
n
fe Cl(I, R") <= (f1,+,fn) € C'(I, R)™ ; dans ce cas, f' = Y f]ex.
k=1

En particulier : f € C'(I, C) <= (Re(f),Im(f)) € C'(I, R)%.

Dans ce cas f' = Re (f)! + iIm(f)’ et, de plus, f € C'(I, C) et ()" = f.
-

J
n
DEMONSTRATION : e D’apres la proposition 16.1, f = Z frex est dérivable sur I si et seulement si toutes
k=1
n
ses coordonnées fy le sont. Dans ce cas, on a f = Z f%ek. Or, on a vu dans le chapitre des espaces vectoriels

k=1

normés que ' est continue si et seulement si toutes les fonctions fL le sont, ce qui montre que f est de classe c!
sur I si et seulement si toutes les fonctions coordonnées fy sont elles-mémes de classe C! sur L.

® D’aprés la remarque 16.2, f = Re (f) 4+ i Im(f) est dérivable sur I si et seulement si Re (f) et Im(f) le sont
et on a f = (Re (f))/ + i(Im(f))/. Une fonction complexe est continue si et seulement si ses parties réelle et
imaginaire sont continues. Ainsi, f est de classe C' sur I si et seulement si Re (f) et Im.(f) sont de classe C'surl.
e Comme f = Re (f) —iIm(f) et que Im(f) est de classe C! sur I si et seulement si — Im(f) lest, f est de classe
C' sur I si et seulement si f 'est et on a alors (?)/ =Re(f) —ilm(f) = /.

REMARQUE 16.4 : Cela nous permet de nous ramener a des fonctions numériques de I dans R.

PROPOSITION SUR LA LINEARITE DE LA DERIVEE 16.5 :
C'(1, R™) est un sous-espace de F(I, R™) et : V(f,g) € C' (I, R™)2, V(«, ) € R?, (af+Bg) = af’ +Bg’.
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DEMONSTRATION : Méthode 1 : pourtyg € lett € [telquet 75 to, on peut transformer le taux d’accroissement
(af + pg)(t) — (of + Bog)(to) _ F(t) = f(to) , pa(t) — 9(to)
t—1to t—1to t— 1o
par hypotheése puisque f et g sont de classe Cl sur et (ocf + Bg)l(to) = ocf’(tg) + Bg/(to) ce qui montre la
relation fonctionnelle (oef + Bg)’ = af’ + Bg’. Comme f’ et g’ sont continues par hypothese, (af + Bg)’ est

et, quand t tend vers tp, la limite existe

continue par combinaison linéaire donc af 4+ bg est de classe C 1 par définition.

Méthode 2 : on décompose f et g dans la base canonique B = (61 RN en) de R™ et on se sert de ’équivalence de

n n
la proposition précédente, Vt € I, f(t) = Z fk(t)ek et g(t) = Z gk(t)ek. Ainsi, pour (oc, ﬁ) € Rz, on a
k=1 k=1

n
vt e, (af+Bg)(t) = Z (ofic(t) + Bgi(t))ex et les fonctions ofy + B gy sont de classe c! par combinaison

linéaire de telles fonctions de R dans R d’aprés la proposition 16.4, celle-ci montre aussi qu’alors ocf + g est de

classe C avee (af-+Bg)/ (£) = 3 (acfl, (£)+Bgl(t))ex = aé f (t)er+B é gL (V)ex = af () +Bg'(¢).

[PARTIE 16.2 : PROPRIETES DE LA DERIVATION]

’16.2.1 : Composées‘

PROPOSITION SUR LA RELATION ENTRE DERIVABILITE ET COMPOSEE A
GAUCHE PAR UNE APPLICATION LINEAIRE 16.6 :

Soit f:1— R et L € £L(R™, RP). Sife C'(I, R") alors Lof € C'(I, RP) et (Lof) =Lof.

DEMONSTRATION : Méthode 1 : soit B = (eq,-+-,en) et B = (6/1 RN e;) les bases canoniques de R™

n
et de RP, on pose A = Matrgyg/(l_) e (ai,j)1 i<p et on décompose T dans B en f(t) e Z fj (t)e]', alors
<n j=1

<i
1<
n P P n P n
_ o o / _
Lof(t) = 3650 2 aysel = 3 (3 aiifi())ef = X gi(t)el en posant g3(t) = 3. ay65(1). ox
j=1 i=1 i=1 Vj=1 i=1 j=1
d’apres la proposition 1.5, toutes les fj sont de classe C'surIecar f ’est, ainsi, avec cette méme proposition, L o f
est de classe C! sur I car toutes les gi sont de classe c! par combinaison linéaire de telles fonctions. De plus, on a

P P, n 2
(Lotf)(t) = 2:] gi(t)e, = > (2:1 aijf] (t)) e = Z] £ (t) 2:1 aijel =L(f'(t)) =Lof/(t).
i= j= j= i=

i=1

Méthode 2 : pour tg € T et t € I tel que t # tg, on écrit L(f(t) — L(f(to)) = L(M> Par

t— 1o t—to
. f(t) — f(t
hypotheése, f est de classe C! donc tllm M

= f/(to) et la fonction L est continue car linéaire en
—to t — to

dimension finie. Par composée, on obtient la limite lim L(f(t)) — L(f(to))
t—to t— to

dérivabilité de L o f sur I et que (L o f)/ = L(f/). De plus, comme L et f’ sont continues, L o f est continue par

= L(f'(to)) ce qui garantit la

composée d’ou I'aspect CldeLofsurl

REMARQUE 16.5 : ® Siv € RP est fixé et £ € C'(I, R), alors la dérivée de t — f(t)v est t — '(t)v.

e On a déja utilisé ce résultat sur les systémes différentiels ot on avait (PX)" = PX’.

DEMONSTRATION : e II suffit d’appliquer la proposition précédente avec L : R — RP définie par L(u) =uwv
qui est clairement linéaire et on a, puisque f est supposée de classe C! sur I, (L(f))' = L(f’) ce qui s’écrit aussi,
avec abus de notation habituel, Vt € I, (f(t)v)/ = f’(t)v.

® Méme chose, en identifiant RP et Mp 1 (R), avec L : U +— PU qui est linéaire et si X : R — Mp 1 (R) de
classe C! sur I, alors t — PX(t) est de classe C! sur [ et, avec abus de notation classique, (PX(t))/ = PX/(t).
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PROPOSITION RELIANT DERIVABILITE ET APPLICATION BILINEAIRE 16.7 :
Soit f € C'(I, R™), g € C'(I, R™) et B: R™ x R™ — RP bilinéaire, alors la fonction B(f,g) : [ — RP

définie par B(f,g)(t) = B(f(t),g(t)) est de classe C' sur I et B(f,g)’ = B(f/,g) + B(f,g’).

DEMONSTRATION : Méthode 1 : soit B = (e, -,en) et B = (ef, -,€h.) les bases canoniques de

’
1n m
R™ et R™ respectivement, alors pour t € I, si on décompose f(t) = Z fi(t)ei et g(t) = Z gj (t)eg,
i=1 j=1

on a par bilinéarité de B : B(f(t), g(t)) = Z fi(t)gj(t)B(ei) eg). Or, en appliquant la proposition 16.6
1<i<n
1<i<m

avec l’application linéaire Lij : R — RP telle que Li; (t) = tB(ei, e;) (voir la remarque 16.4), toutes les
fonctions hi; 1 t € I — fi(t )

( ) (el, /') sont C! (car fi et gj le sont d’aprés la proposition 16.4) sur
I avec h/i‘j(t) = ( ( ) ( ) + fll(t) ( )) (el, ]) donc, B( ,g) est de classe C! par combinaison linéaire

de telles fonctions et on a Vt € B(f,g)'(t) = > (i ( )gj(t) + fi(t)g; (t))B(ei,eg) qu’on réécrit
1<i<n
1<i<m
B(f,g)'(t) = > fg(t)gj(t) (ei, e ) + E fl(t)g;( )B (ei,eg) et, & nouveau par bilinéarité de B :
’ L s S ’ ’
B(1,9)(1) = B( X f(0er, X 05(0¢]) +B(z fi(Uen X2 0f(0ef ) = B(F(1),9(0) + B((1), ¢'(1)
i= j= j=1
Méthode 2 : pour tg € Tett € I tel que t ;é to, on écrit le taux d’accroissement suivant en intercalant le
vecteur B(f(to), (1)) : ()8 1(0) Bttt %)) p(TL=T0) (1)) 48 (1), 2L =900
t—to t—to t—to

Puisque f et g sont dérivables (donc continues) en to et que B est continue car bilinéaire en dimension finie, quand t
. B(f(t t)) — B(f(t t
tend vers to,onaB(f,g)/(to) = lim ( ( )»9( )) ( ( 0),9( 0)) :B(f/(to),g(to))—|—B(f(to),g’(to))
t—to t—1to
d’ou la relation de la proposition. De plus, comme f, f/, g, g/, B sont continues sur leurs ensembles de définition,
B(f, g)/ I’est aussi ce qui garantit I’aspect C! de B(f, g).

Cette démonstration n’est pas exigible.

PROPOSITION RELIANT DERIVABILITE ET APPLICATION MULTILINEAIRE 16.8 :
Soit (m,n,p) € (N*)3 et, pour k € [1;p], des applications fi : [ - R™ de classe C' sur un intervalle
I. Si M: (R™)P — R™ une application multilinéaire. Alors I’application g : I -+ R™ définie par

g(t) = M(f1(t),---,fp(t)) est de classe C' et on a
Vtel, g'(t) = M(fy (1), f2(t), -+, Fp (1)) + M(f1 (1), F (1), F3(t), -+, Fp (1)) + -+ M(F1 (1), -, Fp 1 (1), £, (1)

J

DEMONSTRATION : non exigible.

r ,
PROPOSITION SUR PRODUIT SCALAIRE, NORME, DETERMINANT 16.9 :

Avec le produit scalaire et la norme euclidienne canonique dans R™ :
(i) Si (f,g) € C'(1, R™)? alors (f|g) € C'(I, R) et (f|g)’ = (f'|g) + (f|g)-

/
(ii) Si fe C'(I, R™) est telle que Vt € I, f(t) # 0 alors ||f|| € C'(I, R) et ||f|| = (f‘f).
(

[I£1]
Soit M : I — My, (K) de classe C' avec M(t) = (Cj(t))1<j<p (C; est la fonction de t qui renvoie la

j-itme colonne de la matrice M(t). Alors det(M):1— K est C! et, sur I, on a la relation

)
’ P
(iii) (det(M)) =Z]det(C1(t),~-wC 1(8), C5(1), G (1), -+, Cp (1))
j=
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DEMONSTRATION : (i) le produit scalaire B : (X,g) — (x\y) étant bilinéaire sur (Rn)z, la proposition
précédente permet de conclure que (f|g) = B(f, g) est de classe C Tgifet g le sont avec la relation souhaitée
vtel, (flg)'(t) = B(f,9)"(t) = B(f(t),g(t)) + B(f(t), ¢'(t)) = (F'(t)[g(t)) + (f(t)|g'(t)) - OK!

(ii) On écrit ||f||] = v/ (f|f) et par composition de t —> V't qui est de classe C! sur R et t — (f(t)|f(t)) qui
est de classe C! d’apres (l) et a valeurs dans R* par hypothese, on en déduit que t +— ||f(t)|| est aussi de classe

1 / 1 2(f(t )|f( )) (F(O)IF' (1))
C' sur I avec Vt € I, Hf” (1) = (f‘f 2\/ t)) 2\/ = ()] comme attendu.

(iii) 11 suffit de constater que la fonction det est multlhnealre et d’utiliser la proposition 16.8.

REMARQUE 16.6 : Application cinématique : soit un mouvement qui s’effectue a linstant t € 1 a
vitesse v = || V|| et a accélération @, la vitesse v est constante au cours du mouvement si et seulement
sivtel, v.1La

DEMONSTRATION : Supposons le mouvement au moins deux fois dérivable sur 'intervalle 1.

(:) supposons que V est constante sur I, alors on considére deux cas :

_>
- si v est nulle, alors il n’y a pas de mouvement et V=aT=0dmncV L@

(V@) _

- 81’V = Vo n’est pas nulle, on dérive v avec la proposition 16.8.(ii) et v = (||7| |) H?H =0doncv L @

(<:) on utilise cette fois la proposition 16.8.(i) et on a (VZ)/ = (‘ |7| |2)/ = 2(?‘?) = 0 donc v? est constante

sur l'intervalle I. Comme V est positive par définition v = V/ vZ est donc aussi constante sur .

1 cos(x) sin(x)
EXERCICE 16.2 : Calcul de D(x) = |1 cos(x+a) sin(x+a)| pour (a,b) € R2.
1 cos(x+b) sin(x+b)

D : airement, les fonctions aj ; sont ici toutes de classe sur car cos et sin le sont.
DEMONSTRATION : Cl t, les fonct i,j sont ici toutes de classe C! sur R t sin le sont

Ainsi, D est de classe C1 (et méme de classe C* bien siir) sur R et, avec la proposition 16.9, on a la formule
0  cos(x) sin(x) 1 —sin(x) sin(x) 1 cos(x) cos(x)

D'(x) = |0 cos(x+a) sin(x+a)|+|1 —sin(x+a) sin(x+a)|+|1 cos(x+a) cos(x+a)
0 cos(x+b) sin(x+b) 1 —sin(x+b) sin(x+b) 1 cos(x+b) cos(x+b)

donc, comme ces trois déterminants sont nuls, D/(X) = 0. Ainsi, D est constante sur I'intervalle IR et vaut donc
1 1 0

D(0) = |1 cos(a) sin(a)|= cos(a)sin(b)+sin(a) —sin(a)cos(b) — sin(b). Par conséquent, avec les
1 cos(b) sin(b)

formule de trigonométrie, Vx € R, D(x) = sin(a) — sin(b) + sin(b — a).

REMARQUE FONDAMENTALE 16.7 : Soit (E) : y” —ay’ —by = 0 une équation différentielle linéaire

scalaire homogeéne du second ordre ordre sur un intervalle 1 avec des fonctions continues a et b sur 1. Si

yi(t) yi(t)

ya(t) va(t) |

Puisque y; et yz sont de classe C? sur I, la fonction w est de classe C! sur I et YVt € I, w'(t) = aw(t).

Y1, y2 sont deux solutions de (E) sur I, on pose le wronskien w(t) =

Si on note A une primitive de a sur I, alors 3A € K, Vt € I, w(t) = Ae*(V). Ceci nous donne une autre
méthode pour trouver une base de 'espace des solutions de (E) si on connait une solution yy # 0 de (E).

On peut généraliser avec une équation (E) : y™ —ajy™=1 —... —a,y =0 et poser, siy1,---,yn sont

G-

des solutions de (E), le wronskien w(t) = det((y; ]))ngn). On aura alors Vt € I, w/(t) = a;(t)w(t).

EXERCICE CLASSIQUE 16.3 : Soit I'équation différentielle (E) : ty”+(1—2t)y'+(t—1)y = 0.

Montrer que y7 : t — e' est solution de (E). Soit y une autre solution de (E), calculer W(t). En déduire

une solution y, de (E) sur R non colinéaire a yi.
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PROPOSITION SUR LA DERIVEE DE FONCTIONS COMPOSEES 16.10 :
Soit f: 1 — R™ de classe C' et ¢ : ] — I de classe C'.

Alors fog est de classe C' et ona: Vue], (fo (p)/(u) =o' (W (o(u)).

n n
DEMONSTRATION : On écrit, pour t € I, f(t) = E fk(t)ek donc f((p(u)) = Z gk(u)ek en définissant les
k=1 k=1

gk : ] — Rpar gk(u) = fk((p(u)). Comme toutes les fi sont de classe Clsurl d’apres la proposition 16.4, les

gk sont aussi de classe C! par composée donc g = f o @ est aussi de classe c! toujours avec la proposition 16.4. De

phis Y € 1, 6/(0) = 3 gi(w)e = 2 o (W)t (pw))ex = ¢'() 3 ilpw)ex = ¢/ (W (0(w).

[16.2.2 : Fonctions de classe c¥]

DEFINITION 16.4 :

Soit f: 1 — R™, on note f©©) = f et pour p € N et si fP) est dérivable sur 1, la fonction fP+1) = (f(p))/ :
cette fonction £fP) est alors la dérivée p-ieme de f sur 1.

Pour p € N*, on dit que f est de classe CP sur I si f' est de classe CP~" sur L.
On note CP(I, R™) l’ensemble des fonctions de classe CP sur 1 et a valeurs dans R™.

On dit que f est de classe C™ sur I si f est de classe CP sur 1 pour tout entier p € N.

On note C*°(I, R™) = ﬂ CP(I, R™) l’ensemble des fonctions de classe C* sur 1 et d valeurs dans F.
peN

REMARQUE 16.8 :  f de classe C? si f' existe et est de classe C' donc si f’ = (f')’ existe et est continue.

e Sous réserve d’existence, si f™) existe et n = p + q avec (p,q) € N2, alors f(™) = (£(P))(q),
e Par récurrence, pour p € N* : (f de classe CP sur I) = (f(p) existe et est continue sur I).

DEMONSTRATION : ® En notant D la fonction qui a une fonction associe sa dérivée, on a par définition f(n)

existe si et seulement f(" 1) existe et est dérivable avec la relation (™) = (f(n_]))/ donc (™) = D(f(n_])).

On démontre la relation de la remarque par récurrence sur .. Sin = 0 oun = 1, c’est clair car dériver O fois, c’est
ne rien faire (en effet DO = id). Soit n = 1, supposons la relation vraie jusqu’a n — 1. Soit aussi (‘p, q) e N2
tel que p + g = M et une fonction f : I — R™ telle que £ existe, alors par définition £ =1) oxiste et, par
hypothese de récurrence, comme p + (@ —1) =n — 1, on a fn=1) = (f('p))(qu = pa-! (f(p)). Or, par
définition f() = (f(n_l))/ = D(Dq_1 (f(p))) = Dq<f(p)) = (f('p))(q) comme attendu.

® La propriété est vraie par définition si p = 1. Soit p € N* pour lequel la propriété est vraie pour n’importe
quelle fonction définie sur I. Soit maintenant une fonction f : I — R™.

(:>) Si f est de classe CP sur I, alors par définition ' est de classe CP~ 1 sur I done, par hypothese de récurrence,
(f/)(pfw existe et est continue sur I ce qui signifie que f(p) existe et que f(p) est continue sur I comme attendu.
(<:) Si f(P) existe et est continue sur I, on en déduit que (f/>(p_1) existe et est continue sur I donc, par hypothése

de récurrence, que f’ est de classe CP ' sur I ce qui est la définition du fait que f est de classe CP sur .

PROPOSITION SUR LA LINEARITE DES DERIVEES SUCCESSIVES 16.11 :
Pour tout p € NU {0}, CP(I, R") est un sous-espace vectoriel de F(I, R") et :

V(f,g) € CP(I, R™)2, VY(a, B) € R?, (af + Bg)P) = afP) + pg®).
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DEMONSTRATION : On le fait par récurrence sur p € N. La propriété est claire pour p = 0 et elle provient de

la linéarité de la dérivation (proposition 16.4) pour p = 1.

Soit p 2 1 tel que la formule soit vraie pour toutes fonctions f et g vérifiant les bonnes propriétés. Soit (O(, [3) S RZ2
et f, g deux fonctions de I dans R™ de classe crtl , alors par définition, cela signifie que f et g sont dérivables sur
I et que f’ et g’ sont de classe CP. Par hypothése de récurrence, ocf’ + B¢’ est donc elle aussi de classe CP sur I
avec (of’ + ﬁg/)(p) = of'(P) 4 Bg/(p) = af(Pt1) 4 Bg(er]). Ainsi, (af + Bg)’ = of’ + Bg’ est de classe CP
ce qui justifie que of 4 g est de classe CPHT et que (of + 59)(‘P+1) = (af' + Bg/)(p) = of(Pt1) 4 Bg(er]).

Pour p = 00, si f et g sont de classe C® sur I, alors ces deux fonctions sont de classe CP sur I pour tout entier

p E N donc, d’aprés ce qui précede, of + g est de classe CP sur I. Ceci étant vrai pour tout entier p E N, Ia

fonction af + B g est de classe C* sur L.

PROPOSITION SUR LA FORMULE DE LEIBNIZ 16.12 :
Soit p € NU{oo}, A:1— Ret f: I - R™ de classe CP sur L.

P
Alors Af: 1 — R™ est de classe CP et sipe N: (A\f)®) = Y (E))\(k)f(pk).
k=0

DEMONSTRATION : Par récurrence sur P comme pour la formule de LEIBNIZ valable pour les fonctions scalaires

n
ou en passant par les fonctions coordonnées en écrivant f = Z frex et en utilisant directement la formule de
k=1

n
LEIBNIZ sur les Afy vues en sup. par rapport au produit de fonctions scalaires car Af = Z (}\fk)ek.
k=1

PROPOSITION SUR LA CLASSE DES FONCTIONS COMPOSEES 16.13 :
Soit p € NU{oo}, f: I — R™ de classe CP, ¢ : ] — I de classe CP. Alors fo ¢ est de classe CP.

n n
DEMONSTRATION : En décomposant f = Z frex et en écrivant que fo @ = Z (fk o (p) €y, comme on sait
k=1 k=1
que les fonctions fi 0 @ sont elles-mémes de classe CP sur ] d’apres le cours de sup., la fonction f 0 @ est aussi de

classe CP sur ] puisque toutes ses fonctions coordonnées le sont.

(COMPETENCES|

e Dériver une fonction vectorielle en dimension finie en passant par les coordonnées.
e Savoir dériver des fonctions définies comme produit scalaire ou norme d’autres fonctions.

e Connaitre la formule donnant la dérivée d’un déterminant de matrice dérivable.



