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CHAPITRE 12

TOPOLOGIE ET CONTINUITÉ
� �
PARTIE 12.1 : TOPOLOGIE DANS UN EVN� �

DÉFINITION 12.1 :
Soit E un espace vectoriel normé, U une partie de E et a ∈ E, on dit que :

• a est un vecteur intérieur à U si ∃r > 0, B(a, r) ⊂ U.
• U est un ouvert de E (ou que U une partie ouverte de E) si ∀a ∈ U, ∃r > 0, B(a, r) ⊂ U.� �

PROPOSITION 12.1 :
Soit E un espace vectoriel normé.

• Toute boule ouverte est une partie ouverte.
• Toute réunion (quelconque) de parties ouvertes de E est une partie ouverte de E.
• Toute intersection finie de parties ouvertes de E est une partie ouverte de E.� �

DÉFINITION 12.2 :
Soit E un espace vectoriel normé, F une partie de E et a ∈ E, on dit que :

• a est un vecteur adhérent à F si ∀r > 0, B(a, r) ∩ F ̸= ∅.
• F est un fermé de E si son complémentaire (dans E) est une partie ouverte de E.

REMARQUE 12.1 : La notion d’ouvert et de fermé dépend de la norme utilisée dans E.
• ∅ et E sont à la fois ouverts et fermés dans E.
• U est ouverte si et seulement si tous ses points sont intérieurs à elle-même.
• Si a est intérieur à A alors a ∈ A mais il existe des points de A qui ne sont pas intérieurs à A.
• Si a ∈ A alors a est adhérent à A mais il existe des points adhérents à A qui ne sont pas dans A.� �

PROPOSITION 12.2 :
Soit E un espace vectoriel normé.

• Toute boule fermée et toute sphère est une partie fermée.
• Toute réunion finie de parties fermées de E est une partie fermée de E.
• Toute intersection (quelconque) de parties fermées de E est une partie fermée de E.� �

THÉORÈME 12.3 :
Soit A et F deux parties d’un espace vectoriel normé E et a ∈ E :

• a est adhérent à A si et seulement s’il existe (un)n∈N ∈ AN telle que a = lim
n→∞

un.

• F est fermée si et seulement si toute suite (un)n∈N ∈ FN convergente vérifie lim
n→∞

un ∈ F.

DÉFINITION 12.3 :
Soit E un espace vectoriel normé, A une partie de E, on définit l’adhérence de A comme étant la partie de
E contenant les points adhérents à A ; on la note A.

REMARQUE 12.2 : Soit E un espace normé, A ⊂ E, alors A est fermé.

DÉFINITION 12.4 :
Soit E un espace normé, A ⊂ E, on dit que A est dense dans E si A = E.
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PROPOSITION 12.4 :
Soit un espace vectoriel E et N1, N2 deux normes équivalentes dans E. Si A ⊂ E et a ∈ E :
• a est intérieur à A dans l’espace vectoriel normé (E,N1) ⇐⇒ a est intérieur à A dans (E,N2).
• a est adhérent à A dans l’espace vectoriel normé (E,N1) ⇐⇒ a est adhérent à A dans (E,N2).
• A est ouvert dans l’espace vectoriel normé (E,N1) ⇐⇒ A est ouvert dans (E,N2).
• A est fermé dans l’espace vectoriel normé (E,N1) ⇐⇒ A est fermé dans (E,N2).
• A est dense dans l’espace vectoriel normé (E,N1) ⇐⇒ A est dense dans (E,N2).� �
REMARQUE 12.3 : • Ces notions topologiques dépendent en général des normes employées.

• En dimension finie, elles sont toutes équivalentes : on parle de la topologie des normes.� �
PARTIE 12.2 : LIMITE ET CONTINUITÉ PONCTUELLE� �

DÉFINITION 12.5 :
Soit

(
E, || . ||E

)
,
(
F, || . ||F

)
deux espaces vectoriels normés, A ⊂ E, f : A → F, a un point de E adhérent à A,

ℓ ∈ F, on dit que f tend vers ℓ en a si ∀ε > 0, ∃α > 0, ∀x ∈ A, ||x− a||E 6 α =⇒ ||f(x)− ℓ||F 6 ε.
le vecteur ℓ est noté lim

a
f ou lim

x→a
f(x) : limite de f en a.

Soit A est une partie de E, f : A→ F, a ∈ A, on dit que f est continue en a si lim
a
f = f(a).

REMARQUE 12.4 : • Si E et F sont de dimensions finies, cela ne dépend pas des normes.
• Si f admet une limite en a alors elle est unique, ce qui justifie la notation lim

a
f.

THÉORÈME 12.5 :
Soit f : A → F, a adhérent à A et b ∈ F, alors on a l’équivalence qui constitue la caractérisation
séquentielle de la limite :

(
lim
a
f = b

)
⇐⇒

(
∀(un) ∈ AN, lim

n→+∞
un = a =⇒ lim

n→∞
f(un) = b

)
.

Soit f : A → F et a ∈ A, alors on adapte pour obtenir la caractérisation séquentielle de la
continuité :

(
f continue en a

)
⇐⇒

(
∀(un) ∈ AN, lim

n→+∞
un = a =⇒ lim

n→∞
f(un) = f(a)

)
.

� �
PROPOSITION 12.6 :
Soit E et F des espaces vectoriels normés, A ⊂ E, B = (v1, · · · , vp) une base de F de dimension p,

f : A → F et, pour k ∈ [[1; p]], les applications fk : A → K telles que : ∀x ∈ A, f(x) =
p∑

k=1

fk(x)vk. Si

b ∈ F, on pose b =
p∑

k=1

bkvk. Alors on a : lim
a
f = b⇐⇒ ∀k ∈ [[1; p]], lim

a
fk = bk.� �� �

PROPOSITION 12.7 :
Soit f et g définies de A dans F et a adhérent à A, (α, β) ∈ K2 :

• si f et g admettent des limites finies en a alors lim
a

(αf+ βg) = α lim
a
f+ β lim

a
g ;

• si f et g sont continues en a alors αf+ βg est aussi continue en a.
Soit f : A→ F et g : B→ G telles que f(A) ⊂ B :

• si b = lim
a
f et lim

b
g existent, alors g ◦ f admet une limite en a et lim

a
g ◦ f = lim

b
g ;

• si f est continue en a et si g continue en f(a) alors g ◦ f est continue en a.
Soit λ : A→ K, f : A→ F et a adhérent à A :

• si λ et f admettent des limites en a alors λf aussi et lim
a

(λf) = lim
a
λ× lim

a
f ;

• si λ et f sont continues en a alors λf est continue en a.
Soit f : A→ K et a adhérent à A :

• si f admet une limite ℓ ̸= 0F en a, f ne s’annule pas au vois. de a et lim
a

(1/f) =
(
lim
a
f

)−1

.

• si f est continue en a et si f(a) ̸= 0 alors 1/f est continue en a.� �
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PARTIE 12.3 : CONTINUITÉ SUR UNE PARTIE� �

DÉFINITION 12.6 :
Soit E et F deux espaces vectoriels normés, A une partie de E et f : A→ F.
On dit que f est continue sur A si f est continue en tout point (ou vecteur) a de A.
On note C0(A, F) l’ensemble des fonctions continues sur A et à valeurs dans F.

REMARQUE 12.5 : Le caractère continu ou non des applications dépend des normes employées, mais
ne change pas si on prend des normes équivalentes. En dimension finie, cela ne dépend pas des normes.

THÉORÈME 12.8 :
Soit f : A→ F, la fonction f est continue sur A si et seulement si pour toute suite (un) ∈ AN qui
converge vers un vecteur a ∈ A, on a lim

n→∞
f(un) = f(a).

REMARQUE 12.6 : Soit E un espace vectoriel normé, f : E → E, et (un)n∈N définie par u0 ∈ E,
∀n ∈ N, un+1 = f(un). Si (un)n∈N converge vers ℓ où f est continue alors f(ℓ) = ℓ (vecteur fixe de f).� �

PROPOSITION 12.9 :
Si (f, g) ∈ C0(A, F)2 et (α, β) ∈ K2 alors αf+ βg ∈ C0(A, F) (combinaison linéaire).
Ainsi C0(A, F) est un sous-espace vectoriel de F(A, F).
Si f ∈ C0(A, F), si g ∈ C0(B,G) et si f(A) ⊂ B alors g ◦ f ∈ C0(A,G) (composition).
Si f ∈ C0(A, F) et B ⊂ A alors f|B ∈ C0(B, F) (restriction).
Si f ∈ C0(A, F) alors ||f|| ∈ C0(A, R) (norme).� �� �
PROPOSITION 12.10 :
Soit A une partie d’un espace vectoriel normé, F un espace vectoriel normé de dimension finie
p et B = (e1, · · · , ep) une base de F. Si f : A → F, on note f1, · · · , fp les applications de A dans K

définies par ∀x ∈ A, f(x) =
p∑

k=1

fk(x)ek. Alors on dispose de l’équivalence suivante :(
f est continue sur A

)
⇐⇒

(
f1, · · · , fp sont continues sur A

)
.� �� �

PROPOSITION 12.11 :
Si λ ∈ C0(A, K) et f ∈ C0(A, F) alors λf ∈ C0(A, F) (multiplication par un scalaire).
Si λ ∈ C0(A, K) et µ ∈ C0(A, K) alors λµ ∈ C0(A, K) (produit de fonctions scalaires).
Par conséquent : C0(A, K) est une sous-algèbre de F(A, K).

Si f ∈ C0(A, K) vérifie ∀x ∈ A, f(x) ̸= 0 alors 1
f
∈ C0(A, K) (inverse d’une fonction scalaire).� �

THÉORÈME 12.12 :
Soit E un espace vectoriel normé, f : E→ R une application continue sur E et a ∈ R :

• f−1( ]a; +∞[) et f−1( ]−∞;a[) sont des ouverts de E.
• f−1({a}), f−1([a; +∞[) et f−1( ]−∞;a]) sont des fermés de E.

THÉORÈME ÉNORME 12.13 :
Si E est un espace vectoriel de dimension finie, A ⊂ E et f : A→ R continue sur A et K ⊂ A une
partie compacte de E (K ̸= ∅) : Min

K
f et Max

K
f existent (“f est bornée et atteint ses bornes”).

REMARQUE 12.7 : Si K est une partie compacte de E (espace vectoriel de dimension finie) et f : K→ R∗
+

est continue sur K alors il existe α > 0 tel que ∀x ∈ K, f(x) > α.
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DÉFINITION 12.7 :
Soit f : A→ F, où A est une partie d’un espace vectoriel normé E, F un espace normé et k ∈ R+.
On dit que f est k-lipschitzienne si ∀(x, y) ∈ A2, ||f(x)− f(y)||F 6 k||x− y||E.
On dit que f est lipschitzienne s’il existe k > 0 tel que f soit k-lipschitzienne.� �
PROPOSITION 12.14 :
Si f, g sont lipschitziennes sur A : ∀(α, β) ∈ K2, (αf+ βg) est lipschitzienne sur A.
Si f est lipschitzienne sur A, g lipschitzienne sur B, f(A) ⊂ B : g ◦ f est lipschitzienne sur A.� �
THÉORÈME 12.15 :
Si f est lipschitzienne sur A alors f est continue sur A.

THÉORÈME ÉNORME 12.16 :
Soit

(
E, || . ||E

)
un espace normé de dimension finie,

(
F, || . ||F

)
un espace normé de dimension

quelconque. Toute application linéaire de E vers F est lipschitzienne donc continue.

REMARQUE 12.8 : Avec les hypothèses du théorème ci-dessus, si f ∈ L(E, F), on a même mieux :
|||f||| = Max

||x||E=1
||f(x)||F. C’est-à-dire qu’il existe x ̸= 0E dans E tel que ||f(x)||F = |||f||| × ||x||E.� �

PROPOSITION 12.17 :
Soit E, F et G trois espaces vectoriels normés de dimensions finies et B : E× F→ G bilinéaire :

• Il existe k ∈ R+ tel que ∀(x, y) ∈ E× F, ||B(x, y)||G 6 k× ||x||E × ||y||F.
• B est continue sur E× F.� �

REMARQUE 12.9 : • L’application φ : Mn(K)2 → Mn(K) définie par φ(A, B) = AB est continue.
• L’application θ : L(E)2 → L(E) définie par θ(u, v) = u ◦ v est continue si E de dimension finie.
• L’application ψ : K× E→ E telle que ψ(λ, x) = λx est continue si E est de dimension finie.
• Tout produit scalaire sur un espace euclidien est continu.

DÉFINITION 12.8 :
Soit p > 1, F, E1, · · · , Ep des espaces vectoriels normés. Alors f : E1 × · · · × Ep → F est dite p-linéaire si
pour tout k ∈ [[1; p]] et tout (p − 1)-uplet (x1, · · · , xk−1, xk+1, . . . , xp) ∈ E1 × · · · × Ek−1 × Ek+1 × · · · × Ep,
l’application φk : Ek → F définie par fk(x) = f(x1, · · · , xk−1, x, xk+1, · · · , xp) est linéaire.

THÉORÈME 12.18 :
Toute application multilinéaire en dimension finie est continue.

DÉFINITION 12.9 :
Soit p > 1, on dit que f : Kp → K est une application polynomiale si elle est combinaison linéaire

d’applications du type (x1, · · · , xp) 7→ x
k1

1 · · · xkp

p .

REMARQUE 12.10 : det : Mn(K) → K est polynomiale en ses coefficients, multilinéaire donc continue.


