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CHAPITRE 12
TOPOLOGIE ET CONTINUITE

(PARTIE 12.1 : TOPOLOGIE DANS UN EVN]

DEFINITION 12.1 :
Soit E un espace vectoriel normé, U une partie de E et a € E, on dit que :
e a est un vecteur intérieur ¢ U si 3r > 0, B(a,r) C U.
e U est un ouvert de E (ou que U une partie ouverte de E) si Va € U, Ir >0, B(a,r) C U.

PROPOSITION 12.1 :

Soit E un espace vectoriel normé.
e Toute boule ouverte est une partie ouverte.
e Toute réunion (quelconque) de parties ouvertes de E est une partie ouverte de E.
e Toute intersection finie de parties ouvertes de E est une partie ouverte de E.

DEFINITION 12.2 :
Soit E un espace vectoriel normé, F une partie de E et a € E, on dit que :
e a est un vecteur adhérent a F si Vr > 0, B(a,r)NF # 0.
o T est un fermé de E si son complémentaire (dans E) est une partie ouverte de E.

REMARQUE 12.1 : La notion d’ouvert et de fermé dépend de la norme utilisée dans E.
e () et E sont a la fois ouverts et fermés dans E.
e U est ouverte si et seulement si tous ses points sont intérieurs a elle-méme.
e Si a est intérieur a A alors a € A mais il existe des points de A qui ne sont pas intérieurs a A.
e Sia € A alors a est adhérent a A mais il existe des points adhérents a A qui ne sont pas dans A.

(PROPOSITION 12.2 :
Soit E un espace vectoriel normé.
e Toute boule fermée et toute sphére est une partie fermée.
e Toute réunion finie de parties fermées de E est une partie fermée de E.
e Toute intersection (quelconque) de parties fermées de E est une partie fermée de E.

THEOREME 12.3 :
Soit A et F deux parties d’un espace vectoriel normé E et a € E :

e a est adhérent & A si et seulement s’il existe (un)neny € AV telle que a = lim un.
n—oo

e T est fermée si et seulement si toute suite (un)nen € FN convergente vérifie lim u, € F.
n—oo

DEFINITION 12.3 :
Soit E un espace vectoriel normé, A une partie de E, on définit 'adhérence de A comme étant la partie de

E contenant les points adhérents 4 A ; on la note A.

REMARQUE 12.2 : Soit E un espace normé, A C E, alors A est fermé.

DEFINITION 12.4 :
Soit E un espace normé, A C E, on dit que A est dense dans E si A = E.
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[PROPOSITION 12.4 : )
Soit un espace vectoriel E et Ni, N, deux normes équivalentes dans E. SiA CEet a€E:
e a est intérieur 4 A dans ’espace vectoriel normé (E,N;) <= a est intérieur & A dans (E,N3).
e a est adhérent & A dans ’espace vectoriel normé (E,N;) <= a est adhérent & A dans (E,N3).
e A est ouvert dans I’espace vectoriel normé (E,N;) <= A est ouvert dans (E,N3).
e A est fermé dans I’espace vectoriel normé (E,Nj) <= A est fermé dans (E,N;).
L * A est dense dans I’espace vectoriel normé (E,N;) <= A est dense dans (E,N;).

REMARQUE 12.3 : e Ces notions topologiques dépendent en général des normes employées.
e En dimension finie, elles sont toutes équivalentes : on parle de la topologie des normes.

[PARTIE 12.2 : LIMITE ET CONTINUITE PONCTUELLE,

DEFINITION 12.5 :

Soit (E,]|.[le), (FIl.|lr) deuz espaces vectoriels normés, A C E, f: A — F, a un point de E adhérent a A,
L EF, on dit que f tend vers ( en a siVe >0, Ja >0, Vx €A, |[x —a|lge L a = |[f(x) = {||r < &.

le vecteur { est noté lim f ou lim f(x) : limite de f en a.

Soit A est une partie de €, f: A — F, a € A, on dit que f est continue en a si imf = f(a).
a

REMARQUE 12.4 : @ Si E et F sont de dimensions finies, cela ne dépend pas des normes.
e Si f admet une limite en a alors elle est unique, ce qui justifie la notation lim f.
a

THEOREME 12.5 :

Soit f: A — F, a adhérent & A et b € F, alors on a I’équivalence qui constitue la caractérisation

séquentielle de la limite : (limf=b) < (Y(un) €AY, lm uy, =a= lim f(u,) =b).
a n—+oo n—oo
Soit f : A — F et a € A, alors on adapte pour obtenir la caractérisation séquentielle de la

continuité : (f continue en a) <= (V(un) € AY, lim uy, =a= lm f(un) =f(a)).
n—+oo n—oo

PROPOSITION 12.6 :
Soit E et F des espaces vectoriels normés, A C E, B = (vq,---,vp) une base de F de dimension p,

P
f: A —F et, pour k € [1;p]], les applications fi : A — K telles que : Vx € A, f(x) = > fr(x)vk. Si
k=1

P
b €F, on pose b= Y byvk. Alors on a : limf="1b <= Vk € [1;p], limfx = by.
a a

k=1
.

[PROPOSITION 12.7 : )
Soit f et g définies de A dans F et a adhérent & A, («,p) € K? :

e si f et g admettent des limites finies en a alors lim(af + fg) = alimf+ B limg ;

a a a

e si f et g sont continues en a alors af + g est aussi continue en a.
Soit f: A —Fet g: B— G telles que f(A) CB :

esib=1limf et ligng existent, alors g o f admet une limite en a et limgof = ligng H

a a

e si f est continue en a et si g continue en f(a) alors g o f est continue en a.

Soit A\:A —> K, f: A —F et a adhérent a A :

e si A et f admettent des limites en a alors Af aussi et lim(Af) = imA x im f ;
a a a
e si A et f sont continues en a alors Af est continue en a.

Soit f: A — K et a adhérent & A : !
e si f admet une limite ¢ # O en a, f ne s’annule pas au vois. de a et lim(1/f) = (lim f) .
a a

e si f est continue en a et si f(a) # 0 alors 1/f est continue en a.
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[PARTIE 12.3 : CONTINUITE SUR UNE PARTIE]

DEFINITION 12.6 :

Soit E et F deuz espaces vectoriels normés, A une partie de E et f: A — F.

On dit que f est continue sur A si f est continue en tout point (ou vecteur) a de A.
On note C°(A,F) l’ensemble des fonctions continues sur A et a valeurs dans F.

REMARQUE 12.5 : Le caractére continu ou non des applications dépend des normes employées, mais
ne change pas si on prend des normes équivalentes. En dimension finie, cela ne dépend pas des normes.

THEOREME 12.8 :
Soit f: A — F, la fonction f est continue sur A si et seulement si pour toute suite (u,) € AN qui
converge vers un vecteur a € A, on a lim f(un) = f(a).

n—oo

REMARQUE 12.6 : Soit E un espace vectoriel normé, f : E — E, et (un)nen définie par up € E,
Vn € N, unt1 = f(un). Si (un)nen converge vers € ot f est continue alors f(€) = € (vecteur fixe de f).

PROPOSITION 12.9 :

Si (f,g) € C°(A,F)? et («,B) € K? alors of + Bg € C°(A,F) (combinaison linéaire).
Ainsi C°(A,F) est un sous-espace vectoriel de F(A,F).

Si fe CO(A,F), sige C°B,G) et si f(A) C B alors gof € C°(A,G) (composition).
Si f € C°(A,F) et B C A alors f|lg € C°(B,F) (restriction).
(A, F)

Si f € C°(A,F) alors ||f|| € C°(A, R) (norme).
- J

~

(PROPOSITION 12.10 :
Soit A une partie d’un espace vectoriel normé, F un espace vectoriel normé de dimension finie
p et B=(ey,---,ep) une base de F. Si f: A — F, on note fy,---,f, les applications de A dans K

P
définies par Vx € A, f(x) = Y fr(x)ex. Alors on dispose de I’équivalence suivante :
k=1

(f est continue sur A) = (ﬁ,-n,fP sont continues sur A).
- J

PROPOSITION 12.11 :

Si A € CO°(A, K) et f € CO(A,F) alors Af € CO(A,F) (multiplication par un scalaire).

Si A€ Co%A, K) et ue COA, K) alors Ap € C°(A, K) (produit de fonctions scalaires).

Par conséquent : C°(A, K) est une sous-algébre de F(A, K).

Si f € C°(A, K) vérifie Vx € A, f(x) # 0 alors 1? € C°(A, K) (inverse d’une fonction scalaire).

THEOREME 12.12 :

Soit E un espace vectoriel normé, f: E — R une application continue sur E et a € R :
e f~'(Ja;+oof) et f~1(] — oc; a) sont des ouverts de E.
o 71 ({a}), ' ([a; +oo]) et (] — c0;a]) sont des fermés de E.

THEOREME ENORME 12.13 :
Si E est un espace vectoriel de dimension finie, A CE et f: A — R continue sur A et K C A une
partie compacte de E (K # 0) : MKinf et MKaxf existent (“f est bornée et atteint ses bornes”).

REMARQUE 12.7 : SiK est une partie compacte de E (espace vectoriel de dimension finie) et f : K — R
est continue sur K alors il existe « > 0 tel que ¥x € K, f(x) > o.
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DEFINITION 12.7 :

Soit f: A — F, ou A est une partie d’un espace vectoriel normé E, F un espace normé et k € R,.
On dit que f est k-lipschitzienne si V(x,y) € A%, |[f(x) — f(y)||r < Kk||x —y]|e-

On dit que f est lipschitzienne s’il existe k > 0 tel que T soit k-lipschitzienne.

PROPOSITION 12.14 :
Si f, g sont lipschitziennes sur A : V(«, ) € K2, («f + Bg) est lipschitzienne sur A.
Si f est lipschitzienne sur A, g lipschitzienne sur B, f(A) C B : gof est lipschitzienne sur A.

THEOREME 12.15 :
Si f est lipschitzienne sur A alors f est continue sur A.

THEOREME ENORME 12.16 :
Soit (E,||.||e) un espace normé de dimension finie, (F||.|[f) un espace normé de dimension
quelconque. Toute application linéaire de E vers F est lipschitzienne donc continue.

REMARQUE 12.8 : Avec les hypothéses du théoréme ci-dessus, si f € L(E,F), on a méme mieux :
[lIf]]] = Max1 [[f(x)||r. C’est-a-dire qu’il existe x # Og dans E tel que ||f(x)||r = |||f]]] X ||x||e-

[1x|le=

PROPOSITION 12.17 :

Soit E, F et G trois espaces vectoriels normés de dimensions finies et B : E X F — G bilinéaire :
o Il existe k € Ry tel que V(x,y) € E xF, ||B(x,y)|lc <k x ||x|[e % |[y]||r.
e B est continue sur E X F.

REMARQUE 12.9 : e L’application ¢ : M, (K)? — My (K) définie par ¢(A,B) = AB est continue.
e L’application 8 : £(E)?> — £(E) définie par 8(u,v) = wov est continue si E de dimension finie.
e L’application V¥ : K X E — E telle que $(A,x) = Ax est continue si E est de dimension finie.
e Tout produit scalaire sur un espace euclidien est continu.

DEFINITION 12.8 :

Soitp > 1, F, Ey,---,Ep, des espaces vectoriels normés. Alors f : Eq X -+ X E, = F est dite p-linéaire si
pour tout k € [1;p] et tout (p — 1)-uplet (x1,- -, Xk—1,Xk41y---yXp) € E1 X ==+ X Ex1 X Exqp X --- X Ep,
Papplication ¢y : Ex — F définie par fi(x) = f(x1, -+, Xk=1,%, Xk41, =, Xp) est linéaire.

THEOREME 12.18 :
Toute application multilinéaire en dimension finie est continue.

DEFINITION 12.9 :

Soit p = 1, on dit que f : KP — K est une application polynomiale si elle est combinaison linéaire

d’applications du type (x1,---,xp) > xlf’ . -x];p.

REMARQUE 12.10 : det : My, (K) — K est polynomiale en ses coefficients, multilinéaire donc continue.




