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CHAPITRE 13
ENDOM. D’UN ESPACE EUCLIDIEN

[PARTIE 13.1 : ISOMETRIES VECTORIELLES)

THEOREME 13.1 :
Soit u un endomorphisme de E euclidien, les propositions suivantes sont équivalentes :
(i) ¥x € E, [[lu(x)]| = [|x]| (v est appelée isométrie vectorielle ou automorphisme orthogonal).
(ii) u conserve le produit scalaire : V(x,y) € E%, (u(x)[u(y)) = (x|y).
(iii) u transforme une (ou toute) base orthonormale de E en une base orthonormale de E.
On note O(E) (groupe orthogonal de E) I’ensemble des automorphismes orthogonaux de E.

REMARQUE 13.1 : e Siu € O(E) et F stable par u, alors ur € O(F).
e Soit B et B’ deux bases orthonormées d’un espace euclidien E, uw € £L(E) et P la matrice de passage
de B a B'. Alors P € 0,,(R) donc P~' = PT et Matgp: (1) = PT Matg (u)P.

[PROPOSITION 13.2 :
Soit u € O(E), F un sous-espace vectoriel de E : (F est stable par u) = (FL est stable par u).
-

J

PROPOSITION 13.3 :
Soit n € N* et M € M,,(R), les propriétés suivantes sont équivalentes :
(i) M™ =1, (M est dite orthogonale).  (ii) MM" =1,,. (iii) M inversible et M~ = MT.
(iv) Les vecteurs lignes de M forment une base orthonormée de R™" euclidien canonique.
(v) Les vecteurs colonnes de M forment une base orthonormée de R" eucl. canon..
kOn note O, (R) I’ensemble des matrices orthogonales de M, (R) (groupe orthogonal d’ordre n).)

THEOREME ENORME 13.4 :
Soit 1 € £L(E) et B une base orthonormée de E, alors : u € O(E) <= Matz(u) € On(R).

REMARQUE 13.2 : O(E) est un sous-groupe de GL(E). On(R) est un sous-groupe de GL, (R).
Siu € O(E), on a det(u) = £1. Si M € On(R) alors det(M) = +1.

DEFINITION 13.1 :

SO(E) = {u € O(E) | det(u) = 1} est appelé le groupe spécial orthogonal de E ou groupe des rotations
de E. Les éléments de SO(E) sont aussi appelées isométries directes (vectorielles).

Soit SOn(R) = {M € On(R) | det(M) =1} (ou SO(n)) le groupe spécial orthogonal d’ordre n.

REMARQUE 13.3 : ® SO(E) est un sous-groupe de O(E). SOn(R) est un sous-groupe de O (R).
e Soit n un entier naturel supérieur ou égal a1 et A € O(n).

e SiA € Spc(A), alors |A| = 1. Ainsi, si A € Spr(A),alors A = £1.
e AcO(n)\SO(n) = —1€ Spg(A) et, sin est impair, A € SO(n) =1 € Spy(A).
e A est donc diagonalisable dans M, (R) si et seulement si A2 = 1,,.

PROPOSITION 13.5 :
Si s est une symétrie de E : (s est orthogonale) <= (s est une isométrie).

REMARQUE 13.4 : Dans un espace euclidien E, une orientation de E est le choix d’une base By de
référence qu’on dira directe. Pour toute autre base B de E :
o B est dite directe si det(Pg,,3) > 0. ® B est dite indirecte si det(Ps,,3) < 0.
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DEFINITION 13.2 :

Soit F = (v1,--+,vn) une famille de n vecteurs d’un espace euclidien orienté de dimension n, alors dets(F)
ne dépend pas de la base orthonormale directe B choisie. On note alors [vi,---,vn] = dets(vi, -, vn) (st
B b.o.n.d.) appelé le produit mixte de 7.

REMARQUE 13.5 : Soit D = Vect(e1) une droite et P = Vect(ez,e3) = D+ dans E de dimension 3 :

e On définit une orientation dans P si “on oriente D par e1”, en disant que B’ = (ez,e3) est directe
dans P ssi B = (e1, ez, e3) est directe dans E (orientation induite dans P par celle de D.

e On définit une orientation dans D si “on oriente P par B’ = (ez,e3)” directe, en disant que (e1) est
directe dans D ssi B = (e1, ez, e3) est directe dans E (orientation induite dans D par celle de D.

DEFINITION 13.3 :
Soit a et b deux vecteurs de E de dimension 3, on appelle produit vectoriel de a et b, qu’on note a A b,
lunique vecteur de € qui vérifie ¥x € E, [a,b,x] = [b,x,a] = [x,a,b] = (a Ab|x) = (x]a A b).

PROPOSITION 13.6 :
Le produit vectoriel est bilinéaire, antisymétrique, alternée. Soit B = (e7,ez,e3) b.o.n.d de E :
(i) V(a,a’) €E2, Vb € E, V(A\,n) € R?, (A\a+pa’)Ab=AaAb+pa Ab.
(ii) Va € E, V(b,b') € E%, YV(A,p) € R?, a A (A\b + ub’) =AaAb+pa Ab'.
(iii) ¥(a,b) €E%, aAb=-bAa. (iv) aAb =0 <= (q,b) lide. (v) aAbE (Vect(a,b))L.
(vi) Soit a = xe; +yez +ze3, b = x’e; + y'ez + 2'e3, a Ab dans la base B est donné par :

’ ’ ’ ’ ’ ’ y vy ! x X
anb=(yz —zyler + (& —xfer + (' —yJes = | Cfer =1 et | e
(vii) On a aussi les produits vectoriels : e; Ae; =e3, e2 Ae3 =ej et e3 Aej =ea.
(- 1
PROPOSITION 13.7 :
Soit a, b et ¢ trois vecteurs de E, alors on a les formules :
() |le Ab]] =1la|l]|b]||sin(®)| (norme du produit vectoriel).

(ii) aA (b Ac)=(alc)b—(a]b)c et (a Ab)Ac=(al]c)b— (b|c)a (double produit vectoriel).
(iii) (a|b)? +[Ja Ab]|> = ||a]|?||b]|? (identité de LAGRANGE).

J
THEOREME 13.8 : o o0 o0 o
. _ o [cos(0) —sin(0 Lo <« [ cos(6 sin(0
Si A €0;2(R), det(A)=1= A =Rg = <sin(6) cos(0) ) ; sinon, A = Sg = <sin(6) cos(e))'
SO2(R) est un groupe abélien (méme isomorphe a U).
REMARQUE 13.6 : V(e,e') € RZ, 52 = Iz et RgRe/ = Re+9/ donc Rg] = R_e. De p]US, 5959/ = Re_e/.
(PROPOSITION 13.9 : )

Toute rotation u (c’est-a-dire u € SO(E)) de E de dimension 2 a la méme matrice dans toute
base orthonormée directe : Rg avec 0 € R défini modulo 27 qu’on choisit souvent dans [0;2n|
(ou dans | — m;n1]). Le réel 0 ainsi défini est appelé ’angle de la rotation .

La composée de la rotation d’angle 0 et de la rotation d’angle 0’ est la rotation d’angle 0 + 0’.

(PROPOSITION 13.10 : )
Les isométries indirectes u de E de dimension 2 sont les réflexions. Soit B = (e, e2) une base
orthonormée de E, alors si Sp = Matg(u) ot u est une réflexion, alors elle se fait par rapport a
kla droite engendrée par le vecteur unitaire a = cos(8/2)ey + sin(6/2)es.

J
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THEOREME ENORME 13.11 :
Classification des isométries d’un plan euclidien orienté E (E; = E;(A) et E_; = E_;(A)) :

isométrie dim(Ey) | dim(E_7) | nb de réfl. |det(A)| € SO(E) |tr(A)
identité : rotation d’angle 0 2 0 0 1 our 2
réflexion 1 1 1 —1 NON 0

(vraie) rotation d’angle +6 €]0; n[ 0 0 2 1 Oul |2cos®
symétrie centrale (rotation d’angle ) 0 2 2 1 our -2

THEOREME ENORME 13.12 :
Soit u € SO(E) une isométrie directe (une rotation de E) de E de dimension 3, on a deux cas :
(i) Si dim (E;(u)) =3 alors u = idg.
(if) Si dim (Eq(u)) =1 alors D = Eq(u) = Vect(a) avec a unitaire, il existe 6 € R tel que dans

1

toute base orthonormée directe B = (a,b,c) de E : Matg(u) = | 0

0

0
cos©
sin 0

0

—sin©

cos©

La droite D est ’axe de la rotation u (orienté par a) et 0 est I’angle de la rotation w.

PROPOSITION 13.13 :

® cosf = % puisque tr(A) =tr(u) =1+ 2cos6.
e sin0 est du méme signe que [x,u(x),a] = [a,x,u(x)] si x ¢ D.

Soit la rotation u d’axe D orienté par a unitaire et d’angle 0, si A = Matg(u) avec B b.o.n :

REMARQUE 13.7 : (HP) Soit la rotation u d’axe D orienté par a unitaire et d’angle © :

Vx € E, u(x) = (cos0)x + (sin6)(a Ax) + (1 — cos 0)(alx)a.
En particulier, si x € D+, la formule se réduit a u(x) = (cos8)x + (sin8)(a A x) ce qui nous donne les
relations : (x[u(x)) = (cos 0)|[x||* et x Au(x) = (sin 0)][x]|?a.

(PROPOSITION 13.14 :

Si B est orthonormée, A = Matg(u) € O3(R) et AT = A

(i)

(ii) tr(A) =
(iii) tr(A) =
(iv) tr(A) =

1 < dim (E1(u)) =2 <= dim (
3 <= dim (E;(u)) =3 < dim (

E
E

,1(u)
—1(w)

(u

: u est une symétrie orthogonale :
tr(A) = =3 <= dim (E1(u)) =0 <= dim (E_;(u)) =3 <= u = —idg (symétrie centrale).
—1 <= dim (E;(u)) =1 <= dim (E_1(u)) =2 <= u est un demi-tour.
) =1 <= u est une réflexion de plan E;(u).
) =0 <= u = ide.

THEOREME ENORME 13.15 :
Classification des isométries d’un espace euclidien orienté E de dimension 3 (en adoptant a
nouveau les abréviations E; = E1(A) et E_1 = E_1(A)):

isométrie dim(E7) | dim(E_7) | nb de réfl. | det(A) | € SO(3) tr(A)
identité 3 0 0 1 ouIl 3
réflexion 2 1 1 —1 NON 1
rotation d’angle £6 €]0; n| 1 0 2 1 oul 1+42cosb €] —1;3]
demi-tour, retournement 1 2 2 1 ouIl —1
symétrie centrale 0 3 3 —1 NON -3
rotation-miroir 0 1 3 -1 NON |—142cos0 €] —3;1]
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REMARQUE HP 13.8 : Dans un espace préhilbertien réel E, on se donne une famille finie de p vecteurs de
E notée F = (vi,---,vp). On appelle matrice de GRAM de  la matrice G = ((vi|vj)) € My (R).

e On a Iéquivalence : (F = (vi,---,vp) est libre ) <= G € GLp(R).
e Si F est libre, soit v € E, on note d = d(v,F) la distance de v a F. Alors en notant G(vi,---,vp) le

déterminant (dit de GRAM) de la matrice de G : d? = M
G(vi, - ,vp)

PARTIE 13.2 : ENDOMORPHISMES AUTOADJOINTS ET
MATRICES SYMETRIQUES REELLES

1<i,j<p

THEOREME ENORME 13.16 :
Soit u € £L(E), les propriétés suivantes sont équivalentes :
(i) V(xy) € B4, (u(x)|ly) = (x|u(y)) (u est dit autoadjoint et on note u € S(E)).
(ii) Il existe une base orthonormée B de E telle que Matg(u) est symétrique.
(iii) Dans toute base orthonormée B de E, on a Matz(u) € Sy (R).

REMARQUE 13.9 : Soit A1 et Ay deux valeurs propres de u symétrique, alors Ex, (u) L Ex, (u).

(PROPOSITION 13.17 :
Soit p un projecteur de E : (p est un projecteur orthogonal) —= (p est autoadjoint).
Soit s une symétrie de E : (s est une symétrie orthogonale) <= (s est autoadjoint).

~

[PROPOSITION 13.18 :
Si u € S(E) et si F est un sous-espace vectoriel de E stable par u, alors F- est aussi stable par u.
- J

THEOREME ENORME 13.19 :

Soit u un endomorphisme autoadjoint de E, alors x, est scindé sur R et il existe une bon de E

formée de vecteurs propres de u. Autrement dit, E = @ Ex(u) (sevs orthogonaux 2 a 2).
AESP(u)

Si A € S, (R) alors il existe P € O,,(R) telle que D = PTAP soit diagonale (A et D orthosemblables).

i
—1

EXEMPLE FONDAMENTAL 13.1 : Soit A = <1 ) A est symétrique et non DZ.

DEFINITION 13.4 :
Soit E un espace euclidien et w € L(E), on dit que .
e u est un endomorphisme autoadjoint positif si Vx € E, (u(x)[x) >0 (ue ST(E)).
e u est un endom. autoadjoint défini positif si Vx € E\ {0e}, (u(x)[x) >0 (ue ST(E)).

REMARQUE FONDAMENTALFE 13.10 : Siu est un endomorphisme de E, on a I’équivalence :
u € STH(E) <= (¢ : (x,y) — (u(x)|y) est un produit scalaire sur E).

THEOREME 13.20 :

Soit u un endom. autoadjoint de E, u € ST(E) <= Sp(u) C R" et u e STF(E) <= Sp(u) C R%.
Soit A € M;,,(R) une matrice symétrique alors :

(VX € Mn,1(R), X'AX > 0) <= Sp(A) C R} <= (IB € M(R), A=BTB) (A € S (R)).
(VX € Mn,1(R), X# 0= X"AX >0) <= Sp(A) C R} <= (3B € GL(R), A=B"B) (A € ST (R)).

REMARQUE 15.11 : @ Siu € ST(E) (resp. w € STT(E)), tr(u) = 0 et det(u) = 0 (resp. tr(u),det(u) > 0).
e VA € GLn(R), J/(0,S) € On(R) x StT(R), A = OS (décomposition polaire).




