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CHAPITRE 13

ENDOM. D’UN ESPACE EUCLIDIEN� �
PARTIE 13.1 : ISOMÉTRIES VECTORIELLES� �

THÉORÈME 13.1 :
Soit u un endomorphisme de E euclidien, les propositions suivantes sont équivalentes :

(i) ∀x ∈ E, ||u(x)|| = ||x|| (u est appelée isométrie vectorielle ou automorphisme orthogonal).
(ii) u conserve le produit scalaire : ∀(x, y) ∈ E2,

(
u(x)|u(y)

)
= (x|y).

(iii) u transforme une (ou toute) base orthonormale de E en une base orthonormale de E.
On note O(E) (groupe orthogonal de E) l’ensemble des automorphismes orthogonaux de E.

REMARQUE 13.1 : • Si u ∈ O(E) et F stable par u, alors uF ∈ O(F).
• Soit B et B′ deux bases orthonormées d’un espace euclidien E, u ∈ L(E) et P la matrice de passage
de B à B′. Alors P ∈ On(R) donc P−1 = PT et MatB′(u) = PT MatB(u) P.� �

PROPOSITION 13.2 :
Soit u ∈ O(E), F un sous-espace vectoriel de E :

(
F est stable par u

)
⇐⇒

(
F⊥ est stable par u

)
.� �� �

PROPOSITION 13.3 :
Soit n ∈ N∗ et M ∈ Mn(R), les propriétés suivantes sont équivalentes :

(i) MTM = In (M est dite orthogonale). (ii) MMT = In. (iii) M inversible et M−1 = MT .
(iv) Les vecteurs lignes de M forment une base orthonormée de Rn euclidien canonique.
(v) Les vecteurs colonnes de M forment une base orthonormée de Rn eucl. canon..

On note On(R) l’ensemble des matrices orthogonales de Mn(R) (groupe orthogonal d’ordre n).� �
THÉORÈME ÉNORME 13.4 :
Soit u ∈ L(E) et B une base orthonormée de E, alors : u ∈ O(E) ⇐⇒ MatB(u) ∈ On(R).

REMARQUE 13.2 : O(E) est un sous-groupe de GL(E). On(R) est un sous-groupe de GLn(R).
Si u ∈ O(E), on a det(u) = ±1. Si M ∈ On(R) alors det(M) = ±1.

DÉFINITION 13.1 :
SO(E) =

{
u ∈ O(E) | det(u) = 1

}
est appelé le groupe spécial orthogonal de E ou groupe des rotations

de E. Les éléments de SO(E) sont aussi appelées isométries directes (vectorielles).
Soit SOn(R) =

{
M ∈ On(R) | det(M) = 1

}
(ou SO(n)) le groupe spécial orthogonal d’ordre n.

REMARQUE 13.3 : • SO(E) est un sous-groupe de O(E). SOn(R) est un sous-groupe de On(R).
• Soit n un entier naturel supérieur ou égal à 1 et A ∈ O(n).

• Si λ ∈ SpC(A), alors |λ| = 1. Ainsi, si λ ∈ SpR(A),alors λ = ±1.

• A ∈ O(n) \ SO(n) =⇒ −1 ∈ SpR(A) et, si n est impair, A ∈ SO(n) =⇒ 1 ∈ SpR(A).

• A est donc diagonalisable dans Mn(R) si et seulement si A2 = In.� �
PROPOSITION 13.5 :
Si s est une symétrie de E :

(
s est orthogonale

)
⇐⇒

(
s est une isométrie

)
.� �

REMARQUE 13.4 : Dans un espace euclidien E, une orientation de E est le choix d’une base B0 de
référence qu’on dira directe. Pour toute autre base B de E :

• B est dite directe si det(PB0,B) > 0. • B est dite indirecte si det(PB0,B) < 0.
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DÉFINITION 13.2 :
Soit F = (v1, · · · , vn) une famille de n vecteurs d’un espace euclidien orienté de dimension n, alors detB(F)
ne dépend pas de la base orthonormale directe B choisie. On note alors [v1, · · · , vn] = detB(v1, · · · , vn) (si
B b.o.n.d.) appelé le produit mixte de F.

REMARQUE 13.5 : Soit D = Vect(e1) une droite et P = Vect(e2, e3) = D⊥ dans E de dimension 3 :

• On définit une orientation dans P si “on oriente D par e1”, en disant que B′ = (e2, e3) est directe
dans P ssi B = (e1, e2, e3) est directe dans E (orientation induite dans P par celle de D.

• On définit une orientation dans D si “on oriente P par B′ = (e2, e3)” directe, en disant que (e1) est
directe dans D ssi B = (e1, e2, e3) est directe dans E (orientation induite dans D par celle de D.

DÉFINITION 13.3 :
Soit a et b deux vecteurs de E de dimension 3, on appelle produit vectoriel de a et b, qu’on note a ∧ b,
l’unique vecteur de E qui vérifie ∀x ∈ E, [a, b, x] = [b, x, a] = [x, a, b] = (a ∧ b|x) = (x|a ∧ b).

� �
PROPOSITION 13.6 :
Le produit vectoriel est bilinéaire, antisymétrique, alternée. Soit B = (e1, e2, e3) b.o.n.d de E :

(i) ∀(a, a′) ∈ E2, ∀b ∈ E, ∀(λ, µ) ∈ R2, (λa+ µa′) ∧ b = λa ∧ b+ µa′ ∧ b.
(ii) ∀a ∈ E, ∀(b, b′) ∈ E2, ∀(λ, µ) ∈ R2, a ∧ (λb+ µb′) = λa ∧ b+ µa ∧ b′.

(iii) ∀(a, b) ∈ E2, a ∧ b = −b ∧ a. (iv) a ∧ b = 0E ⇐⇒ (a, b) liée. (v) a ∧ b ∈
(
Vect(a, b)

)⊥
.

(vi) Soit a = xe1 + ye2 + ze3, b = x′e1 + y′e2 + z′e3, a ∧ b dans la base B est donné par :

a ∧ b = (yz′ − zy′)e1 + (zx′ − xz′)e2 + (xy′ − yx′)e3 =

∣∣∣∣ y y′

z z′

∣∣∣∣ e1 − ∣∣∣∣ x x′

z z′

∣∣∣∣ e2 + ∣∣∣∣ x x′

y y′

∣∣∣∣ e3.
(vii) On a aussi les produits vectoriels : e1 ∧ e2 = e3, e2 ∧ e3 = e1 et e3 ∧ e1 = e2.� �� �

PROPOSITION 13.7 :
Soit a, b et c trois vecteurs de E, alors on a les formules :

(i) ||a ∧ b|| = ||a|| ||b|| | sin(θ)| (norme du produit vectoriel).
(ii) a ∧ (b ∧ c) = (a|c)b− (a|b)c et (a ∧ b) ∧ c = (a|c)b− (b|c)a (double produit vectoriel).
(iii) (a|b)2 + ||a ∧ b||2 = ||a||2 ||b||2 (identité de Lagrange).� �

THÉORÈME 13.8 :

Si A ∈ O2(R), det(A) = 1 =⇒ A = Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
; sinon, A = Sθ =

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
.

SO2(R) est un groupe abélien (même isomorphe à U).

REMARQUE 13.6 : ∀(θ, θ′) ∈ R2, S2θ = I2 et RθRθ′ = Rθ+θ′ donc R
−1
θ = R−θ. De plus, SθSθ′ = Rθ−θ′ .� �

PROPOSITION 13.9 :
Toute rotation u (c’est-à-dire u ∈ SO(E)) de E de dimension 2 a la même matrice dans toute
base orthonormée directe : Rθ avec θ ∈ R défini modulo 2π qu’on choisit souvent dans [0; 2π[
(ou dans ]− π;π]). Le réel θ ainsi défini est appelé l’angle de la rotation u.
La composée de la rotation d’angle θ et de la rotation d’angle θ′ est la rotation d’angle θ+ θ′.� �� �
PROPOSITION 13.10 :
Les isométries indirectes u de E de dimension 2 sont les réflexions. Soit B = (e1, e2) une base
orthonormée de E, alors si Sθ = MatB(u) où u est une réflexion, alors elle se fait par rapport à
la droite engendrée par le vecteur unitaire a = cos(θ/2)e1 + sin(θ/2)e2.� �
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THÉORÈME ÉNORME 13.11 :
Classification des isométries d’un plan euclidien orienté E (E1 = E1(A) et E−1 = E−1(A)) :

isométrie dim(E1) dim(E−1

)
nb de réfl. det(A) ∈ SO(E) tr(A)

identité : rotation d’angle 0 2 0 0 1 OUI 2

réflexion 1 1 1 −1 NON 0

(vraie) rotation d’angle ±θ ∈]0;π[ 0 0 2 1 OUI 2 cos θ

symétrie centrale (rotation d’angle π) 0 2 2 1 OUI −2

THÉORÈME ÉNORME 13.12 :
Soit u ∈ SO(E) une isométrie directe (une rotation de E) de E de dimension 3, on a deux cas :

(i) Si dim
(
E1(u)

)
= 3 alors u = idE.

(ii) Si dim
(
E1(u)

)
= 1 alors D = E1(u) = Vect(a) avec a unitaire, il existe θ ∈ R tel que dans

toute base orthonormée directe B = (a, b, c) de E : MatB(u) =

 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

.

La droite D est l’axe de la rotation u (orienté par a) et θ est l’angle de la rotation u.� �
PROPOSITION 13.13 :
Soit la rotation u d’axe D orienté par a unitaire et d’angle θ, si A = MatB(u) avec B b.o.n :

• cos θ =
tr(A)− 1

2
puisque tr(A) = tr(u) = 1+ 2 cos θ.

• sin θ est du même signe que [x, u(x), a] = [a, x, u(x)] si x /∈ D.� �
REMARQUE 13.7 : (HP) Soit la rotation u d’axe D orienté par a unitaire et d’angle θ :

∀x ∈ E, u(x) = (cos θ)x+ (sin θ)(a ∧ x) + (1− cos θ)(a|x)a.
En particulier, si x ∈ D⊥, la formule se réduit à u(x) = (cos θ)x + (sin θ)(a ∧ x) ce qui nous donne les
relations :

(
x|u(x)

)
= (cos θ)||x||2 et x ∧ u(x) = (sin θ)||x||2a.� �

PROPOSITION 13.14 :
Si B est orthonormée, A = MatB(u) ∈ O3(R) et AT = A : u est une symétrie orthogonale :

(i) tr(A) = −3 ⇐⇒ dim
(
E1(u)

)
= 0 ⇐⇒ dim

(
E−1(u)

)
= 3 ⇐⇒ u = − idE (symétrie centrale).

(ii) tr(A) = −1 ⇐⇒ dim
(
E1(u)

)
= 1 ⇐⇒ dim

(
E−1(u)

)
= 2 ⇐⇒ u est un demi-tour.

(iii) tr(A) = 1 ⇐⇒ dim
(
E1(u)

)
= 2 ⇐⇒ dim

(
E−1(u)

)
= 1 ⇐⇒ u est une réflexion de plan E1(u).

(iv) tr(A) = 3 ⇐⇒ dim
(
E1(u)

)
= 3 ⇐⇒ dim

(
E−1(u)

)
= 0 ⇐⇒ u = idE.� �

THÉORÈME ÉNORME 13.15 :
Classification des isométries d’un espace euclidien orienté E de dimension 3 (en adoptant à
nouveau les abréviations E1 = E1(A) et E−1 = E−1(A)):

isométrie dim(E1) dim(E−1) nb de réfl. det(A) ∈ SO(3) tr(A)

identité 3 0 0 1 OUI 3

réflexion 2 1 1 −1 NON 1

rotation d’angle ±θ ∈]0;π[ 1 0 2 1 OUI 1+ 2 cos θ ∈]− 1; 3[

demi-tour, retournement 1 2 2 1 OUI −1

symétrie centrale 0 3 3 −1 NON −3

rotation-miroir 0 1 3 −1 NON −1+ 2 cos θ ∈]− 3; 1[
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REMARQUE HP 13.8 : Dans un espace préhilbertien réel E, on se donne une famille finie de p vecteurs de
E notée F = (v1, · · · , vp). On appelle matrice de Gram de F la matrice G =

(
(vi|vj)

)
16i,j6p

∈ Mp(R).
• On a l’équivalence :

(
F = (v1, · · · , vp) est libre

)
⇐⇒ G ∈ GLp(R).

• Si F est libre, soit v ∈ E, on note d = d(v, F) la distance de v à F. Alors en notant G(v1, · · · , vp) le

déterminant (dit de Gram) de la matrice de G : d2 =
G(v1, · · · , vp, v)
G(v1, · · · , vp)

.� �
PARTIE 13.2 : ENDOMORPHISMES AUTOADJOINTS ET

MATRICES SYMÉTRIQUES RÉELLES� �
THÉORÈME ÉNORME 13.16 :
Soit u ∈ L(E), les propriétés suivantes sont équivalentes :

(i) ∀(x, y) ∈ E2,
(
u(x)|y

)
=

(
x|u(y)

)
(u est dit autoadjoint et on note u ∈ S(E)).

(ii) Il existe une base orthonormée B de E telle que MatB(u) est symétrique.
(iii) Dans toute base orthonormée B de E, on a MatB(u) ∈ Sn(R).

REMARQUE 13.9 : Soit λ1 et λ2 deux valeurs propres de u symétrique, alors Eλ1
(u) ⊥ Eλ2

(u).� �
PROPOSITION 13.17 :
Soit p un projecteur de E :

(
p est un projecteur orthogonal

)
⇐⇒

(
p est autoadjoint

)
.

Soit s une symétrie de E :
(
s est une symétrie orthogonale

)
⇐⇒

(
s est autoadjoint

)
.� �� �

PROPOSITION 13.18 :
Si u ∈ S(E) et si F est un sous-espace vectoriel de E stable par u, alors F⊥ est aussi stable par u.� �
THÉORÈME ÉNORME 13.19 :
Soit u un endomorphisme autoadjoint de E, alors χu est scindé sur R et il existe une bon de E

formée de vecteurs propres de u. Autrement dit, E =
⊕

λ∈Sp(u)

Eλ(u) (sevs orthogonaux 2 à 2).

Si A ∈ Sn(R) alors il existe P ∈ On(R) telle que D = PTAP soit diagonale (A et D orthosemblables).

EXEMPLE FONDAMENTAL 13.1 : Soit A =

(
1 i

i −1

)
. A est symétrique et non DZ.

DÉFINITION 13.4 :
Soit E un espace euclidien et u ∈ L(E), on dit que .

• u est un endomorphisme autoadjoint positif si ∀x ∈ E,
(
u(x)|x

)
> 0 (u ∈ S+(E)).

• u est un endom. autoadjoint défini positif si ∀x ∈ E \ {0E},
(
u(x)|x

)
> 0 (u ∈ S++(E)).

REMARQUE FONDAMENTALE 13.10 : Si u est un endomorphisme de E, on a l’équivalence :
u ∈ S++(E) ⇐⇒

(
φ : (x, y) 7→

(
u(x)|y

)
est un produit scalaire sur E

)
.

THÉORÈME 13.20 :
Soit u un endom. autoadjoint de E, u ∈ S+(E) ⇐⇒ Sp(u) ⊂ R+ et u ∈ S++(E) ⇐⇒ Sp(u) ⊂ R∗

+.
Soit A ∈ Mn(R) une matrice symétrique alors :(
∀X ∈ Mn,1(R), XTAX > 0

)
⇐⇒ Sp(A) ⊂ R+ ⇐⇒

(
∃B ∈ Mn(R), A = BTB

)
(A ∈ S+n(R)).(

∀X ∈ Mn,1(R), X ̸= 0 =⇒ XTAX > 0
)
⇐⇒ Sp(A) ⊂ R∗

+ ⇐⇒
(
∃B ∈ GLn(R), A = BTB

)
(A ∈ S++

n (R)).

REMARQUE 13.11 : • Si u ∈ S+(E) (resp. u ∈ S++(E)), tr(u) > 0 et det(u) > 0 (resp. tr(u), det(u) > 0).
• ∀A ∈ GLn(R), ∃!(O, S) ∈ On(R)× S++

n (R), A = OS (décomposition polaire).


