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CHAPITRE 14

ÉQUATIONS DIFFÉRENTIELLES
� �
PARTIE 14.1 : ÉQUATIONS DIFFÉRENTIELLES

LINÉAIRES SCALAIRES� �
DÉFINITION 14.1 :
Soit α, β, γ trois applications continues sur un intervalle I et à valeurs dans K.

(i) L’équation (E) : αy′ + βy = γ est une équation différentielle linéaire scalaire d’ordre 1.

(ii) Une solution de (E) est y : I → K dérivable sur I telle que ∀t ∈ I, α(t)y′(t) + β(t)y(t) = γ(t).

(iii) L’équation (E0) : αy′ + βy = 0 est l’équation homogène associée à (E).

REMARQUE 14.1 : On peut considérer des solutions y : J → K de (E) où J ⊂ I.� �
PROPOSITION 14.1 :
L’ensemble S0 des solutions de (E0) est un sous-espace vectoriel de C0(I, K).

Si yp est une solution particulière de l’équation (E) alors l’ensemble S des solutions de (E) est

S = yp + S0 : c’est un sous-espace affine de C0(I, K).� �
REMARQUE 14.2 : Si la fonction α ne s’annule pas sur I, y est solution de αy′ +βy = γ si et seulement

si y est solution de y′ − ay = b avec a = −β

α
et b = γ

α
; a et b sont alors continues sur I : on dit alors

que l’équation est mise sous forme résolue.� �
PROPOSITION 14.2 :
Soit a et b deux fonctions continues sur un intervalle I et à valeurs dans K.

(i) Les solutions de l’équation homogène (E0) : y′ − ay = 0 sont les fonctions yλ définies
sur I par ∀t ∈ I, yλ(t) = λeA(t) où λ ∈ K et A est une primitive de a sur I.

(ii) S0 est la droite vectorielle engendrée par t 7→ eA(t) : S0 = Vect(eA).� �
REMARQUE 14.3 : Méthode de la variation de la constante :

• Soit a, b : I → K continues et y0 une solution non nulle de l’équation homogène y′ − ay = 0 alors il
existe une solution de l’équation y′−ay = b de la forme y = λy0, où λ est une fonction dérivable sur I.

• y solution de (E) ⇐⇒ λ′ = b

y0

ce qui permet de trouver (en intégrant) une solution particulière.

THÉORÈME 14.3 :
Si a et b sont continues sur I, les solutions de y′ − ay = b sont les fonctions yλ définies par

∀t ∈ I, y(t) = λeA(t) + eA(t)
∫ t

t0
b(u)e−A(u)du où A est une primitive de a sur I, λ ∈ K et t0 ∈ I.

THÉORÈME ÉNORME 14.4 :
Soit a et b deux fonctions continues sur un intervalle I et (t0, y0) ∈ I× K, le problème de Cauchy{

y′ = a(t).y+ b(t)
y(t0) = y0

admet une unique solution y définie sur I en entier.
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REMARQUE 14.4 : • Sous ces conditions, φ : S0 → K définie par φ(y) = y(t0) est un isomorphisme.

• L’espace vectoriel des solutions de (E0) sur un intervalle I où l’équation est résolue est une droite.
• Si l’équation n’est pas sous forme résolue sur I, on la résout sur tous les intervalles où α ne s’annule
pas et on essaie de raccorder les solutions en les points singuliers.
• Il peut y avoir sur I une infinité de solutions, une seule ou aucune.

DÉFINITION 14.2 :
Soit α, β, γ et δ quatre applications continues sur I et à valeurs dans K.

(i) (E) : αy′′ + βy′ + γy = δ est une équation différentielle linéaire scalaire d’ordre 2.

(ii) y : I → K deux fois dérivable est solution de (E) si ∀t ∈ I, α(t)y′′(t)+β(t)y′(t)+γ(t)y(t) = δ(t).

(iii) L’équation (E0) : αy′′ + βy′ + γy = 0 est l’équation homogène associée à (E).

REMARQUE 14.5 :

• Si la fonction α ne s’annule pas sur I, y est solution de αy′′ + βy′ + γy = δ si et seulement si y est

solution de y′′ − ay′ − by = c avec a = −β

α
, b = −γ

α
et c = δ

α
; a, b et c sont alors continues sur I.

• En posant X =

(
y

y′

)
, y′′ − ay′ − by = c ⇐⇒ X′ =

(
0 1

b(t) a(t)

)
X+

(
0

c(t)

)
.

THÉORÈME ÉNORME 14.5 :
Soit a, b et c trois applications continues sur un intervalle I et (t0, y0, y

′
0) ∈ I× K2, le problème

de Cauchy

 y′′ = ay′ + by+ c

y(t0) = y0

y′(t0) = y′
0

admet une unique solution définie sur I en entier.

� �
PROPOSITION 14.6 :
Soit a et b deux applications continues sur un intervalle I.

(i) L’ensemble S0 des solutions de (E0) : y′′ − ay′ − by = 0 est un espace de dimension 2.
(ii) Deux solutions y1 et y2 de (E0) linéairement indépendantes forment une base de S0.
(iii) y = αy0 est solution de (E0) si et seulement si α′ est solution d’une équation différentielle

linéaire d’ordre 1 homogène (méthode de Lagrange).
(iv) Il existe une base de S0 de la forme (y0, αy0), où α est de classe C2 sur I.� �

THÉORÈME 14.7 :
Soit (a, b, c) ∈ C∗ × C2, alors les solutions de (E0) : ay′′ + by′ + cy = 0 sont :

(i) y = α1e
λ1t + α2e

λ2t avec (α1, α2) ∈ C2 si λ1 ̸= λ2 sont les racines de aX2 + bX+ c.

(ii) y = (α1t+ α2)e
λ1t avec (α1, α2) ∈ C2 si λ1 est la racine double de aX2 + bX+ c.

REMARQUE 14.6 : • L’équation (C) : az2 + bz+ c = 0 s’appelle l’équation caractéristique de (E).

• La matrice associée à cette équation dans le système Y′ = AY où Y =

(
y

y′

)
est A =

(
0 1

− c

a
−b

a

)
et son polynôme caractéristique vérifie aX2 + bX+ c = aχA : cohérent !

• Le cas (i) est le cas où A est diagonalisable et (ii) celui où elle est seulement trigonalisable.

REMARQUE HP 14.7 : Si (a, b, c) ∈ C∗ × C2, P ∈ C[X] et m ∈ C, il existe une solution particulière de

(E) : ay′′ + by′ + cy = P(t)emt de la forme y : t 7→ tαQ(t)emt avec Q ∈ C[X], deg(Q) = deg(P) et :

(i) α = 0 si m n’est pas racine de aX2 + bX+ c.
(ii) α = 1 si m est racine simple (et ∆ = b2 − 4ac ̸= 0) de aX2 + bX+ c.
(iii) α = 2 si m est racine double (∆ = 0) de aX2 + bX+ c.
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THÉORÈME 14.8 :
Soit (a, b, c) ∈ R∗ × R2, les solutions réelles de (E0) : ay′′ + by′ + cy = 0 sont (∆ = b2 − 4ac) :

(i) y = α1e
λ1t + α2e

λ2t avec (α1, α2) ∈ R2 si λ1 ̸= λ2 racines réelles de aX2 + bX+ c et ∆ > 0.

(i) y = (α1t+ α2)e
λ1t avec (α1, α2) ∈ R2 si λ1 = − b

2a
racine double de aX2 + bX+ c et ∆ = 0.

(iii) y =
(
α1 cos(βt)+α2 sin(βt)

)
eαt avec (α1, α2) ∈ R2 si z1 = α+ iβ ∈ C et z2 = α− iβ ((α, β) ∈ R2)

sont les racines complexes de aX2 + bX+ c quand ∆ < 0.

� �
PARTIE 14.2 : ANNEXES� �

14.2.1 : Systèmes différentiels

DÉFINITION 14.3 :
Soit n > 1, deux applications A : I → Mn(K) et B : I → Mn,1(K) continues sur I.

(i) Un système différentiel linéaire d’ordre 1 est de la forme (E) : X′ = A(t)X+ B(t).

(ii) Une solution de (E) est X : I → Mn,1(K) dérivable sur I telle que ∀t ∈ I, X′(t) = A(t)X(t)+B(t).

(iii) Le système homogène associée à (E) est le système (E0) : X′ = A(t)X.

REMARQUE 14.8 : Écriture du système différentiel :

Si on note, pour t ∈ I, B(t) =
(
b1(t) · · · bn(t)

)T
∈ Mn,1(K) et A(t) =

(
ai,j(t)

)
16i,j6n

∈ Mn(K),

le système (E) est équivalent à


x′1 = a1,1(t)x1 + · · · + a1,n(t)xn + b1(t)
...

...
...

x′n = an,1(t)x1 + · · · + an,n(t)xn + bn(t)

, c’est-à-dire

que : X est solution de (E) ⇐⇒ ∀t ∈ I, ∀i ∈ [[1;n]], x′i(t) =
n∑

j=1

ai,j(t)xj(t) + bi(t).

REMARQUE 14.9 : Une équation différentielle linéaire scalaire d’ordre n, c’est-à-dire une équation

différentielle du type y(n) − an−1(t)y
(n−1) − · · · − a0(t)y = b(t) avec y : I → K n fois dérivable et les

fonctions a0, · · · , an−1, b continues sur I, peut se traduire par un système différentiel d’ordre 1.

REMARQUE HP 14.10 : Soit (t0, X0) ∈ I×Mn,1(K), A : I → Mn(K), B : I → Mn,1(K) continues sur I,

le problème de Cauchy

{
X′ = A(t)X+ B(t)

X(t0) = X0
admet une unique solution X définie sur I en entier.� �

PROPOSITION 14.9 :
Soit (E) : X′ = A(t)X+B(t) un système différentiel linéaire d’ordre 1, S l’ensemble des solutions
sur I de (E) et S0 l’ensemble des solutions sur I du système homogène (E0).

(i) S0 est un sous-espace vectoriel de C1
(
I,Mn,1(K)

)
.

(ii) Pour tout t0 ∈ I, φt0 : S0 → Mn,1(K) définie par φt0(X) = X(t0) est un isomorphisme
donc S0 est un espace de dimension n.

(iii) Les solutions non nulles de (E0) ne s’annulent pas sur I.

(iv) Si Xp ∈ S (solution particulière) alors S = Xp + S0 (sous-espace affine).� �
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On se limite à des systèmes (E) : X′ = AX+ B(t) où A ∈ Mn(K) et B : I → Mn,1(K) est continue sur I.

REMARQUE 14.11 : Soit A ∈ Mn(R) réelle et les équations (E0) : X′ = AX (réel) et (E′
0) : Z′ = AZ

(complexe). Une fonction X : I → Mn,1(R) est solution réelle de (E0) si et seulement s’il existe une

fonction Z : I → Mn,1(C) solution complexe de (E′
0) telle que X = Re(Z).

Cela signifie que pour déterminer les solutions réelles de X′ = AX où A est réelle, on peut commencer par

déterminer les solutions complexes dont on prendra les parties réelles.� �
PROPOSITION 14.10 :
Si A est diagonalisable (sur K), il existe P ∈ GLn(K) et D = diag(λ1, · · · , λn) diagonale telles que
A = PDP−1 donc le système X′ = AX équivaut à Y′ = DY où on a posé X = PY.

De plus, si on pose Y(t) =
(
y1(t) · · · yn(t)

)T
alors Y′ = DY si et seulement si pour tout

k ∈ [[1;n]], il existe une constante αk ∈ K telle que yk : t 7→ αke
λkt.� �

REMARQUE 14.12 : Le calcul de la matrice P−1 n’est pas nécessaire pour la résolution de X′ = AX.� �
PROPOSITION 14.11 :
Si A n’est que trigonalisable (sur K), on pose encore X = PY avec P ∈ GLn(C) telle que A = PTP−1

et T triangulaire supérieure et on a de nouveau X′ = AX si et seulement si Y′ = T Y. Ce système
Y′ = T Y est un système différentiel qui se résout en partant de la dernière ligne et en remontant
en reportant les résultats intermédiaires.� �

REMARQUE 14.13 : Cette méthode fonctionne encore si A n’est pas constante mais si P l’est.

14.2.2 : Équations classiques (HP)

REMARQUE 14.14 : Équations à variables séparables : ce sont des équations du premier ordre de la
forme (E) : y′f(y) = g(t) où f et g sont des fonctions continues de I dans K = R ou C. Si F (resp. G) est
une primitive de f (resp. g) sur des bons intervalles, une solution y de (E) sur J ⊂ I vérifie F(y) = G(t)+k

avec k ∈ K ; il faut espérer ensuite que F soit bijective pour qu’on puisse écrire y = F−1(G(t) + k) qu’il

faut ensuite tracer. Les solutions maximales ne sont pas forcément définies sur les mêmes intervalles

comme c’était le cas pour les équations linéaires.

REMARQUE 14.15 : Équations de Bernoulli : ce sont des équations du type (E) : ay′+by+cyα = 0

où a, b et c sont des fonctions de I dans R et α ∈ R \ {0, 1}. Sur des intervalles où ni a ni y ne s’annule,

on pose z = y1−α si y solution de (E) et y n’est pas la fonction nulle, on trouve alors z′ = (α− 1)bz+ c

a

qu’on sait de nouveau résoudre.

REMARQUE 14.16 : Équations de Riccati : ce sont des équations de la forme (E) : ay′+by+cy2 = d

où a, b, c et d sont des fonctions de I dans R. Si on trouve une solution particulière y0 de (E) alors en

posant z = y− y0, la fonction z vérifie une équation de Bernoulli qu’on sait maintenant résoudre.


