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CHAPITRE 14
EQUATIONS DIFFERENTIELLES

PARTIE 14.1 : EQUATIONS DIFFERENTIELLES
LINEAIRES SCALAIRES

DEFINITION 14.1 :
Soit «, B, v trois applications continues sur un intervalle 1 et a valeurs dans K.

(i) L’équation (E) : oy’ + By = v est une équation différentielle linéaire scalaire d’ordre 1.
(i) Une solution de (E) esty :1— K dérivable sur 1 telle que Vt € 1, a(t)y’(t) + B(t)y(t) = v(t).

(iii) L’équation (Ep) : oy’ + By = 0 est l’équation homogene associée a (E).

REMARQUE 14.1 : On peut considérer des solutionsy : ] — K de (E) ot J C L.

PROPOSITION 14.1 :
L’ensemble S, des solutions de (E() est un sous-espace vectoriel de C°(I, K).

Si yp est une solution particuliere de ’équation (E) alors I’ensemble S des solutions de (E) est

S =1yp + So : c’est un sous-espace affine de C°(1, K).

REMARQUE 14.2 : Si la fonction « ne s’annule pas sur 1, y est solution de oy’ + By = v si et seulement

siy est solution dey’ — ay = b avec a = Bootp=Y ; a et b sont alors continues sur 1 : on dit alors
o o

que I'équation est mise sous forme résolue.

PROPOSITION 14.2 :
Soit a et b deux fonctions continues sur un intervalle I et a valeurs dans K.

(i) Les solutions de 1’équation homogeéne (Ey) : y' — ay = 0 sont les fonctions y, définies
sur I par Vt € I, ya(t) = Ae*(V) o1 A € K et A est une primitive de a sur I.

(ii) So est la droite vectorielle engendrée par t — e : Sy = Vect(e?).

REMARQUE 14.3 : Méthode de la variation de la constante :

e Soit a,b : I — K continues et yo une solution non nulle de I’équation homogeéne y' — ay = 0 alors il
existe une solution de ’équation y' — ay = b de la forme y = Ayop, ot A est une fonction dérivable sur 1.

e y solution de (E) < N = 2
Yo

ce qui permet de trouver (en intégrant) une solution particuliére.

THEOREME 14.3 :
Si a et b sont continues sur I, les solutions de y’ — ay = b sont les fonctions y, définies par

t
Vi e, y(t) = aerV 4 AWM ft b(we A™Wdu oit A est une primitive de a sur I, A € K et ty € I.
0

THEOREME ENORME 14.4 :
Soit a et b deux fonctions continues sur un intervalle I et (tg,yo) € I x K, le probléeme de CAUCHY
{ vy = a(t)y+b(y)

admet une unique solution y définie sur I en entier.
y(to) = vo
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REMARQUE 14.4 : e Sous ces conditions, ¢ : So — K définie par ¢(y) = y(to) est un isomorphisme.

e L’espace vectoriel des solutions de (Eo) sur un intervalle I ot I’équation est résolue est une droite.

e Si I’équation n’est pas sous forme résolue sur 1, on la résout sur tous les intervalles ot « ne s’annule
pas et on essaie de raccorder les solutions en les points singuliers.

e II peut y avoir sur I une infinité de solutions, une seule ou aucune.

DEFINITION 14.2 :
Soit «, B, v et & quatre applications continues sur 1 et a valeurs dans K.

(i) (E) : oy’ + By +vy =& est une équation différentielle linéaire scalaire d’ordre 2.
(i) y : 1 = K deux fois dérivable est solution de (E) si Vt € I, a(t)y”(t) + B(t)y’(t) +v(t)y(t) = 8(t).
(i11) L’équation (Eo) : oy” + By’ + vy =0 est I'’équation homogene associée a (E).

REMARQUE 14.5 :

e Si la fonction « ne s’annule pas sur 1, y est solution de oty” + By’ + yy = & si et seulement si y est

solution dey” — ay’ — by =c avec a = —E, b=-—Yetc=2 ;a, b et c sont alors continues sur 1.
o o o

0 1 0

e En posant X = (5,>,y"—ay’—by —ce=X = (b(t) a(t)>x+ (C(t))

THEOREME ENORME 14.5 :
Soit a, b et ¢ trois applications continues sur un intervalle I et (to,yo,yp) € I x K2, le probleme

y' = ay+by+c
de CAuCHY ¢ y(to) = vyo admet une unique solution définie sur I en entier.
/ !
y'(to) = vo

(PROPOSITION 14.6 :
Soit a et b deux applications continues sur un intervalle I.
(i) L’ensemble Sy des solutions de (Ey) : y” — ay’ — by =0 est un espace de dimension 2.
(ii) Deux solutions y; et y, de (Ep) linéairement indépendantes forment une base de Sy.
(iii) y = ayo est solution de (Ey) si et seulement si «’ est solution d’une équation différentielle
linéaire d’ordre 1 homogeéne (méthode de LAGRANCE).
(iv) Il existe une base de Sy de la forme (yo, ayo), oit « est de classe C? sur 1.

THEOREME 14.7 :

Soit (a,b,c) € C* x C2, alors les solutions de (Eo) : ay” + by’ +cy =0 sont :
(i) y=areMt + aze??t avec (x1,x3) € C? si Aj # A, sont les racines de aX? + bX + c.
(ii) y = (it + az)eMt avec (a1, a2) € C? si Ay est la racine double de aX? + bX + c.

REMARQUE 14.6 : e L’équation (C) : az? 4+ bz + ¢ = 0 s’appelle I’équation caractéristique de (E).

0 1
e La matrice associée a cette équation dans le systéme Y = AY ou Y = (5,) est A = <_C _b>
a a

et son polynéme caractéristique vérifie aX? + bX + ¢ = axa : cohérent !

e Le cas (i) est le cas ou A est diagonalisable et (ii) celui ot elle est seulement trigonalisable.
REMARQUE HP 14.7 : Si (a,b,c) € C* x C%, P € C[X] et m € C, il existe une solution particuliére de
(E) : ay” + by +cy=P(t)e™" dela formey : t — t*Q(t)e™" avec Q € C[X], deg(Q) = deg(P) et :

(i) o =0 si m n’est pas racine de aX? 4+ bX + c.

(ii) o =1 si m est racine simple (et A = b? —4ac # 0) de aX? 4+ bX + c.

(iii) o =2 si m est racine double (A = 0) de aX? + bX +c.
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THEOREME 14.8 :
Soit (a,b,c) € R* x R2, les solutions réelles de (Eo) : ay” + by’ +cy =0 sont (A =b? —4ac) :

(i) y=areMt + azer?t avec (a1,x2) € R? si A\j # A, racines réelles de aX? +bX +c et A > 0.
(i) y=(a1t+ az)eMt avec (a1, 02) € R? si Ay = _ZL racine double de aX? +bX +c et A =0.
a

(iii) y = (o1 cos(Bt) + oz sin(Bt))e™t avec (a1, 02) € R? sizy = a+ip € Cet z; = a—ip ((a, B) € R?)
sont les racines complexes de aX? 4 bX + ¢ quand A < 0.

(PARTIE 14.2 : ANNEXES)

’14.2.1 : Systémes différentiels‘

DEFINITION 14.3 :
Soitn > 1, deuz applications A : 1 — Mn(K) et B: I — My, 1(K) continues sur 1.

(i) Un systéme différentiel linéaire d’ordre 1 est de la forme (E) : X' = A(t)X + B(t).
(it) Une solution de (E) est X : I — My, 1(K) dérivable sur 1 telle que Vt € I, X'(t) = A(t)X(t) + B(t).
(iii) Le systéme homogene associée a (E) est le systeme (Eo) : X' = A(t)X.

REMARQUE 14.8 : Ecriture du systeme différentiel :

-

Si on note, pour t € I, B(t) = (b1 t) - bn(t)> € Mn,1(K) et A(t) = (ai, (t))1<i,j<n € Mn(K),
X) = axi + - 4+ arn(t)xn + bi(t)

le systeme (E) est équivalent a q ., Clest-a-dire
X = ani(t)x1 + - 4+ ann(t)xn + ba(t)

que : X est solution de (E) <=Vt € I, Vi € [I;n], x{(t) = > aij(t)xj(t) + bi(t).
=1

REMARQUE 14.9 : Une équation différentielle linéaire scalaire d’ordre n, c’est-a-dire une équation
différentielle du type y™ — an_1(t)y™=") — ... —ap(t)y = b(t) avecy : I — K n fois dérivable et les

fonctions ag, - -, an—_1,b continues sur I, peut se traduire par un systéme différentiel d’ordre 1.
REMARQUE HP 14.10 : Soit (to,Xo) € I x Mn,1(K), A: I = Mn(K), B: 1= Mnu,1(K) continues sur I,

X = A({t)X+B(t)
X(to) = Xo

le probléme de CAUCHY { admet une unique solution X définie sur 1 en entier.

N

PROPOSITION 14.9 :
Soit (E) : X' = A(t)X+B(t) un systéme différentiel linéaire d’ordre 1, S I’ensemble des solutions
sur I de (E) et Sp ’ensemble des solutions sur I du systéme homogeéne (Eo).
(i) So est un sous-espace vectoriel de C' (I,MnJ (K))
(ii) Pour tout ty € I, ¢¢, : So = Mn,1(K) définie par ¢¢,(X) = X(to) est un isomorphisme
donc Sy est un espace de dimension n.

(iii) Les solutions non nulles de (Ep) ne s’annulent pas sur L.

(iv) Si X, € S (solution particuliére) alors S = X, + Sy (sous-espace affine).
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(® On se limite & des systemes (E) : X' = AX+B(t) ot A € M (K) et B : I — Mn,1(K) est continue sur I.
REMARQUE 14.11 : Soit A € My (R) réelle et les équations (Eo) : X' = AX (réel) et (Ey) : Z' = AZ

(complexe). Une fonction X : I — My, 1(R) est solution réelle de (Eo) si et seulement s’il existe une

fonction Z : 1 — My 1 (C) solution complexe de (Ej) telle que X = Re(Z).
Cela signifie que pour déterminer les solutions réelles de X' = AX ot A est réelle, on peut commencer par

déterminer les solutions complexes dont on prendra les parties réelles.

PROPOSITION 14.10 :
Si A est diagonalisable (sur K), il existe P € GL,,(K) et D = diag(A1,---,An) diagonale telles que
A =PDP~! donc le systéeme X' = AX équivaut & Y/ = DY ol on a posé X = PY.
T
De plus, si on pose Y(t) = <y1(t) yn(t)> alors Y/ = DY si et seulement si pour tout

k € [1;n], il existe une constante oy € K telle que yy : t — oge<t.

REMARQUE 14.12 : Le calcul de la matrice P~ n’est pas nécessaire pour la résolution de X' = AX.

~

(PROPOSITION 14.11 :

Si A n’est que trigonalisable (sur K), on pose encore X = PY avec P € GL,(C) telle que A = PTP~!
et T triangulaire supérieure et on a de nouveau X' = AX si et seulement si Y =TY. Ce systéme
Y = TY est un systéme différentiel qui se résout en partant de la derniére ligne et en remontant
len reportant les résultats intermédiaires.

J

REMARQUE 14.13 : Cette méthode fonctionne encore si A n’est pas constante mais si P I’est.

14.2.2 : Equations classiques (HP)

REMARQUE 14.14 : Equations a variables séparables : ce sont des équations du premier ordre de la
forme (E) : y'f(y) = g(t) ot f et g sont des fonctions continues de I dans K= R ou C. SiF (resp. G) est
une primitive de f (resp. g) sur des bons intervalles, une solutiony de (E) sur ] C I vérifie F(y) = G(t) +k
avec k € K ; il faut espérer ensuite que F soit bijective pour qu’on puisse écrire y = F~1(G(t) + k) qu’il

faut ensuite tracer. Les solutions maximales ne sont pas forcément définies sur les mémes intervalles
comme c’était le cas pour les équations linéaires.

REMARQUE 14.15 : Equations de BERNOULLI : ce sont des équations du type (E) : ay’ +by+cy*=0

ol a, b et ¢ sont des fonctions de 1 dans R et « € R\ {0,1}. Sur des intervalles ot ni a ni y ne s’annule,
bz+tc
a

on pose z =y' ~ si y solution de (E) et y n’est pas la fonction nulle, on trouve alors z’ = (x — 1)

qu’on sait de nouveau résoudre.
REMARQUE 14.16 : Equations de RICCATI : ce sont des équations de la forme (E) : ay’ +by +ey?=d

ol a, b, ¢ et d sont des fonctions de 1 dans R. Si on trouve une solution particuliére yo de (E) alors en

posant z =y — yo, la fonction z vérifie une équation de BERNOULLI qu’on sait maintenant résoudre.



