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(PARTIE 1 : UN COURT EXEMPLE]

(uju)  (upy)  (ulw) 2 a 1—b
Par définition, |G(w,v,w)= | (Vu) () Gw) | = a  2a®>-2a+1 a car R3 est
(wu)  (wpy)  (wlw) 1—b a 1+1b?

muni ici de sa structure euclidienne canonique et, par exemple, (u[v) =1xa+0x (1 —a)+(=1) X0 =a.

1 a 1
D’apres 1'énoncé, Matg, (u,v,w) = 0 1—a 0 |. Ainsi, aprés développement par rapport a la
—1 0 b

seconde ligne, on a | det(Matz, (u,v,w)) = (1 —a)

-1 b

On sait que la famille (u,v,w) est liée si et seulement si det(Math(u,v,w)) = 0. D’apres 1.2.1, on a

donc (u,v,w) est liée si et seulement si a =1 ou b = —1. Traitons les deux cas :

2 1 1—b
Sia=+1 on a dans ce cas G(u,v,w) = 1 1 1 et, avec la formule de SARRUS, on a
T—b 1 1+0b?
det(G(u,v,w)) =2(14+b2)+1—-b+1—-b—2—(1+b%) — (1 —b)? =0 (apres calculs).

2 a 2
Si b= —1 on a maintenant G(u,v,w) = [ a 2a? —2a+1 a | et, toujours avec la formule de SARRUS,
2 a 2

det(G(u,v,w)) = 4(2a% —2a + 1) + 2a% +2a%? — 4(2a? — 2a + 1) — 2a® — 2a® = 0.

On a vérifié dans les deux cas que |si (u,v,w) est liée, alors det(G(u,v,w)) = 0.

2 a -1—-Db
Dans le calcul de det(G(u,v,w)), aprés C3 < C3 — Cy, det(G(u,v,w)) =| a  2a?—2a+1 0
1—b a b(b+1)
2 a —1
donc, par linéarité selon C3, on a det(G(w,v,w)) = (1+b)| a 2a>—2a+1 0 |. Aprés L3« L3 — 1L
1—-D a b
2 a -1

et lindarité par rapport a L, il vient det(G(u,v,w)) = (1 +b)?| a 2a?>—-2a+1 0 |. Ensuite, apres
—1 0 1

L1 < L7 +L3 et développement par rapport & la colonne 3, on a det(G(u,v,w)) = (1+b)?

1 a
a 2a2—2a+1

ce qui donne | det(G(w,v,w)) = (14 )2(a? —2a+1) = (1 +b)2(1 — a)2.

On a donc det(G(u,v,w)) = det(Matg, (u,v,w))? donc ’det(G(u,v,w)) > O| et, toujours parce (u,v,w) est

lide si et seulement si det( Mats, (u,v,w)) =0, ’det(G(u,v,w)) = 0 si et seulement si (u,v,w) est liée. |




[PARTIE 2 : EQUIVALENCE]

On vérifie XiTCX]- = ci,j | soit par calcul direct, soit en remarquant que c’est (X;|CXj) pour le produit

scalaire canonique de R™ et comme (X1,---,Xy) est la base canonique de R™, qui est donc orthonormale

pour ce produit scalaire, (Xi|CXj) est la i-ieme coordonnée du vecteur CX;j, qui est la j-ieme colonne de C.
(«=) Si XTCY = 0 pour tout couple (X,Y) € My, 1(R)? alors, en prenant X = X; et Y = X;j, on obtient

ci,j = 0 d’aprés 2.1.1 pour tout couple (i,j) € [1;n]? donc C = 0.

(=) Si C=0, on a donc CY =0 pour Y € My 1(R) puis XTCY = XT(CY) = XT0 = 0 pour X € My 1(R).

Par double implication, on a |C =0 <= (V(X,Y) € Mn,1(R)?, XTCY =0).

3
o
NGERANIE

n n
Six= ) xies €EEety= ) yje; € E,ona (x]y) = xiyj(eilej) = aijxiyj par bilinéarité du
i=1 i=1 i

[Nt

1j i=1j

produit scalaire. D’autre part, par définition du produit matriciel, on a [AY]; = ai,jy;j pour tout i € [[1;n]]

1

—.

NE
NE

X1 [AY] i =

puis XTAY =
i=1 i=1

1

n
xi 3 aijyj done | (x|y) = XTAY.
j=1 !

Comme B’ est une base orthonormale de E, d’apres le cours, | (xJy) = X'"Y’.

Comme X = Matg(x), X’ = Matg/(x) et P = Mats: 5(ide), d’apres le cours,
2.3.3] Pour (x,y) € E2, on a (x|y) = XTAY = X'"Y’ donc (PX')TA(PY') = X'V ou X'T(PTAP — I,)Y’ = 0. Cette
2.3.3] 'Y : y n

relation étant valable pour tout couple (X', Y’) € My 1(R)?, on en déduit, d’aprés 2.1.2, que

OnaA = (PT)""P~! (P est une matrice de passage donc det(P) # 0 et P est inversible) d’aprés 2.3.3. On

en déduit que det(A) = det((P~")T)det(P~") = det(P~")? donc ’det(A) >0 et A est inversible. |

On applique 2.3.4 a l'espace F = Vect(e,---,¢ep) dont (eq,---,¢p) est une base car elle est libre par

hypothese et génératrice de F par construction. Ainsi, en notant B = G(ey,---,ep) € Mp(R), |det(B) > 0.

Pour i € [1;n], on a [MX]; =

)

(uifu;)x; par définition du produit matriciel puis, par linéarité & droite

M;ﬂ EM:

du produit scalaire, [MX]; = (mL

On a alors XTMX = XT(MX) =

1

scalaire cette fois-ci, donc |XTMX = |[v||?.

(«<=) Si MX = 0 alors X"MX = 0 donc |[v||? = 0 donc [|v|]| = 0 et v = O¢ par séparation.

]xjuj) done  [[MX]; = (uilv).]

—.

n

Xi[MX]i = Z xi(ui|v) = (i XilUi
i=1

i=1

NgE]

v) par linéarité a gauche du produit

—_

(=) Siv=0alors Vi € [1;n], [MX]; = (ui|]v) = 0 donc MX = 0.

Par double implication, on a donc I’équivalence ’v =0 <= X'MX =0. |

n
Si Y xqup =0 avec (x1,-++,%xn) € R™, alors alors v = Og, ce qui donne MX = 0. Comme M est inversible
i=1

1

par hypothese, on en déduit X = M~T(MX) =0 donc x; = --- = x,, = 0 donc ’(u1 , - +yUn) est libre. |




On vient de montrer avec 2.3 et 2.4 que (u1,---,up) est libre si et seulement si det(G(uy, -+, up)) > 0.

D’apres I'inégalité de CAUCHY-SCHWARZ, on a |(ug|uz)| < |Juq|] X |Juz|] =1 donc

La matrice M — (1 — «)1;, est la matrice dont tous les coefficients valent « donc, selon les valeurs de «, on

a |rg(M —(1—a)ly) =Tsia#0et rg(M—(1—«)ln) =0sia=0.|

On a donc rgM — (1 — «)I) < 1T < n donc 1 — « est valeur propre de M et, par le théoréme du rang,
dim(E1_o(M)) =n —1g(M — (1 — a)In) > n —1. Or dim(E;_«(M)) < my_«(M) d’apres le cours donc
mi_«(M) = n — 1. Le polynéme caractéristique de M vérifie donc Xpr = (X — 14+ «)* "1 (X —A) avec A € R.

Ainsi, xm est scindé sur R, et comme xp = X™ — tr(M)X™~! + ..., on obtient tr(M) = (n — 1)(1 — &) + A

en identifiant. Comme tr(M) =n, onaA=1+ (n—Daet [xp=(X-1+0)" (X—1—(n—1)a).

n
On a MX = AX donc XTMX = AXTX = A 3 xZ et, avec 2.4.2, XTMX = [|v[|* > 0. Comme X # 0, on a
i=1

1

| 2

[v]

n
> x# > 0 donc, comme A = ,on en déduit A =1+ (n —1)a > 0 ce qui donne | > =1

i=1 i Xiz n—1 )
i=1
1
Siq=——1 ] alors A = 0 est valeur propre de M et on vérifie que le vecteur X = [ : | est un vecteur
n—
1
propre de M associé & la valeur propre 0. En utilisant & nouveau 2.4.2, on a X' MX = ||v||* mais, comme

MX = 0, on en déduit |[v||* =0 donc |v = 0.

[PARTIE 3 : DISTANCE A UN SOUS-ESPACE]

vilvi) o (i) A(vifvn)
On obtient det(G(vi,--+,vn_1,Avn)) = ' : | par définition de
(Vn—1 ‘Vl) to (Vn—1 |VTL—1) )\(Vn—1 |Vn)
Avalvi) -+ Alvnlva—1)  A%(valvn)
G(vi, "y, Vn—_1,Avn) et par bilinéarité du produit scalaire. Ainsi, par linéarité du déterminant par rapport a
la derniere ligne et la derniére colonne, on a det(G(w A ?\vn)) = Azdet(G(w Vi1 ,vn)).

De méme, par définition de D = det(G(w V=T, Vn + Ay )) et par bilinéarité du produit scalaire, on a

(vi[v1) e (vilvn-1) (vilvn) +A(vifv1)
D ) ) ) . Dans ce déterminant, on
(Vn=1|v1) e (Vn=1lvn=1) (Vn—1vn) + A(vn_1|v1)
(valvi) +A(vivi) oo (nlvn-1) +FA(VIvR-T) [vn + A |2

vivi) o (vifvnot) (vilvn) +A(vi[v1)

effectue 'opération L,, <— L —AL;j pour avoir D = . :

" " (Vn—1vi) -+ (vn=1vn=1) (vn—tlvn) FA(vn—1fvr)

(Vn“’1) T (vnlvn-1) (vnlvn) + A(valvr)

apres calculs. Puis, aprés Cr, «— Cpn — ACq, det(G(w,...,vn_],vn + )\v1)) = det(G(w,...,vn_],vn)).




Comme Vi € [1;n]], (vilw) =0 car vi € Fet w € F-, tous les termes de la derniére colonne du déterminant

det(G(v1,- -+, vn,w)) sont nuls, sauf celui en case (n+1,n+1) qui vaut (w|w) = ||w||2. Par développement

de ce déterminant par rapport & la derniere colonne, det(G(w e ,vn,w)) = [|w|]? x det(G(w S ,vn)).

D’apres le cours, on a d(v,F) = |[v — pr(v)|| ot pp(v) est le projeté orthogonal de v sur F. Le résultat de
la question 3.1.2 se généralise avec vy a la place de vy pour k € [[1;n — 1] et, plus généralement, on établit
que siy € Vect(vy, -+, vy) alors det(G(v1,~-~,vn,v + y)) = det(G(v1,~- ~,vn,v)). Si on applique cela avec
y = —pr(v) € F, on obtient det(G(w o ,vn,v)) = det(G(v1 o ,vn,v—y)) et, par définition d’un projecteur

orthogonal, on a v — pr(v) € FX = vect(vy,---,vn)?, donc, d’apres 3.2.1 appliqué avec w = v — pr(v), on

obtient det(G(v1,-~-,vn,v) = |[v —pr()||* x det(G(v1,-~-,vn)) =d(v,F)? x det(G(v1,~-~,vn)).

2 a
1—2a+2ad?

et det(G(u,v)) = 2 — 4a + 3a? donc (2 — 4a + 3a?)d(w,F)?2 = (1 + b)?(a — 1)? d’apres 3.2.1. Comme

On a vu en 1.2.3 que det(G(u,v,w)) = (1+b)?(a—1)2. On calcule aussi det(G(u,v)) =

s 1+b)%(a—1)*%
2—4a+3a?2=2(1-0a) 2> 0, on en déduit |d(w,F) = (—
a+3a (T—a)*+a , (w, F) P

On retrouve d(w,F) =0 sia =1 oub = —1, ce qui est logique puisque dans ce cas w € F d’aprés la partie 1.
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[PARTIE 1 : ETUDE DE DEUX FONCTIONS)

. _¢2 . _¢2 . ,
La fonction t — e~ ' est continue sur Ry et on a e™" = o (tlz) par croissances comparées donc, par
+oo

,tz

comparaison aux intégrales de RIEMANN, [t e est intégrable sur R;.

La fonction t cos(Zb’c)e_"2 est continue sur R, et |cos(2bt)e=t"| < e~t" donc, d’apres la question

précédente et par comparaison, |t +— cos(th)e*tz est intégrable sur R,.

. 2 . . .
La fonction f, : t > t?™e™" est continue sur R et fy(t) =0 (&) par croissances comparées donc,
oo

. . ’ — 2 . 7
par comparaison aux intégrales de RIEMANN, |f, :t+ t?Me™t" est intégrable sur R,. | Dans I,,, on pose

o 2Ly s et qui sont de classe €1 sur R lim wn (v(t) = 0 = wn (0)v(0)
Up : g etV ™" qui sont de classe C' sur Ry avec Um un(t)v(t) = 0 = un(0)v(0) par
+ +
croissances comparées donc I, = j;) OCuil(t)v(t)dt = [un(t)v(t)]goo - fo OOun(t)\/(t)dt, qui s’écrit aussi
—+oo
2n+1 2 “+oo ,2n+1 2
t —t t —t 2
I, = - (—Zt ) dt d I, = I
n {2n—|—1e ]O Jo mri\F oneIn T g




Puisque la relation finale est donnée, on peut procéder par récurrence :

+ |
Initialisation : Ip = fo ettt = ? d’apres I’énoncé (intégrale de GAuss) donc Ip = gz()io(())') X ?
|
Hérédité : soit n € N tel que I, = 22(72‘?21') X @, alors In 1 = an—i— 11, an—i— 1y 22(n() ) L d’apres
2n+2)(2n+1)(2n)! \f Cn+))! Vn
1.2.2 et par hypothese de récurrence et I _( — x Y—.
e R i U A S G TR

)
|
Par principe de récurrence, on a bien |Vn € N, I, = (2n)! %

2211( )

. m:my. TL
Soit b € Rett € Ry, onae?tbt = Z 27}’ puis, comme i?P = (=1)P € Ret i?P*! = i(-1)P € iR,
n=0 Tl.

en séparant les termes d’indices pairs et impairs dans cette somme de série, comme tout converge par
+oo ZZP(,])PbZPtZP too 22p+1(71)pb2p+1t2p+1
i

croissances comparées, et = x o pM) 2 ) . Comme, de plus, on a
2ibt _ s s : . \p4Pb2P op
e = cos(2bt) + isin(2bt), en identifiant, on a |cos(2bt) = Z (=1) 2n)! P,
p=o n
+o0 2n
1.2.5] Soit b € Ret t € R, d’aprés la question précédente, cos(2bt)e™t" = -1 n (20Y) e~t’. Pour
" (2n)!
n=0 n):

N
(2n)! '

(H1) >_ gn converge simplement sur R, vers t — cos(th)e_tz d’apres 1.2.4.
n>0

intégrer terme & terme, on pose gn : t — (—1)

,tz

(Hz2) Toutes les fonctions gn et la fonction t — cos(2bt)e™ " sont continues sur Ry par opérations.

(Hz) Toutes fonctions g, sont intégrables sur Ry d’apres 1.2.2.

n
(H4) Pour n € N, f lgn (t)]dt = ((2 ))' n fb par linéarité de I'intégrale et d’apres 1.2.3
n)!
done Y f |gn(t)|dt converge d’apres I’énoncé (et la somme vaut \é%ebz).
n=>0
+o0 oo 1o 4
Par le théoreme d’intégration terme a terme, on en déduit que h(b f Z gn(t)dt = > f o
n=0
+oo 2n +oo n
donc |h(b) = > (=)™ (2b) In TS (=1 H"E | done h(b) = ﬁe_bz sib € R| d’apres Iénoncé.
n=0 (21’1)' 2 n=0 n! 2

s . . 2 “+o00
Pour dériver sous le signe somme, on pose a : (b,t) — cos(2bt)e™"" de sorte que h(b) = fo a(b, t)dt.
H7) Pour tout t € R, la fonction b — a(b,t) est de classe C' sur R par opérations.
Hz) Pour tout b € R, la fonction t — a(b,t) est continue et intégrable sur R} d’apres 1.2.1..

)
H3) Pour tout b € R, t — gg( t) = —2t sin(th)e*tz est continue sur Ry par opérations.
)

(
(
(
(H4) Pour tout (b,t) € Rx Ry, on a ‘g—(b t)’ < 2tet = P(t) car | sin(2bt)| < 1 avec P continue

et intégrable sur R car ¥ (t) = o(%) par croissances comparées.
oo

- . . 1 ’ +oo . —t2
Par dérivation sous le signe somme, |hest C' sur Ret Vb € R, h'(b) = fo (—2t) sin(2bt)e~* dt.




Dans cette derniere intégrale, on pose u : t — sin(2bt) et v:t — et qui sont de classe C' sur R, avec
w(O)v(0) = 0 = tim u(t)v(t) donc W' (b) = [u(tv(v]{™ - [ W v()at = — [ " (2b cos(2bt))et dt
t=r+o00 0 0 0

par intégration par parties puis h/(b) = —2bh(b) par linéarité. On a bien ‘Vb € R, h(b) 4+ 2bh(b) = 0. |

Les solutions réelles y sur R de cette équation différentielle (E) : y’ + 2xy = 0 sont, d’apres le cours, les

fonctions pour lesquelles il existe A € R tel que y : x — Ae=*". Comme h est solutions réelle sur R de (E)

d’apres 1.3.2 et que h(0) = ? d’apres I’énoncé, on a |Vb € R, h(b) = ?e‘bz.

2
On pose, pour x € Ret t € R, f(x,t) = exp (—tz — :2) et on applique le théoréme de continuité :

H] Pour tout t € R* 5 la fonction x + f X, t est continue sur R par opérations.
+
H> Pour tout x € R, la fonction t + f x,t) est continue sur R* par opérations.
’ + p p

(H3) Pourx € Rett € R, [f(x,t)] < e ¥ et t e est continue et intégrable sur R% avec 1.1.

Par théoreme de continuité sous le signe somme, ’(p est continue sur R|. De plus, grace au terme x?

)

2

2 . teo 2 x? :
comme (—x)~ = x*, la fonction |¢ :x+— fo exp | —t* — Z dt est paire.

2
Posons a nouveau f(x,t) = exp (—t2 — :2> pour x € Rett € R} :

(H1) Pour tout t € R, la fonction x — f(x,t) est de classe C' sur R par opérations.

(Hz) Pour tout x € R%, t — f(x,t) est continue et intégrable sur R* par domination d’apres 1.4.1.

2
(Hz) Pour x € R%, la fonction t gi (x,t) = _t—%x exp (—tz - :2> est continue sur R par opérations.

(Hs) Si[a;b] C RE,

2 2
%(x, t)’ = % exp (tz - ’E2> < %’ exp (tz - 112) = 0q,p(t) pour tout x € [a;b]

et tout t € R%. La fonction 84,p est continue et intégrable sur R* car on a 04,p(t) =0 <t12> et
o0

2 2 . 7
Ba,b(t) N i—ge_a /" donc tl_i)TSI+ 8q,b(t) = 0 par croissances comparées.

Par le théoreme de dérivation sous le signe somme, on en déduit que |¢ est de classe C' sur R% | et qu’on

* / +oo 1 2 Xz
a, par la formule de LEIBNIZ, |Vx € R%, ¢'(x) = —2x fo 7 eXP —t° — & | dt.

-+

Pour x > 0, dans l'intégrale ci-dessus, on pose t = = ay(u) avec oy qui est de classe C! stricte-

0 2 2
— u_ X 4,2 -X
2xf+oo<xz)exp( .z > (u2>du par

changement de variable, qui se simplifie en ‘(p/(x) = —2¢(x). |

=S

ment décroissante et bijective de R sur R donc ¢’(x)




On en déduit, comme RY est un intervalle, qu'il existe A € R tel que Vx € R, o(x) = Ae 2%, Par

continuité de ¢ en 0 d’apres 1.4.1, on a A = ¢(0) = ? d’apres 1'énoncé donc Vx € Ry, ¢(x) = ?e*b‘

puis, par parité de @, |Vx € R, @(x) = ?e—zml

[PARTIE 2 : TRANSFORMEE DE FOURIER)

Pour a € Ret t € Ry, posons m(a,t) = % :

(H1) Pour tout t € Ry, la fonction a — m(a,t) est continue sur R par opérations.
(H2) Pour tout a € R, la fonction t — m(a,t) est continue sur R par opérations.

(H3) Pourt € Ry et tout x € R, |m(a,t)| < % = p(t) car |cos(2at)| < 1 et p est continue et intégrable

14+t
1
sur Ry car p(t) ~ —.
+ P()+Octz

Par théoreme de continuité sous le signe somme, ’1]) est définie et continue et paire sur R | car cos est paire.

00 = [ = [Avetan(y]

o T+i donc [P(0) =

Pour a € R et n € N* fixés, on pose vy (x) = jp(x) cos(2ax) pour x € [0,n] :

cos(ch;) _ m(a,x) car lim e-P2(0+3) _ ¢
2049 2 P oo

(H1) (vp)pen= converge simplement sur [0;n] vers v : x

(Hz) Toutes les fonctions vy, et la fonction v sont continues sur [0;n].

* 1 1 . .
H3z) Pour e N* x [0;n], < — - et x » ————— est continue donc intégrable sur le
(Hs) Pour (p,x) Osm oo )] < 5y et X g :
segment [0; n].
Par le théoreme de convergence dominée, Um upp = f " de
p—too 0 2(14+x%)

. — 2 . — 2
Ou par convergence uniforme sur le segment [0;1] avec |[vp — V||oosjoim] < %e P et lim e P =0.
e p—+oo

Pour a € R et n € N* fixés, on pose h(y,x) =y cos(chc)e*"ZU2
(H1) Pour tout x € [0;n], la fonction y — h(y,x) est continue sur R par opérations.
(Hz) Pour tout y € Ry, la fonction x — h(y,x) est continue par morceaux sur [0;n] par opérations.
(H3) Soit [a;b] C Ry, y € [a;b] et x € [0;n], alors [h(y,x)| < b et la fonction x — b est continue

donc intégrable sur le segment [0;n].

On en déduit par théoreme de continuité sous le signe somme que ’kn est continue sur R, . |




Siy=0,onaVvne N* k,(0) =0donc lim ky(0)=0=k(0).

n—-+oo

Siy € R%, lafonction x — y cos(chx)e”‘z‘J2 = h(y, x) est continue et intégrable sur R car h(y, x) =0 <]2>
oo\ x

. ’ . +oo —x2%y? t
par croissances comparées donc hT kn(y) = fo ycos(2ax)e * ¥ dx. On pose alors t = xy ou x = = et
n——+oo y

la fonction t — L est de classe C', strictement croissante et bijective de R, sur Ry, et on a la valeur de la

+
limite lim kn(y) = f * cos (Zat) e tdt=h (a) = ﬁe_azhﬂl2 d’apres 1.2.5 ou 1.3.3.
n—-4o00 0 y y 2

Ainsi, ‘la suite de fonctions (ky )nen+ converge simplement sur Ry vers k: Ry — R ‘| ou la fonction k a

été définie par |k(0) =0 et k(y) =h (a> = %e‘az/yz siy>o0.
Y

La fonction k;, est continue sur Ry d’apres 2.3.1 doncy +— kn, (y)e_‘-J2 est aussi continue sur R par produit.

2
De plus, |kn(y)| < j;nydy = n7 par inégalité triangulaire car Vx € [0;n], |exp(—y?x?)cos(2ax)| < 1 donc

kn(y)e v’

< %6792 donc, par comparaison, |la fonction y — kn(y)e*y2 est intégrable sur R .

(]+X2)y2:|9—p

. % P 24,2 1
Smtpe N ,onafo ye v gy = [_Z?W

D’apres 2.2, on a P(a) =2 lim ( lim un,p). On va donc calculer cette double limite autrement. Avec

n—+oo " p—-+oo

donc fopye_““"‘z)yzdy =jp(x).

y=0

. +o0 2
ETooun’p = f kn(y)e ¥ dy. On va

P
I’égalité admise et 2.5, on a up p = j;) kn(y)e’yzdy et avec 2.4, o

P

+
alors appliquer le théoreme de convergence dominée pour calculer la limite de fo = kn(g)e’y2 dy quand n

tend vers +00. On pose wy (y) = kn(y)e_UZ poury € Ry :
(Hy) La suite (wn)nen- converge simplement sur R vers la fonction y — k(y)e_y2 d’apres 2.3.2.
(Hz) Les fonctions wy sont continues sur R d’apres 2.3.1 et la fonction y +— k(y)e‘y2 est continue

par morceaux sur Ry d’apres 2.3.2.

+
(H3) Pourn € N*ety € RY, [kn(y)| < fonye*"zyzdx < fo Ooge”‘zyzdx = ? avec le changement
. ot G e VT2 _
de variable affine x = = facile a justifier donc |wn (y)| < e V" pour y € Ry car wy (0) = 0.
Yy

La fonction y — eV’ est continue et intégrable sur Ry d’apres 1.1.

S . oo R _y? \fﬂ o0 2 az ﬁ PR
= y = ¥= —yt - & =M=
Ainsi, lim j:r wn (y)dy j;) k(y)e dy fo exp ( y 5 | dy ¢(a) par théoreme

de convergence dominée. Avec 1.4.4, |P(a)= %e‘zm‘ pour tout a € R| par parité de .




