
ÉNONCÉS EXERCICES CORRIGÉS 11
VARIABLES ALÉATOIRES� �

11.1 Variables aléatoires infinies� �� �
11.1� �Marche au hasard dans le plan

On considère une particule se déplaçant au hasard dans un plan de la manière suivante :

• le temps est discret ;

• à l’instant n, la particule tire une direction au hasard parmi Nord, Sud, Est, Ouest avec probabilité
1

4
pour chaque direction puis effectue un pas dans cette direction ;

• les tirages sont mutuellement indépendants.

Le but de l’exercice est de prouver qu’il est presque sûr que la particule passera une infinité de fois par son
point de départ. On note Zn = (Xn, Yn) la position de la particule à l’instant n (avec Z0 = (0, 0)) et N le
nombre d’instants n > 1 tels que Zn = (0, 0). On peut avoir N = +∞ si ça arrive une infinité de fois de sorte
que N(Ω) = N ∪ {+∞}. Il s’agit de prouver que P(N = +∞) = 1.

a. Montrer que P(N > 2) =
(
P(N > 1)

)2
et généraliser.

b. En déduire qu’il suffit de prouver que
∑
n>1

P(N > 1)k diverge.

c. Exprimer P(Zn = (0, 0)) comme somme de coefficients binomiaux.

d. En déduire une expression simple de P(Zn = (0, 0)) et un équivalent quand n tend vers +∞.

La série
∑
n>1

P(Zn = (0, 0)) est-elle convergente ?

e. Soit Np la VAD valant 1 si Zp = (0, 0) et 0 sinon. Comparer E(Np) et P(Zp = (0, 0)).

Que vaut E(N0 + · · ·+Np) ? Montrer que lim
p→+∞

E(N0 + · · ·+Np) = +∞. Conclure.

Indication : on admettra provisoirement que si X est une VAD à valeurs entières : E(X) =
∑
n>1

P(X > n).� �
11.2� �On lance une infinité de fois une pièce qui donne pile avec une probabilité p ∈]0; 1[.

Pour n > 1, on désigne par Xn le rang d’arrivée du n-ième pile.
a. Reconnâıtre la loi de X1. En déduire E(X1) et V(X1).
b. Déterminer la loi de X2 en calculant P(X1=i)(X2 = j). Calculer E(X2).

c. Calculer E
(
X2(X2 − 2)

)
. En déduire V(X2).

d. Déterminer la loi de Xn. Calculer E(Xn).� �
11.3� �Soit λ > 0, p ∈]0; 1[ et q = 1−p. Soit le couple de variables aléatoires (X, Y) dont la loi conjointe est donnée

par ∀(i, j) ∈ N2, pi,j = P(X = i, Y = j) = λie−λpjqi−j

j!(i− j)!
si 0 6 j 6 i et pi,j = P(X = i, Y = j) = 0 sinon.

a. Vérifier que (pi,j)(i,j)∈N2 définit une loi de probabilité conjointe. Donner les lois marginales de X, Y.
b. Déterminer la loi conditionnelle de Y sachant X = i. Les variables X et Y sont-elles indépendantes ?
c. Déterminer la loi de Z = X− Y. Déterminer la loi conditionnelle de Y sachant Z = n.
Qu’en déduire pour Y et Z ?� �

11.4� �Soit X et Y deux variables aléatoires à valeurs dans N, indépendantes et suivant la même loi caractérisée

par ∀k ∈ N, P(X = k) = P(Y = k) = C

3k
. On pose W = Min(X, Y) et Z = Max(X, Y).

a. Déterminer la constante C.
b. Déterminer la loi et l’espérance de W et Z.
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� �
11.5� �Soit (X, Y) un couple de variables aléatoires à valeurs dans N2 tel que : ∀(i, j) ∈ N2, P((X, Y) = (i, j)) = α

2ij!
.

Calculer α et déterminer les lois marginales de X et Y.� �
11.6� �Soit N et (Xk)k∈N∗ des variables aléatoires à valeurs dans N mutuellement indépendantes. On suppose que

les Xk suivent toutes une même loi de fonction génératrice GX et d’espérance E(X) et on pose S =
N∑

k=1

Xk.

Par exemple N est le nombre d’appels arrivant un certain jour à un livreur de pizza et Xk est le nombre de
pizza commandées lors du k-ième appel. S correspond au nombre total de pizzas commandées ce jour là.

a. Établir : ∀t ∈]− 1; 1[, GS(t) = GN

(
GX(t)

)
. On admet pouvoir intervertir les indices dans la double série.

b. Si les Xk et N admettent une espérance finie, établir E(S) = E(N)E(X1) (identité de Wald).

c. Quelle est la loi de S si :

• N suit la loi P(λ) et X1 suit la loi B(p) ?

• N suit la loi G(q) et X1 suit la loi B(p) ?

� �
11.2 Exercices aux oraux des étudiants de PSI1� �� �

11.7� �X-Cachan PSI 2015 Mathieu Gaultier

Question supplémentaire : Un élève répond de manière aléatoire à un test.

Chaque question comprend k réponses distinctes : le candidat choisit une réponse au hasard, s’il a juste il
obtient 1 point, sinon il choisit une autre réponse et s’il a juste, il obtient 1/2 point.

Combien de questions comprend le test si la note moyenne que peut obtenir l’élève est de 5 ?� �
11.8� �Centrale Maths1 PSI 2015 Mathis Fronty

Soit X1, · · · , Xn des variables aléatoires indépendantes mutuellement et qui suivent toutes la loi de Bernoulli
B(p). On définit U ∈ Mn,1(R) par tU = (X1 · · ·Xn) et on pose M = UtU.

a. Déterminer la loi que suit rang (M).

b. Déterminer la probabilité pour que M soit une matrice de projection.� �
11.9� �Centrale Maths1 PSI 2015 Charlotte Sapaly

Soit n ∈ N, B ∈ Mn(C). On définit la matrice A =

(
B B2

B2 −B

)
.

a. Si B est diagonalisable, A est-elle forcément diagonalisable ?

Indication : on pose M =

(
i −1

−1 −i

)
.

b. On suppose pour cette question que B est une matrice diagonale.

Quelle condition nécessaire et suffisante sur le spectre de B nous permet d’avoir A diagonalisable ?

Indication : on s’intéresse au cas simple où B est une matrice carrée de taille 2x2. On obtient une expression
de A dans la base canonique et on étudie son expression dans la base (e1, e3, e2, e4). On généralisera le
résultat obtenu pour une matrice nxn.

c. On considère maintenant la matrice B diagonale suivante : B =

 X1 (0)
. . .

(0) Xn

 où les Xk sont des

variables aléatoires indépendantes suivant chacune une loi uniforme sur Un (racines n-ièmes de l’unité).

Calculer la probabilité p que A soit diagonalisable.
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� �
11.10� �Mines PSI 2015 Benjamin Dieu

Soit X et Y des variables aléatoires à valeurs dans N, (k, n) ∈ N2, a un réel et p ∈]0; 1[.

On suppose que P(X = k, Y = n) =

(
n

k

)
an(1− p)np si k 6 n et P(X = k, Y = n) = 0 si k > n.

a. Déterminer a.

b. Déterminer la loi marginale de Y.

c. Reconnâıtre la loi de X (formule du binôme négatif donnée).

d. Est-ce que X et Y sont indépendantes ?

e. Déterminer la loi de Z = Y − X.

f. Déterminer la loi de X sachant (Y = n).� �
11.11� �CCP PSI 2015 Inès Arranz-Valsero

2 joueurs A et B font 7 parties de golf. A a une probabilité 0.4 de gagner la partie. À la fin de chaque partie,
le perdant doit mettre 30 dans une cagnotte commune. On note X le nombre de parties gagnées par A à la
fin de la saison et Y l’argent mis par A dans la cagnotte.

a. Déterminer la loi de X. Quelles sont les valeurs possibles que peut prendre Y ?

b. Quelle est la probabilité que A ait mis 90 dans la cagnotte à la fin de la saison ?

c. Déterminer la somme d’argent que A peut espérer mettre dans la cagnotte à la fin de la saison.

Question supplémentaire : et la variance de Y ?� �
11.12� �E3A PSI 2015 Édouard Le Goas

On effectue n tirages indépendants avec remise dans une urne contenant n boules numérotées de 1 à n.

On note Xn la variable égale au nombre de 1 tirés.

a. Exprimer la loi de Xn, son espérance et sa variance.

b. Soit k un entier strictement positif. Exprimer la limite de P(Xn = k) quand n tend vers l’infini.

c. On pose q(n) la probabilité que Xn soit pair et p(n) celle que Xn soit impair.

Exprimer p(n) + q(n) et q(n)− p(n). En déduire la limite de p(n) quand n tend vers l’infini.

d. Soit Yn la variable aléatoire égale au nombre de 2 tirés. Xn et Yn sont ils indépendants ?� �
11.13� �X-Cachan PSI 2015 Mathieu Gaultier

Une châıne de céréales place dans chaque paquet une figurine. Il y a un total de n figurines différentes.

Dans chaque paquet, il y a équiprobabilité de trouver une figurine précise.

On définit la variable Nk : le nombre de paquets achetés pour obtenir k figurines différentes.

On définit la variable Tk = Nk −Nk−1 (par convention on posera T1 = 1).

a. Définir la loi T2.

b. Soit λ2, λ3 deux entiers strictement positifs. Calculer P
(
(T2 = λ2) ∩ (T3 = λ3)

)
. En déduire la loi de T3.

c. Montrer que T2 et T3 sont indépendants.

d. On suppose que T1, · · · , Tn sont deux à deux indépendants. Donner la loi de Tn puis trouver un équivalent

de E(Nn) et de V(Nn) en +∞. On admettra que :
n∑

k=1

1

k
∼
+∞

ln(n) et que
+∞∑
k=1

1

k2
= π2

6
.

e. Montrer que ∀ε > 0, lim
n→+∞

P

(∣∣∣ Nn

n ln(n)
− 1

∣∣∣ > ε

)
= 0.
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� �
11.14� �Centrale Maths1 PSI 2015 Bastien Chevallier, François-Xavier Solvar et Patxi Teillagorry

Soit deux variables aléatoires X et Y indépendantes qui suivent chacune la même loi géométrique G(p).

a. Trouver la loi de S = X+ Y.

b. Trouver la loi de X sachant que S = n.

c. Reconnâıtre la loi de Z à valeurs dans N∗ si ∃p ∈]0; 1[, ∀n ∈ N, PZ>n(Z > n+ 1) = 1− p.

Question supplémentaire : quelle est la signification de E(X) = 1

p
si X suit une loi géométrique G(p) ?� �

11.15� �Mines PSI 2015 Gaël Pérez

Pour a > 1, on note ζ(a) =
+∞∑
n=1

1

na . Soit X : Ω → N∗ une VA telle que P(X = n) = 1

ζ(a)na .

Soit Ak l’évènement X(ω) est divisible par k.

a. Vérifier que P est une loi de probabilité. Déterminer P(Ak).

b. Soit (i, j) ∈ (N∗)2, i et j premiers entre eux. Ai et Aj sont-ils indépendants ?

c. Condition pour que X admette un moment d’ordre 1. Calculer alors son espérance.

d. Condition pour que X admette un moment d’ordre 2. Calculer alors sa variance.� �
11.16� �Mines PSI 2015 et ENS Cachan PSI 2017 Ludovic Péron et Tom Huix I

Soit p ∈]0; 1[ et (Xn)n∈N∗ une suite de variables aléatoires mutuellement indépendantes suivant la même loi

de Bernoulli de paramètre p. On pose, pour n ∈ N∗, Yn = XnXn+1 et Zn =
n∑

k=1

Yk.

a. Donner la loi de Yn, son espérance, sa variance.

b. Pour quels couples (i, j) les variables aléatoires Yi et Yj sont-elles indépendantes ?

c. Calculer E(YnYm) et E
(
Zn

n

)
.

d. Montrer que : ∃C > 0, ∀n ∈ N∗, V(Zn) 6 Cn.

e. En déduire que : ∀ε > 0, lim
n→+∞

P
(∣∣∣Zn

n
− p2

∣∣∣ > ε

)
= 0.� �

11.17� �ENS Cachan PSI 2016 Thomas Corbères et Marine Saint-Mézard

Soit Z une variable aléatoire à valeurs dans N. Soit (Ui)i∈N∗ une suite de VA mutuellement indépendantes

suivant toutes une loi de Bernoulli de paramètre p ∈]0; 1[.

On pose X =
Z∑

i=1

Ui et Y =
Z∑

i=1

(1− Ui). On pose pk = P(X = k), qk = P(Y = k) et rk = P(Z = k).

a. Montrer que ∀(k, l) ∈ N2, P(X = k, Y = l) = rk+l

(
k+ l

k

)
pk(1− p)l.

b. En déduire une expression, pour k ∈ N, de pk en fonction de p et de (rk)k∈N. Faire de même pour qk.

c. On suppose que Z suit une loi de Poisson de paramètre λ > 0. Montrer que X et Y sont indépendantes.

On s’intéresse dans la suite de cet exercice à la réciproque. On suppose que Z suit une loi non presque

sûrement nulle et que X et Y sont indépendantes.

d. Dans ces conditions, montrer que ∀n ∈ N, rn =
∑

(k,l)∈ N2
k+l=n

pkql.

e. Montrer que l’on a nécessairement p0, p1, q0, q1 strictement positifs.

f. Montrer que ∀(k, l) ∈ N2, pkql+1(l+ 1)p = pk+1ql(k+ 1)(1− p).

g. En déduire une relation de récurrence d’ordre 1 pour la suite (ql)l∈N.

En déduire que Y suit une loi de Poisson de paramètre à préciser en fonction de p, p0 et p1.

h. Conclure.
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� �
11.18� �ENS Cachan PSI 2016 Hugo Tarlé

Pierre et Marie jouent à un jeu. Ils effectuent une série de parties indépendantes. Pierre gagne avec une

probabilité p et Marie avec une probabilité q = 1 − p. À l’issue de la partie, il y a forcément un gagnant.

On note a2n la probabilité pour qu’il y ait égalité des parties gagnées à l’issue de la 2n-ième partie.

Et b2n la probabilité pour que la première égalité arrive à la 2n-ième partie.

On note A(x) =
+∞∑
n=1

a2nx
2n et B(x) =

+∞∑
n=1

b2nx
2n.

a. Exprimer a2n en fonction de n.

b. Relier A et B.

c. Quel est le rayon Ra de
∑
n>0

a2nx
2n ?

d. Donner une condition sur p pour que A(1) existe.

e. Montrer que A(x) = 1√
1− 4pqx2

− 1, puis donner B(x).

f. Donner la probabilité η pour qu’il n’y ait jamais égalité du nombre de parties gagnées.� �
11.19� �ENS Cachan PSI 2016 Jean Migliorini II

Soit C un caractère présent chez 40% de la population. On étudie un échantillon de 200 personnes. Quelle

est la probabilité que la fréquence d’apparition de C dans l’échantillon soit comprise entre 30% et 50% ?� �
11.20� �Centrale Maths1 PSI 2016 Alexandre Janot

Soit (Xi)16i6n une famille de variables aléatoires indépendantes à valeurs dans N qui suivent la même loi.

On pose V =
n∑

i=1

Xi et GX la fonction génératrice de chacune des Xi.

a. Calculer GV en fonction de GX1
.

b. Soit N une variable aléatoire à valeurs dans N, indépendante des Xi. On suppose que N et X admettent

des espérances finies. On pose V =
N∑
i=1

Xi. On admet que GN(t) =
+∞∑
n=0

P(N = n)GX1
(t)n. Calculer E(V) en

fonction de E(X1) et E(N).

c. Application : on suppose que le nombre de personnes allant à la poste sur une journée suit une loi de
Poisson de paramètre λ > 0. Il y a deux guichets : G1 et G2. La probabilité qu’une personne se présente à
G1 est p ∈]0; 1[. Calculer le nombre de personnes qui se présentent en moyenne à G1.

Questions subsidiaires :

• Si X1 et X2 sont indépendantes, f(X1) et g(X2) sont-elles toujours indépendantes ?

• Rayon de convergence d’une série génératrice ?

• Donner le théorème d’intégration terme à terme.

• Pourquoi une série entière et sa dérivée ont le même rayon de convergence ?

• Espérance et variance d’une variable aléatoire suivant une loi de Poisson ?

• Fonction génératrice d’une variable aléatoire suivant une loi de Bernoulli ?
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� �
11.21� �Centrale Maths1 PSI 2016 Jean Migliorini

Soit θ > 0, X1, · · · , Xn des variables aléatoires indépendantes suivant la même loi avec P(X1 = k) = λ θk

(1+ θ)k
.

a. Déterminer λ et GX1
(t).

b. On pose Sn =
n∑

k=1

Xk. Déterminer E(Sn) et V(Sn) et la loi de Sn.

Questions supplémentaires :

• Quelles conditions pour dériver terme à terme ?

• Quelles conditions pour avoir E(X) = G′
X(1) ?� �

11.22� �Centrale Maths1 PSI 2016 Marie Rebière

Soit X, Y deux variables aléatoires indépendantes suivant la loi géométrique de paramètre p ∈]0; 1[.
On pose q = 1− p, T = Min(X, Y) et Z = |X− Y|.

a. Calculer P(X > n) pour n ∈ N∗. Calculer P(T > k). En déduire la loi de T .

b. Donner E(X). Calculer E
(
1/X
)
.

c. Calculer P(T > k, Z = z). Indication : on pourra dissocier les cas z = 0 et z > 1.

d. En déduire que T et Z sont indépendantes.� �
11.23� �Centrale Maths1 PSI 2016 Clément Suberchicot

À l’instant t = 0, un mobile est au point O de coordonnées (0, 0). À l’instant suivant, il s’est déplacé d’une
case dans une direction (Nord, Sud, Est, Ouest). Les directions sont équiprobables.

On introduit An = (Xn, Yn), Xn et Yn étant les coordonnées du point où est le mobile à l’instant n.

On note Zn la distance de O à An.

a. Déterminer l’espérance et la variance de Xn.

b. Montrer que E(Zn) 6
√
n.

c. On admet que
k∑

i=0

(
k

i

)2

=

(
2k

k

)
. Calculer P(Zn = 0).� �

11.24� �Mines PSI 2016 Matthieu Cadiot II

Soit un sac de billes de n couleurs différentes réparties équitablement. On tire avec remise de façon
indépendante. Le processus s’arrête lorsqu’on tire 2 billes de la même couleur successivement. On note

X le premier entier k tel que le tirage k donne la même couleur que le tirage k − 1, et X = +∞ si une telle

répétition n’intervient jamais.

a. Déterminer P(X = k).

b. Le processus s’arrête-t-il presque sûrement ?

c. Calculer l’espérance et la variance de X.� �
11.25� �Mines PSI 2016 Samuel Cailleaux III

Soit X1, X2, X3 des variables aléatoires mutuellement indépendantes qui suivent la même loi géométrique de

paramètre p ∈]0; 1[. Calculer la probabilité que Sp(M) = {0} si M =

 0 X1 − X2 X1 − X3

X1 − X2 0 0

X1 − X3 0 0

.
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� �
11.26� �Mines PSI 2016 Alexandre Janot II

Une urne contient initialement b jetons blancs et a jetons d’autres couleurs. On tire successivement des
jetons sans les remettre dans l’urne jusqu’à obtenir tous les jetons blancs. On note X la variable aléatoire
qui compte le nombre de tirages pour arrêter l’expérience.

a. Montrer que
q∑

k=p

(
k

p

)
=

(
q+ 1

p+ 1

)
.

b. Trouver la loi de X.

c. Calculer E(X) et V(X).� �
11.27� �Mines PSI 2016 Sam Pérochon II

Soit f : R+ → R continue et décroissante.

a. Montrer qu’il existe une variable aléatoire sur un espace probabilisé (Ω,A, P), à valeurs dans N, telle que
∀n ∈ N, P(X = n) =

∫ n+1

n
f(t)dt si et seulement si f est positive, intégrable sur R+ et

∫ +∞

0
f(t)dt = 1.

b. Montrer que X admet une espérance si et seulement si l’application g : t 7→ tf(t) est intégrable sur R+.

c. Quelle condition pour que X admette une variance ?� �
11.28� �Mines PSI 2016 Marine Saint-Mézard II(et Centrale Maths1 PSI 2015 Charlotte Sapaly)

Soit n ∈ N∗ et B ∈ Mn(C). On définit A =

(
B B2

B2 −B

)
.

a. Si B est diagonalisable, a-t-on nécessairement A diagonalisable ?

b. Dans cette question uniquement, on suppose que B est diagonale. Donner une condition nécessaire et
suffisante pour que A soit diagonalisable.

c. On suppose que B est diagonale avec sur sa diagonale des variables aléatoires mutuellement indépendantes,
uniformément réparties dans l’ensemble des racines n-ièmes de l’unité. Calculer la probabilité p que A soit
diagonalisable.

Questions supplémentaires :

• Quelle est la structure de l’ensemble des racines n-ièmes de l’unité ?

• Quelle est la définition d’un groupe ?

• Quelles relations connaissez-vous sur les racines n-ièmes ? Preuve ?� �
11.29� �CCP PSI 2016 David Espert I

Soit n ∈ N∗, on prend une urne avec n boules blanches et n boules noires.

Si on tire une boule noire, on la remet dans l’urne.

Si on tire une boule blanche, on ne la remet pas dans l’urne et on met une boule noire à la place.

On note Xp le nombre de boules blanches dans l’urne à l’issue du p-ième tirage.

a. Quelle est la loi de X1 ? De X2 ?

b. Déterminer, pour tout k ∈ N∗, la valeur de P(Xk = n).

c. Montrer que : ∀p > 1, ∀k > 0, P(Xp+1 = k) = 2n− k

2n
P(Xp = k) + k+ 1

2n
P(Xp = k+ 1).

d. On note Gp(t) =
+∞∑
k=0

tk P(Xp = k). Montrer que Gp est polynomiale.

e. Montrer que Gp+1(t) = Gp(t)+
1− t

2n
G′

p(t). Déterminer E(Xp+1) en fonction de E(Xp), puis l’expression

explicite de E(Xp). Déterminer lim
n→+∞

E(Xn)
n

.
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� �
11.30� �CCP PSI 2016 Sam Pérochon I

Soit X et Y des variables aléatoires à valeurs dans N, indépendantes et de même loi.

On suppose que Z = X+ Y + 1 suit la loi géométrique de paramètre p ∈]0; 1[.
a. X admet-elle une espérance ? une variance ?

b. Déterminer la fonction génératrice GX : t 7→ E(tX) de X.

c. Déterminer la loi de X.� �
11.31� �E3A PSI 2016 Antoine Badet III

Soit X une variable aléatoire suivant une loi géométrique de paramètre p ∈]0; 1[.

Déterminer la loi de Y =

⌊
X+ 1

2

⌋
.

� �
11.32� �E3A PSI 2016 Sébastien Sequeira II

Soit (Ω,A, P) un espace probabilisé, T une variable aléatoire à valeurs dans [[1; k]] avec k ∈ N∗. On considère
(X1, · · · , Xk) des variables aléatoires à valeurs dans N. Toutes les Xi ont la même loi et sont mutuellement

indépendantes entre elles et de T . Enfin, on pose la variable aléatoire Y définie par Y(ω) =
T(ω)∑
i=1

Xi(ω).

a. Montrer que si l’espérance des Xi existe, alors celle de Y aussi.

b. Exprimer alors E(Y) en fonction de E(T) et E(X1).� �
11.33� �ENS Cachan PSI 2017 Corentin Gatellier II

Soit (Xn)n∈N une suite de variables aléatoires à valeurs dans N. On dit que cette suite converge en loi vers
une variable aléatoire X à valeurs dans N si ∀k ∈ N, lim

n→+∞
P(Xn = k) = P(X = k).

a. Soit m ∈ N, on suppose que les Xn sont à valeurs dans [[0;m]]. Montrer que la suite (Xn)n∈N converge
en loi si, et seulement si, la suite de fonctions génératrices associée notée (GXn

)n∈N converge simplement
sur [0; 1] vers GX. Indication : un polynôme de degré m n’est défini que par m+ 1 points, ne pas utiliser les
polynômes d’interpolation de Lagrange.

b. Soit une infinité de bôıtes numérotées B0, B1.... Chacune de ces bôıtes contient des boules blanches et
des boules noires. On note pn la proportion de boules blanches dans Bn. On réalise m > 1 tirages avec
remise dans chaque urne Bn et on note Xn la variable aléatoire associée au nombre de boules blanches tirées.
Trouver une condition nécessaire et suffisante pour que (Xn)n∈N converge en loi.� �

11.34� �Mines PSI 2015 et ENS Cachan PSI 2017 Ludovic Péron et Tom Huix I

Soit p ∈]0; 1[ et (Xn)n∈N∗ une suite de variables aléatoires mutuellement indépendantes suivant la même loi

de Bernoulli de paramètre p. On pose, pour n ∈ N∗, Yn = XnXn+1 et Zn =
n∑

k=1

Yk.

a. Donner la loi de Yn, son espérance, sa variance.

b. Pour quels couples (i, j) les variables aléatoires Yi et Yj sont-elles indépendantes ?

c. Calculer E(YnYm) et E
(
Zn

n

)
.

d. Montrer que : ∃C > 0, ∀n ∈ N∗, V(Zn) 6 Cn.

e. En déduire que : ∀ε > 0, lim
n→+∞

P
(∣∣∣Zn

n
− p2

∣∣∣ > ε

)
= 0.
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� �
11.35� �ENS Cachan PSI 2017 Sam Mamers

Soit un espace probabilisé (Ω,A, P) et X une variable aléatoire à valeurs dans N, on dira par la suite que X

est une VAD. On pose alors GX(z) =
+∞∑
k=0

P(X = k)zk. On dit que X est de type m ∈ N∗ si X est une VAD

et s’il existe un entier r ∈ [[0;m− 1]] tel que ∀k ∈ N, k ̸= r [m], P(X = k) = 0.

a. Cas m = 2, montrer que X est de type 2 équivaut à |GX(−1)| = 1

b. Cas m > 3, montrer que X est de type m équivaut à
∣∣∣GX

(
e
2iπ
m
)∣∣∣ = 1.

c. Montrer que si r existe, alors il est unique.

d. On pose W = X+Y avec X et Y deux VAD indépendantes. Montrer : W de type m ⇐⇒ X et Y de type m.� �
11.36� �ENS Cachan PSI 2017 Vincent Meslier II

Un questionnaire comporte 20 questions. Pour chaque question, il y a k réponses dont une seule est correcte
et qui rapporte 1 point. Un candidat choisit au hasard.

a. Soit X la variable aléatoire représentant le nombre de points du candidat. Quelle est la loi de X ?

b. S’il échoue, le candidat a une seconde chance qui lui rapporte 1/2 point par bonne réponse. Y est le
nombre de 1/2 points obtenus. Quelle est la loi de Y ?

c. Trouver k pour que les candidats aient en moyenne une note de 5/20.� �
11.37� �ENS Cachan PSI 2017 Sam Pérochon I

Soit E un R-espace vectoriel muni d’un produit scalaire et de sa norme euclidienne associée ||x|| =
√

(x|x).
Soit n > 1, une famille (v1, · · · , vn) de vecteurs unitaires de E et (ε1, · · · , εn) ∈ {−1, 1}n.

a. On suppose les vk deux à deux orthogonaux. Montrer que
∣∣∣∣∣∣ n∑

k=1

εkvk

∣∣∣∣∣∣ = √
n.

b. On ne suppose plus les vk 2 à 2 orthogonaux. Soit (X1, · · · , Xn) une famille de variables aléatoires

mutuellement indépendantes avec Xk(Ω) = {−1, 1} et P(Xk = 1) = 1

2
. Donner E(U) si U =

∣∣∣∣∣∣ n∑
k=1

Xkvk

∣∣∣∣∣∣2.
c. En déduire qu’il existe une famille (ε1, · · · , εn) ∈ {−1, 1}n telle que

∣∣∣∣∣∣ n∑
k=1

εkvk

∣∣∣∣∣∣ 6 √
n.

d. Montrer : (v1, · · · , vn) est une famille orthonormale ⇐⇒ ∀(ε1, · · · , εn) ∈ {−1, 1}n,
∣∣∣∣∣∣ n∑

k=1

εkvk

∣∣∣∣∣∣ = √
n.

e. On suppose que (v1, · · · , vn) n’est pas une famille orthonormale.

Montrer qu’il existe (ε1, · · · , εn) ∈ {−1, 1}n telle que
∣∣∣∣∣∣ n∑

k=1

εkvk

∣∣∣∣∣∣ > √
n.

� �
11.38� �ENS Cachan PSI 2017 Maxime Pouvereau I

On se donne X1, · · · , Xn des variables aléatoires mutuellement indépendantes et on note Sk =
k∑

i=1

Xi.

On cherche à montrer l’inégalité suivante : ∀x > 0, P( Max
16k6n

|Sk| > 3x) 6 3P( Max
16k6n

|Sk| > x).

On note A = { Max
16k6n

|Sk| > 3x}, A1 = {|S1| > 3x} et ∀k ∈ [[2;n]], Ak = { Max
16i6k−1

|Si| < 3x} ∩ {|Sk| > 3x}.

a. Montrer que {A1, · · · , An} forme une partition de A, que Ak et {|Sn − Sk| > 2x} sont indépendants et

que l’on a l’inégalité suivante : P(A) 6 P(|Sn| > x) + P(A ∩ (|Sn| < x)).

b. Conclure.

9



� �
11.39� �ENS Cachan PSI 2017 Antoine Romero-Romero

On considère une suite complexe (an)n>1 et on pose An =
n∑

k=1

ak.

a. Montrer que ∀s ∈ C, ∀n > 1,
n∑

k=1

ak

ks
= An

ns +
n−1∑
k=1

(
1

ks
− 1

(k+ 1)s

)
Ak.

b. Montrer que si An =
+∞

O(nα) avec α > 0, alors
∑
n>1

an

ns converge si Re (s) > α.

(an)n>1 désigne maintenant une suite de variables aléatoires indépendantes.

On pose toujours An =
n∑

k=1

ak. De plus, P(an = −1) = P(an = 1) = 1

2
.

c. Montrer que ∀x > 0, ∀λ > 0, P(|An| > x) 6 2
E(eλAn)

eλx
.

d. Montrer que ∀a ∈ R, ch (a) 6 e
a2

2 . En déduire une autre majoration de P(|An| > x).� �
11.40� �Centrale Maths1 PSI 2017 Célia Detrez

On dispose de 2n boules dans une urne composée de paires numérotées de 1 à n. Si on tire 2 boules identiques,
on les retire de l’urne, sinon on les remet dans l’urne. Soit An l’évènement : An = “on retire deux boules
au premier tirage” et la variable aléatoire Tn = “nombre de tirages pour vider entièrement l’urne”.

a. Calculer P(An).

b. Déterminer la loi de T2. Utiliser T2 − 1 pour calculer E(T2) et V(T2).
c. Utiliser des variables aléatoires suivant une loi connue pour calculer E(Tn) et V(Tn).� �

11.41� �Centrale Maths1 PSI 2017 Joseph Dumoulin

Soit a1, · · · , an des réels et X1, · · · , Xn des variables aléatoires indépendantes prenant les valeurs 1 et −1 de

manière équiprobable. On pose Sn =
n∑

k=1

akXk.

a. Calculer l’espérance mn et l’écart-type σn de la variable aléatoire Sn.

b. Montrer que pour tout réel t, on a ch (t) 6 e
t2

2 .

c. En déduire que ∀λ > 0, E(eλSn) 6 e
λ2σ2

n

2 .

d. En déduire la meilleure majoration possible de P(Sn > x) pour un réel x > 0.

� �
11.42� �Centrale Maths1 PSI 2017 Élisa Gressier-Monard

Soit Xn l’ensemble des matrices de Mn(R) dont les coefficients valent 0 ou 1 : Xn = Mn({0, 1}).
a. Montrer l’existence de An ∈ Xn telle que ∀M ∈ Xn, det(M) 6 det(An).

Soit (Xi,j)16i,j6n une famille de variables aléatoires mutuellement indépendantes suivent toutes une loi de

Bernoulli de paramètre 1

2
. On considère alors la matrice M = (Xi,j)16i,j6n.

b. Montrer que M(Ω) = Xn.

c. Calculer la probabilité que M soit symétrique.

d. Étudier la monotonie de (un)n>1 si un = det(An). Quelle est la limite de (un)n∈N∗ ?
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� �
11.43� �Centrale Maths1 PSI 2017 Maxime Lacourcelle

Un enfant fait la collection de jouets Kinder. Il y a m jouets différents et la probabilité p ∈]0; 1[ d’obtenir
un de ces jouets est la même à chaque ouverture de l’œuf.

a. Calculer la probabilité qm qu’il complète sa collection en m achats. Calculer lim
m→+∞

qm+1

qm

.

Soit Xk le nombre d’achats qu’il effectue entre le moment où il obtient son k-ième jouet et l’obtention du

(k+ 1)-ième jouet. On pose aussi T = 1+
m−1∑
k=1

Xk.

b. Quelle loi suit Xk ?

c. Calculer E(T). Expliquer ce que représentent T et E(T).

d. Montrer que E(T) ∼
+∞

mln(m).� �
11.44� �Centrale Maths1 PSI 2017 Cléa Maricourt

Soit Z une variable aléatoire à valeurs dans N.
a. Montrer que la variable aléatoire 2−Z admet une espérance finie. On la note r(Z).

b. On suppose que P(Z = n) = 1

2n+1 . Calculer r(Z).

c. Soit (X1, · · · , Xq) une famille de variables aléatoires mutuellement indépendantes à valeurs dans N et

admettant des moments d’ordre 2. On pose Sq =
q∑

k=1

Xk. Calculer E(Sq) et V(Sq). Le faire avec les

fonctions génératrices.� �
11.45� �Centrale Maths1 PSI 2017 Maxime Pouvereau

Soit p ∈]0; 1[. On répète indéfiniment et de manière indépendante le lancer d’une pièce : pile avec probabilité
p et face ave probabilité 1−p. On s’arrête quand on a obtenu le second pile et on note X le nombre de ”face”
obtenus pendant cette expérience.

a. Déterminer la loi de X.

b. Montrer que X admet une espérance et la calculer.

c. Si X = n, on remplit une urne avec n + 1 boules numérotées de 0 à n. On tire une boule dans l’urne et
on note Y le numéro tiré. Déterminer la loi et l’espérance de Y.

d. Question de cours : définir ce qu’est une variable aléatoire.� �
11.46� �Mines PSI 2017 Alöıs Blarre II

a. Soit f(x) = 1√
1− x

. Écrire le développement en série entière de f.

b. À quelle condition sur r peut-on définir une variable aléatoire X telle X(Ω) = N et P(X = n) =
(2n)! r

23n(n!)2
.

c. Montrer que, quand cette condition est réalisée, X admet une espérance et une variance et les calculer.� �
11.47� �Mines PSI 2017 Maxime Lacourcelle I

Soit E un ensemble fini de cardinal n ∈ N∗ et Ω = P(E).

Pour une partie A de E, P({A}) est proportionnelle à card (A).

a. Quelle est la probabilité d’obtenir un singleton ?

b. On prend une partie, on note C son cardinal. Calculer E(C) et V(C).

c. Calculer la probabilité, en prenant de manière indépendante A et B dans P(E), que card (A) 6 card (B).
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� �
11.48� �Mines PSI 2017 Sam Mamers II

Soit N une variable aléatoire qui suit la loi de Poisson de paramètre λ > 0.

Soit h : R+ → R définie par h(x) = (x+ 1) ln(1+ x)− x.

a. Montrer que euN admet une espérance finie pour tout réel u > 0.

b. Montrer que pour tout y > 0, on a Inf
u>0

(
E(eu(N−(1+y)λ))

)
= e−λh(y).

c. En déduire que P(N > (1+ y)λ) 6 e−λh(y).� �
11.49� �Mines PSI 2017 Sam Pérochon I

Soit E un ensemble de cardinal n. A et B sont deux parties de E choisies de manière équiprobable et

indépendante. Soit I (resp. U) la variable aléatoire égale au cardinal de A ∩ B (resp. A ∪ B).

a. Calculer la probabilité que A et B soient disjoints.

b. Déterminer les lois de I et U.

c. Calculer l’espérance et la variance de I et U.� �
11.50� �CCP PSI 2017 Adrien Cassagne II

Soit X une variable aléatoire qui suit une loi de Poisson de paramètre λ > 0.

a. Montrer que : ∀n ∈ N, P(X 6 n) = 1

n!

∫ +∞

λ
e−ttndt.

b. En déduire un équivalent de
∫ +∞

λ
e−ttndt quand n tend vers +∞.

c. Donner la fonction génératrice GX de X. Que valent GX(1) et GX(−1) ?

d. En déduire la probabilité que X soit paire.

e. Soit Y une variable aléatoire indépendante de X suivant une loi uniforme sur {1, 2}. Calculer P(XY paire).� �
11.51� �CCP PSI 2017 Élisa Gressier-Monard II

On note N la variable représentant le nombre n de jetons tirés au cours d’un jeu ; elle vérifie P(N = n) = 1

2n
.

Si n est pair, le joueur gagne n jetons, sinon il en perd n.

Donner la probabilité de gagner, l’expression du gain algébrique G et son espérance.� �
11.52� �CCP PSI 2017 Cléa Maricourt II

On s’intéresse à des bactéries dans une éprouvette. On note Y leur nombre et on suppose que Y suit la loi
de Poisson de paramètre λ > 0. Chaque bactérie a (indépendamment des autres) une probabilité p ∈]0; 1[
d’avoir une certaine propriété P. On désigne par X le nombre de ces bactéries dans l’éprouvette qui ont cette
propriété P.

a. Donner la loi de X sachant (Y = j).

b. Trouver la loi du couple (X, Y). Puis la loi de X.

c. Déterminer E(X) et V(X).� �
11.53� �CCP PSI 2017 Antoine Romero-Romero I

On considère la suite de variables aléatoires mutuellement indépendantes (Xn)n>1 qui suivent toutes une loi

de Bernoulli de paramètre p. On pose, pour tout entier n ∈ N∗, la variable aléatoire Sn =
n∑

k=1

Xk. On se

donne une variable aléatoire N à valeurs dans N telle que N+ 1 suive la loi géométrique de paramètre p.

a. Déterminer la loi de Sn.

b. Calculer, pour tout k ∈ N et pour x ∈]− 1; 1[, la valeur de
+∞∑
n=k

(
n

k

)
xn−k.

c. Déterminer P(SN = k) pour tout entier naturel k.
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� �
11.54� �E3A PSI 2017 Cléa Maricourt

Soit (Xn)n>0 une suite de variables aléatoires mutuellement indépendantes suivant toutes la loi deBernoulli

de paramètre 1

2
. On note T la variable aléatoire égale au plus petit entier n tel qu’on ait deux 1 consécutifs

aux tirages n et n+ 1.

Pour tout entier n ∈ N, on définit les évènements An et Bn de la façon suivante:

• An = “pas deux 1 consécutifs jusqu’au tirage n et Xn = 0”.

• Bn = “pas deux 1 consécutifs jusqu’au tirage n et Xn = 1”.

On pose aussi pn = P(An) et qn = P(Bn).

a. Calculer P(T = 0), P(T = 1) et P(T = 2).

b. Montrer que ∀n ∈ N,

(
pn+1

qn+1

)
= 1

2

(
1 1

1 0

) (
pn

qn

)
.

c. Montrer que ∀n ∈ N, P(T = n) = Fn
2n+1 où (Fn)n>0 est la suite de Fibonacci.

d. Question rajoutée : en déduire que T admet une espérance finie et la calculer.� �
11.55� �Petites Mines PSI 2017 Agathe Maldonado I

On lance 6 dés simultanément. Lorsqu’un dé ou plus vaut 6, on le(s) met de côté et on relance les autres
jusqu’à ce que tous les dés vaillent 6. On définit la variable aléatoire X qui compte le nombre de lancers
qu’on doit effectuer pour que les 6 dés vaillent 6.

a. Donner la loi de X. On pourra calculer sa fonction de répartition.

b. Montrer que X admet une espérance et une variance, les calculer.� �
11.56� �ENS Ulm/Cachan PSI 2018 Emeric Benoist

Soit (Xi)i∈N∗ une suite de variables aléatoires mutuellement indépendantes suivant la même loi deBernoulli

de paramètre 1

2
. On pose Sn =

n∑
i=1

Xi.

a. Déterminer E(Sn) et V(Sn).

b. Soit λ > 0 et Zi = e
λ

(
Xi−1

2

)
pour i > 1. Calculer E(Zi).

c. Déterminer E(eλ(Sn−E(Sn))).

d. Soit λ > 0 et t > 0, trouver ft(λ) tel que P(Sn − E(Sn) > nt) 6 e−nft(λ).

e. Calculer I(t) = Max
λ>0

(ft(λ)). En déduire une majoration de P(Sn − E(Sn) > nt).

f. On lance 1000 pièces équilibrées. Majorer la probabilité d’obtenir au moins 600 fois pile.

Comparer avec les majorations obtenues avec les inégalités de Markov et Tchebychev.� �
11.57� �ENS Ulm/Cachan PSI 2018 Gauthier Crosio et Nicolas Ziegler II

Soit X, Y deux variables indépendantes suivant une loi de Poisson de paramètre λ > 0.

On définit M = Max(X, Y). Donner un équivalent en l’infini de P(M = n).� �
11.58� �ENS Ulm/Cachan PSI 2018 Elio Garnaoui II

Déterminer les lois de X et Y, non presque sûrement constantes, à valeurs dans N, indépendantes, telles que
P(X+ Y > 4) = P(X+ Y = 3) = P(X+ Y = 1) = 0 et P(X+ Y = 0) = 1

6
, P(X+ Y = 2) = 1

2
, P(X+ Y = 4) = 1

3
.

13



� �
11.59� �ENS Ulm/Cachan PSI 2018 Martin Gros

a. Soit α > 0 et, pour tout entier n > 1, le réel un =
n∑

k=1

(−1)k

kα
. Étudier la convergence de la suite (un)n>1.

b. Soit (un)n>1 une suite réelle. On définit la suite (sn)n>0 par s0 = 0 et sn =
n∑

k=1

uk si n > 1 et on

suppose l’existence de M > 0 et β > 0 tels que ∀n ∈ N∗, |sn| 6 Mnβ. Pour ε > 0, que dire de
∑
n>1

un

nβ+ε ?

Soit (Xk)k>1 une suite de variables aléatoires mutuellement indépendantes suivant toutes la même loi de

Rademacher : P(Xk = 1) = P(Xk = −1) = 1/2. On pose aussi Sn =
n∑

k=1

Xk pour tout entier n > 1.

c. Montrer que ∀a ∈ R, ch (a) 6 e
a2

2 .

d. Montrer que ∀n > 1, P(|Sn| > x) 6 2e
−x2

2n . Indication : constater que (Sn > x) = (etSn > etx) si t > 0.

e. Soit ε > 0, on pose An = (|Sn| > n
1
2
+ε) et Eε =

+∞∩
n=1

+∞∪
k=n

Ak. Calculer P(Eε).

f. Pour s > 1

2
, on pose Cs =

{
ω ∈ Ω

∣∣∣ ∑
n>1

Xn(ω)
ns converge

}
. Calculer P(Cs).

� �
11.60� �ENS Ulm/Cachan PSI 2018 Eneko Jauretche I

Soit X une variable aléatoire discrète à valeurs dans N. On suppose que sa série génératrice G a un rayon

R > 1 et que ∀(x, y) ∈ R2, x2 + y2 < R2 =⇒ G(x)G(y) = 1

2
G(
√

x2 + y2).

a. Déterminer G(0).

b. Montrer que ∀k ∈ N, P(X = 2k+ 1) = 0.

c. Montrer que G est solution d’une équation différentielle linéaire d’ordre 1 dont on exprimera les coefficients

en fonction de x et G′(1).

d. En déduire l’expression de G, puis les valeurs de E(X) et V(X).� �
11.61� �ENS Ulm/Cachan PSI 2018 Oihana Piquet

a. Soit n > 3. Quelles sont les 2n isométries du plan laissant invariant le polygone régulier C à n sommets ?

Soit En l’ensemble de ces 2n isométries.

b. Soit (A, B) deux points adjacents de C. Montrer qu’un élément de En est défini par l’image de (A, B).

Combien y a-t-il d’images possibles de (A, B) ?

c. Soit X ∈ En. Montrer qu’il existe un unique Y ∈ En tel que Y ◦ X = idC.

d. Soit N > 1 et X1, · · · , XN des variables aléatoires indépendantes et uniformément réparties dans En\{idC}.
Calculer P(X2 ◦ X1 = id ).

e. Calculer la probabilité pN,n que XN ◦ · · · ◦ X1 = idC mais que pour tout M < N, XM ◦ · · · ◦ X1 ̸= idC.

f. Trouver un équivalent de pn,n quand n tend vers +∞.
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� �
11.62� �Centrale Maths1 PSI 2018 Vincent Barreau

Soit X une variable aléatoire réelle. On suppose que X admet une espérance (et on note Y = X − E(X)) et

une variance V(X) = σ2. On fixe α > 0.

a. Donner les inégalités de Markov et Bienaymé-Tchebychev et rappeler rapidement les démonstrations.

b. Vérifier que ∀λ > 0, E((Y + λ)2) = σ2 + λ2.

c. Montrer que ∀λ > 0, P(Y > α) 6 σ2 + λ2

λ2 + α2 + 2αλ
.

d. En déduire que P(Y > α) 6 σ2

σ2 + α2 .

e. Montrer que P(|X− E(X)| > α) 6 2σ2

σ2 + α2 .� �
11.63� �Centrale Maths1 PSI 2018 Charlotte Beaune

Soit (Xn)n>1 une suite de variables aléatoires, mutuellement indépendantes et suivant toutes la même loi

P(Xn = 1) = P(Xn = −1) = 1

2
. Pour n ∈ N, on pose Sn =

n∑
k=1

Xk d’où S0 = 0. On définit N =
+∞∑
n=1

11(Sn=0).

a. Que représente la variable aléatoire N ?

b. Exprimer l’évènement (N = 0) en fonction des évènements de la suite
(
(Sn = 0)

)
n∈N∗ .

c. Exprimer l’évènement (N = +∞) en fonction des évènements de la suite
(
(Sn = 0)

)
n∈N.

d. En déduire que P(N < +∞) =
+∞∑
k=0

P(Sk = 0)P
( ∩

i>k

(
Si − Sk ̸= 0

))
.

e. En déduire que P(N = +∞) = 1.

Questions de cours :

• Rappeler la loi géométrique (univers image, expérience modélisée).

• Déterminer la loi du second succès dans une succession d’épreuves de Bernoulli.

• Définition d’un système complet d’évènements.� �
11.64� �Centrale Maths1 PSI 2018 Adrien Sarrade

Dans un centre d’appels, on note X la variable aléatoire du nombre d’appels reçus par jour, et on suppose
que X suit une loi de Poisson de paramètre λ.

a. Calculer la fonction génératrice de X, et l’espérance de X, X2, X3.

b. Chaque client possède une probabilité p d’être mis en attente. Calculer la loi de Y, variable aléatoire du

nombre de personnes mises en attente chaque jour.

c. Soit Z la variable aléatoire donnant le numéro du premier client mis en liste d’attente. On note Z = 0 s’il

n’y a aucun client mis en attente. Déterminer la loi de Z.� �
11.65� �Mines PSI 2018 Raphaël Pobeda I

Soit Z1, Z2, Z3 trois variables aléatoires mutuellement indépendantes suivant la même loi géométrique.

Dans le plan, on considère les droites D1, D2, D3 d’équation cartésienne Dk : x+ Zky+ Z2
k = 0 (k ∈ [[1; 3]]).

Calculer la probabilité q que les trois droites soient parallèles ou concourantes.
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� �
11.66� �Mines PSI 2018 Paul Simon II

Soit une urne contenant une proportion p ∈]0; 1[ de boules blanches et 1− p de boules noires. On tire avec
remise et indéfiniment une boule dans cette urne. On note X (resp. Y) la variable aléatoire comptant la
longueur de la première (resp. seconde) châıne de même couleur.

Par exemple, si ω = NNNNBBBN......, alors X(ω) = 4 et Y(ω) = 3.

a. Donner la loi conjointe de (X, Y).

b. Donner les lois et les espérances de X et Y.

c. À quelle condition sur p les variables aléatoires X et Y sont indépendantes ?� �
11.67� �Mines PSI 2018 Benoit Souillard I

Soit X et Y deux variables aléatoires indépendantes qui suivent la loi géométrique de paramètre p ∈]0; 1[.
On pose Z = |X− Y|. Déterminer la loi de Z et son espérance.� �

11.68� �CCP PSI 2018 Erwan Dessailly et Baptiste Egreteau II

Soit R ∈ N∗. Un garçon pose une devinette par jour à sa sœur. Elle a indépendamment du jour une

probabilité 1

3
de répondre juste. Si elle répond bien R jours consécutifs, le jeu s’arrête. Pour n > R, on note

pn la probabilité que le jeu s’arrête à l’instant n.

a. Calculer la probabilité pR que la fille réponde bien les R premiers jours.

On définit la variable aléatoire Z par :

• Z = 0 si la fille répond bien les R premiers jours.

• Z = n ∈ [[1;R]] le premier jour où elle se trompe.

b. Déterminer la loi de Z.

c. Montrer que ∀n > R, pn+1 =
R−1∑
k=0

2

3k+1 pn−k.

d. On fixe R = 2. Calculer pn en fonction de n.� �
11.69� �CCP PSI 2018 Martin Gros II

Des personnes A1, A2 et A3 rentrent dans un bureau de poste. Il n’y a que deux guichets alors A3 attend son
tour. On est à l’instant 0 et le temps est compté en entiers. L’entier Xi, le temps de service d’une personne
Ai, suit la loi suivante : ∀k ∈ N, P(Xi = k) = (1− p)pk (avec p ∈]0; 1[).
Y est la variable aléatoire comptant l’instant où A3 peut commencer à être servie.

a. Déterminer la fonction de répartition de Y et en déduire sa loi. Indication : travailler avec P(Y > k).

b. Exprimer l’instant Z où A3 quitte le bureau de poste en fonction de X3 et Y, et déterminer la loi de Z.

c. Déterminer E(Z).� �
11.70� �CCP PSI 2018 Titouan Sancier I

On considère une urne à n > 2 boules. On réalise des tirages avec remise.

On note Xn le premier rang tel qu’une autre boule que la première soit tirée.

a. Montrer que Xn est une variable aléatoire discrète et déterminer la loi de Xn.

b. Montrer que Xn admet une espérance. La calculer. Trouver lim
n→+∞

E(Xn).

Soit Yn le premier rang tel que toutes les boules de l’urne aient été tirées au moins une fois.

c. Déterminer la loi de Y2.

d. Déterminer la loi de Y3.
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� �
11.71� �CCP PSI 2018 Benoit Souillard II

On considère un dé non pipé à 6 faces. On effectue n lancers indépendants.

Pour tout k ∈ [[1;n]], on note Xk la variable aléatoire qui prend pour valeur le chiffre obtenu au k-ième lancer.

On note aussi Mn = Max(X1, · · · , Xn) et mn = Min(X1, · · · , Xn).

a. Déterminer la loi de Xk et la fonction de répartition F de Xk.

b. Exprimer la fonction de répartition Gn de Mn en fonction de F.

c. Faire de même avec la fonction de répartition Hn de mn.

d. Y a-t-il convergence simple de la suite de fonctions (Gn)n>1 sur R ? Uniforme ? Et pour (Hn)n>1 ?� �
11.72� �ENS Cachan PSI 2019 Axel Brulavoine

Soit (Xi)i∈N∗ une suite de variables aléatoires mutuellement indépendantes à valeurs dans N suivant la même

loi. Soit aussi N une variable aléatoire entière indépendante de toutes les Xi. On pose SN =
N∑
i=1

Xi.

a. Si chaque Xi suit une loi de Bernoulli de paramètre p ∈]0; 1[ et N suit une loi de Poisson de paramètre
λ > 0, déterminer la loi de la variable aléatoire SN.

b. On revient au cas général. Exprimer GSN
en fonction de GN et de GX1

. Indication : on admet pouvoir
intervertir les indices dans la double série numérique convergente.

c. En supposant que X1 et N admettent des espérances finies, calculer E(SN) en fonction de E(X1) et E(N).

c. En supposant que X1 et N admettent des variances finies, montrer que V(SN) = V(X)E(N)+ E(X)2 V(N).� �
11.73� �Centrale Maths1 PSI 2019 Romain Cornuault

Soit n ∈ N∗ et (A, B) ∈ (Mn,1(R))2. On pose E = {C ∈ Mn,1(R) | BCT = 0 ou BCT non diagonalisable}.
a. Donner le rang de BAT .

b. Montrer que E est un espace vectoriel et déterminer sa dimension.

On prend maintenant B ∈ Mn,1(R) tel que BT = (1 1 . . . 1). On se donne une famille (X1, . . . , Xn) de

variables aléatoires mutuellement indépendantes telles que ∀i ∈ [[1;n]], P(Xi = −1) = P(Xi = 1) = 1

2
.

On pose enfin la variable aléatoire matricielle X ∈ Mn,1(R) telle que XT = (X1 X2 . . . Xn).

c. On note l’évènement U = “BXT diagonalisable”. Calculer P(U).� �
11.74� �ENS Cachan PSI 2015 (2) et Mines PSI 2019 Floriane Léonard et Arthur Lacombe et Thomas Brémond I

Soit un entier n tel que n > 2, on se donne des points A1, . . . , An distincts dans le plan.

Pour tout couple (i, j) ∈ [[1;n]]2 avec i ≠ j, on relie par un segment les points Ai et Aj avec une probabilité
pn (on ne fait rien sinon). Les différentes liaisons entre ces points sont mutuellement indépendantes.

Pour i ∈ [[1;n]], on définit la variable aléatoire Xi par Xi = 1 si Ai est isolé et Xi = 0 sinon.

On pose enfin Sn =
n∑

i=1

Xi. Le but est de calculer la probabilité d’avoir (ou pas) au moins un point isolé.

a. Donner la loi de X1. En déduire E(Sn).
b. Donner une majoration de la probabilité d’avoir au moins un point isolé.

c. Montrer que pour toute variable aléatoire discrète réelle Y admettant un moment d’ordre 2 et d’espérance

non nulle, on a l’inégalité suivante : P(Y = 0) 6 V(Y)
E(Y)2

.

Dans la suite de l’exercice, on pose pn = c
ln(n)
n

avec c > 0.

d. Si c > 1, montrer que lim
n→+∞

P(Sn = 0) = 1.

e. Si c < 1, calculer E(XiXj) pour (i, j) ∈ [[1;n]]2 et E(S2n). En déduire la valeur de lim
n→+∞

P(Sn = 0).

f. Comportement asymptotique de E(Sn) quand n tend vers +∞ si c > 1 ? Si c < 1 ? Si c = 1 ?
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� �
11.75� �Mines PSI 2019 Charles Broquet I

Soit X, Y deux variables aléatoires indépendantes suivant la loi géométrique de paramètre p ∈]0; 1[.
a. Déterminer la loi de S = X+ Y.

b. Pour k ∈ N∗, déterminer la loi de X sachant (S = k).

Soit Z une variable aléatoire à valeurs dans N∗ telle que ∀n ∈ N, P(Z > n+ 1|Z > n) = 1− p.

c. Déterminer la loi de Z.

d. On suppose que X, Y et Z sont mutuellement indépendantes, calculer P(X+ Y = Z).� �
11.76� �Mines PSI 2017 et Mines PSI 2019 Thomas Laborde II et Auriane Luquet I

On s’intéresse à des enquêtes téléphoniques. Un enquêteur a une liste de n clients (numérotés de 1 à n) à
appeler. Il les appelle tous par vagues, successivement, et chaque appel est indépendant des autres. Pour
chaque appel, il a une probabilité p ∈]0; 1[ d’entrer en contact avec le client.
On note X1 le nombre de personnes appelées (et eues au téléphone) lors de la première vague.
Ensuite, lors de la deuxième vague, l’enquêteur appelle les n− X1 clients restants.
On note X2 le nombre de personnes appelées (et eues au téléphone) lors de la seconde vague.
Pour k > 2, soit Xk la variable aléatoire comptant le nombre de personnes effectivement eues au téléphone
lors de la k-ième vague où l’enquêteur a appelé les n−X1−· · ·−Xk−1 personnes non contactées au préalable.
Pour i ∈ [[1;n]], on note Yi le numéro de la vague au cours de laquelle le client numéro i décroche son
téléphone lors de l’appel de l’enquêteur.
a. Les variables X1 et X2 sont-elles indépendantes ?
b. Déterminer les lois de X1, X2 et Yi (pour i ∈ [[1;n]]).
c. Déterminer, pour tout entier k > 3, la loi de Xk.

d. Déterminer la loi de Sk =
k∑

j=1

Xj. pour k ∈ N∗.

On appelle N le nombre de vagues d’appels nécessaires pour que toutes les personnes décrochent.
e. Déterminer la loi de N. En déduire l’espérance de N.� �

11.77� �CCP PSI 2019 Axel Brulavoine I

Soit (Xi)i∈N une suite de variables aléatoires mutuellement indépendantes suivant toutes la loi de Bernoulli

de paramètre p ∈]0; 1[. Soit aussi une variable aléatoire N suivant la loi géométrique de paramètre p et

indépendantes de toutes les Xi. On pose Y =
N∑

k=1

Xk.

a. Soit n ∈ N∗, donner la loi de Sn =
n∑

k=1

Xk.

b. Soit x ∈]− 1; 1[, calculer
+∞∑
n=k

(
n

k

)
xn−k.

c. Calculer P(Y = k) et calculer E(Y).� �
11.78� �CCP PSI 2019 Kévin Dufrechou II

Soit n ∈ N∗, N ∈ N∗ tels que 2n 6 N. Un enclos contient N lapins, chacun d’entre eux a la probabilité 1

2

d’être un mâle. On extrait de cet enclos 2n lapins. On note M la variable aléatoire qui compte le nombre

de mâles extraits. On note C la variable aléatoire qui compte le nombre maximal de couples mâle/femelle

que l’on peut former avec les 2n lapins extraits.

a. Déterminer la loi de M.

b. Exprimer C en fonction de M, en déduire la loi de C.

c. Déterminer l’espérance de C. Trouver un équivalent de n− E(C).
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� �
11.79� �CCP PSI 2019 Thomas Méot II

Soit A1, A2, A3 trois personnes qui rentrent dans une poste qui contient deux guichets. A1 et A2 sont servis

en premier et A3 patiente. On note Xi (pour i ∈ [[1; 3]]) la variable aléatoire qui compte le temps que met

une personne à être servie. On donne la loi de chaque Xi : ∀k ∈ N, P(Xi = k) = (1− p)pk avec p ∈]0; 1[.
On note Y la variable aléatoire qui compte le temps qu’un des deux guichets met à se libérer (temps pour

que A3 accède au guichet) et Z la variable aléatoire qui compte le temps que A3 met à sortir de la poste.

a. Déterminer la fonction de répartition de Y, puis déterminer sa loi de probabilité.

Indication : on pourra s’intéresser à P(Y > k).

b. Déterminer Z en fonction de X3 et Y. En déduire la loi de Z.

c. Déterminer le temps moyen que A3 met à sortir de la poste.� �
11.80� �CCP PSI 2019 Elaia Mugica II

Soit X et Y deux variables aléatoires discrètes indépendantes à valeurs dans N∗ qui suivent la même loi.

On définit les deux variables aléatoires associées D = |X− Y| et M = Min(X, Y).

Supposons pour les trois prochaines questions que X et Y suivent la loi géométrique de paramètre p ∈]0; 1[.
a. Montrer que ∀k ∈ N, P(X > k) = (1− p)k. Donner la loi de M.

b. Donner la loi conjointe de (M,D). Indication : on calculer P(D = d,M = m) selon que d = 0 ou d > 0.

c. Toujours en distinguant ces deux cas, calculer P(M = m|D = d) si d ∈ N et m ∈ N∗. Qu’en déduire ?

d. Supposons maintenant que D et M sont indépendantes et que ∀m ∈ N∗, P(M = m) > 0. En considérant

les évènements (D = 0,M = m) et (D = 1,M = m), déterminer les lois de X et Y.� �
11.81� �CCP PSI 2019 Tanguy Sommet II

Soit X et Y deux variables aléatoires indépendantes suivant les lois de Poisson de paramètres respectifs λ et
µ. On pose Z = X+ Y.

a. Montrer que Z suit la loi de Poisson de paramètre λ+ µ.

b. Pour n ∈ N, trouver la loi de X sachant (Z = n).� �
11.82� �Petites Mines PSI 2019 Augustin Aumont I

Soit X une variable aléatoire sur N telle que ∀n ∈ N, P(X = n) = a

en
avec a ∈ R∗

+.

a. Déterminer la valeur de a.

b. Montrer l’existence et calculer la valeur de E(X).� �
11.83� �Petites Mines PSI 2019 Réjane Bastien-Amaré I

Soit X une variable aléatoire suivant la loi géométrique de paramètre p ∈]0; 1[.
Soit Y une variable aléatoire suivant la loi géométrique de paramètre q ∈]0; 1[.

On suppose que X et Y sont indépendantes et on pose A =

(
X Y

Y X

)
.

Quelle est la probabilité que A soit inversible ?� �
11.84� �X PSI 2020 Théo Ballet I

On effectue une suite de lancers d’une pièce. On note T la variable aléatoire donnant le numéro n du premier

lancer tel qu’on ait tiré successivement Pile (au tirage n− 1) puis Face (au tirage n).

a. Calculer, pour n ∈ N∗, la valeur de P(T > n).

b. Quelle est la probabilité qu’on tire un jour Pile puis Face ?

c. Calculer E(T).
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� �
11.85� �X PSI 2020 Thomas Bougnon I

Soit n > 2 et X1, · · · , Xn des variables aléatoires mutuellement indépendantes uniformément réparties sur

[[1;n]]. On pose ∆n = Max
16i6n−1

(|Xi+1 − Xi|).

a. Montrer que ∆n est une variable aléatoire.

b. Montrer que pour tout entier k ∈ N, on a P(∆n 6 k) 6
(
P(|X2 − X1| 6 k)

)⌊n/2⌋
.

c. Calculer, selon la valeur de k, la quantité P(|X2 − X1| 6 k).

d. En déduire les valeurs de lim
n→+∞

P(∆n > λn) et lim
n→+∞

P(∆n > n− anα) si λ ∈]0; 1[, a > 0 et α ∈
]
1

2
; 1
[
.� �

11.86� �ENS Cachan PSI 2021 Alöıs Doucet

On note G un graphe non orienté, S l’ensemble de ses sommets (numérotés de 1 à n). Chaque sommet peut

être relié aux autres, la probabilité d’une liaison est p ∈]0; 1[.
Soit x et y deux sommets distincts de ce graphe, on note Tx,y = 1 si une arête existe entre x et y et Tx,y = 0

sinon : la variable aléatoire Tx,y suit donc une loi de Bernoulli de paramètre p.

On note Z le nombre de sommets isolés (aucune arête ne part de ce sommet).

a. On a n sommets, combien a-t-on d’arêtes ?

b. On prend un sommet, quelle est la loi régissant le nombre d’arêtes issues de ce sommet ?

c. Montrer que E(Z) = n(1− p)n−1.

d. Montrer que P(Z = 0) 6 V(Z)
E(Z)2

. Indication : on pourra utiliser Z̃ = Z− E(Z).

On suppose dorénavant que p = c
ln(n)
n

avec c > 0.

e. Comportement asymptotique de E(Z) quand n tend vers +∞ en fonction de c.

f. Que peut-on dire de P(Z = 0) si c > 1 quand n tend vers +∞ ?

g. Que peut-on dire de P(Z = 0) si c < 1 quand n tend vers +∞ ?� �
11.87� �ENS Cachan PSI 2021 Paul Jäıs et Pierre-Issa Lacourte

Soit n ∈ N∗ et Sn le groupe des permutations de l’ensemble [[1;n]] (les bijections de [[1;n]] dans [[1;n]]). On

définit (dn)n∈N par d0 = 1 et, si n > 1, dn est le nombre de permutations σ de Sn n’ayant aucun point fixe.

a. Soit (un)n∈N une suite complexe, on pose, pour tout entier n ∈ N, vn =
n∑

k=0

(
n

k

)
un−k.

Trouver un en fonctions des termes de la suite (vp)p∈N. Indication : commencer par n = 2, n = 3.

b. Calculer dn en fonction de n.

On considère une urne avec n boules numérotées de 1 à n et on effectue n tirages sans remise en notant

a1, · · · , an les numéros des boules dans l’ordre. Soit σ : [[1;n]] → [[1;n]] la permutation définie par σ(k) = ak

associée à cette expérience aléatoire.

c. Montrer que σ suit la loi uniforme sur Sn.

d. Soit Q une partie de [[1;n]], on pose 11Q la fonction indicatrice de Q, c’est-à-dire 11Q : Ω → {0, 1} définie

par 11Q(ω) = 1 si ∀i ∈ Q, σ(ω)(i) = i et 11Q(ω)(i) = 0 sinon. Déterminer la loi de 11Q.

Soit F la variable aléatoire qui compte le nombre de points fixes de σ. On note f sa fonction génératrice.

e. Calculer l’espérance de la variable aléatoire

(
F

j

)
pour j ∈ [[0;n]].

f. Déterminer complètement f.

g. Calculer, pour k ∈ N fixé, la valeur de lim
n→+∞

P(F = k).
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� �
11.88� �ENS Cachan PSI 2021 Guillaume Touly

Soit une suite de variables aléatoires indépendantes (Xn)n∈N qui suivent toutes la loi de Bernoulli B
(
1

2

)
.

• On définit T tel que T = n si n est le plus petit entier tel que Xn = 0 et T = +∞ s’il n’existe aucun

entier p ∈ N tel que Xp = 0.

• On définit T ′ tel que T ′ = n si n est le plus petit entier strictement positif tel que Xn = Xn−1 = 1

et T ′ = +∞ s’il n’existe aucun entier p ∈ N∗ tel que Xp = Xp−1 = 1.

a. Pour n ∈ N, calculer P(T = n) et P(T > n).

b. Calculer P(T = +∞).

c. Calculer E(T) et V(T).
d. Calculer P(T ′ = k) pour k ∈ [[1; 4]].

e. Montrer, pour n > 2, que P(T ′ > n) 6 3P(T ′ > n− 2)
4

.

f. Montrer que T ′ est presque sûrement finie ; c’est-à-dire que P(T ′ = +∞) = 0.

g. Montrer, pour n > 2, que P(T ′ = n) = 1

2
P(T ′ = n− 1) + 1

4
P(T ′ = n− 2).

h. Montrer que T ′ est d’espérance finie et calculer cette espérance (sans calculer P(T ′ = n)).� �
11.89� �ENS Rennes PSI 2021 Raffi Sarkissian

Soit P = {p1, p2, · · ·} l’ensemble des nombres premiers (p1 = 2, p2 = 3, etc...) et, pour s > 1, ζ(s) =
+∞∑
n=1

n−s.

a. Soit s > 1, pour quels valeurs de λ ∈ R, la famille (qn)n∈N∗ =
(
λn−s

)
n∈N∗ définit-elle une loi de

probabilité sur N∗ par l’intermédiaire de ∀n > 1, P({n}) = λn−s ?

b. Soit s > 1, pour λ trouvé à la question a., soit X une variable aléatoire suivant la loi Qs précédente :

c’est-à-dire P(X = n) = λn−s. Pour quelles valeurs de s la variable X admet-elle une espérance finie ?

c. Pour p nombre premier, on pose Ap = pN∗. Montrer que les (Ap)p∈P sont indépendants pour la loi de

probabilité précédente.

d. En déduire que ζ(s) = lim
N→+∞

N∏
n=1

1

1− p−s
n

qu’on note ζ(s) =
∏
p∈P

1

1− p−s .

e. Est-ce que la série
∑
n>1

1

pn
converge ?� �

11.90� �Centrale Maths1 PSI 2021 Antoine Greil II

a. Énoncer puis démontrer l’inégalité de Markov.

b. Soit n ∈ N∗, (X1, · · · , Xn) une famille de variables aléatoires indépendantes suivant la loi de Bernoulli

de paramètre 1

2
et ε > 0. On pose Sn =

n∑
k=1

Xk, majorer la quantité P
(
Sn − n

2
> ε

)
.� �

11.91� �Mines PSI 2021 Maëva Berland I

Soit (Xn)n∈N une suite de variables aléatoires mutuellement indépendantes qui suivent toutes la loi de

Bernoulli de paramètre p ∈]0; 1[. Pour n ∈ N∗, on pose Yn = Xn−1Xn et Sn =
n∑

i=1

Yi.

a. Donner la loi de Yn, son espérance, sa variance.

b. Exprimer la covariance YiYj si (i, j) ∈ (N∗)2. Les Yn sont-ils deux à deux indépendants ?

c. Donner une majoration de P(|Sn − E(Sn)| > ε) pour ε > 0.

d. (Yn)n>1 vérifie-t-elle les hypothèses de la loi faible des grands nombres ? Satisfait-elle ses résultats ?
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� �
11.92� �Mines PSI 2021 Maxime Brachet I

Pierre et Marie jouent à un jeu. Ils effectuent une série de parties indépendantes. Pierre gagne avec une

probabilité p et Marie avec une probabilité q = 1 − p. À l’issue de la partie, il y a forcément un gagnant.

On note a2n la probabilité pour qu’il y ait égalité des parties gagnées à l’issue de la 2n-ième partie.

Et b2n la probabilité pour que la première égalité arrive à la 2n-ième partie.

On note A(x) =
+∞∑
n=1

a2nx
2n et B(x) =

+∞∑
n=1

b2nx
2n.

a. Exprimer a2n en fonction de n.

b. Quel est le rayon Ra de
∑
n>0

a2nx
2n ?

c. Donner une condition sur p pour que A(1) existe.

d. Montrer que A(x) = 1√
1− 4pqx2

− 1.

e. Relier A et B. En déduire B(x).

f. Donner la probabilité η pour qu’il n’y ait jamais égalité du nombre de parties gagnées.� �
11.93� �Mines PSI 2021 Clotilde Cantini I

On appelle au téléphone n personnes (numérotées de 1 à n) par vague de façon indépendante sachant qu’une

personne répond avec une probabilité p ∈]0; 1[. On définit les variables aléatoires suivantes :

• X1 représente le nombre de personnes ayant répondu pendant la première vague.

• X2 est le nombre de personnes ayant répondu parmi les n− X1 contactées lors de la deuxième vague.

• En général, si k > 3, Xk correspond au nombre de personnes parmi les n−X1 −X2 − · · · −Xk−1 ayant

été appelées lors de la k-ième vague d’appels.

• Pour i ∈ [[1;n]], on note Yi le numéro de la vague pendant laquelle la personne numéro i a répondu.

• Pour k > 1, Sk = X1+ · · ·+Xk est le nombre de personnes ayant répondu lors des k premières vagues.
• N est le nombre de vagues d’appels nécessaires à ce que toutes les personnes décrochent.

a. Les variables aléatoires X1 et X2 sont-elles indépendantes ?

b. Donner les lois de X1 et X2 et la loi de Yk.

c. Donner la loi de Xk pour tout entier k > 3.

d. Donner la loi de Sk.
e. Donner la loi de N. En déduire l’espérance de N.� �

11.94� �Mines PSI 2021 Quentin Granier III

Pour n ∈ N∗, on note Sn l’ensemble des permutations de [[1;n]].

On choisit de manière équiprobable une permutation dans Sn et on note Fn son nombre de points fixes.

Calculer l’espérance de Fn et sa variance.� �
11.95� �Mines PSI 2021 Antoine Greil I

Soit X une variable aléatoire à valeurs dans N∗ telle que ∀n ∈ N∗, P(X > n− 1) > 0.

Pour tout entier n ∈ N∗, on note un = P(X = n|X > n− 1).

a. Montrer que pour tout n ∈ N∗, un ∈ [0; 1[ et P(X > n− 1) =
n−1∏
k=1

(1− uk).

b. Montrer que
∑

n∈N∗
un diverge.

Réciproquement, soit (vn)n>1 une suite de réels tels que ∀n ∈ N∗, vn ∈ [0; 1[ et telle que
∑
n>1

vn diverge.

c. Montrer qu’il existe une variable aléatoire Y à valeurs dans N∗ telle que pour tout n ∈ N∗, on ait la

relation P(Y > n− 1) > 0 et P(Y = n|Y > n− 1) = vn.
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� �
11.96� �Mines PSI 2021 Arthur Riché I

Une urne contient 2 boules blanches et 8 boules noires. Un joueur effectue 5 tirages dans cette urne.

On compte les points comme suit :
• une boule blanche tirée rapporte 2 points (+2 points).

• une boule noire tirée fait perdre 3 points (−3 points).

On définit les variables aléatoires X et Y comme suit :
• X qui est le nombre de boules blanches tirées.

• Y qui est le nombre de points obtenus (somme de +2 et de −3).

Dans les deux prochaines questions, les cinq tirages se font avec remise.

a. Trouver la loi de X, son espérance et sa variance.

b. Déterminer la loi de Y, son espérance et sa variance.

Dans les deux questions suivantes, les cinq tirages s’effectuent sans remise.

c. Trouver la loi de X, son espérance et sa variance.

d. Déterminer la loi de Y.� �
11.97� �Mines PSI 2021 Raffi Sarkissian I

Soit n ∈ N∗ et X1, · · · , Xn des variables aléatoires mutuellement indépendantes suivant toutes la loi de

Bernoulli de paramètre p ∈]0; 1[. On pose U =

 X1
...

Xn

, V =

 1
...
1

, M = UtU et S = tVMV.

a. Quelles lois suivent les variables aléatoires rang (M) et Tr (M) ?

b. Quelle est la probabilité que M soit un projecteur ?

c. Calculer E(S) et V(S). Indication : on pourra commencer par le cas n = 2.� �
11.98� �CCINP PSI 2021 Julie Coheleach I

Le nombre d’enfants N suit la loi de Poisson de paramètre λ > 0. La probabilité qu’un enfant soit une fille

est p ∈]0; 1[. On note X le nombre de filles.

a. Donner la loi de probabilité du couple (N,X).

b. Donner la loi de X.� �
11.99� �CCINP PSI 2021 Mehdi Hamdaoui I

Soit X, Y deux variables aléatoires indépendantes à valeurs dans N, qui suivent la même loi, qui admettent

une espérance et une variance finies, et telles que Z = X+Y+1 suive la loi géométrique de paramètre p ∈]0; 1[.
a. Déterminer, en fonction de p, l’espérance et la variance de X.

b. Trouver la fonction génératrice de X.

c. Déterminer la loi de X.� �
11.100� �CCINP PSI 2021 Pierre-Issa Lacourte I

On dispose d’une urne contenant trois jetons indiscernables numérotés de 1 à 3. On effectue des tirages

mutuellement indépendants avec remise d’un seul jeton à la fois. On note :

• Y le numéro du tirage pour lequel on a obtenu pour la première fois deux numéros différents.

• Z le numéro du tirage pour lequel on a obtenu pour la première fois les trois numéros.

a. Déterminer la loi de Y.

b. Identifier la loi de Y − 1. En déduire E(Y) et V(Y).
c. Déterminer la loi du couple (Y, Z).

d. En déduire la loi de Z ainsi que E(Z).

23



� �
11.101� �CCINP PSI 2021 Margot Reungoat I

On dispose de n > 2 urnes numérotées de 1 à n. Pour k ∈ [[1;n]], dans l’urne numérotée k, on a k boules

numérotées de 1 à k. On choisit une urne au hasard et une boule dans cette urne. On définit :

• Xn le numéro de l’urne choisie.

• Yn le numéro de la boule obtenue.

a. Déterminer la loi du couple (Xn, Yn).

b. En déduire la loi de Yn (sous forme de somme).

c. Calculer E(Yn).

d. Calculer V(Yn).� �
11.102� �ENS Cachan PSI 2022 Lucas Lacampagne

Soit (Xk)k∈N∗ une suite de variables aléatoires indépendantes suivant toutes la même loi, P(Xk = 1) =

P(Xk = −1) = 1

2
. On pose aussi, pour n ∈ N∗, les variables aléatoires :

• Sn =
n∑

k=1

Xk.

• T = Min({n ∈ N∗ | Sn = 0}) si {n ∈ N∗ | Sn = 0} ̸= ∅ et T = +∞ sinon.

a. Déterminer la loi, l’espérance et la variance de Sn.

b. Calculer P(T = 2), P(T = 4) et P(T = 2n+ 1) pour n ∈ N.

On pose p0 = 1 et, pour tout entier n ∈ N, pn = P(S2n = 0). On pose aussi qk = P(T = 2k) pour k ∈ N.

c. Montrer que
∑
n>0

pnx
n est convergente pour |x| < 1. On pose alors p(x) =

+∞∑
n=0

pnx
n.

d. Montrer que ∀n > 1, pn =
n∑

k=1

pn−kqk.

e. Montrer que ∀x ∈]− 1; 1[, GT (x) =
p(x2)− 1

p(x2)
.

f. En déduire la loi de T et son espérance.� �
11.103� �ENS Cachan PSI 2022 Paul Mayé

Soit un espace probabilisé (Ω,A, P) et X une variable aléatoire à valeurs dans N, on dira par la suite que X

est une VAD. On pose alors GX(z) =
+∞∑
k=0

P(X = k)zk. On dit que X est de type m ∈ N∗ si X est une VAD

et s’il existe un entier r ∈ [[0;m− 1]] tel que ∀k ∈ N, k ̸= r [m], P(X = k) = 0.

a. Cas m = 2, montrer que X est de type 2 équivaut à |GX(−1)| = 1

b. Cas m > 3, montrer que X est de type m équivaut à
∣∣∣GX

(
e
2iπ
m
)∣∣∣ = 1.

c. Montrer que si r existe, alors il est unique. On note désormais cet entier r(X).

d. On pose W = X+Y avec X et Y deux VAD indépendantes. Montrer : W de type m ⇐⇒ X et Y de type m.

e. Montrer, si X et Y sont deux VAD indépendantes de type m et W = X+ Y, que r(W) ≡ r(X) + r(Y) [m].
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� �
11.104� �Centrale Maths1 PSI 2022 Olivier Courmont I

Dans une urne contenant n boules numérotées de 1 à n, on tire les n boules successivement et sans remise.

On note Xk le numéro de la boule obtenue au tirage k ∈ [[1;n]]. On dit qu’on a un pic au tirage k si

∀i ∈ [[1; k− 1]], Xi < Xk. En particulier, on a toujours un pic au tirage 1. On note Sn le nombre de pics lors

de ce tirage. Pour k ∈ [[1;n]], on note Tk la variable de Bernoulli valant 1 s’il y a un pic au tirage k.

a. Calculer P(Sn = n) et P(Sn = 1).

b. Donner la loi de Tk.

c. En déduire E(Sn). Donner un équivalent de E(Sn).
On admet que P(Ti = 1, Tj = 1) = 1

i j
(A) si 1 6 i < j 6 n.

d. Les variables aléatoires Ti et Tj sont-elles indépendantes ?

e. Calculer V(Sn) et en donner un équivalent.� �
11.105� �Centrale Maths1 PSI 2022 Amandine Darrigade

Soit (Xn)n∈N∗ une suite de variables aléatoires indépendantes à valeurs dans {−1, 1} qui suivent la loi

P(Xn = 1) = P(Xn = −1) = 1

2
. On note, pour tout entier n ∈ N∗, la variable aléatoire Sn =

n∑
k=1

Xk.

a. Quelles sont les valeurs que peut prendre Sn ?

b. Pour n ∈ N∗, trouver une relation entre P(|Sn+1| = 1), P(|Sn| = 2) et P(|Sn| = 0).

c. Pour k ∈ N\{0, 1} et n ∈ N∗, trouver une relation entre P(|Sn+1| = k), P(|Sn| = k+1) et P(|Sn| = k−1).

d. Montrer que ∀n ∈ N∗, E(|Sn+1|) = E(|Sn|) + P(|Sn| = 0).

e. Calculer, pour n ∈ N∗, la valeur de P(|Sn| = 0).

f. En déduire que lim
n→+∞

E(|Sn|) = +∞.

g. Déterminer un équivalent de E(|Sn|) quand n tend vers +∞.� �
11.106� �Centrale Maths1 PSI 2022 Tony Géreaud

Soit (Ω,A, P) un espace probabilisé. Pour ω ∈ Ω, on pose M(ω) =

(
X(ω) Y(ω)
Y(ω) X(ω)

)
où X et Y sont deux

variables aléatoires indépendantes suivant la loi géométrique de paramètre p ∈]0; 1[. On note U(ω) la plus

grande valeur propre de M(ω) et V(ω) la plus petite.

a. Donner la probabilité que M soit inversible.

b. Calculer Cov(U, V). U et V sont-elles indépendantes ?

c. On note Z = Max(X, Y). Calculer E(Z).� �
11.107� �Centrale Maths1 PSI 2022 Camille Pucheu

Soit (Xn)n∈N∗ une suite de variables aléatoires à valeurs dans N indépendantes suivant toutes la même loi.

On note, pour tout entier n ∈ N∗, la variable aléatoire Mn = Max(X1, · · · , Xn).

a. Pour k ∈ N∗ et n ∈ N∗, montrer que P(Mn 6 k− 1) = P(X1 6 k− 1)n.

b. Soit ici un réel α > 1 tel que la variable aléatoire Xα
1 admette une espérance finie notée mα. Montrer que

∀k ∈ N∗, P(X1 6 k− 1) > 1− mα

kα
. En déduire que Mn admet une espérance finie pour tout n ∈ N∗.

c. On suppose ici que X1 suit la loi géométrique de paramètre 1/2. Montrer que Mn admet une espérance

finie pour tout n ∈ N∗ et que E(Mn) =
+∞∑
k=1

(
1− (1− 2−k)n

)
.

d. En déduire une expression de E(Mn) sous forme de somme finie.
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� �
11.108� �Centrale Maths1 PSI 2022 Matis Viozelange

Soit n ∈ N∗, des réels x1, · · · , xn distincts et X une variable aléatoire telle que X(Ω) = {x1, · · · , xn}. Pour

k ∈ [[1;n]], on note pk = P(X = xk) > 0. On définit aussi la fonction Φ : R → C par Φ(t) = E(eitX).
a. Montrer que ∀t ∈ R, |Φ(t)| 6 1.

b. Établir que |Φ(t)|2 =
0
1− V(X)t2 + o(t2).

c. On suppose que X(Ω) ⊂ a+Zb avec a ∈ R et b ∈ R∗, c’est-à-dire que ∀k ∈ [[1;n]], ∃mk ∈ Z, xk = a+mkb.

Montrer que ∃t0 ∈ R∗, |Φ(t0)| = 1.

d. On suppose dorénavant qu’il existe t0 ∈ R∗ tel que |Φ(t0)| = 1. Montrer qu’il existe α ∈ R tel que
n∑

k=1

pk =
n∑

k=1

ei(xkt0−α)pk. En déduire qu’il existe (a, b) ∈ R× R∗ tel que X(Ω) ⊂ a+ Zb.� �
11.109� �Mines PSI 2022 Noé Chassagne I

Soit un entier n ∈ N∗. On s’intéresse à une urne contenant n boules non discernables numérotées de 1 à n.

On effectue des tirages et, à chaque tirage, on supprime de l’urne les boules dont le numéro est supérieur ou

égal à celui de la boule tirée. On note Xn le nombre de tirages nécessaires pour vider entièrement l’urne.

a. Calculer E(X1) et E(X2).

b. Montrer que ∀n > 2, E(Xn) = 1+ 1

n

n−1∑
k=1

E(Xk).

c. Trouver un équivalent de E(Xn) quand n tend vers +∞.

Question supplémentaire : montrer que
n∑

k=1

1

k
∼
+∞

ln(n).� �
11.110� �Mines PSI 2022 Jimmy Guertin II

Soit p ∈]0; 1[ et (X1, X2) deux variables aléatoires indépendantes telles que Xk(Ω) = {−1, 1} et P(Xk = 1) = p,

P(Xk = −1) = 1− p pour k = 1 ou k = 2.

a. Trouver la (ou les) valeur(s) de p telle(s) que X1X2 est indépendante de X1, de X2.

b. Trouver la (ou les) valeur(s) de p telle(s) que X1X2 est indépendante de (X1, X2).� �
11.111� �Mines PSI 2022 Fares Kerautret I

Soit n ∈ N∗ et m ∈ [[1;n]]. On se donne deux variables aléatoires indépendantes X et Y suivant la loi

uniforme sur [[1;n]] sur un univers probabilisé (Ω,A, P). On définit la variable aléatoire Zm : Ω → [[1;n]] par

Zm(ω) = X(ω) si Y(ω) 6 m et Zm(ω) = Y(ω) sinon.

a. Déterminer la loi de Z.

b. Calculer l’espérance de X, Y, Zm en fonction de n et m.

c. Trouver la valeur m0 de m telle que E(Zm) est maximale.� �
11.112� �Mines PSI 2022 Paul Lafon II

Soit p ∈ N∗ et des urnes notées U0, · · · , Up telles que Ui contient i boules blanches et p− i boules noires.

Soit n ∈ N∗, on choisit une urne au hasard et on effectue n tirages dans cette urne avec remise.

La variable aléatoire Np correspond au nombre de boules blanches tirées et, pour tout entier i ∈ [[0; p]], on

définit l’évènement Ai = “on choisit l’urne Ui”.

a. Calculer PAi
(Np = k) pour i ∈ [[0; p]] et k ∈ [[0;n]].

b. Calculer E(Np) sous réserve d’existence.

c. Montrer que lim
p→+∞

P(Np = k) =

(
n

k

)∫ 1

0
xa(1− x)bdx avec a et b à déterminer.
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� �
11.113� �CCINP PSI 2022 Lola Belle Wangue I

On lance indéfiniment une pièce équilibrée. On note :

• X le nombre de lancers pour obtenir la première séquence “pile-face”.

• Y le numéro du premier lancer où on tombe sur “pile”.

a. Déterminer la loi conjointe de (X, Y).

b. Déterminer la loi de X.

c. Calculer E(X).� �
11.114� �CCINP PSI 2022 Manon Odelot I

Soit p ∈]0; 1[ et X, Y deux variables aléatoires à valeurs dans N telles que, pour tout couple (k, n) ∈ N2, on

ait P(X = k, Y = n) =

(
n

k

)
p

2n
(1− p)n si k 6 n et P(X = k, Y = n) = 0 sinon.

a. Déterminer la loi de Y.

b. Montrer que ∀x ∈]− 1; 1[,
+∞∑
n=k

(
n

k

)
xn−k =

1

(1− x)k+1
.

c. Déterminer la loi de X. Les variables aléatoires X et Y sont-elles indépendantes ?

d. Déterminer la loi de Z = Y − X.

e. Déterminer la loi de X sachant (Y = n).� �
11.115� �CCINP PSI 2022 Baptiste Savarit I

Soit n ∈ N∗ et X une variable aléatoire telle que X(Ω) = [[0;n]] et dont la loi est donnée par la relation

∀k ∈ [[0;n]], P(X = k) = a

k+ 1

(
n

k

)
pour un réel a > 0.

a. Déterminer α dépendant de n et k tel que

(
n

k

)
= α

(
n+ 1

k+ 1

)
si k ∈ [[0;n]].

b. En déduire la valeur de a.

c. Calculer E(X) et V(X).� �
11.116� �CCINP PSI 2022 Paul Sterlin II

On dispose d’une urne contenant trois jetons indiscernables numérotés de 1 à 3. On effectue des tirages

indépendants avec remise d’un seul jeton à la fois. On note :

• Y le numéro du tirage pour lequel on a obtenu pour la première fois deux numéros différents.

• Z le numéro du tirage pour lequel on a obtenu pour la première fois les trois numéros.

a. Déterminer la loi de Y.

b. Identifier la loi de Y − 1. En déduire E(Y) et V(Y).

c. Déterminer la loi du couple (Y, Z).

d. En déduire la loi de Z ainsi que E(Z).� �
11.117� �CCINP PSI 2022 Matis Viozelange I

Soit X et Y deux variables aléatoires indépendantes suivant les lois de Poisson de paramètres respectifs λ > 0

et µ > 0. Posons Z = X+ Y.

a. Montrer que Z suit la loi de Poisson de paramètre λ+ µ.

b. Soit n ∈ N, déterminer la loi de X sachant (Z = n).
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� �
11.118� �Mines-Télécom PSI 2022 Marius Desvalois II

Soit n ∈ N∗, n jetons et n urnes U1, · · · , Un. Pour tout entier k ∈ [[1;n]], on place le ke jeton de manière

équiprobable dans l’une des urnes U1, · · · , Uk. On note Xn le nombre d’urnes n’ayant pas de jetons à la fin

de ce processus. Pour k ∈ [[1;n]], on définit la variable aléatoire Bk par Bk = 1 si Uk est vide et Bk = 0 sinon.

a. Déterminer Xn(Ω). Calculer P(Xn = 0) et P(Xn = n− 1).

b. Déterminer la loi de Bk pour k ∈ [[1;n]]. Calculer E(Bk) et V(Bk) pour k ∈ [[1;n]].

c. En déduire E(Xn). Calculer aussi V(Xn).� �
11.119� �Navale PSI 2022 Näıs Baubry I

Soit n ∈ N∗, (p, q) ∈]0; 1[2 tel que p+ q < 1 et r = 1− p− q.

On lance n fois un dé truqué qui n’a que 1, 2, 3 sur ses faces. À chaque lancer, on a une probabilité p d’obtenir

la face 1, une probabilité q d’obtenir la face 2, une probabilité r d’obtenir la face 3.

On note X (resp. Y) la variable aléatoire donnant le nombre de 1 (resp. 2) obtenus au cours des n lancers.

Les lancers sont supposés indépendants.

a. Déterminer les lois de X et de Y.

b. Déterminer la loi du couple (X, Y).

c. X et Y sont-elles indépendantes ?

On suppose maintenant que le nombre de lancers N est une variable aléatoire suivant une loi de Poisson de

paramètre λ > 0. On lance à nouveau N fois le dé truqué avec les mêmes variables aléatoires X et Y.

d. Déterminer les lois de X et Y.

e. X et Y sont-elles indépendantes ?� �
11.120� �ENS Cachan PSI 2023 Lilian Dupouy

Soit n ∈ N∗ et X1, · · · , Xn des variables aléatoires discrètes réelles admettant un moment d’ordre 2. On pose

E = Vect(X1, · · · , Xn) et on définit f : E2 → R par f(X, Y) = E(XY).

On pose G = {X ∈ E | E(X2) = 0} et on considère un sous-espace vectoriel F de E tel que E = F⊕ G.

a. Montrer que f est bilinéaire, symétrique et positive. Est-elle définie positive ?

b. La fonction f|F2 est-elle un produit scalaire sur F ?

c. Rappeler l’inégalité de Cauchy-Schwarz pour (X, Y) ∈ F2.

d. Soit Z une variable aléatoire discrète réelle positive admettant un moment d’ordre 2 et telle que E(Z2) > 0.

Montrer que P(Z > 0) > E(Z)2

E(Z2)
.

On note G un graphe non orienté, S l’ensemble de ses sommets (numérotés de 1 à n). Chaque sommet peut

être relié aux autres, de manière indépendante, la probabilité d’une liaison est pn ∈]0; 1[.
Soit i et j deux sommets distincts de ce graphe, on note Xi,j = 1 si une arête existe entre les sommets i et j

et Xi,j = 0 sinon : la variable aléatoire Xi,j suit donc une loi de Bernoulli de paramètre pn.

On note Zn = card
(
{i ∈ [[1;n]] | ∀j ∈ [[1;n]] \ {i}, Xi,j = 0}

)
le nombre de sommets isolés.

e. On prend un sommet i, quelle est la loi régissant le nombre d’arêtes issues de ce sommet ?

f. Montrer que E(Zn) = n(1− pn)
n−1.

g. Comportement asymptotique de E(Zn) quand n tend vers +∞ en fonction de c > 0 tel que pn = c
ln(n)
n

.

h. Montrer que lim
n→+∞

P(Zn > 0) = 0 si ∃c > 1, ∃n0 ∈ N∗, ∀n > n0, pn > c
ln(n)
n

(on écrit pn ≫ ln(n)
n

).

i. Montrer que lim
n→+∞

P(Zn > 0) = 1 si ∃c < 1, ∃n0 ∈ N∗, ∀n > n0, pn 6 c
ln(n)
n

(on écrit pn ≪ ln(n)
n

).
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� �
11.121� �Centrale Maths1 PSI 2023 Juan Dupierris

On étudie un dé équilibré qui comporte quatre faces : une marquée 0, deux marquées 1 et une marquée 2.

On lance n ∈ N∗ fois ce dé et on note Xn (resp. Yn) le nombre de 1 (resp. 0) obtenus.

a. Donner les lois de Xn et Yn. Quelles sont leurs espérances ?

b. Donner la loi de Xn + Yn.

c. Donner la loi de (Xn, Yn).

d. Donner la covariance de Xn et Yn.� �
11.122� �Centrale Maths1 PSI 2023 Olivier Farje

Soit N ∈ N∗ et une urne avec initialement N boules rouges. On tire successivement dans l’urne :

Si on tire une boule rouge, on la remplace par une verte.

Si on tire une boule verte, on la remet dans l’urne.

On note Xp le nombre de boules rouges dans l’urne à l’issue du p-ième tirage. On pose X0 = N.

On note Y le rang où on enlève la dernière boule rouge (Y = 0 si ce rang n’existe pas).

a. Montrer que ∀n > 0, ∀k > 0, P(Xn+1 = k) = N− k

N
P(Xn = k) + k+ 1

N
P(Xn = k+ 1).

b. En déduire une relation entre E(Xn+1) et E(Xn).

c. Donner E(Xn) en fonction de n et N et en déduire la valeur de lim
n→+∞

P(Xn > 1) et de lim
N→+∞

E(XN)
N

.

d. Montrer que (Y = 0) ⊂
n∩

k=1

(Xk > 1), puis en déduire la valeur de P(Y = 0).

� �
11.123� �Centrale Maths1 PSI 2023 Gabriel Hofman

On pose F =
{(

x y

z x

) ∣∣∣ (x, y, z) ∈ R3
}
.

a. Quelles sont les matrices de F qui sont diagonalisables dans M2(R) ?

b. Quelles sont les matrices de F dont l’endomorphisme canoniquement associé est un projecteur orthogonal ?

Soit X, Y, Z des variables aléatoires indépendantes qui suivent la loi uniforme sur [[1; 6]].

c. Quelle est la probabilité que M =

(
X Y

Z X

)
soit inversible ?� �

11.124� �Centrale Maths1 PSI 2023 Antoine Vallade

Soit λ > 0 et X une variable aléatoire sur un espace probabilisé suivant la loi de Poisson de paramètre

λ. Soit (Xn)n∈N une suite de variables aléatoires indépendantes sur le même espace probabilisé et suivant

toutes la loi de X. On pose N = Inf{n ∈ N∗ | Xn > X0} si {n ∈ N∗ | Xn > X0} ̸= ∅ et N = +∞ sinon..

a. Montrer à l’aide de la formule de Taylor reste intégral que ∀k ∈ N, P(X > k) 6 λk+1

(k+ 1)!
.

b. La variable aléatoire N admet-elle une espérance finie ?

c. Montrer que N est presque sûrement finie.
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� �
11.125� �Mines PSI 2023 Paul-Antoine Baury-Carpentier I

Pour tout réel x, on note ⌈x⌉ le plus petit entier relatif k tel que x 6 k.

Soit X une variable aléatoire discrète réelle positive admettant une espérance finie et on pose Y = ⌈X⌉.

a. Montrer que 0 6 E(X) 6
+∞∑
k=0

P(X > k).

b. Soit (Xn)n∈N une suite décroissante de variables aléatoires discrètes réelles positives telle que X0 admet

une espérance finie et telle que ∀ω ∈ Ω, lim
n→+∞

Xn(ω) = 0. Montrer que ∀k ∈ N, lim
n→+∞

P(Xn > k) = 0.

c. Montrer que lim
n→+∞

E(Xn) = 0.� �
11.126� �Mines PSI 2023 Arthur Biot I

On répète une expérience de Bernoulli indépendante de même paramètre p ∈]0; 1[. On note Xn le nombre

d’expériences nécessaires pour obtenir le n-ième succès.

a. X1 est-elle une variable aléatoire discrète ?

b. Donner la loi, l’espérance et la variance de X1.

c. Déterminer la loi de Xn pour n > 2. Calculer E(Xn) et V(Xn).

d. Soit Y1, · · · , Yn des variables aléatoires indépendantes suivant la même loi que X1 et Sn = Y1 + · · ·+ Yn.

Calculer E(Sn) et V(Sn). Expliquer.� �
11.127� �Mines PSI 2023 Lilian Dupouy II

Soit un entier n ∈ N∗. On s’intéresse à une urne contenant n boules non discernables numérotées de 1 à n.

On effectue des tirages et, à chaque tirage, on supprime de l’urne les boules dont le numéro est supérieur ou

égal à celui de la boule tirée. On note Xn le nombre de tirages nécessaires pour vider entièrement l’urne.

a. Calculer E(X1) et E(X2).

b. Montrer que ∀n > 2, E(Xn) = 1+ 1

n

n−1∑
k=1

E(Xk).

c. Trouver un équivalent de E(Xn) quand n tend vers +∞.

Question supplémentaire : montrer que
n∑

k=1

1

k
∼
+∞

ln(n).

� �
11.128� �CCINP PSI 2023 Marius Desvalois I

Soit α ∈]0; 1[, λ > 0 et X, Y deux variables aléatoires discrètes à valeurs dans N telles que, pour tout (i, j) ∈ N2,

on ait P(X = i, Y = j) =
e−λλiαj(1− α)i−j

j!(i− j)!
si 0 6 j 6 i et P(X = i, Y = j) = 0 sinon. On pose Z = X− Y.

a. Déterminer la loi de X.

b. Déterminer la loi de Y.

c. X et Y sont-elles indépendantes ?

d. Déterminer la loi de Z.

e. Pour (j, k) ∈ N2, calculer P(Z=k)(Y = j).

f. Conclure.
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� �
11.129� �CCINP PSI 2023 Juan Dupierris I et Gabriel Hofman I

Une entreprise commercialise deux produits A et B. Le service après-vente reçoit des appels concernant ces

deux produits, 20% pour le produit A et 80% pour le produit B. On note XA (resp. XB) la variable aléatoire

qui compte le nombre d’appels avant d’en avoir un qui concerne le produit A (resp. B).

On note L la variable aléatoire qui compte la longueur de la première châıne d’appels sur un même produit.

Par exemple, si on reçoit les appels AAABBAB...., alors XA = 1, XB = 4, L = 3.

a. Déterminer la loi de XA. Montrer que XA admet une espérance et une variance finies et les calculer. Faire

de même pour XB.

b. Pour n ∈ N∗, décomposer (L = n) en distinguant selon le (n+ 1)-ième appel.

En déduire que P(L = n) = 0, 8P(XA = n) + 0, 2P(XB = n).

c. En déduire que L admet une espérance finie et la calculer.� �
11.130� �CCINP PSI 2023 Jonathan Filocco I

Soit X la variable aléatoire correspondant au nombre de boules (numéros de 1 à X) dans une urne, telle que

X(Ω) = N∗ avec ∀i ∈ N∗, P(X = i) = i

2i+1 . On procède à un tirage et on note Y le numéro de la boule tirée.

a. Montrer que la définition de la loi de X est cohérente.

b. Calculer E(X).

c. Déterminer la loi conjointe de X et Y.

d. Calculer la loi de Y et son espérance.� �
11.131� �CCINP PSI 2023 Sacha Meslier I

On joue à pile ou face, avec une probabilité p ∈]0; 1[ de faire pile et 1 − p de faire face. On effectue n > 2

lancers. On note N le nombre de séries obtenues. Par exemple N = 3 si, pour n = 10, on a les tirages

PPPPFFFFPP et N = 5 si, pour n = 10, on tire FPPFFPPPFF.

Pour tout entier k ∈ [[1;n − 1]], on définit Ik telle que Ik = 0 si les lancers k et k + 1 donnent des résultats

identiques et Ik = 1 sinon.

a. Déterminer N(Ω).

b. Calculer P(N = 1) et P(N = 2).

c. Pour k ∈ [[1;n− 1]], donner la loi de Ik.

d. Écrire N en fonction des Ik.

e. Déterminer l’espérance et la variance de N.� �
11.132� �CCINP PSI 2023 Antoine Vallade I

Soit X une variable aléatoire à valeurs dans N telle que ∀i ∈ N, P(X = i) = α i

2i
avec α ∈ R∗

+.

a. Calculer α.

b. Calculer E(X).

c. Calculer V(X).
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� �
11.133� �ENS Cachan/Rennes PSI 2024 Jonathan Filocco et Mathias Pisch

Soit une suite (Xn)n∈N∗ de variables aléatoires identiquement distribuées et indépendantes à valeurs dans Z
telles que P(Xn = 1) = P(Xn = −1) = 1

2
. On pose Sn = X1 + · · ·+ Xn.

a. Calculer la loi de Sn, son espérance, sa variance.

b. Montrer que ∀a > 0, P(Sn > na) 6 1

na2 .

c. Soit X une variable aléatoire réelle, montrer ∀a > 0, ∀s > 0, P(X > a) 6 E(esX)
esa

.

d. Montrer que ∀s > 0, P(Sn > na) 6
(
ch (s)
esa

)n
.

e. Montrer que ∀s ∈ R, ch (s) 6 e
s2

2 .

f. En déduire que ∀a > 0, P(Sn > na) 6 e
−na2

2 .

g. Montrer que la fonction g : R∗
+ → R définie par ∀x > 0, g(x) = ex − 1− x

x2
se prolonge par continuité en

0 et qu’elle est alors croissante sur R+.� �
11.134� �Centrale Maths1 PSI 2024 Tristan Cheyrou

a. Donner le rayon de convergence R de
∑
n>0

(
2n

n

)
x2n

4n
. Montrer : ∀x ∈]− R;R[,

+∞∑
n=0

(
2n

n

)
x2n

4n
=

1√
1− x2

.

Soit (Xk)k>1 une suite de variables aléatoires indépendantes telles que P(Xk = ±1) = 1

2
pour tout k ∈ N∗.

On pose Sn =
n∑

k=1

Xk et T = Min({n ∈ N∗ | Sn = 0}) si {n ∈ N∗ | Sn = 0} ̸= ∅ et T = +∞ sinon.

b. Pour k ∈ N∗, on pose Yk = 1+ Xk

2
. Donner la loi de Yk, puis celle de Zn =

n∑
k=1

Yk.

c. En déduire la loi de Sn, son espérance et sa variance. Que représente Sn ?

On pose p0 = 1 et, pour tout entier n ∈ N, pn = P(S2n = 0). On pose aussi qk = P(T = 2k) pour k ∈ N.

d. Montrer que
∑
n>0

pnx
n est convergente pour |x| < 1. On pose alors p(x) =

+∞∑
n=0

pnx
n.

e. Montrer que ∀n > 1, pn =
n∑

k=1

pn−kqk. Montrer que ∀x ∈]− 1; 1[, GT (x) =
p(x2)− 1

p(x2)
.

f. En déduire la loi de T et son espérance.� �
11.135� �Centrale Maths1 PSI 2024 Mathéo Demongeot-Marais

Dans une marche aléatoire symétrique (autant de chance d’aller à gauche qu’à droite) sur Z démarrant en
0, on note Xn la variable aléatoire désignant l’abscisse du marcheur après le n-ième pas. On a donc X0 = 0.
Pour k ∈ N, on pose Ek = “ le marcheur est revenu à l’origine au moins k fois au cours de la marche entière”.

Soit Bi la variable aléatoire qui vaut 1 si le marcheur est revenu en 0 après le i-ième pas et 0 sinon.

a. Pour tout entier n ∈ N, déterminer P(Xn = 0). Déterminer la nature de
∑
n∈N

P(Xn = 0).

b. Déterminer la loi de Bi et, pour p ∈ N, calculer
+∞∑
k=0

P
( p∑

i=1

Bi > k

)
.

c. Trouver un lien entre
( p∑

i=1

Bi > k

)
et Ek. En déduire que

∑
k>0

P(Ek) diverge.

d. Trouver une relation entre P(Ek) et P(E1). En déduire que P(E1) = 1.

e. Quelle est la probabilité que le marcheur revienne une infinité de fois à l’origine ?

32



� �
11.136� �Mines PSI 2024 Tristan Cheyrou I

Soit deux réels q ∈]0; 1[ et a ∈ R+ et deux variables aléatoires X et Y à valeurs dans N telles que l’on ait

∀(i, j) ∈ N2, P(X = i, Y = j) = aqi+j.

a. Exprimer a en fonction de p = 1− q.

b. Déterminer les lois marginales de X et Y. Calculer E(X) et V(X).
c. Trouver Cov(X, Y).

d. Pour n ∈ N, déterminer la loi de U = Max(X, Y) sachant X+ Y = 2n+ 1.� �
11.137� �Mines PSI 2024 Axel Corbière II

On considère une pièce qui fait pile avec une probabilité p ∈]0; 1[ et qu’on lance indéfiniment. On note X la

variable aléatoire qui compte le nombre de face obtenus pour faire deux fois pile.

a. Donner la loi de X.

b. Montrer que X admet une espérance finie et la calculer.

Si X = n, on place n+ 1 boules numérotées de 0 à n dans une urne et on en pioche une. On note Y le numéro

de la boule piochée.

c. Donner la loi de Y.

d. Calculer l’espérance et la variance de Y.� �
11.138� �Mines PSI 2024 Olivier Farje II

Soit p ∈]0; 1[ et (Xn)n∈N∗ une suite de variables aléatoires indépendantes suivant la loi de Bernoulli de

paramètre p. On pose A =
{
ω ∈ Ω

∣∣∣ ∑
k>1

Xk(ω)
k

converge
}
. Calculer P(A).� �

11.139� �Mines PSI 2024 Thomas Favant II

Soit (Xn)n∈N∗ une suite de variables aléatoires indépendantes sur un espace probabilisé (Ω,A, P) telle que

chaque Xn suit une loi de Poisson de paramètre λn > 0 et S : Ω → [0; +∞] définie par S(ω) =
+∞∑
n=1

Xn(ω).

Déterminer la loi de S. Indication : commencer par calculer P(S = 0).� �
11.140� �Mines PSI 2024 Bilal Mrani I

Soit (Xk)k∈N∗ une famille de variable aléatoires indépendantes identiquement distribuées telle que pour tout

k ∈ N∗, on ait P(Xk = 1) = p et P(Xk = −1) = 1 − p avec p ∈]0; 1[. On pose S0 = 0 et pour tout k > 1,

Sk = X1 + · · ·+ X2k. On note p(k) = P(Sk = 0) pour k ∈ N.

a. Déterminer l’expression de p(k) et en donner un équivalent quand k tend vers +∞.

b. On suppose dans cette question p ̸= 1

2
. Montrer que le nombre de retour à l’origine (le nombre d’indices n

tels que Sn = 0) est presque sûrement fini. Indication : on pourra commencer par traduire mathématiquement

le fait qu’il existe une infinité de retour à l’origine.� �
11.141� �Mines PSI 2024 Arya Tabrizi II

Dans une urne, il y a une boule blanche et une boule noire indiscernables au toucher. On prend une boule :

- si elle est blanche, on arrête.

- si elle est noire, on la remet dans l’urne et on ajoute une boule blanche.

On note Y le rang du tirage d’une boule blanche en convenant que Y = 0 si on n’obtient jamais de boule

blanche. Déterminer la loi et l’espérance de Y.
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� �
11.142� �CCINP PSI 2024 Mattéo Aumaitre I

Soit p ∈]0; 1[, q = 1− p et r ∈ N. Soit (pn)n∈N la suite définie par pn = qrpn

(
n+ r− 1

r− 1

)
et X une variable

aléatoire à valeurs dans N∗ telle que ∀n ∈ N∗, P(X = n) = pn.

a. Rappeler le développement en série entière de 1

1− x
(vous donnerez le rayon de convergence).

b. En déduire celui de 1

(1− x)r
.

c. Vérifier que (pn)n∈N∗ est une distribution de probabilité.

d. Déterminer la fonction génératrice de X.

e. Calculer l’espérance et la variance de X.� �
11.143� �CCINP PSI 2024 Mathéo Demongeot-Marais I

On considère une urne de n > 2 boules numérotées de 1 à n. On réalise des tirages avec remise.

On note Xn le premier rang tel qu’une autre boule que la première soit tirée.

a. Montrer que Xn est une variable aléatoire discrète et déterminer la loi de Xn.

b. Montrer que Xn admet une espérance et la calculer.

c. Trouver lim
n→+∞

E(Xn). Interpréter.

Soit Yn le premier rang tel que toutes les boules de l’urne aient été tirées au moins une fois.

d. Déterminer la loi de Y2.

e. Soit (i, j) ∈ (N∗)2 tel que i < j, déterminer P(X3=i)(Y3 = j). En déduire la loi de Y3.� �
11.144� �CCINP PSI 2024 Émile Gauvrit II

Soit λ > 0 et une variable aléatoire X suivant la loi de Poisson de paramètre λ.

a. Montrer que ∀t ∈ R, GX(t) = eλ(t−1).

b. Montrer que ∀a > 0, ∀t > 1, P(X > a) 6 GX(t)
ta

.

c. En déduire que P(X > 2λ) 6
(
e

4

)λ
.� �

11.145� �CCINP PSI 2024 Tom Sanchez I

Soit N ∈ N∗ et r ∈ [[1;N]]. On considère une urne avec N− r boules blanches et r boules noires. On tire une

boule successivement et sans remise dans cette urne, on note XN le numéro du tirage lors duquel on retire

la dernière boule noire.

a. Donner la loi de XN et l’espérance de XN dans les cas particuliers r = 1 et r = N.

On suppose dorénavant que 1 < r < N.

b. Pour k ∈ [[1;N]], déterminer la valeur de P(XN = k).

c. En déduire E(XN) en fonction de N et r.� �
11.146� �Mines-Télécom PSI 2024 Mattéo Aumaitre I

Soit X et Y deux variables aléatoires indépendantes suivant la loi géométrique de paramètre p ∈]0; 1[. On

pose S =

(
X Y

Y X

)
et λ < µ ses deux valeurs propres.

a. Calculer λ et µ en fonction de X et Y.

b. Quelle est la probabilité pour que S soit inversible ?

c. Quelle est la probabilité pour que S soit définie positive ?
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� �
11.3 Officiel de la Taupe� �� �

11.147� �OdlT 2015/2016 X-Cachan PSI planche 40I

n convertisseurs numériques fonctionnant de manière indépendante sont placés en série. Chaque convertisseur

restitue correctement le bit qu’on lui fournit avec la probabilité p et renvoie le bit opposé avec la probabilité

1− p, p ∈ [0; 1]. On note X0 le bit en entrée de châıne et Xk le bit en sortie du k-ième convertisseur.

On pose Ak =

(
P(Xk = 1)
P(Xk = 0)

)
; déterminer une relation de récurrence entre les Ak et en déduire la probabilité

que le bit initial soit correctement rendu en sortie du n-ième convertisseur.

Que se passe-t-il lorsque l’on passe à la limite ?

L’exercice suivant ne pourra être abordé que si le précédent a été résolu.� �
11.148� �OdlT 2015/2016 X-Cachan PSI planche 40II

Cet exercice ne peut être abordé que si le précédent a été résolu

Un dé pipé a six faces numérotées de 1 à 6 et la probabilité d’obtenir la face k est notée p(k) ; on le lance n

fois successives et on note xk la face obtenue au k-ième lancer.

Que peut-on dire du nombre Nk d’apparitions de la face k quand n tend vers +∞ ?

En supposant que ∀k ∈ [[1; 6]], np(k) ∈ N, quelle est la probabilité d’obtenir une suite (x1, · · · , xn) de lancers
telle que ∀k ∈ [[1; 6]], Nk = np(k) ? Cas du dé non pipé.� �

11.149� �OdlT 2015/2016 Mines PSI planche 120I

Un chocolatier propose de collectionner n vignettes différentes qu’il distribue au hasard dans ses chocolats,
qui coûtent 1 euro le paquet. Calculer l’argent moyen à dépenser pour avoir les n vignettes. Déterminer un
équivalent de cet argent moyen à dépenser quand n tend vers +∞.� �

11.150� �OdlT 2015/2016 Mines PSI planche 123I Soit X une V.A. d’un espace probabilisé (Ω, A, P), et X(Ω) = N.

On note GX sa fonction génératrice. Montrer que ∀r ∈]0; 1[, P(X > n) 6 1− GX(r)
1− rn

et étudier le cas d’égalité.

� �
11.151� �OdlT 2015/2016 Mines PSI planche 126I Soit une variable aléatoire X telle que X(Ω) = [[0;n]].

On pose f(t) = E(tX). Calculer f(k)(1) en fonction de uk(X) = E
( k−1∏

p=0

(X− p)
)
pour 0 6 k 6 n.

Montrer que P(X = j) = 1

j!

n∑
k=j

(−1)j−k uk(X)
(k− j)!

.

� �
11.152� �OdlT 2015/2016 CCP PSI planche 238I On pose ∀α > 0, ∀k ∈ N, pk =

e−24k(1+ αk)
(2k)!

.

Soient Y une variable aléatoire suivant une loi de Poisson de paramètre 2 et T = 1+Y ; déterminer P(T = k).

Trouver une condition sur α pour que (pk) définisse une probabilité.

On suppose cette condition vérifiée et on donne une variable aléatoire X à valeurs dans N, telle que l’on ait
∀k ∈ N, P(X = k) = pk ; déterminer l’espérance de X.� �

11.153� �OdlT 2015/2016 CCP PSI planche 239II

Une variable aléatoire X suit une loi de Poisson de paramètre λ > 0. Calculer E
(

1

1+ X

)
.
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� �
11.154� �OdlT 2015/2016 CCP PSI planche 247I

Deux variables aléatoires X et Y suivent respectivement une loi de Poisson de paramètre λ et une loi

binomiale de paramètres n et p à condition que X = n.

Déterminer la loi conjointe de (X, Y), en déduire la loi de Y et la reconnâıtre.

Déterminer la loi de Z = X− Y ; les variables X et Y sont-elles indépendantes ?� �
11.155� �OdlT 2015/2016 CCP PSI planche 249II

Deux variables aléatoires X et Y suivent une loi de Bernoulli de paramètres respectifs p et q. La covariance

de X et Y est nulle. Montrer que P(X = 1, Y = 1) = P(X = 1)P(Y = 1) puis que X et Y sont indépendantes.� �
11.156� �OdlT 2015/2016 ENTPE-EIVP planche 280I

Deux variables aléatoires indépendantes X et Y suivent la loi donnée par P(X = k) = P(Y = k) = p(1− p)k,

p ∈]0; 1]. Donner la loi conjointe de U = Max(X, Y) et V = Min(X, Y) puis en déduire les lois de U et de V ;

sont-elles indépendantes ? Donner la loi de S = U+ V ; admet-elle une espérance ?� �
11.157� �OdlT 2016/2017 X/Cachan PSI planche 36I

Soit deux réels a < b et n ∈ N∗ ; on note X1, . . . , Xn des variables aléatoires réelles, mutuellement
indépendantes et prenant leurs valeurs dans [a; b].

Si S est leur somme, on veut montrer que ∀t > 0, P (S− E(S) > t) 6 e

−2t2

n(b−a)2 .

Montrer que si ϕ est continue de [c;d] dans R, nulle en c et d, de classe C2 sur ]c;d[, de dérivée seconde
strictement positive, alors ϕ est négative ou nulle.

Soit s > 0 ; montrer, à l’aide du résultat précédent, que : ∀y ∈ [c;d] , esy 6 c− y

c− d
esd + y− d

c− d
esc.

Soit une variable aléatoire Y d’espérance nulle et prenant ses valeurs dans [c;d].

Montrer que ln
(
E(esY)

)
6 ln

(
c

c− d
esd + −d

c− d
esc

)
puis que E(esY) 6 e

s2(d−c)2

8 (on admettra que

ln

(
c

− d
esd + y− d

c− d
esc

)
6 s2(d− c)2

8
). Montrer que P (S− E(S) > t) 6 e−st

n∏
i=1

E(es(Xi−E(Xi))).

En choisissant bien les Y, montrer que P (S− E(S) > t) 6 e
−st+n

s2(b−a)2

8 .

Déterminer le minimum du majorant ci-dessus et conclure.� �
11.158� �OdlT 2016/2017 X/Cachan PSI planche 39

Des variables aléatoires indépendantes Ui suivent une loi de Bernoulli de même paramètre p ∈]0; 1[.

Z est une variable aléatoire à valeurs dans N. On pose X =
Z∑

i=1

Ui et Y = Z− X =
Z∑

i=1

(1− Ui).

Montrer que ∀(k, l) ∈ N2, P(X = k, Y = l) =
(
k+l
k

)
pk(1− p)lrk+l où ri = P(Z = i).

Exprimer pk = P(X = k) et qk = P(Y = k) à l’aide de p et de la suite (rn)n>0.

Montrer que si Z suit une loi de Poisson, X et Y sont indépendantes. On suppose X et Y indépendantes et Z

non presque sûrement nulle ; montrer que rn =
∑

k+l=n

pkql puis que p0, p1, q0, q1 sont strictement positifs.

Montrer que pk+1ql(k + 1)(1 − p) = pkql+1(l + 1)p et en déduire une relation de récurrence vérifiée par
(qn)n>0. En déduire qn en fonction de p0, p1 et p. Montrer que Z suit une loi de Poisson.
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� �
11.159� �OdlT 2016/2017 Mines PSI planches 110II et 114I abordable dès la 1ère année

On donne n > 2 variables aléatoires réelles discrètes X1, . . . , Xn indépendantes qui suivent la loi deBernoulli

B(p) avec p ∈]0; 1[. On pose U =

 X1
...

Xn

 et M = UtU ∈ Mn({0, 1}). Donner les lois de rang (M) et Tr (M).

Quelle est la probabilité que M soit la matrice d’une projection ?

On note V le vecteur dont toutes les coordonnées valent 1 et S = tVMV ; donner E(S) et V(S).� �
11.160� �OdlT 2016/2017 Mines PSI planche 115II

Deux variables aléatoires indépendantes X et Y suivent une loi géométrique de paramètres respectifs p et q.
Montrer que Z = Min(X, Y) et T = Max(X, Y) sont deux variables aléatoires.

Donner leurs fonctions génératrices et, si elles existent, leurs espérances.� �
11.161� �OdlT 2016/2017 CCP PSI planche 208II

On note N la variable représentant le nombre n de jetons tirés au cours d’un jeu ; elle vérifie P(N = n) = 1

2n
.

Si n est pair, le joueur gagne n jetons, sinon il en perd n.

Donner la probabilité de gagner, l’expression du gain algébrique G et son espérance.� �
11.162� �OdlT 2016/2017 CCP PSI planche 213II abordable dès la 1ère année

Des variables aléatoires indépendantes Xn suivent chacune une loi de Bernoulli de paramètre pn ∈]0, 1[ et

vérifient lim
n→+∞

1

n

n∑
i=1

pi = p ∈]0; 1[. Montrer que : ∀ε > 0, lim
n→+∞

P
(∣∣∣X1 + X2 + . . .+ Xn

n
− p

∣∣∣ > ε

)
= 0.

� �
11.163� �OdlT 2016/2017 CCP PSI planche 215II

Une variable aléatoire X suit une loi de Poisson de paramètre λ > 0. Calculer l’espérance de Y = X2 + 1.

Calculer P(2X < Y). Calculer la probabilité que X soit pair ; y a-t-il plus de chances que X soit impair ?� �
11.164� �OdlT 2016/2017 EIVP PSI planche 244III abordable dès la 1ère année

On lance deux dés à 6 faces de façon indépendante, jusqu’à obtenir au moins un 6 ; trouver la loi de la
variable aléatoire N donnant le nombre de lancers nécessaire.� �

11.165� �OdlT 2016/2017 Mines-Télécom PSI planche 248II

Une poule pond un nombre N d’œufs suivant la loi de Poisson de paramètre λ ; K d’entre eux éclosent avec
une probabilité p, de manière indépendante les uns des autres. Donner les valeurs prises par N, la loi de
probabilité de K sachant que N = n œufs ont été pondus et en déduire la loi de K.� �

11.166� �OdlT 2016/2017 Mines-Télécom PSI planche 249I abordable dès la 1ère année

On lance n fois 2 dés non truqués A et B ; X est la variable aléatoire associée au nombre de fois où le
chiffre de A est strictement supérieur à celui de B. Donner la loi de X, E(X) et V(X). Rappeler Bienaymé-

Tchebychev. Exprimer pn = P
(
0, 9 < X

E(X) < 1, 1

)
avec |X− E(X)| et trouver n tel que pn > 0, 99.

� �
11.167� �OdlT 2016/2017 ENSEA PSI planche 251II

c chasseurs font face à l lapins munis de fusils à carottes ; les lapins touchent les chasseurs indépendamment
avec une probabilité p ∈]0; 1[. On note Xi l’indicatrice de l’évènement Ci : ”le i-ème chasseur est touché” et
V la variable aléatoire représentant le nombre de chasseurs visés par les lapins.

Déterminer l’espérance de V et la probabilité que Ci se produise.
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� �
11.168� �OdlT 2017/2018 Mines PSI planche 116III, abordable dès la 1ère année

On pioche une poignée de jetons dans une urne en contenant n, numérotés de 1 à n ; on admet que chaque
poignée (y compris la poignée vide) a la même probabilité d’être tirée.

Donner l’espérance de la variable aléatoire S donnant la somme des numéros tirés.� �
11.169� �Compléments OdlT 2017/2018 Mines PSI planche 177II

Spot p ∈]0; 1[ et X et Y deux variables aléatoires indépendantes suivant la loi géométrique de paramètre p.

Donner la loi de S = X+ Y et celle de X sachant (S = n).

Reconnâıtre la loi de Z à valeurs dans N∗ vérifiant ∀n ∈ N∗, P(Z > n|Z > n+ 1) = 1− p.
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