SOLUTIONS EXERCICES CORRIGES 11
VARIABLES ALEATOIRES

[11.1 Variables aléatoires infinies}

a. Quand on repasse a lorigine, pour la suite de 'expérience, c’est comme si on repartait de (0,0) a

I'instant 0, les probabilités des transitions ne sont pas modifiées. C’est un processus sans mémoire. En
notant Ry le temps du premier retour a l'origine : Rj(w) = +00 si on ne revient jamais et Ry(w) = k tel
que Yi € [[1;k — 1], Zi # (0,0) et Zy = (0,0). On note de méme R, le temps du second retour. Alors

(N >2) = U (R1 = i, Rz = j) (réunion d’événements incompatibles). Ainsi, par c-additivité, on a
1<i<j
oo , 400 too st

PNZ2) =3 (X PRi=i,R=j)) =% (£ PRi=iPg,i(R2a=7)).
i=1 Nj=it1 i=1 Nj=it1

Le fait que le processus soit sans mémoire nous dit que Pgr,—=i(R2 = j) = P(Ry = j — i) ainsi, il vient
oo , +oo Foo 2 2

P(N>2)= > ( > P(Ry :jfi)) PRy =1) = ( > PRy = 1)) = (P(N > 1)) car on peut décomposer
i=1 Nj=it] i=1
“+o0

(N2T1)= U (R1 = 1) (incompatibles deux & deux). De méme, P(N > k) = P(N >k —1)P(N > 1) ce qui
i=1

donne par une récurrence simple : Vk >0, P(N > k) = P(N > 1)k

+oo
b. (N =+o00) = ﬂ (N > k) et la suite ((N > k)) est croissante donc, par continuité croissante :
keN
k=1
P(N = 4+00) = lim P(N >k)= lim P(N > 1)k Ainsi P(N = 400) =1 <= > P(N > 1)* diverge
k——+o00 k—+o00 nxl
car >, P(N > 1)k divergesi P(X>=1)=1et >, P(N > 1)* converge si P(X > 1) < 1 (série géométrique).
n>1 n>1

c. On a P(Z,, = (0,0)) = 0 si n est impair. Si n = 2p est pair, il faut autant de Sud que de Nord et autant

d’Ouest que d’Est pour qu’on revienne en (0,0) a instant n. Ainsi en notant 2k le nombre de déplacements

”horizontaux” dans les 2p premiers déplacements (k € [[0;p] et ceci constitue une partition), on obtient la

P (2 2p —k\ (2p — 2k 1
relation P(Zyp, = (0,0)) = > ( p) ( P ) ( P ) (choix des k Sud parmi les 2p déplacements,

k=0 \ k k p—k J4%p
des k Nord, des p — k Est - le reste ce sera des Ouest forcément).
; (2p)! 1 & () 2»
Alors P(Zy = (0.0)) = —1— P __1 .
ors P(Z2p = (0,0)) = 735 EO KKl(p —K)!(p—Kk)! 427 éo k) \p—k

ap\° 1 (m\?

d. D’apres la formule de VANDERMONDE : P(Z, = (0,0)) = P(Z;p = (0,0)) = 4% (Zp) = 4n< ) et
P n

12 4n 4n
avec STIRLING on trouve, si n pair, P(Z, = (0,0)) = 1 (@2n)! ~ £ 4“2(22‘“)4“ ~ 1

4" () 4o @M 4Pt oo

Par conséquent > P(Z,, = (0,0)) diverge par comparaison aux séries de RIEMANN.
n>l

e. Ona E(Np) =1x P(Z, = (0,0)) + 0 x P(Z, # (0,0)) = P(Z, = (0,0)).
P
Par linéarité de l'espérance : E(Ngo +--- +Np) = > P(Zx = (0,0)) ce qui prouve la question précédente
k=0

+o00o
que lim E(No +---+ Np) = 400. Comme N = > Ny, ona N > Ng+---+ Ny et on a admis

p—+oo n=0

+oo
provisoirement que E(No+---+Np)= > P(No+---+Np >k). Or (Ng+---+Np > k) C (N > k) donc
k=1



P(No+---+Np > k) < P(N > k). Par conséquent, comme 11111 Z P(No 4 -+ Np > k) = +o00, la série

> P(N > k) diverge. On a bien prouvé que P(N = 4o00) = 1.

a. Xj est une loi de premier succes dans une répétition indépendantes d’expériences suivant B(p). Alors X;
suit une loi géométrique de parametre p. Alors d’apres le cours : E(Xy) = 1t V(X1) = ]—_ZB
P P

b. Si on impose (X3 = i), pour obtenir X, = j, il faut continuer les tirages par FFFF---FFP (avec face des

tirages i 4+ 1 & j — 1 et pile au tirage j). Ainsi, il vient Px,—(X2 =j) = (1 —p))"""'p. On en déduit
j—1 j—1 . ) .

que P(X2 =j) = 3 Pi=p(X2 =j)P(X1 =1) = 3 (1= p) " Tpp(1 —p)'~" = (= 1)(1 = p))?p?. Par
i=1 i=0

p +o0 +oo . T /j _ 2p? 2
conséquent, E(xz) = £ )P0 =) = £ =109 292 =297 & (D) gt o =2,
j= =

by (—(=-p) »

+oo
c. De méme, par le théoreme du transfert, E(Xa(Xz —2)) = 3 k(k — 1)(k — 2)(1 — p)*~?p? ce qui donne
k=3

e ( s &1-p) _6(1-p)

E(X2(X2—2)) = 6p*(1— ()1_k3: =

(X2(X2=2)) = ep~( P)kZ:)S ;) (0-7) a9 N~
6(1 — 2(1 —

V(X2) = E(X3) — E(X2)? = E(X2(X2 —2)) + 2E(X2) — E(X2)? = % + % - I% = %

d. Chaque tirage élémentaire de la forme FFFPFP - - - FFPPFFFFP ot 'on a n piles (dont le dernier) parmi les

k premiers lancers a une probabilité de p™(1 — p)*~™. Pour en connaitre leur nombre, comme le dernier
tirage est imposé car X;; = n, il ne reste plus qu’a choisir 'emplacement des n — 1 autres pile parmi les k — 1

k—1
premiers lancers. Ainsi P(Xn, =k) =0sik<net P(Xp, =k) = (n : )p“(l —p)" ¥ sinon. On en déduit
n—

. Alors par linéarité de I’espérance,

que E(Xn) = Z k( B ]>p“(1 —p)km = Jrf:o n<k>p“(1 —p)k T = ot d’apres l'exercice
" —1 K=n \N (1= —p)n*?

précédent donc E(Xn) = & comme attendu.
p

a. Les pi; sont positifs. Ils définissent bien une loi de probabilité conjointe car leur somme totale
too [ i yi —A_j i—j oo 44 i . +o0 44
o A _oeeat i CRRAL
Y op= (DA EL ) = Y Aer [ o xplgiT | = Y e =eter =1
(i,j)EN2 i=0 \j= : : i=0 U =0 3!(i —3)! i=o v
En effet, par le binome de NEWTON : 3~ ol xplqgtT =(p+q)t =

j=0 j! (1 )
On aurait pu aussi le vérifier en sommant par lignes :

+oo [+00 i —Aj i—j +o0 i-j +oo j
) <Z w> — A Z : <Z (Aq) ) — e Ne P 3 (7\}:) — e AeAdgAP — 1
j=0 ] j=0 ):

i=0 \ i=j i =) i=j (i—i)!

o] Loi marginale de Y : ¥j € N, P(Y =j) = Z Pij = Gp) X e P 1 Y suit la loi de POISSON P(Ap).

R Sale it At A sl
e Loi marginalede X : P(X = 1) = mezzgm—:—Xe_ Xzi'xr)q‘)donc

i=o '@ —i)! il =0 3! —j)!
P(X =1) = )\—'1 xe Mx(p+q)t= )‘—'l x e~ : X suit la loi de POISSON P(A).
il il
P(X=1i, Y=j) _ il

b. e Loi conditionnelle de Y sachant (X =1) : Px—i(Y =j) =

= i-j 0<

P(X = 1) T LA NN
et Px—i(Y =j) =0 sinon. La loi conditionnelle de Y sachant (X = i) est la loi binomiale B(i,p).

Ce n’est pas la loi de Y : les variables X et Y ne sont donc pas indépendantes.

c. e Loide Z = X—Y: py; est nul dés que j > i. Par conséquent, X est presque siirement supérieur a Y. Z est
—+oo

une variable aléatoire & valeurs entiéres positives ou nulles. Vk € N, (Z =k) = U (X=j+Kk) N =j).
k=0



oo A K oo (rii K K
Ainsi P(Z =) = Z Pitk,j = Z ?‘ pq* (Aq') xe Ax Y (M:) = (?\q') xe MxelP = (7\q') xe N,

Z=X—Y suit donc la loi de POISSON P(Aq).
P(y=j, X—Y=n) PiY=j, X=j+n)

e Loi conditionnelle de Y sachant Z=n : Pz_,(Y =j) = P(Z =n) = P(Z = n) ce
(Ap)’
jl

qui donne apres calculs Pz_n(Y =j) = e *P. La loi conditionnelle de Y sachant (Z = n) est la loi

binomiale P(Ap). C’est exactement la loi de Y et ceci ¥n € N : les variables Y et Z = X — Y sont donc
indépendantes.
On pouvait s’attendre au résultat en constatant au départ que (Y =j, Z =1) = X =i+j, Y = )')
}\i+je—>\qu ?\1+)e Ap— qu q

jlil il

j i
p+q=Tdonc P(Y=j, Z=1) = ((M?) X e7‘q> ((7\(1') X ehq) donc on se doute bien qu’on va obtenir
j! il

j i
de I'indépendance avec P(Y =j) = (Mi) xe Met P(Z=1) = (Ap) X e P,
j!
On peut alors utiliser le cours pour dire que comme X = Y + Z et que Y suit une loi P(Aq) et Z une loi P(Ap)
et qu’elles sont indépendantes, on a X qui suit une loi P(Ap + Aq) = P(A).

IS IS C 3C
a. On doit avoir ) P(X = k) = 1, ce qui équivaut & C > ¥ = T = donc C =
k=0 k=0 11— -

3

qui entraine : P(Y =j, Z=1i) = PX =i+j, Y =j) = piyj,j =

Ainsi

w I

Vke N, PO+X=k =PX=k—1)= §3

b.Onaz(Q)=NetVke N, P(Z<k)=P(X<¥k, Y<k)=P(X<k)P(Y < k) par indépendance.

OrIP’(x<k)—IP>(Y<k)—§kjP(X—‘)—gﬂ—1—L Ainsi P(Z <k) = (1— ’
XK= SN T L —J—3 T—(—p) = 3RFT S K= kAT )

2 2
Alors : Vk € N, P(z—k)—P(zgk)—P(zgk—U—(1—3k‘+1> —(1—‘) .

3K
Onaw(Q)=NetVke N, PW>k) = IP’(X >k Y>k) =PX> k) P(Y > k) par indépendance. Or on a
1
PX>k)=P(Y>k)=1—-PX<k) = 3k+1 Ainsi P(W > k) = 9k+1 Comme P(W > —1) =1 :9*17“)’
k
o 1 1 8 (1
On en déduit que T+ W suit une loi géométrique de parametre q = %
On sait alors d’apres le cours que E(1+W) = é % donc, par linéarité : E(W) = % Toujours par linéarité :
WH+Z=X+Yet EQ+X)=E(1+Y)=1= % donc E(X) = E(Y) = % d'ott E(z) =1-— % = %
P
- = =« o 1
Notons pi; = P((X,Y) = (1,j)). On veut . Z pi,j = 1. Or Z Pij = E St = i % +. De plus,
(i,j)E N2 i=0 i=0 < )- ): 1 ——
2
o (X X 2« o 1T e (s s 2 ;s e”!
2:0 <Z Pl,]) = E:O il =2xe. Ainsi: a« = %6 d'ou V(i,j) € N5, P((X,Y) = (i,j)) = FIarE
) )= : !

Les lois marginales Sont aisées a déterminer :

_ e ! X 1
evVic N, P(X=1) = Z Pij = i _ZO i1 2T
=0 3!

. . e ! p 1 e”! Vo
.VJGN> P(Y:]):Zpi,j:TzziJ’,]:T:Te .
i=0 )- i=0 ): ):

1

1 4+ X sui la loi géométrique de parametre p = 3 et Y suit la loi de PO1ssON de parametre A = 1.



a. Pour n € N, comme {S =n} = U {N =k, Xj+--+Xx =n} (réunion disjointe), on obtient la relation

keN
+oo too
P(S=n)=> P(N=%k X;+---+Xg=n) = > (N=k)P(X; +---+ Xy = n) par indépendance mutuelle.
- k=0
+oo +oo
Pour t €] — 1;1], Gs(t) = E P(s = (5 BN =1)P(X1 + -+ Xic = n)e" ). Dapres I'énoncé,
=0 VM k=0
+oo , +oo " too , too
Gst) = 3 ( S PN = k) P(X; 4 -+ + X :n)t“) =5 ( S P 4+ X :n)t“)IP(N = %) donc
k=0 *n=0 k=0 *n=0
“+o00 k
Gs(t) = X Gxy44x, (1) P(N = k). Or, par indépendance mutuelle, on a Gx, 4..4x, = [] Gx, = G, et
k=0 i=1
on arrive enfin & Gg(t) = Z P(N = k) (Gx, (1)) = Gn (Gx(1)).
b. Gx et G, sont donc des fonctions dérivables en 1 d’ apres le cours et, par composition, Gs aussi avec
G5 (1) = G4 (1)GR (Gx (1)) = G4 (1)GA (1)) car Gx(1) = 1. Dapres le cours, E(S) = E(N)E(X).
c. eVt € R, Gg(t) = rMI=PHPt=1) — AP(t=1) donc § suit la loi P(Ap).
- q(1 —p+pt) q(1 —p) +pqt q(1 —p) + pqt 1
e Si|t| <1, Gs(t) = = = X —.
i © 1-(1—q)(1—p+pt) p+q—pa—p(l—qt  p+qg-pq ~ ;_PUZdt
p+a-pq
_ “+o00 _ n
On développe avec la série géométrique, Gs(t) = 90 —p) +pat X > (M> t™. En identifiant,
P+dq-—7pq P+dq-—7pq
_ _ n _ n—1 n _ 41
ona¥n e N*, P(s =n) = 40 =Pp) ( p(1—q) ) 4L __Pq ( p(1 —q) ) _ p"a(l—q) -
P+4—Pa\p+a—pq P+4—Pa\p+a—pq (p+4q—-paq)
(unicité des coefficients d’une série entiere). De plus, P(S =0) = M
PT4q—7q

[11.2 Exercices aux oraux des étudiants de PSIlj

Soit X; la VA égale au nombre de point obtenu a la question i. Soit A; ’évenement "1’éleve répond juste la
premiere fois & la question i”, B; : "I’éleve répond juste la seconde fois a la question i. On note n le nombre
n

de questions et aussi X la note qu’obtient le candidat : X = > Xj.

Alors P(X; =1) = P(Ay) = % (réponse au hasard parmi k réponses possibles).
De plus, P(X: = 1) = P(AT NB) = Po(Bo) P(AY) = Akt =]

Ainsi: P(X; =0) =1—P(X; =1) — ( 7%)

On en déduit que E(Xi) = 0 x P(X; = 0) + % X ]P’(Xi = l) +1x P(X; =1) = . donc, par linéarité

2

n
de lespérance, la moyenne que peut obtenir I'éleve est de E(X) = Y. E(X;) = g—Tk‘ Si on veut que cette
i=1
3n

moyenne soit égale a 5, %= 5 <= 3n = 10k. Mais 3 et 10 sont premiers entre eux donc ceci implique que

10|n et 3|k par le théoréme de GAUSS. Réciproquement, si n = 10p est un multiple de 10 et k = 3p, on a
E(X) =5.

La note moyenne que peut obtenir 1’éleve est de 5 ssi il existe un entier p € N* tel que n = 10p et k = 3p.

a. Comme rang (U'U) < Min(rang (U),rang (*U)) < 1 car U est une matrice colonne, on a rang (M) € {0,1}.
Or Tr (M) = Tr (U*U) = ||Uu]|?> donc si M = 0, on a U = 0 et, si U = 0, il est clair que M = 0. Ainsi,

4



M =0 <= U = 0 donc rang(M) = 0 <= U = 0 : rang (M) suit la loi de BERNOULLI de parameétre

q = P(U#0).
n
Comme ( ﬂ Xk = 0) et que les variables aléatoires X1, -+, Xy sont mutuellement indépendantes,
k=1
n
P(rang (M) = 0) = P(U=0) = [] P(Xc =0) = (1 —p)" d'ott B(rang(M) = 1) = 1— (1 —p)".
k=1

Ainsi, rang (M) suit une loi de BERNOULLI B(q) de parameétre ¢ =1 — (1 —p)™.

b. Classiquement : M? = utuutu = utuu)tu = [[u||*M et |[U]|> = T (*uu) = Tr (UtU) = Tr (M)
donc M? = Tr (M)M. On en déduit que (M? = M) = (Tr (M) = 1) U (M = 0) (réunion disjointe) donc
P(M? =M) = P(Tr (M) = 1)+ P(M )malsTT( )=1+= X3+ X2 =1<= X7+ +X, = 1 donc

P(Tr (M) =1) = (T]l)pU —p)" ' carS = Z Xy suit d’apres le cours la loi binomiale B(n,p). La probabilité
k=1
que M soit une matrice de projection est P(M? = M) =np(1—p)* '+ (1—p)" = (1 —p)" 1 ((n—1)p+1).

a. En prenant B = (i), on a A = M et xa = X2 donc A est nilpotente et non nulle. Si elle était diagonalisable,
elle serait semblable a une matrice diagonale avec les valeurs propres sur la diagonale. Or a seule valeur propre
de A est 0 donc A serait semblable & la matrice 0 donc égale & 0 : NON ! A n’est donc pas diagonalisable.
b. D’abord le cas n = 1: xa = X?> — b?(1 +b?) qui est scindé & racines simples si b ¢ {0,1, —i}. Donc A est
diagonalisable si et seulement si b ¢ {i, —i}.

1301 BO > diagonale par blocs est donc semblable a A par I'indication.
2

A est donc DZ si et seulement si chacun des blocs I'est donc si Sp(B) N {i, —i} = 0.

Dans le cas n = 2, la matrice A’ = <

c. Les valeurs propres de B sont les Xy,...,Xn. Sin 2 0 [4] alors p vaut 1 car i et —i ne peuvent pas étre
n
dans Sp(B). Si n =0 [4], alors par indépendance, p = (L_Z)
n
+oo
11.10] a. Comme X est & valeurs dans N, pour tout entier n € N, on a (Y =n) = U (Y = n,X = k) (réunion
k=0
d’événements incompatibles) donc, par o-additivité, comme P(Y =n,X = k) = 0 si k > n par hypothése, on
n n n
2B = = B Ry =nx =1 = & (1) 0t = a0 -9 E (}) = piaalr ) e
k=0 k=0 \k k=0 \k
“+oo
plus, comme Y est aussi & valeurs dans N, Q = U (Y =n) (incompatibles) donc, toujours par c-additivité,
n=0
“+o0 “+o0
il vient P(Q) = Z P(Y=n)=p 3 (2a(1 —p))* = ——L— (la série converge forcément).

Ainsi, p =1—2a(1 —p) devient a = % car p # 1.

b. On a déja calculé P(Y =n) =p(1 —p)™ & la question précédente sachant que a = ]E Ainsi, 1+ Y suit la

loi géométrique de parametre p car P(Y+1=n)=P(Y=n—1) =p(1 —p)"~'.
“+ o0
c. Vke N, (X=k) = U (Y =n, X =k) (réunion disjointe) donc, par o-additivité, on obtient comme avant
n=0
+oo +oo /' I\
PX=% = > P(Y=n, X=k)=p > <k) (E) (1 —p)™. Or, en dérivant k fois la relation classique
n=0
1 =
Vx €] — 1;1], : = > x" (série entiere de rayon de convergence 1), on obtient la formule du bindéme
-x n=0
L. | g ! _ 1 e /Mm\ . _
neat1fV€—1;1,#: _n ok o T n—k
S A e o =5 W)



s =0 (590 e = ()05 ()0 %) e
2

simplification. Ainsi, 1 4+ X suit la loi géométrique de parametre %

2
d. PX=Y=0)=p # ]Aj_— = P(X = 0)P(Y = 0) car p2 # p : X et Y ne sont pas indépendantes.
)

e. Z prend presque stirement ses valeurs dans N d’apres les conditions imposées & X et Y et pour m € N,

+o0 oo K
comme avant, on a (Z =m) = U(X =k Y=m+k)donc P(Z=m) =} (m]j >am+k(1 —p)™Ep.
et k=0
k k +too /4 .
Comme <m+ > = <m—|— ) et en posant i = m+k, on a P(Z =m) = <1>(a(1 —p))'p donc
k m i=m \M
Too /4 . 1—p\m™ 1 2p /1 —p\™
P(Z =m) =p(a(l —p))™ a(l—p)) ™= X = .
@=m) =pla-p)m £ (2@ - =p(57) =y ()
2

Ainsi, 1+ Z suit la loi géométrique de parametre %’ comme X.
P

f. Comme P(Y = n) = p(1 —p)™ > 0, la loi de X sachant (Y = n) existe pour tout n € N. Si k > n,

P(X = k|Y = n) = 0 par hypothese et, si k € [0;n], P(X = k|]Y =n) = PX=kY=mn)

PY = 1) par définition donc

n
( )(1/2)“(1 -p)"p In
k n . C 1. . 1
P(X=k|]Y=n) = = = (7> . X sachant (Y =n) suit la loi binomiale B (n, 7>.
p(1—p) k) \2 2
11.11| a. En supposant que les résultats des parties sont indépendantes, X étant le nombre de succés dans une

répétition de n expériences suivant une loi de BERNOULLI de loi B(0.4) (gagner ou pas la partie de golf), X

k
suit la loi binomiale B(7,0.4). Ainsi : Yk € [0;7], P(X =k) = (7> 0.4%0.6" 7%,

Comme Y = 30(7 — X) et que X(R2) = [0;7], on a Y(£2) = {0, 30, 60, 90, 120, 150, 180,210}
7
b. Comme (X=4)=(Y=90),onaP(Y=90)=P(X=4) = (4) (0.4)*(0.6)% ~ 0.19.
c. Par linéarité de l'espérance, comme E(X) =7 x 0.4 = 2.8, il vient :
E(Y) = E(210 — 30X) = 210 — 30 E(X) = 210 — 30 x 2.8 = 210 — 84 = 126.
Question supplémentaire : on sait que V(aX + b) = a? V(X) en général et on connait la variance d'une VA
X qui suit une loi binomiale B(n,p) : V(X) =np(1 —p).
Dans notre cas : V(Y) = V(210 — 30X) = V(30X) = 900 V(X) = 900 x 7 x 0.4 x 0.6 = 1512.
11.12] a. X, est le nombre de succes dans une suite de n expériences indépendantes suivant la méme loi de

BERNOULLI B (l> (prendre ou pas la boule 1 parmi n boules avec probabilité uniforme). Ainsi X;, suit la
n

k n n

c s . 1 . . . . _(n INKk/n—1\n"k
loi binomiale B (n, E) ce qui se traduit par Vk € [0;n]], P(Xn, =%k) = ( > (7> <7) .

On sait d’aprés le cours qu’en notant p = -, on a EXn)=np=Tet V(Xy,) =np(1 —p) = n—1
n n

n! (TL o ])n—k
kl(n —k)! n™

q
et avec I’équivalent q! fox \/Z?q(ﬂ) de
e

o0

b. Pour k € N* fixé, Vn > k, P(X;, = k) =

/ n_n—-k _ 1)k
STIRLING, on a P(X, = k) o N zm]j)l( € T Rer X (n 72 ce qui devient apres simplification
> kiy/2m(n — k)(n — e n
_ —k —k -1 k-1
P(Xn = k) ~ %(%)n . Or (“7_]1)“ _ o (R=0) o (=) ke par
o] ! n— n—
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—k k-1
continuité de 'exponentielle et car In (1 + k=1 ) ~ X=1 Ainsi, lim PXp,=k)=&%-£&t — = 1,
n—k/ +on—k n—+oo k! ek!

— ce — n—k
Ou alors on écrit P(X,, = k) = n(n—1) o (S k+1) (n — ]) et on conclut comme avant que l'on a
In n
lim p(xn:k):M_Lcm lim (M)“—k:let lim n(n—])...(n—k%—]):l.
n—+oo k! ek! n—+oo n e n—+oo kInk k!

La suite de variables aléatoires (X )nen+ converge en loi vers X suivant la loi de POISSON de parameétre 1.

c. Comme Q = (X;, pair) U (Xy, impair) (incompatibles), alors 1 = P(X;, pair)+ P(X;, impair) = q(n)+p(n).

Par définition, q(n) = P(X, pair) or on décompose (X, pair) = U Xn = k) = U (Xn = 2k)
o<k<n 0<2k<n
kpair
n 1\2k /n — 1\n—2k
(incompatibles), d’ott par o-additivité : q(n) = >, PXn=2k)= > ( ) (,) ( ) )
0<2k<n 0<2k<n \Zk/ \n n
n 18 2k+1 /1 — 1y n—2k—T
De méme p(n) = Y. PXn=2k+1)= > ( > (,) (7) .
0<2k+1<n 0<2kt1gn \Zk+1/ \n n
n T\K/n —1\n—k —1 1\n n
Par conséquent : q(n) — p(n) = Z(])k<n) (—) (n ) = (n — ,> ( ) (car
k=0 k/\n n n
on a (—1)2% = 1 et (=1)2%"1 = —1). Puisque p(n) — q(n) = exp <nln( — ;) , on en déduit que
n
i - — 2 2y~ —2 Ansi ()+q(n) p(n) —q(n)
nl_l}g_loo (q(n) —p(n)) = e 2 car In(1 n) ool Ainsi, comme p(n) = et
_p(m)+4qm)+4qm) —p®) : 1 i _1 LN
q(n) = > ,on a ngrﬂoop(n) =5 5 ~ 043 et BT q(n) = p + 2 0.57.

2e
d. Sion ne fait que des 1 (ou des 2), P(Xn, =n) = 1 (ou P(Yp, =n) = —). Mais il est 1mp0551ble d’avoir
n"
Xn=Yn=n: P(X;, =Y, =n)=0# P(X;, =n)P(Y;, =n). Ainsi, X;, et Y, ne sont pas indépendants.
11.13| On numérote les figurines de 1 & n, on note Xy le numéro de la figurine obtenue au paquet k.

k-1
a. Ny =T; = 1 et T, suit la loi géométrique S(L_]) Vk =1, P(T=%) = n7—1(l) (k — 1 échecs
n n o o\n
n—1

consécutifs et un succes). En effet, la probabilité d’avoir une figurine différente vaut car il y an
figurines et une déja obtenue au premier paquet.

b. Soit (A2,A3) € (N*)%, si Ay > A3, IP(TZ =X, T3 = 7\3) = 0 par construction de T2, T3. De plus, si A» < A3,
]P’(Tz =N, T3 = )\3) = P(N2 = 1+42A2,N3 =147z +A3) qui vaut, en revenant aux évenements élémentaires,
P(N2 = T4+ A2, {Xa,+1, 5 Xao+rs =11 € {X1, X0, 5 X14a,47; € {X1,Xa,}). Par indépendance de (Xi)x>1,
P(Ta =22, T3 =2A3) = P(N2 =1+ 22)P({Xo, 41, Xnotas—1F € {X1, X0, 1 X14as 445 € {X1,Xa,}) ce qui

donne finalement ]P’(Tz =N, T3 = ?\3) = (l))\z_] (nT_]) (;)}\3_1 (“7_2)

n n n

Az—1 _ _ A3—1 +oo Az—1
Par conséquent : P(Tz =A3) = Y. P(Ta = Az, Tz =A3) = (W) (;> ’ > (l> *7 done
Ar=2 n n Ax=1

P(rs = p) = (== 2y ()27 )T (nmy 2y

On en déduit que T3 suit la loi géométrique de parametre n—2;cp2_7_n=-2
n n n

171 Ar—1 2 2 Asz—1
c. On vérifie P(Tz = A2, T3 = 7\3) = P(T, = A2)P(T3 = A3) = L(*) (Tl;) (*) ce qui
n \n n n
prouve que T, et T3 sont indépendantes.

quand on a

d. Comme & la question b., pour m € [1;n]], Ty, suit une loi géométrique de parametre n—m+1 (
n



m—1 figurines, on attend d’en avoir une de plus avec une probabilité de 'avoir a chaque paquet de 11—7m+l)
n

En supposant Tq,---, T, deux & deux indépendants (ce qu’on pourrait démontrer par indépendance des

n n
(Xx)x>1), on a donc Ny = Ty + > Ti. Comme l'espérance est linéaire, on a E(Ny,) =n > % = H, donc
k=2 k=1
n
E(Nn)+~ nin(n) classiquement. Par indépendance, V(Ny) = > V(Ty) car V(N7) = 0. Or Ty suit la
o] k=2
S - — k—T)n .
loi géométrique px = *=KET1 done V(Ty) = L =Pk — ( donc, en posant j = n —k + 1, on
g q Pk n ( k) pi ( — K+ 1)2 p )
1

n—1 s n—
a V(Nn) = z (11)72])71 ce qui donne V(N,) = n? >

—_

2
>—n Y 1 Or on sait que 2) = % et que

n—]1 zn—l 1 PR 2n? .. 2n?
Hn +~Ooln(n) donc nj; ]f_pofonln(n) +:wo<n > J—z) car n j; ]7+NOO Tn Ainsi, V(Nn)_;:o “T

| > s) < V(Tn). On en déduit en
€

e. Par I'inégalité de BIENAYME-TCHEBYCHEV, Ve > 0, IP’(|NTL — E(Ny

prenant « > 0 et ¢ = « E(Ny,) que P(’Nn — E(Nn)| > ocE(Nn)) < > qui tend vers

s
o? E(Np)? +o0 62 In(n)

E(Nn) _ E(Ny) _,

nin(n) =

0 quand n tend vers +oo. Ainsi : Vaa >0, lim P ‘ Np l‘ >a| =0.
n—+4o0 ]E(Nn)
. < = ce qui implique que

Soit e €]0;1], il existe d’apres d. un rang np € N tel que ’
nin(n)

Nn —nin(m)| _ [Nn— E(Ny)| " |E(Ny,) —nin(n)|

Or, par inégalité triangulaire, on a < ce qu’on peut
nin(n) nin(n) nin(n)
réécrire ‘ Np 1’ < E(Ny) ’ Np 1‘ E(Nn) _ 1 ’ Par conséquent, ¥n > nyg, si Ny 1‘ > g,
nin(n) nin(n)l E(Ny) nin(n) nin(n)
comme’mfwgé,ona ]E(Nn)‘ Np ,1’>£,§:§. De plus, Commem<2, on en déduit
nin(n) 2 nin(n) ! E(N;,) 22 nin(n)
que‘ Ny —1‘>§:cx. On vient d’établir que P ‘ Ny —1‘>£ <P Np —1’>oc .
E(Ny) 4 nin(n) E(Nq)
On a montré que lim P ’ Ny 71‘ > « | =0 et on en déduit donc que lim l Ny 71‘ >¢| =0.
n-oo E(Ny,) n—+oo nin(n)

n
11.14 ] a. Soit n € N*, par indépendance de X et Y, P(S=n)=P(X+Y=n)= > P(X=ketY=n—k) donc
k=0

MSZn%=ZIWXZkﬂWYZn—k)=é;vU—vﬁ”v@—vﬁ’“”=(n+1wal—mnd-

P(X=kS=n) PX=kY=n—k)

b. Soit k € N, Ps_n(X =k) = donc Ps—n(X=%k)=0sik>net

P(S=mn) N P(S=n)
_ \k—=1 _ yn—k—1
Ps_n(X=%k) = p( —p) zp(] p) —— = 1 laloi de X sachant S = n est la loi uniforme sur [0;n].
(m+Dp (1 —p)" n+1

c. Prenons d’abord n = 0, alors Pz~o(Z > 1) = 1—p. Mais comme Z est & valeurs dans N*, on a (Z > 0) = 2

donc Pz-o(Z2>1)=PZ>1)=1—-p=1—P(Z=1)donc P(Z=1) =p.

Montrons par récurrence que, Vn > 1, P(Z > n) = (1 — p)™. La propriété est vraie pour n =0et n = 1.

_ P(zZ>n+1)
P(Z >n)

(Z>n+1,Z>n)=(Z>n+1). Ainsi, par hypothese de récurrence : P(Z>n+1) = (1 —p)™*'.

Soitn>2et P(Z>n)=(0—p)", Pzon(Z>n+1)=1- car il est clair que l'on a

On a donc par principe de récurrence : ¥n > 1, P(Z > n) = (1 — p)™ (vrai méme pour n = 0) donc
=1, PZ=n)=PZ>n)—PZ>n—-1)=0-p)" —~(1—p)" ! =p(1 —p)"~". Ainsi, Z ~ G(p).
Comme une loi géométrique modélise le numéro du premier succes (pile) dans une répétition infinie de tirages
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de pile ou face (ou la probabilité de faire pile est p), le fait que E(X) = 1 signifie qu’en moyenne on va
P

attendre * coups pour faire un pile dans cette configuration.
P

“+oo
11.15) a. 1l suffit de vérifier que Yn € N*, P(X =n) > 0 et que Y, P(X =n) = 1 ce qui est bien le cas par

n=1

définition méme de la fonction ¢ de RIEMANN.

+o0o +oo
Comme Ay = (X € kN¥) = U (X = nk), on a par o-additivité : P(Ax) = >, P(X = nk) ce qui permet de

=1 =

leuler P SN L p 1
calculer P(Ay) = ———ad = Ta X=n)=—.
R T I D
b. Comme i et j sont premiers entre eux : (i divise n et j divise n) <= ij divise n : on a (A1 NA;) = Ay
donc P(A;NA;) = P(Ay) : P(A1NAj) = (1? = la X la = P(A{)P(A;) donc A; et Aj sont indépendants.
Y 1 )
c. X admet un moment d’ordre 1 si et seulement si > nIP(X =n) converge, c’est-a-dire si a > 2 par critere
n>l
“+ o0
(a—1)

de RIEMANN. Alors E(X) = > n 1 _ = Z = .

n=1 Gan® = d(a ) ¢(a)
d. De méme, X admet un moment d’ordre 2 si et seulement si Y n?P(X = n) converge, c’est-a-dire si a > 3.

n>1
i —1)\? _ ol = 2)¢(e) = e = 1)*
Alors V(X) = E(X?) — E(X)? = 1 _(C(a ) = .
( ) ( ) ( ) nZ::1 C(a)na—Z C(a) c((x)z

Pour aller plus loin : (X =1) = (X > 2) or comme tout entier au moins égal & 2 possede un diviseur premier,
ona(X>2)= U Ap ou P est 'ensemble des nombres premiers. En les numérotant dans I'ordre croissant

pe’P
+oo +oo m
(p1=2<p2=3<p3z=5..),ona(X=> U Ap.. donc > ﬂ Ap, = m ﬂ Ap,. ce qui donne
n=1 n=1k=1
par continuité décroissante : P(X = 1) = nl_l}]lloo ]P’(ﬂk ] Apk) = l_l)m)o k]_l] P(Ap,) par indépendance de
n
ces évenements. On obtient donc —1— = lim Ap,) = lim (1 — i) = ( — i)
¢(a)  notoo kH1 (A n—+o0 kl;ll Pk pl;[‘}’ p®

Ainsi ¢(a) = p];[fp (1 _110).

P

a. Comme p # 0 et p # 1, on en déduit que Y, (Q2) = {0,1}. Par indépendance de Xy et Xn41, il vient
P(Yp, = 1) = P(Xy = Xpy1 = 1) = P(Xy, = 1)P(Xps1 = 1) = p2. Ainsi Y, suit la loi de BERNOULLI
B(1,p?). D’aprés le cours, E(Yn) = p?, V(Y,) =p?(1 —p?).
b. Bien sir, si i =j, Y; et Y; sont plus que dépendantes (elles sont égales). Sii < j, on distingue deux cas :
esij=1i+41,alors (Y; =1,Yi41 =1) = (Xy =1, X431 = 1, X432 = 1). Alinsi, par indépendance mutuelle de
Xi,Xit1,Xi42, on a P(Y; =0,Yi47 =0) = P(X; = 1) P(Xi11 = 1) P(Xi42 = 1) = p3. Or, d’apreés la question
a., P(Yi =1)P(Yi;1 = 1) =p*. Comme p #0et p#1,Y; et Yiy1 ne sont pas indépendantes.
e sij>1i+41, alors Y; dépend de X; et Xiy7 alors que Yiy7 dépend de Xj et X;j41, on sent que Y; et Yiiq
sont indépendantes (lemme des coalitions). Or (Y; =1,Y; =1) = (Xy = 1, Xi41 = 1,Xj5 = 1,Xj41 = 1), donc,
comme avant : P(Y; = 1,Y; = 1) = p* = P(Y; = 1)P(Y; = 1). On vérifie de méme qu'on a les égalités
P(Yi =1,Y; =0) = p2(1—p2) = P(Yi = 1) P(Y; =0), P(Yi =0,Y; =1) = (1—p?)p? = P(Y; = 0) P(Y; = 1) et
P(Y; =0,Y; = 0) = (1—p?)? = P(Y; = 0) P(Y; = 0). Ainsi Y; et Y; sont bien indépendantes : Cov(Yi,Y;j) = 0.
c. On traite trois cas selon le couple (n,m) :

e Sin=m, comme Y,Y = Y2 = Yy, on en déduit que E(Y,Yy,) = E(Y,) = p2.
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eSijn—m|=1, E(Y,Ym) = p°.

e Si [n —m| > 2, par indépendance de Yy et Yy, E(YnYm) = E(Y,)E(Yn) = pt.
Z 1 < np?
Par linéarité de I'espérance, comme Yk € [1;n], E(Yix) =p?, on a E(—n> =1 3 E(vy) =2 =p2
n n n
n n—1

d. Comme Y, et Yy, sont indépendantes dés que [ln —m/| > 2, on a V(Z,) = Z V(Yx)4+2 > Cov(Yi,Yig1)
i=1

d’apres le cours. Sii€ [1;n — 1], Cov(Yi,Yir1) = E(YiYiq1) — E(Yi)E(YlJr]) p3 —pt =p3(1 — p) donc
V(Zn) = np?(1 —p2)+2(n—1)p3(1 —p). Comme p3(1—p) >0, V(Z,) < Cn avec C = p2(1 p?)+2p3(1-p)
done € = p2(1 = p)[1 +p+2] = [p(1 = p)](1+3p)p < L a1 =10t V(E2) = %V(zm =

D’apres l'inégalité de TCHEBYCHEV, on a la majoration Ve > 0, P(‘Z—“ — pz‘
n

201 .2 1\e3(1
lim P (1 —p )+22(nz Dp~(1 —p) = 0 donc, par encadrement : Ve >0, lim ]P’(‘Z—“ —pz‘ > s) =0.

n—+4oo n-e n—-4oo

Par inégalité de BIENAYME-TCHEBYCHEV, nous avons ]P’(‘S—“ — pz‘ > a) < iz V(S—“>
n £ n

On conclut bien que Ve >0, lim ]P’(‘ Zn
n—-4oo

— pz‘ > e) = 0 par théoreme d’encadrement.
n

11.17) a. On constate que X + Y = Z. Ainsi, (k,1) € N2, PX =k Y=1)= P(X =k, Z=k+1).

k41
Sirtii1 =0, (Z = k+1) est négligeable, (X =k,Z = k+1) aussi: P(X =k, Y =1) = rk+1< : )pk(] —p)t=o.
Sirtepr >0, PX =k Z=k+1) = Pzoiyy(X = k)P(Z = k+1). Or la loi conditionnelle de X sachant

k+1
Z =k + 1 est la loi binomiale B(k + 1,p) donc Pz 1 (X =k) = ( : )pk(l —p)ttkk

. k+1
On conclut, et ceci dans tous les cas : P(X =k, Y =1) = rk+1< )pk(l —p)t.

k
+oo
b. On sait que (X = k) = U (X =k, Y =1). Ces évenements étant incompatibles deux a deux, on trouve
1=0
e p=y too k+1) L
par o-additivité : P(X=k) = Y, P(X=Kk,Y=1)=px = > Tkt1 L )P 1—p)"
1=0 1=0
Lo +oo +oo k+1 " L
Par symétrie : P(Y=1) = > PX=k,Y=1)=qi= > Tkl pe(1—p)"
k=0 k=0 k
Akl (k+1
c. Si Z suit une loi de POISSON de parametre A > 0, alors P(X = k) = S e Tk Pk —p)t
= (k+1)! k
k_—Ayk +o0 o 1 — k_—Ap
dott P(X = k) = £ A A1 —p) _ @A) e M-P) = ) e et X suit la loi de PoissoN
kKl 5 U k! k!
Akt (k1 1—pA)e M-P)
de parametre Ap. De méme P(Y = 1) = e Ml P —p)t = (T=p)A) e et Y suit
N (k +0!\ k U

la loi de POI1ssSON de parametre A(1 — p). Ainsi les variables aléatoires X et Y sont indépendantes car

P(x = k) P(y = 1) = (PN e (= p)N) eV oyt (k + l>p‘<(1 ) = PX =k, Y =1).

K! 1 k+D!'\ x
d. On écrit (Z =n) = U (X =k, Y =1). Cest la réunion dénombrable d’événements incompatibles
(k,1)e N2
k+l=n
deux a deux doncry, = P(Z=n)= > (X=kY=1)= > PX=KP¥y=1)= > pxq.
(k,1)e N2 (k,1)e N2 (k,1)e N2
k41=n k41=n k41l=n
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+oo 1
e. Comme Z est non presque stirement nulle, il existe s > 1 tel que rg > 0. Ainsipp = > 1y <O>p0(1 —p)l >0
1=0

oo L1 ) .
et p1 = > T : p(1 —p)" > 0. De méme qp > 0 et q7 > 0.
1=0

k+1+1

k+1 1 _
1 — =
K+ )P ( P) Pr+141

f. D’apres la question a., on a les relations P(X =k +1,Y = 1) = 1141 (

k+1+1
K )PkU — )" =prque.

® Sitiqi41 =0, 0n a prqie1 = pr+1qr = 0 donc prqur1 (L4 1)p = pryrqu(k + 1)p = 0.
k+1+1
)pk“ﬁ -p)!

et P(X:k,Y:l-i-]) :Tk+[+](

T
. . . . haias k+1 Px+191
® Siryi1471 > 0, on fait le rapport de ces deux relations pour avoir DE =
kq1+1
fk+1+1( . >pk(1 _p)1+1 Prdi+
k+1 1
done Pra1dt _ (k+ 1+ DKIA+ DA —p)-  (1+Dp

Prairr (k+ DU +1+ DO —p)FT T (k+1)(1—p)’
Dans les deux cas, prqu41(1+ 1)p = pryrquk +1)(1 —p).
g. On prend k = 0 dans I’équation de la question précédente et il vient poqi11(1+ 1)p = p1qi(1 —p) d’olt
1

qi+1 = b% en notant b = %. Par une récurrence facile, on montre que V1 € N, q; = %qo.

Kk
De méme, on trouve que Vk € N, py = a—'po otta=—4P
k! qo(1 =)

+oo +oo
Comme Y. qi=1et > px =1, on en déduit que qo = e~ ® et que po = e~ . Alors, par définition, Y suit
k=0

1=0 =
la loi de Po1ssoN P(b) et X suit la loi de PoISsoN P(a).

z
h. D’apreés c. et g., si Z est une variable aléatoire non presque siirement nulle & valeurs dans Net X = > U;
i=1
z
et Y= 3 (1—U), alors : Z suit une loi de POISSON si et seulement si X et Y sont indépendantes.

i=1

11.18] a. Le nombre de victoires V de Pierre parmi les 2n premiéres parties suit (les parties sont indépendantes

I

A . .. 2n B
mutuellement) une loi binomiale B(2n,p). Ainsi azn = P(V=n) = ( )p“(1 —p)nm = (
n n
Bien siir, il ne peut pas y avoir d’égalité du nombre de victoires aprés un nombre impair de parties.
b. Pour n > 1, posons les événements B, = “il y a égalité pour la premiere fois apres n parties” tel que
bon = P(Ban) et Ap = “il y a égalité apres n parties” tel que azn = P(Azn). On pose ap = by = 0.
Pour n > 1, §’il y a égalité du nombre de parties gagnées apres 2n parties, alors il y a eu égalité pour

la premieére fois du nombre de parties gagnées au bout de 2k parties avec k € [1;n]. Ceci nous donne la

n
partition suivante : Ayn = U (A2n N B2k). Comme ces événements sont incompatibles, on en déduit que
k=1
n n
axn = P(Azn) = > P(A2nNB2k) = >, Pg,, (A2n)P(Bax). Clairement, pour tout entier k € [1;n — 1], on
k=1 k=1

a Pg,, (A2n) = az(n—k) (si on a égalité apres 2k parties, avoir égalité apres 2n parties revient a avoir égalité

sur une période de 2(n —k) parties - elles sont indépendantes mutuellement). Par contre, comme By, C Azn,
n—1 n

ona Pg, (Azn) =1. Ainsi azn = ban+ > bakayn—k) = ban + ) bakasn—k) car on a posé ap = bg = 0.
k=1 k=0

Sous réserve de convergence, c’est-a-dire si [x| < R oit R = Min(Rq, Rp) (avec des notations évidentes), on a

par produit de CAUCHY de séries absolument convergentes :
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A(0B(x) = ( Z aznx? )( Z ba?™) = b (2 barazinoiy)¥*) = AG) — B().

n=0 “k=0
2(n+ 1)\ ng | _ oyt
c. Soit x # 0, si up = aznx?™, alors 0 < —"HL = X< = p(1 —p)x~ qui
Un n\ o, n n+1
p (1 —p)
n
tend vers € = 4p(1—p)x?. Par la régle deD’ ALEMBERT, si |x| < 1 ,alors ¢ < 1 donc ) uy converge
4p(1 —p) n>0
ce qui prouve que Rq > 1 g x| > ——1  onat(>1et, par D’ALEMBERT, Y u, diverge
4p(1—p) 4p(1—p) n>0

donc Ry < 1 Par conséquent, le rayon de convergence de Y aanx?™ vaut Ry = S E—

4p(1 —p) n>0 4p(1 —p)

Il vaut donc Rq = +o00 si p =0 ou p = 1 qui sont des cas inintéressants ol 'un ou l'autre des deux joueurs

gagne presque stirement toutes les parties.

d. Sip # 157 on a 4p(1 —p) =1— (1 —2p)? < 1 (parabole atteignant son maximum en %) donc Rq > 1 et

A(1) est bien défini car 1 €]Rq; Rq[ (intervalle ouvert de convergence).

‘. . 1 (2n)! \/47rn(2n)2n 1 e2n 1
Réciproquement, sip = —, alors = ~ X —— X ~ avec la formule
prod P=3 dan 22" (n!)? +oo e’ 22" 7 (2™ +oo y/mm v
de STIRLING donc Y azn diverge d’aprés RIEMANN et A(1) n’est pas défini.

n=0
En conclusion : A(1) existe si et seulement si p # %

e. On sait que Yy €] — 1;1], 1 - > ‘y™. Pour x €] — Rg;Ra[, y = —4p(1 —p)x? €] — 1;1],

VIty =0 4M(nl)
e (=)™ (2n)! 2 (2n)!
! = 5 CRO e pyrcayren = 5 B pn( gy = A 41 Onen
\/] —4p(1 —p)x2  n=0 (n!) n=o (n!)
1 1 1
déduit bien que Vx €] — Rq;Ra], A(x) = —/——m— — 1
|~ RaiRal, A =
Comme By, C Az, on a0 < bay < azn done Rg < Rp. On a done Vx €] — Rq; Rq[, B(x) = % d’apres
X

1

S —
V1 —4pgx?

la relation de la question b.. Ainsi: Vx €] — Rq;Ra[, B(x) = ——3——— =1— /1 —4pqx?.
V1 —4pagx?

f. Or, Vel —1;1, VT+y=1+ Z my“. Pour x €] — Ra;Ra[, y = —4p(1 —p)x? €] — 1;1]

_ = (_])n ](211). n n Ny — IS (ZTI)!
donc B(x) = —n:1m4 (1 —p)(=1)™*" = n;m

2n 1T—p)"
identifier car les rayons sont strictement positifs et Yn > 1, by, = ( >(p) (inutile ici).
n

p™(1 — p)™™. On peut

2n—1
Mais cette expression de by, nous permet de trouver Ry. En effet, pour x # 0, en posant v, = by x*™, on a

2(T1+1) n+1 _ oyn+1 n—
- ( )p (1=ptan =)

0< = +2]n X = 2(2n+_1])p(1 —p)x? qui tend aussi vers { = 4p(1—p)x2.
v (2o =pren ) "
n
Comme & la question c., on a R, = Rq = S P # %, 1 €] — Rp; Rp[ donc B(1) existe. Sip = %,
4p(1—p)
|
bon = %pn( —p)" I Zﬁnyz avec STIRLING & nouveau donc B(1) existe pour tout p € [0;1].
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Notons ’évenement ] = “ne jamais obtenir égalité du nombre de parties gagnées par Pierre et Marie”. Alors

on a clairement | = U Ban (réunion d’événements deux & deux incompatibles).
n=1
— —+0o0
Ainsi, par c-additivité : n = P(J) =1— P(J) =1~ > byn = 1 —B(1). Or, en posant f, : x = bynx?™,
n=1

on a |[fn|loc,j0;1] = b2n et D ban converge, ainsi par convergence normale de ) fn sur [0;1] et continuité
n>=0 n>0

de toutes les f,,, on a B continue sur [0;1] (ce qui était évident si R, > 1 mais pas clair si p = %) Ainsi

n=1-B(1)=1— lim B(x)=+/1—4p(1 —p).

x—1-

11.19) On note p = 0,4 la probabilité que le caractére soit présent chez une personne. Quand on étudie un

échantillon de 200 personnes, le nombre X de personnes qui ont cette caractéristique suit la loi binomiale

200
B(200,p). Or X = > Xy ol les Xy suivent la loi de BERNOULLI de parameétre p et sont supposés mutuellement
k=1
200
indépendants. E(X7) =m = 0,4 et V(X7) = 0% = 0,4x0,6 = 0,24. Ainsi, P(X = k) = < . >‘pk(1 —p)200-K,
o X & & (200 200k
Ainsi P(o,s <X < 0,5) =P60<X<100)= > PX=k = > pX(1 — )20k ~ 0.995.
200 k=61 k=61 \ K
Loi faible des grands nombres avec ¢ = 0,1 : IP’( % - O,4| >0, 1) < g‘22—4 Donc IP’(GO < X< 100) > 0,88.

Le calcul direct est donc beaucoup plus précis que la majoration générale.

11.20| a. En supposant Xj,...,X;, mutuellement indépendantes (ce qui n’est pas clair dans ’énoncé), on sait

d’apres le cours que Gy = Gy, - - Gx,,. Et puisqu’elles suivent toutes la méme loi, on a méme Gy = (Gx, )™
b. On admet pouvoir intervertir les indices dans la double série (théoreme de FUBINI). Alors, on peut
démontrer ce qui est admis : pour n € N, comme {V = n} = U {N =%, X;+ -+ Xx = n} (réunion

keN
+oo +oo
disjointe), ona: P(V=n)= >  P(N=%k, Xi+---+Xx =n)= > P(N=k)P(Xy +:-- 4+ Xx =n) par
k=0 k=0
indépendance mutuelle des variables aléatoires N, X1,..., Xn,....
“+o0 +oo “+oo
Pour t € [-1;1] (au moins), Gy(t) = >, P(V=n)t"= > ( P(N =k)P(X14---+Xx = n)t“). D’apres
n=0 n=0 “k=0

oo , too oo /oo
FUBINI: Gy(t) = 3 ( P(N = k) P(X; 4+ -+ X = n)t“) =3 ( S P(Xq 4 X = n)t“) P(N = k)
k=0 *n=0 k=0 *n=0

+oo k
donc Gy (t) = Y. Gx;4...4x, (t) P(N = k). Or, par indépendance mutuelle, on a Gx, 4...4x, = [] Gx, = G¥,
k=0 i=1

et on arrive enfin & Gy (t) = :Zj; P(N =%)(Gx, (t))k = Gn (Gx, (1)).

Comme Gy = Gn o Gx, sur [—1;1] et que les espérances sont finies, ces fonctions sont dérivables en 1 et on

a Gy (1) = G4, (Gn(1))GN(1). Mais comme Gn (1) =1, cela donne E(V) = E(N)E(Xy) (formule de WALD).

c. On note X; la variable aléatoire telle que X; = 1 si la personne numéro i (dans la journée) choisit le guichet

1 et X; = 0 si elle choisit le guichet 2. Par hypotheése, chaque X; suit la loi de BERNOULLI B(p) et les X;

sont supposées mutuellement indépendantes. Par conséquent, si V est le nombre de personnes se présentant
N

au guichet G dans la journée, on a V.= > X; ot N est le nombre de personnes allant & la poste en une
i=1

journée : N suit la loi P(A) par hypothese. D’apres la formule de WALD, comme X7 et N admettent des

espérances finies, E(V) = E(N)E(X;) = pA (le nombre de personnes qui se présentent en moyenne a Gq).

Questions subsidiaires :

e Si X7 et X3 sont indépendantes, alors f(X1) et g(X2) sont toujours indépendantes.

e Le rayon de convergence d’une série génératrice est supérieur ou égal a 1.

e Le théoreme d’intégration terme a terme :

13



Soit (fn)nen € (I, K)¥ une suite de fonctions qui vérifient les conditions :

(Hy) la série > f, converge simplement sur I vers S,
n>0

)
)

(H2) les fy, sont continues par morc. et intég. sur I et S est continue par morceaux sur I,
)

(H3) la série > (fl|fn|) converge.

n>0
Alors on a les trois conclusions :

(Ry) La fonction S est intégrable sur 1.
(R2) La série > f fn converge.

n=0
+o00
Ry) [$= ( fn) = .
(3)‘[1 ‘fl nz::oTL nz::o‘fI "
e On peut dériver terme & terme dans l'intervalle ouvert | — R; R[ de convergence de la série entiere donc le

rayon R’ de sa série dérivée vérifie R” > R. On peut intégrer terme & terme la série dérivée sur tout [8,\;]
inclus dans Pintervalle | — R’; R’[ pour obtenir & nouveau la série entiére originelle donc R > R’. Ainsi R = R’.
e Si X ~ P(A) avec A > 0, alors d’apres le cours E(X) = V(X) = A.
e On sait que si X ~ B(p) avec p €]0;1], alors Gx(t) =1 —p + pt d’apres le cours.
+oo
11.21 ) a. Il est sous-entendu que X;(€2) = N. On veut alors que kzo P(X; = k) = 1 donc que 7‘];9 =1 cequi

Cite
De plus, G 08 kg i et seulement si [t| < 1+ 1 = R. Et
— . € us, t) = —t ul converge s1 et seulement s1 |t| < — = K.
1+0 p X1( ) B (] ¥ e)k+1 q g | 0
1 I 1

toujours avec les séries géométriques : Vt €] —R;R|, Gx, (t) = X = = .

) & q J=RRL 6 (V) = 935X o0 =739 -e 1500 -9
1+6

b. Par linéarité de l'espérance, on a E(S;) = nE(X;) car les Xj,---, Xy, suivent toutes la méme loi. Or,

comme Gx, est dérivable en 1, on a E(X1) = G, (1) = 6 car Gy, (t) = m Ainsi : E(S,) =ne.

Comme les X1, -+, Xy, sont indépendantes (deux & deux ou mutuellement dans ce calcul ¢a ne change rien),

impose A =

n 2
ona V(Sy) = > V(Xx) =nV(X;) car elles suivent toutes la méme loi. Or G% (t) = %

Gk, (1) = 202 et V(X;) = Gk, (1) + G4, (1) — G, (1)2 =06(8+1). Ainsi V(S,,) =n6(6 +1).
De plus, toujours par indépendance mutuelle (1& c’est nécessaire) des variables aléatoires Xy, -+, Xy, on a

n n
n 1 1 — ot
Vt €] —R;R[, G = G =G = 1 — %)™ av - ]
t ] ) [» Sn(t) kl_[1 Xk (t) X4 (t) (] 9 et) (] e)n( X) avec x 1 9

donc

+oo —_ 1)1 +oo +oo T A
= > x¥, dou M = > k(k—1)--~(k—n+2)xk*“+1 =3 (n+_)7'1)'x) en
T—x =0 (1—x) ke =0 j!

v A —n b B AN n+j—1 ot \J
dérivant n — 1 fois. Ainsi (1 —x) => ) x). Alors Gg, (t) = 1 j ( )
j=0 - = n-— +
j n—1 1+e)" 1 1+0

. 76]. t). Mai G (t) = g P(S = ')tj eut
=1 als comme on u
n 1 (] e)n-i-] Sn P n A p

Or Vx €] —1;1],

Mg

—+oo
qu’on simplifie en G, (t) = >, (
j=0

j—1 0’
identifier pour obtenir la loi de S, : P(S, =j) = nt] —_—
n—1 )1 +e)t
Questions supplémentaires :
e Pour une série de fonctions, on a le théoreme :
Soit (fn)nen € F(I, K)N une suite de fonctions, on suppose que :
(Hy) la série > f, converge simplement sur I vers S,
n=0
(H2) pour tout n € N, la fonction f, est de classe C! sur I,
(H3) > 1, CVU (ou CVN) sur I (ou CVU (ou CVN) sur tout segment de I).
neN
Alors on peut conclure :

(R1) S est de classe C! sur I.
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+oo . +oo / +oo
(Rz2) "= > f,, c’est-a-dire que Vx €, ( > fn) x)= > (f;l(x))
n=0 n=0 n=0
Pour une série entiere, on peut dériver terme a terme dans 'intervalle ouvert de convergence.
e La variable X admet une espérance finie si et seulement si la fonction génératrice Gx est dérivable en 1.

Dans ce cas, on a G4 (1) = E(X).

+oo
11.22)a. Comme (X > n) = U (X = k) (réunion dénombrable d’événements incompatibles), par o-additivité, on
k=n
RS p(1—p)"~"
aPX=n)= > p(1—p)k ' = . (1 —p)™~'. Par construction, (T > k) = (X = k) N (Y > k)
k=n - - P

pour k > 1. Par indépendance de X et Y, on en déduit que P(T > k) = P(X > k)P(Y > k) = (1 — p)2(k=1),
Comme P(T=k)=P(T>k)—PT>2k+1)car (T=2k)=T=%[J(T=k+1
donnée, pour k € N*, par P(T = k) = (1—p)2*= D —(1—p)2* = (1—p)2k=Dp(2—p

, on en déduit la loi de T
(k=1)
((1=p)?)" "p2-p).

La variable aléatoire T suit donc la loi géométrique de parametre p(2 —p) =1 — (1 —p)2.
1

)
) =

b. D’apres le cours, E(X) = La variable aléatoire % est bornée donc elle admet une espérance finie

400 _ n—1 “+o00 _ n
et, par la formule de transfert, E(l> = > p(—p) =7 P > (1=p) et on reconnait la série
n ~Pna1 om
logarithmique : E(%) = ]J_)—p( —In(1-(1-9p)) = _Pﬁi(g) = pl]ng]ép)-
—+oo
c.e(T>2KkZ=0=X=Y2k) = U (X =Y =1) donc, par c-additivité et par indépendance de X et Y,
i=k
+00 ‘ 2001 _ 32 k=T
ona B(T>kZ=0)= PX=Y>K) = 3 PX= )P =) = ¥ p2(1 — )" = P e
i=k —\=p
Zk 2
qui se réduit & P(T > k,Z=0) = %
-p
+oo +oo
eSiz>21l,ona(T>kZ=2z)= ( U(X =1i,Y = i—|—z)> U (U(X =i+2zY= 1)) (réunion disjointe).
i=k i=k
+oo
Par symétrie, indépendance et o-additivité, il vient P(T > k,Z =z) =2 > P(X = i)P(Y = i + z) donc
i=k
+o0 . 2(1 _ )2k+272 2 (] _ )2k+272
]P(T>k Z:z,):z pz(] —p)21+2_2:p p = p p
- b 1—(1—p)* 2—p
+oo
d. e Comme (Z =0) = U (X =Y = k), par incompatibilité des événements de cette réunion et indépendance
k=1

p’ - _p_
1-(-p)° 2-p

On aurait aussi pu dire, comme (T > 1) =, que (Z=0) = (T > 1,Z =0). Ainsi, d’aprés la question c., on

deXetY,onaP(ZzO):%O]P(X:k)]P( k) = ZP( p)2(= 1)
k=1

2.1-2
aP(ZzO):IF’(T}],z:o):pU;P) __P
-p

2

+o0 +oo

eSiz>1,(2=2)= ( U(Xk,YkJrz)) U < U(Xk+z,Yk)> donc, avec les mémes arguments,
k=1

21 _ \2 _ \z
P(z=z)=2 Z p?(1 —p)2ktz=2 = ]ZP <(1] p))z = 2p(21 p) .Ou(z2=12)= (T >21,Z=1z) comme avant.
—U=p - P
Soit k € N* et z € N, traitons deux cas :
(1 — p)2<—2
eSiz=0,P(T>kz=z=P""P

. =(1—p)kDx 2= PT>KPZ=2).
-p

2-p
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_ \2k+z-2 _\z
eSiz>1, P(T}k,Zzz)z%z(] _p)z(k—1) X%: P(T 2 k) P(Z = z).

AinsiVk e N*, Vze N, P(T=k,Z=2)=P(T=%)P(Z=z)car P(T=k)=P(T>k)—P(T>k+1)et
P(T=%Z=2z)=PT>kZ=z)— P(T >k+1,Z =z) proviennent des réunions disjointes suivantes sur
les évenements : (T2k)=(T2k+1NU(T=k)et (T2k,Z=2)=(T2k+1,Z=2)U(T=%Z=2).

On a bien établi que les variables aléatoires T et Z sont indépendantes.

On peut montrer la réciproque (a faire), a savoir que si X, Y sont des variables aléatoires de méme loi & valeurs

dans N* telles T = Min(X,Y) et Z = |X — Y| sont indépendantes, alors X et Y suivent une loi géométrique.

11.23) a. On note My = (Hy, Vk) le mouvement & I'instant k (de l'instant k — 1 & Pinstant k en fait) : Hy pour

horizontal, Vi pour vertical. Alors toutes les VA My suivent la méme loi, comme toutes les Hy et toutes
les Vx. De plus P(Hy = —1) = P(Hx = 1) = él‘ et P(Hx = 0) = % Ainsi E(Hx) = 0 et V(Hy) = 1

E.
n
Comme par construction, on a X, = > Hy et que les Hy sont indépendantes mutuellement (donc 2 & 2),
k=1
ona V(Xn)=nV(H;) = % Bien siir, on a aussi E(Y,) =0et V(Y,) = %
b. E(z2) = E(X2+Y2) = E(X2)+ E(Y2) =n. Or V(Z,) > 0donc E(Z,)? < E(Z%) =net E(Z,) < v/n.

Ko\? (2
c. > () = <k> est uniquement la formule de VANDERMONDE avec a = b = k.
i=0 \1

Sin est impair, il est clair géométriquement que P(Z,, = 0) = 0. Par contre, si n est pair, on pose n = 2k et
alors pour étre a 'origine apres 2k déplacements, il faut avoir autant de Nord que de Sud et autant d’Ouest
que d’Est. Chaque 2k-uplet de déplacements (EOSSONNE....) a une probabilité 4% d’intervenir. 11 suffit

donc de compter ces déplacements qui permettent de revenir en (0,0) apreés 2k déplacements. On choisit

2k
les i € [[0; k] déplacements qui vont vers l'ouest : < )

) choix, ensuite ceux (au nombre de i forcément) qui
1

2k —1i
vont vers m’est : . ) choix. Puis ceux qui vont vers le nord (au nombre de k — i obligatoirement) :
i

2k — 2i k—1
( ) choix, et enfin ceux qui vont vers l'est : (k ) =1 (clairement plus de choix).

k—1 —1

. k2K [2k — 1) 2k — 21 [k — 1) 1 k (2k)! 2K & (x)°
Ainsi P(Zy = 0) = L _
insi P(Zzic = 0) g() ( i ) ( i ) ( K—1 > (k - i) 42% §o 2 (k — )1247% T 47k 2 Z@ i)

2
, () 2k (k)
qui donne avec la formule de VANDERMONDE P(Z3 =0) = ozl ) = g

Avec STIRLING, on trouve P(Zzx = 0) ik donc Y P(zZ, = 0) diverge, on admet que ceci permet de
s

“+oo
n>1
prouver que ”"revenir une infinité de fois a 'origine” dans cette marche aléatoire plane est presque certain.

11.24 |a. On note Dy = “le tirage k est différent du tirage k—1”7. On a (X = k) = D2N- - - Dx_1NDy pour k > 2 donc

P(X=%) = P(D2)x Pp,(D3) X+ X Pp,n...aDy_, (Dx—1) X Pp,n...nD_, (Dk) par la formule des probabilités

composées. Par 'indépendance des tirages imposée dans ’énoncé, tirer au tirage k la méme couleur qu’au

tirage k— 1 ne dépend pas de ce qu’on a tiré avant le tirage k—1 donc, Vi € [2;k], Pp,n..Ap,_, (Di) = 2— 1
VK2 _1\k2 k!
et on trouve donc P(X = k) = (nf) 1= (L) _ (L) _
n n n n
+oo
b. Soit A = “le processus s’arréte”. Comme A = (X < +00) = |_| (X = k) (réunion incompatible),
k=2
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+o0 +o00 1 k—2 1 k—1
par c-additivité, P(A) = >, P(X = k) = > ((n;> - (“;) ) = 1 par télescopage car
k=2 k=2 n n

k—1
lim (@) = 0. Le processus s’arréte donc presque stirement.

k—+o0 n
+oo
c. Méthode 1 : pour k > 2, comme (X > k) = |_|(X = 1) (réunion incompatible), par c-additivité,
i=k
+00 12 N h 1y k2
ona P(X > k) = > ((n;) - (n;) ) donc P(X > k) = (n;) par télescopage car
i=k n n n
i1
lim ("7_]) = 0. Par contre, P(X > 1) = 1. Comme X est une variable aléatoire & valeurs dans N,
1—+400 n
400 +o00 1 k—2 ]
d’apres le cours, il vient E(X) = Y>> P(X > k) =14 > (n;) =1+ —F—=n+1
k=1 k=2 n 1— —
n
+oo 1 +00 1 k-2
Par théoréme de transfert, on a E(X(X = 1)) = > k(k—1)PX =%k) = = Y k(k — 1)(“;) car
k=2 N =2 n

1 " +oo " +oo 2
X(€2) € N*\ {2} en cas de convergence. Or Vt €] —1;1], (ﬁ) = ( > tk) =3 k(k—1)tk"2 = L

- k=0 k=2 -

donc E(X(X — 1)) = 2n?. Ainsi V(X) = E(X(X = 1))+ E(X) = EX)? =2n’4+n+1—-(n+1)2 =n(n-1).

K—1
Méthode 2 : comme (X—1=%k)=(X=k+1)pourk € N*, ona P(X—-1=k) = <l> X (l - l) donc
n n

X — 1 suit la loi géométrique de parametre p, = 1. Ainsi, d’apres le cours, E(X—1) = - E(X) —1 donc
n Pn

E(X)=n+Tet V(X) = V(X—1) = % done V(X) =n?(1- 1) =n(n-1).

11.25] Calculons xpm = X3 — (X7 — X2)2X — (X7 —X3)2X = X(X? — (X7 — X2)? — (X1 —X3)?). Les valeurs propres de
M, c’est-a-dire les racines de xm, sont donc 0, /(X7 — X2)2 + (X1 — X3)2 et —/(X1 — X2)2 + (X3 — X3)2.
Par conséquent, Sp(M) = {0} <= (X7 — X2)? = (X1 — X3)? =0 <= X7 = X2 = Xs.

On pouvait le prouver autrement. En effet, on sait d’apres le théoreme de CAYLEY-HAMILTON qu’une
matrice M € My (K) vérifie Sp(M) = {0} si et seulement si elle est nilpotente. La matrice M de I’énoncé
étant symétrique réelle, elle est diagonalisable par le théoréme spectral. Ainsi, puisque qu’une matrice
nilpotente n’est diagonalisable que si elle est nulle, Sp(M) = {0} si et seulement si M = 0. On en déduit, en

termes d’évenements, que (Sp(M) = {0}) = (X3 = X2 = X3).
“+o00

Ainsi, ]P)(SP(M) = {0}) = P(M = O) = ]P(X] = Xz = X3). Or (X] = XZ = X3) = U (X] = Xz = X3 = TL)
n=1

(événements incompatibles), X;, Xz, X3 sont mutuellement indépendantes et suivent la méme loi §(p) donc

+o0 +o0 3
]P(X] =X = X3) = Z P(X; = T‘L) P(Xz =n) P(Xg = Tl) = Z p3(1 —p)3(n_]) =P
n=1 n=1

1—(1-p)°
e . [k p+1 : :
11.26 | a. Initialisation : la relation ) = )= 1 est clairement vraie.
p

k=p P
P . . /k q+1 . ; L .
Hérédité : soit q > p tel que Y. = ) Alors, par hypothese de récurrence et d’apres la relation
k=p P P
q+1 k q k 1 1 1 2
de PASCAL : Y. ():(Z ( >)+(q+ >:<q+ >+<q+ ):((H- )
k=p \P k=p \P p p+1 P p+1

q-+1

n ]) ; encore vrai si q <p (0=0).
p

9 [k
On conclut par principe de récurrence que Vq > p, . ( ) = (
k=p P
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. . . . k k+1 k+1
On pouvait obtenir cette relation sans récurrence en constatant que ( ) = " ]> - ( ) donc, par
P p P

. [k q k+1 k 1 1
télescopage, . < > =5 (( + >< >) = <q + >( P > = (q + ) (formule des colonnes).
k=p \P k=p “\Pp +1 p+1 p+1 p+1 p+1

b. On peut modéliser cette expérience par des n-uplets comme BAABBAA ---BA, celui-ci signifiant que le
premier jeton tiré est Blanc, les deux suivants d’Autres couleurs, etc..... sachant qu’il doit impérativement

y avoir b fois B et a fois A dans cette suite de lettres. On note {2 ’ensemble des tous ces n-uplets ; il y en

b
a (a: ) car il faut choisir les b tirages qui vont donner un jeton blanc parmi les a + b tirages. On prend

aussi la tribu pleine A = P(2) et pour P la probabilité uniforme sur Q@ pour finaliser la modélisation. On a

X(Q) = [b; a + b] (au moins b tirages pour prendre tous les jetons blancs et au plus a + b).

card ((X = k))

Soit k € [bja + b], alors P(X = k) = card (2)

(loi uniforme sur Q). Or card () = (a—é—b) et

k—1
card (X =k)) = ( ) ; en effet, il faut forcément un jeton blanc au tirage k et il faut choisir parmi les k—1

b—1
k—1
~\b-1)  bk—1

premiers tirages les b —1 tirages qui donnent un jeton blanc. Ainsi P(X = k) = (a T b) = a0k o)
a . — .

b
p s E a+b P 1 a+b k—1 1 a+b k C
. éfiniti X) = kP(X = k) = ——~ k = —— b . i
c. Par définition, E(X) kgb ( ) P kZ::b (b—1> g kgb (b> e qui se
b b
b<a+b+1>
simplifie d’apres la question a. en E(X) = b+1 _ blat+b+1) < a+b (comme il se doit). De
a+b b+
+")
! B a+b P 1 a+b k—1 1 a+b k—+1
X(X+1)) = k(k+1 X=k)=———< k(k+41 = —— b(b+1 .
plus, E(X(x+1) = 3 K(k+1) F(x =) ) wwn(y2)) o oo (il))
b b

at+b+2
b(bJH)( b+2 )__wa+b+2xa+b+1)

a+b o b+2
b
Ainsi V(X) = E(X?) — E(X)? = E(X(X + 1)) — E(X)? — E(X) par linéarité de l'espérance. Les résultats
2 2
précédents montrent que V(X) = blatb+2)(at+b+l) b(ath +21) _blatb+1) ce qui devient
b+ 2 (b+1) b+ 1
b(b+1)%(a+b+2)(a+b+1)—b*(a+b+1)*(b+2)—bla+b+1)(b+1)(b+2)
(b+1)%(b+2)

bla+b+D[(b+1)*(a+b+2)—blat+b+1)(b+2) —(b+1)(b+2)] _ abla+b+1)

(b+1)%(b+2) (b+1)%(b+2)

Ce qui se simplifie d’apres la question a. en E(X(X+1)) =

et encore en

V(X) =

V(X) =

n+1
11.27]a. Vn € N, p,, = f f(t)dt. D’apres une proposition admise dans le cours, il existe une variable aléatoire
n
n+1

sur un espace probabilisé (2, A, P), & valeurs dans N, telle que ¥n € N, P(X =n) = f f(t)dt = pn si et
n
—+oo
seulement si Vn € N, py € [0;1] et > pn =1.
n=0
f étant décroissante, elle possede une limite ¢ € R en +oc (en fait { € R ou ¢ = —o0).
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Supposons que Vn € N, p,, € [0;1] et Z pn = 1. Selon le signe de ¢, la fonction F : x +— f t)dt est

n=0
n n+1
monotone au voisinage de +o00 (croissante si £ > 0, décroissante si { < 0). Avec Sy = > px = fo f(t)dt,
k=0
.. = n+1 sy
la convergence de la série > pn montre que ( fo f(t)dt = F(n + 1)) , converge donc que 'intégrale
+oo

fo f(t)dt converge. Or f garde un signe constant au voisinage de 400, ceci assure que f est intégrable sur

+oo +oo
R, donc que ¢ = 0 et f est positive sur R;. Comme ) pn =1,0na fo f(t)dt = 1 par CHASLES.

n=0

. . L, 400 n+1 400
Réciproquement, si f > 0, intégrable sur R et fo flt)dt=1,0< pn = f f(t)dt < fo f(t)dt =1et
n

+oo +oo oo +oo
la convergence de j;) f(t)dt montre la convergence de la série > pn. De plus, Y pn = fo f(t)dt =1.
n>0 n=0

On conclut par double implication a I’équivalence voulue.
b. Supposons que X admette une espérance finie, alors . nP(X =n) converge. Par une sorte de comparai-

n>l
son série/intégrale compte tenu que f > 0 : Vn E N, Vt € [n;n+1], nf(t) < tf(t) < n+1)f(t). En sommant,
— n n
onavn € N, ZkIP’ f tf(t)dt < (k+1)IP’(X:k). Sionpose Sy = > kP(X=k) = > kpx,
k=0 k=0 k=0

on a donc j; tf( )dt < Sn—1+ 1< E(X) + 1. Mais comme t — f(t) est positive, on a donc la croissance de

x +oo
X fo tf(t)dt donc la convergence de fo tf(t)dt donc t — tf(t) est intégrable sur R, .
Réciproquement, c’est autre inégalité qui sert, si t — tf(t) est intégrable sur Ry, pour n € N, on a

n+1 ~+o0
Sn < fo tf(t)dt < fo tf(t)dt donc la suite croissante (Sn)n>o converge : X admet une espérance finie.
Par contre, dans ce cas, on n’a pas égalité entre E(X) et f

c. Par le méme argument, comme X admet une variance si et seulement si X> admet une espérance finie, la
CNS cherchée est h : t — t2f(t) est intégrable sur R,.
. . . i —1
11.28| a. Non. Par exemple, si B = (i), alors B est diagonalisable et A = (l] i) donc A% = 0 alors que
A # 0 donc A n’est pas diagonalisable (exemple classique de matrice symétrique complexe non DZ).
b. On pose B = diag(A1,---,An), la matrice A est composée de quatre blocs diagonaux. Si on appelle u
l’endomorphisme canoniquement associé & A et B = (eq,- -, ean) la base canonique de C?™", alors la matrice
A’ de u dans la base B’ = (e1, en+1,€2,€nt2,-.-,en,e2n) est diagonale par blocs A’ = diag(B1,...,By) avec
A A2 . L
By = <)\]2< }‘f ) By est donc la matrice de ’endomorphisme induit par u dans Py = Vect(ex, entx)-
DAY S
Comme A et A’ sont semblables, A est diagonalisable si et seulement si A’ est diagonalisable.
Si u est DZ, alors tous les uy le sont (ils sont induits) donc tous les blocs By sont diagonalisables.
Si tous les blocs By sont diagonalisables, on raisonne matriciellement et la matrice A’ est DZ.
Ainsi, A est DZ si et seulement si tous les blocs By sont DZ. Or xg, = X% — AZ(1 +A2).
e Si A ¢ {0,1, —1}, xB, est scindé a racines simples donc By est diagonalisable.
e Si A =0, alors By = 0 donc elle est diagonalisable.
e Si A\ = +i, alors Bﬁ = 0 alors que By # 0 donc By n’est pas diagonalisable.
Ainsi, une condition nécessaire et suffisante pour que A soit diagonalisable est que {i,—i} N Sp(B) = 0.

c. Les complexes i et —i ne font partie des racines n-iemes de I'unité que si n est un multiple de 4. De plus
les valeurs propres de B sont les X1,...,Xy. Ainsi :

e Sin#0 [4] alors p =1 car {i,—i} N Sp(B) = 0.

e Si n = 0 [4], alors la probabilité de choisir i ou —i dans U, est = n—2q y a n termes a choisir sur la
n
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diagonale de B et de maniere indépendante donc p = (nf—Z)
n

Questions supplémentaires :

e I’ensemble des racines n-iemes de 'unité est un groupe abélien de cardinal n.

e (G, *) est une groupe si * est une loi interne associative sur G, s’il existe une neutre e dans G pour la loi *
et si tout élément x € G possede un inverse pour la loi * dans G.

. . 2i
e On sait que Y, w =0sin > 2. En effet, en notant w, = e%, alors U, = {1,wn,...,w2’1} donc
weUn
> w—zw 7”:Ocarwn7életw2:1.
we Uy Wn

11.29 Bien siir, on suppose les tirages mutuellement indépendants et équiprobables.

a. X3(Q)={n—-1,n}. P(Xy=n)= % (une chance sur deux de tirer une boule noire) et P(X3 =n—1) = %

(une chance sur deux de tirer une boule blanche transformée en boule noire).

On a aussi X2(2) = {n—2,n—1,n}. On note By : “boule blanche au premier tirage” et B, : “ boule blanche
au second tirage”. Alors (X2 =n) =By N B2 donc P(Xz =n) = Pg—(B2) P(B1) = (1/2) x (1/2) = (1/4).

Xo=n—2)= —n—-2)= —n—1 l:u'
X2=mn ) =B1NBy donc P(Xz =n —2) ]P)B1(Bz)]P)(B]) P X 7 T

Pour finir, soit P(X; =n—1)=1—-P(Xz =n)— P(X2 =n—2) soit (X2 =n—1) = (B1NB2)U(B1NB2). Ainsi

_ _ 1_n-—1 _ _n+1 1.1 _ 2n+1
PX=n—-1)=1—-— P(X; =n—1 -~ il P(X 1 .
( n—1) 2 an ou (X2 =n-1) P ><2+2><2 ; toujours est-il que P(X; =n—1) = n

b. Si, en général, pour i € N* : B; : “boule blanche au tirage i”, alors (Xx =n) =B N---NBy ce qui donne

par la formule des probabilités composées (puisque la configuration de I'urne ne change pas : on ne tire que

des boules noires) P(Xy =n) = Z]—k

c. Soit p > 1 et k > 0, alors pour avoir k boules blanches au bout de p + 1 tirages, on avait soit k 4+ 1 boules

blanches au bout de p tirages et on a tiré une boule blanche au tirage p + 1 qui a été remplacée par une

boule noire, soit on avait déja k boules blanches au bout de p tirages et on a tiré une boule noire au tirage
p+ 1, ceci se traduit par : (Xp41 =k) = ((Xp =k) NBp1) U ((Xp =k+1)NBps1). Par incompatibilité de
ces événements : P(Xp11 = k) = Pix,—1)(Bp+1) P(Xp = %) + Px, =ks1)(Bp+1) P(Xp =k +1).

Ou alors avec le systeme complet d’évéenements ((Xp = 1)) et la formule des probabilités totales,

. n—-p<ign
PXp+1=k)= > PXp=1)Px,=1)(Xp+1 = k) sachant que i # ket i # k+1, Pix,—)(Xp41 =k) = 0.
i=n—p
Or, si X, =k, il y a dans I'urne k boules blanches et n — k boules noires donc P(x,—k)(Bp+1) = an;k De
n
k;1 Ainsi : P(Xpq1 = k) = Z2=KPp(x, = k) + KELp(x, =k +1).

meéme : P(xp:kJr])(Ber]) 2n n

d. Par construction, comme X, (2) C [0;n], on a Gp(t) = E t*P(Xp = k). De plus, P(X, =n) =2""#0
k=
d’apres la question b. donc G]3 est une fonction polynomlale de degré n.

e. Pour t € R, Gpyq(t) = z P(Xpgy = k) = 3 (anigk P(Xp = k) + S PO, = K+ 1))tk donc
k=0

n n n
Gpt1(t) = X P(Xp = Ktk — in > kP(Xp = k)t< + i Y (k+1)P(Xp, = k+ 1)t* et on reconnait
= =0 k=0

Iexpression des dérivées Gp41(t) = Gp(t) — itG;(t) + Z]—nG;(t). On a bien Gp41(t) = Gp(t) + ]Z;tGI (t).

On dérive la relation précédente (ce sont des polynomes) : Gy (t) = G}, (t) + %Gg(t) - iGp(t). On

N

évalue en 1 et on a E(Xp41) = E(Xp) — ;—HE(XP). Ainsi E(Xp41) = 2712; 1 E(Xp).
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On calcule simplement E(X;) = %4— an] = % Comme la suite (IE(X][,))IJ}1 est géométrique de
o 2n—1 i . _n—1(2mn—1\""" -
raison <5 —, on en déduit que Vn € N*, Vp € N, E(X,) = 3 5 . Or on peut écrire

n n
n 1
E(Xn) = (2“*]) =" 2%) 4 e=1/2 car 1n (l —i> ~ -, Ainsi, lim M:L ~ 0,606
n 2n 2n/ 4o 2n n—+oo N Ve

(c’est la proportion de boules blanches dans 'urne aprés n tirages par rapport a la configuration initiale).

11.30| a. Comme Y est a valeurs positives, on a 0 < X < Z. Et comme Z suit une loi géométrique, Z admet une
espérance finie. On en déduit par comparaison que X admet aussi une espérance finie.

De méme, Z2 admet aussi une espérance finie car Z admet une variance finie. Ainsi, comme 0 < X? < Z?, la

variable aléatoire X2 admet une espérance finie donc X admet une variance finie.

Par linéarité de espérance et d’apres le cours, E(Z) = 1_ E(XX)+ E(Y)+1 =2E(X)+1 donc E(X) = 1T_E
p p

Puisque X et Y sont indépendantes, V(Z) = 1%3 V(X+Y) = V(X)+ V(Y) = 2V(X) donc V(X) = %}3
p p

b. Comme le rayon de convergence de toute série génératrice est supérieur a 1, et que d’apres le cours

Vie]— 11 Gz(t) = —PY — onaVte]— 11, Gxoypr(t) = EXHH) = EtXHY) = t E(tX*Y) par

1—(1—p)t

linéarité de I'espérance. De plus, comme X et Y sont indépendantes, E(t*+Y) = Gx v (t) = Gx(t)Gy(t) donc

Gx1v(t) = tGx(t)Gy(t). Mais comme X et Y suivent la méme loi, on a Gx = Gy donc Gz(t) = tGx(t)2. On

en déduit donc que Yt €] — 1;1[, Gx(t) = /Q(D—) car Gx est positive sur | — 1;1].

Xj( D@t n

i ) x™ ce qui donne, en remplagant x par —(1 — p)t,

vt € [-1;1] Gx(t) = /P Z@W(il)n“ —p) ™" = Zo f(Zn)(()z— p)" t". En identifiant les
=n)= VP (2n)!( —p)

coefficients, comme le rayon R de convergence vérifie R > 1, on a ¥n € N; P(X i '>
n

c. On sait que Vx €] — 1;1],

/-\

11.31 ] X est a valeurs dans N* donc Y aussi par définition de Y car X + 1 > 2 donc X ;r 1 >1.

Soit un entier k € N* alors (Y = k) = (X = 2k — 1) U (X = 2k). Par incompatibilité de ces événements,
on obtient P(Y = k) = P(X = 2k — 1) + P(X = 2k). Puisque X suit la loi géométrique G(p), il vient
PY=% = (1-p)*2p+ (0 —-p)2*Tp = (1 —p)2*2p(1 +1 —p), ce qui donne aprés simplification
P(Y=k)=((1-p)?) 101 -(1-p)?)=0-p2-p) ' [p2-p)

Puisque 1 — (1 —p)? = p(2 — p), Y suit la loi géométrique de parametre p(2 — p).

11.32 ] a. Par construction, comme les X; sont & valeurs positives, 0 <Y < X7 +-- -4+ Xi. Comme les X; admettent
une espérance finie, alors leur somme aussi, et par comparaison, Y admet donc une espérance finie.
k
b. ¢ Comme (Y =n) = U (T=1, Xy +---+ Xj =n) (réunion disjointe), par o-additivité et indépendance
i=1

k k
mutuelle de TXq,--+,Xg: P(Y=n)=> P(T=4i Xi+--+Xy=n) = Z P(T=1)P(X; + -+ Xy =n).

i=1

+oo k

Ainsi E(Y) = > n > P(T=1)P(X;+---+X; =n) or, pour tout i € [1;k], lasérie > nP(X;+---+X; =n)
n=0 i=1 n>0

converge et sa somme vaut E(X; +--- + X;) = 1E(X;) par linéarité de I'espérance et car les Xj suivent

toutes la méme loi. Ainsi, par somme d’un nombre fini de séries convergentes, on peut intervertir et avoir
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E(Y) = zlj: ( -E%Z“P(M +otXi = n)) P(T=1) = E(X1) zk:] iP(T =1) = E(X1) E(T) (formule de WALD).

e Les séries génératrices étant au moins de rayon 1, on peut définir, pour t €] — 1;1], comme Y(Q) C N,
“+o00 k
Gy(t)= >, P(Yy=n)t"™. Or, P(Y=n) = Z P(T=1i, X14+---+Xi=n) = Z P(T=1)PX;+---+X; =n)
=0
n .
comme avant, donc Gy(t) = > ( Z P(T=1)P(X;+---+X ))t“. On peut intervertir car il s’agit d’un

n=0

k “+o0
nombre fini de séries convergentes et on obtient Gy(t) = > P(T = 1)( SPXg 4+ X = n)t“). Par
i=1 n=0

définition, Z P(X14---+Xi = n)t™ = Gx, +...4+x, (t) or les variables aléatoires X1, - - -, X sont mutuellement
n=0
i
indépendantes donc Gx,4...4x; H = Gk, car Xj,---, Xy ont la méme loi. Ainsi, pour t €] — 1;1],

Gy(t) = Z P(T = 1)(Gx, (t )) = GT1(Gx, (t)). Comme ces variables aléatoires admettent des espérances

finies, les fonctlons génératrices correspondantes sont dérivables en 1 et on retrouve la formule de WALD car
ona E(Y)=G{(1) = GX1 (1) x G4 (Gx, (1)) = E(X7)E(T) puisque Gx, (1) =1.

11.33] a. (=) Supposons que la suite (X, )nen converge en loi vers X a valeurs dans N, alors par définition
Vk € N, 1111 P(Xn = k) = P(X = k). Ainsi, Yk > m, P(X =k) = lim P(X,, = k) = 0 donc X est
n—-—+0oo

n—-+oo
m
presque stirement & valeurs dans [[0;m]. Or Vt € R,Gx, (t) = Y. P(X, = k)t* donc, par linéarité de la
k=0

m
limite, liT Gx, (t) = > P(X =k)t* = Gx(t). Ainsi, (Gx,, )nen converge simplement sur R vers Gx.
n——+oo
(«<=) Supposons que (Gx,, )nen converge simplement sur [0; 1] vers Gx pour une variable aléatoire X & valeurs
dans N. Soit les m + 1 réels oy = k pour k € [[0;m]. Alors en notant Ly le polynéme d’interpolation de
m
LAGRANGE associé, celui qui vérifie Ly (i) = 8; i bien sfir, comme les fonctions Gx, sont polynomiales de

m
degré inférieur ou égal A m,onavn € N, Vt € R, Gx, (t) = > Gx,, (ot )Li(t).
k=0

m
Par hypothese, on a donc Gx(t) = 1111 Gx, (t) = > Gx(o)Lk(t). La fonction Gx est donc aussi poly-

nomiale de degré inférieur ou égal & m ce qui montre (par unicité des coefficients des séries entieres) que

Yk > m, P(X = k) = 0. De plus, (Gx,)nen converge vers Gx dans l'espace vectoriel normé Ry,[X]
car les coordonnées (Gx, (1), +,Gx,(om)) de Gx, dans la base (Ly,---,L;) converge vers les coor-
données (Gx (1), -+, Gx(am)) de Gx dans cette méme base. Comme on est en dimension finie, c’est vrai

dans n’importe quelle base. On peut donc revenir dans la base canonique ou les coordonnées de Gx,
sont (P(Xy, = 0),---, P(X, = m)) qui converge donc vers celle de Gx dans cette méme base, & savoir
(P(X=0),---, P(X=m)). Ainsi Yk € N, nEToo P(Xn, =k) = P(X =k) : (Xn)nen converge en loi vers X.

b. Avec ces hypotheses, X, suit la loi binomiale B(m,py) donc X, est une variable aléatoire & valeurs dans
[0;m] et Gx, (t) = (1 — pn + pat)™. D’apres la question a., (Xy)nen converge en loi si et seulement si

la suite (Gx, )Jnen converge simplement sur [0;1]. Par exemple, cela implique que la suite (Gx, (1/2))nen

In(Gx, (1/2))
converge donc encore que (e o )Jnen converge et enfin que (pn)nen converge.

Réciproquement, si (pn)nen converge vers p € [0;1], lim Gx,(t)= lim (1 —pn+pnt)™=0—p+pt)™
n—+oo n—-+oo
pour t € R donc (X, )nen converge en loi vers X qui suit la loi binomiale B(m,p).

La condition nécessaire et suffisante cherchée est donc la convergence de la suite (pn)nen-
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a. Comme p # 0 et p # 1, on en déduit que Yn(2) = {0,1}. Par indépendance de Xy, et Xn41, il vient
P(Yp, =1) = P(Xq = Xny1 = 1) = P(Xy, = 1)P(Xps1 = 1) = p2. Ainsi Y, suit la loi de BERNOULLI
B(1,p2). D’apres le cours, E(Yy) =p?, V(Yn) = p?(1 —p?).

b. Bien str, si i =j, Y; et Yj sont plus que dépendantes (elles sont égales). Si i < j, on distingue deux cas :
esij=1i+41,alors (Y; =1,Yiy1 =1) = (Xi = 1,Xi41 = 1, X442 = 1). Ainsi, par indépendance mutuelle de
Xi,Xi41,Xi42, on a P(Y; =0,Yi41 =0) = P(X; = 1) P(Xi11 = 1) P(Xi42 = 1) = p3. Or, d’apreés la question
a., P(Y; =1)P(Yi;1 = 1) =p*. Comme p #0et p # 1, Y; et Yi,1 ne sont pas indépendantes.
e sij>1i+41, alors Y; dépend de X et Xiy7 alors que Yiy7 dépend de Xj et X;j41, on sent que Y; et Yiiq
sont indépendantes (lemme des coalitions). Or (Y; =1,Y; =1) = (Xy = 1, Xi41 = 1,Xj = 1,Xj41 = 1), donc,
comme avant : P(Y; = 1,Y; = 1) = p* = P(Y; = 1)P(Y; = 1). On vérifie de méme qu'on a les égalités
P(Yi =1,Y; =0) =p2(1—-p2) = P(Yi = 1)P(Y; =0), P(Yi =0,Y; =1) = (1—p?)p? = P(Y; = 0) P(Y; = 1) et
P(Y; =0,Y; =0) = (1—p?)? = P(Y; = 0) P(Y; = 0). Ainsi Y; et Y; sont bien indépendantes : Cov(Yi,Y;j) = 0.
c. On traite trois cas selon le couple (n,m) :

e Sin=m, comme Y,Y, = Y2 = Yy, on en déduit que E(YnYy,) = E(Y,) = p2.

eSin—m|=1, E(YpYy) =p>.

e Si |n — m| > 2, par indépendance de Yy, et Yin, E(YnYm) = E(Yn)E(Ym) = p*.
n 2
Par linéarité de 'espérance, comme Yk € [1;n], E(Yyx) = p?, on a E(Z—“> =1 SRV = B =p2,
n n k=1 n
n n—1
d. Comme Yy et Yy, sont indépendantes dés que n—m/| > 2, ona V(Z,) = >, V(Yi)+2 E Cov(Yi, Yig1)
k=1 i=1
d’aprés le cours. Sii € [1;n — 1], Cov(Yi,Yir1) = E(YiYiz1) — E(Yi) E(Yit1) = p> — p* = p>(1 — p) donc
V(Zn) = np?(1-p?) +2(n—1)p*(1 —p). Comme p*(1—p) >0, V(Zn) < Cn avec C = p?(1—p?) +2p>(1—p)
donc € = p2(1 = p)[1+p +2p] = [p(1 —p)](1 + 3p)p < 411 x4x1=1et V(Tn) = #V(Zn) < %
D’apres l'inégalité de TCHEBYCHEV, on a la majoration Ve > 0, P(‘Z—“ — pz‘ > ¢e)] < v %“) Or
n €

201 _ .2 1Ve3(1
lim P (I—p )—1—22(112 DpZ(1 —p) = 0 donc, par encadrement : Ve >0, lim ]P)(‘Z—“ —pz‘ > a) =0.

n—-4oo n-e n—4oo

Par inégalité de BIENAYME-TCHEBYCHEV, nous avons ]P’(‘S—“ — pz‘ > 5) < iz V(S—“>
n £ n

On conclut bien que Ve >0, lim IP’(‘ In _ pz‘ > ) = 0 par théoreme d’encadrement.
n——+4oo n
“+oo
11.35] a. Si X est une VAD de type 2, comme P(Q) = >~ P(X=n)=1,o0na |Gx(—1)| =1 car:
n=0

+o0 oo
esoitr=1et P(X=2k) =0 dou P(Q) = P(X =2k+1) =1donc Gx(—1)=— >, P(X=2k+1) = —1.

k=0
+oo +o0
esoit r=0et P(X=2k+1)=0dou P(Q)= > P(X=2k)=1donc Gx(—-1)= > P(X=2k)=1.
k=0 k=

—+oo +oo
Réciproquement, si Gx(—1) = > P(X = 2k) — Z P(X =2k + 1) = P(X pair) — P(X impair) = £1, comme

P(X pair) € [0;1] et P(X impair) € [0;1] :
e s0it Gx(—1) =1 donc P(X pair) =1 et P(X impair) =0 et on a bien (Vk € N, P(X =2k+1) =0) : r=0.
e soit Gx(—1) = —1 donc P(X impair) =1 et P(X pair) =0 et on a bien (Vk € N, P(X=2k)=0): r=1.

Et on a établi que X est de type 2. On a bien ’équivalence annoncée par double implication.
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b. On pose w = % € Uy,. En distinguant selon le reste r de la division euclidienne de n par m, comme

400 m—1
W = wiI™T = " Gx(w) = Z PX=n)w™ = > ( Z PX=mq+7))w" PX =1 [m)w".
= r=0 “q=0
e Supposons X d’ordre m. Soit v € [0;m — 1] tel que Vk € N, k Zr [m], P(X = ) = 0. Alors, en sommant,
ona P(X=1"[m]) =0si1 € [0;m—1] et v/ # r. Par conséquent, Gx(w) = P(X = r [m])w" = w" car
P(X =1 [m]) =1 et on a bien |Gx(w)| =1.
m—1
e Réciproquement, si |Gx(w)| = 1, comme Gx(w) = >, P(X = r [m])w” on a par inégalité triangulaire
r=0

1= |Gx(w)| < mi1 P(X =1 [m])|w"| = mi1 P(X =1 [m]) =1 donc on a égalité dans I'inégalité triangulaire.
Le cas d’égalitérgzns I'inégalité triangulgroe montre que P(X =0 [m])w® -, P(X=m — 1 [m])w™"! sont
positivement liés. Mais les m racines m-iemes w?, - - -, w™~" de I'unité sont non colinéaires, ceci n’est possible
que 8'il existe r € [O;m — 1] tel que P(X =1 [m]) =1 et P(X=1" [m]) =0 si v/ # r. X est donc de type m.
Par double implication : X est de type m si et seulement si ‘Gx (ez%)‘ =1.

c. Siretr dans [[1;m — 1] vérifient cette condition, alors pour tout entier k € N, on a soit k # r [m], soit

—+oo
k # 1 [m] ce qui prouve que P(X = k) = 0. Mais on a alors Y, P(X = k) = 0 contredisant que X(2) C N ce
k=0

qui implique Jio P(X =k) = P(2) = 1. Ainsi, si r existe, r est bien unique.

d. (<) Si ngé)Y sont de type m, alors fo(w)’ =1et ‘Gy(w)’ =1 d’apres la question b.. Ainsi, comme
X et Y sont indépendantes, Gw = GxGy donc |Gw(w)| = [Gx(w)||Gx(w)| =1 x T =1 et W est de type m.
(=) D’apres la question b., il vient |Gw(w)| =1 donc |Gx(w)||Gx(w)| = 1. Or on a vu a la question b.
que |Gx(w)| <1 et, de méme, |Gy(w)| < 1. Or |Gx(w)||Gx(w)| =1 donc ces inégalités sont des égalités et

|Gx(w)| =1 et ’Gy(w)’ = 1. Toujours d’apres b. : X et Y sont donc de type m.
On conclut par double implication que W de type m <= X et Y de type m.

11.36 ] a. Pour i € [[1;20]], soit X; la variable aléatoire qui vaut 1 si le candidat répond juste & la question i et
0 sinon. On suppose que X1, - -+, X2 sont indépendantes mutuellement et elles suivent par hypothese la loi
20

de BERNOULLI de parametre % Comme X = ) Xj par construction, on sait que X suit la loi binomiale
i=1

B(ZO, %), ce qui signifie que Vn € [0;20], P(X =n) = (f) (%)“(%)204{

b. La famille ((X = n))nepo;20) constitue un systéme complet d’événements donc, par la formule des
probabilités totales : Vj € [1;20], P(Y =j) = Z P(Y =jX =n)P(X =n). Or P(Y =j|X =n) =0si
=0

20—n < jet, sij < 20—n, comme il reste 20—n questlons et un choix parmi k—1 reponses pour trouver la bonne
20—n 1 k—2\20-n—
) (7) (7) . Ainsi, il vient
) k—1 k—1
20 /20 —n 1T \J k—Z 20-n-j k—] 20-n
By =)= 5 (0T (Y (2 )y
=\ k—1/ \k— 1

0 —
Comme on a la relation classique ( . n) < ) (
)

car B(Y j):(ip)mii(zo—j—n)(k 2)20-i-n _ > 12055 — (Zo)zj(])i(kkq)zoi.

kn n=0 n n k

pour chacune des 20 —n questions, on a P(Y =j|X =n)

20 —
( ]) Y suit aussi la loi binomiale B(ZO ]]{)
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A vérifier mais certainement que les variables aléatoires suivantes "nombres de bonnes réponses obtenues a

la i-ieme tentative” suivent toutes la méme loi B (20, %) (indépendamment de i donc).

c. La note obtenue est X + %, la condition imposée revient a E(X) + %E(Y) = % + % =5, soit a k = 6.

11.37] a. Dans ces conditions, la famille (vq,---,vy) est orthonormale donc, par la relation de PYTHAGORE, on

n 2 n n
obtient ’ > exvk ’ = > e2 =n et on passe & la racine pour avoir ‘ > exvk ‘ =/n.
k=1 k=1 k=1
b. En utilisant la bilinéarité du produit scalaire : U= >~ X;Xj(vi|vj).
1<i,jsn
Par linéarité de l'espérance : E(U) = > (viJv;) E(XiXj). Pour k € [1;n], on a E(Xyx) =0 et E(XZ) =1.

1<ij<n

n
Par indépendance de X; et Xj, si i # j, on a aussi E(XiX;) = E(X{) E(Xj) = 0. Ainsi E(U) = > |jvk||* =n.
k=1

c. Par I'absurde, supposons qu’on ait V(eq,-+-,en) € {—1,1}"™,

mn
> kv
k=1

n
la variable aléatoire qui va de Q dans {—1,1}™ et f: {—1,1}™ — R définie par f(ej, -, en) = H D KV
k=1

Comme U = f(X3,--+,Xn) = f(X), on a E(U) = E(f(X)) = > P(X = (e1,---yen))f(e1, -y en)
(e1,en)E{=1,1}m

‘>\/ﬁ. Notons X = (X1,---,Xn)

‘ 2

n
par le théoreme de transfert. P(X = (e1,---,en)) = P(X1 = €1, -, Xpn =¢en) = [ P(Xx = ex) = zi“ par
k=

n
Z ExVk

k=1

indépendance mutuelle des Xy,---, Xy et il vient E(U) = 1

2
o ‘ . L’hypothese
(

€1, en)E{=T,1}"
1

ci-dessus prouve que E(U) > —= > n = —%card ({71, 1 }“) =n ce qui contredit le calcul de
27 (erymem)e{—1,13m 2

n
la question b.. Ainsi, il existe une famille (e, -, en) € {—1,1}™ telle que H > eevk
k=1

‘ < Vi

n

Z ExVk ‘ = \/TT.
k=1

Alors U est constante sur € et on a U = n. Ainsi V(U) = E(U?) — E(U)? = E(U - E(U))?) = 0. Or

n 4 2
E(Uu?) = E(H > Xevk ‘ ) = E(( > XX (vi\vj)) ) En développant par linéarité de ’espérance, par
k=1 1<ij<n
indépendance mutuelle des X; et puisque E(X;) =0, X? =1 et E(X?) =1, on a la calcul suivant :
2 2
EW) = E((nt 5 xXily)) ) =n+2n 2 i) ECOE)+E(( X X)) ).
1<iZj<n 1<iZj<n 1<iZj<n
La somme centrale est nulle et il ne reste de la derniere que E(U?) =n?+ > (vi|vj)%. Par conséquent
T<iAjsn
V(U) = E(U2)—E(U)2 = > (viJvj)> = 0 donc tous les produits scalaires (vi|vj) sont nuls et (v, -+, vn)
1<iZj<n
est une famille orthonormale.

d. On a montré (=) a la question a.. Supposons que V(ey, -, en) € {—1,1}™,

e. On suppose que (v1,--+,vn) nest pas une famille orthonormale. Par I'absurde, supposons que pour tout
n

(e1,-+yen) € {—1,1}", on a H > ekka < /m. Alors, avec la formule de la question c¢. mais appliquée
k=1

> 1 2

aU? ona E(U?) = 2% > < o > n? = n?. On en déduit que
(51,“-,8.1)6{71,1}“ k= (51)"'15\&)6{71»1}“
V(u) = E(U?) — E(U)? < n? —n? = 0 donc V(U) = 0 car c’est une quantité positive. Mais d’apres la
question d., il vient V(U) = > (viJvj)> =0 ce qui est impossible car la famille (v1,---,vy) n’étant pas
1<iZi<n
une famille orthonormale alors que les vecteurs vy sont unitaires, ona > (vi|vj)2 > 0. Par conséquent,
1<iZi<n

’ 4

€xVk
1

‘>\/ﬁ.

n
il existe bien (g1, +,en) € {—1,1}™ telle que H > exvk
k=1
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11.38) a. Si w € A, alors 1Ti/lka<x [Sk| = 3x. Sion note r = Min{k € [1;n] | |Sx| > 3x}, on a w € A, donc
=X \n
n
A C A7 U---A;,. L’inclusion inverse est clairement vérifiée donc A = U Ak. Deplus,silT <i<j<net
k=1
si w € Aj, alors 1<l\élgx : ISe| < 3x} donc |Si] < 3xcar 1 <i<j—1etalorsw ¢ Aj. Ainsi, les événements
IR)—

A1,--+, Ay sont incompatibles deux & deux : ils forment bien une partition de A.

n
L’évenement Ay dépend des variables aléatoires X, - - -, X et la variable aléatoire S;, —Sx = > Xj dépend
i=k+1
de Xy41,+*+, Xn. Par le lemme des coalitions, les événements Ay et {|Sn — S| > 2x} sont donc indépendants.

On a bien siir A = (AN (|Sn| = x)) U(AN(|Sn| < x)) en distinguant selon la valeur de Sy |.

(AN (ISn] =x)) et (AN(|Sn| < x)) étant incompatibles, on a P(A) = P(AN(|Sn| = x)) + P(AN(|Sn| < x))-
Mais comme A N (|Sn| = x) C (|Sn| = x), on a P(A N (|Sn| = x) < P(|Sn| = x) donc finalement, on obtient
la majoration P(A) < P(|Sn| = x) + P(AN (|Sn] < x))-

n
b. Comme AN (|Sn| < x) = U Ax N (|Sn| < x)), par incompatibilité de ces événements, on a l'inégalité

—_

n
P(A) < P(Sn| = x) + Z P(Ax N (ISn| < %)) or Ax N (ISn] < x) C Ax N (|Sn — Sk| > 2x) donc, par

indépendance, il vient IP’( N(ISn] <x)) < P(Ax N (|Sn — Sk| > 2x) = P(Ak) P(|Sn — Sk| > 2x).
277927272727

11.39) a. Soit s € C et n € N*, alors en notant Ag = 0, on a ax = Ax — Ax_1 pour tout entier k > 1 donc

n n n n n
a Ak — Ak—1 Ak Ak—1 An Ax—1 ATL ( 1 )
Ts = — s = s + = + - A
kZ::1 kS = ks E kS kz::Z ks Z] ks kZ—:Z ks ns Z ks (k ])s k

1 (transformation d’ABEL).

apres avoir effectué le changement d’indice i = k
k=

b. Soit « € Ry et s € C tel que Re(s) > «, on suppose que A, +: O(n%), alors lim A—Q = 0 car
o

n—+oco n

A—? = o(n*=s) = O(n"‘_Re (s)) et « — Re(s) < 0. De plus, en utilisant les développements limités, il vient

mn oo

J__ 1 _ 1 (] — (1 +l>_s) =1 (1 — (1 f—}—O( )) (saufsi s = 0) donc, par hypothese

K (k+1)°5 K +oo k° k2// +o0 ks“ ’ ’
1 1

(F - it ])8) k= O(W) donc Z (k—s — W)Ak converge absolument donc n§1 % converge.

c. Comme (|[An| > x) = (An > x) U (An < —x) = (An > x) U (—An > x) et que ces éveénements sont
incompatibles, on a P(|A,| > x) = P(An > x) + P(—=An > x). Or, comme les ay ont méme loi que les —ay,
An a méme loi que —A donc P(—An > x) = P(A,, > x). Donc P(|An] > x) = 2P(A, > x).

AA L > e?\x)

Comme A > 0 et exp strictement croissante, (A, > x) = (e et eMn est une variable aléatoire

positive donc, par I'inégalité de MARKOV adaptée P(X > ¢) < EX) (avec la méme preuve et la croissance
€

}\An )\An
-mais pas stricte- de espérance), on a P(A;, > x) < ¥ On en déduit que P(|An| > x) < ZL(e?\X )
e e
d. Les variables aléatoires ay,-- -, an sont mutuellement indépendantes, donc aussi e, ..., M ainsi,

d’aprés le cours : E(eMn) = E(e?@1) ... E(eMn). Mais, pour k € [[l;n]], E(ekak) = %(e)‘ + e_>‘> =ch(A).

Ainsi : E(eMn) =ch(A\)™. Or Va € R, ch(a) = %o o?" eteZ = E Or si on pose an = 2.1
' - ' : 2 () zn I POSE an = o)
on aapi] = 2(n +1)an = 9 < q, donc la suite (an)n>o est décroissante et ap = 1. Ainsi,

(n+2)2n+1) 2n+1
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2

VneN, ap <1 -1 < TJ—TU On en déduit que Va € R, ch(a) <eT.

(2n)! "2
nA? 2 2
P , e 2 _ nAT iy A A .
ar conséquent, P(|An| > x) < 2555 =h(A) = 2e" 2 . Or le minimum de A — ne - Ax est atteint
e

(étude de parabole). Donc P(JAn| > x) < hx(Ao) = 2e2n .

enA=A =%
n

2
11.40| a. Concernant le premier tirage, comme les (;) tirages de parties a 2 éléments de ’ensemble des 2n

boules sont équiprobables, et que seuls n parmi ces paires (paire 1,1, paire 2,2, etc...) permettent d’avoir

Pévénement A,, on a P(A,) = 221 ) =3 ] T On pouvait aussi modéliser ’expérience en disant qu’on
n—

2
prend une boule apres 'autre, et que quelle que soit la boule qu’on a pris en premier, il ne reste alors dans
1
n—1
b. D’abord Ty = 1 puisqu’il n’y a alors dans 'urne que deux boules numérotée 1 qu’on tire la premiere fois.

Purne qu’une boule pour faire une paire sur les 2n — 1 boules restantes, ce qui donne encore P(A,,) =

On note T, = +00 si on ne vide jamais 'urne. T, (Q) C [n; 4+o00] (au moins n tirages pour vider 1'urne).
On suppose maintenant qu’il y a 4 boules (2 paires) dans I'urne. Pour k > 1, on note Py I’événement “on

tire une paire au tirage k”. Quand on aura tiré la premiere paire, il restera deux boules identiques dans
k—2
Purne qu’on sera obligé de tirer. Alors, pour k > 2, (T, = k) = ( ﬂ Pi) N Px_1 NPg. Par indépendance des

i=1

2\ 122
tirages et d’apres la question a. avecn =2 puisn=1: P(T, =k) = <§> X 3 x 1= 3 (g> . Comme
it oo 1/3
(T2 < 400) = |_| (T2 = k) (évenements incompatibles), on a P(T; < +00) = > P(Ta =k) = —F— =1
2 k=2 1-(2/3)

k-1
par o-additivité donc P(T, = +00) = 0. Comme P(T, —1 =%k) = (%) % et que (T, —1)(2) = N* (presque

strement), T, — 1 suit la loi géométrique 9(%) D’apres le cours, E(T, —1) =3 et V(T; — 1) = 6. Par les
propriétés de I’espérance et de la variance, on a donc E(Tz) =4 et V(T,) = 6.
c. Pour k € [1;n], on note Ty x le nombre de tirages pour retirer les k premieres paires (temps d’attente

du k-iéme retrait de paire) de sorte que, par définition, T, = T. Comme la probabilité de retirer deux

1

boules dans une urne de 2n boules est de pr— d’apres la question a., la variable aléatoire T, 7 suit la

1
n—1
tirages nécessaires pour retirer la seconde paire une fois retirée la premiére. Mais comme il ne reste plus que
1

loi géométrique 9( ) par indépendance des tirages. De méme, T, > — Tn 1 représente le nombre de

2n — 2 boules dans I'urne pendant cette période, Tn, 2 — Tn 1 suit la loi géométrique 9( ) En général,

2n—3
. 1 .
Tnk — Tn,k—1 suit 9(m) pour k € [2;n]. Or Ty = Tan = k2=:1 (Tn,k — Ta,k—1) en convenant
que Tn,o = 0. Les variables Tn 1, Tn,2 — Ta,1, -+, Tnyn — Tnyn—1 sont indépendantes (le nombre de tirages

effectués pour retirer la premiere boule n’influe pas sur le nombre de tirages pour retirer la seconde, etc....)

n n
donc E(Tn) = > E(Ta,xk — Tnk—1) et V(Tn) = > V(Tnx — Tn,k—1). On sait d’apreés le cours qu’alors
k=1 k=1

n

E(Ty) = 3 n=2k+1) = 22— 1) =n? et V() = 32(2~ 17 - @~ 1) =
= j= )=

nn—1)(4n+1)
3

(apres
calculs). On vérifie que V(T;) = 0, ce qui est logique puisque Ty est constante égale a 1.
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On vérifie que ces formules fonctionnent pour n = 2 et redonnent E(T,) =22 =4 et V(T,) = 219 —¢.

3
a. Comme Vk € [1;n], E(Xy) = 0, par linéarité de lespérance, E(S,) = Z ax E(Xx) = m,, = 0. Par
indépendance 2 & 2 des variables aléatoires Xj,---, Xy, donc aussi des varlables aléatoires a1Xq, -+, anXn
par transfert d’indépendance, on a V(S,) = V( kil aka) = kil a V(Xy) = k21 ai = o2 d’apres le cours.
b. Vt € R, ch(t) = 2 (tzznn) cte = Z 2” i Stan = (2;3!!7 T n (J:LZJ)F(L)naiU =7 S o
donc (an)n>o0 décroit et ap = 1. Ainsi, Vn € N, an < 1 <= (2] I < Z“n!' DouVt € R, ch(t) < ez2

2
On pouvait aussi étudier la fonction f : t — % —1In(ch (t)), elle est deux fois dérivable et on a f'(t) = t—th (t)

et f/(t) = th?(t) > 0 pour t € R donc, comme f(0) = 0, ' est négative sur R_ et positive sur R,

ce qui montre que f est minimale en 0 et, comme f(0) = 0, que f est finalement positive sur R. Ainsi,
2
Vte R, In(ch(t)) < 7 et on conclut par croissance de ’exponentielle que Vt € R, ch (t) < et’/2,

c. Les variables aléatoires Xj,---,X;, sont indépendantes par hypothese, on sait qu’alors, par transfert

d’indépendance, les variables aléatoires e®1 X1, ... e®nXn sont aussi indépendantes. D’apres le cours, puisque

Vk € [1;n], E(eraXx) = %(emk + e’)‘“k) = ch (Aak) par la formule de transfert, et d’apres la question b.,

n n n 2 2 7\2031
YA >0, E(eMn) = E(er X1 ... eranXn) = [T E(erXx) = [] ch(Aay) < J[ M 9/2 =e™ 2

k=1 k=1 k=T
d. exp est strictement croissante et x > 0 donc (S,, > x) = (e*5 = eM*) donc P(S,, > x) = P(e?Sn > ).
D’apres I'inégalité de MARKOV appliquée a la variable aléatoire discrete réelle bornée et positive e*Sn, on

AS Moy A2g2 2 2
Pinégalité B(Sp > x) < 26 ) <€ 2 1 ()= e 2>, Or le minimum de A o x est
a l'inégalité P(Sy = x) < P <(A) =e r le minimum de A — — Ax es
atteint en A = Ag = % (6tude de parabole). Par conséquent : P(S,, > x) < hy(Ao) = e2%n
Gn
Par exemple, si on effectue une marche aléatoire classique avec a; = --- = an = 1, alors 0121 =net S,
O(.ZTL 2

représente la position du marcheur aprés n pas et on a la majoration P(Sy, > ay/n) < e 2n =e 2

11.42] a. L’ensemble X, est un compact car il est fini de cardinal 2™ (un singleton est fermé dans un espace
vectoriel normé donc aussi une réunion finie de singletons) et lapplication det est continue car polynomiale

sur lespace vectoriel normé M, (R) donc det est bornée et atteint ses bornes sur X;, donc il existe A € Xy,

tel que I\;l(ax(det) = det(A) de sorte que YM € Xy, det(M) < det(A).

]
b. Soit B = (bij)1<i,j<n € Xn, (M =B) = m (Xij =byj) = o > 0 donc, par indépendance mutuelle
1<i,j<n
des Xy j, il vient P(M = B) = P(Xy; = bij) = 2]n > 0. Ainsi (M = B) # 0 donc il existe w € Q tel
1<ij<n

que M(w) =B : B € M(Q2) d’ott X € M(£2). Comme l'inclusion réciproque est claire : M(2) = Xy,.

c. M eSn(R)) = ﬂ (Xi,j = Xj,1) et les évenements (Xi; = Xj,i)1<i<j<n sont indépendants mutuelle-
1<i<j<n
ment par hypothese donc P(M symétrique) = [[ P(Xi; =Xj1) = ﬁ
1<i<j<n P

d. La matrice By41 = (AO“ ?) appartient & X, 11 donc det(Bny1) = det(An) = un < det(Ans1) = Unad
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d’apres la question a.. Ainsi, la suite (un)n>1 est croissante. Onaw; =uy =T avec A; = (1) et Ay = I, par

1 1 0

exemple. Par contre uz > 2 avec B3 = | 0 1 1 | de déterminant 2. En fait uz = 2 (voir OEIS A003432).
1 0 1

Par conséquent, en considérant le matrice diagonale par blocs diag(B3z,--,B3) € X3n, on a uz, > 2™ donc

1111 uzn = +00. Comme (un)n>1 est croissante, HT Un = 400 par le théoreme de la limite monotone.
n— n—+oo

11.43| a. Pour compléter la collection en m achats, il faut avoir m jouets différents en m achats ce qui se fait

de m! facons différentes. Ainsi, par indépendance et équiprobabilité des achats, g = nT—rL car il y a m™
possibilités de faire m achats & m jouets. Dans ce raisonnement, on a choisi @ = [1;m]™, la tribu pleine
A = P(Q) et la probabilité uniforme sur 2, ainsi en notant C,,, = “on complete la collection en m achats”, on

card (Crm) _ ml

aqm=P(Cn)= 1) car C, est 'ensemble des m! m-listes d’éléments distincts de 'intervalle
car
[1;m] : tant de précision n’et pas forcément souhaitable a 'oral !
. Hm™ (m+1)mm m 1\ ™ 1\™
Ainsi, dmt1 — (m + - __m — (1+7) or (1+7) _ o—mn(1+(1/m))
qm m(m+D™ T (m+ )™ (m )™ m m

avec lim mln (1 + i) =1 car In(1 +x) ~x. Par continuité de I'exponentielle, lim Imtl — 1

m——+00 m 0 m—+oo  (m e

Si la question avait été de déterminer la probabilité q,, de compléter la collection en exactement n achats,

alors qn = 0 si n < m. Posons J; = “le jouet i n’a pas été acheté au cours des n premiers achats”.
m

Alors, ’évenement ﬂ Ji est justement T, = “la collection est terminée en au plus n achats”. Si on pose
i=1

Pévénement E, = “la collection est terminé en exactement n achats”, on a E, = T, \ Th—; alors que
m

Tho1 C Tp donc qn = P(E,) = P(Th) — P(Th—1). Or T = U Ji ce qui donne avec la formule du crible
i=1

P(Ty) = 1 B(T (UJ) > (-1

k=1 (ﬂ ]11>>7 et comme la probabilité de

1<ii< <1)< <n
k
ﬂ Ji; (intersection de k événements du type Ji) vaut (L_k) (m —k jouets seulement sur m achats), on a
m
j=1

1= B = £ 0 (1) (M) At an = S0 (T)((PE)T - (P15 o

beaucoup plus délicat et surtout hors programme.

b. Clairement, si on note Xo le nombre d’achats qu’il effectue pour I'obtention du premier jouet, on a Xo = 1

(tout jouet est un nouveau jouet au départ). Quand on a déja obtenu k jouets différents, obtenir un nouveau
m—k

jouet se fait avec une probabilité . Par indépendance mutuelle des achats de jouets, Xy suit d’apres le
cours la loi géométrique § (L_k) (temps d’attente d'un succes).
m

c. T représente le nombre d’achats nécessaires pour obtenir la collection complete des m jouets. E(T) est

donc la moyenne de T. Si un jouet coite ¢, ¢ E(T) représente le coiit moyen de la collection compléte.

m—1 m—1
Par linéarité, E(T) =1+ > E(Xx) = > =m Z = mH,, en posant j = m — k.
K=T1 K=o M — k =1

d. 1l est classique, on le fait par comparaison série-intégrale, que Hp, ol In(m) ou alors on utilise le

développement asymptotique Hy = In(n) +v + o(1) (mais hors programme). Ainsi E(T ) ~ mln( ).
oo

Plus précisément, mais encore moins au programme, on a H, = In(n) + vy + —|— o( ) ce qui donne
+oo n
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E(T) = mIn(m) +ym + % + o(1) ce qui est tres précis.

11.44) a. Comme Z est une variable aléatoire & valeurs entieres, 2~ est & valeurs dans ]0; 1] donc elle est bornée.

Ainsi 274 admet une espérance finie.

b. On vérifie que ceci est cohérent : P(Q) = Jrf:o P(Zz=n)= :f:j) 2“% = 1. De plus, par définition de v(Z),
onar(Z)= 4ioz_“]P’(Z: n)=1 f:QL_%:;

n=0 2204 20-(01/4) 3
c. Par indépendance mutuelle des Xj,---,Xq, on a Gs, = klﬂ[ Gx,- Comme par hypothese, Gx,,---,Gx,

q
sont deux fois dérivables en 1, la fonction Gs, I'est par produit et on a G’Sq m=>3 ( 1T Gx, (1)) Gx, (1)
k=1 \1<i<aq
izk

q q
Or Gx, (1) = 1donc E(Sq) =G5 (1) = > G (1) = kX_% E(Xx) ; ceci est juste une vérification de la linéarité

k=1
q
de lespérance. De méme G¢ (1) = > ( [I Gx,‘(1)>G’>'< m+ > ( I1 Gxi(1))G;(,(1)G'X_(1).
a k=1 \ 1<i<q * 1<iAj<q ¥ 1<m<q ' ’
i#k m#i, m#j
q
On obtient donc G’Sf M= Z Gx, (MW+ > E(X{)E(X;). Puisque V(Sq) = G’s'q (1)+G’Sq(1) 7G’Sq(1)27
=1 1<i4j<q
q q q 2
ona V(sg) = 32 (V0% = B+ BX))+ T EXOE0G)+ L E0)— (3 EG))” ce qui donne
k=1 1<i#i<q k=1 k=1
q

apres simplification des double-produits : V(Sq) = > V(Xi) comme attendu. Tout ¢a pour ca !l

11.45 ) a. Par construction, on a X(£2) = N. Notons les événements P; : ” on a fait pile au lancer i”. Alors, pour

n+1 n+1

ne N (X=n)= U (Pk N Ppi2N ﬂ Pi) car il faut un premier pile (au lancer k), tout autour que des
k=1 :;1

face et enfin un second pile au lancer n + 2 = n face 4 2 pile. Comme la réunion est disjointe (événements

n+1

incompatibles), que les événements Py N Py N ﬂ Pi ont méme probabilité car les P; sont indépendants
7k
mutuellement, on obtient la loi de X : P(X =n) = (n+1)p?(1 —p)™

b. Comme nP(X = n) = n(n + 1)p?(1 — p)™ et que la série > n(n + 1)p?(1 — p)™ converge absolument
n=0

car n(n 4+ 1)p2(1 —p)™ o( 1 ) puisque 0 < 1 —p < 1, X admet une espérance finie. On dérive deux fois
+oo \n?

+oo
Vx €] —1;1], 1 - Zx”donc —2 - S on(n 4 1)1
T—x n=0 (] - X)3 n=1
+o0 2 o .
Par conséquent E(X) = 3. n(n+ 1)p2(1 —p)™ = — (1—p) 5 = 1-p,
n=1 (1=0-») 2
+o0
c. Comme avant, on a Y(2) = Net, pour k € N, (Y =k) = U (X =mn, Y =k) (réunion disjointe). Comme
n=k
le choix des boules dans 'urne est équiprobable, P(Y = k|X = n) = ﬁ (loi uniforme) si k < n. Par o-
n
&, (1—p)*p? «
additivité, on a donc P(Y =k) = Z P(Y=k[X=n)P(X=n)= Z (T—p)* = m =p(1—p)
n=k n=k - - P
donc Z = Y + 1 suit la loi géométrique G(p) car Vi > 1, P(Z =1i) = P(Y =i—1) = p(1 —p)'~". On sait

qu'alors E(z) = E(Y) +1 = 1 (par linéarité de l'espérance) donc E(Y) = 1-p,
p P
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d. Soit (Q,.A, P) un espace probabilisé et X : Q@ — E tel que X() soit au plus dénombrable. On dit que X
est une variable aléatoire si Vx € X(2), (X =x) € A.

+oo
11.46 a. Le cours nous permet d’affirmer que, si « € Ret si x € — 1;1[, on a (1 +x)* = 3 (i)xk, avec
k=0
(=3) (K + )
o oo —1)--(ax—k+1) L 1 2 2
bk = = . En particulier, lorsque o« = ——, il vient by = donc
k k! 2 k!
1 1 1 2k — 1
b ]k(_i)“'(_lﬂ_i)_i'“ 2 Ixeeex(2k—=1)  1x2x---X(2k—1) x (2k) ¢ onfi
k=1 k! - K! - 2%x! - (2%K!)? B

2001 (2K ()5

+oo
b. La condition imposée & r est d’étre strictement positif et de vérifier Y P(X =n) = 1. Or en prenant
n=0
|
dans la question a., on a v/2 = Z 23(3%)') Ainsi, la seule valeur T qui convient est r = %
c. Quand r 1_ la variable aléatoire X définie comme en b. vérifie G (1) %O (2n)tt? pour des
. - = . X = —_—_—
\/2 n=0 23“( )2\[
n)lt Un 41 (n+2)2n+1)t
t convenables. En posant u, = _(@mit? on a, pout t # 0 et n > 0, 2+ = donc
P RS AV, P 7 Un 8(n+1)2

=5 Ainsi ) un converge absolument si [t| < 2 et diverge grossierement si [t| > 2. Le
n=0
rayon de convergence de cette série génératrice est donc Rx = 2 ce qui fait que Gx est de classe C* sur

n—-+oo Un

] = 2;2[ donc X admet une espérance finie et un moment d’ordre 2 car elle est deux fois dérivable en 1. De

1 ! _
\[\/1 2 ==t Comme G4 (t) =
on a E(X) = Gx(1) = J et V(X) = GX(1) + Gx(1) — G(1)2 = 1.

lus, d’apres la question a., Vt €] —2;2[, G — 1 et
p P q ] [ X( ) 2(2 _t)s/z

G (1) = 3
x(t) 12— 0%
11.47] a. On choisit donc une partie de = P(E) de maniere aléatoire de sorte que la probabilité 'obtention de

la partie A soit proportionnelle & son cardinal. On prend donc A = P(f2) et il existe une constante o > 0

telle que VA € Q, P({A}) = acard (A). Pour connaitre «, il suffit d’utiliser la relation P(Q2) = 1. Comme

0= U {A},ona P(Q)=1=0a > card(A). Or il existe (2) parties de E de cardinal k ce qui montre

AcQ A€P(E)

que 1 =oa >, card(A):ocZ > card(A)=a >, Y. k=a) k =a >y k =
AEP(E) k=0 AET(E) k=0 AEP(E) k=0 \k k=1 \k
card(A)=k card(A)=k
n n 1 ' (n—1

Or k = donc k = = =n2™ . Ainsi, a = S

(1) = (i) o Ze(E) = G0 = (1) v e
En notant S = “obtenir un singleton” en prenant au hasard une partie dans ce cadre, on a donc S = U {{x}}

x€E

donc P(S) = > P({x}) = 1=

Aan—1
x€E 2 x€E 2

b. C est une variable aléatoire car C(2) = [[0;n] et A est la tribu pleine. Comme il existe (Z) parties de

k
cardinal k dans E et que chaque partie A de cardinal k vérifie P({A}) = %, ona P(C=k) = <E> T
n n

Comme C(Q2) = [0;n], par définition, E(C) = Y kP(C=k) = S 3 k? <E> On écrit k? = k(k—1)+k
k=0 n k=1



eté%kz(Z) kz K(k —1) ) zi: () (n—1)§j<2:§)+n§: (E::).Onreconnaitdes

k
n-2 n—1
bindémes de NEWTON et Z K? ( 12" 2 4+n2™ " Ainsi E(C) = n(n - ])zznfﬁ— n2 =N ‘2|' 1
n
On écrit V(C) = E(C?)—E(C)? = E((C—1)(C—2))+3E(C)—2—E(C)? pour faire apparaitre, avec la formule
n
de transfert, E((C —1)(C — )) S (k=1(k-2)P(C=¥k) = 111 ] E k(k—1)(k —2) (E) On poursuit
k=0
. nm—-1mn-2) & /m-3 n(n—1)(n—2)2“_3 m=1)(n-2)
classiquement, E((C —1)(C —2)) = % k;g (k B 3) = o= = . .
2
Ainsi, V(C) = (n—Dn=-2) + 3(n+1) —-2— (n+1) =n—1c qui est logique car si n = 1, il est certain

4 2 4 4
de prendre un singleton donc C =1 est constant donc de variance nulle.
c. Notons U (resp. V et W) l'’événement (card (A) < card (B)) (resp. (card(A) > card(B)) et enfin
(card (A) > card (B))). Alors Q = UUV UW (ils sont incompatibles) donc 1 = P(U) + P(V) + P(W). Or,

P(U) = P(V) par symétrie entre les parties A et B.
14+ P(W)

L’événement Z = (card (A) < card (B)) vaut donc Z =UUW donc P(Z) = P(U) + P(W) = 5

n n

Orw = U Wy ot Wy = (card (A) = card (B) = k). Par incompatibilité des Wy, P(W) = > P(Wy).
k=0 k=0

Or par indépendance des choix de A et B, (card (A) = k) et (card (B) = k) sont indépendants donc on a

P(Wy) = P(card (A) = k) P(card (B) = k) = P(card (A) = k)? par symétrie entre A et B.

Or P(card(A) =k)= >, P{X}) = ( ) K Par conséquent, P(card (A) =0) = 0et, si k € [1;n],

XEP(E) n2n
-1 n—1
d
g (75 (WL e
1

card(X)=k
-1 n —1
P(card (A) = k) = zn‘_1 (z - 1). Ainsi P(W) = -1+ 3 (;‘ - ]) =
n—2 n—2
P(w) = % " d’apres la formule de VANDERMONDE. Ainsi, P(Z) = >t 271 1 " .
4 n—1 2 n—1
1

D’aprés STIRLING, P(W) ~ — 0d im P(U) == ttendu.
apres S , P( )+oo I/ e onc Hm (u) 5 comme attendu

11.48 | a. Par le théoreme de transfert, la variable aléatoire Y = e*N admet une espérance finie si et seulement si

n n u\n
la série Y e""P(X=n)= ), eu“e_}‘)‘—' converge. Or etme M — e‘xw donc la série précédente
n

n=o0 n>0 . T\.' n.

o ; . uNy S A e a et _ A(er—1)

converge comme une série exponentielle. Classiquement, E(e*™) = > e To=e e =e i
n!

n—=
b. Pour y > 0 et u > 0, e*MN-+WA) — o= (1HY)UAUN qope 7 = e (N=U+YA) admet aussi une espérance
finie et, par linéarité de I'espérance, E(Z) = e~ (1 TWUAE(eWN) = e~ (THy)urg=Apre™ — pA(e®—1=(T+y)u),
Considérons la fonction fy : R% — R définie par fy(u) = e* —1 — (1 +y)u. Comme f, est dérivable et
que fy(u) = e* — (1 +y), fy est croissante sur [In(1 +y); +oo[ et décroissante sur J0; In(1 +y)], ainsi on a
Inf fy (u) = Min fy (uw) = fy(In(1+y)) =y — (1 +y) In(1 +y) = —h(y). Ainsi, par stricte croissante de la
u> u>
fonction exp et comme A > 0, on a aussi Inf (E(e*N~U+WN)) = Min (E(e*(N-U+0N)) = e=ARW),

u>0 u>0
c. Soity>0etu>0 (N=>(1+yA) =uN2=(1+yur)=uN-=_>1+yA)>0) = (etN-0+)N > 1)
par stricte croissance de exp donc, d’apres I'inégalité de MARKOV, comme e*(N—(+YA) est une variable
E(eu(N—(1+y)>\))

1

= e)\fy (w) .

aléatoire réelle positive, on a P(N > (1 + y)A) = P(e*(N-0+vA) > 1) <
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Comme cette inégalité est vraie quel que soit u € R, elle 'est en particulier si on prend u = In(1+y) et
ona P(N > (1+y)A) < e M) = e MU+ In(+9)=Y) (1) d’apres la question précédente.

Comme N est une variable aléatoire positive admettant une espérance, on peut appliquer directement
EN) _ 1
(T4+y)A 1+y
Laquelle de ces deux majorations est la meilleure, sachant que (1) est meilleure de (2) si et seulement

MARKOV et avoir P(N > (1 +y)A) < (2) car E(N) = A.

si e MyFHIn(+y)—y) < 1 —]F ce qui équivaut, par stricte croissance de lexponentielle, & la condition
Y
(A1 4+y)=1)In(14+y) = Ay. Or cette derniére est clairement vraie, par croissances comparées, si y est assez
grand car y = o(yIn(1+vy)). Elle est fausse, puisque (A(1+y) — 1) In(1 +y) 3(7\ —T)lyet que (A—1)y < Ay
oo
car y > 0, quand y est assez petit.
Il y a donc certainement (& vérifier par une étude de fonction) une valeur limite yo (dépendant bien siir de
A) telle que (2) est meilleure que (1) siy < yo et telle que (1) est meilleure que (2) siy = yo.
11.49) a. On modélise I'expérience par 2 = (P(E))? (on ordonne les deux parties A et B choisies). La probabilité
choisie sur A = P(Q) est la probabilité uniforme. Comme card ((P(E))?) = (2™)? = 4™, la probabilité qu’on
n
choisisse un couple (A, B) particulier est 4% On note D = " A et B sont disjoints”. On décompose D = U Dy
k=0
ou Dy ="A et B sont disjoints et card (A) = k”. Pour choisir un couple (A, B) € Dy, on choisit :
14 n .
e A dans E ayant k éléments : on a <k) choix.
e B quelconque dans E\ A : on a 2™~ ¥ choix.

n
Dot card (D) = (2)2nk- Or (Dk)ogkgn est une partition de D, donc card (D) = <n>2"k =3"

card (D) _ (é)“.

par le binéme de NEWTON. On en déduit que P(D) = o 2

b. Soit k € [[0;n], comme la probabilité est uniforme, il suffit de calculer card (I = k). Or pour choisir un
couple (A,B) € Q tel que card (ANB) =X, il faut :

n
e choisir les k éléments de A N B : (k) choix.

-k
e pour j € [[0;n—k], on choisit A en prenant X dans E\ (ANB) et en posant A = (ANB)UX : (n ) )
)

choix ; et choisir B en prenant Y € P(E\ A) et en posant B = (ANB)UY : 2% choix.

sl n\ =k m—k n—k—j Y n—x BN Z
Ainsi, onacard (I =k) = 5 > R V) ) = 5 3 par le bindme de NEWTON. Par conséquent
j=0 )
3nk 1\k/3\n—k
PI1=x)= i) e (7) (7) . Ainsi I suit la loi binomiale B (n, l).
k) 4™ k/\4 4 4
Plus simplement, on note, pour k € [1;n] si E = {x1,--+,xn}, Ak (resp. By et I) la variable aléatoire qui

prend la valeur 1 si xx € A (resp. xx € B et xx € ANB) et 0 sinon. Alors Iy = AxBy, Ay et By sont

indépendantes et suivent la loi de BERNOULLI de parametre % car il y a autant de parties qui contiennent xj

que de parties qui ne le contiennent pas (via A — E\ A). Ainsi, Iy suit la loi de BERNOULLI B (JI) et, comme

n
I[= Y Ix et que les Iy sont mutuellement indépendants par hypothese, I suit la loi binomiale B (n, %)
k=1

De méme, calculons card (U = k) pour k € [0;n]. Pour choisir (A, B) € Q tel que card (A UB) =k, il faut :

n
e choisir les k éléments de A UB : (k) choix.
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k

e pour chaque j € [0; k], on choisit A dans AUB : () choix ; et choisir B en prenant Y € P(A) et en
)

posant B = ((AUB) \ A)UY : 2577 choix.

k k
Ainsi, on a card (U = k) = <2> > <_>2k_J = (E) 3"* par le bindme de NEWTON. Par conséquent
j=0 \J

k k 1\ n—k
PU=%k) = (:) %1 = (E) (%) (Z>n . Ainsi U suit la loi binomiale B(n, %)

Plus simplement, avec les mémes notations que pour I et en notant Uy la variable aléatoire qui prend la

valeur 1 si x,x € AUB et 0 sinon. Alors Uy = Ay + Bx — AxBy suit la loi de BERNOULLI de parametre %

n
car P(Ux =0) = P(Ax =1,Bx =1) = P(Ax =1)P(Bx = 1) = % Comme U = > Uy et que les Uy sont
k=1

mutuellement indépendants par hypothese, U suit la loi binomiale B (n, %)

c. On sait d’apres le cours que E(I) = %, E(U) = %‘ et que V(I) = V(U) = 31’—2
“Azk "
11.50) a. Par définition, Yk € N, P(X = k) = € 0 Sin e N, U ) (incompatibles)

k=0
N Ak +
donc P(X < n) = > %. Notons I,, = %f)\ e t"dt. On a I[h =e?=PX<0) =PX=0)
k=0 K '

—A\k
et, si In = Z € A k' = P(X < n) pour un entier n € N, alors par intégration par parties en posant les
k=0
n+1
deux fonctions de classe C' w:t — —e tetv:t e ] telles que lim u(t)v(t) = 0 par croissances
, . _ 1 R ({ e %t n+'|:|+00 +°° n )
la relation I = — thTldt = = — Httdt
comparées, on a la relation T4 ] f)\ e o 1 f
efAAn+1
dOnCIn+]:m+1n:P(X:n+1)+P(X )—P( n—|-1)

“+o00
Par principe de récurrence : ¥n € N, P(X < n) = i' f}\ e tt"dt.
n!

On peut aussi appliquer la formule de TAYLOR reste intégral a exp entre 0 et A pour avoir la relation

A
et = +L f —t)"e'dt et en déduire P(X < n) =1— l' fo (A —t)"et~Adt. On effectue ensuite le
n!

changement de variable t = A —u = @(u) facile & justifier pour avoir P(X < n) = ]' (nl f u“e_udu) Or
nl

. +oo 1—1 — S 1 too
onsait que n! =T'(n+1) = fo u™t1=Te=1qu donc, avec CHASLES, il vient P(X < n) = — e “u"du.
n!
b. Comme X(©2) = N, on a U = ). De plus, la suite ((X < n))nen est croissante, donc par
neN
théoréme de continuité croissante, on a 1111 P(X < n) = P(Q) = 1. Par conséquent, avec la question a.,
n——+oo
etndt = 1 T e—tyn ! (indépendant d
on a nl_l):r_[oo o f t™dt =1 ce qui revient a f)\ e” thdt ol n! (indépendant de A > 0).
= ASEAMY A1) pin 22
c. te R, Gx(t) = Y PX=n)t" =e " ) e (=1 Ainsi, Gx(1) =1 et Gx(—1) = e 2 .
n=0 n=0 :
+o0 oo
d. (X paire) = U (X = 2n) (événements incompatibles) donc, par o-additivité, P(X paire) = Z P(X = 2n).
=0 =
i = 1 1
Avec c., Gx(1) + Gx(=1) = Y. (1 + (=1)¥)P(X = k) = 2P(X paire) donc P(X paire) = +§ >
k=0

e. Avec ces hypotheses, (XY paire) = (X paire,Y = 1)U (X quelconque,Y = 2). Ainsi, par indépendance entre

-2
les variables aléatoires X et Y, P(XY paire) = 1 ]P(X paire) + = § + eT.
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11.51 ) On vérifie la cohérence de la définition : comme 2]—0 =1, I"énoncé impose visiblement N(2) = N* et on a

Lt = 1/2 . s .
bien > P(N=n)= Y -z = —2=—— =1. Si on note V I’événement ”le joueur gagne”, alors on a par
n=1 n=0 2 - (]/2)
1 foo 1/4
définition V = U (N = 2n) (réunion disjointe) done, par c-additivité, P(V) = > % -4 1
~ =2 1—(1/4) 3
e N L e (-nn —(1/2) 1
Par définition G = (—1)"N done, par le théoréme de transfert : E(G) = . ~—~/— = =—-.
n=1 2 T+ (]/2) 3

11.52| a. Il y a j bactéries dans 1’éprouvette, numérotées de 1 & j. Pour la bactérie i, on note X; = 1 si elle a

j

la propriété P et X; = 0 sinon. Alors X; suit la loi de BERNOULLI B(p). En posant S = > Xj, comme les
i=1

(X1, -+, X;) sont mutuellement indépendantes, on sait d’aprés le cours que S suit la loi binomiale B(j,p).

Mais dans ce cas S = X donc la loi de X sachant (Y = j) est la loi binomiale B(j, p).
b. Soit (i,j) € N2, par construction P(X =1,Y =j) =0si i>j.
N o A
Par contre, si i <j, P(X =1,Y =j) = Py—;(X=1)P(Y =j) = (?)plﬂ - p)’*‘e*?‘.—'.
i j!

+oo —A_iyi Foo (1 _ L)i—iai—1 A igi
Onen déduit : Vie N, P(X =1) = . P(X =i,y =) = &P 3 a (T’) ,)f‘ = & PR
=] il i=1 j—1)! il

i
Ainsi P(X =1) = @e*?‘p donc X suit la loi de POISSON de parameétre Ap.
1.
c. On sait d’apres le cours que E(X) = Ap et V(X) = Ap.

11.53] a. D’apres le cours, l'indépendance mutuelle des (Xi)1<ign et le fait qu’elles suivent toutes la loi de

BERNOULLI de parameétre p justifie que S, suit la loi binomiale B(n,p).
+o0
b. On commence par la série géométrique Vx €] — 1;1], % = Y x™. On dérive terme a terme (c’est la
—X n=0

somme d’une série entiere sur U'intervalle ouvert de convergence) k fois pour obtenir classiquement la relation

k! t® n—k 3 3 b & /n n—k 1
Vx €] = 1;1], mznz_:kn(n—l)"'(n—k+l)x CGQUII‘QVIGHtanX_:k )X =T

c. Comme ((N = n))nen est un systeme complet d’événements, par la formule des probabilités totales,

—+oo
P(Sn =k) = > P(Sn = k[N =n)P(N =n). Il est clair que P(S, = kI[N =n) =0sin < k et qu'on a

n=0
+o0
oussi (5 = N =) = ()50~ )"+ daprts a. done Psn =1 = £ ()50 - 990 - )"
n=k

car PN+1=n+1)=P(N=n)=p(1—p)"" ! =p(1 —p)" puisque N + 1 suit la loi géométrique de

parametre p. Ainsi P(Sy =k) =p Jrfjo (n>pk(1 —p) R =p(1—p)kp* E):o (n) (1—p)?™~2% et on conclut
' k
n=k

nk \K k., k
. L 1T—p)p 1 (1=p\* 4. .
avec la question précédente que Vk € N, P(Sn = k) = b = ( ) . Ainsi, comme
’ =0 =p)H)"  2-p\2-p
1=p_4_ L, la variable aléatoire 1 4+ Sy suit la loi géométrique de parametre 1
2—p 2—p 2—p
11.54]a. On a (T =0) = (Xo = 1,X; = 1) donc, par indépendance : P(T =0) = PXo = 1)P(X3 =1) = 411

De méme, (T=1) = (Xo =0,X; =1,X2 =1) donc P(T=1) = % Maintenant, on décompose I’événement
T=2)en(T=2)=Xo =1,X1 =0X2=1,X3=1)U(Xo =0,X; =0,Xa =1,X3 = 1) donc, par
2 1

incompatibilité de ces deux événements : P(T =2) = €= s

b. Il est clair que A,, UB = “pas deux 1 consécutifs lors des n premiers tirages”. De plus, A1 C An UBn
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car si on ne fait pas deux 1 consécutifs lors des n + 1 premiers tirages, on ne les fait pas non plus lors des n

premiers. Ainsi An1 = (Ant1 NAR) U (Ani1 NBy) (réunion disjointe) donc :

Pn+1 = P(An—k—l) = IP)(An—H ﬂAn) + P(An—H mBn) - P(An+1 |An) ]P(An) + IP)(An+1 |Bn)P(Bn> }’771 + 92£

(réunion disjointe) donc

n) + P(Bns1[Bn) P(Bn)

De méme, Bny1 C Ap UBy done By = (Bnt1 NAR) U (Bry1 NB

dn+1 = ]P)(Bnﬂ) = IED(Bn+1 N An) + P(Bnﬂ N Bn) = ]P)(Bnﬂ |An) Pn

IR

n)
P(A
Matriciellement, cela donne bien : Vn € N, (p“H ) = ( > ( )
dn+1

C. Ilestclairquepo:qoz%,etquemZ%,Ghz];carlh:( 0=0,X3=1).

La question précédente montre que Vn € N; qny2 = %pn_H = %(pn +qn) = %qn-}-] + thqn. Posons

un =2" g, alorsona vn € N, unyo = 2" 3qni2 = 2™ 2qn1 + 2" g = unyq + un. De plus, up =1
et u; = 1. On reconnait alors la suite de FIBoNACCI : Vn € N, u, = Fp,.

Or (T=n) =By N (Xng1 =1) doit P(T=n) = PBn)PXnp1 =1) =90 = 2n+2 par indépendance des

2
n+1 n+1
tirages. Un calcul classique prouve que F, = % avec a = +2\/§ (le nombre d’or) et b = %
d. T admet une espérance finie si et seulement si Y P(T > n) converge or il vient (T >n) = An41 UBni
n=0
(réunion disjointe) : P(T > n) = pnt1 + qnt1- Or quit = ;2—1} et pnt1 = 2qni2 = ;’}j% ce qui donne
_ Fapir+Fag2 _ Fngs ™t (i> : fe Ayt B n
P(T>n) = 2 otz s 22, /5 =o\qz) E(T) existe. Le rayon de la série entiere nz;o Fnt
1 an—i—] ~+o00 400
est R= = car Fp, ~ . Pour t €] —R;R[, on pose F(t) = > Fot™ =F(t) =1+t+ > Fut™ donc, comme
a too \6 n=0 n=2
—+o0
Fri2 =Fn+Fngr, F() =T+t +t2 3 (Fu + Frgp)t™ =1+t + t2F(t) + t(F(t) — 1) donc F(t) = T2 g 2
n=0 — 1t —

+oo
4 +3 _ 1 i B _
Par conséquent, E(T) = Z; Z ZEH = {F(E) —Fo— 54 4.

11.55]| a. Pour simplifier le modele, on estime qu’on relance les des méme s’ils sont tombés sur 6. Pour k € N*|
6

X<k = ﬂ (Xi < k) out X; est le nombre de lancers nécessaires pour que le dé i tombe sur 6. Comme les
i=1

X; sont mutuellement indépendants et de méme loi (les dés sont identiques), on a P(X < k) = (P(X; < k))°.

Or P(X; < k) =1—P(Xy > k) et (X1 > k) est ’événement ”le dé i n’a jamais donné 6 pendant les k premiers

5

lancers” donc P(X; > k) = q* ol ¢ = 2 est la probabilité de ne pas donner 6 pour un dé non pipé. Par

conséquent P(X < k) = (1 — q¥)®. Puisque (X < k) = (X = k) U (X < k — 1) et que ces événements sont
incompatibles : P(X < k) = P(X=k)+ P(X <k —1) donc P(X =k) = (1 — q*)® — (1 — g*~1)®.

b. On sait que X admet une espérance finie si et seulement si la série . P(X > n) converge et qu’alors

n=0
“+oo
E(X)= > P(X>n). Or ]P’(X>n):1—IP’(X<n):1—(1—q“)6+~ 6q™ donc E(X) existe. De plus, on a
n=0 o0
+oo
E(X) = 6a™ —15 2n 20 3n7]5 In 6 Sn_ 6ny _ 6 _ 15 20 o 15 6 o 1
(X) ngo(q g™ +20q q*"t+6g°™ —q°M) 4 - T 1o - 1=

donc E(X) ~ 13,94 en demandant a Wolfram.
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De plus, X admet un moment d’ordre 2 si Y. n?P(X = n) converge. Or P(X = n) o q"~! donc, par
nxl o'}

1

croissances comparées, n?P(X = n) = o(—z). Ainsi X admet une variance. Or, en développant par le

+oo \n
55 = 55
binéme de NEWTON, P(X =n) = q™~ ! — == R EX(X=1))= > n(n—=1)(q" "~ Ean—z_’_ ...... )
=2

+oo " 2
qu’on calcule en se servant de la relation Vx €] —1;1], 3 n(n —1)x""2 = W en dérivant deux fois la

n=2 - X
classique série géométrique. Wolfram annonce que E(X?) ~ 239,211 donc o(X) = /E(X2) — E(X)2 ~ 6,7.

11.56 | a. Chaque X; vérifie E(X;) =p = % et V(Xi) =p(1—p) = 411 d’apres le cours. Sin > 1, par linéarité

n
de lespérance E(S,) = E(Xi) =np = % et, puisque Xj,- -, Xy, sont mutuellement indépendantes par
i=1
n
hypothese, on a V(Sn) = > V(Xi) =np(1—p) = % Ou alors, d’apres le cours, Sy = X7 + -+ + Xy, suit la
i=1
loi binomiale B (n, %) par indépendance mutuelle de Xy, - - -, X, et on connait son espérance et sa variance.

1 1
b. Par le théoreme du transfert, si i > 1 et A>0, E(zy) = ex(o_f) P(X; = 0) + ex(bf) P(X; = 1) car
Xi(Q2) = {0,1}. Donc, E(z;) = ;(eZ te? )—ch( )

1
c. Soit n > 1, S, est bornée donc admet une espérance finie et E(eMSn—E(Sn)) = ( H = Axi- )) Or,
par linéarité de ’espérance et comme les Z1,---,Z,, sont mutuellement indépendantes car les Xq, -+, Xn le
n n
sont, le cours nous apprend que E(e*Sn—EGSn))) = ] E(z;) = H ch (E) =ch (E) .
i=1 i=1

d. Soit A >0, t>0etn € N, alors (Sp — E(Sp) > nt) = (e*Sn=E(Sn)) 5 nAty par stricte croissance de
la fonction exp. Puisque la variable aléatoire eSn—E(Sn)) est réelle positive, I'inégalité de MARKOV montre

E(eA(Sn*E(Sn)))
que P(Sn — E(Sp) > nt) = P(eMSn=EGn)) 5 enAt)y ¢ P(eASn—ES)) > endty ¢ 22 o/

R . D’apres

A\

ch (7)

la question précédente, P(Sn — E(Sn) > nt) < e“% = e () en posant fi(A) = At — In (ch (%))

e. Sit> % comme Sy < net E(Sy)+nt = %—i—nt >n, (Sn— E(Sn) > nt) = 0 donc P(Sp— E(Sn) > nt) = 0.

sh(3)  2t—th(3)

Sit< %, la fonction fy est dérivable sur R et f{(A) = t—% £ = 5 .Orsibe]—1;1]et a € R,
ch (-
2 )
a
th(a) =b < zza;: =b = e = }%E << a= %ln(}%g) Ainsi, en posant Ag :111(: i’;t) > 0,

la fonction fy est croissante sur |0;A¢] et décroissante sur [Ag; +oo[ donc elle admet son maximum en Ao de

sorte que I(t) = l\}(lagc(ft (A) = (o) = (%—i—t) In(1+2t)+ (%—t) In(1—2t) (apres calculs). On remplace donc
>

A par A dans I'inégalité de la question d. pour obtenir P(S;, — E(Sn) > nt) < 1 1 —-
(142021 — 2027V

f. A faire.
On peut écrire Yn € N, (M =n) = ((X = )ﬂ(Y <mn)) U((X <n) ﬂ(Y =n)) U((X = n)ﬂ(Y =mn)).
Comme ces évenements sont disjoints, P(M =n) = P(X =n,Y<n)+ PX<n,Y=n)+ P(X=n,Y=n).
Par indépendance de X et Y, P(M =n) = PX=n)P(Y <n) + PX < n)P(Y =n) + P(X =n)P(Y =n).
Enfin, X et Y suivent la méme loi donc P(X =n) = P(Y =n) et P(X<n) = P(Y < n).
)

Y
Tout ceci justifie que Yn € N, P(M =n) =2P(X = n)P(X < n) + P(X =n)?.
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—Ayn
Comme X suit la loi de POIsSON de parameétre A, P(X = n) = & |)‘ . De plus, (X < n) = U (X = k),
n!

n—1 n—1 —)\}\k +o00
il vient P(X < n) = Y P(X =%k) = > eT. Mais P(Q) = > P(X = k) car X(©2) = N donc
k=0 k=0 X k=0
lim P(X < n) =1. Puisque lim P(X = n) = 0 (terme d’une série convergente par exemple), on a
n—+oo n—-+4oo
2 26*7\)\‘[‘\.
P(X=mn) = o(P(X=n)) donc P(M =n) o 2P(X=n)P(x<n) ~ =2,

+o00 n!
11.58 | Comme (X+Y =0) = (X =0,Y = 0) car X et Y sont & valeurs dans N, P(X4+Y =0) = P(X=0)P(Y =0) =

car X et Y sont indépendantes donc P(X = 0) > 0 et P(Y =0) > 0. Ainsi, pour k > 5, PX+Y =%) =
t (X=0,Y=%k) C (X+Y =k), on en déduit que P(X = 0)P(Y = k) = 0 donc P(Y = k) = 0. De méme,

1
6
0

P(X =k) =0si k> 5. Ainsi, X et Y sont presque siirement & valeurs dans [[0;4] et les fonctions génératrices

Gx et Gy sont des fonctions polynomiales de degré inférieur ou égal & 4. Comme X et Y sont indépendantes,
1, 2t 10X X 12 2

vt € R, Gx+y(t) = Gx(t)Gy(t) = g + 7 + ? OrP= g + 7 + 7 = g(X + ])(ZX + 1). Comme X et

Y ne sont pas presque stirement constantes, G x et Gy ne sont pas des fonctions constantes. Par unicité de

2
la décomposition de P dans R[X], Gx(t) = ;’1 et Gy(t) = 2t ;’1 ou l'inverse (attention & la condition

Gx(1) = Gy(1) =1 qui impose a la somme des coefficients de chacun de ces deux polynémes de valoir 1)

Par conséquent, en échangeant éventuellement les réles joués par X et Y, ona P(X =0) = P(X =2) = E et

P(y=0) = % et P(y=2)= % (les autres valeurs de P(X =1i) et P(Y =j) étant nulles).
11.59| a. Comme « > 0, la suite ( ) : est positive, décroissante et tend vers 0, ainsi, par le critere spécial
n nz

(="

¢4

des séries alternées, la série >

converge donc la suite (un)n>1 de ses sommes partielles converge.
n
n>1

3

n n _ n

b. Sin > 1, par transformation d’ABEL, 2;1 k};};g = kz;] % =3 2 =L Apres

o n n—1 Sk n—1

changement d’indice k§1 kﬁﬂ = Z k5+£ _kgo TSIl = BJF& Z (kBJr£ - k+1)ﬁ+5) (1)
_ 1 1 _ 1 1y-B=¢) _ 1 14 BTFe 1 bre

carso =0 Or g = o qypee = b ( —(1+3) ) oo KPFE ( faa +O(k)) too KPFEFT

1 1 _ 1 Bte
KPTe (k4 1)PTe T Bre poo yBretTy

Par conséquent, comme sy = O(kP) par hypothese et que on a
o0

1 1 _ 1 4o 1 1
Sk<kf5+e — T ])BJrE) J:OOO(W) et la série ké:] Sk(kB“ — (ot ])BJrE) converge par RIEMANN. De

B
. s St n 1
plus, lim (sLs =0 car —Bre &= 0(7[5 £) = O( a) avec ¢ > 0.

.. . . ;1. u
Ainsi, avec I'expression (1) vue ci-dessus, on en déduit que nﬁi -~ converge.

n>1
. +oo a2 a? +oo a2n . Ml
c. On sait que Ya € R, ch(a) = > (2n)! et eZ = > PRt Or si on pose an = (Zn).!’ on a la
( +]) n=0 n=0
. 2(n a a . , . ..
relation = n = N donc la suite est décroissante et = 1. Ainsi
T Gnt2)n+1)  m+1 SO (an)n>0 a0 ’
2
. a’
Vn € N, an<1<:>ﬁ<ﬁ. On en déduit que Va € R, ch(a) <e2.
2 2
On peut aussi constater que puisque ln est strictement croissante, ch (a) < et — In(ch (a)) < a?. On

2
définit f: R — R par f(a) = % —1n(ch(a)), alors f est paire et dérivable sur R avec f'(a) = a —th(a). Or
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th est 1-lipschitzienne car th'(x) =1 — th?(x) € [0;1[, on a Va > 0, |th(a)| < |a| donc Va € Ry, '(a) > 0.

Ainsi, f est croissante sur R, or elle est nulle en 0 donc f est positive sur Ry donc positive sur R par parité.

2
On obtient & nouveau : Va € R, ch(a) < e T,
d. Soitn>1et x>0, (ISn| >%x) = (Sn >%x)U(Sn < —x) = (Sn > x) U (=Sn > x). Comme (Sn > x) et
(=Sn > x) sont incompatibles, on a P(|Sn| > x) = P(Sn > x) + P(Sn < —x). Or, comme Xy et —Xy ont la

méme loi, Sy, et —S,, ont aussi la méme loi donc P(|Sn| > x) = 2P(Sn > x). Or par stricte croissance de exp

tSn
et puisque t > 0, on a (Sp > x) = (tSp > tx) = (e*>n < e'*) donc P(S,, > x) = P(e'Sn > et¥) < E(efx)
e

tS

d’apres 'inégalité de MARKOV car e'Sn est une variable aléatoire réelle positive. Mais etS» H et

et (etx )1<k<n est une famille de variables aléatoires mutuellement indépendantes par hypothese donc

E(etsn) — H E(e th) (ch (t))™ car E(e tX1) = P(X; =1)e tx1 4 P(X; = —1) x etx(=1) — et +ze
k=1
e ng? 2
Par conséquent, P(|Sp| > x) < 285~ = hy(t) =2¢ 2 . Or le minimum de t n% —tx = n7t (t - z—x)
e n

2

(étude de parabole). Donc P(|Sn| > x) < hx(to) =2e2Zn .

est atteint en t =t = X
n
+oo —+o0
e. Pour n € N, posons U, = U Ay de sorte que E. = m Uy. Comme la suite (Un)n>1 est décroissante
k=n n=1
pour l'inclusion, par théoréme de continuité décroissante, on a P(E¢) = liT P(Uy).
n——+o0o
_n?2e 1 _n2¢
Par croissances comparées, e~ 2 = o<—2> donc la série Y e 2 converge d’aprés RIEMANN ce qui
+oo n n>1
+oo 7k25
prouve que liT > e 2 =0 (la suite des restes tend vers 0). Par sous-additivité et d’apres la question
n——+o0o
K=
n+c>o 4oo  _x2¢
précédente, P(Un) < > P(Ax) <2 Z e 2 . Par encadrement, on a ltT P(U,) =0 d’on P(E.) =0.
—_ n——+oo
400 400
de sorte que ¢ > 0. Soit w € E, = U m Ay, alors 3n € N*, Vk > n, [Sk(w)| < kP

n=1k=n

en posant f = %+ ¢ > 0. Ainsi, (Si(f;U)>k>1 est bornée et il existe M > 0 tel que Yk € N*, [Sy(w)| < MKkP.

D’apres la question b., la série X“T(r)s) converge et on a donc w € Cg car s = 3 + ¢. On vient donc de
n>1 n

montrer que E, C Cs, ce qui prouve que P(E¢) < P(Cs) <1 donc P(Cs) =1 d’apres la question e..
11.60] a. En prenant x = y = 0 dans la formule, on a G(0)? = @ donc G(0) = 0 ou G(0) = % Si on avait

f. Prenons ¢ =

e

s
2

G(0) = 0, alors en prenant y = 0 et x quelconque dans la formule, on aurait Vx €] — R;R], G(|x|) =0 donc G

serait nulle sur [0;R[. On en déduirait que ¥n € N, G(™(0) = 0 donc la série de TAYLOR de G serait nulle
1

5
b. Prenons maintenant y = 0 et x quelconque dans la formule et on a Vx €] —R;R[, G(x) = G(|x|) donc G est

ce qui contredit le fait que G est développable en série entiere car G(1) =1 # 0. Par conséquent, G(0) =

+oo
paire. Or ¥x €] —R;R[, G(x) = Y, P(X =n)x", la parité de G montre bien que ¥n € N, P(X =2n+1) = 0.
n=0
c. On dérive la relation G(x)G(y) = %G(\/xz +y2) par rapport & x pour y fixé, d’oi, si x* + y? < R?,
=—2X __G'(v/*x2+y?). Poury=1,Vx €|-VRZ — 1;VRZ - 1], G (VX2 +1)
2\/

G'(x)G(y) =
(x)G(y) zm
puisque G(1) = 1. Pour x = 1, on a donc, Yy €] — vRZ — 1;VRZ — 1], G'(1)G( 2\/7 "(V1+y2).
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On remplace y par x et on trouve ainsi : Vx €] — VR? — 1;V/RZ — 1], G'(x) = xG'(1)G(x).

x2G’'(1)
d. On résout classiquement 1’équation différentielle y’ = xG’(1)y dont les solutions sont les y : x — Ae™ 2
x2G’'(1)
avec A € R. Mais comme G(0) = 12, on a donc Vx €€] — VR?Z — 1;V/R? — 1], G(x) = %e 2
, . R . R 5 o (G/(1))x2"
On développe cette fonction en série entiere, ce qui donne Vx €]—vR% — 1;V/R? — 1], G(x) = > T
n=0 n.

+o0 (G/U))nXZn 1 x2G'(1)
Par unicité des coeflicients : Vx €] — R;R[, G(x) = > ~—44—— = ye 2 donc, puisque G(1) =1, on

n=0
!’

G'(M)
a %e 2 =1dou G'(1) = E(X) = 2n(2). On sait aussi que V(X) = G”(1) + G'(1) — G’(1)? donc, comme
G’"(x) = (2)(1 + sz)eXZ n(2) donc V(X) = 41n(2)(2 — n(2)) apres calculs.
11.61] a. On suppose que C est construit sur les racines n-iemes de 'unité (toute homothétie, translation ou

rotation ne change radicalement rien au probleéme). Si une isométrie laisse invariant le polygone C, elle laisse
invariant son centre de gravité. Ainsi, 0 est stable par toute isométrie du plan qui laisse invariant C, ce sera

donc une isométrie vectorielle. Les isométries vectorielles du plan sont soit des réflexions, soit des rotations.

e Si s est une réflexion laissant globalement le polygone C, alors s envoie 1 sur e?**™/™ (pour k € [0;n — 1])
donc elle se fait par rapport a la droite d’équation cos (?)y =sin (lzﬂ)x et admet donc pour matrice dans
n n
la base canonique S = C?S(ek) sin(Ox) avec 0y = km
sin(0x) —cos(0y) n
e Si r est une réflexion laissant globalement le polygone C, alors s envoie 1 sur e?*™/™ (pour k € [0;n — 1])

_ kn
n

donc elle est d’angle 0y et a donc pour matrice dans la base canonique (d’ailleurs dans toute base

cos(0x) —sin(0x)
sin(0x) cos(0x) J°
b. Comme n > 3, deux ”vecteurs” adjacents de C (on est passé en espace vectoriel plutot qu’affine) définissent

orthonormée directe du plan) R = (

une base de R? donc un élément de E, est enticrement défini par 'image de (A, B). Il y a 2n images possibles
de (A, B) parce que c’est le cardinal de E;, mais aussi parce qu’il faut choisir 'image de A (n choix) et ensuite
I'image de B a coté de A et il y a donc deux choix. En effet, comme une isométrie conserve les distances,

elles transforme deux vecteurs adjacents en deux vecteurs adjacents.

c. Si X € Ey, est une réflexion, alors X~ = X € En. Si X =idc € En, alors X! = X =id¢ € En. Si
X € Ey est une rotation d’angle 6 % 0 [271], alors X~! = R_g et si 8 = 0, = X (avec k € [1;n — 1]) alors
n

—0 =0 =—-" =0 = [2n] et n —k € [[1;n — 1] donc X~ € E,. Tout élément de E,, admet

e

(n—Kk)m

donc un unique inverse dans E,,. Comme la composée d’isométries laissant globalement invariant le polygone

C est encore une isométrie laissant globalement invariant C, I’ensemble E,, a donc une structure de groupe

pour la loi o. Ce groupe n’est pas abélien (pas commutatif). On 'appelle Dy, le groupe diédral d’ordre n.

d. (Xzo0X; =id) = U (X7 = X, X2 = X~ ") d’aprés ¢. par hypothese. Par incompatibilité de ces
XEEn\{id C}
évenements et indépendance de Xj et Xz, P(Xz0X; =id¢) = ((22]?:]]))2 = an 7 car P(X; =X) = Zn]f T
N—1
e. Notons, pour N € [1;n], I'événement Ann = (Xno---0Xy =idc) N ( ﬂ (Xmo---oXy #£id C)) Par
M=1

la formule des probabilités composées, en notant Ay = (Xp o ---0 Xy =id ¢) pour M € [[1;N] de sorte que
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N-1

AN,n = AN N ( ﬂ m), on a pNn = P(A1)PK(A72) Pﬂmm(AN_])Pﬁnm(AN) Or par
M=1

N-2
hypothese A1 = Q et les données de I’énoncé donnent pnn = (gn — %) X (2 ] 1 )
n— n—

f. D’apres e., pnn:(w)n_zx( 1 ):(1— 1 >n—zx( 1 )or | I s
’ 2n—1 2n—1 2n —1 2n—1 2n — 1 400 2n

1\ 1 1
(1_2n—1) —exp((n—Z)In(l—m))—>—Ed0ncpn,n+rzoz\[

] .

en

a. Soit X une variable aléatoire réelle positive admettant une espérance finie et ¢ > 0, alors en distinguant
selon que X(w) > e ou X(w) < ¢, on aVw € Q, X(w) = el (x<e)(w) ce qui montre que X > e (x<,) (inégalité
sur des variables aléatoires). Par croissance de I'espérance et comme E(T(x<.)) = P(X < ¢) d’apres le cours,
on obtient la majoration E(X) > ¢P(X > ¢) : c¢’est 'inégalité de MARKOV.
Soit X une variable aléatoire réelle admettant un moment d’ordre 2. Soit ¢ > 0, alors les deux événements
(X = E(X)| =€) et (X — E(X))? > ?) sont égaux donc P(|X — E(X)| > ¢) = P((X — E(X))? = ¢2) < @

d’aprés MARKOV donc P(|X — E(X)| > ¢) < V(ZX) : c’est 'inégalité de BIENAYME-TCHEBYCHEV.
€

b. Soit A >0, E((Y +21)?) = E(Y2 +2AY +A%) = E(Y?) +2AE(Y) + A2 E(1) par linéarité de I’espérance (tout

existe par hypothese). Or on sait que E(1) = 1, que 0 = V(X) = E((X — E(X))?) = E(Y?) par définition et

que E(Y) = E(X) — E(E(X)) = 0 ce qui donne bien E((Y 4 A)?) = o + A%

c. Soit A >0, (Y>a = (Y+A=a+A) C ((Y+2)? = («+A)?) (on n’a pas égalité en général).

D’aprés l'inégalité de MARKOV, puisque (Y + A)? est une variable aléatoire réelle positive d’espérance finie,

E(Y 402 > (@t0)) | _ ot
(x+2)? T M 4o 4200

0< P(Y 2> o) < P((Y+A)? > (+1)?) < % par croissance de la probabilité.

d. e Si 0 =0, on fait tendre A vers 07 dans 'inégalité ci-dessus et on trouve P(Y > o) = 0 par encadrement.

o + A2 2(Aot — 0°)

on a P((Y+2A)? > (« +1)?) < d’apres la question a.. Ainsi,

e Sio >0, posons f: A . La fonction f est positive, dérivable sur R, et f'(A) =

A2+ o+ 20 (a+2)°
2 2
La fonction f est donc décroissante sur ]0;Ag] et croissante sur [Ao;+oo[ avec Ay = -, avec f(0) = <5 et
o o
AHT f(A) = 1. Ainsi, f atteint son minimum sur Ry en Ag. Ainsi, comme VA > 0, P(Y > «) < f(A), en
—+oo
2
évaluant cette inégalité en Ag, on obtient P(Y > «) > f(Ao) = %.
o7+«
2
Dans les deux cas, on a l'inégalité attendue : P(Y > «) > %.
o7+ o

e. On décompose I'événement (|Y]

P(Y] 2 «) = P(Y > «) + P(-Y

> o) = (Y 2 o) U(Y < —a) en deux évenements incompatibles donc
> «). Comme la variable aléatoire —X vérifie les mémes hypotheses
que X (=X admet un moment d’ordre 2 et V(—X) = V(X) = o¢?) et que Y = —X — E((=X)) = —Y, on

2 2
a P(=Y > a) < ﬁ d’apres d., ce qui donne bien P(]Y| > «) = P(]X — E(X)| > «) < ZZL

o? + ot
202 o? SR T, . ,
P < %5 <= 0 > « (cette nouvelle inégalité est meilleure que BIENAYME-TCHEBYCHEV).
0“4+« o
20° o? TR, . ,
P > 25 <= 0 < « (cette nouvelle inégalité est moins bonne que BIENAYME-TCHEBYCHEV).
0”4+« o
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11.63 ] a. N est par construction le nombre d’entiers n € N* tels que Sy, = 0. Cette suite (Xn)n>1 de variables
aléatoires modélise une marche aléatoire symétrique dans Z : a chaque étape, on fait un pas vers la droite

ou vers la gauche (avec probabilité %) en partant de 0. N est alors le nombre de retours a l’origine.

400

b. Comme N =0<«<= (Vn>1, Sy #0),ona (N=0)= ﬂ (Sn = 0) par définition.
= 400 +oo
c. Comme (N =+4x0) < (Vne N, Fk>n, Sy =0),ona (N =+0c0) = m U (Sx = 0) et, en posant
n=0k=n
—+oo
U, = U (Sx =0), Up = Un41 U (S, =0) donc la suite (U )nen est une suite décroissante d’évenements.

k=n
d. Si N(w) < 400, considérons le plus grand entier k tel que Sx(w) = 0 (avec la convention k = 0 si un tel

entier n’existe pas). Alors w € (Sx =0) N ( ﬂ (Si # 0)) Cette appartenance marche encore si k = 0 car
i>k
(So=0)=Qetquew € ﬂ (Si # 0). Réciproquement, si w € U ((Sk = O)ﬂ( ﬂ (Si # O))), par définition
i>1 keN isk
N(w) < k+ 1 donc N(w) < +oo. Par double inclusion, (N < +00) = U ((Sk =0)N ( ﬂ (Si # 0))) Les
keN i>k
événements By = (Sx =0) N ( ﬂ (Si # 0)) sont incompatibles car k représente le plus grand entier tel que
i>k

+oo
Sk s’annule, ainsi par o-additivité, on a P(N < +00) = > P(By).
k=0

Kk i
sike N, S =0)n (Vs £0) =G =0 (Nsi=8£0)) = (L xi=0)n (X X #0))
isk i>k i=0 isk J=k+]
donc ces deux évenements sont indépendants d’apres le lemme des coalitions. Par conséquent, on a la relation

P(By) = P(S = 0) x P(.ﬂ (Si—Si # o)) et on a bien P(N < +00) = :;OZ P(Sy = O)P(‘ﬂ (Si—Sy # o)).

i
e. Pour k € N, ﬂ (Si — Sy # O) = ﬂ ( > X # O) et la famille de variables aléatoires (X;j)j>i1 vérifie
i>k isk J=kAl
les mémes propriétés (les mémes lois) que la famille (X;)j>1 (indépendance mutuelle et loi de BERNOULLI).

“+oo

Ainsi, ]P( ﬂ (Si—Sk # o)) = ]P( ﬂ (S5 # o)) = P(N =0). Ainsi, P(N < +00) = Y. P(N =0)P(Sx = 0).
isk i>1 k=0

Or il est impossible d’effectuer un retour a l'origine aprés un nombre impair de pas (S, est de la parité de

2k
n) donc P(Saxy1 =0) =0 et P(Sax =0) = Z;k<k> car pour revenir a l'origine apreés 2k pas, il faut en
choisir k vers la gauche (parmi 2k pas) et les autres seront vers la droite. Par I’équivalent de STIRLING,

! / 2k k\2
1 (20! Amk(2k)" (e ) apres simplification donc Y. P(Sx = 0) diverge par

—_— ~J ~J ]
228 (k)2 2%%e?X (V2mk) 2 (KK)2 +oo K>0

RIEMANN. Ceci impose P(N = 0) = 0 donc P(N < 400) = 0 aussi et on vient de prouver que lors de cette

P(Syy = 0) =

marche aléatoire symétrique dans Z, on revient presque siirement une infinité de fois & ’origine.

Questions de cours :

e Une variable aléatoire X suivant la loi géométrique de parametre p €]0; 1[ vérifie X(2) = N* et les relations

Yn>1, P(X=n)=p(1 —p)"'. Sion considére une suite (Bn)n>1 de variables aléatoires mutuellement
indépendantes suivant toutes le loi de BERNOULLI de parameétre p, alors T = Min(k € N* | By = 1) est une
variable aléatoire suivant la loi géométrique de parametre p (modulo le fait que ’éveénement (T = +00) n’est

pas impossible mais juste négligeable).
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e On considére une suite (Bn)n>1 de variables aléatoires mutuellement indépendantes suivant toutes le loi

de BERNOULLI et on pose T» = Min(k € N* | k > T et By = 1) (avec les notations ci-dessus). Pour n > 2,

n—1 n—1
(T =n) = U (T= k)ﬁ( ﬂ (By = 0)) N(Bn = 1). Ainsi, par indépendance mutuelle et incompatibilité de
k=1 i=k+1
n—1
ces évenements, on a P(T, =n) = > (1—p)* Tp(1—p)" "k Tp = (1 —p)"—2p? Z 1=mn-1)(1-p)"2p2
k=1

e On appelle systéeme complet d’évenements d’un univers €2 toute famille ﬁme ou dénombrable (An)n>o

d’évenements telle que ) = U An et V(n,m) € N2 n#m = A, NA, =0.

neN
A
11.64 | a. Le rayon de convergence de la série génératrice de X est infini car (¢> est bornée pour tout
n. n>0
—A ng +oo n
réel t par croissances comparées. Classiquement Vt € R, Gx(t) = Z € At ?‘ =e M Y (M? = Mt=1),
n=0 T
Toutes les séries qui suivent convergent absolument On peut donc ecrlre
400 +oo nef)\}\n A )\n 1 L. .
E(XX) = X nP(X=mn) = > =" =2xe” E = A. Par le théoreme du transfert, on a aussi
n=0 n=0 n: = (Tl a ])
+00 +oo A 2
EX?—X)= Y (n? —n)P(X=n) = i =A2e Z ATTE 32 ¢, avec la méme méthode, il
n=0 n=2 (Tl. - 2) ( )
. +o0 +°0 “Apn A3 3 ..
vient EX(X=1)(X=2))= > nn—=1)n-2)PX=n)= Y, -2 =a3e? Z = A3, Ainsi,
n=0 n=3 (n73) (nis)

par linéarité de I’espérance, on obtient E(X?) = E(X(X — 1)) + E(X) = A2 + A e, de la méme maniére, on a
E(X3) = E(X(X =1)(X =2)) +3E(X2) —2E(X) = A3 +3(A2 +A) —2A = A3 +3A2 + A

+o00 too
Ou alors en dérivant plusieurs fois Gx car G4 (t) = 21 nP(X =n)t"!, GL(t) = Zzn(n —1)P(X = n)t" 2
n= n=
+o0
et G¥(t) = an(n —1)(n —2)P(X = n)t"~3 donc on obtient E(X) = G4(1), E(X?) = G%(1) + G4 (1) et
n—=
enfin E(X3) = G¥ (1) +3G6%(1) + G&(1) car n®> = n(n —1)(n — 2) + 3n(n — 1) + n. On retrouve les résultats
précédents car Gi (t) = AeM=1) GL(t) = A2eME1) et GY(t) = A3eMtT),

+o0
b. Déja, on a Y(Q) = Net Vn € N, (Y =n) = U (X = m,Y = n) (événements incompatibles) donc
m=n

—+oo
Y est une variable aléatoire et P(Y = n) = Y. P(Y = n|]X = m)P(X = m). Mais la loi de Y sachant

m=n
(X = m) est la loi binomiale B(m,p) par hypothése (en supposant I'indépendance mutuelle des clients)

00 —Aym
donc P(Y =n)= > <m)p“(1 — p)m_“e — Ainsi, en réorganisant les termes, on trouve la nouvelle
m=n \T m!
) pn?\ne—?\ +oo (A1 —p))™ ™ pn}\ne—A A(T ()\p)ne*AP
expression P(Y =n) = > = M=P) = B = donc Y ~ P(Ap).
n!l = (m—mn)! n! n!
—+o0
c. Comme (Z =0) = U (Z = 0,X = k) (réunion d’évenements incompatibles), on a par c-additivité la
k=0

+o0
relation P(Z =0) = Y, P(Z=0,X =k). Or P(Z = 0|X = k) = (1 — p)* puisqu’aucun des clients ne doit

+oo
étre mis en attente parmi les k clients ce jour-la. Ainsi, P(Z = 0) = > P(Z = 0|X = k) P(X = k) donc

+oo )\k —A

P(z=0)= Y 2~ —(1-pk= e AeMI=P) = AP,
K=o K
+o0 +oo
Sin>1,(Z=n) = [J(@Z=nX=x),onademéme P(Z=n)= Y PZ=n|X=KkPX =k
k=n =

mais P(Z = n|X = k) = p(1 —p)™~" (les n — 1 premiers ne sont pas mis en attente et le n-ieme oui) d’oun
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AKe—A oo zk
P(Z=n)= Y p(1—p)"! % =p(1—p)"le ¥ o . On ne reconnait aucune loi classique pour Z.
k=n : k=n ™

11.65 | D’abord, ce sont bien des droites car pour tout w € 2 et k € [[1;3], le couple (1, Zy(w)) est non nul.

Si les trois droites Dy,D3,D3 sont concourantes en le point Mo = (xo,yo), alors le systéme homogene
x+2Z1y+2iz =0
x+ Zy + Z%z = 0 admet une solution non nulle (xo,yo, 1) donc son déterminant est nul, ce qui d’apres
x+Z3y+23z =0

1z, 73
VANDERMONDE, donne |1 Zy Z3|=(Z3—2Z2)(Z3 —Z1)(Z2 — Z1) = 0. Si les trois droites sont paralleles,
1723 72

comme elles admettent pour vecteurs directeurs respectifs vi = (—=Z1,1), vo = (—=Z2,1) et v3 = (—Z3,1), on
obtient Z; = Z, = Z3. Dans les deux cas, on a donc (Z3 — Z3)(Z3 — Z1)(Z2 — Z1) = 0.

Réciproquement, si (Z3 —Z2)(Z3 —Z1)(Z2— Z1) = 0, alors par exemple Z; = Z; donc Dy = D, et D1,D2,D3
sont, concourantes si Dy et D3 sont sécantes et D1, D2, D3 sont paralleles si Dy et D3 le sont.
Au final, la condition nécessaire et suffisante cherchée pour que les trois droites D1, D2, D3 soient paralleles

ou concourantes est (Z3 — Z3)(Z3 — Z1)(Z2 — Z7) = 0.

Par conséquent, q = P((Zg — Zz)(Zg - Z])(Zz — Z]) ) ((Z] = Zz) ou (Z1 = Zg) ou (Zz = Zg)). On
en déduit que q = P(Zy1 = Z,) + P(Z, = Z3) + P(21 = Z3) — 2P(Z1 = Z; = Z3) car en général, pour trois
évenements A, B,C, ona P(AUBUC) = P(A)+ P(B)+ P(C)— P(ANB)— P(ANC)—P(BNC)+ P(ANBNC).
Comme Z1,Z,,Z3 suivent les mémes lois, P(Z1 = Z3) = P(Zy = Z3) = P(Z2 = Z3) ce qui nous donne la
+o00
formule compacte : p = 3P(Zy = Z3) —2P(Z1 = Z; = Z3). Or (Z1 = Z,) = U (Zy = n,Z; = n) donc,
n=1
—+oo
par indépendance de Z7 et Z,, il vient P(Z; = Z;) = > P(Zy = n)P(Z2 = n). Si Zy,Z;,,Z3 suivent la
=1
n oo 5
loi géométrique de paramétre p €]0;1[, alors P(Z; = Z) = 3. p?(1 — p)2(=1) = ] (E) 72 =3 P
n=1 - - P -
+oo +oo
(21 =2, = 23) = U (Zy =n,Zy =n,Z3 =n) donc P(Z; = Z; = Z3) = >, P(Z1 = n)3 ce qui donne
n=1 n=1
too 3 2 o (9 —13p + 5p%)
P(Zy =2,=23)= Y p>(1—p)3-1 = P = P . Ainsi, ¢ = —F .
= 1-(1-p)° 3-3p+p’ 2-p)3-3p+p%)

11.66| a. On admet qu’il existe un espace probabilisé portant la suite de variables aléatoires mutuellement
indépendantes (Bx)x>1 telle que By vaut 1 si le k-ieme tirage donne une boule blanche et 0 si ¢’est une boule

noire. D’apres ’énoncé, ces variables aléatoires suivent toutes la méme loi de BERNOULLI de parametre p.

Clairement, X(Q) = Y(Q) C N* (on verra qu'on a méme égalité). Si (m,n) € (N*)2, (X = m,Y = n)

m n+m m n4+m
vaut (ﬂ(Bi =0)n () B =1)NBusmir = o)) U (ﬂ(Bi =N () B =0 N Brimir = 1))
i=1 j=m+1 i=1 j=m+1

(incompatibles) donc (X = m,Y =n) € A car By sont des variables aléatoires et, par indépendance mutuelle
de la famille (Bi)iz1, ona P(X =m,Y =n) = (1-p)™p™(1=p)+p™(1—p)"p = (1—p)™p™+p™ ' (1—p)™.

“+o0
b. Soit m € N*, comme on peut décomposer (X = m) = U (X =m,Y = n), par o-additivité, on a la relation
=1
+00 " +oo +oo
Bx=m)= ¥ ((1=p)™*'p™ +p™ (1 —p)") =p(1 —p)™ 2 p™ 7+ (1 —plp™ T L (1-p)" T ce
n= n= n=
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= 2= meH s _E)pm; =p(1—p)™ +(1-p)(1—p)™ On

pouvait aussi écrire que (X =m) = (By =1,--+,Bin = 1,Biny1 = 0)U(B; =0,--+,B;n = 0,Bip1 = 1) et

qui donne, comme 0 < p <1, P(X =m)

conclure comme a la question a., ce qui est nettement plus simple.

Par croissances comparées, mP(X =m) = o( 1 ) donc X admet une espérance finie qu’on peut calculer en
+oo m

“+o0 +oo / 1 / 1
se rappelant que Vx €] — 1;1], Z mxm! = ( > xm) = ( ) = ( . Par conséquent, il vient

o T—x 1—x)
B(X) = £ mPOX=m) = 3% (mp(1=p)"+m(1-p)(1=p)"™) = p(1—p )(+Zim( P S )

= +F
(1= -p) (1—19) P 1-p p(1—7)
On pouvait constater que la loi de X est en quelque sorte la ”somme” de deux lois géométriques. En effet,
si Xy vérifie P(X; +1=m) =p(1 —p)™~ ', alors P(X; = m) = p(1 —p)™ et X; + 1 suit la loi géométrique
de parametre p. On sait qu’alors E(Xy 4+ 1) = 1 donc E(Xy) = 1 _43=-1=P2 pe méme, si Xy vérifie
p p p
P(Xz+1=m)=(1—p)p™ ', alors P(X; =m) = (1 —p)p™ et Xo + 1 suit la loi géométrique de parametre
1—p. On sait qu'alors E(X; +1) = % donc E(X;) = % —-1= ]JD— Par linéarité de la somme d’une
- - P - P

série, on retrouve E(X) = E(X;) + E(X3) = —B + P

T—p
+oo
De méme, pour n € N* comme on a aussi (Y = n) = U (X =m,Y = n), on a encore par o-additivité
m=1
400 n_ 2 2 1 —p)"
IP’(Y _ n) _ Z ((] _p)m+lpn +pm+1(] _p)n) _P ( P) + P ( P) — (] _p)zpn—1 +p2(1 _p)n—].
R —(-p " T-p
“+o00 _ 2 2
Comme avant, E(Y) = Y. (n(1 —p)?p™ +np?2(1—p)* 1) = ( p)z + P ~ = 2. WEIRD NO ?
ne (1-p)" (O-0-p)

c. PX=1,Y=1)-P(X=1)P(Y=1)=p*(1-p)+(1-p)*p—2p(1—p)(p* +(1-p)?) = p(4p> —8p* +5p— 1)
donc PX =1,Y =1) - PX = 1)P(Y =1) = p(2p — 1)(2p? = 3p +1) = —p(1 —p)(2p — 1)? donc si X et
1

Y sont indépendantes, comme p(1 — p) # 0, on a forcément p = 7 Réciproquement, si p = %7 on a
Yn>1, PX=n)=P(Y=n)= zin et V(myn) € (N*)2, P(X=m,Y =n) = zm% = P(X = m)P(Y =n)

donc X et Y sont indépendantes (et de méme loi géométrique de parametre %) La condition nécessaire et

suffisante cherchée pour que X et Y soient indépendantes est donc p = %

11.67 | Clairement Z(2) C N (on a méme égalité comme on va le voir). De plus, (Z =0) = U X=%Y=k)et
ke N
pourn € N*, ona (Z=n)= ( U X=n+kY= k)) U ( U X = k,Y:n+k)). Par conséquent, Z est
ke N* ke N+
une variable aléatoire discrete car Z(2) est dénombrable et que Vn € N, (Z =n) € A d’apres les propriétés

des tribus (car X et Y sont elles-mémes des variables aléatoires discretes).

Par indépendance de X et Y, incompatibilité des évenements écrits ci-dessus, et comme X et Y suivent la loi
+oo +oo 2

géométrique G(p), on a P(Z =0) = > P(X = k)2 = > p2(1 —p)2(-D = P > = —E— (série
k=1 k=1 1—(1-p) 2—-p

“+o0o
géométrique). Pour n > 1, on a pour les mémes raisons P(Z =n) =2 Y, P(X =n+k)P(X = k) qui devient
k=1

21 _ .\
P(z=n)=2 Z p2(1 — p)nt2k=2 = ]2p ((1] p))z ZP(; p)” . On vérifie la cohérence de ces résultats :
(-9 p
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Jrfjo ]P’(Z:n):zp +2p(]_p) Jrf:o(]_p)n—1 :LJFZU -p) _,
n=0 -

P 2—p a3 2-p 2-p
Comme nP(Z = n) = Z—ZP—(nU —p)™) et que la série > nx™ est de rayon 1, la série >, nP(Z = n)
- P n>l n>0

converge donc Z admet une espérance finie par définition.

+oo

+oo 1 : +o0
Puisque ¥x €] — 1;1[, > x" = , en dérivant, on a > nx""! = — 1 donc 3 nx" = —%
SRR & LA P (e
+oo +00 B
Ainsi, E(Z) = Z nP(Z = Tl.) = _2p Z TL(] 7p)n _ 2p 1—9p , = 2(1 p).
n=0 2=Pas 2-p(1-(1—-p)* »2-p)

11.68 ) a. On admet l'existence d’un espace probabilisé qui supporte la suite de variables aléatoires mutuellement

indépendantes (Jn)n>1 telle que Jn = 1 si la fille répond bien le jour n et J, = 0 sinon. D’apres 1’énoncé,

toutes les ], suivent la méme loi de BERNOULLI de parameétre p = 1/3. Soit B = “fille répond bien les R
R R
premiers jours”. Alors B = (J; =1,---,Jg = 1) donc P(B) =pr = [[ P(Jx =1) =pR = (%) .
k=1
b. On a calculé P(Z=0) = P(B) =pr =pR. Sin€ [l;R], (Z=n)=(J1=1,---,Jn_1 = 1,Jn = 0) donc,
par indépendance mutuelle encore : P(Z =n) =p"~'(1 —p) = 3%

R R
On vérifie bien que Y. P(Z=n)=pR+ > (p"~ " —p") = pR + 1 —pR =1 par télescopage.
n=1

n=0
c. Notons A l'instant ou le jeu s’arréte avec comme convention A = 0 s’il ne s’arréte jamais. Alors A est une

variable aléatoire car A(Q2) C N, que (A=R)=(J; =1,---,Jr = 1) € A et que pour tout entier n > R, on a
+oo

A=n)=(A<n)N(Jn-r+1 =1,--+,Jn =1) € A (par récurrence) et qu'enfin (A =0) = m (A =k) € A.
k=R

R
Soit n 2 R, ppy1 = P(A=n+1)= > P(A=n+1|Z=1)P(Z =1i) par la formule des probabilités totales
i=0

car ((Z =1)ogigr est un systeéme com;)let d’éveénements. Comme P(A =n 4+ 1|Z = 0) = 0 par construction,

ona PA=n+1)= .i Bz—iIP’(A =n+1|Z =1i). De plus, P(A =n+1|Z =1i) = pn41-i car indépendance

mutuelle puisque quanld: 1la sceur se trompe au jour i, ¢’est comme si on recommencait tout a 'instant 0.

Ainsi, PA=n+1) = ﬁ% %pn_i,_]_i et, avec le changement d’indice k =1 — 1, pny1 = EZ_:; Sk%pn_k.

d. On sait que po =p1 =0 et que p2 = 1; Avec la question précédente, Vn > 1, pny2 = %pn_u + %pn. Les

racines de X2 — 2X— 2 étant l:5:1—7 il existe (A, B) € R? tel que V¥n € N*| p,, = A(l+i>n+B(l—]—)n.
379 373 3 V3 3 V3

Je vous laisse terminer les calculs en trouvant A et B avec les valeurs de py et p2.

11.69 ] a. On fait le choix de dire que si une personne est servie en p secondes, alors la suivante peut étre servie a

partir de la seconde p. On suppose aussi que X1, X2, X3 sont mutuellement indépendantes. Ainsi, si k € N,
—+oo

YZ2k) =X 2kNX2 =2k). Or (X3 > k) = U(X1 = 1) donc, par o-additivité, on a la relation
i=k
—+o00 +oo . 1'+c>o )
P(X;=2k)= > P(Xy=1)= > (1—p)p- = (1 —p)p* X p) = p¥. Par conséquent, par indépendance de X;
i—k i—k j=0

et Xg, il vient P(Y > k) = P(X; > k) P(X2 > k) = p2*. On en déduit, puisque (Y > k) = (Y = k)U(Y = k+1),
que P(Y=k) = P(Y > k) = P(Y 2 k+1) = p?* —p2(H1) = (1 - p?)(p?)*.
b. Aj3 quitte le bureau de poste au bout de X3 secondes & partir du moment ou elle est servie. Ainsi,
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n
avec la convention choisi ci-dessus, on a Z = Y+ X3. Sin € N, (Z =n) = U Y =KXz =n—-k)

n
(éveénements incompatibles) donc, par indépendance de Y et X3, P(Z =n) = > (1 —p?)(p?)*(1 —p)p™~*

done P(Z =) = (1= p3)(1 —p) £ p™* = (1= p)(1 —plp" & p* = (1= pp"(1 = p™*)

c. Par linéarité de l'espérance, E(Z) = E(Y)+ E(X3). Or X3 +1~ §(1 —p) donc E(X3+1) = % d’apres
-7

le cours d’ott E(X3) = JL. De méme, d’apres la question a., Y + 1 ~ G(1 — p2) donc E(Y +1) = ] 1 ;
-p
2
et E(Y) = JD— Par conséquent, E(Z) = —2— + 2 p(1+p) +P p(1 +2p)
—p’ T—p 1-p° 1—p° 1—p?

11.70| a. On note Ty le numéro de la boule tirée au tirage k. On admet l'existence d’'un espace probabilisé
qui supporte cette suite (Tx)x>1 de variables aléatoires mutuellement indépendantes (remarque du cours).

D’abord X, (©2) = (N*\ {1}) U {+o0} car on rajoute la possibilité de ne jamais avoir une autre boule

+oo
que la premiere tirée, qu’on note X,, = +oo. De plus, (Xn = +o0) = ﬂ (Xn = k) par convention et
k=2
n
U ( 1=1) N (T =) N (T # 1)) € A pour k > 2 donc X, est une variable aléatoire

car les T; le sont. Par incompatibilité de ces n événements, indépendance mutuelle des Ty qui suivent toutes

n 1 k—1 1 1
la loi uniforme sur [1;n], on a P(X, =k) = Y (7) (n;) =0
n

i=1 n

= 2.

Xn] 1™y —1 1
On vérifie la cohérence de ces résultats car y D—g = 21— (—) =10 X = 1. Ceci
k=2 no n 1—(/n)

justifie que I’événement (X, = +00) (toujours la méme boule) est négligeable comme attendu.

b. kP(X;, = k) = % et > % converge car le rayon de la série entiere . kx¥~! est égal & 1
k=2 N k>1

1

“+oo +oo
et que ‘l‘ < 1. De plus, comme Vx €] — 1;1], 3. xk = , on obtient en dérivant > kxk~! =
n Kk

K=1 (1-x)*

donc Jrzo:olock*1 = —1 1 Ainsi, EXn) = (n — 1) x (niz — 1) = =1 par conséquent

= (1—x)* ’ " (n—1)* n—1 ’

1111 E(Xn) = 2 ce qu’'on subodorait car plus n augmente, plus I’événement (X, = 2) devient presque sfir.
n——+oo

c. Comme X; =Yz, pour k > 2, on a (Y2 =k) = (X2 = k) donc P(Y; =k) = ]71 d’aprés a.. On reconnait

2k
k—1
cette loi, Y2 —1 suit la loi géométrique de parametre % car P(Y,—1=k) = P(Y, =k+1) = zl—k = %( —%) .
d. Pour k > 3, en notant i le numéro de la premiere boule tirée, r le premier rang pour lequel on tire une

boule de numéro j # i, comme 6 —i—j est le numéro tiré autre que i et j (car i+j+(6—i—j) =1+24+3 =6),

3 3 k-1 r—1 k—1
ona(vs=k=JUU ((ﬂ (Ta =)0 =5)n( (Tkzwum:j)))n(n:e—i—n.

i=1 1=1_ r=2 b=r+1
i#

Ainsi, par incompatibilité de tous ces évenements, indépendance mutuelle des tirages et symétrie entre les

k=1 r—1 k—r—1 k=1 k—2
, g 622
, P(Y3=k)=3Xx2X (l) x(l)x(;) x(l):i gk—r—1 _ 2\ — 1)
numéros, P(Y3 = k) rgz 3 3 3 3 3K T; 3K
\ S {2 -)
A nouveau, comme Y3(Q2) = {3,4,5, -+, +00}, on vérifie que Y P(v; =%k)= > BT 1. En effet,
k=3 k=3
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+°°62‘< 2_1) (2/3)3 (1/3> 4 1 _ N s B
on a Z - = (6/4)] ) 6] G "3 3 1. Ceci justifie que I’évenement (Y3 = +00)

(seulement deux numéros tirés éternellement) est négligeable comme attendu.

11.71) a. Pour k € [1;n], la variable aléatoire Xy suit la loi uniforme sur [[1;6]] donc Vi € [1;6]], P(Xx =1i) =

Par définition, la fonction de répartition F de Xy (qui ne dépend pas de k), vérifie F(t) = 0 si t <
Vie [1;5], Vt e [i;i4 1], F(t) = é et F(t) =1sit>6.

1
6
1,

Il
DL
=
=

b. Soit t € R, comme My, = Max(X1,--+,Xn), on a (My < t) t) donc, par indépendance

n
mutuelle des X1, -+, Xqp, il vient Gn(t) = P(Mn < t) = [] P(Xx < t) =F(t)™.
k=
n
c. De méme, si t € R, comme my = Min(Xy, -+, Xn), (mn > t) = m (Xx > t) donc, par indépendance

mutuelle des X1, -+, Xn : 1=Hp(t) = P(mpy >1t) =1—-P(my <t) =1—Hup(t) = ﬁ P(Xx >t) = (1—F(t))™.
On en déduit que Hn (t) =1 — (1 — F(t))™ !

d. Gréce aux expressions de la question a., la suite de fonctions (Gn)n>1 converge simplement vers la
fonction G : R — R définie par G(t) = 0sit < 6 et G(t) = 1sit > 6. De méme, la suite de fonctions
(Hn)n>1 converge simplement vers la fonction H: R — R définie par H(t) =0sit<1et H(t) =1sit > 1.

n
En tragant le graphe de G, et G, on se rend compte que Vn € N*, ||Gn—G||oo,r = ’Gn(%) —G(%) ‘ = (%)
Or % < 1 donc liT [|[Gn — Glloo,® = 0 et la convergence de la suite (Gn)n>1 vers G est uniforme sur R.

n——+oo
n
De méme, Vn € N*, |[Hy — H||lso.r = ‘Hn<l) - H(l)’ - (5) d'ott lm ||Hp — Hl|oo,r = 0 et la
’ 6 6 6 n—-oo ’

convergence de la suite (Hn)n>1 vers H est uniforme sur R.

11.72)a. Pour n € N, comme (Sn =n) = U (N =k, Xj+---4+ Xy =n) (réunion d’évenements incompatibles),
keN

+oo +oo
on a par c-additivité P(S=n)= >, PN=%k Xj+--+Xx=n)= > PN=K)P(X;+---+Xx =n)
k=0 -

par indépendance de N et Xy + --- + Xy pour tout k € N. Mais X7 + --- + Xy suit d’apres le cours la loi

binomiale B(k,p) car Xi,---,Xx sont mutuellement indépendantes et suivent toutes la loi de BERNOULLI

k
de parametre p. Ainsi, P(X;+---+Xx =n) =0sik<net PX;+---+Xx =n) = ( )p“(l —p)k
n

—Ayk

si k > n. De plus, comme N suit la loi de POISSON P(A), on a par définition P(N = k) = € k'}\ . Ainsi,

+oo Ak [k e_}\pn +oo k k k!
P(Sn = = e A ] —p)t = A 1 —p)< ™ car = ———. En

v =m) = £ <5 (E)ma ) S A0 e
e—}\ n7\n “+o00 Ak—n(] _p)k—n
écrivant, P(Sy =n) = p' , on reconnait la série exponentielle et on parvient a
n! = (k —n)!

A_nyn —Ap n

P(Sny =n) = —p—)\ rM1-P) — ﬁ. Au final, Sy suit la loi de PO1ssoN P(Ap).
n! n!

b. Pour n € N, comme (Sy =n) = U (N =%, X7+ 4+ Xx =n) (réunion d’événements incompatibles),

keN
+oo too

on a par o-additivité P(Sy =n)= >, P(N=k, Xi+ -+ Xxg=n)= >, PN=K)PXy+---+Xx =n)
k=0 k=0

par indépendance de N et Xj + - -+ + Xy pour tout k € N.
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+o00 +oo “+o0o
Pour t €] — 1;1[ (au moins), Gs,(t) = >, P(Sy = n)t" = 3 (kzo PIN=K)PX: + -+ Xy = n)t“).

n=0 n=0
—+oo —+oo
On intervertit d’apres I’énoncé : Gs (t) = > ( S PIN=K)P(X1+- +Xx = n)t“) qui se transforme en
k=0 ‘n=0
+oo , +oo " +oo
Gsy (1) = X ( Py 4+ Xk = n)t“) P(N = k) donc Gs, (t) = Y Gx;4-+x, (1) P(N = k). Or, par
k=0 *n=0 k=0
Kk
indépendance mutuelle des (Xi)i>1, on a Gx,+..+x, = || Gx, = G;‘(] car toutes les Xy suivent la méme loi,
i=1

400
d’ott la formule Gs (t) = > P(N =k)(Gx, (t))k = Gn(Gx(t)) qui justifie que Gs, = Gn o Gx, .
k=0

c. Puisque X7 et N admettent des espérances finies, les fonctions Gx et Gy sont dérivables en 1 d’apres le
cours et, par composition, Gs, lest aussi avec G (1) = Gx(1)Gy (Gx(1)) = Gx(1)GN (1) car Gx(1) = 1.
Ainsi, toujours d’apres le cours, on obtient E(Sn) = E(N)E(X) (formule de WALD).

d. Puisque X; et N admettent des variances finies, les fonctions Gx et Gy sont deux fois dérivables en 1
d’apres le cours et, par composition, Gs, D'est aussi avec G¢ (1) = G%(1)G} (Gx(1)) + Gx(1)*G (Gx(1))
donc G¢ (1) = GX(1)GN (1) + Gx(1)2G{ (1) toujours parce que Gx(1) = 1. Or on sait d’apres le cours que
V(Sn) = G¥ (1)+G§, (1)—G% , (1)? donc, avec la question précédente, comme G§ (1) = E(Sn) = E(N)E(X)
et G (1) = (V(X) — E(X) + E(X)?)) E(N) + E(X)?(V(N) — E(N) + E(N)?)), cela donne

V(Sn) = (V(X) = E(X) + E(X))) E(N) + E(X)*(V(N) = E(N) + E(N)?)) + E(N) E(X) — E(N)?E(X)?

qui, aprés simplification, revient & V(Sn) = V(X)E(N) 4+ E(X)2 V(N).
a. La matrice BAT est dans M, (R) et toutes ses colonnes sont proportionnelles & la matrice colonne B
donc rang (BAT) < 1. On distingue alors deux cas :
e Si A=0ouB =0, alors BAT =0 donc rang (BAT) = 0.
e Si A #0etB 0, alors en notant A = (ax)1<k<n et B = (bx)1<ken, 3(1,j) € [1;n]%, ai # 0 et

bj # 0. Or BAT = (ajbi)1<i,j<n donc BAT n’est pas nulle donc pas de rang 0. Ainsi, rang (BAT) = 1.
b. Traduisons la condition d’appartenance & E. Soit C € Mn,1(R) et posons M = BC', alors M?> = BCTBC'.

n
Or CTB € My (R) qui contient le réel > cxbyx = Tr (BCT) = Tr (M) (en notant C = (cx)1<k<n)- Ainsi,
k=1

M? = Tr (M)M, le polynoéme P = X2 —Tr (M)X est donc annulateur de M. Distinguons & nouveau deux cas :
e Si Tr (M) = 0, alors X? annule M donc Sp(M) = {0} (car M est nilpotente donc non inversible et
0 est valeur propre de M et la seule racine de X? est 0) et M est diagonalisable si et seulement si
Eo(M) = R™, c’est-a-dire si et seulement si M = 0.
e Si Tr (M) #£ 0, alors P = X(X — Tr (M)) annule M et ce polyndme est scindé & racines simples dans
R[X] donc la matrice M est diagonalisable dans My (R).
On en déduit I'équivalence : M est diagonalisable <= (M = 0 ou Tr (M) # 0). Ce qui peut aussi s’écrire :
(M = 0 ou M non diagonalisable) <= Tr (M) = 0. Ainsi, E = {C € M;,1(R) | Tr (BCT) = 0}.
ECMn,1(R)et0€E. Soit (Cq,C2) EE2et A€ R, Tr (B(ACy1 +C2)") =ATr (BC])+Tr (BC)) =A0+0=0
donc ACy + C, € E. Ainsi, E est un sous-espace vectoriel de My, 1(R) donc lui-méme un espace vectoriel.

Traitons deux cas :

49



e si B=0, E =My, (R) donc dim(E) =n.

e siB #0, ¢ : My 1(R) — R définie par ¢(C) = Tr (BCT) est une forme linéaire non nulle car

@(B)=Tr (BB") = ||B]|> > 0 et E = Ker(¢) donc E est un hyperplan de My 1 (R) donc dim(E) =n—1.
c. D’apres ce qui précede, BX' diagonalisable si et seulement si BXT = 0 ou Tr (BXT) # 0. Or comme B # 0

n
et X # 0, on ne peut pas avoir BXT = 0. Ainsi, BX" diagonalisable si et seulement si Tr (BXT) = > Xy # 0.
k=

Traitons deux cas :

e si n est impair, comme tous les Xy sont & valeurs +1, donc impaires, Tr (BXT) impair donc on ne

peut pas avoir Tr (BXT) =0 et U = Q donc P(U) =

Xk+1

e si n = 2p est pair, les variables aléatoires By = suivent des lois de BERNOULLI de parametre

1

3 et sont mutuellement indépendantes donc S, = Z Bx = % + %Tr (BXT) suit la loi binomiale de
k=1
_ 2 T\P /1\2P—P 2 1\ 2p
parameétres n, + donc P(Tr (BXT) =0) = P(S,, =p) = P(U) = < p) (7) (7) = < p) (7) )
2 p/\2/) \2 p/\2

— 2 1\2p
On en déduit donc que P(U) =1—-P(U) =1— ( p) (£> )
P

11.74) a. Pour (i,j) € [1;n]? tel que i # j, on note I’évenement Ri;j ="“les points Aj et Aj sont reliés”. Alors,

par définition (X7 = 1) = R ; et, par hypothese, les évenements Ry ; sont indépendants mutuellement

¢D=

donc P(X3 =1) = P(Rij) = (1 —pn)™~'. Comme X; ne peut prendre que les valeurs 0 et 1, on a aussi

a:w

j
P(X; =0)=1—P(X; =1)=1—(1—pn)™"" donc X; suit la loi de BERNOULLI de parameétre (1 —p,, )"~ '.

Par symétrie entre les différents points, toutes les variables aléatoires X; suivent la méme loi que X;. Ainsi,

n
par linéarité de I'espérance, E(S,) = > E(X;) =n(1 —pn)™"".

Sn représente le nombre de points isolés dans le graphe.

b. Méthode 1 : Comme S, est une variable aléatoire réelle positive, d’apres I'inégalité de MARKOV avec
E(Sn)

e=1,P6Sn2=21) < — = n(1 —pn)™ " et (Sn > 1) est 'évenement “il y a au moins un point isolé”.
Tl n n
Méthode 2 : (Sp, 2 1) = (X =0) U Xx =0) U (Xx = 1) donc, par sous-additivité,
k=1 k=T k=1
on a & nouveau la majoration P(S, > 1) < Z PXe =1) =n(1 —pp)™ "

c. Méthode 1 : l'inégalité de BIENAYME-TCHEBYCHEV appliquée a la variable aléatoire Y qui admet bien

un moment d’ordre 2 donne, avec ¢ = |E(Y)| > 0, la majoration P(|]Y — E(Y)| > |E(Y)|) < J;,((Y\;)Z Or
(Y=0) C (Jy = E(Y)| = |E(Y)|) donc, par croissance de P, P(Y =0) < P(]Y — E(Y)| = | E(Y)|) < I;l/((YY))Z

Méthode 2 : en notant Y(Q) = {yi | i € N} (a fortiori c’est plus simple si Y(Q2) est fini), on a par la formule
du transfert V(Y) = E((Y — E(Y))?) = Z P(Y = yi)(yx — E(Y))2. Tous ces termes sont positifs, ainsi V(Y)

20
est supérieur au terme correspond au cas ot y; = 0 (s1 0 € Y(Q2) alors P(Y = 0) = 0 et c’est clair), c’est-a-dire

V(Y) = P(Y =0)(0 — E(Y))? = P(Y = 0)E(Y)? donc P(Y =0) < IEI((Y\;)Z car E(Y) # 0 par hypothese.
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ln(n))) or, comme Um M =0, on a
n—+oo n

d. E(Sn) = n(1 —pn)™ ! = exp (ln(n) +(n—=1)n (1 —c

(n—=1)In (17cm) s fcnm = —clIn(n) donc ln( )+(n—1)In ( cmnﬂ> +:00(17c) In(n)+o(In(n))

n n

ce qui prouve que lirlx (ln(n) +(n—1)n ( _ ek )) —oo car ¢ > 1. Ainsi lirjrl E(Sn) = 0 donc,
n——+4o00o

n——+oo

avec b. et par encadrement, il vient 1111 P(Sn 0 done, comme P(S, =0) =1— P(S, > 1), on

trouve 1111 P(S;, =0) = 1. On n’a presque siirement aucun sommet isolé quand n tend vers 400 si ¢ > 1.
n—+oo

e. Soit (i,j) € [1;n]? tel que i # j, XiX; suit une loi de BERNOULLI car XiXj ne peut prendre que les valeurs
n n
0 et 1. Comme (XiXj = 1) = Ryj N ﬂ Rix N ﬂ Rj i, par indépendance mutuelle & nouveau, on a
e e
n
P(XiXj =1)=(1—pn)?" 3. Or$2 = > XE+2 Y XiXj avec Xi = Xi et les X;X; qui suivent la méme
k=1 1<i<j<n

loi dés que i # j, donc E(S2) =n(1 —pn)™ "' +2 (;) (1 —pn)?™ 3. Avec la formule de KONIG-HUYGHENS,

V(Sn) = E(S2) = E(Sp)? =n(1 —p)™ "4+ n(n—1)1 —pn)?™ 3 —n2(1 —p,)?" 2 donc, en factorisant par

rapport aux puissances de 1 —prn, V(Z) = n(1 —pn)™ (1 = (1 — pn)™2) + n2pn (1 — pn )23,
Comme (1 —p )™ ' ~n=Cet lim (1—pp)=1,(1—pn)?" 3= (0 =pa)™? ~ n~2¢ donc on obtient
n 400 n——+oo n ’ n 1 — Pn 400

nzpn(] — Pn
n(1—p)" (1 =(1—pn)"2) o n'=¢ d'ott n2pr (1—pn)?™~3 = o(n'~¢) ce qui prouve que V(S,,) ol
o0 o0

+oo
V(S“)z =0sic< 1. Dapres c. et par encadrement, on a

)2n=3 I~ en'=2¢1n(n). De plus, comme on a tim (1— (1 —pn)™?) =1, il vient I'équivalent
oo n—-+oo

T—c

) V(Sn) 1 .
Par conséquent Lo~ donc 1
duent, E(Sn)2 +oon'—¢ nﬁlToo E(Sn)

donc HT P(S;, =0) = 0. Il y a presque stirement au moins un point isolé si ¢ < 1 quand n tend vers +oo
n—+oo

(en fait il y en a beaucoup puisque lim E(Sp) = +00).
n—+oo

In(n)

f. E(Sn) = n(1 —pn)™ ! = nexp ((n —1Nin (1 —c )) or, comme lim

n—-+oo n

développement suivant : (n—1)1n (l — CM) +=oon(1 - l) (—cmT(ln) + O(ln(g)z)) = —cln(n)+o(1).

n n n

Ainsi, exp ((n —1)n (1 — Clnﬁn))) = e~cnm+o(l) = n=ceoll) ~ n=¢ donc E(S,) ~ n'~¢. Ainsi, il

“+ o0 +o0 “+o00 “+ o0

vient lim E(Sp)=4oosic<1, lim E(S,)=0sic>1et lim E(S,)=Tsic=1.

n—-+oo n—-+oo n—-+oo
k—1

11.75] a. Comme X(2) = Y(Q) = N*, on a S(2) € N*\ {1}. Soit k > 2, comme (S =k) = U X=14,Y=k—1)
i=1
(réunion incompatible) et que X et Y sont indépendantes par hypothese, on en déduit la relation suivante :

P(s = ) = z P(X = ) P(Y = k—1) = z p(1—p)Tp(1 = p)*~T. Ainsi, B(s = k) = (k—1)p(1 —p)*~2
(on dit que S sult une loi binomiale negatlve ou loi de PoLya).

b. Sik=1, (S=1) =0 donc la loi de X sachant (S = 1) n’est pas définie.

Pour k > 2eti€ N* comme S=X+YetqueY >1, PX=1i|S =%) =0sii>k—1. Par contre,
P(X =1,S = k)
P(S = k)
PX=14S=k) = PX=1)P(Y =k —1) = p(1 —p)" Tp(1 —p)¥ T = p2(1 — p)*~2 comme avant. Par

)
siie[Lk—=1], PX=1i]S =%k) = or X =1,S =%k) = (X =14Y = k —1i) donc

o1



conséquent, P(X =1 [ S = k) = Pis_iy(X = 1) = " pzlglaz_ﬂp)k;;kz = k]—1 donc la loi de X sachant
(S = k) est la loi uniforme sur [[1;k — 1].

c. C’est quasiment du cours : Z suit la loi géométrique de parametre p. On le montre par récurrence en
posant P(n) = “P(Z > n) = (1 —p)™”. Comme Z(Q) = N*, P(0) est vrai. Sin € N et P(n) est vrai,
alors P(Z>n+1)=P(Z>n+1Z>n)P(Z>n)=(1-p)(1—p)™ par hypothése de récurrence donc
P(Z>n+1)=(1—p)""" et P(n+1) est vrai. Par principe de récurrence, ¥n € N, P(Z >n) = (1 —p)™
donc, pour tout entiern € N*, P(Z=n)=P(Z>n—1)-P(Z>n)=1-p)" ' =1 —p)* =p(1 —p)*~!

ce qui prouve que Z suit la loi géométrique de parametre p.

—+o0
d. Comme (X+Y=2) = U (X+Y =k,Z = k) (réunion incompatible) et que X+Y et Z sont indépendantes
k=1
—+o0
par le lemme des coalitions, P(X+Y = Z) = Z PX+Y=KP(Z=k)= > (k—=1)p?(1—p)*2p(1—p)k1.
k=1 k=1
“+ o0 “+o00
Ainsi, PX+Y=2)=p> 3 (k=1)(1=p)2* 3 =p3(1—p) 3 m(1—p)2m=D si m =k —1. Or on sait que
k=2 =1
+oo 1 "
Yx €] =11, > x™ = T— donc, en dérivant cette série entiere sur son intervalle ouvert de convergence,
Vx €] —1;1] —g):o mx™ ! = 1 Par conséquent, P(X+Y = Z) = p3(1 —p) 1 _p0—p)
P (1-x)7% (1—0-pH)*  @2-p)7°

11.76 | a. Notons, pour tout client numéro i € [[1;n] et toute vague d’appels j € N*, I"évenement R; j = “le client

numéro i répond au cours de la vague j” (avec pour convention que Ry j = ) si le client i a déja répondu au

cours des précédentes vagues d’appels donc n’est pas appelé lors de la vague j).

Alors, par exemple, (X7 = n,Xz = n) = 0 donc P(X; = n,Xz = n) = 0 alors que (X; ﬂ Ri,1

(tous les clients répondent lors de la vague 1) donc par indépendance entre les comportements des Chents
n

P(X; =n) = H PRi,1) =pThet (X2 =n) = ﬂ(RiJ N Ri,2) done, toujours par indépendance entre les
=1 i=1

clients, comme P(Ri;1 NRi2) = P(Ri,;1) x P(Ry,

Ri1) = (1 —p)p,ona P(Xa =n)=p"(1 —p)" #0. Par
conséquent, P(X; =n,Xo =n) # P(X3 =n)P(Xz =n).

Bien stir, les variables aléatoires X7 et X, ne sont pas indépendantes.

b. e Fixons le numéro i € [[1;n] d’un client, alors Y; est le rang du premier succes dans une suite d’expériences
indépendantes suivant une loi de BERNOULLI de parametre p (le client i répond a la vague i) donc, d’apres
le cours, Y; suit la loi géométrique de parametre p.

e X; suit d’apres le cours la loi binomiale B(n,p) par indépendance des réponses des n personnes car X
compte le nombre de succes dans une répétition (les n appels) d’expériences indépendantes (le client i répond
au premier appel) suivant le loi de BERNOULLI de parametre p.

e La famille (X1 =j ))o<j<n constitue un systéme complet d’évenements donc, par la formule des probabilités
totales, P(X2 = k) = Z P(X7 =j,X2 = k) pour tout pour k € [0;n] car X2(€2) = [0;n]. Comme on appelle

n — Xj clients lors de la deuxieme vague d’appels, P(X; =j, X2 =k) =0sin —j < k et, comme la loi de X,

sachant (X7 =j) est la loi binomiale B(n —j,p) pour les mémes raisons que précédemment sin—j >k, on a
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P(X> = kX1 =) = ( j)pk(l —p)™ %, Comme (“‘:j) C‘) - (L‘) (“ ; k) pour j € [0;n — K], on a

poa =1 =5 (" )k p)”lk() (1) = ()( et S (] ) —mr
done P(xz =) = ()50 =91 =p 49" = (1) (50 =p)) (1 =p(1=p)™ 5 X2 ~ B, p(1 =)
0

k
c. Par construction, pour k > 3, on a Xx(2) = [0;n] et, si j € [0;n], pour que l’on ait X = j, il
est nécessaire et suffisant qu’exactement j clients vérifient Y; = k. On a donc Xy = E My,—x) et les
variables aléatoires (M(y,—x))1<ign sont 1ndependantes par hypothese (les clients sont mdependants) et,
comme P(My,—x) = 1) = P(Y; = k) = p(1 — p)¥~1, les variables aléatoires My, =k)s -+ My, =k) suivent
toutes la loi de BERNOULLI B(p(1 — p)*~1"). D’apres le cours, Xy suit la loi binomiale B(n,p(1 —p)*~').
d. Par définition, pour k € N* on a Si(2) = [0;n] et, si j € [0;n], pour que l'on ait Sy = j, il est

nécessaire et suffisant qu’exactement j clients vérifient Y; < k (eus au téléphone avant l'appel k). Ainsi,

n
comme avant, S, = > T(y,<x) et les variables aléatoires (T (v,<k))1<ign suivent la loi de BERNOULLI de
i=1

parametre 1 — (1 —p)* d’apres la question b. puisque Y; suit la loi géométrique de parametre p et qu’on a
donc P(T(y, <y =1) = P(Yi <k) =1— P(Y; > k) =1 — (1 —p)* et elles sont indépendantes.
D’aprés le cours, Sy suit la loi binomiale B(n,1 — (1 —p)¥).

e. Méthode 1 : par définition de la variable aléatoire N, on a N = Max(Yy,- -, Yy, ) de sorte que, pour k € N*|

ona (N<k) = ﬂ (Y; < k) donc, par indépendance entre les personnes appelées, on parvient & la relation

i=1

P(Y; <k) = (1 — (1 —p)*)™. Comme, pour k € N*, ona (N<k)=N=k)U(N<k—1)

il

P(N <k):

1
(1ncompat1bles), ona PN=k)=P(N<k) - P(N<k—-1)=(1-1-p) )" = (1 (1 —p)k-)m.
Méthode 2 : on a aussi (N < k) = (Sx = n) donc P(N < k) = (1 — (1 —p)*)™ avec la question d. mais
comme (N =k) = (Sx =n) \ (Sk—1 = n) (on a contacté tous les clients & la vague k mais pas avant) avec
(Sxo1=n) C(Sx =n)donc P(N=n)=P(Sx =n) — P(Sx_1=n)=(1—-(1—-p) )" = (1 — (1 —p)c-1)m.
e Comme N est & valeurs dans N (car N(f2) = N*), d’apres le cours, N admet une espérance finie si et

seulement Y. P(N > k) converge. Or P(N > k) =1 - P(N < k) =1—(1— (1 —p)*)™ qui devient
k>0

n X . n
P(N>k)=1-= > (-1) <n> (1 =p)*) = S (=1)y+! < )(l —p)¥. Comme toutes les séries géométriques
j=0 ) j=1 j

> (1 —p)¥ convergent pour j € [1;n] car leurs raisons (1 —p)’ sont dans | — 1; 1, par somme d’un nombre
k>0

fini de séries convergentes, on a la convergence de > P(N > k) donc N est d’espérance finie et on a enfin la
k>0

n . n\ oo . n /n (_])j-H
relation E(N) = ((—1)”‘] () > —p)k’) => ()
j=1 i/ x=o =1 \i/1=(0-p)

11.77| a. Comme les variables aléatoires Xy, -- -, X;, sont mutuellement indépendantes et suivent toutes la loi de

n
BERNOULLI de parametre p €]0; 1], d’apres le cours, Sy, = > Xy suit la loi binomiale de parameétre n et p.

k=1
+oo 1
b. Soit x €] — 1;1[, on sait que Y, x™ = ] . Dérivons k fois cette série entiere sur son intervalle ouvert
n=0 -x
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—+o0

de convergence, on obtient Y. n(n—1)---(n—k+1)x""* = ﬁ (dérivée facile par récurrence). En
n=k

divisant par k!, on arrive & ¥x €] —1;1] %O —nl__nk— 1 donc Z ( ) ke 1

7 T n=k k!(n - k)' (1 )k+1 n=k k (] - X)kJr] .
+oo

c. Pourke N, (Y =k) = U (N =n, Sy, = k) (réunion incompatible) ainsi, par indépendance mutuelle et
n=1

+oo
o-additivité, il vient P(Y =k) = >  P(N =n)P(Sp = k). On distingue deux cas :
=1

+0o too
e Si k = 0, on obtient donc P(Y =0) = > P(N=n)P(S, =0) = > p(1 —p)"~"(1 —p)™ donc

o +o0 e -p) _1-
B(v=0)=p(1—p) X (1~ Pyl = 13(1—pp)2_2—g'

+oo
e Sik>1, comme P(S, =k) =0sin<k,ona P(Y=%)= > P(N=n)P(S, =k). Avec a., il
n=k
+o0 +oo
vient P(Y =%) = > p(1—p)" {1 )p (1 —p)" 7 = (1 —p)RpH S () (1 - p)22¢ done
n=k k n=k \k
d’apres la question b., P(Y = k) = (1 — p)k~Tp**T x 1 _(=p
’ (1=0=pH"  @-p)*
oo 1 100 g Lo\ k-1
Pour m > 1, comme (Y > m) = (Y = k) (réunion incompatible), P(Y > m) = > ( p)
Sl 2-p)=m 2P
1 m—1 1 1— m—1 .
donc P(Y > m) = (—E — = ( p) . Alors, la série PY > m
(/)(219219 P 2-pl2-p mz>1(/)
Z—P
400 1 +o00 1 — m—1
converge donc Y admet une espérance finie et E(Y)= > P(Y>m)=-—— > (—E) =11
m=1 2-— P m=1 2- p

11.78) Enoncé mal posé : tout se passe comme si on avait une infinité de lapins et qu’on prenait les lapins un par

un sans se soucier des lapins déja pris, la probabilité d’étre un male reste égale a 1

a. Par construction, M(€2) C [[0;2n]. Par indépendance mutuelle entre les lapins et comme le fait de tomber

1

sur un male suit une loi de BERNOULLI de parametre 5 par hypothese, M suit la loi binomiale de parametre

2 1
n et % de sorte que Vk € [[0;2n], P(M =k) = ( ]:1) I (N n’intervient pas).

b. Clairement, C = Min(M,2n — M) car il y a M maéles et 2n — M femelles parmi les lapins. Ainsi,
C(Q)) = [0;n] et on distingue deux cas selon la valeur de k € [0;n] :

2 1
e si k =n, alors (C:n):<M:n) donc ]P’(C:n):<n).
n

2 1
esik<n, (C=k)=(M=k)UM =2n—k) (incompatible) : P(C =k) =2P(M =k) = (5)22111

n
c. Comme C est bornée, C admet une espérance finie et, par définition, E(C) = > kP(C = k) donc, avec

2 1 n-l /2 1 2 n—1
la question précédente, on a E(C) = n( T?) o + k§1 k( ]11) T Or k( ]ZL> = (2n) ( g, | ) donc il

2 1 2 n=2 /on —1 n=2 /n —1
vient E(C):n( n>2n+ znn] > (n' )en ayant posé j = k — 1. Si on pose S, = > (n. >7
nj2 2 j=0 ) j=0 )

o1 o — 1\ n=2 (2n— 1 m—1 m—1\ 2051 (2n -1
alors 22"~ = 37 (n ) Z(n )—l—(n )+(n >+ > (n' ).Oronsaitque
=0 j =0 j n—1I n j=n+1 j
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2n —1 2n —1 2n —1 2n —1
( ] = ( ) donc 221 =28, +2 et S, = 22"2 — . Par conséquent,
j 2n—1—j n n

2n\ 1 2n n_2 2n—1 n (2n . 2n 2n —1
IE(C)11<n)22n+22n_1 (z“ ( N >>n22n<n)(aprescalculscar (n>2< 0 ))
(

2n> _(2n)! Vamm(2n)? e 22n

C(n)? oo (2mm)n?me?™ o0 Vv

Bien siir que E(C) < n car C(2) C [0;n]. Avec STIRLING, on a (

n
2
doncn — E(C) = 22;(::) ol \\/fi Cela peut s’écrire aussi E(C) = /% +o(y/n).
11.79) a. Par construction, Y = Min(Xj,Xz) donc, pour k € N, (Y > k) = (X3 > k)N (X2 > k). Or on a
oo +00 ‘ k+1
(X1 >k) = U (X1 =1) (réunion incompatible) donc P(X; > k)= >, (1—p)p* = (1—p)x f— = pkt!
i=k+1 i=kt - P

par o-additivité. Comme X5 suit la méme loi que Xj, on a aussi P(X2 > k) = p**!. On suppose X7 et X3

indépendantes donc P(Y > k) = P(X; > k) P(Xa > k) = p2(**1) (marche encore si k = —1). Ainsi, comme

(Y<Kk)=(Y>k),ona P(Y<k)=1—P(Y>k)=1-—p . De plus, comme (Y > k—1) = (Y = k)U(Y > k),
on en déduit finalement laloi de Y, Vk € N, P(Y = k) = P(Y > k—1)—=P(Y > k) = p2k—p2(+1D) = (1—p2)p2k,
b. Par construction encore, Z =Y + X3 (il faut le temps que A3 acceéde au guichet et le temps qu’elle soit

servie). On suppose a nouveau Y et X3 indépendantes (ou plutdt Xq, X2, X3 mutuellement indépendantes
n

et le lemme des coalitions). Sin € N, (Z =n) = U (Y = k¥, X3 = n — k) (évenements incompatibles)
k=0

NgE]

(1 =p*)(P*)*(1 — p)p™~* donc, au final,

n 71— 1
P(z=n)=(1-p*)(1~p) kZop““‘ = =p)( —pp" P = (1 —p2)pn(1 —p").
c. Par linéarité de 'espérance, E(Z) = E(Y) + E(X3). Or X3 +1 ~ §(1 — p) par définition donc, d’apres le

cours, E(Xz +1) = % d’ot E(X3) = %L De méme, d’apres la question a., Y +1 ~ G(1 — p?) donc
—-p —-p

donc, par indépendance de Y et Xz, il vient P(Z = n) =
K

21
+o

2 2 2
E(vy+1) = 1 5 et E(Y) = —2—. Par conséquent, E(Z) = —2—+ P = p(+p)+p” _ pUl —I—Zp).
1—p 1—p

S 1-p 17p2_ l—pz 17p2
—+oo
On pouvait aussi utiliser la loi de Z vue en b. et la définition E(Z) = >~ nP(Z = n) mais cela fait intervenir
n=0
des calculs de somme de série entiere plus délicats.
—+oo
11.80)a. Pour k€ Nyon a (X > k) = U (X =1) (réunion d’événements incompatibles) donc, par o-additivité,
i=k+1
Ly ; p(1—p)*
PX>k)= Y p(l-p)i'= [ = (1—p)¥. Par construction, Yk > 0, (M > k) = (X > k)N(Y > k).
i=k+1 —u=r

Par indépendance de X et Y, on en déduit que P(M > k) = P(X > k) P(Y > k) = (1 — p)?*. Comme, pour
ke N*, PMM =%k) = P(M > k—1)—P(M > k) car on al’égalité (M = k) = (M > k—1)\(M > k) et I'inclusion
(M >k) C (M >k—1),onen déduit laloide M : P(M =k) = (1—p)2&=D—(1-p)2* = p(2—p)(1—p)21).
La variable aléatoire M suit donc la loi géométrique de parametre p(2 —p) =1 — (1 —p)?.

b. ¢ (D =0,M =m) = (X =m,Y = m) donc, par indépendance, P(D = 0,M =m) = p%(1 —p)?™~2.
eSid>21,(D=dM=m)=X=mY=m+d) U (X=m+d,Y=m) (réunion disjointe) donc toujours

par indépendance et additivité, il vient P(D = d,M = m) = 2p?(1 — p)2m+d=2,
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—+o0

c. « (D=0 = U (D = 0,M = m) (réunion d’événements incompatibles) donc, par o-additivité, on a
=1
D =0y = 3 pi(1pyen = ;
m=1 1—(1-p)7 2-p
+oo
eSid>1,(D=4d) = U (D = 0,M = m) donc, avec les mémes arguments que ci-dessus, on parvient a
m=1
+00 201 \d _\d
PD=d)= Y 2p2(1 _p)2m+d72 _ 2p°(1 p)z = 2p(1 —p)
m=1 1-(-p) 2-p
— — 207 _ .\2m—-2
Ainsi, sid =0,ona P(M =m|D =0) = P(DP_(S’EAO_ m) _ p (1 ]?) =p2—p)(1 —p)2(m=1) et, si
2—p
o P(D=d,M =m) sz(l —p)2m+d_2 2(m—1
d>1,il vient PM =m|D =d) = > = =p2—p)(1 —p)2m-D),
>1,ilv (M =m| ) F(D = a) L p2—p)(1-p)
2-p

Que d soit nul ou pas, on a donc d’apreés la question b. la relation P(M = m|D = d) = P(M = m). On en

déduit que les variables aléatoires D et M sont indépendantes.
d. Soit m € N* comme D et M sont indépendantes, on a P(D = 0,M = m) = P(D = 0)P(M = m).
Or (D =0,M =m) = (X =m,Y = m) done, par indépendance de X et Y, on obtient aussi la relation
P(D = 0)P(M = m) = P(X = m)P(Y = m) = P(X = m)? car X et Y suivent la méme loi. De méme,
commeonavuenc. qu¢e(D=1TM=m)=X=mY=m+1)U X =m+1Y =m), il vient
+oo
P(D=1)P(M=m) = P(X=m)P(X=m+1). De plus, comme (D =0) = U (X =m,Y =m), on a encore
m=1
—+oo
P(D =0)= Y P(X=m)?>0. Ainsi, la relation P(D = 0)P(M = m) = P(X = m)? et I'hypothese de
m=1
I’énoncé montrent que Vm € N*| P(X =m) > 0.
+oo +oo
Par conséquent, comme (D = 1) = ( U X=mY=m+ 1)) U ( U X=m+1Y = m)), on a a

m=1 m=1

+oo -
nouveau P(D = 1) =2 >, P(X = m)P(X = m+ 1) > 0. Ainsi, en mixant les deux relations, on a
m=1

PX=m+1) = P(D ZZIPE))(P:(A:Q: m) _ ZE;PEg(:: 10)) P(X = m) et la suite (P(X =m))m>1 est géométrique de
raison q = % > 0 et on sait qu'alors Ym € N*, P(X =m) =q™ ' P(X =1).
Si on avait q > 1, cette suite ne tendrait pas vers 0 ce qui est absurde car la série Y P(X = m) converge.
m21
Ainsi, q €]0;1[. Posons p =1—q €]0;1][.
+oo
Comme X est & valeurs dans N*, >~ P(X =m) =1 donc P(X =1) x : 1 — 1 donc p=P(X=1)et on
m=1 -
en déduit que Ym € N*, P(X =m) =p(1 —p)™~ ! : X et Y suivent donc la loi géométrique de parametre p.
k
11.81) a. Comme X et Y sont & valeurs dans N, Z(Q2) C N. Pour k € N, (Z = k) = U(X =iY =k-—1)
i=0

(réunion incompatible) donc (Z = k) par réunion d’intersection d’événements. Par conséquent, Z est une
k

variable aléatoire et P(Z =k) = > P(X =1i)P(Y =k — i) car X et Y sont indépendantes. Ainsi, on obtient
i=0

Ko —Ayio—m k—i SR LA 'S W e—(Mu))\_,_u)k
Pz=k =S & Ae i __e Z()lu“ :—k(|

; : par le binome de NEWTON.
i=0 il (k — l)' k! i=0

1
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On en déduit que Z suit la loi de POISSON de parametre A + p.

b. Pour n € N, si (Z = n), comme Y est positive, on a forcément X € [0;n]. Soit i € [0;n], alors
P(X =i,Z =n)
P(z =n)

XetY, PX=1,Y=n—-1) = PX =) P(Y =n—i) =

P(X=i|Zz=n) = .Or(X=1,Z=n) = (X=1,Y = n—i) donc, toujours par indépendance de

—Ayi o= -1
e A % ce qui donne la loi de X sachant (Z =n) :

il (n—1)
ELMQZDZP“:”ZZM:ejwiﬁi;Xe*”da+m“:(w(xljxxi)mfAm“
la loi de X sachant (Z =n) est la loi binomiale B (n, ﬁu)

a. Comme X(Q2) C N par hypothese, P(Q) =1 = :2:) PX=n)= ]_(%/e) donc a = € ; Ly é.
b. Comme nP(X =n) = n(eni:ﬂ) = o(%) par croissances comparées, la série Y nP(X = n) converge
) s Yoo n>o+oo
donc E(X) existe. D’apres le cours, E(X) = > P(X > n). Comme (X > n) = U (X = k) (réunion
+oo +ocn=1 e
incompatible), P(X > n) = g::n P(X=k) = kz::n e% = e% X 1_271/6) = ;—n. Ainsi, E(X) = }::1 ein = l z

11.83) det(A) = X2 — Y2 = (X = Y)(X +Y) et X +Y # 0 car X(Q2) = Y(Q) = N* : A inversible <= X # Y.

“+oo
Or (X =Y) = U (X = n,Y = n) (réunion d’événements incompatibles) done, par c-additivité, on a

n=1

400
PX=Y)= > PX=mnY=mn). Or, X et Y ont été supposées indépendantes ce qui donne la relation
n=1

PX=Y)= Jr}j PX=n)P(Y=n)= 4ijp(] —p)"1q(1 — q)™". Comme 0 < (1 —p)(1 —q) < 1, on peut

calculer avec les séries géométriques : P(X =Y) = P4 = Pq . La probabilité que A
1-(0-p)(0—-q) p+qg—7pq

soit inversible est donc 1 — P(X = Y) = p+4d—2pq

p+q—pq’
11.84) a. On note p €]0;1[ la probabilité d’obtenir Pile pour un tirage donné et on suppose la suite de tirages
mutuellement indépendante. On note, pour n € N* les événements P,, = “on obtient pile au tirage n”.

Pour avoir T > n, il est nécessaire et suffisant de commencer par une série de k Face (avec 0 < k < n, k=0
si cette série est vide), de continuer par des Pile jusqu’au tirage n, le premier tirage aprés n au cours duquel
on obtiendra un Face sera l'entier T (avec T = +o00 si on n’obtient jamais de Face apres le n-iéme tirage ou

si on n’a que des Face depuis le début jusqu’a la nuit des temps). Ainsi, on a
k n

7)n( 7))
=1 i=k+1

(T>n)=kL:JO<<

1

k n
Comme les événements ( ﬂ Pi) N ( m Pi) pour k € [[0;n] sont incompatibles et par indépendance des
i=1 i=k+1
tirages, on en déduit par o-additivité que

(] 7p)n+1 n+1

P(T>n) = ZT:: P((ﬁm) N (ﬁ pi)) = Zi:@ —p)kpnk = —-Pp

(1—p)—p




sip # % avec bien sir P(T>n) = n;fl 1 g P= % Ces formules sont exactes aussi si n = 0.
+oo

b. Notons A = "on tire Pile puis Face au cours de la suite de lancers”. Alors A = (T = 400) = ﬂ (T>mn).
n=1

Comme la suite d’événements ((T > n)) est décroissante pour l'inclusion, le théoreme de continuité

ne N
décroissante permet d’affirmer que P(A) = liT P(T > n) = 0 par croissances comparées. Ainsi, on obtient
n—-+0oo

P(A) =1 — P(A) =1 donc I'événement A est presque sur.
c. Comme T est une variable aléatoire presque sirement a valeurs dans N*, on sait d’apres le cours qu’en

+oo
cas de convergence, E(T) = > P(T > n). Ce réel existe bien encore une fois par croissances comparées :
n=0

+o00 +o0 ! !
e Sip= %7 comme Vx €] — 1;1], Zo(n-f- X" = ( ZOX“> = (] 1X> = (17]77()2 en dérivant une série
n= n=

+oo
entiere dans son intervalle ouvert de convergence, il vient E(T) = > & JTFL] = ! > =4
n=0 2 (] _(]/2))

400 “+ o0
oSipz L EM =12 ((1—p)™ —p™) = L1 5 ((1—p)™ = p") car (1 - p)° —p® =0 donc
2 2-p n=0 2—-p n=0
_ 1 S T W TR
E(T) = i (] =) —p) o — (apres simplification).

1
p(1—»p)
e cette espérance reste invariante si on échange la probabilité de faire Pile ou Face (remplacer p par 1 —p).

e cette espérance est minimale quand p = % car p — p(1 — p) est maximal sur |0; 1] quand p = %

11.85) a. Pour tout i € [[1;n — 1], on pose Y; = |Xi+1 — Xi|. Ainsi,

e Yi() C [0;n — 1] est fini (on verra qu’on a méme égalité).
n

Par conséquent, quelle que soit la valeur de p €]0;1[, on a E(T) = et on constate deux choses :

o (Yi=0)= U (Xi =k, Xi+1 = k) est un éveénement comme réunion des intersections des événements

k=1
(Xi = k) et (Xi11 = k) (puisque X; et X;41 sont des variables aléatoires).
n—j
ePourjel;n—1], (i =j) = U ((Xi =Kk Xiy1 = k+j)U(Xi = k+j,Xiy1 = k)) est un évenement
k=1

encore une fois comme réunion d’intersection d’événements.

Par conséquent, Y; est une variable aléatoire (et ceci pour tout i € [[1;n — 1])).

n—1
De méme, A, () C [0;n — 1] et, pour k € [0;n — 1], (An < k) = ﬂ (Yi < k) car Ay, = 1<M<cw< ](Yi) donc
i=1 SISn=

(An, < k) est un événement comme intersection d’événements. Enfin, pour tout entier k € [0;n — 1], on a
(An =%k) = (An <X\ (An < k—1) (avec (A < —1) = 0 qui est un éveénement) done (A, = k) est un

évenement comme différence de deux évenements. On peut enfin conclure que A, est une variable aléatoire.

n—1
b. Soit un entier k € N, comme A, = 1<M<ax 1(Yi) a nouveau, on a (Ap < k) = ﬂ (Y; < k) donc
<in—
i=1
[n/2]
(A €k) C ﬂ (Y2i—1 < k) (car 2i—1 < n—1<=1i< n/2 < i< |n/2]). Par le lemme des coalitions,
i=1
comme Y2;_1 est fonction de X3;_1 et de X;; et que Xy, - - -, X, sont mutuellement indépendantes, les variables
aléatoires Y1,Y3, -+, Y2 n/2)—1 le sont aussi. Par mutuelle indépendance des événements (Y2i—1 < k) et

o8



[n/2]
croissance de P, on a donc P(A,, <k) < J[ P(Y2i—1 < k). Or (X;,X32) suit la méme loi que (Xzi—1,X21)
1

i=
pour i € [1;|n/2]]] par hypothese, donc P(Y2i_1 < k) = P(\le — X2i-1] € k) = P(JX2 — X1| € k), ce qui
<k) <

1
donne comme attendu I'inégalité P(A (P(]X2 = X1] < k)) Ln/2},
n
c.eSik=0, (X2 —X7| <0)=(Xz=X7) = U (X1 =1,Xz2 = 1), et par incompatibilité de ces évenements
i=1
n
et indépendance de X; et X2 qui suivent la loi uniforme sur [[1;n], on a P(|X; —X3| <0) = Z Ixl=1
Sn noon
n—k n—k

eSik>1, (X2 —X1| <k) = (X2 =X1) (U X4 —],X2—1+k> (U(x1 =j+k,X2:j> et, avec les
=1 j=1

mémes arguments, P(|Xz — X7 < k) =

= (apres calculs).

:i (2k+1)nnf k(k+1)

:\~

Ainsi, pour tout k € [0;n — 1], on a la formule P(|X; —X;| < k) = (2k +1)n ~ ek + ]).
n

d. e On sait que [An] < An < |An]| + 1, donc (A, < An) C (An < [An] + 1) donc, par croissance de
P, P(An < M) < P(An < [Mn] +1) < (P(IX2 = Xq] < [An] + 1))Ln/2J. Or a vu en question c. que

P(IX2 — X1| < [An] +1) = (2k—|—1)nn—k(k_|_1)

avec k = |An| + 1 qui vérifie \n < k < An+ 1. Or

241 < 2An+3 et k(k+1) > An(An+1) de sorte que P(Xz — X1| < [An] +1) < AnE3n —An(n+1)

n
Mais lim (2An + 3)n ;An(}m +1) _ A2 —A) <1 (car (A —1)% > 0). Ainsi, par encadrement, on trouve
n—-4oo n
d’abord lim (P(]X2 —Xq| < [An] + 1))“1/ZJ =0 puis Um P(A, < An) = 0. Par conséquent, comme
n—+oo n—-+oo

P(An >2An) =1— P(A, <An), il vient lim P(A, >2An) =1.

n—+oo

e D’abord, quels que soient a > 0 et « € ]%, 1 [, il existe ng € N tel que Vn > ng, 0 < n—an® < n. Des que

|n — an*|+1) donc,
n/2
)",

n = ngp, comme [n—an®] < n—an® < [n—an®]+1, donc (An < n—an®) C (A

NN

par croissance de P, ona P(Ap, < n—an®) < P(A, < [n— an®]+1) < (P([X2—X1| < [n — an*]+1
Or P(]X2 — X1| < [n — an®] +1) < 1 done P(An <1 — an®) < (P(X2 = X1| < [n— an®| +1)) 27" car

{nJ >0 1. Daprés c., P(|Xo = Xg| < [n—an®] +1) = (2 + )n — k(k+ 1)

5 5 5 avec k = [n — an®] +1 qui
n

vérifien—an® <k <n—an*+1. Or 2k+1 < 2n—2an*+3 et k(k+1) > (n—an®)(n—an®+1) de sorte que
_ ¢4 _ _ x _ x
]P’(|X2—X1|<Ln—an°‘—|—lj+1)<(zn 2an® 4+ 3)n (nz an®)(n —an®* +1)
n
anan“+3)nf(nfano‘)(nfano‘Jr]))) Or
n

. Ainsi, par croissance de

In et exp, on a P(A, < n —an®) < exp ((% - 1) In <(2

(2n—2an*+3)n— (n—an®)(n —an® +1)

2
=1-a*n?* 24T +an®*2 = 1~ n28—a) +0(n2(1]—°‘))'

le +00
_ o4 _ _ o2 _ x 2
Par conséquent, on obtient les équivalents In ((Zn 2an” + 3)n (nz an”)(n — an” + 1)) ~ —ﬁ
n “+oo n

_ o3 _ _ 28 _ 8 2

puis (E—l) In ((Zn Zan?” + 3)n (nz an”)(n — an” & 1)) ~ —& n2x-1 oo, Enfin, on a établi
2 n oo 2 n—+00

par encadrement que lim P(A, <n —an®) =0. Comme avant, lim P(An, >n—an®)=1.

n—+oo n—-+oo

11.86 | a. Une aréte dans ce graphe est caractérisée par les deux sommets qu’elle relie. On a n sommets et il faut en

choisir deux parmi ceux-ci, cela fait exactement M arétes (2 parmin). Sila question est de déterminer
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le nombre d’arétes une fois les choix de liaison effectués, alors ce nombre d’arétes vaut N = >~ T, .
I<x<y<n

b. Sik € [[1;n], on note Ry le nombre de sommets qui sont reliés au sommet k (le degré de ce sommet). Par

n
définition, on a Ry = ) Tik (n — 1 termes dans cette somme). Or les Tx,y sont indépendants et suivent la
i=1
ik
loi de BERNOULLI de parametre p par hypotheése. D’apreés le cours, Ry suit la loi binomiale B(n — 1,p) ce
—1\ . .
qui signifie que Vj € [0;n — 1], PRk =j) = (n . )p)(1 —p)~ 1
)
n

c. Aucune aréte ne part du sommet k si et seulement si Ry = 0. Ainsi, comme Z = > 1 (Ri=0), on déduit
k=1

de la linéarité de I'espérance que E(Z) = Z E(T (R, =0)) = Z PRk =0) =n(1 —p)™ "
d. Méthode 1 : on peut appliquer llnegahte de BIENAYME TCHEBYCHEV a la variable aléatoire Z qui

admet bien un moment d’ordre 2 car elle est bornée. Ainsi, avec ¢ = E(Z) > 0, on obtient la majoration

B(z- E(2)| > E(2)) < gfg; Or (12— E(2)| > E(2) = (2 < 0) U (2 > 2E(2)) = (2 = 0) U(Z > 2E(2))

car Z est une variable aléatoire positive. Ainsi, on a l'inclusion (Z = 0) C (|Z — E(z)| > E(Z)) donc, par

croissance de la probabilité P, P(Z =0) < P(|Z — E(2)| > E(2)) < E(Z))z

Méthode 2 : comme Z(§2) C [[0;n] par construction, V(Z) = E((Z— E(2))?) = Z P(zZ = k)(k— E(2))? par

<
N

et on a l'inégalité voulue.

théoreme de transfert. Tous les termes de cette somme sont positifs, ainsi V( ) est supérieur au premier,

V(z) = P(z =0)(0 — E(2))* = P(2 = 0)E(2)? donc P(Z =0) < ]g((zz))z

e. E(Z)=n(1—p)" " =nexp ((n—l) In <1 —CM)) or, comme lim n(n) _ 0, on a le calcul suivant :
n notoo M

car E(Z) > 0 d’apres c..

m—=1)n (1 - ClnT(ln)) +:00n(1 - %) ( - c@ + O(lnﬂfgf)) = In(n) + o(1) (apres regroupement).

Ainsi, exp ((n— )n (1 - cm)) = e~ctnm+o(l) = pn=ceoll) ~ n=¢ donc E(Z) ~ n'—¢.
n +oo +oo +oo +oo

Ainsi, lim E(Z)=0sic>1, lim E(Z)=+ocosic<let lim E(Z)=1sic=1.

n—+o00 n—+o0 n—+0o0
+oo n
f. Comme Z est & valeurs entieres, E(Z) = > P(Z > k) = Y, P(Z = k). Ainsi, P(Z > 1) < E(Z). Or
k=1 k=1
lim E(Z) =0carc>1et E(Z) o n!=¢donc P(Z > 1) =1— P(Z = 0) tend vers 0, ce qui montre que
o0

n—-+oo

liT P(Z =0) =1sic>1. On n’a presque stirement aucun sommet isolé quand n tend vers +oo si ¢ > 1.
n—+oo

n 2 n
g. V(2) = E(Z?) — E(Z2)? et 2% = ( > H(Rk:0)> = ﬂ(sz:O) +2 > T(ri=0)T(r;=0) ce qui donne
k=1 k=1 1<i<gjsn
2 = E(z)+2 > T (R =0)n(R;=0) d’ou E(Zz) =EZz)+2 > PR;= 0,R; = 0). Il y a une aréte
1<i<j<n 1<i<jgn
possible entre les sommets i et j, et n — 2 autres arétes possibles arrivant en i et n — 2 autres arrivant

)2n73

en j. Par indépendance mutuelle, on a P(Ry = 0,R; =0) = (1 —p . Ainsi, en reportant, on obtient

V(Z)=n(1—p)" T +nn—1)1—-p)2"3 —n?(1 —p)?"~2 donc, en factorisant par rapport aux puissances

de 1 —p, cela donne V(Z) = n(1 —p)" (1 — (1 —p)"2) + n?p(1 — p)2™~3. Comme (1 —p)"~! o~ n-¢
oo

2n-2

. N -3 _ (1 —=p) L n—2c _o\2n-3 . 1-2c

et nl_l)g_loo(] p)=1,(1-p) = - +oon donc n?p(1 —p) ren In(n). De plus,

comme Um (1—(1—-p)"2)=1,onan(1—p)" '(1—(1-p)"2) ~ n'=¢ doutn?p(1—p)?"=3 = o(n'~¢)
n—+o0o +o0 +0o0

ce qui prouve que V(Z) fod n'—¢. Par conséquent, ];,((ZZ))Z fodiey ] — donc nLlToo E( Z)z

=0sic< 1. Dapres
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la question d. et par encadrement, on a donc liT P(z =0) = 0. Il y a presque sirement au moins un
n——+oo

point isolé si ¢ < 1T quand n tend vers +o00 (en fait il y en a beaucoup puisque HT E(Z) = +0).
n—-+oo

11.87] a. Les relations de I’énoncé s’écrivent aussi matriciellement V;, = AUy, en notant *Uy = (uo -+ un),

)
de R, [X] de I'endomorphisme f,, : P+ P(X 4+ 1). Or f, est clairement bijective avec f;! : P +— P(X — 1)

i
W= (vo -+ vn) et Ay = << >) € Mn11(R). Or *A, est la matrice dans la base canonique
0<i,j<n

donc (*An)" T =YHALT) = ((—1)i_j ! )o € Mu11(R). Ainsi, comme U, = A;'V,,, on a la formule
) <hjsn
L n . n
d’inversion de PASCAL, Vn € N, u,, = > (—l)”_k< )Vn—k =(=n"> (—l)k( >vn_k.
k=0 k k=0 k
b. On note S, l'ensemble de toutes les permutations de [1;n]. On sait que card (Sn) = nl. On partitionne

(ou plutét on partage) Sn selon le nombre de points fixes des permutations. Notons donc Sy l'ensemble
n

des permutations de S,, qui ont exactement k points fixes. Alors S, = U Sn,k (réunion disjointe) avec
k=0
San—1= () car si une permutation a au moins n — 1 points fixes, c’est forcément 1’identité donc elle a en fait

n
n points fixes. On a donc card (Sy,) =nl= Y card (Snx).
k=0
Pour dénombrer Sy x, on choisit les k points fixes parmi les éléments de [1;n] ; ensuite on choisit une
permutation des n—k éléments restants sans point fixe, elles sont au nombre de d;, —x par définition (le nombre

de dérangements, c’est le nom des permutations de Sy o, ne dépend que du nombre d’éléments de I’ensemble

n
qu'on “dérange”). On obtient donc card (Snx) = (z) dk. Ainsi, il vient V¥n € Ny nl = > (2) dn_xk.
k=0

. n e n (_])k
D’apres a., V/n € N, dn, = (—=1)™ > (—1) m=X)!=nl> .
K=0 k K=o K
n
c. Pour toute permutation op de Sy, (0 = 0¢) = ﬂ (o(k) = oo(k)) donc, avec la formule des probabilités
k=1
composées, P(o = a¢) = P(c(1) = 00(1)) X P(g(1)=0e(1))(0(2) = 00(2)) x-- - x Py ~(a(n) =o0o(n))
N (e(H=00(D)
ce qui donne, comme une fois k boules sorties de I'urne, la probabilité qu’on tire une boule donnée est 1 o
n—
P(oc=o0p) = Ty 1 x..x1x1=1 Comme card (Sn) = n!, o suit donc la loi uniforme sur Sy,.
n n-—1 21 nl

d. Par construction Mqo(2) C {0,1} donc Mg suit une loi de BERNOULLIL. Par définition, Tq = f(o) on

f: Sy — {0,1} est définie par f(s) = 1 si tous les éléments de Q sont invariants par la permutation s et

f(s) = 0 sinon. Par le théoreme de transfert, E(Tq) = P(1qg =1) = > f(s)P(oc =s). Or, on sait que la
SESH

loi de o est uniforme sur S,,, donc P(g =1) = i‘ > f(s). Or le nombre de permutations laissant tous les
n. SESH

éléments de Q invariants est (n —card (Q))! car les images des éléments de Q sont fixés et on permute comme
_ |
on veut les n — card (Q) autres. Ainsi, g suit la loi de BERNOULLI de parametre pg = wﬂd(Q))'.
n!
. (o . . F .
e. F est une variable aléatoire bornée donc, pour j € [o;n]], ( | | = > Mg étant le nombre de
)/ Qcliim], card(Q)=j
parties a j éléments de ’ensemble des points fixes de o I'est aussi ; elle admet donc une espérance finie. Par

F
linéarité de l'espérance et d’apres d., ]E(()) = > E(Tg). Sij € [0;n], commeil y a (n)
Qc[1in], card(Q)=j )

)
—i F )
parties de [1;n] & j éléments et E(g) =pg = M si card (Q) =j, on a E(()) = (n)(n)) =—.
n! j j n! j!
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n
f. T est bornée par n donc f est polynomiale et Vx € R, f(x) = Z P(F = k)x*. Pourj € [0;n], on dérive j fois

et Vx € R, £0)(x) = ik( K=1) -+ (kmj41) B(F = K)x* done £ (1) = 3= k(k=1) - - - (k—j+1) P(F = k) d'ot

=i k=i
() n _ _ no/k F
f '(1) =3 k(k ]) .'( j+1) P(F=%k) = > () P(F = ]E( >> par la formule de transfert.
): k=j ): k=0 \J j
0 1 B0 gy g 1)
1 j) —1) =
D’apres e i 1 donc fU)(1) = 1. Par TAYLOR, Vx € R, f(x) = Zb (x=1) j;) T
f(k)( 0)
g. Pour k € N fixé, P(F = k) = o toujours d’apres TAYLOR (mais en 0) donc, dés que n > k,
n j—k n—k (_])i n N (X_]))_k n (X_])] k
P(F = k )_LZ( 1) lZ 1) car 10 () = 3 ! : =3 . Ainsi,
k5 (- K)! k! il = G —K)! j! i (G—x)!
-1 71
kET@o P(F=%) = ek' , ce qui est cohérent car kzo = 1.
n—1
11.88) a. Par construction, T(2) = NU {400} et, por n € N, (T = n) = ( m Xk = 1)) N(Xn =0)
k=0
est un évenement car les X; sont des variables aléatoires. Ainsi, T est une variable aléatoire car, de plus
+oo n-1
(T =4o00) = ﬂ (Xx = 1). Par indépendance des Xi, on a P(T =n) = ( 11 l) x 1= %ﬂ De méme,
i 2) 272
n
comme (T >n) ka—1 ona}P’(T>n):2n1ﬁpourn€ N.
= N
b. Comme (T = +00) = ﬂ (T>n) et que la suite ((T> n))nEN est une suite décroissante d’événements,
n=0

par continuité décroissante, on a P(T = +o0) = 11111 P(T>n) = 0 d’apres a.. Plus simplement pour tout
n——+00

entier n € N, on peut dire que (T = +00) C (T>n) donc 0 < P(T = +00) < P(T>n) = donc, par

Zn-H
+oo
Ua=n
n=0
I 1 T
1—(

(réunion incompatible) donc, par o-additivité, P(T < +o0) = Z P(T=n)= 20 ST = 5 X — _

passage & la limite, on en déduit que P(T = +00) = 0. On pouvait aussi écrire (T < 400)

1

donc on retrouve & nouveau P(T = 4o00) =1— P(T< +00) = l —-1=0.

c. On sait d’apres le cours que T admet une espérance finie si et seulement si la série > P(T > n)
n=>0

converge, ce qui est le cas car c’est une série géométrique de raison % < 1, et qu'on a alors la relation

400 +oo 1 n+1 1 1
ET) = > P(T>n)= > (E) = E . 7( 7 = 1. De méme, T admet une variance finie si et
n=0 n=0

seulement si T admet un moment d’ordre 2, ce qui équivaut par la formule de transfert a la convergence de la

2
série > n?P(T =n). Or 21} T =0 (iz) par croissances comparées donc T admet une variance finie. On
oo \n
n=0

sait qu'alors V(T) = E(T?)—E(T)? = E(T(T—1))+E(T)—E(T)? = E(T(T—1)) car E(T) = 1. Par le théoréme
de transfert, E(T(T —1)) = +Zoon(n— HP(T=n)= %n(n— 1)(1)“*1_ Or W €] — 111, 1 lx _ Jioxn

n=0 n=2 2
2 ©w
qu’on dérive deux fois (sur Uintervalle ouvert de convergence) pour avoir (= = Y nn—1)x""2et
- X n=2
23 e . 1 2(1/2)°
enfin —%—— = nn—1)x . En prenant x = -, E(T(T—-1)) = ——+~~*— =2 donc V(T) =
(] —X)3 nZ:IZ ( ) p 2; ( ( )) (] _ (]/2))3 ( )
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Beaucoup plus simplement, Yn > 1, P(T+1=n)=P(T=n—-1) = € 1«1 done T+ 1 suit la loi

211 = 211.—1 2
_ _1-0/2) _
=2et V(T+1) = - 2

géométrique de parametre % Ainsi, d’apres le cours, E(T+1) = ﬁ
Comme E(T+1)=E(T)+1et V(T+1)= V(T), on retrouve E(T) =1 et V(T) = 2.
d. Par définition de T,

e (T"=1)=(Xo =1,X7 = 1) done, par indépendance de Xo et X7, P(T' =1) = All

o (T"=2)=(Xo =0,X; =1,X; =1). Par indépendance mutuelle de Xo, X7, X2, on a P(T' =2) = %
e De méme, (T =3) = (X3 =0,X; =1,X3 = 1) (peu importe Xo) done, comme avant, P(T" =3) = %
e A nouveau, (MTM=4UXo=1,X1 =1,X2=0,X3=1,X4 =1) = (X2 =0,X3 = 1,X4 = 1) dong, par
incompatibilité de ces deux événements, P(T' =4) 4+ ;—2 = % ce qui donne P(T' =4) = 33’—2

e. Il est clair que si on a T' > n, on a a fortiori T" > n — 2 et on ne peut pas avoir X,_1 = X;, = 1 sinon on

aurait T < n. Ceci se résume en 'inclusion (T" >n) C (T">n—-2)N(Xn-1 =1,X, =1). Or (T >n—2) ne

dépend que des variables Xo, - -+, X2 donc, par le lemme des coalitions, (T" >n—2) et (Xn_1 =1,Xn =1)
!
sont indépendants. Ainsi, P(T'>n) < P(T'>n—2) x P((Xn_1 =1, Xn =1)) = %P’('I'Z—nZ)
—+ o0
f. Comme avant, la suite ((T' > n))n>0 est décroissante et on a (T = +o00) = m (T" > n) donc, par
n=0
continuité décroissante, P(T' = +00) = lim P(T' =n). Comme la suite (P(T" > n)) est décroissante et
n—+oo n=0
. ) N s , 3P(T >n —2)
positive done converge vers un réel ¢ > 0, en passant & la limite dans inégalité P(T > n) < — Y
il vient ¢ < % ce qui impose ¢ = 0. Ainsi P(T' = +00) = 0 et, comme attendu, T’ est presque stirement finie.

g. Siona T =n pourn > 2, on ne peut pas commencer par Xo = X7 = 1 sinon c¢a donnerait T" = 1. Ainsi, on
peut écrire (T" =n) = (T' = n,Xp = 0)U(T' =n,Xp = 1,X; = 0) (réunion de deux événements incompatibles)
donc P(T" =n) = P(T" = n,Xp = 0) + P(T" = n,Xo = 1,X; = 0). Par les probabilités conditionnelles,
P(T" =n) = P(Xo = 0) X Pxo=0)(T" =n) + P(Xo = 1,X7 = 0) X Pix,=1,x,=0)(T" = n). Si Xo =0, c’est
comme si on repartait au point de départ apres un tirage donc P(x,—oy(T" =n) = P(T' = n—1). De méme, si
Xo = 1et X7 = 0, on repart au point de départ apres deux étapes donc Px,—1,x,=0)(T' =n) = P(T' =n-2).
On a donc bien P(T' =n) = %]P’(T’ =n—1)+ %]P’(T’ =n-—2).

Pour étre totalement “rigoureux”, mais la méthode précédente suffit largement a l'oral, on peut écrire

n—1
Pégalité (T = n,Xo = 0) = (Xo = 0) N ( ﬂ Xy = Xkt = 1)) N (Xn = Xn—1 = 1) donc, par le lemme
k=2
n—1
des coalitions, P(T" = n,Xo = 0) = P(Xo = 0) X IP’(( ﬂ Xy = Xkt = 1)) N (Xn = Xn_1 = 1)) Mais
k=2
n—1 n—2
]P’(( M X = Xi :1)) A (Xn = Xn_g = 1)) - IE”(( M B = Xio1 = 1)) A (Xnot = Xn_2 = 1))
k=2 k=1
car la famille de variables aléatoires (Xi,---,X;) suit la méme loi que (Xp,---,Xn—1). Et comme on a
n—-2
(T"=mn-1) = ( m Xy = Xy1 = 1)) N (Xn—1 = Xpn—2 = 1) par définition de T’, on en déduit que
k=1
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P(T"=n,Xpo =0) = P(Xo = 0)P(T" =n—1) = -P(T" = n —1). De la méme maniére, on montre que

N =

P(T' =n,Xo =1,X1 =0) = P(Xo = 1) P(X1 = 0) P(T' =n —2).

De nouveau, on retrouve la relation P(T' =n) = %P(T’ =n-—-1)+ JIP(T/ =n-2).

n
h. Comme P(T'>0)=1et P(T'>1) = 5’1 d’apres d., par récurrence avec e., Yn € N, P(T' > 2n) < (%)

n+1
et P(T" >2n+4+1) < (%) . Ainsi, la série > P(T’ > n) converge (comme une série géométrique car

n=>0
n/2
P(T' > n) = O((%) ), ce qui assure l’existence d’une espérance finie pour T’ (& valeurs dans N). Et
oo
+oo +oo 1 1
ET)= > nP(T=n)=PT =1)+ > n(i PM=n-1)+ ZP(TI =n-— 2)) d’aprés g.. Comme les
n=1 n=2

+oo too

deux séries convergent, E(T') = P(T' =1) —&-% Sm=1+1)PT =n-1) —l—% > (n=242)P(T = n—Z))
n=2 n=2

ce qui devient, apres séparation des séries convergentes et ré-indexation et comme T'(Q2) C N*U {+oo} donc

+o0
> P(T =n)=1dapres £, ET) =1 4+ gy + 1 4 Tgery + 1.
n=1 4 2 2 4 2

“+ o0

On pouvait écrire E(T') = P(T' = 1)+ 3. n(% P(T+1=n)+1P(T+2= n)) — 1y
n=2

avec le méme résultat. On trouve finalement la valeur E(T') =5 (6 tirages).

+oo
11.89) a. Comme Q = N*, les conditions imposées a A € R sont ¥n > 1, P({n}) € [0;1] et >  P({n})=1. On
n=1

+oo
doit donc prendre A > 0 et A vérifiant la relation >, An~% = Al(s) = 1 (la série de RIEMANN converge car
n=1

justement s > 1). La seule valeur A telle que la famille (An"%) définit une loi de probabilité sur N* avec

ne N*

‘

Vn>1, P({n}) =An"* est donc A =

o(s)
b. Par définition, la variable aléatoire X admet une espérance finie si et seulement si la série > nP(X =n)
n>1
—s
converge. Or nP(X =n) =nt— = % Ainsi, d’apres les résultats sur les séries de RIEMANN, on

os)  ¢(s)n®
sait que X admet une espérance finie si et seulement si s — 1 > 1, c¢’est-a-dire si et seulement si s > 2.

c. Par définition, A, = U {pn} et, par o-additivité, on a donc
neN*

)= 5, Pl = B 05 =5 £ 2 =

Soit p et q deux nombres premiers distincts. I1 est clair qu'un multiple de pq est un multiple a la fois de

p et de q donc Ap,q C Ap N Aq. Réciproquement, soit un entier n a la fois multiple de p et de q. La
décomposition en produit de nombres premiers de n contient donc au moins p' et q', ce qui fait que n est
aussi un multiple de pq et on a établi que A, N Ay C Apq. On aurait pu dire que puisque p et q sont

premiers entre eux, on a (p|n et gjn) <= pq|n) mais ce n’est pas au programme dans notre filiere. Par

double inclusion, Apq = Ap NAg donc P(A, NAg) = P(Apg) = (qu)s = ## = P(A,)P(Aq) donc les

évenements A, et Ag sont indépendants par définition.

Plus généralement, on se donne une famille py,,- -+, pi, une liste de nombres premiers tous différents.
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.
e Un multiple de [] pi, est (par transitivité de la divisibilité) un multiple de chaque p;; pour j € [1;7].
k=1

e Réciproquement, si n est un multiple de tous les pi,, - - -, pi,, alors la décomposition en produit de nombres
T
premiers de n contient au moins p{] X .- -pgr donc n est un multiple de m = [] pi,.. Par double inclusion,
k=T
T
comme ci-dessus, on a Ay, = ﬂ Aj, donc

k=1

=
=

Pam) = BV As) =~ =TT+ = TT Prw).

s
k=1 k=1 Piy k=1

Par définition, les évenements (Ap)pep sont mutuellement indépendants (pour la loi précédente).

—+oo

d. Tout entier n > 2 est le multiple d’au moins un nombre premier donc N*\ {1} = U Ap, ce qui donne,
k=1

—+o0 —+oo
en passant au complémentaire, ﬂ Ap. = {Vk € N*, px /n} = {1}. On peut écrire {1} = ﬂ In avec
k=1 N=1
N
In = ﬂ Ay, et lasuite des (INn)n>1 étant décroissante pour linclusion, on peut conclure avec le théoréme de
k=1
continuité décroissante que P({1}) = ﬁ = Um P(In). Or les (Ap, Jxen- étant indépendants mutuelle-
S — 400
o N N :
ment, les (Ap, )ken- le sont aussi ce qui montre que P(In) = [[ P(Ap,) = [I ( - —S) On a bien, en
k=1 k=1 Px
N 1 o0 1
passant a Uinverse : ((s) = lim [] ———=5 qu’on note ¢(s) = [] (1 - T)
N—+oo 21 1 =Py K=1 Pk
e. On va montrer que la série & termes positifs > 1 diverge. Si s > 1, la fonction t — t]—s est continue
n>1 Pn
. L 1 k+T 44 . e e s
et strictement décroissante sur R* donc, pour k € N*, on a P > fk t—s par comparaison série-intégrale.
. toogr _ [alTs )T 1
On somme pour k € N* (tout converge) et on trouve avec CHASLES ((s) > f1 ol []—L = T
s s —
Alinsi, par encadrement, lim ((s) = +o0.
s—1+

N

Soit A > 0, il existe donc a > 0 tel que Vs €]15 140, A+1 < ¢(s). Or (1) = tlim ] — 1 daprés

—toopn—1 1 —py

N
la question d., donc il existe un rang No € N* tel que YN > Ng, ¢(14+a) —1 < [] ]%]_“(g o1+ «)).
n=1 —Pn
N . N . N 1 N :
Par conséquent, YN > No, [[ ————F5>A. Or [[ —— > [[ ————Fx donc [[ —— > A
n=1 1 — Pn n=1 1 — Pn n=1 1 — Pn n=1 1 — Pn
0o = 1
Ceci montre que lim ——— = 400 ce qui s’énonce aussi  lim > In (l — —) = —00 en passant
N—+oo o1 1 —py N—+o00 121 Pn
au logarithme. Ainsi, la série > In (1 — i) diverge. Or, comme il existe une infinité de nombres premiers,
n>1 Pn

Um pn = 400 donc In <1 - L) ~ -1 <odoula divergence de €.
n—+400 Pn/ +©  Pn n>1Pn

E(X)

11.90 a. Soit X une variable aléatoire réelle positive admet une espérance finie et ¢ > 0, alors P(X > ¢) <
€
En effet, on dispose de I'inégalité X > el (x>¢) puisque si X(w) > ¢, elle se résume a X(w) > ¢ x 1 = ¢ et,
si X(w) < ¢, elle revient & X(w) > & x 0 = 0 qui est vrai car X est positive. Par croissance et linéarité de

I'espérance, on a E(X) > ¢ E(T(x>¢)) = eP(X > ¢) et on divise par ¢ > 0 pour avoir I'inégalité de MARKOV.
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b. D’apres Iénoncé, S, () = [[0;n] donc S, — I est une variable aléatoire bornée mais pas toujours

positive. Par contre (‘Sn - n‘ > e) = (Sn - e) U (Sn - < —e) = (Sn - 5) U (S’n - e)
2 2 2 2 2
n
en notant S, = > (1 — Xi). En notant Y = 1 — Xy, la famille (Yq,--+,Yy) est une famille de variables
k=1
aléatoires mutuellement indépendantes suivant la loi de BERNOULLI de parametre 15 donc S/, — % suit la

méme loi que S,, — &. Par conséquent, comme les évenements (Sn - % > a) et (STL - < —s) sont

2

incompatibles, on a ]P’(’Sn — %‘ > e) = ZIP’(Sn — % > s). Comme $,, est bornée, elle admet un moment

n

d’ordre 2 donc, puisque E(S,) = Y. E(Xk) = % et d’aprés 'inégalité de BIENAYME-TCHEBYCHEV, on a
k=1

n V(Sn) . n o R
P(|Sn — 5 > ¢) < —5 mais V(Sn) = > V(Xy) par indépendance deux & deux des X1,---, Xy, donc
£ k=1
V(Sn) = % et, comme (‘Sn - % > e) C (’Sn - %‘ > e) et par croissance de P, on a donc la majoration
P(‘Sn— %‘ >e) < Ly donc P(Sn - > ) < .

a. Comme p # 0 et p # 1, on en déduit que Y, (2) = {0,1}. Par indépendance de Xy, et Xn41, il vient
P(Yp =1) = P(Xp = Xny1 =1) = P(Xn = 1)P(Xpny1 = 1) = p%. Ainsi Y,, suit la loi de BERNOULLI B(p?).
D’apres le cours, E(Y,) =p?, V(Yy) = p?(1 —p?).

b. ¢ Sii=j,Y; =Y; donc Cov(Yy,Yj) = V(Y;) = p2(1 —p?) > 0. Y; et Y; ne sont pas indépendantes.

e Sij=1i+1,Y;iYj; = Xi_1XZXit1 = Xi—1XiXit1 et Cov(Yy, ;) = E(Xi—1XiXit1) — E(Vi) E(Y;) = p> —p* > 0
par indépendance de X;_1, X; et Xij;1. Ainsi, Y; et Yj ne sont pas non plus indépendantes.

e sij > i+1, alors Y; dépend de X;_1 et X; alors que Y; dépend de Xj_7 et Xj, ainsi, Y; et Y;j sont indépendantes
par le lemme des coalitions. Ainsi, Cov(Y;,Y;) = 0.

c. Comme S;, est bornée, elle admet un moment d’ordre 2, donc une variance, et on a d’apres l'inégalité de
BIENAYME-TCHEBYCHEV, pour ¢ > 0, P(|S, — E(Sn)| > ¢) < %

d. On traite trois cas selon le couple (n,m) :

e Sin=m, comme Y,Y, = Y2 =Yy, on en déduit que E(Y,,Yrn) = E(Y;,) = p2.
e Sin—m| =1, E(YpnYy,) = p> d’aprés la question b..
e Si |n — m| > 2, par indépendance de Yy, et Yin, E(YnYm) = E(Yn)E(Ym) = p*.

Les Y, ne sont pas indépendants donc les hypotheses de la loi faible des grands nombres ne sont pas respectées.

35 B(n) = "2

Par linéarité de 'espérance, comme Vk € [1;n], E(Yx) = p?, on a E(S ) P2
n

n—1

1
n
n
Comme Yy, et Yy, sont indépendantes deés que [n —m| > 2, on a V(S,) = Z ( k) +2 > Cov(Yi, Yit1)

i=1

d’apres le cours. Sii€ [1;n— 1], Cov(Yi,Yig1) = E(YiYig1) — E(Yy) (Y1+1) —p* =p3(1 —p) donc

V(Sn) = np?(1—p?)+2(n—1)p*(1 —p). Comme p*>(1—p) >0, V(Sn) < Cn avecC:p (1—p?)+2p*°(1—p)
_ _ _ _ 1 — Sn C1

done C = p2(1 — p)[1 +p +2p] = [p(1 p)}(]+3p)p<4x4xlf1etV(n) ZV( Wefcl

D’apres l'inégalité de TCHEBYCHEV, on a la majoration Ve > 0, IP’(‘S—“ — pz‘ > a) < % < Lz Or
n
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im Lz = 0 donc, par encadrement, Ve > 0, Um P(’S—“
n—+oo

—‘pz‘ > e) = 0 donc la suite (Yn)n>1 satisfait
n—+oo ne n

les hypotheses de la loi faible des grands nombres méme si elle n’en vérifie pas les hypotheses.

11.92] a. Le nombre de victoires V de Pierre parmi les 2n premiéres parties suit (les parties sont indépendantes

I

n
Bien siir, il ne peut pas y avoir d’égalité du nombre de victoires apres un nombre impair de parties.

b. Soit x # 0, si up = azpx?™, alors 0 <t _Antl x? = 2(2n + 1)p(l —p)x? qui
o <2n>p (1-p) n

2
mutuellement) une loi binomiale B(2n,p). Ainsi azn = P(V=n) = ( n) pt(1—p)?h T = (
n

n

é, alors { < 1 donc > uy converge
4p(1 —p) n>0
——1 s x| > ——1 __ onat>1et, par D’ALEMBERT, > un diverge
4p(1—p) 4p(1—p) n>0
donc Ry < 1 Par conséquent, le rayon de convergence de Y. aznx?™ vaut Rg SR E—
4p(1—p) "0 4p(1—p)
Il vaut donc Rq = +o00 si p =0 ou p = 1 qui sont des cas inintéressants ot 'un ou l'autre des deux joueurs

tend vers € = 4p(1—p)x?. Par la régle deD’ ALEMBERT, si |x| <

ce qui prouve que Ry >

gagne presque stirement toutes les parties.

c. Sip# %, on a4p(1 —p) =1— (1 —2p)? <1 (parabole atteignant son maximum en %) donc Rq > 1 et

A(1) est bien défini car 1 €]Rq; Rq[ (intervalle ouvert de convergence).

- . 1 (2n)! VAm(2n)2™h eZn 1
Réciproquement, si p = =, alors = ~ X —— X ~ avec la formule
prod L 2n 2°"(n!)? +oo e’ 2°" 7 (2™ +oo y/mn v
de STIRLING donc Y azn diverge d’aprés RIEMANN et A(1) n’est pas défini.

n=0
En conclusion : A(1) existe si et seulement si p # %

(=D"(n)!
’ \/1 +y nZO 4" )2

d. On sait que Yy €] — 1;1] T
+oo |
4npn(1 _p)n( ])nXZn — Z (211)~ n(] _p)nXZn — A(X) +1. On en

y™. Pour x €] — Rq;Rq[, y = —4p(1 —p)x? €] — 1;1],

1 _ = (=)@
\/1 —4p(1 —p)x? o W o (n)? P
déduit bien que Vx €] — Rq;Ra], A(x) = S E—T
V1 —4pax?
e. Pour n > 1, posons les événements B,, = “il y a égalité pour la premiere fois apres n parties” tel que

bon = P(Ban) et Ay, = “il y a égalité aprés n parties” tel que azn = P(A2n). On pose ap = by = 0.
Pour n > 1, §’il y a égalité du nombre de parties gagnées apres 2n parties, alors il y a eu égalité pour

la premiere fois du nombre de parties gagnées au bout de 2k parties avec k € [[1;n]. Ceci nous donne la
n

partition suivante : Az, = U (A2n N Bak). Comme ces événements sont incompatibles, on en déduit que
k=1

n n

axn = P(Azn) = > P(A2nNB2k) = >, Pg,, (Azn)P(Baxk). Clairement, pour tout entier k € [[1;n — 1], on
k=1 k=1

a Pp,, (A2n) = azm—x) (si on a égalité apres 2k parties, avoir égalité apres 2n parties revient a avoir égalité

sur une période de 2(n —k) parties - elles sont indépendantes mutuellement). Par contre, comme By, C Azn,
n—1 n

ona Pg,, (Az2n) = 1. Ainsi agn =bon + > bakaz(n—k) = ban + > bakaz(m-k) caron a posé ap = by = 0.
k=1 k=0
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Sous réserve de convergence, c’est-a-dire si |x| < R oit R = Min(Rq, Rp) (avec des notations évidentes), on a

par produit de CAUCHY de séries absolument convergentes :

A(x)B(x) = (+ZOO a2nx2“) (gbanzn) = &O:o (k:O bZkaz(n,k))xzn) = A(x) — B(x).

n=0 n=0

Comme By, C Agn, on a0 < bay < azn done Ry < Rp. On a done Vx €] — Rq;Rq[, B(x) = AT d’apres

1
-1

V1 —4dpgx?
la relation de la question b.. Ainsi: Vx €] — Rq;Rq[, B(x) = ]]a—qx =1— /1 —4pgx2.
V1 —4pagx?

400 _1\yn—1 |
f. Or, Wy e]—1;1, Vi+y=1+ > (17" (Cn)! y™. Pour x €] — Rg;Ra[, y = —4p(1 —p)x? €] — 1;1]

At (DA (2n—1)

% (=)™ (2n)! S n)!
donc B(x) = —::1 %4*&“(1 — ) (=)™ = :2::1 %p“(] —p)™x?™. On peut

m\p(1—p)"
n 2n —1

Mais cette expression de b, nous permet de trouver Ry. En effet, pour x # 0, en posant v, = bynx?™, on a
2(n+1
( ( ))anr](] 7p)n+1(2n7 ])
Vn+41 2

identifier car les rayons sont strictement positifs et Vn > 1, by, = ( (inutile ici).

0< =T +21n X~ = 2(2n+—11)p(] —p)x? qui tend aussi vers { = 4p(1—p)x2.
vn ()= pren ) "

Comme & la question c., on a R, = Rgq = N P #£ l, 1 €] — Ryp; Rp[ donc B(1) existe. Sip = l,

Vap(1 —p) 2 2

(2n)! n n 1 . .
by =———— 1— ~ ———— avec STIRLING & nouveau donc B(1) existe pour tout p € [0;1].
Notons I’éveénement ] = “ne jamais obtenir égalité du nombre de parties gagnées par Pierre et Marie”. Alors
— +oo g

on a clairement ] = U B2n (réunion d’événements deux & deux incompatibles) donc P(J) = > P(Bzn) (ce

n=1 n=1

qui prouve que B(1) existe dans tous les cas comme on 1’a vérifié ci-dessus).

— 400
Ainsi, par o-additivité : n = P(J) =1~ P(J) =1~ > ban = 1 —B(1). Or, en posant fy : x = bapx?™,
n=1
on a |[fn|]e,j0;1] = b2n et D ban converge, ainsi par convergence normale de ) fn sur [0;1] et continuité
n=0 n=0

de toutes les f;,, on a B continue sur [0;1] (ce qui était évident si R, > 1 mais pas clair si p = %) Ainsi

n=1-B(1)=1- lim B(x) =+/1—4p(1 —p).

x—1-
a. Bien sur, les variables aléatoires X; et X, ne sont pas indépendantes.
En effet, (X7 =n,X2 =n) =0 donc P(X7 =n,Xz =n) = 0 alors que P(X; =n) = p" (par indépendance
des personnes appelées) et P(X; =n) = P(X; =0,X2 =n) = P(Xa =n|X; =0)P(X; =0) =p™(1—p)™ #£0.
Par conséquent, P(X; =n, Xz =n) # P(X; =n)P(Xz =n).
b. X; suit naturellement la loi binomiale B(n,p) par indépendance des réponses des n personnes. La famille
((X1 =1j))ogjgn constitue un systeme complet d’évenements donc P(X; = k) = i P(X; =j, X2 = k) pour
tout pour k € [0;n]. Or P(X3 =j,X2 = k) =0sin—j < k et, comme la l]o;ode Xz sachant (X7 = j)
est la loi binomiale B(n —j,p) sin —j > k, on a P(Xa = k|X; =j) = (n;j)pkﬂ —p)" 7K. Ainsi,
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P(X; = k) = TEI: (n N ])pkU —p)nE <?)pj (1-p)"7 = <Tk1) (1—p)p" ?Z_I: (n J_ k) (1=p)) 75
done Bixz = 1) = (7)o =p) (0 =920 = (1) (0 =900 =9+ X2~ B0 -9
Y; est le premier succes dans une répétition infinie de variables aléatoires suivant une loi de BERNOULLI
de parametre p donc, d’apres le cours, Y; suit la loi géométrique de parameétre p pour tout i € [[1;n] donc
Ym>1, P(Yi=m)=p(1—p)™ "

c. Par construction, pour k > 3, on a Xy (2) = [0;n] et, sij € [0;n], pour que I'on ait Xy = j, il est nécessaire
et suffisant qu’exactement j clients vérifient Y; = k (eus au téléphone exactement lors de 'appel k) et n —j
clients vérifient Y; # k (pas eus lors de appel k). Ainsi, (Xx =j) = U (ﬂ(Yi =k)N (](Y;L # k))

coshind, el il

Cette réunion est disjointe, comporte (n) termes de probabilités égales car les (Yi)1<n sont mutuellement
indépendants et suivent la méme loi. Or P(Y; = k) = p(1 —p)*~! car Y; suit la loi géométrique de parametre
p et donc P(Y; # k) = 1—p(1 —p)*~'. Par conséquent, P(Xy =j) = (T;) (pO—p)* Y (a—p—p)<hHn
donc Xy suit la loi binomiale B(n,p(1 — p)*~"). Plus simplement, on aurait pu écrire que Xy = Z (v, =x)

i=1
et les variables aléatoires (1l (y,—x))1<i<n suivent la loi de BERNOULLI de parametre p(1 —p)*~" d’aprés la

question b. puisque Y; suit la loi géométrique de parametre p. D’apres le cours, la somme Xy de ces n
variables aléatoires mutuellement indépendantes suivant la loi B(p(1 —p)*~') suit la loi B(n,p(1 —p)*~).
d. Par définition, pour k € N*, on a S (2) = [[0;n] et, sij € [[0;n], pour que l'on ait Sy = j, il est nécessaire
et suffisant qu’exactement j clients vérifient Y; < k (eus au téléphone avant ’appel k) et n —j clients vérifient
Y; > k (pas eus lors des k premiers appels). Ainsi, (Sx = j) = U (ﬂ(Yi < k)N ﬂ(Yi > k))
el el igl
car =)

n
Cette réunion est disjointe, comporte () termes de probabilités égales car les (Yi)1<n sont mutuellement
)

indépendants et suivent la méme loi. Or P(Y; > k) = (1—p)* car Y; suit la loi gébométrique de parametre p et

n . .
done P(Y; <k) =1—P(Y; > k) = 1—(1—p)¥. Par conséquent, P(Sy =j) = (_)(1 —(1=p)*) (1 —p)k=)
)
n
donc Sy suit la loi binomiale B(n,1— (1 —p)¥). Plus simplement, on aurait pu écrire que Sk = Y Ty, <k)
i=1
et les variables aléatoires (T (v,<k))1<i<n suivent la loi de BERNOULLI de parametre 1 — (1 — p)* d’apres
la question b. puisque Y; suit la loi géométrique de parametre p. D’apres le cours, la somme Sy de ces n
variables aléatoires mutuellement indépendantes suivant la loi B(1 — (1 —p)*) suit la loi B(n, 1 — (1 —p)*).

e. Par définition de la variable aléatoire N, on a N = Max(Yy,---,Yy) de sorte que, pour k € N*, on a

= ﬂ k) done, par indépendance mutuelle entre les personnes appelées, on parvient & la relation

P(N <k) = H P(Yi <k)=(1—(1—p)*)™. Comme, pour k € N*, ona (N<k)=N=k)UN<k—1)
i=1

(incompatibles), on a P(N = k) = ( <K -PNKk-1)=1-(1-p) )" =1 =1 —p)hHm
On aurait aussi pu écrire que (N = (Sx = n) avec directement P(N = k) = (1 — (1 — p)*)™ avec la
question d. ou que (N =k) = (Sx =n) \ (Sk—1 =n) (le premier instant ol on a contacté les n personnes)

avec (Sx—1 =n) C (Sx =n) donc P(N =n) = P(Sx =n) — P(Sk—1 =n) avec la méme conclusion.
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On sait que N admet une espérance finie si et seulement > P(N > k) converge. Or, avec ce qui précede,

k>0
il vient P(N > k) =1 - P(N < k) =1—(1—-0=p)9)" =1—exp(nln(l — (1 — p)¥)) et, comme
In(1—(1-p)k) = —(1T=p)*+0o((1—p)¥) et que e* ?1 +u+o(u), en composant les développements limités
d’ordre 1, on a P(N > k) = n(] —p)*+o((1 =p)k) ~ n(1 —p)k = o(iz) donc la série > P(N > k)
+oo +oo k k>0
+oo

converge. Ainsi, N admet une espérance finie et E(N) = >° P(N > k). Or, par le binome de NEWTON,

0
P(N>K) =1—(1—(1—p)<)n i(-]) < )((1 )Y = 3 (1) (?)(1 —p)¥ et toutes les séries

j=1
géométriques > (1 —p)¥ convergent pour j > 1 car [(1 —p)’| < 1. Ainsi, par somme d’un nombre fini de
k>0

séries convergentes, on a E(N) = 3° ((-1)1‘+1 C‘) 0 _p)ki) S (_WH(J)

=1 k=0 =1 1—(0-p)

11.94] Si n =1, la seule permutation de [[1;1] = {1} est 'identité donc F; =1 et E(F1) =1, V(F1) = 0.

Sin > 2, soit k € [[1;n], on définit '’événement Ay = “k est fixe” et on pose Xy = M, de sorte que X =1
n

si k est fixe et Xx = 0 s’il ne lest pas. Par définition, on a F, = > Xy donc, par linéarité de I’espérance, on
k=1

n n
a E(F,) = E E(Xx) = Z P(Ax). Parmi les n! permutations de [1;n], il y a en a (n — 1)! qui laisse fixe
Pélément k (il faut permuter les n — 1 autres éléments), ainsi, comme on prend les permutations selon la loi
—1)!
uniforme, on a P(Ay) = M =1 Alors, E(Fh) =1.
n! n

n
Comme V(Fn) = E(F3) — E(Fn)?, on calcule F2 = S X2 + > XiXj; = Z Xk +2 > XiXj car
k=1

1<1#]<n 1<i<i<n
17)
—2)!
X§ =Xi. Or,sii#j, XiX; = Ma, WA, = Ta,na, donc E(XiXj) = P(A;NAj) = (n—21_ ! comme
i A iNA; n! nn—1)
avant. 11y a @ couples (i,j) € [1;n] tels que i < j, d’out E(Fﬁ) =nx %—1—2 X Tl(nz_ 1) X T'L(n]— 3 =2

et V(F,) =2 -1 = 1. En ce qui concerne 'espérance et la variance, c’est comme si F,, suivait la loi de
Po1ssoN de parametre A =1 car E(F,) = V(F,) =1.

En notant d,; le nombre de dérangements de S, c’est-a-dire les permutations sans aucun point fixe, alors

( ) X dn—k
P(F, =k) = kil car il faut d’abord choisir les k points fixes parmi les n entiers de [[1;n] et ensuite
n!

“déranger” les n — k autres entiers pour ne pas faire évoluer le nombre de points fixes. On se rappelle que

=nl! Z (G0 ) donc d, ~ nl Ainsi, pour k fixé, dés que n > k, on a P(F, = k) = 1 Tl (e qui
+oo e ek! k!

prouve que la suite de variables aléatoires (Fn)n>1 converge en loi vers une variable aléatoire suivant la loi

de POISSON de parametre 1 comme attendu.

11.95] a. Soit un entier n € N* par définition d’une probabilité conditionnelle, on a déja w,, € [0;1]. Si on
PX=n,X>n—-1)
P(X>n-—1)
X=nX>n—-1=X=mn). Or X>n—-1)=(X=mn)U (X >n) et ces deux évenements sont

avait un, = =1, on aurait PX =n, X>n—-1)=PX>n—-1) = P(X =n) car
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incompatibles donc P(X >n —1) = P(X =n) + P(X > n) et on aurait donc P(X > n) = 0 contrairement &
Ihypothese de ’énoncé. On a montré par 'absurde que u,, # 1 et on a bien u, € [0;1].

De plus, comme (X > n—1) = (X > 1)N(X > 2)N---N(X > n—1), d’apres la formule des probabilités composées
k—1 n—1 N

et car ﬂ(X>i):(X>kf1)pourk€[[Z;n M,ona PX>n—-1)=P(X>1) [[ P(X>kX>k—1). A
i=1 k=2

nouveau, pour k € [l;n—1],ona (X >k—1) = (X=k)U(X>k) donc P(X >k—1) = P(X=%)+ P(X > k)

ce qui, en divisant par P(X > k — 1), devient 1 = P(X = kX > k—=1) + P(X > k|X > k — 1) puis

P(X > k[X >k —1) =1 — ug. Ainsi, comme IP(X>1):IP’(X>1|X>O)—I—LL1 car (X > 0) = Q sachant

que X est a valeurs dans N*, on a bien P(X >n —1) = H (1 —uy).
k=1

-1
b. D’apres la question a., In(P(X >n —1)) = nz In(1 — ux). Or la suite d’éveénements ((X > n — 1))1121
- k=1
est décroissante et ﬂ (X >n—1) =0 car X est a valeurs dans N* donc, par continuité décroissante, on a
lim P(X > nfl)n: 1]P’((Z)) =0dou lim In(P(X>n—1)) = —oo ce qui justifie avec la relation précédente
n—+o00 n—-+oo
que la série > In(1 —uy,) diverge car la suite de ses sommes partielles tend vers —oo. Traitons deux cas :
ne N*

o si (un)n>1 ne tend pas vers 0, alors Y uy diverge grossierement.
n>l

o si (un)n>1 tend vers 0, alors In(1 — uy) U < 0 et, par comparaison, Yy, un diverge.
n->l

Dans les deux cas, on a la méme conclusion, Y u, diverge.
n>1

c. On admet qu'une telle variable aléatoire Y & valeurs dans N* existe si on arrive a trouver une suite

—+oo
(pn)nen- telle que Vn € N*, p,, € [0;1] et > pn =1 et qu’on impose Vn € N*, P(Y =n) = py,.
n=1
n—1 n
Posons, pour tout entier n € N* py = J] (1 —vx) — H (1T —vk) =vn H (1 —vy) (car Y joue ici le role
k=1 =1 =1
du X de la question a. ol on avait P(X = n) = IP’(X >n—1)— P(X > n)). Par hypothese, on a bien

pn € [0;1][. De plus, p1 = vi, p2 = v2(1 —v1) donc p1 +p2 = vi +v2 —viva =1 — (1 —v1)(1 —v2), ce
n n

qui nous fait conjecturer que Y px =1 — [ (1 —vk). Cette relation est vérifiée si n = 1. Supposons-la
k=1 k=1

n
vraie pour un entier n € N*| alors pn+1 = vny1 [[ (1 — vk) done, par hypothese de récurrence, il vient
k=1
n

n+1 n+1
Z Pk = Pn+1 + E Pk = Vn+1 H (T—=vi)+1—=JI (0 =vk) =1—= T (1 —vk). Par principe de récurrence,
k=1 k=1

n n n
vn € N¥, Z pk=1—J] (1=vk). Orin ( 1@ ka)) = > In(1—vg) < Z k par I'inégalité classique
k=1 k=1 k=1 k=1

3

n
In(1+x) < x pour x > —1. Comme Y vy diverge, par encadrement, lim In ( 10 - vk)) = —oo donc
n>1 n—+oo k=1

lim H (1 —vx)=0etonadonc lim E Pk = Z pn = 1 comme attendu.

n—+400 1 n—+00 1 7 n=1

11 existe donc une variable aléatoire Y & valeurs dans N* telle que Vn € N*, P(Y =n) = py,.
+oo

Pour n € N* P(Y>nf1)*§o *Ifn_1 771—1 - _1) = — A
. = Pk = Spe=[[(0—=v)>0car (Y>n—1)= | | (Y =k) (réunion
k=n k=1 k=1 K

incompatible) et Vk € [[1;n—1]), vk < 1 par hypothese. Enfin, avec ce qui précede, on obtient bien la relation
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P(Y=n]Y >n—1) = PY=nY>n-—1)

=vpcar (Y=n,Y>n—1)=(Y=n).

P(Y>n—1)
a. D’apres ’énoncé et par indépendance mutuelle des n = 5 tirages puisque les tirages se font avec remise,
comme la probabilité de tirer une boule blanche est de p = Zzﬂ = %, la variable aléatoire X suit la loi
binomiale B(n,p) = B(S, %) D’apres le cours, E(X) =np=1et V(X) =np(1 —p) = %

b. Le nombre de boules noires tirées vaut X' = 5—X et, d’apres I'énoncé, Y = 2X—3X" = 2X—3(5—X) = 5X—15.
Ainsi, Y(Q) = {-15,-10,-5,0,5,10} et Vk € [0;5], P(Y =5k —15) = (i)pk(lp)Sk. Par linéarité de
l'espérance, E(Y) = 5E(X) — 15 = —10. De plus, on sait que V(Y) = V(5X — 15) = 52 V(X) = 20.

c. Cette fois-ci, comme il n’y a plus remise, on a X(2) = {0,1,2}. Or, en notant By = “on tire une boule
blanche ou tirage k”, on a (X = 0) = By N B2 NB3 N B4 N Bs donc, par la formule des probabilités composées,

on obtient P(X = 0) = % X g X g X g X % = ]50249 % De méme, on peut décomposer 1’évenement

(X =1) en les cing événements incompatibles suivants :
e B NB, N B3 NBsNBs : une boule blanche au premier tirage et, apres, des boules noires.
e B NB, N B3 NB4NBs : une boule blanche au second tirage uniquement.
e B1 N B, NB3 N B4 NBs : une boule blanche au troisiéme tirage exclusivement.
e By NB; NB3z NBs NBs : une boule blanche au quatrieéme tirage seulement.

e By NB; NB3 NBs NBs : quatre boules noires d’affilée et on termine par une boule blanche.

Ainsi, toujours par la formule des probabilités composées, on obtient ]P(X = 1) sous forme de somme avec

2 8.7 6 5,8 2 7 6 5 8 7 2 8 6 2 5 8 7 6 5 2
PX=1)=2x8xZx8x248 2 5248 7 x4 8 7 £x24 8 7

(= 1) = X X X X B i X S X G X X I X S X X XTI X S X X X e T 10X 5 ¢ 776

ce qui donne apres calculs P(X = 1) = g car ces cinq évenements sont la méme probabilité qui vaut § Enfin,

comme (X=0)UX=1)UX=2)=Q,0na P(XzZ)z]—P(XzO)—P(Xz]):%.

On revient & la définition de Pespérance E(X) = > xP(X=x)=0x Zi1x242x2 =1 (comme dans le
xEX(Q) ? ? ?
cas “avec remise”) et de la variance V(X) = E((X — E(X))?) = (0—1)? x %+ (1—1)% x g+ (2—-1)%x % = g

d. A nouveau, on a Y =5X — 15 donc E(Y) =5E(X) — 15 = —10 et V(Y) = 25V(X) = %

11.97] a. Comme rang (U'U) < Min(rang (U),rang (*U)) < 1 car U est une matrice colonne, on a rang (M) €
{0,1}. Or Tr (M) = Tr (U*U) = ||U||?> donc si M =0, on a U =0 et, si U =0, il est clair que M = 0. Ainsi,

M =0 < rang (M) = 0 <= U = 0 donc rang (M) suit la loi de BERNOULLI de parameétre q = P(U # 0).

n
Comme ( ﬂ Xk = 0) et que les variables aléatoires X, - - -, Xy sont mutuellement indépendantes,
k=1
n
P(rang (M) = 0) = P(U=0) = [] P(X¢ =0) = (1 —p)" d'ott Plrang (M) =1) =1— (1 —p)™
k=1

Ainsi, rang (M) suit une loi de BERNOULLI B(q) de parameétre q =1 — (1 —p)™

n n N
De plus Tr (M) = Y X2 = 3 X; car comme X; suit une loi de BERNOULLI, on a X} = X;. A nouveau,
k= k=1

comme X7y, -+, Xy, sont mutuellement indépendantes et suivent toutes le loi de BERNOULLI de parameétre p,

on sait d’apres le cours que Tr (M) suit la loi binomiale B(n,p).
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b. Classiquement, on a M? = Utuutu = u(tul)tu = [[U||?M et |[U]|?> = Tr (*uU) = Tr (UtU) = Tr (M)
donc M? = Tr (M)M. On en déduit que (M? = M) = (Tr (M) = 1) U (M = 0) (réunion disjointe) donc
P(M? = M) = P(Tr (M) = 1)+ P(M = 0) mais d’aprés la question a. on a P(Tr (M) =1) = <T]1>p(1 —p)™!
car Tr (M) suit la loi binomiale B(n,p). La probabilité que la matrice M soit une matrice de projection est

done B(M2 = M) = np(1 = p)™" + (1 —p)™ = (1 = p)"~"((n = 1)p + 1),

c. Oncalcule S = > XiXj =T (M)+2 > XiX;, il s’agit de la somme de toutes les cases de
1<ij<n 1<i<j<n
la matrice M. Par linéarité de I'espérance, E(S) = E(Tr (M)) +2 > E(X;)E(Xj) car Xi et X; sont
1<i<j<n

(n =

indépendantes. Il y a - 1) couples (i,j) € [1;n]? tels que i < j, E(X;) = p et E(Tr (M)) = np d’aprés

la question a. donc E(S) =np + prz =np(1+ (n—1)p).

On sait que V(S) = E(S%) — E(S)?. Or §? = ( b xixj)( 3 XkX¢) = > XiX;XxX¢. En
1<ij<n 1<k t<n 1<4,5, K, b<n
considérant les quadruplets (i,j, k,€) selon le cardinal de A = {i,j, k, ¢}, la contribution & E(S?) est :

e np pour les n quadruplets (i,1,1,1).
e 4n(n — 1)p? pour les 4n(n — 1) quadruplets (i,1,1,j), -, (j, 1, 1, 1) avec i # j car X3 = X; et que X; et

X; sont des variables aléatoires indépendantes.
4

e 3n(n — 1)p? pour les 3n(n — 1) = (2

) (;) quadruplets (i,1,j,j), -, (G,i,1,1) avec i # j car i et j
jouent des roles symétriques.
e 6n(n —1)(n — 2)p3 pour les 6n(n — 1)(n —2) = 12n (n ; ]) quadruplets (i,1,j,k),-- -, (j, k, i,1) tels
que card (A) = 3 car j et k jouent des roles symétriques.
en(n—1)(n—2)(n—3)p* pour les n(n —1)(n — 2)(n — 3) quadruplets (i,j,k,¢) tels que card (A) = 4.
Comme il y a n* quadruplets (i,j,k,€) € [1;n]*, on vérifie qu’on n’a oublié aucun quadruplet ci-dessus car
n=n+anmn—-1)+3nmn-1)+6nn—1)(n-2)+nn—1)(n—2)(n—3).
Ainsi, E(S?) =np+7n(n—1)p?+6n(n—1)(n—2)p> +n(n—1)(n—2)(n—3)p* et, avec la formule de KONIG-
HUYGENS, on a donc V(S) = np+7n(n—1)p?+én(n—1)(n—2)p34+n(n—1)(n—2)(n—=3)p*—(np(1+(n—1)p))?.
a. Par définition, N(©2) = N et, comme X < N, on a X(2) C N. On suppose qu'il y a indépendance

mutuelle pour le genre des N enfants. Soit (n,k) € (N*)2, traitons deux cas :
e Si k > n, comme X < N par définition, on a P(N =n,X =k) = 0.
e Si0<k<mn,aN =n fixé, le nombre de filles suit, par 'indépendance mutuelle supposée, la loi

binomiale de parametres n et p de sorte que P(N =n,X=%k) = P(N =n) x P(X =k |[N =n) donne

—AyT
la loi conjointe P(N =n,X =k) = & ‘7\ X (2)1)]‘(1 —p)K
n!

+oo
b. Pour k € N,ona (X =k) = U (X = k,N = n) (réunion incompatible) donc, par o-additivité, on a
n=k

400 +oo AKpKe=A +oo N n—k
n=k n=k T k k! n=k (Tl - k)'

str, comme ((N = n))TL cn est un systeme complet d’évenements, la formule des probabilités totales donne
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“+oo +oo

aussi PX=k)= Y PN=n,X=k)= > P(N=n,X=k) car P(X=%k,N=mn)=0sin <k On pose
=0 n=k

Ve §E (= p))' _ ApRe apy _ Gp)te ™

N en reconnaissant une
k' i=0 l' k.' k'

i=n—ket P(X =k) =
série exponentielle. Ainsi, X suit la loi de POISSON de parameétre Ap.

a. Comme Y est a valeurs positives, on a 0 < X < Z. Et comme Z suit une loi géométrique, Z admet une
espérance finie. On en déduit par comparaison que X admet aussi une espérance finie.
De méme, Z2 admet aussi une espérance finie car Z admet une variance finie. Ainsi, comme 0 < X? < Z2, la
variable aléatoire X2 admet une espérance finie donc X admet une variance finie.

Par linéarité de 'espérance et d’apres le cours, E(Z) = - = E(X)+ E(Y)+1 = 2E(X)+1 donc E(X) = 1-p

1 _
p 2p
Puisque X et Y sont indépendantes, V(Z) = 1%3 V(X+Y) = V(X)+ V(Y) = 2V(X) donc V(X) = %}3
p p

b. Comme le rayon de convergence de toute série génératrice est supérieur a 1, et que d’apres le cours

Vt €] —1;1], Gz(t) = ﬁ}]’t_—p)t, onaVt €] —1;1], Gxypyyr(t) = EXTYH) = E(t*TY) = t E(¢X+Y) par

linéarité de 'espérance. De plus, comme X et Y sont indépendantes, E(t*TY) = Gx,vy(t) = Gx(t)Gy(t) donc
Gx1v(t) = tGx(t)Gy(t). Mais comme X et Y suivent la méme loi, on a Gx = Gy donc Gz(t) = tGx(t)%. On

en déduit donc que ¥t €] — 1;1[, Gx(t) = car Gx est positive sur | — 1;1].

R

1T—(0—p)t

T (=DtE)! n :

— 2 x™ ce qui donne, en remplacant x par —(1 — p)t,

vt € [-1;1] Gx(t) = /p Z M(*])“U —p)™M" = Z \[(Z:) (' —p)" t™. En identifiant les
nso 4M(n)? 4™ (nl)?

coeflicients, par unicité du développement en série entiere, comme le rayon R de convergence vérifie R > 1,

= VR0 )

c. On sait que ¥x €] — 1;1],

on a la loi de X donnée par Vn € N, P(X

4™ (nl)?
11.100) a. On a Y(2) C (N* U {4o00}) \ {1} par construction. Pour k > 2, en notant N; le numéro du jeton
obtenu au tirage i, on a (Y = k) = U (N7 =a,--+,Nx_1 = ¢,Nx = b) (on tire d’abord tout le temps
1<a,b<3
a#b

le numéro a et enfin, au tirage k, on obtient le numéro b). Ces événements étant incompatibles, comme il y

a 6 couples (a,b) possibles, que les N; sont mutuellement indépendantes par hypothése et suivent toutes la
+oo

k=1
loi uniforme sur [[1;3], P(Y = k) = 6( IT P(N; = a)) P(Ny =b) = 3% (Y # +o00) = U (Y = k) (réunion
i=1 k=2
e _65F 1 6 1
incompatible) donc, par c-additivité, P(Y # +o0) = > x =2 > 5 = 2 X ————= = 1. Comme
k=2 ?9v=23 9 1-(1/3)

attendu, on en conclut que P(Y = +00) = 0 (il est presque siir d’arriver & avoir deux numéros différents).

k-1
b. D’apres la question précédente, (Y —1)(2) = N* et Vk € N*, P(Y -1 =¥%k) = ﬁ% = % X (%)

donc Y — 1 suit la loi géométrique de parametre % Ainsi, d’apres le cours et par linéarité de I'espérance,

—|—1:%et V(Y)=V(Y—1):1(_z/(732)/23):%

c. Pour (m,n) € (N*)2, ona P(Y=m,Z=n) =0sin < mousim=1 par construction. Si n > m > 2,

E(Y) = E(Y—1)+1=

N [

ona(Y=m,Z=n)=(Y=m,Z—Y=n—m) et Z—Y représente le temps d’attente du troisieme numéro
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une fois obtenus les deux premiers. Z — Y et Y sont donc indépendants et Z — Y suit la loi géométrique de
2TL m

1
X 37 3T

w

N—
3
3

parametre % donc P(Y =m,Z=n)=P(Y=m)P(Z-Y=n—m) = -5 x (;

3
|

d. Par construction, Z(Q) C (N* U {400})\ {1,2}. Pour n > 3, (Z=n) = (Y =m,Z = n) (réunion

T C

. . n—1 anm ZTl 2 n— 1 ] 2T172
incompatible) donc P(Z=n) = >

m=

—_
—
u—

A\
N
>
7
N
)
3
-
N

=
|
=
\
N
>
w
3
I
-

311—1 3111 Zm 2_3n]x
m=2

N T 4n-1
A nouveau, (Z # +o00) = (Z =n) donc P(Z # +o0) = Y, AV

n=3

= 1. Comme attendu, on a P(Z = +oo) =0 (il est

\ou>
+

8

[\S)
f

w

3
1
w
(N

n—1
i, 1" 1 4] ’
z£0) =4 1 2, 1 _4_1
P(z #0) =5 T—(@273) 9 1-0/3) 3 3
presque sur d’arriver & avoir les trois numéros). > nP(Z = n) converge car, par croissances comparées,
nz

w

12 1 o +oo too Hn-1_
nP(Z =n) = nf——+= = o(—z). Ainsi, E(Z) = Y nP(Z =n) = ) nc=——=. Or, pour tout
3 +oo \n n=3 n=3 3
+oo —+oo / /
€l —1;1], an“*]:(z:x“) :( 1 —l—x—xz) :172—1—erndérivanttermeaterme
n=3 n=3 T—x (] _X)

+o0 2\ ™ 1 + n—1
a lintérieur de 'intervalle ouvert de convergence. En écrivant E(Z) = n(f) -2y n(f) ,ona

3
=3

1 1
2(2/3) =2 - 1/3 5
- 00) =
On pouvait dire, par indépendance de Y et Z—Y, que E(Z) = E(Y)+ E(Z-Y) = 2 —|— 3 puisque Z — Y suit

la loi géométrique de parametre %

donc E(Z) =

11.101]) a. Par construction, (Xn,Yn)(Q2) = {(x,y) € [1;n]? | x > y}. Et comme on peut supposer que la

loi de X;, est uniforme sur [[1;n] et que la loi de Y;, sachant (X;; = x) est aussi uniforme sur [[1;x], on a

Vx € [1sn], Yy € [1;x], PXn =%Yn=y) = PXn =x)P(Yn =y | Xn =x) = % X % = t
n
b. On a Y, () = [1;n] et, pour y € [;n], (Yn =y) = U (Xn = x,Yn =1y) (car on ne peut tirer la boule

X=y
numéro y que dans une urne de numéro x tel que y < x < n). Comme ces événements sont incompatibles,

n n
ona P(Yp=y)= > PXn=x,Yn=y)= > 1.
x=y

x=y X
n n n
C. Yn est bornée donc admet une espérance finie, E(Yp) = > yP(Y, =y)= > > L = S H ¢,
y=1 y=1x=y W 1gy<xgn X
n X n
en inversant les sommes doubles, E(Y,) = l;::] (% > y) = % > x;] = i(%ﬂ +n) = “13.

y=1
On vérifie bien que sin =1, on a E(Y;) =1 ce qui est logique car, dans ce cas, on a X; = Y; = 1 siirement.

d. De méme, Y2 étant bornée, elle admet une espérance finie et E(Y2) = Z y? P(Y, = y) par la formule
y=1

n o n 2 2 noox 2 1 n 1 X
de transfert. Comme avant, E(Y2) = 5 S ¥ = v . — sy~ s~ 8 — 1% (f > y2> donc
y=1x=y nx I<ysx<n nx x=1y=1 nx Tx=1 \X y=1
n
E(Y2) = %XXZ; (x+ ])227‘4' N _ Ln Z:: (2x24+3x+1) = é( n(n+1 )3( n+1) +3n(nz+ 1) ) et on trouve
E(Y2) = % Par la formule de KONIG-HUYGENS, comme V(Y,,) = E(Y2) — E(Y,)?, on obtient
2 2 _
V(Yn) = i+ ;2“ +17 _ (n i_ 3) = (n 1)](47; +13) apres calcul. Encore une fois, c¢’est logique qu’on
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retrouve V(Y1) = 0 car Y; est constante.

11.102 | a. Par construction, Yy, = XkTH suit la loi de BERNOULLI de parametre % car Yy =0 <= Xy = —1let

n
Yx =1 <= Xy = 1. Ainsi, d’apres le cours, par indépendance de X1,---,X;, donc de Yi,---, Y, Tn = > Y
k=1

n

suit la loi binomiale B(n, %) Or Xg = 2Yx — 1 donc S, = 2( > Yk) —n = 2T, — n. Ainsi, comme
k=1

Tn(2) = [0;n], il vient Sx(2) = {—n,—(n — 2),---,(n — 2),n} et, pour la loi de Sy, si k € [0;n], on a

n\ /1\k/1\n-k 1 /n L, . ,
P(Sy, =2k —n) = P(T, = k) = 5 (E) (E) = 5wl ) Par les propriétés classiques de I'espérance

NgE]

n
et la variance, E(S,) = E(Xx) =0et V(Sp) = > V(Xy) =n car Xy, -, Xy sont indépendantes car
k=1

k

—_

on a clairement E(Xy) =0 et V(Xy) = 1. On pouvait aussi utiliser la linéarité de lespérance et la relation

V(Sn) = V(2T — n) = 4V(T,) donc E(Sn) = 2E(Tn) —n =2(n/2) —n =0et V(Sn) =4(n/4) = n car
1 —n(l —n(l _1

Tn fB(n,z) donc E(Ty) n(2> et V(Tn) n<2> X (1 2).

b. (T=2)= (X3 =1,X2 =-1)U(X; = —1,X2 = 1) donc, par incompatibilité de ces deux événements

et indépendance de X; et Xz, P(T = 2) = (%)2 + (%)z = % De méme, il vient P(T = 4) = % car

T=4)=X1=1,X=01,X3=-1,Xa=-1UX3=-1,X2=-1,X3 =1,Xq =1).

Au bout de 2n + 1 étapes dans cette marche aléatoire, on a forcément Sy 41 = zni—]] Xk impair car tous les
k=

Xk sont impairs, ainsi (Szny1 =0) =0 donc (T=2n+1)=0et P(T=2n+1)=0.

c. Soit x €] = 1;1[, on a [pnx™| < |x|™ car pn € [0;1] donc, comme la série géométrique > |x|™ converge car
n>0
|x| < 1, par comparaison, »_ pnx™ converge absolument.

n=0
n

d. Pour n > 1, on peut partitionner (Szn = 0) en (S2n =0) = |_| ((San = 0)N (T = 2k)) en distinguant selon
k=1
la premiere fois (notée T) olt 'on va avoir (Syx = 0) (il est impossible d’avoir Szx41 = 0). Ces événements
n n
étant incompatibles, pn = P(Son =0) = > P(Son =0, T =2k) = > Pr—21)(S2n = 0) P(T = 2k) avec les
k=1 k=1

probabilités conditionnelles. Pour tout k € [1;n—1], on a Pir—2x)(S2n = 0) = P(Sz(n—x) = 0) (on repart de

0 apres 2k “mouvements” et on veut étre & 0 au bout de 2n étapes). Par contre, comme (T = 2n) C (San = 0),

n—1 n
ona Prr—zn)(Szn =0) = 1. Ainsi pn = qn + > qrPn-—k = D qkPn—k car on a posé po = 1.
k=1 k=0
La série génératrice > P(T = n)x™ de T, qui est bien & valeurs dans N, a un rayon de convergence au

n=>0
moins égal & 1 d’apres le cours. Si x €] — 1;1], d’apres c., on peut effectuer le produit de CAUCHY, comme

—+oo —+oo +oo n
P(T =2n +1) = 0 pour tout n € N, G(x)p(x?) = ( 3 qnxzn)( 3 pnxzn) =3 ( 3 qkpn_k)xzn.
n=0 n=0 n=0 k=0

n 0
Or pn = > pn-kqk sin € N* car qo = 0 mais >, pn_xqx = poqo = 0 alors que pp = 1. Ainsi, pour tout
k=0 k=0

+oo +oo
€l =11 GT(x)p(x?) = 3 pnux?™ =p(x?) — 1. Mais p(x?) = 1+ Y pnx?™ > 1 car p,, = 0 donc p(x?) > 0
n=1

n=1
2 —
et on a donc la relation attendue : Gr(x) = p(x(#
p(x
2 oo !
e. D’aprés a., comme pn = P(Syn, =0) = in " , il vient ¥x €] — 1;1[, p(x) = > AL)'zx“. Or,
2 n n=o02-"(nh
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. : 1 £ (=)™ (2n)!
on sait ou on retrouve facilement que Yy €] — 1;1], i =3 Wy
n=0

On en déduit donc que

p(x) = \/fo donc p(x?) = —1 e Gr(x) = ——F—— =1—v1 —x%. Or on sait aussi que, pour

1—x2

(=0t

-1

y €] — 1;1[, on a le développement en série entiére /T +y =1+ Z

&= (=" an)! IS) (2n)!
Ainsi, pour x €] — 1;1], G = - — L ()2 = . 21 On identifie
pomr x €] =11l 6100 == 2 v UV T X e
2
car les rayons sont strictement positifs et Vn > 1, P(T =2n) = 22“(2]1)< n)-
n—

Gt :x—1—1+/1—x2 nest pas dérivable en 1 car J/ ne I’est pas en 0. D’apres le cours, T n’admet pas une

+oo
espérance finie. Pourtant, P(T=4o00)=1— ), P(T=n)=1—G7(1) =1—1=0: T est presque slirement

n=1

finie mais admet une espérance infinie. Bizarre.

“+oo
11.103] a. Si X est une VAD de type 2, comme P(Q) = > P(X=n)=1,0na |Gx(—1)] =1 car:
=0
+oo " +oo
esoitr=Tet P(X=2k) =0dou P(Q) = > P(X=2k+1)=1Tdonc Gx(—1)=— > P(X=2k+1)=—-1.
k=0 =
+oo
esoitr=0et P(X=2k+1)=0dou P(Q) = P(X =2k) =1 donc Gx(—1) = >, P(X=2k) =1.
k=0

b
k=0
+oo
&,

Réciproquement, si Gx(—1) = Z P(X = 2k) — P(X =2k + 1) = P(X pair) — P(X impair) = £1, comme

P(X pair) € [0;1] et P(X impair) € [0;1] :

e s0it Gx(—1) =1 donc P(X pair) =1 et P(X impair) =0 et on a bien (Vk € N, P(X =2k+1) =0) : r=0.
e soit Gx(—1) = —1 donc P(X impair) =1 et P(X pair) =0 et on a bien (Vk € N, P(X=2k)=0) : r=1.
Et on a établi que X est de type 2. On a bien I’équivalence annoncée par double implication.

b. On pose w = ez%ﬂ € Uy. En distinguant selon le reste r de la division euclidienne de n par m, comme
+oo m—1
w" = I™T =", Gx(w) = Y PX=n)w™ = ( Z PX=mqg+r)|w" P(X =1 [m])w".
= r=0 “q=0
e Supposons X d’ordre m. Soit v € [0;m — 1] tel que Vk € N, k Zr [m], P(X = ) = 0. Alors, en sommant,
ona P(X=1"[m]) =0si1 € [0;m—1] et v/ # r. Par conséquent, Gx(w) = P(X = r [m])w" = w" car

P(X =1 [m]) =1 et on a bien |Gx(w)| =1.

e Réciproquement, si |Gx(w)| = 1, comme Gx(w) = >, P(X = r [m])w” on a par inégalité triangulaire

m—1 m—1
T=Gx(w)]| < > PX=r[m])|w"|= > P(X=r[m])=1donc on a égalité dans 'inégalité triangulaire.
r=0 r=0
Le cas d’égalité dans l'inégalité triangulaire montre que P(X = 0 [m])w®,---, P(X = m — 1 [m])w™~" sont
positivement liés. Mais les m racines m-iemes w?, - - -, w™~" de I'unité sont non colinéaires, ceci n’est possible

que 8'il existe r € [O;m — 1] tel que P(X =7 [m]) =1 et P(X=1" [m]) =0 si v/ #r. X est donc de type m.

2

Par double implication : X est de type m si et seulement si Gx ‘ =1.

c. Siret ' dans [1;m — 1] vérifient cette condition, alors pour tout entier k € N, on a soit k Z r [m], soit
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—+o0
k # 1 [m] ce qui prouve que P(X = k) = 0. Mais on a alors Y, P(X = k) = 0 contredisant que X(2) C N ce
k=0

+oo
qui implique Y. P(X =k) = P(Q) = 1. Ainsi, si r existe, r est bien unique.

d. (<) Si ngé)Y sont de type m, alors fo(w)’ =1et ‘Gy ’ =1 d’apres la question b.. Ainsi, comme
X et Y sont indépendantes, Gw = GxGy donc |Gw (w)| = [Gx(w)||Gx(w)| =1 x 1 =1 et W est de type m.
(=) D’apres la question b., il vient |GW | =1 donc |GX HGX )| =1. Or on a vu a la question b.
que |Gx(w)| < 1 et, de méme, }Gy(w)’ <1. Or ’Gx (w) HGX (w) | = 1 donc ces inégalités sont des égalités et

|Gx(w)| =1 et |Gy(w)| = 1. Toujours d’aprés b. : X et Y sont donc de type m.
On conclut par double implication que W de type m <= X et Y de type m.

n
e. Avec ces conditions, si n # r(X) + 7(Y) [m], comme (W =n) = |_| (X =k, Y =n — k), par indépendance
k=0
n
de XetY,ona P(W=mn)= > PX=k)P(Y=n-—k). Pour k € [0;n], on a deux cas :

e si k Z r(X) [m], on a P(X = k) = 0 par définition de r(X) donc P(X =k)P(Y =n —k) =0.
e sik =r(X) [m], alors n—k =n—7(X) £ r(Y) [m] par hypothése donc P(Y = n—%k) = 0 par définition
de r(Y) donc on a encore P(X =k)P(Y =n —k) =0.
Dans tous les cas, P(X =k)P(Y =n —k) =0 donc P(W =n) =0sin Z r(X) +r(Y) [m]. Cest la définition
de (W) qui vérifie donc r(W) = r(X) 4+ r(Y) [m].

a. Tous les tirages sont des pics si et seulement si on tire dans l'ordre les boules numérotées 1,2,---,n
donc (Sp =n) = (X3 =1)N---N(Xn = n) ce qui donne, par la formule des probabilités composées,
P(Sn =n) = P(X1 = 1) x Px,21(X2 =2) X - X Pix, 2 1)nn(xn_1=n_1)(Xn = 1) = Tll X oot X } = %
Puisqu’on a toujours un pic au tirage 1, on n’a qu’un seul pic lors de ces tirages si et seulement si X; = n.
Ainsi, (Sn = 1) = (X; =n) donc P(Sp =1) = P(X; =n) = %

b. Par construction, si on note o : [1;n] — [[1;n] tel que o(k) est le numéro de la k-ieme boule tirée, alors

o est une permutation de [[1;n] et elles sont équiprobables. L’événement (Ty = 1) a donc pour probabilité

P(Te = 1) = card ({Tl'< =1})
n!

un pic au tirage k, il faut et il suffit que o(k) soit le maximum de o(1),-- -, o(k). Protocole de choix :

car il y a n! permutations de [[1;n]. Pour choisir une permutation o qui admet

n
e On choisit les k boules tirées lors des k premiers tirages : (k) choix.

e La plus grande de ces k boules est forcément o(k) : 1 seul choix.
e On répartit les k — 1 autres boules parmi ces k boules dans o(1),---,0(k — 1) : (k — 1)! choix.

e On répartit les n — k boules restantes dans o(k +1),---,0(n) : (n —k)! choix.

Ainsi, P(T, 1) = <k)(k— 1!(n - K)! e Do

1 1
=1 done Ty ~ 93(7).
n! K=k | COne Tk K
n n
c. Comme S, = 3. Ty par définition, on a E(S,) = z E(Ty) = S % n o Infn).
k=1 k=1 o0
d. D’apres la question b., si (i,j) € [1;n] et i # j, (T1 —1,=nN=1=1xl_pm=1pT=1).
i

Ainsi, les évéenements A = (Ty = 1) et B = (T; = 1) sont indépendants. On sait d’apres le cours qu’alors A et B
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le sont aussi, A et B le sont encore, et A et B le sont toujours. Ainsi, P(T; =1,T; =0) = P(Ty = 1) P(T; = 0),
]P)(Ti = O,Tj = 1) = P(Ti = 0) P(Tj = 1) et ]P(Ti = O,Tj = 0) = ]P(Ti = 0) P(Tj = 0). Comme Ti et Tj ne

prennent que les valeurs 0 et 1, les variables aléatoires T; et T; sont indépendantes.

n n
e. D’apres le cours, comme S, = Y Ty, on a V(S,) = V(Tk)+2 >  Cov(Ty,Tj). Comme T; et T;
k=1 k=1 1<i<ign
. . .. . n n 1 1 n 1
sont indépendantes si i < j, on a Cov(Ty,Yj) =0et V(Sn) = > V(Tx) = > E(1 — E) =Hn— > prd n
k=1 k=1 k=1

2
est classique qu’alors on a V(Sy,) = In(n)+vy— % +0(1).
o0
Résultat admis : pour choisir une permutation o telle que Ty =1 et Tj =1 (avec i < j), on a le protocole :
e On choisit les j boules tirées lors des j premiers tirages : <n) choix.
)

e La plus grande de ces j boules est forcément o(j) : 1 seul choix.

j—1
e On choisit parmi les j — 1 restantes les i qui seront o(1),---,0(i) : (J . ) choix.
1
e La plus grande de ces i boules est forcément o(i) : 1 seul choix.
e On répartit les i — 1 restantes dans o(1),---,0(i—1) : (i — 1)! choix.

e On répartit les j —i+1 restantes (les j privées des i+1) dans o(i+1),---,0(G—1) : (j—i+1)! choix.

e On répartit les n — j boules restantes dans o(j +1),---,0(n) : (n —j)! choix.
n 5—1) . L :
. G- =i+ DI (=) . . o .
Ainsi, ]P)(Ti:],Tj :]): (])( 1 — Tl'()*1)'(171)'(]*1+])'(n7))' :l
n! im=)IG—1-1i! i

11.105] a. On dit qu'une variable aléatoire X & valeurs dans {—1,1} telle P(X = —-1) = P(X =1) = % suit la loi

de RADEMACHER. Comme —1 < Xy < 1 pour tout k € [1;n], on a S;, € [—n;n]. De plus, Xy étant impair,
Sn a la parité de n. Ainsi, Sn(Q) C {-—n,—(n—=2),---,(n —2),n}.
_ 1T+ Xy

Pour aller plus loin, si By = 5~ pour k € [1;n], on a By (2) = {0,1} et, comme (Bx =0) = (X = —1)

et By =1)=(Xgk=1),ona PBrx=0)=PBr=1)= % donc By suit la loi de BERNOULLI de parameétre

Comme Xj,---,X;, sont indépendantes, By,---,By le sont aussi d’apres le cours, et on sait qu’alors

N [—

n
Tn = > By suit la loi binomiale de parametres n, % Comme S,, = 2T,, — n, on connait donc la loi de Sy,
k=1

k n—k
donnée par les relations Vk € [0;n], P(Sn =2k —n) = <E> (1) (] - 1) ] (n> = P(Sp =n—2k).

2 2/ T \k
b. Soit n € N*, (|Sqs1| =1) = (Sne1 = 1) U (Sny1 = —1) dong, par incompatibilité de ces événements,
ona P(IShy1] =1) = P(Snq1 = 1) + P(Shy1 = —1). Par incompatibilité et indépendance de Sy et X1
par le lemme des coalitions, comme (Sni1 = 1) = (Sn = 0,Xn41 = 1) U (Sn = 2,Xpn41 = —1), on a la
. P(S, =0) , P(S, =2) . R
relation P(Spy1 = 1) = 5 + 5 . Comme on peut décomposer I'évenement (Sn41 = —1)
en (Snt1 = —1) = (Sn = 0, Xn41 = —=1) U (Sn = —2,Xn41 = 1), on en déduit de la méme maniére que
P(S, =0 P(S, = -2
P(snpr = —1) = LOn=0), FOn =2 0p (5, = 0) = (5] = 0) et (150 =2) = (S =)L (S0 = ~2),

ce qui donne P(|Sp 11| =1) = P(|Sn| =0) + w

c. Comme avant, (|Sn11] = k) = (ISn] = k+ 1, Xnt1 = —ent1) U (|Sn] = k — 1, Xn11 = €n41) en notant

en+t1 le signe de Sy 1 donc, avec les mémes arguments d’incompatibilité et d’indépendance de Sy, et Xpn41,
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]P)(|Sn| =k— ]) 4 ]P)(|Sn| =k— ]).

on a la relation P|Sn41|=k) = 5 7

n n+-1
d. Comme [S;,| est & valeurs dans [0;n], E(|Sn|) = Z kP(|Sn| = k). Ainsi, E(|Sht1]) = D kP(|Sn+1] =k)
= k=1

qu'on écrit E(|Snt1|) = P(|Sny1] = 1) + Z kP(|Sn+1] = k). Or, d’aprés la question précédente, on a
(k—=14+1) (|Sn|7k—1) (k+1-=1P(|Sn| =k +1)

P(|Sni1] =%) = 5 + 5 si k > 2 donc on a
(ISn]=2) | " P(|Sn| =k —1
E(|Sns1]) = P(Sn|=0)+ P(] n| )+ Z (k—=1) (‘2n| )
N (P(ISn|=k—1) e (k+1) P(lSu| =k +1) "H P(|Sn|=k+1)
+ 2 2 + 2 2 B k; 2
Ainsi, E(|Sni1]) = P(|Sn| = 0)+ IP)(|Snz| =2) +E(|in|) + P(Sn|=1) + E(En‘) _ IED(|Sn2| =1) _ IP(|SnZ‘ =2)
n+1 _ _ n+1 _ _ _ _
car (JP’(|Sn|2—k OIS P(|Sn|2—k+1) _ P(|snz| =1)  P(lS4] ;n+1)  P(Sn] ;n—l-z) et que
k=2

(ISnI—n+1) P(Sn| =n +2)
2 2

= 0. On en déduit bien que E(|Sn+1]) = E(|Snl|) + P(|Sn| = 0).

e. Par imparité de Syny1, on ne peut pas avoir Syn1 = 0 donec P(San41 = 0). Par contre, Syn = 0 si et

seulement si il y a autant de 1 que de —1 dans les 2n étapes de cette marche aléatoire. Par indépendance

2 T\ /1\™ 2n)!
des pas, on en déduit d’apres le cours que P(So, =0) = ( n) (E) <£> = zz(n(n)|)2
n n!

f. D’apres la question e., la suite (E(|Sn|)n>1 est croissante et, par dualité suite-série, elle converge si
et seulement si > (E(|Snt1]) — E(|Sn])) converge. Or E(|Sant2]) — E(|Sant1]) = P(|Santi1]| = 0) et

n>l1
n)! \/47m(2n)2neZn 1
(l 2n+1|) (| an) (l 2n| ) 22n(n!)2 Lo 22n(27_[n)n2n62n too AT

> —1_ diverge par RIEMANN, on en déduit par comparaison que > (E(ISn+1]) — E(ISn])) diverge donc

n>1 Tmn n>l

Sachant que la série

que (E(|Sn|)n>1 diverge, c’est-a-dire que lim E(|Sn|) = +o0.
n—-+4oo

g. J’ai rajouté cette question, pas sur qu’elle fasse partie de Toral ! D’apres une remarque du cours, si

an > O ~ bn>0ct si Y an diverge, alors Z ag ~ Z by (c’est hors programme). On I'applique ici avec
n>0 k=0 +°°k 0

E(IS2n+1[) = E(IS2nl) o~ ﬁ ce qui, comme kZ (E([S2ict1]) = E(S2x[) = E(|Szn+1]) — E(|S2]) donne

n
E(|S2n+1 |) Z \/17]( Par comparaison série-intégrale, on montre classiquement que Z —= ~ Zﬁ avec
k=1 VT =1
la décroissante et la continuité de la fonction t — \1[ sur [1;4o00[ dont une primitive est t — Z\f Ainsi,

2(2 1 2
E(lSonsl) ~ 2 [ ~ M. Comme E(|Sz]) = E(|Szn11]), on a B(Sznl) ~ 2 [E ~ [2(2n)

donc la suite <E(|S“ )) tend vers \/? et on a E(|Sn|) ~ n,
n>1 T too

Vvn s

11.106) a. On a det(M) = X? = Y2 = (X = Y)(X +Y) et X+ Y # 0 car X(2) = Y(Q2) = N* par hypothese donc
+oo

X+4+Y > 2. Ainsi, M inversible <= X # Y. Or (X =Y) = |_| (X = n,Y = n) (réunion d’événements
n=1
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+oo
incompatibles) donc, par o-additivité, on a P(X =Y) = Y P(X=n,Y =n). Or, X et Y ont été supposées
=1
+oo " +oo
indépendantes ce qui donne la relation P(X =Y) = Y. P(X =n)P(Y =n) = > p(1 —p)" Tp(1 —p)™~".
n=1 n=1

Comme 0 < (1 —p)? < 1, on peut calculer avec les séries géométriques : P(X = Y) = ] (? 72 =3 P
—\=p -P

La probabilité que M soit inversible est donc 1 — P(X =Y) = 22;29
-p

b. La matrice M est symétrique réelle donc elle est diagonalisable dans M;(R) et les valeurs propres o et 8
vérifient a+p = Tr (M) = X+Y et ap = det(M) = X2 —Y2 = (X—Y)(X+Y). Ainsi, les deux valeurs propres de
M sont X+Y et X—Y. Par conséquent, comme Y>0,onal =X+Y >2et V=X—-Y € Z. D’apres le cours,
Cov(U,V) = E(uv)— E(U)E(V). Or E(V) = E(X—Y) = E(X) — E(Y) = 0 par linéarité de I'espérance et que
X et Y suivent la méme loi. Ainsi, Cov(UV) = E(UV) = E((X+Y)(X-Y)) = E(X?—Y?) = E(X?)— E(Y?) = 0.
Or(U=2,v=0)=(U=2)=X=Y=1)donc P(U=2,V=0)=PX=1Y=1)=PX=1)PY=1)

car X,Y indépendantes donc P(U =2) = P(U =2,V = 0) = p?.
+o0 +o0
Par contre, (V=0)=(X=Y) = U (X =Y =n) (réunion incompatible) donc P(V =0) = . P(X = n)?
n=1

n=1

par o-additivité, indépendance de X et Y qui suivent la méme loi. Comme P(U =2,V =0) # P(U=2)(V =0)

“+oc0o 2
car P(V=0)= 3 p?(1 —p)2(-1 = P > = E <1, U et V ne sont pas indépendantes.
n=1 1— (] — p) 2—p

—+oo
c. Comme Z(2) = N* C N, on a E(Z) = > P(Z > n) d’apreés le cours. Pour tout entier n € N*
n=1

(Z <n) = (X<n)N(Y<n) donc, par indépendance de X et Y, P(Z <n) = P(X <n)? = (1 - P(X > n))?
car X et Y suivent la méme loi. Ainsi, P(Z>n)=1—-P(Z<n)=1-(1— (1 —p)"")? (classique). On en
déduit donc que P(Z = n) = 2(1—p)™~ " — (1 —p)?(™=1. On sait sommer les séries géométriques, et comme

|1 —p| < 1, Z admet une espérance finie et E(Z) = 2 — 1 3=

1-(-p) 1-(-p)° p2-p)

S

n
11.107] a. Pour k € N* et n € N*, par définition du maximum, on a (M;, <k —1) = ﬂ(Xi < k — 1) dong, par

n
indépendance des Xi, on a P(My; < k—1) = ] P(X;i < k—1) or Xj,- -, Xy suivent la méme loi que X;
i=1

donc Vi € [1;n], P(X;i <k—1)=P(X; <k—1) et onabien P(My, <k—1)=P(X; <k—-1)"

b. D’abord, on a P(X; < k—1) =1 - P(X; > k —1). Mais comme X; est & valeurs entiéres, on a

(X1 >k—1) = (X7 2 k). Comme x — x* est strictement croissante, (X7 > k) = (X§ > k%) donc, comme X§

est une variable aléatoire positive admettant une espérance finie par hypothese et k* > 0, par 'inégalité de
X

MARKoOV, P(X; > k) = P(X{ > k%) < % = % Ainsi, P(X; €k—1)>1— % pour k € N*,

[04

Comme M, est aussi a valeurs entieres, on a (M, > k — 1) = (M;, > k) pour k € N* donc on obtient

P(Mp >k) = P(Mn>k—1)=1— P(Mp <k—1)=1— P(X] gk—1)”<1—(1—%). Quand k tend

, ., (1_Mma) _ q_(1_nmg i)) _ nmg (L)
vers +00, on effectue un développement limité et 1 (1 o ) +Oo] (1 o +O<k°‘ o +o o

donc 1 — (1 — m—;‘) ~ MM Pyisque la série de RIEMANN 3 % converge car « > 1 et que n et my sont
K* ) 400 k Sk
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des constantes, par comparaison, la série > P(M, > k) converge done, d’apres le cours, My, admet une
k>1

+o0
espérance finie qui vaut E(My) = > P(Myn > k).
k=1
c. Ici Xj suit la loi géométrique de parametre % Prenons o = 2, alors X; admet un moment d’ordre 2 (une

variance finie) d’apres le cours donc, d’apres la question b. avec « = 2 > 1, M, admet une espérance finie

+oo +oo +oo
et EMn)= > PMp2k)= > (1—PMy<k—=1))= > (1—P(X; <k—1)") avec la question a..
k=1

k=1 k=1
Ici, P(Xy <k—1)=1—-P(X; >k —1) =1—21"%_ En effet, classiquement, (X; >k — 1) = DO(X1 =n)
donc, par o-additivité, P(X; >k —1) = +Zoo P(Xy =n) = +Zoo 1 (1 - l)nq = M =21k
7 7 n=k n—k 2 2 1—-(1-(1/2)
On a bien la relation attendue, E(M,,) = :Oj (1= =2""%)m).
d. Par le binéme de NEWTON, on a E(My,) = :f:j (f:] <TJL) (—1)j+12_(k_1)j). Or les n séries géométriques
=1 \j=

de raison 21—] pour j € [1;n] convergent donc, par somme d’un nombre fini de séries convergentes, on peut

e Bvn) = 35 (7)o () = £ (DS - £ (D) S

i=1 \) k=1 ji=1 \)

11.108 ] a. Comme la variable aléatoire e'** est bornée sur €2, elle admet une espérance finie et on a, par théoréme

. n . n .
de transfert, E(e'X) = Z e P(X = xx) = Y pre'™ . Par inégalité triangulaire sur les complexes,
k=1
X n n n
B = | 35 pret| < 35 et = 3 pi= £ PO =0 = P( || (x =) = P =
k=1 k=1 k=1

- n . n .
b. Comme Vt € R, |®(t)]? = ®(t)®(t) il vient avec a. la relation |®(t)|* = ( > pje‘t"i)( > pke’m‘k),
=1 k=1

n .
d’on |®(t)]? = Z P+ > piprkett™iT). Si on passe en mode développement limité en 0, on obtient

1<j7k<n
L . (x5 — xi)? P , e
|®(1)]* = Z > PPk (1 +it(xy — xx) — —L=—""— + ot )) Or, en échangeant les roles joués
0 =1 1<j¢kgn 2
par j et k, ona 3 pipk(y —xk) = > pepilxk —x5) = — > pipr(x; —x) = 0. Or,
1<j#ksn I<k#A<n 1<j#ksn

n 2 n
= ( > pk> donc, en développant, 1 = Y pZ+ > pjpk. Enreportant dans le développement limité,
k=1 k=1 1<j#k<n

20— )2
2OE=1- Y w2 (-T2 e@) 1L (8 a2 ro(i?),

0 1gjFk<n 1< #k<n 1<j7k<n
n n 2
De plus, V(X?) = E(X?) — E(X)? = 3 x&px — ( > xkpk) par formule de transfert donc, en développant,
k=1 k=T
n
VX)= Y x¢(pk—PE)— X xpapipk = Z pkxk( Z p;) Y. Xjxkpjpk qu'on peut aussi écrire

=1 1<j£k<n 1<j#k<n

k
V(X) = %( > opipE+ > pkp]x -2 > ijkpj‘pk) par symétrie entre j et k et on obtient

1<i#kgn 1<j#Ekgn 1<j#kgn
bien la relation V(X) = l( > pipk(xE + sz - 2x]~xk)> = l( > pipk(xy — xk)z) qui justifie bien
2 M 1gFksn 2 M 1gFksn

le développement attendu : |®(t)|? ?1 — V(X)t? + o(t?).

c. L’hypothese X(2) C a + Zb se traduit par Vk € [1;n], Imx € Z, xx = a + myb. Ainsi, pour tout
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. n . n .
te R, &(t) = E(e'X) = Z prettlatmib) — gita S~ (eltbymi done [B(t)| = | 3 pr(eft®)™x|. 11 suffit
k=1 k=1

itpb

n n
de prendre to # 0 tel que e =1, par exemple ty = 2—71 # 0, pour que |®(to)| =| > pk‘ => p=1
k=1 k=1

d. Réciproquement, supposons qu’il ex1ste top € R* tel que |<I>(to)| = 1. Alors, ®(tp) € U donc il existe

« € R tel que ®(tg) = e'*. Ainsi, Z prettoXk = lx — ele Z px donc, en multipliant par e **, on a la
=1 k=1

relation Z P = Z prettoxe—ix — E pret(toxk—a),
k=1 k=1 k=1

n ) n . n
Ainsi, par inégalité triangulaire, 1 = | 3 pret(toxx=®)| < S~ py Jeiltoxk—®)| — S~ p = 1. Or, on sait
k=1 k=1 k=1

que le cas d’égalité dans 'inégalité triangulaire traduit le fait que les complexes (pkei(to"k_o‘))Kkgn sont,

positivement alignés, ou encore, comme py. > 0 qu’il existe 8 € R tel que Vk € [1;n]], pret(toxc=%) = p el

Par conséquent, comme Yk € [1;n], et(toxx=a=0) — 1 ] existe my. € Z tel que toxx — x — 6 = 27tmy. donc

Xk = a+ mgb enposantb:i—”€ R* et a:“ti"i_ee R. On a donc bien X(2) C a + Zb.
0 0

11.109 | Notons pour toute la suite Tx la variable aléatoire qui est le résultat du tirage d’indice k s’il a lieu. Par

construction, X, (€2) C [1;n] donc Xy, est bornée et admet donc une espérance finie. On suppose bien str

aussi que chaque boule de I'urne a autant de chance d’étre tirée a chaque étape.

a. Sin =1, on vide l'urne en un seul tirage. Ainsi, X; est constante égale & 1 donc E(X;) =1.

Sinzz, (Xz = 1) = (T] = 1) et (XZ :2) = (T] :Z)Tz = ]) donc P(Xz = ]) = ]P(T] = ]) =

1
2
PX;=2)=P(M =2)P(Mh=1|TH=2=1x1= % Ainsi, par définition, E(X;) = % x1+1x2= %

1
2

b. Pourn>2eti=1,0ona (X, =1)=(T; =1) donc P(anl):l.
n

—-

Pourn > 2eti€ [2;n],ona (Xqn =1) = | |(T1 =j,Xn =1i). Cette réunion étant disjointe, on a donc

2

)

n
PXn =1) = Y. P(M1 = {)PXn =1i| Ty =j). Or, quand on a tiré la boule j au premier tirage, on
j=2

enleve les boules numérotées j,j + 1,---,n et on se retrouve au point de départ du probleme définissant
Xj—1, une urne contenant les boules numérotées de 1 a j — 1, avec les mémes regles, sauf qu'on a déja

effectué un tirage. Ainsi, P(Xn, =i |Ty =j) = P(Xj_1 = i —1). Par conséquent, sin > 2 et i € [2;n],

1 n ]n71
P(Xn =1i) = = PXj_1 =i—1) == P(Xx =i—1) en posant k =j — 1.
nj=2 N x=1
n 1 1 n — 1 ]n71 n
Alors, E(Xy,) = E PXp=1)==-+-=> 1 Z PXxy=i—1)=—-4+—= > > iP(Xx =i—1) en inversant
i=1 n M=z k=1 n Myg=1i=2
L
la somme double. Mais P(Xy =i—1) =0 deés que i > k donc E(Xn) = — + — > iP(Xx =i—1). Ainsi,
nMy=1i=2
1 ek 1,1 T
EXn)==+=— > S E-1+1)PXx =1—1) = ~+— Z (1+ E(Xx)) car E(Xy) = > 1—1)P(Xx =i—1)
nMy=1i=2 n “ k=1 i=2
K1 ;e
et P(QY) =1= P(Xx =1i—1). On a donc bien la relation attendue, E(Xn) =1+ = E(Xk)sin>2
i=2 N k=1
c. Méthode 1 : d’aprés b., on a E(X3) = 1+ %(1 + %) =1+ % + % = % De méme, on obtient
—4 (143 141y oqplyl 125 - ~ 1
E(X4)—1+4<1+2+1+2+3> 1+2+3+4 2" Il semble que E(Xy) Z::]k
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pour tout entier n € N*. On a déja réalisé l'initialisation pour n = 1, t n =2 Soitn > 2
n— -1 k
Vk € [1;n — 1], E(Xx) = Hy, d’apres la question b., on a E(X;) =1 —i— Z Xx) =1 + Z Z
n—In-1 1 n—1 1 1 - o
E(Xn) =1 + E Z =1 —|— Z 4 =1+ ( > ) — =" = H,. Par principe de récurrence forte,
j=1 n

on a bien Vn € N*, E(Xn) Hn donc E(Xn) ~ In(n) (par comparaison série-intégrale avec x — l).
x

+

n—1 n

Méthode 2 : d’apres b., pour n > 2, nE(Xn) =n+ > EXy) et (n+ 1) EXnt1) = (n+1)+ > E(Xk)
k=1 k=1

donc (n 4+ 1)EXnt1) =1+ nEXn) + EXn) = (n+1)EXn) +1 dott E(Xnt1) — E(Xpn) = %H Par

n—1
télescopage, on a donc E(Xn) = E(X1)+ > (E(Xkt1) — E(Xk)) =1+ Z = Hn et E(Xy) ~ In(n).
k=1 —1 k + 1 +oo
Question supplémentaire : comme f : t — 1 est continue et décroissante sur [1; 400, on a la majoration
k+1 k+1
. _ dt _ 1 1 BN
Yk € [[1,n}],f f f(k) = et Vk € [2;n], fk : dat > o En sommant la premiére
n
inégalité pour k € [1;n] et par CHASLES, on obtient f] Tt < Hn = > % Si on fait de méme pour
k=1
) m ot N | .

la seconde pour k € [2;n], on a - ZHp—1= > ot Ainsi, In(n +1) < Hy < 14 In(n). Comme
k=2

In(n+1 ) ~ 1n( ) ~ In(n) + 1, par encadrement, on a donc H, ~ In(n).

—+oo —+oo

a. e Par définition de X1X2, on a X;X2(Q) C {—1,1} et (X;Xa=1)= (X1 = 1,X2 = 1)U (X1 = —1,Xz =
—1) donc, par incompatibilité de ces deux éveénements et indépendance de X1, Xz, P(X1Xz = 1) = p2+(1—p)2.
De méme, (X1X2 =1)=(X; =1,Xz=-1)U (X3 =—=1,X2 =1) donc P(X;Xz =—1) =2p(1 — p).
(«<=) Si X1X2 et X7 sont indépendantes, P(X1X2 = —1,X;3 = 1) = P(X1Xz2 = =1)P(X; = 1) par exemple.
Or (X1X2 = —1,X; = 1) = (X; = 1,Xa = —1) donc P(X;X; = —1,X; = 1) = P(X; = 1,Xz = —1)
donc P(X1X2 = =1,X;3 = 1) = P(X; = 1)P(Xz2 = —1) = p(1 — p) car X;1,Xz indépendantes et on a

p(1 —p) =2p(1 —p)p qui équivaut & p(1 —p)(1 —2p) =0 donc p = % car p €J0;1[.

(=) Réciproquement, si p = %, ona P(X3Xy = 1) = P(X3Xz = -1) = De plus, pour tout couple

1

1

(e1,¢e2) € {—1,1}2, ona (X7 =¢e1,X1X2 = ¢2) = (X3 = e1,X2 = €1¢32) car Si = g7 puisque ¢ € {—1,1},
1

ainsi P(X] = E],X]Xz = £2) = ]P(X] = 81,X2 = 6162) = ]P(X] = £1)P(X2 = 6162) = % donc on en déduit

la relation P(X7 = e1,X1X2 = €2) = P(X7 = e1) P(X1X2 = ¢2), les variables X et X7X; sont indépendantes.
Par symétrie entre X; et Xz, X2 et X2X7 = X1X2 le sont aussi.

En conclusion, Xy et X1Xz (resp. Xz et X1X32) sont indépendantes si et seulement si p =

N\—‘

b. Ecrivons la loi du couple (X1,Xz). Pour (e1,¢2) € {—1,1}2, (X1,X2) = (e1,€2)) = (X1 = €1,X2 = ¢2)
donc, par indépendance de X; et Xz, P((X1,X2) = (e1,€2)) =P(X1 = e1,X2 = e2) = P(X; = e1) P(X2 = ¢2)
donc P((X1,X2) = (1,1)) = p%, P((X1,X2) = (1,=-1)) = p(1 —p), P((Xq,X2) = (=1,1)) = p(1 —p) et
P((X1,X2) = (=1,-1)) = (1 —p)*%.

X1X2 et (X7,X32) ne sont indépendantes pour aucune valeur de p car (X1X2 = —1,(X3,X2) = (1,1)) = 0 donc

P(X1X2 = —1,(X1,X2) = (1,1)) = 0 alors que P(X1Xz = —1)P((X1,X2) = (1,1)) = 2p3(1 —p) # 0.
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11.111] a. Par construction, Z;,,(2)[1;n]. Soit k € [1;n], on a deux cas :

m m
esik<m, (Zym =k) = |_| (X =k, Y = 1) (réunion disjointe) donc P(Z;n = k) = >, P(X =k,Y = 1)
i=0 =0
m
et, puisque X L Y et suivent la loi uniforme sur [1;n]], P(Zyy, = k) = Y, P(X =k)P(Y =1) = 5.
i=0 n

i=0
m
P(Zm =%k) = P(Y=Kk)+ Y P(X =k,Y = 1) et, puisque X et Y sont indépendantes et suivent la loi
i=0
m
uniforme sur [I;n],ona P(Z, =k)=P(Y=k)+ >, PX=k)P(Y=1i) = 14 .
i=0 n n
mn n
1 nn+1) n4+1
b. E(X) = E(Y) = kP(X=%) =+ k=
09 = B0 = 3 kPx=1 =1 3= 2D
n m n ] .
Pour m € [1;n], E(Zm) = Y kP(Zm =k) = > kF+ > k( + %) d’apres a.. On en déduit que
k=1 k=1 T k=m+41 BM
n n n n = 1), nn+1) mm+1)
E(Zp) =" S k+ 1 K= s gyl oy 1oghy _mnnt - d
(Zm) n’ k§1 T k:%Jr] n’ k§1 T 2:21 n k§1 w T 2n one
(m+n)(n+1) - m(m+1)

on l'expression compacte E(Z,,) =

c. Posons f : x — (x+n)(n+1) —x(x+1) polynomiale sur R donc dérivable et f'(x) =n+1—-2x—1=n—2x.
n

Ainsi, f est strictement croissante sur [1;n/2] et strictement décroissante sur [n/2;n] donc maximale en
Traitons donc deux cas :
e Sin est pair, n = 2p et f est maximale en p donc E(Z,,) est maximale pour mo = p uniquement et
E(Zm,) = E(Zp) = SJ’;—Z (apres calculs).
e Si n est impair, n = 2p + 1 donc la valeur maximale de E(Z,) est soit E(Z,), soit E(Z,41). Or,

2
apres calculs toujours, on vérifie que E(Zp) = E(Zp41) = > 2(2+ :_ ]—1)_2 donc E(Z,,) est maximale
)

2
pour les deux valeurs mop =poumo=p+1et E(Z,) = 2 2(;_ 7+ ]—; 2.
P

11.112] a. Quand on choisit I'urne Ui, la probabilité de tirer une boule blanche est de i, et comme les tirages
P

se font avec remise, ils sont indépendants. D’apres le cours, la loi de N, sachant A est la loi binomiale

. n i\ k i\n—k
B(n, l). Par conséquent, Pa, (N, =k) = (k> (7) (1 - 7> pour i € [0;p] et k € [0;n].
P P P
b. La variable aléatoire N, est bornée car 0 < N, < n donc elle admet une espérance finie et on a

n
par définition E(Np) = > kP(Np, = k). Comme {Ao,---,Ap} est un systeme complet d’événements,
k=0

P

ona P(N, = k) = 'Zo Pa,(Np = k)P(Ai) par la formule des probabilités totales. Si on suppose que
i=

L= PA&(NP - k)

toutes les urnes ont la méme chance d’étre choisies, P(N, = k) = > 1 En reportant, on
i=0 P
a donc la relation E(N,) = —— > k> (7) (1 - f) . En inversant cette somme double, on
P+1=o iZo\k/\p p
P n i\ k iyn—k -1
obtient E(Np) = —1_ >y k<n> <l) (1 - l) qui devient, car k(n> = n(n ) et en posant le
p+1iSok=1 \k/\p P k k—1
o n &R m-Ty i\l o
changement d’indice j = k — 1, E(N,) = —T— 3" = > . (7) (1 - 7) . Or, avec le binéme
P+1i{ZoP =0 j p p



=l m—1\ /1 n—1-j i iynd .
de NEWTON, on a Y. (7> ( ) = (1 ——+ 7> = 1 donc on obtient finalement
=0 p PP
n

\M'd

E(N,) = —n i w = Rien que de tres prévisible car il y a autant de chance en général
p+1<p  2p+1)p 27

de tirer des boules blanches ou noires et on en tire n en tout.

o ik i\ n—k
c. Pourk € [I;n—1],ona P(N, =k) = % Z < > (l) (1 f}l)) d’apres la question précédente donc

n
P
n P okIn—k NS Lyn—k
P(Np, =k) = ( >[ +-> (l> (1 - l) ] Comme fy : x = x*(1 —x)™~¥ est continue sur
k/p+1 p p i=1 \P p
P i .\ n—k 1 0 P .
le segment [0; 1], et que Z ( ) (1 l) =-— Z fk<l) est une somme de RIEMANN associée &
& p p
L .
cette fonction, par théoreme, lim Z ( ) ( 7) = f fi(x)dx. Il est clair que lim P
p—+oo p = p—+oop + 1
kin—k 1
et lim &1 =0 donc, par somme et produit, lim P(Np =k) = <n> f (1 —x)"kax.
p—+too P p——+oo k 0

11.113] a. Par construction, on a X(2) = [[2; +00] et Y(2) = [1;+oc] en convenant que Y = 400 si on n’obtient

jamais pile et X = 400 si on n’obtient jamais la séquence “pile-face”. On a aussi X > Y + 1. En notant

I’évenement P, = “on tombe sur pile au lancer k”, on peut écrire, pour des entiers x > 2 et y > 1 tels que

y—1 x
x>y, X=xY=1y) = ( ﬂ Pﬁ) N ( ﬂ P~1> N Px. On suppose que (Pi)i>1 est une suite d’événements

indépendants, ce qui montre d’apres le cours que Py,---Py_1,Py, -, Px_1,Px le sont aussi, ce qui donne

y— x—1
PX=x,Y=y)= ] P(Pi) x [[ P(Pi) x P(Px) = 2]7 car la piece est équilibrée par hypothese.
) Rt

i=1

n
Pourn > 1, (Y = +00) ﬂ Py donc 0 < P(Y = +00) < 21—71 Par encadrement, P(Y = +o00) = 0.

x—1 X—
b. Soit x > 2, on a (X =x) = |_| (X =x,Y =y) (réunion disjointe) donc P(X =x) = >, P(X =x,Y =y)

y=1
1 = 1
par o-additivité. Ainsi, P(X = x) = XZ_X . On sait que Vt €] — 1;1], > t*7 = ]tj =T 1. On
- N ]
dérive & l'intérieur de I'intervalle ouvert de convergence pour avoir Vt €] — 1;1[, > (x — 1)t*"2 = B
x=2 -
+o0 tz 1 +o0
donc vVt €] — 1;1[, > (x —1)t* = ———. En prenant t = -, on a » 6 P(X = x) = 1 donc, comme
x=2 (] - t) 2 x=2
+oo
Q=(X=+o00)U ( ) il vient P(X = 400) =1 — Z P(X = x) = 0 comme attendu.
x=2 x=2
400 +oo ( ) . . +o0 tz
c. EX)= > xPX=x)= Z . On dérive une autre fois Vt €] — 1;1[, > (x — )t* = -2
x=2 x=2 x=2 -
= 2t £ 2t2 1
pour avoir Vt €] —1;1[, > x(x —1)t* 1 = —S— dou vVt €] — 1;1[, Y x(x —1)t* = ——5. Avect = -
x=2 (1 - t) x=2 (1 - t) 2

a nouveau, on a E(X) = 4.
11.114) a. Comme X(©2) C N, pour n € N, on a (Y = n) = |_| P(X = &, Y = n) (incompatible) donc,

k=0
+o00o n n\ p
par c-additivité, on a P(Y = n) = ), PX =k, Y =n) = > 5 Z—n(1 —p)™ d’apres Iénoncé. Ainsi,



P(Y =n) = E(1-p)" ( ) % T—p)"(14+1)" = p(1 —p)™. Par conséquent, 1+ Y suit la loi

211
géométrique de parametre p car (1 +Y)(Q2) C N et P(Y+1=n)=P(Y=n—1)=p(1 —p)" .
OO
b. On sait que Vx €] — 1;1], . Z . En dérivant cette relation k fois sur Iintervalle ouvert de
— X
convergence de cette fonction developpable en série entiére, on obtient la formule du binéme négatif, qui
L. ! gy ! _ 1 oo M\
g’écrit Vx €] — 1;1] k= oo xR e = ( )x“ .
=M S (=) CE = §

+oo
c. Vke N, X =k) = |_| (Y =n, X = k) (réunion disjointe) donc, par c-additivité, on obtient comme

n=0

avant P(X = k) = :: P(Y =n, X = k) = pz <E> (%)nm )" = p(?)kz (Z) (?)n_k.
Alnst P(X = k) = p (1 7p)k " (1 - (1113))k+1 - <12Ip)<: ?;)k - (1?17)(] N 1241319)]( apres
2

simplification. Comme en question a., 1 + X suit la loi géométrique de parametre Zi.

1+7p
PX=Y=0)=p# ]J_;_— P(X = 0)P(Y = 0) car p2 # p : X et Y ne sont pas indépendantes.
P
d. Z prend presque stirement ses valeurs dans N d’apres les conditions imposées a X et Y et pour m € N,
+o0 400 k
comme avant, on a (Z = m) = |_| X=%k Y=m+%k)donc P(Z=m)= > (m:— )am+k(1 —p)™ .
k=0 k=0
k k pucl A ;
Comme <m+ ) = (m+ ) et en posant i = m+k, ona P(Z =m) = > <1>(a(1 —p))'p donc
k m i=m \Um
T /1 . 1—p\m 1 2p /1 —p\™m
Bz = m) = platt=p)™ £ (1) -m) =p(12)" = ()
@=m =t -p)" £ (a0 - = (1 Q=T
2

Ainsi, 1 + Z suit la loi géométrique de parametre ]—ip—, comme X.

e. Comme P(Y =n) = p(1 —p)™ > 0, la loi de X sachant (Y = n) existe pour tout n € N. Si k > n,

P(X = k|]Y = n) = 0 par hypothese et, si k € [0;n], P(X =k|]Y =n) = PX=kY=n) par définition donc

P(Y =n)
(Hoara-sm
P(X=k|]Y=n) = = = (7> . La loi de X sachant (Y =n) est la loiB(n, l).
p(1—p) k) \2 2
! k41 ! 1
11.115) a. Sin € N, k € [o;n], <n> S L (n+ 1)t = oc(n+ ) si
k k!(n —k)! n+1  (k+Dn+1—(k+1)! k+1
_k+1
Con+ 1
n n n+1
b. Comme X(Q) = [0;n],ona Y, PX=k)=1= > 3_1 (k+1> d’apres a. donc, en posant m = k+1,
k=0 k=0T
no/m+1 a ntl m+ . 1
n—|—1 Z(k+1> n+]<(mz_0< o >)1)—n+](2n+11)—]cequ1donnea—2&]"_1.

c. Comme X est bornée, X admet des moments a n’importe quel ordre. Par définition de 1’espérance, on a

. 1 Mok(n+1)(n 1 noom+1 .
]E(X):kgok]P’(X:k):an_ 5> knt+1) )= ok . En éerivant k = (k+1) — 1,

Ty=o k+1 —1x=o \k+1
1 n n+1 1 no/n+1 n+1 n
E(X —_ k+1 - —_— t (k+1 = 1 d
ona E(X) = ST ]kz::o( +)(k+1> 2n+]—]kz::0 T et ( +)k+1 (n—l—)k onc
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E(X) Wn(“) 1§:<n+1>_(n+1)2“ AR RS e]

— ontl =\ T oontl g A L

De plus, V(X) = E(X?) — E(X)? = E(X(X + 1)) — E(X) — E(X)? par linéarité de I'espérance. Or, par la
k

n n —1
L)ka n =a Z k n = qa E n n = anz“_1. AiDSi,
k+1 \k =\ = \k—1
n " (n+1)22" — (n+1)(n+2)2""!
(Zn-H _ ])2 :

n
formule de transfert, E(X(X+1)) =

V(X) = 2n+1 1 - 2n+1

nn+1)2""  (n—1)2"+
1

11.116 ) a. On a Y(Q) C (N* U {+o0}) \ {1} par construction. Pour k > 2, en notant N; le numéro du jeton

obtenu au tirage i, on a (Y = k) = U (Ny =a,---,Ng_1 = a,Ng = b) (on tire d’abord tout le temps

1<a,b<3
a#b

le numéro a et enfin, au tirage k, on obtient le numéro b). Ces événements étant incompatibles, comme il

y a 6 couples (a,b) possibles, que les N sont indépendantes par hypothese et suivent toutes la loi uniforme
+oo

k=1
sur [1;3], B(Y = k) = 6( T P(N; = a)) P(Ny = b) = 3% (Y # +00) = | J (Y = k) (réunion incompatible)
i=1 k=2
X6 _68F 1 6 1
donc, par o-additivité, P(Y # +o0) = 2 3% =5 2 352 =5 X =073 = 1. Comme attendu, on en

conclut que P(Y = 4+00) =0 (il est presque siir d’arriver & avoir deux numéros différents).

k-1
b. D’apres la question précédente, (Y —1)(2) = N* et Vk € N*, P(Y -1 =¥k) = S)k% = % X (%)

donc Y — 1 suit la loi géométrique de parametre % Ainsi, d’apres le cours et par linéarité de I'espérance,

3i1=3e V(Y)ZV(Y—U:#:%

EV)=ENY-1)+1=
c. Pour (myn) € (N*)2, ona P(Y =m,Z =n) =0si n < mousim=1 par construction. Si n > m > 2,
ona(Y=m,Z=n)=(Y=m,Z—Y=n—m) et Z— Y représente le temps d’attente du troisieme numéro

une fois obtenus les deux premiers. Z — Y et Y sont donc indépendants et Z — Y suit la loi géométrique de

N 1 6 2 n—m-1 1 Hn—m
parametre 3 donc PY=m,Z=n)=PY=m)P(Z-Y=n—m) = 3w X (g) X3 = SeeT
n—1
d. Par construction, Z(Q2) C (N* U {4+o00})\ {1,2}. Pour n > 3, (Z =n) = U (Y =m,Z = n) (réunion
m=2
n—1 — —2 n—1 n-2 n—-2 n—1
: : bAoA e 1 2 1-(1/2) -2
incompatible) donc P(Z =n) = = = =
p ) ( ) ety 3n71 3n71 = 2m72 3n71 1— (]/2) 31171
. i +o0 m—1 +o0 Hn-3 +oo
A nouveau, (Z # +o00) = U (Z =mn) donc P(Z # +o00) = Y, 231174_2 = g > §n73 - % > 3n173 donc
n=3 n=3 n=3 n=3
]P’(Z#O):gx]_zizﬂ)—%x]_gil/s):%—%zk Comme attendu, on a P(Z = +00) = 0 (il est
presque stur d’arriver & avoir les trois numéros). Y. nP(Z = n) converge car, par croissances comparées,
n>3
Zn—l ) 1 L. +oo +00 Zn_] >
nP(Z =n) = ne——+= = o(—z). Ainsi, E(Z) = Y nP(Z =n) = ) nc—— Or, pour tout
+oo +oo / 1 / 1
x €l =11 Y ! = ( > x“) = ( -1 —x—xz) = ——> — 1 — 2x en dérivant terme a terme
n=3 n=3 T—x (] - X)
+oo 2 n—1 +oo 1 n—1
a 'intérieur de l'intervalle ouvert de convergence. En écrivant E(Z) = n(g) -2 n(g) ,ona
n=3 n=3
1 1 11
done E(Z) = — 1 —1-2(2/3) — 2<7 1 —2(1/3)) -1
(1-(2/3))? (1-(1/3))* 2
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On pouvait dire, par indépendance de Y et Z —Y, que E(Z) = E(Y)+ E(Z-Y) = % + 3 puisque Z — Y suit

la loi géométrique de parametre %
k
11.117)a. Z() C Net Vk € N, comme X et Y sont & valeurs dans N, on a (Z = k) = |_|(X =i Y=k—1)
i=0
donc Z est une variable aléatoire car X et Y le sont. Comme ces événements sont incompatibles, on a

k k i k—1i —(A+p) Kk k . . e—(7\+u)
]P) = = P =1 H:D = —1) = _}\)\— —H 2 = € i k-t = — k'.
(z=x) gb X=1)P(Y =k—1) ;O e ore k=D o ;o (1) m o )

Ceci prouve que Z = X 4+ Y suit la loi de POISSON de parameétre A + .

b. Si Z =n, on a forcément X € [[0;n]. Soit k € [[0;n], calculons P(X = k|Z =n) = P(X]szk—’zjn) Or
=n
(X=k,Z=mn)=(X=X%Y =n—k) donc, par indépendance de X et Y, en posant p = # €]0;1[, on a
u
P(X =k)P(Y =n —k) e MkeHunknl n\ nek oA -
P(X = |z = = = = 1 — A la 1
(X =Kz =mn) P(Z=n) De s A O LU Hsk ol
de X sachant (Z =n) est la loi binomiale B (n, L)
At

11.118 ) a. On peut mettre un jeton dans chaque urne et on peut mettre tous les jetons dans 'urne Uy, ce sont les

cas extrémes. Tous les cas intermédiaires sont possibles. Ainsi, X (2) = [[0;n — 1]. Si on note Ly le numéro
n

de l'urne dans laquelle on met le k-iéme jeton, on a (X, = 0) = ﬂ (Lx = k) (le jeton k dans I'urne Uy)
k=1

n
ou(Xp=n—-1) = ﬂ (Lxy = 1) (tous les jetons dans 'urne U;) donc, par indépendance des “placements”,
k=1

n

n n n
P(Xn=0)= [[ P(L=k) = [[ 1 =T et Xy =n)= [[ P(L=1)= [ 1 =1
K=1 k=1 k mnl K=1 =1k m
b. Comme le premier jeton va dans I'urne U; par définition, P(B; =1) =0et P(B; =0) =1

Soit k € [[2;n], les k — 1 premiers jetons ne peuvent pas aller dans 'urne Uy par construction, et I'urne Uy

est vide & la fin si et seulement si les n — k 4+ 1 derniers jetons ne sont pas mis dans I'urne Uy. Ainsi, on a
n

. mi=1_ k-1
By =1) = (](LaL # k). Par “indépendance des jetons”, P(By = 1) = [] P(L; # k) = [] ¥— = *—
i=k i

i=k i=k 1 e

par télescopage multiplicatif (marche aussi si k = 1) : By suit la loi de BERNOULLI de parametre

k—1
T

n n Dk—1_nn—-1) n_1 o o
c. Comme X;, = > By, E(Xn) = > E(Bx) = > = = par linéarité de I’espérance.
k=2 k=2 k=2 M n 2

n n
D’apres le cours, V( > Bk) =Y V(Bx)+2 >  Cov(BiBj). Comme By ~ B(u), on sait que
k=2 k=2 2<i<j<n n

V(B = k=1 (1-k=1) = (k= ‘)(2; £+ 1) De plus, Cov(By, B;) = E(BiB;)— E(B;) E(B;) et la variable

aléatoire BiBj suit la loi de BERNOULLI de parametre P(B;Bj = 1) = P(B; = 1,Bj = 1) car elle ne peut valoir
j—1 n

que 0 ou 1. Comme avant, sii<jetn >2 (By=1,B;=1) = (m(l_k + 1)) X (m(Lk ¢ {i,j})) d’ou
k=i k=j

j—1 n . . . . .
i k-1 k—2\_i—=1,0-2G-1) _(-1DG-2) . .
IP’(131—1,13]—1)—(kllL o )x(kUj o )—ji]x =1 a1 par indépendance des

n oy _ C v
L. Ainsi, V(Xn) = > (k 1)(n2 k+1) +2 > w En décalant les indices dans les deux
k=2 n 2<icicn M(n—1T)
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n—1 2 n—1 v—1
> mn— )4_7) Zz (v—])( > u). On connait ces sommes, et on
= v=

sommes, on obtient V(Xy) = 12
n° = nn—1 =

2 — — n—1
a V(Xy) = (zr;z )_( ])6:11(2271 ])+n(n]f 1 2_:2("_1)2"- En écrivant v = (v—1)+1 et en décalant &
_ —1@2n—1 —2)*(n—1)* —2)(n—1)(2n -3 .
nouveau, V(Xn) = nz 1_(n )G(nn ) + n(nl— 1 <(n )4(11 ) + (n=2)(n z )@n )) Apres
3 2
simplifications, avec V(X7) =0, on a Vn =2, V(X,) = 3% = 97112: 10n—2

11.119] a. X est le nombre de succes dans une répétition de n expériences (obtenir la face 1 au k-ieme lancer) de

BERNOULLI indépendantes de méme parametre p. D’apres le cours, X suit alors la loi binomiale B(n,p). De
méme, Y ~ B(n, q). Bien slr, puisqu’il n’y a que des faces 1, 2 ou 3, en notant Z le nombre de 3 obtenus, on
aZ=n—X-—Y et, comme avant, Z ~ B(n,r).

b. Notons, pour un lancer m, Ly, le résultat du m-ieme lancer. Pour (i,j) € [1;n]? tel que i +j < n, on

i j

a(X=1Y=j) = | ] (ﬂ 0 =1 ) (DLbk: ) ( N (Lk:3)). Par

1<aj<---<ai<n kGIN;n]]\I
]gb1<---<b)~<n
I={aq,,a;}n{bq,- bj}=0
i j
indépendance des Ly, chaque évenement ( ﬂ ) ( ﬂ Ly, = ) ( ﬂ (Ly = 3)) a pour

k ke[T;m]\I

=1
probabilité ptgir™ 1. Orily a ) ( ) évenements de ce type, c’est-a-dire de maniere de choisir i

entiers dans [[1;n] (les lancers qui vont donner 1) puis j entiers dans les n — i restants (ceux qui vont donner

2), les autres donnant forcément 3.

1

On trouve donc, si (i,j) € [1;n]]? tel que i +j < n, P(X =1,Y =j) = <n) (n B )p g,
)

Comme (X =n,Y =n) = ) car on ne peut pas avoir n fois 1 et n fois 2 en n lancers, P(X =n,Y =n) =0

alors que P(X =n)P(Y =n) =p™q™ # 0 d’apres a.. Ainsi, X et Y ne sont pas indépendantes.
“+o0
d. Comme N(f2) = N, on a aussi X(2) = N. Pourie N, (X =1) = |_| (X =1,N =n) car on a forcément

n=i

+oo
X < N. Ces événements étant incompatibles, par o-additivité, on a P(X =1i) = >, P(X = i,N =n) donc
n=i
+o00o
PX =1i) = Y, P(X = iN = n)P(N =n). Or, la loi de X sachant (N = n) est la loi binomiale de la

question a. car on compte le nombre de 1 dans une répétition indépendante de lancers de méme loi. Ainsi,
too AT e Apial Hoo \noi(g  pyn—t e Mpiat e*P)\(p)\)i.

Poc=9 = 5 (7)o - ot =S S L

=i nl! il g} (n—1)! il il

Par conséquent, X suit dans ce cas la loi de POISSON de parametre pA. Par symétrie, Y ~ P(qA).

+oo
Soit (i,j) € N?, (X = {,Y = j) = |_| (X =14,Y =j,N = n) car on a X +Y < N. A nouveau, par
n=i+j

incompatibilité de ces éveénements et o-additivité, on a P(X = i,Y =j) = >, P(X =1Y =jN =n)

n=i+j
—+o0
donc P(X=1Y=3j)= Y, PX=1iY =jN=n)P(N =n). En se servant de la question b., on a donc
n=i+j
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too M\ m—1\ ; e e MpigIattl too n—iojyn—ij
PX=1Y=j)= > () ( ) >'p1q]r"_l_J — = P"C.Il > % qui se simplifie
n=i+j \1 J n! ilj! ey (m—i—j)!
AyigiaitiorA “AP+a) i i)\t —PA, it —qA) g
en P(X=1Y=j)=¢ PqA e _ e PqA_ _e "pA e charr:1—p—q.Ona

ilj! ilj! il j!
done V(i,j) € N2, P(X =1,Y =j) = P(X =1i) x P(Y =j) d’apreés d. donc X et Y sont indépendantes.
11.120] a. L’application nulle est une variable aléatoire admettant un moment d’ordre 2 de 2 dans R et une

combinaison linéaire de deux variables aléatoires admettant des moments d’ordre 2 est aussi une variable
aléatoire admettant un moment d’ordre 2 d’apres le cours, donc E est un espace vectoriel de dimension
inférieure ou égale & n car engendré par n “vecteurs”. La variable aléatoire nulle appartient & G. Si (X,Y) € G?
et (A, n) € R2, AX + nY est une variable aléatoire réelle sur  et, comme 0 < E(XY)? < E(X?)E(Y?) = 0 par
l'inégalité de CAUCHY-SCHWARZ, E((AX + nY)?) = A2 E(X?) + 2AnE(XY) + u? E(Y?) = 0. Ainsi, G est bien
un sous-espace vectoriel de E et, en tant que tel en dimension finie, admet un supplémentaire F.

Si (X,Y) € E2, par I'inégalité de CAUCHY-SCHWARZ, XY admet une espérance finie donc f est bien définie sur
E. f est bilinéaire par linéarité de I’espérance, symétrique par commutativité du produit dans R et positive
car X2 étant une variable aléatoire positive, on a E(X?) = (X, X) > 0. Par contre, f(X,X) = E(X?) = 0 pour
toute variable aléatoire X non nulle de G donc f n’est pas définie positive donc pas un produit scalaire sur E
si G # {0} car pour toute variable aléatoire X non nulle de G. Néanmoins, si G = {0} et si f(X) = E(X?) =0,
alors X € G donc X = 0 et f est bien définie positive.

b. Par contre, g = f|r2 : F> — R définie par V(X,Y) € F2, g(X,Y) = f(X,Y) = E(XY) a les mémes propriétés
de bilinéarité, symétrie, et positivité en tant qu’application induite mais elle est aussi définie positive car
siX € Fet g(X,X) = E(X?) =0,onaX € FNG = {0g} donc X = 0 est la variable aléatoire nulle. Par
conséquent, g = f|p2 est un produit scalaire sur F.

c. Pour (X,Y) € F?, on a E(XY)? < E(X?) E(Y?) par I'inégalité de CAUCHY-SCHWARZ.

d. Méthode 1 : les variables aléatoires Z et T(z-oy admettent un moment d’ordre 2 donc, par I'inégalité
de CAUCHY-SCHWARZ, on a ]E(ﬂ(z>o)Z)2 < E(H%ZN)))E(ZZ). Or H(ZZ>O) = T(z>0) ce qui montre que

IE(TI%Z>O)) = P(Z > 0) et T(z-0)Z = Z car Z est positive. On a donc E(Z)? < P(Z > 0) E(z?) donc, comme

2
[E(Z?) > 0 par hypothese, on a bien P(Z > 0) > %g%)
Méthode 2 : par définition E(Z) = > zP(Z = z) > 0 puis par inégalité de CAUCHY-SCHWARZ sur
z€Z(Q)
les séries, en écrivant E(Z) = > (z2¢/P(Z =12))(y/P(Z =z)), comme ces séries convergent, on obtient
<
2 2 E(z)? 2
E(Z) < ( S 2 P(Z:z)) x( ) IP’(Z:z)) = E(z2)P(z > 0) done P(Z > 0) > —£0 car E(z2) > o.
zez(on) zeZ(Om E(Z )
n
e. Notons A; le nombre d’arétes issues du sommet i, on a Ay = > Xi,; par définition donc, comme les

j=1
i
variables aléatoires Xi ; suivent la méme loi de BERNOULLI et qu’elles sont indépendantes, d’apres le cours,

Aj suit la loi binomiale B(n — 1,py).

n
f. Aucune aréte ne part du sommet i si et seulement si A; = 0. Ainsi, Z, = ) T(a,—0) et, par linéarité de

i=1
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E(T(a—0) = 32 P(As = 0) = n(1 —py)".

s

Pespérance, E(Z,) =

Il
-
o
Il
-

1

In(n

g. Comme pyn = CT) ona E(Zy)=n(1—p)" " =nexp ((n —1Nn (1 — ClnT(ln))) et nl—iﬂ}oo@ =0
donc (n—1) In (1 —C@) +=Oon(1 —%) (—clnfln) +O(mr(£)2>) = In(n)+o(1) (apreés regroupement).

Ainsi, exp ((H—U In (1 —CM)) = e~c¢mmFo(l) = p=ceol) ~ n=¢ et on conclut que E(Z,) ~ n'~¢.
n +o0 +oo +o0 +oo

Ainsi, lim E(Zn,)=0sic>1, llm E(Z,)=4ocosic<Tlet lim E(Zp)=1sic=1.

n—-+oo mn—-+oo n—-+oo
—+oo
h. Comme Z, est & valeurs dans N, on a E(Z,) = > P(Zn 2 k) = P(Z, 2 1) = P(Zn > 0). Alnsi, il vient
k=1

P(Zn 2 1) < E(Zy). Cest d’ailleurs direct par MARKOV car Zy, est & valeurs positives donc, avec ¢ =1 > 0,

P(z, >21) < %’1) Or, comme ¥n > ng, E(Z,) < nexp ((n— 1)n (1 - cm>) car cM <pn <1
n n

pour tout n > ng. On a donc, d’apres g. et par encadrement, hm P(Z,, > 0) = 0 dans ces conditions.
n—-4oo

On n’a presque strement aucun sommet isolé quand n tend vers +oc.

n 2 n
i. On développe Z2 = <Z TI(AFO)) = > TI(A —o) +2 > Ta,=0)T(a;=0) ce qui donne, comme
i=1 i=1 1<i<jgn

H%AFO) = T(a,=0), la relation 72 =7, +2 Z T(A,=0)n(A;=0) d’0ou, par linéarité de l'espérance,
1<i<isn
E(zZ) = E(Zn)+2 >, P(A; =0,A; =0). Il y a une aréte possible entre les sommets i et j, et n —2
1<i<j<n
autres arétes possibles arrivant en i et n — 2 autres arrivant en j. Par indépendance mutuelle, on obtient

P(A; = 0,A; = 0) = (1 — pn)?™ 3. Ainsi, en reportant, E(Z2) = n(1 — pn)™ ' +n(n —1)(1 — pn)?"—3
donc, en factorisant par rapport aux puissances de 1 —pp, E(ZZ) =n(1 —p)™ (1 + (n —1)(1 —pp)™2).

E(Zn)z _ n _ 1

T e 2

et, comme en question g.,

D’apres la question d., on a donc 1 > P(Z,, > 0) >

Or lim —%— =1, Um (1 —pn)=1car Ing € N*, Vn > no, pn < c
n—s+oon — 1 n—-+oo

In(n)

2
onaVn>ng, (n—1)(1—py)" 2= (n—1)exp ((n—Z) In(1 —CM) — +4oodonc lim E(Z“) =1

n n—+oo n—-+oo IE( )

donc 11111 P(Zn > 0) = 1 par encadrement. Il y a presque stirement au moins un point isolé dans ce cas
n——+oo

quand n tend vers +oo (en fait il y en a beaucoup puisque nI—EToo E(Zn) = +00).

a. Xy représente le nombre de succes (la face du dé lancé vaut 1) lors d’une répétition de lancers
indépendants suivant la méme loi de BERNOULLI de parametre 5 (deux faces sur quatre). D’apres le cours,
Xn suit la loi binomiale B (n, %) De méme, comme il n’existe qu'une face sur quatre marquée 0 ou 2, Yy, et
Zn = n— Xy — Y (qui représente le nombre de faces 2) suivent la loi binomiale B (n, 4) Ainsi, E(X) = %
et E(Yn) = %

b. Comme dit & la question précédente, Z, = n— Xy, — Yy, suit la loi B (n, ) donc (Xn, +Yn)(Q) = [[0;n] et

n I\n—k 3\ k
pour k € [0;n], P(Xpn +Yn =k) = P(Zn =n—k) = (n B k) (Z) <Z> ce qui montre que Xy + Yn suit

3

la loi binomiale B (n, Z) On pouvait aussi dire que X;, + Yy, représente le nombre de fois ou I'on tombe sur
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les faces 0 ou 1 (3 faces sur 4) lors de n lancers indépendants avec la méme conclusion, X + Y, ~ B (n, i).

4
c. Si Fi est le numéro de la face du lancer k, pour (i,j) € [0;n]?, ((Xn,Yn) = (i,j)) =0sii+j > net

i j
((XmYn) = (iaj)) = |_| ﬂ (Fme =1)N m (Fp, =0)N ﬂ (Fx = 2) (réunion
k=1 k=1

kg MUP

I<mp<---<mi<n
ISpp<--<pj<n
{my,mit=myn{prspj=p)=0
d’événements incompatibles) donc, par indépendance des F,, et o-additivité, on obtient la relation suivante :

i j n—i—j
P((Xn,Yn) = (1,j)) = N(%) (411) (%) olt N est le nombre de (i + j)-uplets (my,---,mi,p1,---,pj)

‘o s . ’ . n .. . ..
vérifiant les conditions imposées. Or il y a () fagons de choisir les (mq,---,m;) et, une fois choisi ce
1

n-—i
i-uplet, il y a, de maniere indépendante, ( . ) facons de choisir le j-uplet (p1,---,pj) parmi les n —1i
)
lancers restants et un seul choix pour les indices correspondant a la face 2. Au total, cela donne I’expression

i |
N = <n> X (n ) 1) = % choix de tels (i +j)-uplets (mq,---, mi,p1,---,pj)-

i i) ln—i—j)

Ainsi, P((Xn,Yn) = (1,j)) =0sii+j>net P((Xn,Yn) = (i,j)) = anill_))'@)m(];)nﬂ Gisien

d. Comme X, et Yy, sont bornées, la covariance demandée existe et Cov(Xn, Yn) = E(XnYn) — E(Xy) E(Yn)
2

donc Cov(Xn, Yn) = E(XnYn) — % d’apres la question a..

Méthode 1 : pour une variable aléatoire réelle U admettant un moment d’ordre 2, on a E(U?) = V(U)+ E(U)?

2 2 \2
(Xn + Yn) 7 Xn YTH par linéarité de I’espérance, cela donne la relation

E(XnYn) = %(V(Xn FYn) + E(Xn 4 Yn)? = V(Xn) — V(Yn)

donc, comme on a aussi XYy =

E(Xn)? — E(Yn)z). Or on connait les lois

de Xn, Yn et Xn + Yn donc E(Xn + Yn) = %‘, E(Xn) = 2 E(Ya) = &, V(Xa) = &, V(Vn) = SLNY

16
2 2 2 _
V(Xn+Yn) = % ce qui donne E(X,,Yy) = %(31—2 + 91% — % — 3]—2 = n? - ?—6) = % Ainsi, on trouve
2

Cov(Xn, Yn) = E(XpYn) — % = —%.
Méthode 2 : par le théoréme de transfert appliqué & (X, Yn ) dont on connait la loi avec c. et avec f : N> — N

s . .. , . .. ! Nyt
définie par f(i,j) = ij, on a E(XnYn) = HP((Xn, Yn) = (1,)) = 1)%(7) (7) )

(1,3) (XnYn) igén ((Xn, Yn) = (1,3)) igén hlin—i—j)\2/) \4
Traitons deux cas :
n =1 Alors X1Y; =0 car il n’y a qu'un seul lancer donc E(X;Y7) = 0.

—1) (n—2)! N 26
n>2 E(XY,) = M= (—) (—) et,
B2 B =T 2 TG e a6

i>0,j>

avec i =i—1,j =j — 1, E(xnyn)zw ) (n—2)! )!(;)i’(l)nzvl

8 i’+j’<n72 1/!j/!((n_2) _:Ll_j/ 4
Avec c. appliquée avec n — 2 a la place de n, comme § = |_| ((Xn-2,Yn—2) = (i',j")), on a
i+j'<n-2
o _ 2)[ 1 i’ 1 n—2—i’

P((Xn—2,Yn_2) = (i,j')) = (=2t (—) (—) = 1. Cette

il+j,<n72 (( n y 'n ) ( ) )) i,+j§n72 'LI!]I!(TL _ 2 _ 1/ _ ]/)| 2 4
relation est méme vraie pour n = 2 car Y, #!(l)i/(l)mi/ = (l>o(l)o =1
P - v T 0 -7 —)1\2) \4 “\2) ) ="

nn—1)

Ainsi, EXnYn) = —
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_ _ 2
Dans tous les cas, on a donc E(XnYn) = % donc Cov(Xn,Yn) = % - n? = —%.

Bien sur, on suppose les tirages indépendants et équiprobables. Pour tout entier n € N, on pose
I’événement R,, = “on tire une boule rouge au tirage n”.
a. Soit n >0 et k € [0; N — 1], on a deux possibilités pour avoir k boules rouges au bout de n + 1 tirages :
e soit on a k + 1 boules rouges au bout de n tirages et on a tiré une boule rouge au tirage n 4+ 1 qui a
été remplacée par une boule verte.
e soit on a déja k boules rouges au bout de p tirages et on a tiré une boule verte au tirage p + 1.
Ceci se traduit par (Xn+1 =k) = ((Xn = k) NRng1) U ((Xn = k4 1) N Rpy1). Par incompatibilité de ces
deux évenements, P(Xni1 = k) = Pix,=1)(Rngt1) P(Xn = k) + Prx, —k4+1)(Rng1) PXn =k +1) (7).

Ou alors, comme X (€2) C [N — n;N], avec le systéme complet d’évenements ((Xn = i))N7n<i<N et la

N
formule des probabilités totales, P(Xn +1=%) = >  P(Xq =1)Px,—i)(Xnt1 = k) sachant que i # k et
i=N—n
i#k+1, Px,=i)(Xns1 = k) =0, ce qui donne a nouveau la formule (1).

Or, si X;, =k, il y a dans I'urne k boules rouges et N — k boules vertes donc Px, —x)(Rnt1) = % Et si

Xn =k+1,il y a dans I'urne k + 1 boules rouges et N — k — 1 boules vertes donc P(x, —x)(Rnt1) = k + 1
Ainsi, avec la relation (1), on a P(Xn41 =%k) = NN k P(X,, = k) + kNi] P(Xn =k +1).

Il reste a parler des cas particuliers :

osinzOetk:N,oma(X1:N):Q):(Xo:N—H):(Z)et(Xo:N):Qdomc,comme%=07
N—N
N

esin>Tletk=N)ou(m=0etk>N),ona(Xpr1 =N)=0= (X, =N) = (X, =N+1) donc on

on a encore la relation P(Xpo41 =N) =

P(XOZN)+NJ1P(XO:N+1):

a toujours la relation P(Xn41 =%) = % P(Xn =%) + kNi] P(Xn =k+1)=0.

Ainsi, dans tous les cas, ¥n > 0, Yk 2 0, P(Xn41 =k) = % P(Xn =%) + kNi] PXn =k +1).
N

b. Pour n >0, on a E(Xn41) = Y kP(Xn41 = k) car Xn () C [[0; N]] done, avec la question précédente, il
k=0

N
vient E(Xn41) = Z k(% P(Xn = lc)Jr]<T—~_1 P(Xn = k+1)) qu’on décompose, puisque k = (k+1)—1, en

N N
E(Xny1) = Z kP(Xn =k)— 111 Z K2 P(Xy = k)+ Z (k+1)2P(Xn =k+1)— ]L Z (k+1)P(Xn =k+1).
k=
Apres 81mp11ﬁcat10n et changement d’indice, comme ]P’(Xn =N-+1)=0,il ne reste dans cette formule que

AN _ _(1_1
E(Xn41) = zw(n 0 I kDB =kt ) (1- L) EC).

n
c. (E(Xn))n>0 est géométrique et, comme E(Xp) =N, Vn € N, E(X;;) =N (Ifﬁ) avec 1fﬁ €]-1;1[. Or

=z

E(Xy) = grj:ok]P’(Xn —k) = é KP(Xn = K) > 3° P(Xn = k) = P(Xn > 1) done 0 < P(Xp > 1) < E(Xn).

E(Xn)

= E(Xn) par inégalité de

MARKOV. Comme lim E(Xy) =0, par encadrement, liT P(Xn, =21)=0.
n—-—+0oo

n—-+4oo
N
Comme LO{N) = (1 — l) = exp (N In (1 — 1—)) et In (1 — l) ~ —L donc lim Nin (1 — l) =1,
N N N N/ +00 N N—+oo N
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par continuité de exp, on a lim E(Xn) =1. 0,37.
N— 40 N e
d. On a Y = 0 si et seulement il reste des boules rouges (il y en a au moins une dans l'urne) & toutes
+oo n
les étapes. Ainsi, (Y =0) = ﬂ (Xn, = 1) donc on a bien (Y =0) C ﬂ (Xx = 1) pour un entier n € N*.
n=0 k=1
Comme la suite d’éveénements (X > 1))k>1 est décroissante car si Xy41 > 1, a fortiori, on a Xy > 1, on
n
a(Y=0)C ﬂ (Xx =2 1) = (X = 1). Par croissance de P, il vient 0 < P(Y = 0) < P(Xy, > 1) donc, par
k=1

encadrement, P(Y = 0) = 0 en passant & la limite dans cette double inégalité d’apres ¢

11.123 ) a. Posons M = (X y), alors xm = ‘X Y
z X —z X—=x

e Siyz >0, xm = (X —x— /yz)(X —x + /yz) est scindé a racines simples sur R donc la matrice M

= (X — x)? — yz. Traitons trois cas :

est diagonalisable dans M, (R) d’apres le cours.
e Siyz =0, xm = (X —x)? est scindé sur R et M — xI; = (g g) donc M est diagonalisable si

et seulement si dim(Ex(M)) = 2 car x est valeur propre de M d’ordre de multiplicité 2. D’apres la
formule du rang, dim(Ex(M)) = 2 — rang (M — xI,) donc la matrice M est diagonalisable dans M, (R)
si et seulement si M — xI; = 0 ce qui est équivalent a y =z = 0.
e Siyz <0, xm = (X —x —iy/—yz)(X — x + iy/—yz) donc xm n'est méme pas scindé sur R donc la
matrice M n’est pas diagonalisable dans M, (R).

Ainsi, M est diagonalisable dans M, (R) si et seulement yz > 0 ou (y =z =0).

x? + Yz 2xy
2xz x? + yz

Or (2x—1)y:O<:)<x:%ouy:0) et (2x—1)z:O<:>(x:%ouz:O),(x—x2:O<:>(x:00u

b. Projecteur : M? = ( ) donc M2 =M <= (x —x? —yz= (2x — 1)y = (2x — 1)z = 0).

=1)et (% — % —yz 0) = (yz = 411) Ainsi, on a ’équivalence suivante, juste pour ’aspect projecteur
deM: M2 =M = ]E,yz = l)) Il y a donc une infinité

4

/N

(x=y=z=0)ou(x=1,y=2z=0) ou (x:

de matrices M de F dont I’endomorphisme canoniquement associé est un projecteur.

Projecteur orthogonal : comme la base canonique est une base orthonormale dans RZ euclidien canonique,

M représente un endomorphisme auto-adjoint si et seulement si M est symétrique et MIN=M = y=z Or

21

1 = y= :l:% et on sait d’apres le cours que M représente un projecteur orthogonal si et seulement

Y

si 'endomorphisme canoniquement associé est un projecteur auto-adjoint. D’apres les deux équivalences

précédentes, 'endomorphisme canoniquement associé a M est un projecteur orthogonal si et seulement si
((x:y:z:O)ou(x:1,y:z:O)0u(xzyzzz%)) ( 1y )).Iln’yadonc

que quatre telles matrices, (8 g) (endomorphisme nul de rang 0) ( ) (endomorphisme identité de

rang 2, % <1 1 ) (projection orthogonale sur la droite Vect((1,1)) de rang 1) et ( 711 > (projection

orthogonale sur la droite Vect((1,—1)) de rang 1).
c. Comme det(M) = X? — YZ, (M € GL2(R) <= (det(M) # 0) <= (X% # YZ). Or, en étudiant tous les
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cas, (X2 = YZ) = (Ij(X:k,sz,sz)>l_l((X:Z,Y:],Z:4)L|(X:2,Y:4,Z:1)). On a

6
P(X2=YZ)= 5 P(X=kY=kZ=kK+P(X=2Y=1,Z=4)+P(X=2,Y =4,Z = 1) par incompatibilité
k=1

de ces événements. De plus, comme X,Y,Z sont indépendantes et suivent la loi uniforme sur [[1;6], on a

P(X2 =YZ) = 6% + GL =8 _ 2]7 de sorte que P(M inversible) = 1 — P(X? = YZ) = %6 ~ 0, 96.

65 6 216
—+oo
11.124 ] a. Comme X(€2) = N par hypothése et que (X > k) = |_| (X =n), par incompatibilité de cette infinité
n=k+1
+oo +oo —)\}\n
dénombrable d’évenements et o-additivité, on a P(X > k) = >, P(X=n) = & r—- Or on sait
n=k+1 n=k+1
—AAn

n —A k
d’apres le cours que e = Z A donc que 1 = Z e A" ot on a donc PX>%k)=1- £
n=o ™! n=o m!

(1).
Or la formule de TAYLOR reste intégral appliquée a la fonction f = exp entre 0 et A a 'ordre k donne,

k _\n (n) A _ (k+1)
puisque exp est de classe C**! sur R, e = f(A) = Z (A=0)"(0) + f wdt. Ainsi,

! 0 k!
—0 n
comme ¥n € [[0; k], f™(0) = € [0; ?\] f(kJr])(t) = e' < e*, par croissance de l'intégrale, on obtient
k +1 Kk Ay k+1
A < ?\ (}\ ) — AN |: ( ) :| — E e A lt- 1
© s EO o f k! ZO n! e (k+1)! Jo Eo Tt (k+ 1) On multiplic par
CAam k41 kK —Ayn k+1
e*}‘>Oet1—Ze Z‘ < A et, avec (1), cela donne bien P(X > k) =1— Y €A < A .
= n! (k+1)! o ! (k+1)!
+oo n
b. N(f2) = N*U {400} et, pour n € N*, on a (N > n) = |_| ((Xo =k)Nn (W(X,-L < k)) en distinguant
k=0 i=1
selon les valeurs possibles de Xo puisque Xo(Q2) = ( ) = N. Par 1ncompat1b1hte de ces évenements et

indépendance de X, -+, X, on a donc P(N > n) = Z ( Xo = k) H P(X; < k)) Comme Xo, -+, Xn
= i=1

+oo —)\)\ n +oo _)\}\k n
suivent la méme loi de POISSON, on a P(N >n) = > € o (IP’(X < k)) => ¢ o (1 - P(X > k))
k=0 K k=0 K

Comme N est & valeurs dans N, N est d’espérance finie si et seulement si la série > P(N > n) converge, ce
n=>0

—Ark n
qui revient, grace a I'expression précédente, a la sommabilité de la famille (e k')\ (1 —P(X > k)) )( e
! n,k)e

On parle de familles de termes dans [O +00], donc le théoréme de FUBINI s’applique et on a la relation

]E(N):§P(N>n) z( e (1—]P’(X>k))n> +z°°(+2°°e (1_P(X>k))“)).comme

n=0 kO

Ly e Mk

+oo k
P(X > k) > 0 pour tout k € N, on aurait donc E(N) = e ™A X = —_——
(X>k)>0p ’ (N) = 2 =3 1—(1—P(X>k)) 2 WPX s 1
—A\k AR -A
Mais d’apres la question précédente, Vk € N e “A > ¢ k ce qui est absurde
P d P CKP(X > k) © kAT =(k+1)%5 - ceq
—A
par comparaison car la série > (k + 1 )T diverge grossierement. Par conséquent, la variable aléatoire N
k>0
n’admet pas une espérance finie.
c. Comme (N = 400) = |_| (N =mn) et que ces évenements sont incompatibles, par o-additivité, on parvient
n=1
400 +oo n—1
21— P(N=+400)= 3 P(N=n). Or(N=n) = | | ((x0 =1 N () X <K N (X > k)) et, toujours
n=l k=0 i=1
par incompatibilité de ces évenements, indépendance de Xo,- - -, Xy, et comme Xp, - -+, Xy, suivent la méme
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+oo oo
loi que X, BN =n) = 37 ( P(Xo = k)( T P(x: < k)) P(Xy > k)) =5 P(X =Kk P(X < k)" TP(X > k).
= k=0

+oo —+oo —+oo
Ainsi, Y. P(N =n) = Z PX=K)PX <K TPX>k) = > PX=KPX>k > PX<K!
n=1 n=1k=0 k=0 n=1
py WPX=KPX>k X PX=kKPX>k)
FUBINI et, P(X > k) < 1, P(N = = =
avec et, comme P( ) nz::1 ( n) kz::O - PX<K) kZ::O PX > k)

“+ o0 “+o0
dot > P(N=n)= > PX=k)=1car X(2) = N. P(N = +00) =0 donc N est presque sirement finie.
k=0

n=1
11.125] a. Par définition de [X], on a X < Y mais on n’a pas X < Y — 1 car Y est le plus petit entier k vérifiant

X < kdonc X > Y —1 et on ala double inégalité, comme pour la partie entiere, X <Y < X+ 1. Comme Y est

a valeurs dans Ry, que Y < X+ 1 alors que X+ 1 admet une espérance finie par hypothese, par comparaison,
Y admet aussi une espérance finie. Comme Y est & valeurs dans N, d’aprés le cours, E(Y) = Z P(Y > k).

De plus, pour k € N, comme X < Y, on a I'inclusion (X > k) C (Y > k). De plus, comme Y — l < X, et que k
est un entier, on a (Y > k) = (Y > k+1) C (X > k). Ainsi, par double inclusion, on a (X > k) = (Y > k) ce qui

donne P(X > k) = P(Y > k). Cependant 0 < Y donc, par croissance de espérance, 0 < E(X) < E(Y)

X <
OO
et on obtient bien 0 < E(X) < Z P(Y>k) = Z P(X > k).
k=0 k=0
b. Soit k € N fixé et n € N, par hypothése on a 0 < Xp41 < X, done (Xpq1 > k) € (Xn > k). En

posant A,, = (X5, > k), la suite (A )nen est done décroissante et, par théoreme de continuité décroissante, si

A= ﬂ An,ona P(A)= lim P(A,). Comme Vw € Q, lim Xp(w)=0,0naA = car pour un w €
neN n—-+oo n—-+oo

fixé, Inp € N, Vn > np, 0 < Xy <e=kdonc w ¢ A. Ainsi, on a bien Vk € N, hm P(X; > k) = 0.

n——+4oo
+oo
c. Pour k € N, soit uy : Ry — R telle que ui(x) = P(X|x] > k). On pose, pour x € Ry, u(x) = > u(x).
k=0

(H7) Pour k € Net x € Ry, ona0< X[y <Xo par hypothese donc (X|x| > k) C (Xo > k) et uy est

bornée sur Ry avec [[ur||oo,r, < P(Xo > k). Comme ) P(Xo > k) converge d’apres a. car Xo
k>0
est positive et admet une espérance finie, on a la convergence de la série " [|Juk||oo, . donc la
k>0
convergence normale de la série de fonctions Y wy vers u sur R,.
k>0

(H2) Pour tout k € N, la fonction ux admet une limite finie en +o0o d’apres la question b. et on a
1 = 1 ]P = = .
lim uk(x) xEToo Xix) >k) =t =0

X—+00

o0
Par le théoreme de double limite, on a donc m u(x) = Z &, = 0 dong, en particulier, lim u(n) =0 ce
—+o0 n—-+oo

+oo
qui donne lUm Z P(Xn > k) = 0. Par encadrement, comme on a Vn € N, 0 < E(Xn) < > P(Xn > k)
k=0

n—-4oo k=0

d’apres la question a., on en déduit que 1111 E(Xn) = 0 (c’est le théoreme de convergence dominée pour
n—+oo
les variables aléatoires).
11.126 | a. Il est implicitement admis dans I’énoncé qu’une suite (Sn)nen« de variables aléatoires indépendantes

de méme loi de BERNOULLI B(p) avec p €]0; 1] est telle que toutes les X;, sont définies sur un méme espace
probabilisé (€2, A, P). On pose X; = +oo s’il n’existe aucun entier k tel que S = 1 et, dans le cas contraire,

X1 = Min({k € N* | Sy = 1}) qui existe bien car la partie A = {k € N* | S) = 1} est alors non vide, incluse
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dans N et minorée par 0 donc son minimum existe.

On a déja, par construction, X1(€2) C N* U {400} donc X;(f2) est bien un ensemble au plus dénombrable.
k-1
Pour k € N*, (X7 =k) = ( ﬂ (Si = O)) N(Sx = 1) donc, comme les évenements (S; = 0) et (S; = 1) sont des

i=1
évenements par hypothese car les S; sont des variables aléatoires, par intersection finie d’évenements, on a
+oo

(X7 =k) € A. De plus, (X3 = +00) = ﬂ (X3 = k) donc, par intersection dénombrable de complémentaires
k=1

d’événements, (X; = +00) € A. Par conséquent, X; est une variable aléatoire sur (Q, A, P).

b. On sait d’apres le cours que X suit la loi géométrique de parametre p en tant que temps d’attente du

premier succes dans une répétition d’expériences de BERNOULLI indépendantes de méme loi. Ainsi, d’apres

le cours toujours, on a E(X;) = 1 et V(Xy) = 1%3
p P

n—1
c. Sik>n,(xn:k):< | ] <ﬂ(sij:1)> N N (Sm=O)>>ﬂ(Sk=1)car
1<ip<<in_1<k—1

j=1 m€[[1 k—1]
meg{iy, in_1

Xn(Q) C [[n;+00] par construction. En effet, on doit avoir n — 1 succes entre les étapes 1 et k — 1 et un

—1
]) de choisir

. Y . - . k
dernier succes a I'étape k. Avec les mémes arguments que précédemment, comme il y a (

k—1

ces (k — 1)-uplets (i1,---,in—1), on a P(Xy =k) = < :
n—

>p“(l —p)*¥™™ (c’est la loi de PoLyA).

d. Comme Yj,---,Y, sont & valeurs dans N, sont indépendantes et suivent la méme loi que Xj, on a

= k]; Gy, = (Gx,)™ donc Vt E} - ﬁ;ﬁ[, Gs, (t) = (—L1 — (11 mn ) = p“t“—(1 — (]L m TR

t -n
Or on sait d’apres le cours sur les séries entieres que Vx €] — 1;1[, (14+x)™" = > ( 5 )xk avec le calcul
k=0

- (—n)(—mn—=1)---(—n =k +1)  (=D*(n+k—-1)! o
(k) = I = W 1] donc, pour t € } - m %[’ il vient
mn 1 o = m4k—1) ht+k=1) pn n
Gs, (t) =p™t A= —por =" t k:om(]_p)ktk 23 = ) (1—p)kt™. Avec le

+o00 Y 1 N
changement d’indice j = n+k,ona Gs, (t) = > %p (1—p) ™t = Z <] >p“(l—p)’“t].
j=n (Tl—]).(Tl—]). j=n —1

Comme Gs, (t) = > P(S, = j)t) par définition et que le rayon de convergence est strictement positif, on
j=n

k—1
peut identifier et on a Yk > n, P(Sp =k) = <
n

k—
3 ]>p“(1 -p)
Comme on retrouve la loi du n-iéme succes comme en question c., on se doute qu’il y a un lien. On écrit
Xn = X7 + Z (Xx41 — Xk) et on interpréte Xy — Xx comme le temps d’attente du (k + 1)-iéme succes

une fois qu on a eu le k-ieme succes, qui suit donc la méme loi géométrique de parametre p que X;. En

admettant que les variables aléatoires Y1 = X7,Y2 = X2 — X1,--+,Yn = X5, — Xn_1 sont indépendantes, on

n
retrouve le fait que Sy, = Y Yy = Xy, suit la loi de POLYA (ou loi binomiale négative ou loi de PASCAL).
k=1

11.127 | Notons pour toute la suite Tx la variable aléatoire qui est le résultat du tirage d’indice k s’il a lieu. Par

construction, X, (2) C [1;n] donc Xy, est bornée et admet donc une espérance finie. On suppose bien sir

aussi que chaque boule de I'urne a autant de chance d’étre tirée a chaque étape.

a. Bien sir, si n =1, on vide 'urne en un seul tirage de maniere certaine donc X7 =1 et E(X;) = 1.
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Sin = 2, (XZZUZ(T] :1) et (XZ :2)=(T1 =2,T :]) donc P(XzZ]) = ]P(T] :1):%et
P(X;=2)=P(T =2)P(T,=1|T) =2) = % x 1= % Ainsi, par définition, E(X,) = % X 1 +% X 2= %
b. Pourn>2eti=1,0ona (X, =1)=(T; =1) donc P(Xn:1):l.
n
n
Pourn > 2eti€ [2;n],ona (X =1) = |_|(T1 = j,Xn = 1i). Cette réunion étant disjointe, on a donc
j=2

n
PXn =1) = > P(M1 = {)PXn =1i| T =j). Or, quand on a tiré la boule j au premier tirage, on
j=2

enleve les boules numérotées j,j + 1,---,n et on se retrouve au point de départ du probleme définissant

Xj—1, une urne contenant les boules numérotées de 1 & j — 1, avec les mémes regles, sauf qu'on a déja

effectué un tirage. Ainsi, P(Xn, =1 |Ty =j) = P(Xj_1 = i —1). Par conséquent, sin > 2 et i € [2;n],
n n—1
P(Xn=1) =1+ S P(X;_1 =i—1) =1 3 P(Xx =i—1) en posant k =j — 1.
nj=2 =1
n 1 ] n — 1 1 n—-1 n
Alors, E(Xn) = Y iP(Xp =1) = -+ — Z Z PXx=i—-1)==+=+ > > iP(Xx =1i—1) en inversant
i=1 n Mi=2 k=1 N My=1i=2
1 1 n—1k+1
la somme double. Mais P(Xyx =i—1) =0des quei>kdonc E(Xn)=—-+-= > > iP(Xxy =i—1). Ainsi,
N M k=1i=2
1 n—1k+1 1 1 — k41
E(Xp) =141 Z =1+ PXx =1i—1)= ~+— Z (1+ E(Xx)) car E(Xx) = > 1—1)P(Xee =i—1)
n “ k=1 i= n n k=1 i=2
k+1 n—1
et P(Q) =1= > P(Xxy =i—1). On a donc bien la relation attendue, E(X;,) =1 +1 Z E(Xx) sin > 2.
i=2 n Lz
c. Méthode 1 : d’aprés b., on a E(X3) = 1+ 7(1 + %) =1 —|— = —|— < = % De méme, on obtient
E(X4) =1+ 21(1 + % +1+ % + %) = % + - + - % Il semble, surtout avec l'aide de la question
n
supplémentaire, que E(Xy) = Hp = > % pour tout entier n € N*. On a déja réalisé I'initialisation. Soit
k=1
n—1 -1 k
> 2 tel que Vk € [1;n — 1], E(Xx) = Hy, d’apres b., on a E(Xn) =1+ 1 z E(Xy) =14 1 z s 1
N x= “ k=1j=1
]n—ln—1_| _In—lni. n—11 1
donc E(Xy) =14 = DONE SEC NN T LD R ( > 7) — ="' = H,,. Par principe de récurrence
=1 k=j ) =1 ) j=1 n
forte, on a bien Vn € N*, E(Xy) = Hp donc E(Xy,) ox In(n
n—1 n
Méthode 2 : d’aprés b., pour n > 2, nE(Xy) =n+ Y, EXx) et (n+ 1) EXnt1) = (n+1)+ Z E(Xx)
k=1 =
donc (n 4+ 1)EXn4+1) =14+ nEXn) + EXn) = (n+1)EXn) +1 dott E(Xn41) — E(Xp) = ﬁ Par
n—1 n—1 1
télescopage, on a donc E(Xn) = E(X1) 4+ ¥ (E(Xkq1) — E(Xy)) =1+ 3 1= Hyp.
k=1 k=1

Question supplémentaire : comme f : t — ]{ est continue et décroissante sur [1;+oo[, on a la majoration

ket Kt k
Yk € [[1;n]],fk f(t)dt = fk % < f(k) = % et Vk € [2;n], fﬁ1 % > % En sommant la premiere
RS . g L . . .
inégalité pour k € [1;n] et par CHASLES, on obtient f] T = > . Si on fait de méme pour
k=1

n
la seconde pour k € [2;n], on a Ln% >H,—-1= > % Ainsi, In(n +1) < Hy < 14 In(n). Comme
k=2
In(n + 1) 1n( ) ~ In(n) + 1, par encadrement, on a donc H, ~ In(n).
+o0 oo
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i
11.128)a. Pouri € N, (X =1) = |_|(X = 1,Y =j) (réunion disjointe) donc, par o-additivité, on a la relation
j=0

i Caai i\ o A\ ) A\
PX=i)=Y P(X=1Y=j)=¢ A 3 (1) 11—t = =2 (a+1— )t = S par le binome de
j=0 1 j=0 1!

j il

NEWTON donc X suit la loi de POISSON de parametre A.
—+o0

b. De méme, pourj € N, (Y =j) = |_| (X =1,Y =j) (réunion disjointe) donc, par o-additivité, on a aussi
i=j
+00 —A Jiyj oAl (1 — )T “A g Fo K1 o)k
P(Y=j) = % P(X =i,y =) = e N SFA0 )7 eodd) $R AT Z )% ) posane k=i .
=) it ) it & K

ENNEY, — A j
Ainsi; P(Y =) = %e”“‘x) = ﬂ donc Y suit la loi de POISSON de parametre oA.
) ):

. “M\! e *M(ar)°
c. Par hypothese, P(X =0,Y =1) =0 alors que P(X =1) = eT >0et P(Y=0) = o > 0 donc
P(X=1,Y=0) # P(X=1)P(Y =0). Ainsi, X et Y ne sont pas indépendantes.
+oo
d. On a zZ(Q2) C Z et, pour k € Z, comme (Z = k) = U(X = k+j,Y = j) (réunion disjointe), par
j=0

+oo
o-additivité, on a P(Z =k) = Y P(X =k +j,Y =j). Traitons deux cas :
j=0

Sik<0,ona P(Z=k)=0carVje N, P(X=k+j,Y=j)=0.

4oo ,—Ayk+j jr1 _ \k S LTA A S e
Sik >0, il vient P(Z=k) = j;o e A ].(!Xk!(] o) _ e S! IV ;Z:o )‘j—‘!" et on reconnait une
e—}\)\k(l _ (X)kekoc B e—)\(]—oc) )\(] _ Oc))k

série exponentielle qui donne P(Z = k) = o = Sc'

Ainsi, Z suit a loi de PO1sSON de parametre A(1 — «).

e. Pour (j,k) € N?, comme P(Z = k) > 0, on a par définition P(z_y)(Y = j) = % donc,
. . PX=k+j,Y=j) e M (1 — x)<K! e Mar)
X=Y Z ]P) _ Y = = ) — — d..
puisque +Z, (sz)( i) P(z = k) j!k!e’)‘“*"‘) = “))k ] avec

e o))
j!
Vie N, Vke Z*, P(Z=k,Y=j)=0= P(Z=Xk)P(Y =j), Y et Z sont indépendantes.

f. Comme Y(j,k) € N2, Piz_iy(Y =) = P(Y =j) = avec la question b. et qu'on a méme

11.129] a. Xa est le temps d’attente du succes (appel concernant le produit A) dans une répétition d’appels

indépendants (on le suppose) qui suivent la méme loi de BERNOULLI de parameétre p = % (% de probabilité

que appel concerne le produit A et 1 —p qu’il concerne le produit B). D’aprés le cours, Xa suit la loi

géométrique de parametre p. D’apres le cours, on a E(Xa) = 156t V(Xa) = ]—_ZB = 20. De méme,
p p

1 5 1-(0-p) _5
X ~ §(1 — d E(Xg) = ==et V(Xg) = = =,
B 9( p) once ( B) 1 —p 4 e ( B) (] 7p)2 16
b. Pour tout k € N*  on note I’événement Ay = “le k-ieme appel concerne le produit A”. Pour tout

entier n € N*, en suivant l'indication de I’énoncé, on a (L =n) = (L = n,An11) U (L = n,An41) (s0it n
appels concernant A puis un concernant B ou l'inverse). Par construction, (L = n,Any1) = (Xg =n+1)
et (L =n,Ant1) = (Xa =n+1). Comme ces deux éveénements sont incompatibles, on obtient la relation

PL=n)=PXg=n+1)+PXa=n+1)=p"(1—p)+ (1 —p)"p d’apres la question a.. On en déduit
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bien P(L=n)=(1—p)P(Xa =n)+pP(Xg =n) =0,8P(Xa =n) +0,2P(Xg = n).
c. Comme nP(L=n)=(1-p)nP(Xa =n)+pnP(Xg = n) et que les deux séries > nP(Xa = n) et

n>l
> nP(Xg = n) puisque XA et Xg admettent des espérances finies d’apres le cours, on en déduit par somme
nxl
que Y. nP(L =n) converge (et absolument car elle est & termes positifs) donc L admet une espérance finie
n>l

i vaut E(L) = (1 — p)E(X E(X 1-=p, p _08,02_21_, )5
qui vaut E(L) = (1 —p)E(Xa) + pE(Xg) = o +1_p 02+08 5 ;

11.130] a. Il s’agit juste de vérifier que pour P(X = i) > 0 pour tout entier i € N*, ce qui est évident, et que

+oo
> P(X =1i) =1, ce qui 'est moins.

i

Méthode 1 : en mode famille sommable, par sommation par paquets, comme on a 21% = ) Zilr] , il vient
J:
—+o0 +oco 1 +o0 +o0o +oo 1 —+o0 1 1 1
> PX=9=% 3 DI S e e Y R RS}
i=1 {=1j=1 5% j=1i=) 2 j=12 | = 1—-
2
Méthode 2 : soit f :] — 1;1[— R définie par f(x) = . Z x™. On peut dériver terme & terme dans
—x
Iintervalle ouvert de convergence de cette série entiere de rayon de convergence 1 pour avoir la relation
+o00o 00
Vx €] =11, F(x) = —— = 3 nx™ " done ¥2f/(x) = —— = 3 nx™*'. En prenant x = 1 dans
1—x? & —x7 & 2
. Too 1/4
cette relation,on a . P(X=n)= - =
n=1 1/4

Quelle que soit la méthode, la définition de la loi de X est cohérente.

b. En reprenant la fonction f de la question précédente et en dérivant une fois de plus, on obtient la relation

2 +o0 +oo +oo +oo
Vx €]-1;1], f/(x) = —5—3 = > n(n—1)x""2doncx>f"(x) = > n(n—1)x"*1 = > n2x+1— 3~ nxnt!
(] - X) n=2 n=1 n=1 n=1
+oo 2 3 2 1 -« : 3
donc Y n2x™ = x3f7(x) + X2 (x) = X~ + —*—. En prenant x = ~ & nouveau, on arrive &
n= (1=x7 (=% 2
=y T 42 2(1/8) | 1/4
n
)= nPE = e = s T

c. Comme on préleve une boule dans une urne n’ayant des boules numérotées que de 1 a X, la boule tirée
a un numéro Y € [1;X]. Soit n € N* et k € [I;n], ona P(X = n,Y = k) = P(X = n) Pix—n)(Y = k) car

P(X=mn)>0etona Px_n)(Y=k) = 1 car les n boules de I'urne ont autant de chances d’étre prises. Par
n

conséquent, P(X =n,Y =k) = PX=mn) _ 2n1+1 . Bien str, P(X=n,Y=k)=0sin€ N*et k >n.
n
“+o0
d. On a clairement Y(€2) = N* et, pour tout entier k € N*, on a (Y = k) = |_| (X =n,Y = k) (réunion
n=k

+
d’événements incompatibles) donc, par c-additivité, on a P(Y = k) = > P(X = n,Y = k) ce qui donne

—k
= 1 1 1 ) 1
P(Y =k) = Zk JRTT = SReT X T = Sk Ainsi, Y suit la loi géométrique de parametre p = 7" On sait
e _ 2
2
d’apres le cours que E(Y) = 1 =26t que V(Y) = 1%3 =2.
p p

11.131 ) a. Par construction et comme les cas extrémes sont “n fois piles” ou “n fois faces” d’un coté et “alternance

pile/face” ou “alternance face/pile” de lautre, on a N(2) = [1;n].
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'Sip=%7onadonc P(N=2)= (n_])_
)Pn_1 ~(-pm "
p—(0-p)
c. Pour k € [1;n — 1], comme (Ixy =1) = (Pk ﬂm) U (ﬁﬂ Pk+1), on obtient P(Ix) = 2p(1 —p). Puisque

e Sip# %, classiquement, P(N =2) =2p(1 —p

Ik ne prend que les valeurs 0 et 1, Iy suit la loi de BERNOULLI de parameétre 2p(1 —p) avec E(Ix) = 2p(1 —p)
et V(I) = 2p(1 —p)(1 = 2p(1 —p)).
d. On a une série supplémentaire a chaque changement de pile a face ou de face a pile entre les tirages k

et k+ 1 (et on a ce cas si et seulement si Iy = 1) ce qui donne, en comptant le premier tirage qui améne

n—1
forcément une premiere série, N =14 > .
k=1
n—1
e. Par linéarité de 'espérance, on a E(N) =1+ > E(Ix). Ainsi, EIN) =14+ 2p(1 —p)(n —1).
k=1

n—1 n—1 n—1
D’apres le cours, on a V(N) = V(] + > Ik) = V( > Ik) = > VIy)+2 > Cov(Ii, 1j). Or
k=1 k=1 k=1 1<i<j<n—1
Cov(ly, Ij) = E(1i];) — E(I;) E(I;) et la variable aléatoire I;I; ne prend que les valeurs 0 et 1 donc suit une
loi de BERNOULLI. Traitons deux cas selon la proximité des entiers i et j :

Sij=i+1, (L =1)= (Ii = 1,1ix1 = 1) = (Pt N Pig1 N Pi42) U (P N Pig1 N Piy2) done, avec les mémes
arguments qu’avant, P(I;1j =1) = p(1—p)p+(1—p)p(1 —p) = p(1 —p) donc E(LI;) = p(1—p)
et Cov(Iy, Ij) = p(1 —p) —4p*(1 = p)? = p(1 = p)(1 —4p(1 = p)) = p(1 —p)(1 — 2p)*.

Sij>i+1 , comme la variable I; ne dépend que des lancers i et i + 1 et I; ne dépend que des lancers

j>1i+1etj+1, par le lemme des coalitions, I; et I; sont indépendantes donc Cov(I;,I;) = 0.

nZz Cov(Ti, Tiy1) = 2p(1 = p)(1 = 2p(1 = p))(n = 1) + 2p(1 — p)(1 — 2p)*(n — 2)

i=1
qu'on peut factoriser en V(N) = 2p(1 —p)[(1 = 2p(1 —p))(n — 1) + (1 — 2p)*(n — 2)] ou écrire encore sous
la forme V(N) = 2p(1 —p)(2n — 3) — 4p?(1 — p)?(3n — 5).

n—1
Ainsi, VIN) = > V(Ix) +2
k=1

—+oo
11.132] a. Comme Q = Net quon a P(Q2) =1 = ) P(X = i) par c-additivité car N est dénombrable, il vient
i=0
. ’ +oo | 1 +oo | 1
a > L =1. Or on sait que Vx €] — 1;1[, f(x) = > x* = —— qui donne f'(x) = > ix'"' = —— en
i=02 i=0 T—x =1 (1—x)

dérivant terme a terme a l'intérieur de U'intervalle ouvert de cette série entiere de rayon de convergence 1, ce

d +z°:°.i X linliant Ainsi +z°:°i 1/2 5 d'ot 1
qul aonne X" = —— €n multipliant par x. 1181, —_ = 5 = ou x = —.
i=0 (1—x)? o2t (1-(1/2))? 2
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on a iP(X = i) ~ o(%) par croissances comparées donc X
i

—+oo

b. Comme Vi € N, P(X = i) = Zi%’
+o0 +oo .2

admet une espérance finie par comparaison aux séries de RIEMANN et E(X) = Y iP(X =1) = ), ST

i=0 i=1

ﬁet on

En prenant encore x = %, on a

+oo
On dérive une fois de plus terme & terme la relation Vx €] — 1;1[, xf'(x) = > ix' =
i=1
—+o0 . +o0o X 2
obtient Vx €] — 1;1], L’% = > %' done Y At = L—H;)
(1—x) i=1 i=1 (1—x)

too +oo .2
E(X)= 3 iP(X=1)= 3 Sy = (1/4?/(83/2) _;
i=1 i=1

c. Comme i?P(X = i) ~ o(%) par croissances comparées, X admet un moment d’ordre 2 et, par la

—+oo
formule de KONIG-HUYGENS, V(X) = E(X?) — E(X)? = E(X(X — 1)) + E(X) — E(X)?. Or, par la formule

_t L i)
de transfert, on a E(X(X —1)) = D il —1)PX =1i) = > T

i=0 i=2

On peut dériver une fois de plus

+oo .
la relation Vx €] — 1;1[, Y. i*x'~T = (]]% dans lintervalle ouvert | — 1;1[ de convergence pour avoir
i=1 —x

+o0 . +o00 X 3
Vx €] - 11 S iPE— 1?2 = 72(2+X2 donc Vx €] — 1;1], 21 — XM = 72(2+X)Z )
i=2 (1—x) i=2 (1—x)

toujours x = % pour avoir E(X(X —1)) = W =10. Ainsi, V(X) =10+3 -9 =4.

On prend

a. Pour tout entier n € N*, posons Y, = % On a donc Yn(2) = {0,1} et (Yn =1) = (Xn = 1),
(Yn =0) = (Xn, = =1) donc P(Y, =0) = P(Y, = 1) = % de sorte que Yy, suit la loi de BERNOULLI de
parametre % De plus, par transfert d’indépendance, les variables aléatoires Y;, sont indépendantes car les

- 1

Xn le sont. Posons Ty, = Y Yy, on sait d’apres le cours que Y;, suit la loi binomiale de paramétres n et 7
k=1

OrT, = % + 57“ donc Sy, = 2T,, — n. Comme T (Q) = [0;n], on a Sy () ={-—n,—(n—2),---,n—2,n} et

Wk € [0n], P(Sn =2k —n) = P(Tn = k) = <D (%)k(%)“_k - zin (2)

Par linéarité de lespérance, comme E(Xy) =1 X %—i— (1) x % = 0 pour tout k € [1;n], on a E(S,,) =0. Par

n
indépendance des Xy, on a V(Sp) = 3 V(Xy) =n car V(Xy) = E(XZ) — E(Xx)? = E(XZ) et que X2 = 1.
K=1

b. Par BIENAYME-TCHEBYCHEV, pour a > 0, on a P(|Sy — E(Sn)| = na) <

et (Sn = na) C (|Sn| = na) done, par croissance de P, on a P(S;; > na) < P(|Sa| = na) < %

c. Pour a > 0 et s > 0, par stricte croissance de la fonction t — et on a (X = a) = (e5* > e%9). Or la

variable aléatoire eSX est positive donc, méme si e5X admet une espérance infinie auquel cas I'inégalité est

sX
triviale, on a P(X > a) = P(esX > e%%) < E(ia ) d’apres I'inégalité de MARKOV.
e

n
d. Pour s > 0, on a e%5» = [] %%k or, par transfert d’indépendance, les variables aléatoires e$X1, ... eSXn

k=1

E(esXx). Mais, par théoréme de transfert,
1

E(esXx) = %eSX] + %esx(*l) = ch(s) donc, en prenant X = S dans la question précédente, on obtient

sont indépendantes donc, d’apres le cours, E(esSn) =

T:]:
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n n
la majoration P(S;, > na) < la I ch(s) = (Chs(j)) .

e k=1 e
Méthode 1 Pour tout réel d’ es 1 u h = g 52 t SZZ = 52 Sian, = 27n!
e. ethode : our to ce apres le cours, C. = [§ = . = r
e e r S, D ’ (S) A (2 )| € A 2n [ 1 an (2 )|7

2(n+1)an _ _ap
(2n+2)(2n+1)  2n+1

Vne N, an<1<:>ﬁ<ﬁ. DoitVs € R, ch(s) <eZ.

onaany = < an done (an)nso décroit et ap = 1. Ainsi, on obtient l'inégalité

N

2
Méthode 2 : la fonction f : s — 57 —In(ch(s)) est bien définie sur R car ch(s) > 0, deux fois dérivable par

opérations et /(s) = s—th (s) et f(s) = th*(s) > 0 pour s € R donc, comme f'(0) = 0, f' est négative sur R_

et positive sur Ry ce qui montre que f est minimale en 0 et, comme f(0) = 0, que f est finalement positive sur
2
R. Ainsi, Vs € R, In(ch(s)) < 37 et on conclut par croissance de I'exponentielle que Vs € R, ch(s) < e%’/2.

n 2
f. Avecd. ete.,ona P(Sy > na) < (%) < en(s?/2)=sna_ pogonsg g:s+> 57 —sa, alors g est dérivable
e

sur R et ¢'(s) = s — a donc g est décroissante sur ]0; a] et croissante sur [a; +oo[ donc elle est minimale
ens=aoug(a) = —a?. En prenant s = a dans la majoration précédente, on obtient bien la majoration

7?1(12
P(Sy, > na) <e  Z  pour a>0.

: 1 (X teeyn-2 f o n o .
g. Pour x > 0, on sait que g(x) = — ( PR —x) =5y X = Y, —%——. Ainsi, comme la fonction

B x n=0 n! n=2 n! n=0 (TL + 2)'
400
h: R — R définie par h(x) = > (anz)' est développable en série entiere sur R donc qu’elle y est de
n=0 \1 :

classe C*°, la fonction g, qui en est sa restriction & R* | se prolonge bien en une fonction continue (et méme

+oo n—1

C>®) sur Ry telle que Vx € R "(x) = nx

) + q + 9( ) n§1 (n+2)!
XZn

2n
11.134 ) a. Pour x # 0, en posant u, = ( ) o pour le critere de D’ ALEMBERT, on obtient apres simplifications,
n

> 0 donc g est croissante sur l'intervalle R .

2,mn_2n+42 2 2
Un i1 ‘ _ (n+2)!(nh 4?“*: _ (2n+z)(2n+21)x C2@n A X g i | ’ 2
Un En)l((n+1)1)4 4(n+1) 4(n+1) n—too | up
esi|x|]<1,onal<1donc ) un converge absolument par le critere de D’ALEMBERT. Ainsi, R > 1.
n>0
esi|x|>1,onal>1donc > u, diverge grossiérement par le critere de D’ALEMBERT. Ainsi, R < 1.
n=0

2n
4 - oy . 2n\ x .
Par conséquent, le rayon R de convergence de la série entiere lacunaire 3 ( o vaut R = 1. On sait
n=>0

1 _ = Enten)! o
\% 1 +y n=0 4n(n!)2
+o0 | +o0 /2 2n
x €] — 1;1[, en prenant y = —x? €] — 1;1[, on obtient — 1 — > 1(1271).2)(2,1: > n .
\/ ] — Xz 4 (TL')

n
n=0 n=0 \ T 4

d’aprés le cours ou on retrouve facilement que Yy €] — 1;1], Ainsi, pour

b. Par construction, Yy = Xk;—]

suit laloiB<%) car Yy = 0 <= Xy = —let Yy =1 <= Xy =1. Par

n
indépendance de Xj,---, Xy, donc de Yq,- -+, Yy, d’apreés le cours, T, = Y Yj suit la loi binomiale B (n, ]E)
k=1

n
c. Or Yk € [1;n], Xx = 2Yx — 1 donc Sy = 2( > Yk) —n = 2T, —n. Comme T, (2) = [0;n], on obtient
k=1

Sn(@) = {-n,—(n=2), -, (n=2),n} et P(Sn = 2k —n) = P(Tn = k) = (n) (l)k(1>n_k B 21n<n)

k/\2/) \2 K

n
pour tout entier k € [[0;n]. Par les propriétés de 'espérance et la variance, on a E(S;,) = >, E(Xx) =0 et
k=1
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n
V(Sn) = >, V(Xx) =ncar Xy, -+, Xn sont indépendantes car on a clairement E(Xy) =0et V(Xy) =1. On
k=1

pouvait passer par Tp, en effet, V(S,) = V(2T, —n) =4V (T,) done E(S,) =2E(Th) —n=2(n/2)—n =0

et V(Sn) =4(n/4) =ncar T, NB(n) ) donc E(T,) = n<2> et V(T,) = n(%) X (1 - %)
d. Soit x €] — 1;1[, on a |[pnx™| < |x|™ car pn, € [0;1] donc, comme la série géométrique Y |x|™ converge
n>0

car |x| < 1, par comparaison, y, pnx™ converge absolument.
n=0

n
e. Pour n > 1, on peut partitionner (Szn = 0) en (San = 0) |_| (San = 0) N (T = 2k)) en distinguant

selon la premiére fois (notée T) olt 'on va avoir (Sax = 0) (S2k+1 75 0 car S a la méme parité que n). Par
mn

a-additivité, pn, = P(San = 0) = Z P(Son = 0,T = 2k) = > Prr—21)(S2n = 0)P(T = 2k). Pour tout
k=1

ke [lin—1], ona Pr_z(San = O) = P(S2(n—x) = 0) (on repart de 0 apreés 2k “mouvements” et on veut

étre a 0 au bout de 2n étapes). Par contre, comme (T = 2n) C (San = 0), on a Pr—3n)(S2n = 0) = 1. Ainsi

n—1
Pn=dn+ D> qkPn-k = Z qxPn_k car on a posé po = 1 par convention.
k=1 =)
La série génératrice > IF’(T =n)x"™ de T, qui est bien une variable aléatoire & valeurs dans N, a un rayon de
n=0

convergence au moins égal & 1 d’apres le cours. Six €]—1;1[, on peut effectuer le produit de CAUCHY, comme
—+o0 —+o0 —+o0 n

P(T =2n+1) =0 pour tout n € N, G1(x)p(x?) = ( > qnxzn)( > anZR) = > ( > qkpn,k)xz“.
n=0 n=0 n=0 k=0

n 0
Or pn= > pn_xqk sin € N* car qp = 0 mais Y pn_xqx = poqo = 0 alors que po = 1. Ainsi, pour tout
k=0 k=0

€l —1;1[, Gr(x)p(x?) = Z pnx?™ = p(x?) — 1. Mais p(xz) =1+ Z pnx?™ > 1 car pn > 0 donc p(x?) > 0

n=1
2y _
et on a donc la relation attendue, & savoir Gy(x) = p) -1

P(X2
1 q = (2n)!
D’apres c., comme pn = P(Spn =0) = P(Ton =n) Zz—n il vient Vx €]-1;1], p(x) = > Wx“.
n=0 n.

On en déduit donc que p(x) =

1 2y _ 1 _ V1= i
meHCp(x)— ]7X26tGT(X)— 1 =1—+1—x% Oron

ChialcIIN

ahien—1)”

sait aussi que, pour y €] — 1; 1], on a le développement en série entiere /T +y =1+ Z

i N (2n)! PO -y (Zn). 2 L
Ainsi, pour x €] — 1;1], G = - (—71“ "= ™. On identifie
1ms1, pour x ] ) [ T( ) Z] 4“(71') (211—1)( ) x nz::1 Zzn(n!)z(ZTL—])X 1 1
2
car les rayons sont strictement positifs et Vn > 1, P(T =2n) = 22“(211)< n)'
n—

Gt :x+ 1 —V1—x? nest pas dérivable en 1 car y/ ne l'est pas en 0. D’apres le cours, T n’admet pas une
+oo

espérance finie. Pourtant, P(T =4o00)=1— Y, P(T=n)=1—-G71(1) =1—1=0: T est presque stirement
n=1

finie mais admet une espérance infinie. Bizarre.

11.135) a. Soit n € N, pour avoir X;;, = 0, il est d’abord nécessaire que le nombre de pas n soit pair. Ainsi,

P(Xn, = 0) = 0 si n est impair. Par contre, si n = 2p avec p € N*, Xz, = 0 si et seulement si p
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pas parmi 2p s’effectuent vers la gauche (réussite) et les p autres s’effectuant vers la droite (échec). Ce

schéma binomial se traduit d’apres le cours, en supposant bien str que tous les pas de cette marche sont
2 T\P/T\P 2p)!
indépendants, par la relation P(XZp =0)= ( p) (*) (*) = & Par I’équivalent de STIRLING, on

p/\2/) \2 22P(ph)?
Vo 2p,2
a P(Xzp =0) ~ Arp(2p)Pet 1 Par comparaison aux séries de RIEMANN, > P(X;, = 0) diverge.

+o0 2°P %P (2ﬂp)p2p NS =0
b. Bi ne prend que les valeurs 0 et 1 (si X; = 0), cette variable aléatoire suit donc la loi de BERNOULLI de

P
parametre P(X; = 0). Ainsi, E(Bi) = P(X; = 0). Soit p € N, la variable aléatoire > B; prend des valeurs

i=1

P +oo P
dans N donc, d’apres le cours, E( > Bi) > P( Z ) Ainsi, par linéarité de I’espérance et avec
i=1 k=1 Ni=1
A -0 P P P
ce qui précede, 3, P((Y Bi > k) = 3 E(By) = 30 P(X; = 0).
k=1 VNi=1 i=1 i=1
foo p P
c. Si k € N*, par définition de Ey et des Bi, on a Ey = U ( > Bi 2> k) puisque Y B;i est le nombre
pot Vs i=1

P
de retours a l'origine pendant les p premiers pas de la marche. Comme la suite (( S B = k)) est
peEN*

i=1

P
croissante, on obtient, par continuité croissante, la relation P(Eyx) = lim ]P’( Z k). Plus simplement,
potoo  \{:
P +00 +o0 P P
pour tout p € N*, on a P(Ey) > 1@( 3 By > k). Ainsi, 32 P(Ep) > 5 IP’( > e ) 3 F(Xi=0) en
i=1 k=1 k=1 \i=1 i=1
sommant. Comme cette minoration est vraie pour tout p € N* et que >, P(X; = 0) diverge d’apres a., on
i>1

+o0
en déduit que Y P(Ex) = +oo et > P(Ey) diverge.
k=1

Kk>1
i—1 j—1

d. OnakE; = |_| (( ﬂ (Xn # O)) NXi=0)N ( m (X # 0)) n(X; = O)) donc, par o-additivité et

1<i<gj n=1 m=i+1

i—1
probabilité conditionnelle, ( Jﬂ (X # 0)) N (X; = 0) ne dépend que de la position de la marche apres le
m=i+1
400 +oo _ i1

i-ieme pas, on a P(E3) 121]. 21 ]P’(( O Xn #0) ) N(X; = 0)) ]P(Xi_o)<(mD+](Xm # 0)) n(X; = 0))

[eS) — +o0 j—1
doi B(E2) = 3 B(( ﬂ Xn #0)) 0 (Xi = 0)) ( > Pox=oy(( ) (Xm #0)) (X5 = o>)>.

i=1 n=1 )=t m=i+1

j—1 =1 5y

Or(Xi:O)ﬂ< D (xmyéo))m(xj:o)):(xi:o)m( e> pk;éO))ﬂ( > kaO)) en notant

“igq k=it k=i+1

i i
pk = %1 le k-iéme pas de sorte que X; = > pk. Par le lemme des coalitions, (X; = 0) = ( > pk = 0)
k=1 k=1
7l j
est indépendant de ( ﬂ (> pk # O)) N> px = O)) car pi,---,pj indépendants. Et en on a

m=iy1 k=itl k=i+1

j—1 j—1 " ‘
donc P(Xi_o)((mo+1(Xm # O)) n(Xx; = 0))) = P(mo+1(k§+1pk + 0)) N (k:]Zink = O)) Or on
j—1 m ; j—1

AP me20)n(y pe=0) =2 ] (3 ps £0)0( 2 pes = 0) car

m—ig1 k=t k=i+1 meig1 k=t k=i+1
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(p1,--+,Ppj—i) suit la méme loi que (pit1,---,pj). Tout ceci prouve, en posant p = m —iet £ = k — i,

la relation IP’(XFO)(( jﬁ (Xm # O)) Nn(X; = O))) = P(jpril](é:] pe # 0)) N (ngz = O)) Ainsi, on

m=i+1

+oo i-1 oo jmim1 o, i—i
arrive & P(E) = | 3 IP’(( M Xn # o)) N = o)) > IP( N (Zpe # o)) N pe = o)) .
i=1 e j= pe1 (=1 =1
j—i
Comme Z pe = Xp, qu'on a aussi » p¢ = Xj_i, et avec le changement d’indices k = j — i, on arrive enfin &
=1 (=1

P(E,) = (; IP’(( d(xn;éo)) N (X ))) ( > ]P’( ﬂ(xp 7éo)) (xkzo))> = P(E;)%.

De la méme maniere, Yk € N*, P(Ex41) = P(Ex) P(Eq) donc, par récurrence, Vk € N*, P(Eyx) = (P(Eq))*.

Puisque la série géométrique > (P(E7))* diverge d’apres c., on a forcément P(E1) = 1.
k>1
e. D’apres d., on a donc Vk € N*, P(Ex) = 1. Notons O = “on revient une infinité de fois a l'origine”, de
+oo
sorte que O = ﬂ Ex. Comme la suite (Ex)xe n+ est décroissante, par théoréme de continuité décroissante, on
k=1

a P(O) = khm P(Ex) = 1. Il est donc presque siir que le marcheur revienne une infinité de fois a lorigine.
—+00

11.136 | a. Comme X et Y sont & valeurs dans N, on a ) = |_| (X =1,Y =) donc, par c-additivité, on obtient

1,j>0
+oo ,+oo i
> ( Z P(X =1i,Y = ))) =1 donc a Z = —& — =1 (séries géométriques) donc a = p?.
i=0 i=0 T—q (] - q)
+o0 400 )
b. Pourie N, (X=1) = |_| (X =1, Y = j) donc, toujours par c-additivité, P(X = i) = p?q* > @ =p0-p)"-
j=0 j=0

Comme X + 1 est & valeurs dans N* et que Yk € N*, P(X+1=k) = P(X =k —1) = p(1 —p)*~ ", la variable
aléatoire X+ 1 suit la loi géométrique de parametre p. Par symétrie, Y 41 suit aussi la méme loi géométrique

de parametre p. D’apres le cours, E(X + 1) = ] donc E(X) = I-p_4a par linéarité de 1’espérance et on
p p
sait aussi que V(X +1) = ]—_ZB = V(X).
P

c. Soit f : N? — N définie par f(a,b) = ab de sorte que XY = f(X,Y). Par théoréme de transfert, la

variable aléatoire XY admet une espérance finie si et seulement si (ij P(X = 1,Y = j))i,j)en2 est sommable.

Or ¥ GBEX=iv=i)= ¥ Gpfat= ¥ it =2 ¥ ()ie) = p?( T ka¥)’
(i,))eN? (i,))eN? (i,))eN? (i,))eN? keN
1 =
T— = > x™ qu'on dérive terme & terme sur l'intervalle
- n=0

(famille produit). Or on sait que Vx €] — 1;1],

—+oo —+oo
: n—1 _ n
ouvert de convergence pour avoir > nx donc > =) Onx .
n=

1 _x
(1-x7 = (1—x)

2 2 2 2
Par conséquent, E(XY) = p? (ﬁ) = 95 et Cov(X,Y) = E(XY) - EX)E(Y) = 45 — (g) =0.
—q p P

Mais c’est bien siir, comme V(i,j) € N2, P(X =1,Y =j) = p2q* = (pq')(pq’) = P(X = i) P(Y = j), par

définition, les variables aléatoires X et Y sont indépendantes et, d’apres le cours, Cov(X,Y) = 0.

d. Soit n € N, les valeurs prises par U sachant que X4+Y = 2n+1 sont tous les entiers de n+1 a 2n+1. Pour
€ [n+1;2n+1],ona (U =Max(X,Y) =k)N(X+Y =2n+1) = (X =k, Y = 2n+1-k)U(X = 2n+1-k,Y = k)

car 2n+1—k<kdonc PU=kX+Y=2n+1)=PX=k)P(Y=2n+1—-k)+ P(X=2n+1—-k)P(Y =k)
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par indépendance de X et Y donc P(U = k,X +Y = 2n + 1) = 2(pq*)(pg?™ ') = 2p2q?™+!. De plus,

2n+1
X+Yy=2n+1) = |_| (X = kY = 2n + 1 — k) donc, par o-additivité et indépendance de X et Y,
k=0
2n+1 2n+1
PX+Y=2n+1)= > PX=KPY=2n+1-k) = > (pq")(pq?™*t'7%) = (2n + 2)p?q?™*1. Ainsi,
k=0 k=0
P(U=%kX+Y=2n+1) 2p? g ! 1
k 1;2 1], P(U=Kk|X+Y =2 1) = : = = .
pour k € [n+1;2n +1], P(U =kX+Y =2n+1) P(X+Y=2n+1) n +2)p2q T 41

Par conséquent, la loi de U sachant X + Y = 2n 4 1 est uniforme sur l'intervalle [n + 1;2n + 1].

11.137] a. Notons Py = “on fait pile au lancer numéro k” (le premier lancer est de numéro 1). On pose X = +00

si on ne fait pas deux fois pile au cours du processus. On a X(Q2) = N U {+o0} et, pour tout k € N,

K+l /i1 K+1
(X =%) = |_| (( mPi) NP N ( ﬂ Pj) N Pk+2> (en notant i € [[1;k + 1] et k + 2 les numéros des

i=1 j=1 j=it1
deux lancers donnant pile). Comme ces événements sont incompatibles et que Py, -+, Pxj2 sont supposés
k+1 ,i—1 k41
indépendants, on a P(X =%k) = > ( Im1a- p))p( IT @ —p))p = (k+1)p?(1 —p)*.
i=1 Vj=1 j=i+1
oo +oo
(X =400) = |_| (X = k) donc, par o-additivité, on a 1 — P(X = +00) = p? > (k+1)(1 — p)*. Or on sait
k=0 k=0

+oo
1 _ > x¥ qu'on dérive A l'intérieur de P'intervalle ouvert de convergence pour avoir

que Vx €] — 1;1], T~
- k=0

+oo 2
Yo(k+1)xk = % Comme 1 —p €]0;1[, 1 — P(X = +00) = —FL———— =1 donc P(X = +00) = 0.
k=0 (1=x) (1=0-p)
b. Par définition, X admet une espérance finie si et seulement si > kP(X = k) est absolument convergente.
k>0
Or kP(X = k) = k(k + 1)p2(1 — p)¥ =0 (é) par croissances comparées donc . kP(X = k) converge par
o0 k>0
comparaison aux séries de RIEMANN, ce qui prouve que X admet une espérance finie.
+o0
On dérive une fois de plus terme & terme la relation ¥x €] — 1;1[, Y (k + 1)x* = 0 I 2 dans intervalle
k=0 R
+oo 2 + oo 2
ouvert de convergence et Vx €] — 1;1[, > k(k+ 1)x*" ! = —=—= donc Y k(k+ 1)x* = —=% . Ainsi,
K=1 (1-x) K=0 (1—x)

+oo 400 400 2P2(1 _ P)
E(X) = Y kP(X =k) = 3 k(k+1)p2(1 —p)* =p2 3 k(k+1)(1 = p)* = 22U =P) a1 eos1

k=0 k=0 K=0 (1=(-p)

) 4 2(] — p)
et on a lespérance attendue, E(X) = =—~.

p

c. On suppose que la boule piochée dans I'urne l'est de maniére uniforme. On a Y(2) = NU {+occ} en
convenant que Y = 400 si X = +00. Comme on a vu que (X = 400) est négligeable, (Y = +00) = (X = +00)

lest aussi. Pour k € N, comme ((X = n)) est un systéme quasi-complet d’évenements, par la formule

nenN

+oo
des probabilités totales, P(Y = k) = Y. P(X =n)P(Y =k[]X =n). Or P(Y =k[]X =n) =0si k >n et
n=0

+oo 2 n “+o00 2 k
. +1 1— 1—
B(Y = KX =n) = 1 si k < donc P<Y=k>=zk(“ PO _ zku—p)“:%
n= n=

(série géométrique) donc P(Y = k) = p(1 —p)*.
d. Comme (Y +1)(2) = N*U{+oc} et que Vk € N*, P(Y+1=k) = P(Y=k—1) =p(1—p) ' la

variable aléatoire Y + 1 suit (presque strement) la loi géométrique de parametre p. On sait d’apres le cours
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que E(Y+1) = E(Y)+1 =1 et que V(Y +1) = V(¥) = .52 Ainsi, E(Y) = L= et V(v) = 152
P P P P

11.138 | Comme ) Xkliw) est une série a termes positifs pour w € €2, elle converge si et seulement si la suite de ses

k>
—+oo
sommes partielles est majorée. Ainsi, en discrétisant les majorants M € N* on a I'expression A = U AM
M=1
\ . X (w) ~
ouAMz{wEQ’VnEN,Sn(w):Z . <M}:mBnavecBn:(Sn<M).
k=1
n=1

Soit M € N*, comme la suite (Sn(w))nen+ est croissante pour tout w € €2, la suite (Bn)ne n- est décroissante

pour linclusion car By 1 C By puisque si Spiq(w) < M, alors Sy (w) < Sn41(w) < M. Par le théoreme de

continuité décroissante, on a donc P(Ap) = 1111 P(Bn).
n—+oo
2 el s s , L ]E(Xk) . 1 . s
Par linéarité de l'espérance, E(Sn) = > = pHqn en posant Hy, = > - la somme partielle de la série
k=1 k=1
i indé oy V) g . _ 3 L
harmonique. Par indépendance de Xj,---,Xn, V(Sn) = > = p(1 —p)Tn en posant Tp, = > 2 la
k=1 k=1

2

somme partielle de la série de RIEMANN > iz qui converge et dont la somme est ((2) = %

n>1n

Comme S,, admet un moment d’ordre 2, d’aprés I'inégalité de BIENAYME-TCHEBYCHEV, pour tout £ > 0,

o o 2
on a la majoration P(|Sn — E(Sn)| > ¢) = P(|Sn — pHa| = &) < 2L=P)Tn _ V(Sn)  p(0 = P,
13 £ £

Soit M € N*, puisque liT Hp = +00, il existe ng € N tel que Vn > ng, pH, > M. Pour tout n > nog,
n—+oo

comme M < pHp, on a (S < M) C (|Sn — pHn)| = pHn — M) donc, en posant ¢ = pHp — M > 0 dans

N2 N2
la majoration précédente, on obtient 0 < P(S;, < M) < p( ;))T[ = p(1 —p)m 5. Par encadrement,
6¢e 6(pHn — M)
comme Um H, =+oo,ona lm P(S,, <M)=0donc P(Apm)=0.
n——+oo n—-+4oo
+o0 +o0
Méthode 1 : par sous-additivité, comme A = U Am,on a P(A) < > P(Apm) =0 donc P(A) = 0.
M=1 M=1

Méthode 2 : Pour M € N*| si la suite (Sp(w))nen- est majorée par M, elle est a fortiori majorée par
M + 1 donc Apm C Am41. Ainsi, la suite d’événements (Apm)men+ est croissante pour U'inclusion donc, par

continuité croissante, on a P(A) = (Am) = 0.

im P
M——+oc0o
11.139) On note qu’ici A, > 0 contrairement & ce qu'on a vu en cours oul on a imposé que le parametre d’une

variable aléatoire suivant une loi de POISSON soit strictement positif. Il est donc possible, si Ay = 0, que Xy,

) X e—000 e—00k
soit presque siirement nulle car alors on a P(X;, =0) = =TletVk =21, P(Xy=k)= =0.

0! k!
+00 “+o00 n
Ona(S=0) = m (Xn = 0) car les Xy, sont & valeurs positives. Comme (S =0) = ﬂ < Xk = O)) et que
1 n=1 k=1

DL

la suite (In = Xy = 0)) est décroissante pour l'inclusion, par théoreme de continuité décroissante,
ne N*

k=1

n
n n - Z Ax
ona P(S=0)= lim P(I,). Par indépendance des Xy, P(I,) = [[ P(Xx, =0) = [[ e =e k=1 .

n—+oo k=1 k=1

On a donc deux cas :
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400
e Si > An converge, on a P(S =0) = exp (— > ?\k> > 0.
k=1

n>l
e Si Y A diverge, on a P(S=0)=0.
n>l
n
Dans le cas général, pour p € N, en posant les sommes partielles S;, = > Xy, on constate que la suite
k=1
(Sn(w))nen+ est croissante pour tout w € © et que (S < p) = ﬂ (Sn < p). Or ((Sn < p))neN* est
ne N+
décroissante pour I'inclusion done, par le théoréme de continuité décroissante, P(S < p) = lim P(S, < p).

n—-+oo

On a vu dans le cours que si X et Y sont deux variables aléatoires indépendantes suivant des lois de POISSON
de parametres respectifs A et u, alors X 4+ Y suit la loi de POISSON de parameétre A + p.
Initialisation : Xj suit la loi de POISSON de parametre A1 par hypothese et, avec ce qui précede, X + X, suit

la loi de POISSON de parametre A1 + Az.

n

Hérédité : soit n > 2 tel que la variable aléatoire Sy, suit la loi de POISSON de parameétre A = > Ay. Comme
k=1

Sn et Xn 41 sont indépendantes par le lemme des coalitions, Sy, + Xn4+1 = Sn+1 suit la loi de PoIssoN de

n+1
parametre A + A1 = Y Ak
k=1

n
Par principe de récurrence, pour tout n € N*, S, suit la loi de POI1SSON de parametre > Ay.

k=1
n n i
P P - exp(—zxk)(zkk)
Pourn € N*, (Sn <p) = | |(Sn =1) donc P(Sy <p) = > P(Sp =1) = 3. k=1L k=] (1).
izo i=0 i=0 L
Traitons deux cas :
+oo .
e Si > Ax converge, en notant S = > A € Ry, par continuité de t — e' et de t — t* pour i € [[0;p]]
k>1 k=1

P —Sci
en S, en passant a la limite quand n tend vers +o0o dans (1), on obtient P(S <p) = > %.
i=0 U
e Si Y Ay diverge, comme lim e 'ttt =1sii=0et lim e 't'=0sii> 1, en passant a la limite
k>1 t—+oo t—+4o0

quand n tend vers +oo dans (1), on obtient P(S < p) =1.
Pour avoir la loi de S, on écrit (S =0) = (S < 0) et, pourp € N*, (S<p)= (S

p)U (S <p—1) de sorte

que, en traitant & nouveau deux cas :

P, —Sci  P=l _s.i -S
e Si > Ay converge, P(S=0)=eSet P(S=p)= > € _'Sl -y 6,7'51:4 sipe N*.
k>1 i=0 U i=0 U p:
e Si Y Ag diverge, P(S=0)=1et P(S=p)=1—-1=0sip e N~
k>1
—+oo
Dans les deux cas, S suit la loi de POISSON de parametre S = > Ay.
k=1

11.140) a. Pour que l'on ait Sy = 0, il est nécessaire et suffisant qu’il y ait k indices i € [[1;2k] tels que X; =1

(considérés comme des réussites) et que les k autres indices i € [[1; 2k] vérifient X; = —1 (échecs). Ce schéma
2k
binomial se traduit par le fait que p(k) = P(Sx =0) = <k>pk(1 —p)k.
- 2k)! VAamk(2k) 2k ek (4p(1 —p))*
Avec I’équivalent de STIRLING, p(k) = @)l T—p)k ~ T2 = (] —p)k = P
q p(k) (k2P (1=p)" ~ ZF (2 i P (1-7) T

b. Notons R le nombre de retours a l’origine, c’est-a-dire R = card ({k € N* | S = O}) € NU {+o0}.
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On revient une infinité de fois a 'origine si et seulement si, pour chaque entier i € N*, il existe un entier

+oo —+o0
j > i pour lequel S5 = 0. Ceci se traduit par (R = 400) = ﬂ < U (S5 = O)) Comme la suite

i=1 \j=i+1
+oo
d’évenements | Ay = U (S5 =0) est décroissante pour l'inclusion, par le théoréme de continuité
j=i+1 ie N*

+oo
décroissante, on a P(R = 400) = lim P(A;). Or, par sous-additivité, on a P(A;) < > P(S5 = 0).
i—+o0 F—
j=i+1

2
Comme p # l dans cette question, 4p(1 —p) < 1 car (p — %) > 0 donc, avec la question précédente,

p() = P(S5 = O) = o((4p(1 —p)))) et la série géométrique > (4p(1 —p))’ converge donc, par comparaison,

j=1
+oo
la série ) P(S; = 0) converge. En notant Ry = P(S; = 0) son reste d’ordre i, on a donc 0 < P(A;) < Ry
j=1 j=i+1
donc, par encadrement, lim P(A;) =0et P(R = +00) = 0.
i—+oo

11.141 | Pour k € N*, on note By = “on tire une boule blanche au tirage k”. Il n’y a pas indépendance des tirages

puisque si on tire une boule blanche, on arréte le jeu.

Pour n € N* on a donc (Y =n) =By N---NBu_1 NBy et, d’apres la formule des probabilités composées,

ona P(Y=mn)=P(B;y)x P(B2B1) X - x P(Bn|B1N---NBn_1) ce qui donne, avec les régles des tirages,
1 1 1 n n
PiY=n)=—- x> XX = = .
(V=m) = xS U T T )

+oo +oo

Comme (Y =0) = |_| (Y = n) d’apreés I'énoncé, par o-additivité, on a 1 — P(Y =0) = ﬁ donc
n=1 n=1 {1t ’

P(Y=0)21—§w21 %O +Z =1—(e—1)+(e—1—=1) =0 et événement

n=1 (n+1)! Azl (1)t

(Y =0) = “jamais de boule blanche” est négligeable.

D’apres le cours, Y admet une espérance finie si et seulement si la série (nP(Y = n))nen est sommable,
2 2
1

ce qui revient & la convergence (tout est positif) de la série né:] (nl ik Or (ni i ol CE et la
. . 1 . ) . Too 42
série exponentielle } ——— converge. Ainsi, Y admet une espérance finie et E(Y) = >  -— —=; donc
n>1 (Tl—]). n=1 (Tl-l—]).
St -(nt1)+ LSRN S
E(Y) = = —+ ——e—(e—1)+(e—=1-1) =e—1~1,72.
= B A = B £ e e e /
11.142] a. On connait le développement en série entiere géométrique de rayon R = 1 : Vx €] — 1;1], 1 -

1—x

+'

[ee]
> x™

=0
b. Soit un entier d € N*, on peut dériver terme a terme d —1 fois le développement de la question précédente.
1

(d)
Une récurrence simple montre que Vd € N*| Vx €] — 1;1], ( ) = ﬁ. Ainsi, avecr=d — 1,
— X

1T—x
(r—1) _ 1\l +oo +o0o (r—1)
on a ( 1 ) _ (T ])r — Z m! 'Xm—(r—l) — ( Z Xm) .
T—x (1 _X) m=r—1 (m—r—|— ])' m=0
T ! C(r— = mt+r—1
c. Pourx €] —1;1[etr € N, U—]ix)r = ¥ 1 (r—])'(;:.—r—i-ﬂ'xm (r=1) — ZOWX en posant
m=r— : : n= n
1 e m+r—1\ , .
n=m-—r+1 donc A= = x™. En prenant x = p €] — 1;1] dans cette relation, on
- X n=0 n
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oo —1 1 T -1 -1
obtient donc Y <n—|—r )p“ = —, clest-d-dire Y pn =1 car (n+r ) = (n—i—r] ) alors que

T
n=0 n q n=0 n T

Yn € N, pn > 0. Par conséquent, (pn)nen est une distribution de probabilité.

d. La série génératrice de X est de rayon R > 1 d’apres le cours et Vt €] —R; R[, Gx(t) = Z P(X = n)t™ donc

+oo -1
Gx(t) = Z pnt™ =47 Z <n+r1 >(pt)“. On a donc R = $ puisque le rayon de <n+r )t“

n>0 r—1
T

_q
(1—pt)"

e. Comme R > 1, Gx est dérivable deux fois en 1 donc, d’apres le cours, X admet un moment d’ordre 2 donc

vaut 1 d’apres la question b.. Ainsi, Vt 6} -1 { Gx(t) =
p'p

une espérance et une variance finies et que E(X) = G4 (1) et V(X) + E(X)? — E(X) = E(X(X — 1)) = G%(1).
1.1 / pq" " r(r+ ])pzqr \ pq" P
Or Vit € } - ;;;[, Gl(t) = — P9 ot GY(t) = "UHEUP gy Bx) = TP = TP o

(1—pt)"*! (1—pt)2” 1—-p™" " q
2 2 2 2 .22 _
V(X) + T - P P one V(x) = HTFDPT P74 rp(l =) _ rp.
q q q q

11.143 ) a. On note Ty le numéro de la boule tirée au tirage k. On admet lexistence d’un espace probabilisé
qui supporte cette suite (Tx)x>1 de variables aléatoires mutuellement indépendantes (remarque du cours).

D’abord X, (©2) = (N*\ {1}) U {+o0} car on rajoute la possibilité de ne jamais avoir une autre boule

+oo
que la premiere tirée, qu'on note X, = +oo. De plus, (X;, = 400) = ﬂ (X, = k) par convention et
k=2
n
U ( Ty =1) N (T =) N (T # 1)) € A pour k > 2 donc X;, est une variable aléatoire

car les T; le sont. Par incompatibilité de ces n événements, indépendance mutuelle des Tx qui suivent toutes

n k—1
la loi uniforme sur [1;n], on a P(Xn, =%k) = > (l) (g) = n]:_11 > 2.
i=1 n n
- . . -1 _n-1 (1) _n-i 1 -
On vérifie la cohérence de ces résultats car ) =g = =— > (f) = X = 1. Ceci
=n no= n 1—(/n)
justifie que ’événement (X, = +00) (toujours la méme boule) est négligeable comme attendu.
b. kP(Xn = k) = w et Y w converge car le rayon de la série entiere > kx*~! est égal & 1
n k>2 N k>1
1 B B 1
et que ’f‘ < 1. De plus, comme Vx €] — 1;1], > x* = , on obtient en dérivant ) kx*7! = ——
n K=0 T—x K=1 (1—x)
donc Jrzojokxk_1 = —1 _ 1. Ainsi EXn) = (n—1) x (niz - 1) = 20 =1 Ppar conséquent
= (1 —x)? ’ " (n—1)? n—1 ’
HT E(Xn) = 2 ce qu’on subodorait car plus n augmente, plus ’événement (X, = 2) devient presque str.
n—-—+0oo

Comme (Xn —1)(2) = N*U {400} et que Yk > 1, P(Xn —1=k) = P(Xn =k+1) = “n—k‘

k-1
P(Xn—1=%) = (l) (1—l> ( ( )) <1—7) avecp = 1—l €]0; 1], la variable aléatoire X, —1

n n
1

suit la loi géométrique de parametre p = ce qui simplifie les calculs car alors E(X;, — 1) = l__n_

p n-—1
donc, par linéarité de l'espérance, E(X,) =1+ —— =n—1

—1 n—1"

c. Comme X3 =Yz, pour k > 2, on a (Y2 =k) = (X2 = k) donc P(Y; =k) = 2“17_1 d’apres a.. On reconnait

k-1
cette loi, Y2 —1 suit la loi géométrique de parametre % car P(Y2—1=%) = P(Y2 =k+1) = ;—k = %( —%) .
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d. Pour k > 3, en notant i le numéro de la premiere boule tirée, r le premier rang pour lequel on tire une

boule de numéro j # i, comme 6 —i—j est le numéro tiré autre que i et j (car i+j+(6—i—j) =14+243 =6),

303 k=1/ 11 k-1
on a ( Y3—k:|_||_||_|<<ﬂ ))Q(Trzj)ﬂ( m ((Tk:i)U(Tk:j)))>O(Tk:6—i—j).
1

i=1 r=2 b=r+1
jAL *

Ainsi, par incompatibilité de tous ces évenements, indépendance mutuelle des tirages et symétrie entre les

k=1 r—1 k—r—1 k=1 k-2
numéros, P(Y3 =k) =3 x2x > (l> X <l> X (;> X (l) = % Z k=TT = 6(27141)
= \3 3 3 3 3

N “+oo +oo (2k 2 ])
A nouveau, comme Y3(2) = {3,4,5,---, 400}, on vérifie que > P(Y3 =k) = Z A = 1. En effet,
k=3
k—2 3 3
on a Z u = (6/4) (2/3)° 6 (/3)° _4_1_ 1. Ceci justifie que ’évenement (Y3 = +00)

1—(2/3) 1—(1/3) 3 3
(max1mum deux numéros tirés éternellement) est négligeable comme attendu.

11.144 | a. Par définition, comme X est une variable aléatoire a valeurs dans N, sous réserve de convergence, on

e "

) est bornée par
n! n>0

+oo
a Gx(t) = Zo P(X = n)t™. Or, pour t € R, la suite (P(X = n)t“)n>0 = (
n=

croissances comparées. Ainsi, le rayon de convergence de la série génératrice Y, P(X = n)t™ vaut R = 400

n=0

+o00 ,—A n
etonaVte R, Gx(t)= > % =e MM = AT,

n=0 n.
b. Soit a >0ett > 1, comme (X > a) = |_| (X = k), par o-additivité, et car t > 1 donc Vk > a, t¢ < t,

k>a
omaP(X>a)= 3 PX=k =L S 19aBX=k) < L 3 t*P(X = k) . Ainsi, P(X > a) < ZX) co
K>a i >a K>a t
Gx(t) = ( S P(X = k)tk> + ( S P(X= k)tk) et que Y. P(X=k)t* > 0.
k<a k>a k<a
. At—1)

c. D’apres les questions précédentes, en prenant a = 2A > 0, P(X > 2A) < € 2 = M= =2A () pour

tout t > 1. Soit f : [1;4+00[— R définie par f(t) = A(t — 1) — 2AIn(t), alors f est dérivable sur [1;+o0]

et f'(t) = A — ZT}‘ = M donc f est décroissante sur [1;2] et croissante sur [2;+oo| et elle atteint son

A
minimum en t = 2. En prenant t = 2 dans la question b., on a donc P(X > 2)) < ef(2) = *=221n(2) — (i) .

11.145] a. Soit Bx = “on tire une boule blanche ou tirage k”, Ny = By = “on tire une boule blanche ou tirage k”.

Cas r =1 ily a N—1 boules blanches et une seule boule noire dans I'urne. On a XN (€2) = [1; N] dans ce cas
k-1
et, pourk € [1;N],ona (Xn = k) = ( ﬂ Bi> NNy donc, avec la formule des probabilités composées en tenant

i=1

compte de la composition de I'urne a chaque étape, P(Xn = k) = P(By) x P(B2|By) X -+ X P(Nk‘ ﬂ Bi)
i=1

k=1 )
donc P(Xn = k) = ( I NN ___’1_ ]) X 1k+1 = % apres télescopage. Ainsi, Xy suit la loi uniforme sur
i=1 N1 -
N 1 N(N+1)  N41
[;N]J et ona E(Xn) = D kP(Xn=k) == > k= = .
k=1 N k=1 ZN 2

Cas r =N : il n’y a que des boules noires dans I'urne : Xy = N est certain, Xn(£2) = {N} et E(Xn) = N.
b. On peut modéliser cette expérience par des N-uplets comme BNNBBNN - -- BN, celui-ci signifiant que la

premiere boule tirée est Blanche, les deux suivantes Noires, etc..... sachant qu’il doit impérativement y avoir
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N — r fois B et r fois N dans cette suite de lettres : en d’autres termes 1’ “évéenement” BNNBBNN ---BN est

égal a B1NN2NN3NBsNBsNNgNN7N---NBn_7 NNy. On note  'ensemble des tous ces N-uplets, il

N
yen a ( ) car il faut choisir les r tirages qui vont donner une boule noire parmi les N tirages. On prend
T

aussi la tribu pleine A = P(§2) et pour P la probabilité uniforme (par symétrie) sur 2. On a XN (2) = [r; N]]
car il faut au moins r tirages pour prendre toutes les boules noires et au plus N.

card (Xn = k))

Soit k € [r;N], alors P(Xn = k) = card (Q)

(loi uniforme sur , ce qui est justifié dans lautre

N —1
méthode). Or on a card () = ( ) et card (X =k)) = (l: ]> car il faut forcément tirer une boule noire
- _

au tirage k, des blanches a tous les tirages suivants et il faut choisir parmi les r — 1 premiers tirages les k — 1
k—1

T — l) C (k=DIN=)!  r(k—=1)(N—=1)!
(N) (r—1)!(k — r)IN! (k —)IN!

tirages qui donnent une boule noire. Ainsi P(Xny =k) = (

T

Autre méthode : pour k € [[r;N] = Xn(£2), on pouvait aussi décrire, avec la définition de Xy, I’événement

(Xn = k) par (Xn = k) = | | ((HNij)ﬂ( N Bp)>mem( (N] Bm),cequi

1<ir < <ir_1 <k=1 j=1 pellik—1] m=k+1
pE{ig, i 1}

fait une réunion de < 1) évenements incompatibles car il faut choisir les r — 1 entiers iy, --,i,_1 parmi

T
les k — 1 entiers de [[1;k — 1]]. Le premier (dans l'ordre lexicographique par exemple) de ces événements est

r—1 k—1 N k—r k—1 N
u= ( N Nj)m< N Bp)mem( N Bm> et le dernier V = (( N Bp)m N Nj)mem( N Bm).
j=1 p=r m=k+1 p=1 j=k—1+1 m=k+1

Pour le premier de ces deux éveénements, avec la formule des probabilités composées, on obtient la relation

r—1 . k—1 o N | _ )\
P(U) = ( I M)x( [ =P )x 1 ><( I1 N—m+1) _M(N—)t Pour le second,
AN ) U N 1) N e T N e N
k=1~ k—1 . N (N —1)!
P(V)Z(HN T E+])X( H k ),+1)>< 1 X( H N—m-i-]):r-(N'r)'.On
o N—p+1 e N A1) O N e T\ A NS N!

se rend compte que pour chacun des événements dont (Xn = k) est la réunion incompatible, on va avoir

les mémes dénominateurs allant en décroissant de N a 1 et les mémes numérateurs mais pas dans le méme

| —7)! k—1
ordre. Comme tous ces évenements ont pour probabilité 1%7'0 et qu’ils sont au nombre de ( 1), il
! T—
k—1 IN=1)! k—1!I(N—=1)!
vient P(Xn = k) = W« N =t r(k = 1HN =)
r—1 N! (k —7)IN!
e N 1 N k-1 TNk
c. Par définition, E(Xn) = > kP(Xn = k) = << D k )= AN S avec la formule du
T— T

K) =
k=1 <]:I> k=r

capitaine, ce qui se simplifie avec la formule des colonnes en E(Xn) =

T( :1]) (N1

= < N comme il
> r+1

se doit. La formule est aussi valable pour les cas limites r =1 et r = N de la question a..

11.146 | a. Comme S est symétrique réelle, ses valeurs propres sont réelles par le théoreme spectral. Pour A € R,
xs(A) = (A =X)2 = Y2 = (A =X+ Y)(A =X =) donc Sp(S) = {X — Y,X + Y} donc, puisque Y(Q) = N* par
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définition donc Y > 0, il vient A =X —Y et u =X+ Y.
b. S est inversible si et seulement si det(S) = X? — Y2 = (X — Y)(X 4 Y) # 0 donc, puisque X +Y > 0, S

“+oo

est inversible si et seulement si X # Y. Ainsi, (S ¢ GL2(N*)) = (X =Y) = |_| (X =k, Y = k) et, puisque
k=1

ces évenements sont incompatibles et que X et Y sont indépendants et de méme loi, par o-additivité et car

1—pl<1,oma B(S ¢ GLo(N)) = 5 P(X=K)2 = 5% p2(1 —p)2) = p2 S (1= p)2) = — =
k=1 k=1 i=0 1—(1—-p)

simplifié en (S & GLy(N')) = 7E—. Alnsi, P(S € GLa (V")) = 1= P(S & GLo(N')) = 1- 7B = 2(2‘:;’).

c. On sait d’apres le cours que S, étant déja symétrique réelle, est définie positive si et seulement si ses
“+oo

valeurs propres sont strictement positives donc (S € S3T(R)) = (A > 0) = (X > Y) = |_| (X > kY =k)
k=1

car on a toujours pu > 0. A nouveau, par incompatibilité de ces événements et indépendance de X et Y, par

—+oo +oo
o-additivité, on a P(S € S3T(R)) = Y. P(Y=Kk)P(X>k) = > p(1 —p)* (1 — p)* qui se calcule comme
k=1 k=1

+oo _ _ _
a la question précédente, P(S € ST7(R)) =p(1—p) > ((1 —‘p)z)k e ] p(g] p))z = ; P
Dy -(1-p —p

1l est logique de trouver P(S € S3T(R)) = %IP’(S € GL2(N*)) car (A < 0) et (A > 0) sont deux événements

de méme probabilité par symétrie entre X et Y.

[11.3 Officiel de la Taupej

11.147 | Par la formule des probabilités totales, on a Vk € [0;n — 1] :

P(Xk+] = O) = IP)Xk:O(XkJr] = O) P(Xk = 0)+ ]P)Xk:1 (Xk+1 = 0) ]P(Xk = 1) = p]P(Xk = O)-i-(] —p)P(Xk = 1).
P(Xi41 =1) = Px=o(Xi41 = 1) P(Xx = 0)+ Px, =1 (Xip1 = 1) P(Xe = 1) = (1=p) P(Xc = 0) +p P(Xc = 1).

T—-p p
b.Sip=1,A0=---=A,. Sip=0,Ag=A=---et Ay = A3z =---: cas sans intérét !
Par une récurrence simple, on a Vk € [0;n], Ax = S¥Ag or xs = X2 = 2pX+2p —1= (X —1)(X = 2p +1).

. . e . 1 1 1
S est diagonalisable (car symétrique réelle) et on a S = PD'P avec P = \iﬁ ( > et D = ( 0 >

11 0 2p—1

A _oppntpa._ 1 (1F@ -1 1-@2p-1)" T OS .
Alors A, = PD PAO_Z(I—(Zp—Un 14 (2p —1)n Ay, comme on peut supposer que p €]0;1[, on a
P(XnZUZ%(1+(2p—1)“)P(Xo=1)+%(1—(2p—1)“)P(X0=0) donc on a lim ]P’(Xn:1):%.

n—-+oo

Ainsi, pour tout entier k € [0;n — 1], on a Ax1 = SAg avec S = < P T-p )

n

11.148 | En notant R;x la variable aléatoire valant 1 si on fait k au tirage i et 0 sinon, alors Ny = ) Ry donc
i=1

Ny est la somme de n variables aléatoires indépendantes suivant une loi de BERNOULLI de parametre p(k).

Ainsi Ny suit la loi binomiale B(n,p(k)) et on a P(Ny =1i) = (ﬁ)p(k)i(l —p()" et E(Ng) =np(k).
i

Puisque les V.A. R; x sont indépendantes et suivant toutes la méme loi, si m = E(Ryx) = p(k) (moyenne)
et 0 = o(Ry,k) = /p(k)(1 —p(k)) (écart-type), on sait d’apres I'inégalité de BIENAYME-TCHEBYCHEV que

“

N
n

V(— 2 _
m| > e) < (2“ ) = %5. Puisque P (’Nk —p(k)‘ > 5) < p(k)(l—zp(k))7 on en déduit la loi
€ ne n ne
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faible des grands nombres : lim P (

n—+oo

5] o

n

6

Soit Sy = ﬂ (N = np(k)), il faut que sur les n tirages, xx = np(k) parmi ces tirages donnent la face k :
k=1

n
e on choisit les numéros des tirages qui vont donner la face 1 : ( ) choix.
X1
e on impose pour chacun de ces tirages la face 1 : probabilité p(1)*'.
n—
e on choisit les numéros des tirages qui vont donner la face 2 : ( > choix.

e on impose pour chacun de ces tirages la face 2 : probabilité p(2)*2 ch01x ..... ete...

On obtient au final par indépendance des choix et des tirages : P(Sn) = klé[1 (n o _Xk a Xk_1)p(k)"“.
Apres simplification, on arrive a P(S,,) = 67' ( H p(k )p(k)>n. Si le dé n’est pas pipé, Vk €
T G
k=1
[1;6], p(k) = %, donc sin = 0[6], P(Sn) = %. Avec STIRLING et apres calculs : P(Sy) ol 27\/2; .
& [L(n/e) ()
k=1

11.149 | On suppose que dans chaque paquet il y a une seule vignette : ce n’est pas précisé par I’énoncé ! On

numérote les vignettes de 1 & n et pour k € [[1;n]), on note Ty le premier moment ot le paquet acheté donne

n

la vignette k. On note T l'instant ou la collection sera compléte. Pour m € N* ona (T < m) = ﬂ (Tk < m).

k=1
Mais les variables aléatoires Ty ne sont pas mutuellement indépendantes. On note ty le nombres d’achats
supplémentaires a effectuer sachant que ’on a exactement k — 1 vignettes différentes et qu’on en veut une de
plus ; par exemple t; = 1. Quand on veut calculer tx on a k— 1 vignettes différentes, la probabilité de ne pas

en avoir de nouvelle quand on achete un paquet est donc de k=T ot Ia probabilité d’avoir la k-ieme est de

n
n—k+1 Ains ty suit une loi géométrique de parametre w. Or par construction on a T = ) t
n k=1
donc E(T)= Y E(ty) = > =KE1 — nH avec H z 1
k=1 k=1 n =1 k’
Par une comparaison série/intégrale classique, on sait que Hn+ n(n) donc E(T ) ~ nln( ) 5 E(T) est

aussi 'argent moyen a dépenser pour avoir toute la collection de vignettes.

+oo
11.150] Le rayon d’une série génératrice est supérieur a 1 donc ¥r €]0;1], Gx(r) = > P(X = n)r™. Comme
n=0
“+o0
X)) =N, > P(X=n)=PXe N)=1donc1—-Gx(r)= ZIP’( n)(1—1m).
n=0

Comme toutes ces quantités sont positives, on a clairement Yn € N, 1 — Gx(r) > P(X = n)(1 —r™) donc

Yne N*, P(X>n) < %X() car 1 —r™ > 0. Si n =0, cette inégalité n’a pas de sens.

De plus, ¢'il existe un entier n € N* tel que P(X > n) = fGixrfr), onal—Gx(r)=PX=n)1-m"),
—r

alors Vk # n, P(X =k)(1 —%) =0 <= (P(X=k)=0ouk=0) car 1 —t% > 0 pour k > 1. 1l y a donc
égalité dans 'inégalité précédente si et seulement si la variable aléatoire X prend presque strement les deux
valeurs 0 et n ce qui se traduit par P(X=0) + P(X =n) =1.
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On vérifie le résultat a posteriori : soit n > 1 et p € [0;1] tels que P(X=0) =p et P(X =n) =1 —p, alors

Gx(r) =p+ (1 —p)r™ donc ! ;f;ﬂf ! —p;£1r—p)r =1—-p=PX=n).
n X n A (k)
11.151] Par définition : f(t) = E(tX) = > P(X = i)t'. Ainsi f(t) = (Z P(X = i)t1> (avec abus
i=0 i=k
de notation) donc ¥ (t) = 3 P(X = i)(iii!k)'ti_k. Toujours par la formule de transfert, en notant
i=k — k)
k—1 n n
Q= [I (X—p), onaw(X) = E(Qu(X)) = 3> P(X=1)Qx(i) = }° P(X = i)ﬁ done (1) = uk(X).
p=0 i=0 i=k -
Soit j € [0;n], il vient Aj = 1 i (—l)j_kL(X) = i M( i P(X = 1)17') et on inverse cette
i S (k=3 il =)\ = (i—%)!
. : —1) kil ) n il Lo(—1)Y 7R —)! .
somme triangulaire : A; = %PXZI = L . P(X =1).
pite A= 5 o T =Y = X (2 ) PX =
no/i i k i—j . oo i—j . .
On conclut : A; = 5 (| (z(—w : )]P’(X =)= ()0 -DTPX =1) = PX = j) car
im \J/ Vx5 k—j im \J

)
(1=1)T =0sii>jet (1-1)°=1. Ainsi : ¥ € [oin], B(x =) = & 3= (—1y-+ 2:X)

—25k—1
11.152 | Par hypothese P(T=0)=0etVk e N, P(T=k)=P(Y =k —1) = ﬁ.

—2,4k
PR = L]T(Xk) = o(iz) quelle que soit la valeur de a donc Y py converge.
(2k) + k k>0
+o00 ) +o00 22 72 +oo ZZk 1 s s o
De plus, comme > px=e = > Z =e “ch(2) + e “sh (2) donc (px) définit une
=0 Zo @0t " ) (2k—1)!

probabilité si et seulement si 1+ « > 0 (pour que les px soient positifs) et e72ch (2) + ae~2sh (2) =1
La condition nécessaire et suffisante pour que (py) définisse une probabilité est donc o = 1.

+oo +oco ,—2,k
k) = Z_: kpk = ). %k(;!m (la convergence est claire).

—+oo
Par définition, on a alors E(X) = E kP(X =
= k=1

+oo +oo k+1
On sait que Vx € R, ch(x) = Z ) donc Vx > 0, f(x) =xch (/%)= > ’(‘2]{)'. Le rayon de convergence
— k=0 .
] 7 7. . N * 1! (k+ ])

de cette série étant R = 400, on peut dériver deux fois sans probleme sur R* : f(x) = Z T
Or (x) = —3_sh (v/x) + Lch (v/x). Done E(X) = 4e2¢"(4) = €~ (3sh (2) + 2¢h (2)) = 2 - et

44/x 4 2 4 4

A
11.153] Par hypothese Vn € N, P(X = n) = £ ')‘n. Par le théoreme du transfert, f(X) = 1—|]—X admet
n!
A
une espérance finie si et seulement si Y. f(n)P(X = n) = Y —¢ A" ; converge absolument. Or
n>0 nso (n+1) xn!
A
(n—i—]i))\:n! = o(%) et nz;] ﬁ converge d’aprés RIEMANN donc 7 —:—X admet une espérance finie et
]E( 1 ):Jrzozoef)\)\n:;ﬂi A1 _g( _]) 1_6?\.
T+X n:O(n+1)! A n=0 ( ) A A
- —Ayi
; - A
11.154] Pour (i,j) €, N?, P(X =1,Y =j) = Px=i(Y =j)P(X =1) = (?>pJ(1 —p)i e —— par hypothese.
j il
“+oo oo
Vie N (Y =j)= U(X = 1,Y = j) qui donne par c-additivité : P(Y =j) = > P(X =1i,Y = j) donc
i=0

too oo (1) e Ml
Py=j)= > P(X=1iY=j)car P(X=1,Y=j)=0sij>1i Alors P(Y=j)= > (,)p’(1 —p)) -

i= i= \J i
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e M £ (1 — p)F At § oA\ —(AP)i (Ap)
dot P(Y =j) = & A > (Ut ) - A e qui prouve que P(Y =j) = B£_2 A (1—p)A _ w.

it 5 (i—9)! j! j!
On en déduit que Y suit une loi de POISSON de parametre Ap.

“+oo
On a Z(2) = N car Y < X par construction. De plus, pour n € N, (Z =n) = U X=n+kKkY=5%)
k=0

+oo
(réunion disjointe) donc, par o-additivité, on trouve P(Z =n) = > P(X = n+k,Y = k) qui permet d’écrire
k=0

400 k —?\)\n-&-k 1—p)" —7\}\n +00 _kak
P(z=n)= > (n+ )pk(l —p)”+k_ke = (1—p)e SR }|\ et on reconnait une série
K=o \ Kk (n+x)! n! = k!
_ p)te A\ AP —(1—p)A
exponentielle : P(Z=n) = (=p) e' A ((e] )}\)nn! donc Z suit la loi de PoissoN P(A(1 —p)).
n! -p

Comme P(X =1,Y=0)=0# P(X=1)P(Y =0), X et Y ne sont pas indépendantes.
i3\ Le M
Par contre, les variables Z et Y le sont car P(Z =1,Y =j) = P(X=i+j,Yy=j)=( . )P0 —-p)——
j (i+j)!
. AP L, A(T—P) 1]
(voir ci-dessus) qui se simplifie en P(Z =1,Y =j) =p (1 —p)'& Pe T PN
ilj!
e—(l—p)k(m —‘p)?\)i y e~ (Ap)j (Ap)j _
il j!

et on a par ailleurs le calcul

P(z=1)P(Y =j) = P(Z =1,Y =j).

Par définition Cov(X,Y) = E((X - EX)) (Y- E(Y))) ce qui donne ici Cov(X,Y) = E((X —p)(Y —q)) or
le couple (X,Y) ne peut prendre que 4 valeurs, la covariance Cov(X,Y) vaut donc
PaP(X=0,Y=0)— (1 —p)qP(X=1,Y=0)—p(1 = q)P(X=0,Y=1)+ (1= p)(1 — q) P(X =1,Y =1).
Mais on a aussi la formule Cov(X,Y) = E(XY) — E(X)E(Y) = E(XY) — pq. Or la variable aléatoire XY ne
prend que les valeurs 0 ou 1 donc Cov(XY) = 1.P(X =1,Y = 1) — pq. Comme par hypothese P(X =1) =p
et P(Y =1) = g, on a bien la premiere des quatre relations voulues : P(X=1,Y=1)= P(X=1)P(Yy =1).
e Comme X ne peut prendre que les valeurs 0 et T, ona (X =0,Y=1)U(X=1,Y=1) = (Y = 1) (réunion
disjointe) ce qui implique en matiére de probabilité : P(X =0,Y=1)+ P(X=1,Y=1) = P(Y =1). Ainsi
P(X=0,Y = 1) = q—pq = (1 —p)g = P(X = 0) B(Y = 1).
e Comme Y aussi ne prend que les valeurs 0O et 1, (X = 1,Y = 0)U(X = 1,Y = 1) = (X = 1) dou
PX=1,Y=0+PX=1,Y=1)=PX=1)<= PX=1,Y=0)=p—pqg=p(1—q) = P(X=1)P(Y =0).
e Enfin (XZO,YZO)U(XZ1,Y=O)=(Y=O):>P(X=0,Y=0)+P(X:1,Y=0)= P(Y=0) et on a
la derniere : P(X=0,Y=0)=1—q—p(1—q)=(0—-p)(1—q) = P(X=0)P(Y =0).
On a donc Y(i,j) € [0;1]* = (X,Y)(Q), P(X = ,Y =j) = P(X = i) P(Y = j) ce qui est la définition de
I'indépendance des variables aléatoires X et Y.

Ici X(Q) = Y(Q) = N. X+ 1 et Y+ 1 suivent des lois géométriques de parametre p. Sip =1, X et Y sont
presque siirement égale & 0 et ¢ga n’a que trés peu d’intérét : on supposera par la suite que p €]0;1].
e Soit k€ N, comme (U=V=k)=(X=k)N(Y=k), PU=V=k) =PX=Y=k)=PX=KkPY=k)
par indépendance de X et Y donc P(U =V = k) = p?(1 — p)?¥.
e8Si(i,j)€ N2aveci<j,ona P(U=j,V=1i)=PX=1Y=j)+ P(X=j,Y=1) =2P(X = i) P(Y =) car
(U=j,Vv=1i)=(X=1,Y=j)U(X =j,Y =1i) (réunion disjointe) et par indépendance de X et Y.
Ainsi, si i < j, nous avons P(U =j,V =1) = 2p?(1 — p)*H.
On peut réunir tous les cas : V(i,j) € N2, P(U =}V =1) = (8ij + 8i<j)p>(1 —p)+H.

118



e Pouri € N, (V =1) = U(u = j,V = 1) (réunion disjointe) donc, par oc-additivité, on obtient la

. too .
relation P(V =1i) = Z PU=j,V=1)=p?(1—-p)2+2 > p?(1 —p)'Y qui devient apres factorisation
j=i+1

P(V =1) = p2(1—p)* +2p%(1—p)?HH! Z (1—p)* = p2(1—p)? +=E——F. ot enfin aprés simplification

1—(1-p)
P(V=1) =p*(1 —p)* +2p(1 - v)z“” = p(l —p)¥p+200-p)]=p2-p)(1-p)*
V + 1 suit la loi géométrique de parametre p(2 —p) car (1 —p)? =1—p(2 —p).
j
e Pourje N, (U=j) = U (U =3,V =1) (réunion disjointe) donc, par c-additivité, on obtient la relation

i=0
P(u =j) = Z P(U=jV =1 =p’(1-p)? +ZZP (1 =p)" = p*(1 —p)¥ +2p*(1 — p)’ ]Z;U -p)h
apres factorisation P(U = j) = p?(1 —p)? +2p2(1 —p)’]]__((]]__l;))j =p?(1—p)J +2p(1 —p)Y (1= (1 —p))

et apres simplification P(U=j) =p(1 —p)[p(1 —p) +2(1 = (1 —p)))] =p(1 —p) 2~ (2—p)(1 = p)].
Comme P(U=0,V=1)=0# P(U=0)P(V=1) car V< U, Uet V ne sont pas indépendantes.

S =U+V = X+ Y donc, comme X et Y admettent des espérances finies E(X +1) = E(Y +1) = = (loi

1
P

géométrique), E(X) = E(Y) = 1=P Par lindarité de Pespérance, E(S) = E(X) + E(Y) = M
p p

C=

De plus, pour k € N, on a (S = k) = (X =1, Y = k — i) (réunion disjointe) done, par o-additivité et

i

k k
indépendance de X et Y : P(S =k) = Z

X =1) (sz—i):.ZE)P(]—P)iP(‘—P)k_i:(k‘f")Pz(]—P)k-

I
/\o

11.157) Si ¢ : [c;d] — R est continue, de classe C? sur Jc; d], et vérifie ¢(c) = ¢(d) =0 et ¢ > 0 (par exemple),
alors ¢’ est strictement croissante sur |c;d[, or ¢’ s’annule sur ]c;d[ d’apres le théoréme de ROLLE car
¢(c) = ¢(d) donc il existe e €]c; d[ tel que ¢’ soit négative sur |c; e[ et positive sur Je;d[ : ¢ est croissante
sur |c; e[ et décroissante sur Je; d[ donc elle reste positive sur [c; d] car elle est continue sur [c; d] et vaut 0 en
ceten d.

On pose ¢ : y > eSY — g esd U ge“, cette fonction est de classe C2 sur [c; d], elle vaut 0 en ¢ et en
_ c _

d et sa dérivée seconde vaut ¢”(y) = s?e®Y > 0. Le résultat précédent nous montre que ¢ est négative sur

. d
[c; d], ainsi : Yy € [c;d], Y < - 131 Sd+g_d esc.

n n
E(eY) = > eSVP(Y = yy) < ( y; esd + yk dd )]P’(Y = yi) d’apres I'inégalité précédente et
k=1 =1 -

car P(Y = yik) > 0 si on prend Y( ) = {yn}tnen C [c, d] (fini ou dénombrable). On obtient done, puisque

+oo
S P(Y=yx)=P(Q)=1et Z Yy P(Y = yi) = E(Y) = 0, 'inégalité E(esY) < —C—esd + =4 esc donc
k=0 k=0 c—d c—d

In (E(esY)) <in | —£ deSd + _dd e“) car In est croissante.
c— c—
205 N2 s?(d—c)?
AinsiIn (E(e®Y)) < 1n ( Cd esd + y—g “) < %, dott E(e®Y) <e 8 car exp est croissante.

Puisque exp est strictement croissante et s > 0, (S — E(S) > t) = (eSX—EX)

e’t) donc, comme e3X~E(X))

5 Or on
e

est positive, par l'inégalité de MARKOV : P(S — E(S) > t) = P(e3(X~EX))

n
a aussi eSS7EGS) = [ e3Xx—EXK)) et les esXx~E(Xx)) gont mutuellement indépendantes par hypothése,
k=1

119



n

ainsi E(eSS—EG)) = [T E(es*x~EXx))) ce qui donne bien P (S — E(S) >t) < e 5t H E(esXk—EGu)y,

k=1
En prenant Y = Xy — E(Xy) d’espérance nulle et qui prend ses valeurs dans le segment [c d] ouc=a—E(Xy)
s?(d—c)? s?(b—a)?
et d = b — E(Xy), on a par I'inégalité précédente E(esXx—EXi))) e 8 =e 8 . Grace ace qui
n s?(b—a)’\n tan s (b—a)?
précede, P (S — E(S) > t) < et [ E(es*x—EXW) < e*st(eis ) _ st g
= 2 2
Le graphe de I'application 6 : s — —st + nM est une parabole qui atteint son minimum en sq tel
4t t sé(bfa)2 ~2t% 5
que 0'(sg) =0 < s = myC—— Ainsi P (S — E(S) > t) < e9(50) = g5t~ =en(b—a)",
—a
11.158] a. On constate que X + Y = Z. Ainsi, (k,1) € N>, PX=k,Y=1)= P(X =k, Z=k+1).
k+1
Sitii1 =0, (Z = k+1) est négligeable, (X =k,Z = k+1) aussi: P(X =k, Y =1) = Tk+1< : pc(1-p)t=o.

Sirtepr >0, PX=kZ=k+1) = Pzoiyy(X = k)P(Z = k+1). Or la loi conditionnelle de X sachant

k41
Z =k + 1 est la loi binomiale B(k 4 1,p) donc Pz (X =k) = ( : )‘pk(1 —p)trRk,

k+1
On conclut, et ceci dans tous les cas : P(X =k, Y =1) = rk+1( : )pk(l —p)t.
+o0o
On sait que (X = k) = U (X =%, Y =1). Ces événements étant incompatibles deux & deux, on trouve par
1=0
+oo +oo k 1
o-additivité : P(X=k) = > PX=k,Y=1)=p = > k+l< z )pk(1 —p)t.
1=0 1=0
. +o0 +o0 K41
Par symétrie : P(Yy=1)= > P(X=k,Y=1)= Z k_,_l( 5 )pk(l —p)t.
k=0 k=0

. : . . TX Mk (K + 1) TN
Si Z suit une loi de POISSON de parametre A > 0, alors P(X = k) = > ook p(1 —p)" dou
1=0 '

k,—Ayk 00 —_ o) ko—A
P(X = k) = B-£ A > (1 —p)) = (p)\)k,e M -P) = % et X suit la loi de PoIssoN de

+00 A k+l (k41 1 —p)A) e AM1-P)
oy K1 —p)t = (@ =pp) e et Y suit la loi
=0 (k+1!I\ K

U
de POISSON de parametre A(1 —p). Ainsi les variables aléatoires X et Y sont indépendantes car elles vérifient
k,—Ap _ L,=A(1-p) A k4l (K41
P(sz)P(Y:l)Z (p}\) € ((] p)}\) € _ € A ( + )_pk(] _p)lz P(X:k,Y:l)

parametre Ap. De méme P(Y = 1) =

k! U (k+DI\ k
On écrit (Z=n) = U (X =k,Y =1). Clest la réunion dénombrable d’événements incompatibles deux a
(k,1)eN2Z
k4l=n
deux doncrp = P(Z=n)= >, (X=kY=1)= > PX=kxP¥=1)= > pkq.
(k,1)e N2 (k,1)e N2 (k,1)e N2
k+l=n k+l=n k+l=n

+o00 1
Comme Z est non presque stirement nulle, il existe s > 1 tel que rg > 0. Ainsipo = >. 1y <0>p0(1 — p)l >0
1=0
+oo

1+1
et p1 = ZTH]( t >p(1 —p)' > 0. De méme qo > 0 et q7 > 0.
1=0

k+1+1

K19 _ )b — ot
4 )p (1=p) =prr1a

D’apres ce qui précede, on a les relations P(X =k +1,Y = 1) = 1141 (
k+1+1

PX=kY=1+1) = 14141 ( 5 )PkU —p)" =prqus.

® Sitii141 =0, 0n a prqie1 = pr+1qL = 0 done prqir1(L+1)p = pryrqu(k + 1)p = 0.
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k+1+1
Tk+1+1< )Pk+1(] —p)

® Siryi141 > 0, on fait le rapport de ces deux relations pour avoir " ]_T_T_:_ ] = Pkt1dl
rk+l+1< . >pk(1 7p)1+1 Prqi+1
1
done Pr1dL _ (k+1EDKIA+ D0 —p)t _ (1+1)p

Prdier (k+FDUK+F1+ D0 —p)T  k+1)(0 —p)
Dans les deux cas, prqit1(1+1)p = pry1quk +1)(1 —p).

On prend k = 0 dans ’équation de la question précédente et il vient poqie1(l + 1)p = p1qi(1 —p) d’ou
!

qi41 = b% en notant b = M Par une récurrence facile, on montre que V1 € N, q; = %qo.
pop !

k
De méme, on trouve que Vk € N, py = a—'po ota=—4P
k! qo(1 —p)

Comme Z qr=1¢et Z pr = 1, on en déduit que qp = e~ ° et que po = e~ . Alors, par définition, Y suit
1=0
la loi de PoI1ssoN P(b ) et X suit la loi de Po1ssON P(a).

En conclusion de cet exercice, si Z est une variable aléatoire non presque stirement nulle a valeurs dans N et

z z
X=> Uiet Y= > (1—-Uj), alors: Z suit une loi de POISSON si et seulement si X et Y sont indépendantes.

i=1 i=1

rang (U'U) < Min

car Tr (M) = Tr (U'U

(rang (U),rang (*U)) < 1 car U est une matrice colonne et on a aussi M = 0 <= U =0
) = ||U||>. Ainsi rang (M) € {0,1} et rang (M) = 0 <= U = 0.

Comme (U =0)= | |(Xx =0) et que les variables aléatoires X1, --,X;, sont indépendantes, on a :

C:

k

n
P(rang(M) =0)=P(U=0)= J] P(Xx =0) = (1 —p)™. De plus P(rang(M)=1)=1— (1 —p)™
k=1
Ainsi, rang (M) suit une loi de BERNOULLI B(q) de parameétre ¢ =1 — (1 —p)™.
Comme Tr (M) = X4 + -+ + X2 =X + -+ + Xy, Tr (M) est la somme de variables aléatoires indépendantes
suivant la méme loi de BERNOULLI B(p). On sait d’apres le cours que Tr (M) suit la loi binomiale B(n,p)

de sorte que Vk € [0;n], P(Tr (M) =%k) = (z>pk(] —p)" k.

Classiquement, M? = utuutu = utuu)tu = [|u||*m et [|U||? = Tr (*uu) = Tr (UtU) = Tr (M) donc
M? = Tr (M)M. On en déduit que (M? = M) = (Tr (M) = 1) U (M = 0) (évenements incompatibles) donc

1

P(M?2 = M) = P(Tr (M) = 1) + P(M = 0) mais P(Tr (M) =1) = <T>p(1 —p)™ ! ainsi la probabilité que
M soit une matrice de projection est P(M? = M) = np(1 —p)" (1 —p)™.

Par le calcul matriciel, S = 'VMV = Y X;Xj = Z Xk +2 Y XiXj. Par linéarité de I'espérance et
1<i,j<n 1<i<isn

comme Xj et Xj sont indépendants si i # j, on a E(S ) =np + (n? —n)pZ.

n

On aurait aussi pu constater que S = *UtUV = *XX = X? en posant X = *UV = > Xy, alors X étant la
k=1

somme de n variables aléatoires indépendantes suivant la méme loi de BERNOULLI, X suit la loi binomiale

B(n,p) donc E(S) = E(X?) = V(X) + E(X)? = np(1 —p) + (np)? = np + (n* —n)p*.

De plus V(S) = E(S%) — E(S)? = E(X*) — (np + (n? — np?)2. Or, par le théoréme de transfert, il vient
n

EXY) = X k4<z> et on écrit k* = k(k — 1)(k — 2)(k — 3) + 6k(k — 1)(k — 2) + 7k(k — 1) + k pour
k=0

avoir Zi:k“_(;» = 2423 (Z)( ) +36Z ( )(E) +14Z ( )(k) + 21) (?) (D et on utilise la
k=0 k=0 ' k=0

n\ [k n! n! n\ (n—
relation 5 ( = = E —p)! = P pour simplifier ceci en

p/  (mn—K)lk—p)lp! (n—p)lpln—K)k—-p) \p/\k-p

;s




Ex@) =25 0000 £ 0)65) L0 C2) £ 0)05)
Ainsi : Zk“(l) ()2“4+36<3>z“—3+14(2>2“—2+(?)z“— et on en déduit V(S).

Comme X(2) = Y(Q2) = N*, par construction Z(2) = T(2) = N*.
Soit k € N*, alors (Z > k) = (X > k)N (Y > k) or (X > k) et (Y > k) sont des évenements puisque X et
Y sont des variables aléatoires donc, par intersection, (Z > k) est un événement pour tout k. De méme,
(T<k)=(X<k)N(Y < k) done (T < k) est un événement.
Ainsi, (Z=%) = (Z >k —1)\ (Z > k) est un évenement (stabilité par intersection et complémentaire). De
méme, (T=%k) = (T <k)\ (T <k—1) est un événement. Au final, Z et T sont des variables aléatoires.
D’abord, 1 < Z < Xet 1 <T<X+Y done, par comparaison, Z et T admettent des espérances finies.

k k k
Or (X< k) = | J(X =1) (réunion disjointe) done P(X <k) = 5° P(X = i) = 5 p(1—p)i-1 =pl = =P)
i= i=1

1—(1-p)
dott P(X < k) =1—(1—p)* De méme, ona P(Y <k)=1-(1—q)* donc P(X > k) = (1 —p)* et
P(Y > k) = (1 — q)*. Par indépendance de X et Y, on a P(Z > k) = P(X > k) P(Y > k) = (1 —p)*(1 — q)*
P(T <K) = P(X < K)B(Y < k) = 1— (1= p)* — (1 — @)% + (1 — p) (1 — )"

On sait que Z admet une espérance finie si et seulement si Y. P(Z > k) converge et que dans ce cas on a :

'CT

ﬁ
I
2
I

K>0
+oo
; 1 1
E(z) = P(Z > k). Il vient E(Z) = = car0<l—p<let0O<1—q<1donc
(2)= 2 Fz>¥ B === —0 rra—»a
les séries géométriques convergent. Comme P(T>k) =1—P(T<k) = (1—-p)*+(1—q)*—((1—p)(1—q))¥,
on a aussi E(T) = 1 + ] — 1 141 1

1-(1-p) 1-(0-q) 1-(0-p)(1=9q) P 9 Pp+tqa-pq
Puisque P(Z=%) = P(Z>k—1)—P(Z>%k) = (1—p)* (1 —q)* "= (1 —p)*(1 —q)¥, il vient en factorisant
P(Z=% =(0-0-p)1-q)(1—p)* (1 — q)* ' donc on constate que Z suit la loi géométrique de
N 1
parametre r=1— (1 —p)(1—q)=p+q —pq donc E(Z) = ———.
(1=p)(0—q)=p+dq—pq (2) ——
On en déduit aussi que si x € } - 1 ; 1 [, Gz(x) = Jrio P(Z = k)x* = (b +q—pa)x .
P+d4—Pq’ p+a—pg K= 1= =p)(0—q)x

—+o00 +oo
De méme, si x €]1;1] au moins, on a G1(x) = >, P(T=k)x¥ =1~ (x —1) > P(T > k)x¥ qui se calcule :
k=1 k=1

1 1 1 . .
Gt(x) =1—(x—1 ( + — ) Les espérances de Z et T existent
R e A e () S e (o[ (R
si et seulement si Gz et Gt sont dérivables en 1 et dans ce cas : E(Z) = G5 (1) et E(T) = G7(1). On vérifie
G, () = PHa=pa)(=(=p)( =a)) + [0 =p)(=d)(p+9=PAX 4, g, (1) = PEI=PL oK |

(1= =p)(1 = a))? (p+q—pa)’
11.161 | On vérifie la cohérence de la définition : comme 21 =1, I’énoncé impose visiblement N(2) = N* et on a

N = =1 1/2 , ‘s :
bien Y, P(N=n)= > -7 = —Z%—— = 1. Si on note V I’événement ”le joueur gagne”, alors on a par
n=1 n=0 2 - (]/2)
o s et P - ooy 1/4 1
définition V = U (N = 2n) (réunion disjointe) donc P(V) = Y 7 = —F— = .
n=1 n=1 2°m 1 - (1/4) 3

I Tiw)y

n
11.162) Posons m,, = - S piet My = X1+X 4.+ Xn e sorte que E(My) = m, par linéarité. D’apres
ni— n

l'inégalité de BIENAYME-TCHEBYCHEV, Vo > 0, ]P’(|Mn — EMy)| > cx) < V(M S n) | Les Xy étant indépen-
0.9

E(G):—io(_wn_ —(1/2) __1

Par définition G = (—1)NN donc, par le théoréme de transfert :

NE

n
dantes, V(My) = # > V(X)) = i2

Pr(T—pk) < 1 Ainsi, Va >0, lim ]P’<|Mn—E(Mn)| > oc) =0.
k= n- oy n n—-+oo

1
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Soit e > 0 et ng € N tel que Vn > ng, |mn —p| < % (IMn—p| >¢€) C <|Mn—mn| > %) car si My —p| > e,

0nae<|Mn—p|=\Mn—p—|—p—mn|<|Mn—p|+|mn—p|<|Mn—p|+§donc |Mn—mn|>§.

Ainsi P(JMy, —p| > €) < P<|Mn — ma| > %) — 0 d’apres ce qui précede : liT P(IMy, —p| > ¢) =0.
n——+oo

+oo —A
11.163] Par le théoreme du transfert, E(Y) = E(X2 +1) = . (n? +1)€ '}‘n. Orn?+1=nn-1)+n+1
n=0 n:

)\“"00 A 2+00 A2 An—1 +oo AT
donc E(Y) =e~ Z(n( )+n+1) |—e_ (7\ Zﬁ-l-?\zu( 1 +Z )(carn(n—])
n=2
est nul pour n = O et n = 1 par exemple) qui se réduit & E(Y) = e A(A2 + A+ 1)e? = )\2 + A+ 1. Ou alors
E(Y) = E(X?) + E(1) = V(X) + E(X)> +1 =A 4+ A% +1 d’apres le cours et par linéarité de I’espérance.
Comme 2X < Y) = (X24+1-2X>0) = ((X=1)2>0) = (X#1),ona P2X<Y)=1-P(X=1) =1—-2e .

oo too ~Ay2n

De méme, (X pair) = U (X = 2n) (réunion disjointe) donc P(X pair) = Zo e(Zn)' = e *ch (A) quon
n= 0 n= ’

transforme en P(X pair) = 7 1 e 7 < % : il y a donc plus de chance que X soit pair qu’impair.

11.164 | Par construction, N suit une loi géométrique. Lors d’un lancer de deux dés (de fagon indépendante),
la probabilité d’obtenir un 6 est de % puisque sur les 36 configurations (i,j) € [1;6]]> possibles, seules

(1,6),---,(5,6),(6,6),(6,5), -+, (6,1) ameénent au moins un 6. Ainsi, N suit la loi géométrique de parametre

11 K1 25\ 11
= > = = — - = .
P=3g de sorte que Vk > 1, P(N=%)=(1—p)“ 'p (36) 3

11.165 ) On sait que N(Q2) = N par définition de la loi de Po1ssoN donc K(€2) = N aussi. D’aprés ’énoncé, la loi de
K sachant (N = n) est la loi binomiale B(n,p) car on a indépendance mutuelle entre les ceufs et que I’éclosion

de chacun d’entre eux suit un schéma de BERNOULLI de parameétre p : P(K =k|N =n) = <z>pk(1 —p)nk,

+oo
11 suffit alors d’écrire que, pour k € N, on a (K = k) = U (K = k,N = n) (incompatibles), ce qui justifie
i —Aym
400 +oo /n K n_ke€ A . “ . .
que PK=k)= Y P(K=k[N=n)P(N=n)= > P )] ——— Bien sir, on pouvait aussi
n=k n=k n.

invoquer la formule des probabilités totales sachant que ((N =mn))necn et un systéme complet d’événements
—+o00
donc P(K =k) = > P(K=%kN=n)P(N=mn) et que P(K=k|N=mn)=0sik € [[0;n—1], ce qui
)
" “Agkak £ e Apkak

k
donne bien le méme résultat. Ainsi, P(K = k) = € pPA Z (1 —p)n—k AT P A (0-PA on
K= m—x)! k!

reconnaissant une série exponentielle aux indices décalés. Par conséquent P(X = k) = % donc K

suit la loi de POISSON de parametre Ap.

n
11.166 | Notons Xy = 0 si le dé A est inférieur au dé B au tirage k et Xi = 1 sinon. Alors X = > Xy et les Xy sont
k=1

mutuellement indépendants par indépendance des lancers. Comme les Xy suivent des lois de BERNOULLI
de parametre p = ;—2 (avec une probabilité % les deux des donnent la méme face, et on partage le reste en

deux), X suit la loi binomiale B(n,p). Ainsi E(X) = np et V(X) = np(1 —p) d’apres le cours.

Pour une variable aléatoire X admettant une variance finieet ¢ > 0: ]P’(|X— E(X)| > s) < V<2X ) (inégalité de
€

BIENAYME-TCHEBYCHEV). Par conséquent, comme E(X) > 0, en notant ¢ = 0,1E(X), on peut transformer

Pn = ]P’<0,9< ﬁ < 1,1) = P(=0,1 x E(X) < X — E(X) < 0,1 x E(X)) = P(|X — E(X)| < ¢) donc, avec
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BIENAYME-TCHEBYCHEV : pn = 1— P(X— E(X)| >¢) >1— 100V(X) _ 1— 100np(1 ~p)

140 p:r o
E(X)z =1- o Ainsi

n2p?
Pn > 0,99 des que 140 < 11% < n > 14000.
n

(¢
11.167) On note V; l'indicatrice de ’évenement B; : ”le i-eme chasseur est visé”. Alors par définition V = > V;
i=1
1

C
donc, par linéarité de I'espérance : E(V) = > E(V;). Or By = ﬂ I;; ou I ; est 'évenement : ”le lapin j ne
i=1 ’
j=1
vise pas le chasseur i” (I pour ignoré). Comme les choix des lapins sont supposés indépendants, les I; j sont

mutuellement indépendants donc 1 — P(B;) = [] P(I;;) mais P(I;;) = <= 1 (tous les chasseurs sauf 1 de
j=1 ¢
N
maniére équiprobable en supposant qu’un lapin ne vise qu’un seul chasseur) donc 1— P(B;) = u Ainsi
c
. . R ct—(c—1)! N ct—(c—1!
V; suit la loi de BERNOULLI de parametre ¢ = ——1——— donc E(V;) = q et d’ott E(V) = c.——1——+.
c c

1
On recommence : C; = ﬂ Li;j ol Ly j est 'évenement : ”le lapin j ne touche pas le chasseur i”. Comme les
j=1

!
choix des lapins sont indépendants, les Ly ; le sont aussi donc 1 — P(Cy) = [] P(Lij). Or Li; = Ryj ULy
j=1

(incompatibles) ot Ryj : ”le lapin j vise le chasseur j mais le rate” (R pour raté) et Ii; : le lapin j ne vise

méme pas le chasseur j” (I pour ignoré). Ainsi, P(Li ;) = P(Ry;) + P(Ii;) or P(I; ;) = &= 1 (comme avant)
et B(Riz) = B(To; N i) = Pr(Ty) x () = 12,

[N
Ainsi P(Ly ;) = ! zp +C;1 = czp. Donc P(C;) = C(C%p)

11.168 ] On peut choisir @ = P([[1;n]) comme univers sur lequel ’énoncé nous dit de prendre la probabilité

uniforme. Détermine la loi de S est tres compliqué. On peut néanmoins calculer E(S) en faisant intervenir

les variables aléatoires Xj, pour i € [1;n], définie par X;(w) =1sii € w et Xi(w) = 0 sinon. Par définition,
n
S=YiXi. Xy=1)=(we€N|i€w}donccard(X; =1)=P([1;n]\ {i}) = 2™ (i est dans la partie
i=1
n—1
(pas de choix) et on choisit si les autres y sont ou pas) donc P(X; =1) = 2 = % (normal non 7). Ainsi,

comme les X; sont des variables aléatoires suivant des lois de BERNOULLI de parametre p = %, S est une

variable aléatoire et, par linéarité de l'espérance, E(S) = i} ip = w
i=
Soit n € N*, par indépendance de X et Y, on obtient P(S =n) = P(X+Y =n) = kio P(X=ketY=n—k)
done B(S =n) = 5 BX=K)B(Y=n — k) = 3 p(1 )" Tp(1 = p)""5! = (n 4 (1 p) 2.
PX=kS=n) PX=kY=n—k)

Soit k € N, Ps—n(X = k) =

P(S =n) - P(S =n) donc Ps—n(X =k) =0sik >net

_ o \k—1 _ o yn—k—-1
Ps_n(X =%) = p(—p)" p(1—p) = —1 " laloi de X sachant $ = n est la loi uniforme sur [0; n].

(n+Dp*(1—p)" % n+]

Prenons d’abord n = 0, alors Pz~¢(Z > 1) =1 —p. Mais comme Z est & valeurs dans N*, on a (Z > 0) = Q
donc Pz~o(Z>1)=P(Z>1)=1—-p=1-—P(Z=1)donc P(Z=1) =p.

Montrons par récurrence que : ¥n > 1, P(Z > n) = (1 —p)™. La propriété est vraie pour n =0 et n = 1.
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P(Z>n+1)
P(Z >n)
Ainsi, par hypothese de récurrence : P(Z >n +1) = (1 —p)™*1.

Sinz2et P(Z>n)=(0-p)", Pzon(Z>n+1)=1—p = car (Z>n+1,Z>n) = (Z > n+1).

On a donc par principe de récurrence : ¥n > 1, P(Z > n) = (1 — p)™ (vrai méme pour n = 0) donc
m>1, PZ=n)=PZ>n)-PZ>n—-1)=0-p)"—~(1—p)" ' =p(1—p)"~":Z~3G(p).

Comme une loi géométrique modélise le numéro du premier succes (pile) dans une répétition infinie de tirages
de pile ou face (ou la probabilité de faire pile est p), le fait que E(X) = $ signifie qu’en moyenne on va

attendre 1 coups pour faire un pile dans cette configuration.
P
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