
SOLUTIONS EXERCICES CORRIGÉS 11
VARIABLES ALÉATOIRES

� �
11.1 Variables aléatoires infinies� �� �

11.1� �a. Quand on repasse à l’origine, pour la suite de l’expérience, c’est comme si on repartait de (0, 0) à

l’instant 0, les probabilités des transitions ne sont pas modifiées. C’est un processus sans mémoire. En
notant R1 le temps du premier retour à l’origine : R1(ω) = +∞ si on ne revient jamais et R1(ω) = k tel
que ∀i ∈ [[1; k − 1]], Zi ̸= (0, 0) et Zk = (0, 0). On note de même R2 le temps du second retour. Alors

(N > 2) =
∪

16i<j

(R1 = i, R2 = j) (réunion d’évènements incompatibles). Ainsi, par σ-additivité, on a

P(N > 2) =
+∞∑
i=1

( +∞∑
j=i+1

P(R1 = i, R2 = j)
)
=

+∞∑
i=1

( +∞∑
j=i+1

P(R1 = i)PR1=i(R2 = j)
)
.

Le fait que le processus soit sans mémoire nous dit que PR1=i(R2 = j) = P(R1 = j − i) ainsi, il vient

P(N > 2) =
+∞∑
i=1

( +∞∑
j=i+1

P(R1 = j− i)
)
P(R1 = i) =

(+∞∑
i=1

P(R1 = i)
)2

=
(
P(N > 1)

)2
car on peut décomposer

(N > 1) =
+∞∪
i=1

(R1 = i) (incompatibles deux à deux). De même, P(N > k) = P(N > k − 1)P(N > 1) ce qui

donne par une récurrence simple : ∀k > 0, P(N > k) = P(N > 1)k.

b. (N = +∞) =
+∞∩
k=1

(N > k) et la suite
(
(N > k)

)
k∈N

est croissante donc, par continuité croissante :

P(N = +∞) = lim
k→+∞

P(N > k) = lim
k→+∞

P(N > 1)k. Ainsi P(N = +∞) = 1 ⇐⇒
∑
n>1

P(N > 1)k diverge

car
∑
n>1

P(N > 1)k diverge si P(X > 1) = 1 et
∑
n>1

P(N > 1)k converge si P(X > 1) < 1 (série géométrique).

c. On a P(Zn = (0, 0)) = 0 si n est impair. Si n = 2p est pair, il faut autant de Sud que de Nord et autant

d’Ouest que d’Est pour qu’on revienne en (0, 0) à l’instant n. Ainsi en notant 2k le nombre de déplacements

”horizontaux” dans les 2p premiers déplacements (k ∈ [[0; p]] et ceci constitue une partition), on obtient la

relation P(Z2p = (0, 0)) =
p∑

k=0

(
2p

k

)(
2p− k

k

)(
2p− 2k

p− k

)
1

42p
(choix des k Sud parmi les 2p déplacements,

des k Nord, des p− k Est - le reste ce sera des Ouest forcément).

Alors P(Z2p = (0, 0)) = 1

42p

p∑
k=0

(2p)!
k!k!(p− k)!(p− k)!

= 1

42p

p∑
k=0

(
2p

k

)(
2p

p− k

)
.

d. D’après la formule de Vandermonde : P(Zn = (0, 0)) = P(Z2p = (0, 0)) = 1

42p

(
4p

2p

)2

=
1

4n

(
2n

n

)2

et

avec Stirling on trouve, si n pair, P(Zn = (0, 0)) = 1

4n
(2n)!2

(n!)4
∼
+∞

e4n

e4n4n
4πn(2n)4n

4π2n2n4n ∼
+∞

1

πn
.

Par conséquent
∑
n>1

P(Zn = (0, 0)) diverge par comparaison aux séries de Riemann.

e. On a E(Np) = 1× P(Zp = (0, 0)) + 0× P(Zp ̸= (0, 0)) = P(Zp = (0, 0)).

Par linéarité de l’espérance : E(N0 + · · · + Np) =
p∑

k=0

P(Zk = (0, 0)) ce qui prouve la question précédente

que lim
p→+∞

E(N0 + · · · + Np) = +∞. Comme N =
+∞∑
n=0

Nn, on a N > N0 + · · · + Np et on a admis

provisoirement que E(N0 + · · ·+Np) =
+∞∑
k=1

P(N0 + · · ·+Np > k). Or (N0 + · · ·+Np > k) ⊂ (N > k) donc
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P(N0 + · · ·+Np > k) 6 P(N > k). Par conséquent, comme lim
p→+∞

+∞∑
k=1

P(N0 + · · ·+Np > k) = +∞, la série∑
k>1

P(N > k) diverge. On a bien prouvé que P(N = +∞) = 1.� �
11.2� �a. X1 est une loi de premier succès dans une répétition indépendantes d’expériences suivant B(p). Alors X1

suit une loi géométrique de paramètre p. Alors d’après le cours : E(X1) =
1

p
et V(X1) =

1− p

p2
.

b. Si on impose (X1 = i), pour obtenir X2 = j, il faut continuer les tirages par FFFF · · · FFP (avec face des
tirages i + 1 à j − 1 et pile au tirage j). Ainsi, il vient P(X1=i)(X2 = j) = (1 − p)j−i−1p. On en déduit

que P(X2 = j) =
j−1∑
i=1

P(x1=i)(X2 = j)P(X1 = i) =
j−1∑
i=0

(1 − p)j−i−1pp(1 − p)i−1 = (j − 1)(1 − p)j−2p2. Par

conséquent, E(X2) =
+∞∑
j=2

jP(X2 = j) =
+∞∑
j=2

j(j−1)(1−p)j−2p2 = 2p2
+∞∑
k=2

(
j

2

)
(1−p)k−2 =

2p2

(1− (1− p))3
=

2

p
.

c. De même, par le théorème du transfert, E(X2(X2 − 2)) =
+∞∑
k=3

k(k − 1)(k − 2)(1 − p)k−2p2 ce qui donne

E(X2(X2−2)) = 6p2(1−p)
+∞∑
k=3

(
k

3

)
(1−p)k−3 =

6p2(1− p)

1− (1− p))4
=

6(1− p)

p2
. Alors par linéarité de l’espérance,

V(X2) = E(X2
2)− E(X2)

2 = E(X2(X2 − 2)) + 2E(X2)− E(X2)
2 =

6(1− p)

p2
+ 4

p
− 4

p2
=

2(1− p)

p2
.

d. Chaque tirage élémentaire de la forme FFFPFP · · · FFPPFFFFP où l’on a n piles (dont le dernier) parmi les
k premiers lancers a une probabilité de pn(1 − p)k−n. Pour en connâıtre leur nombre, comme le dernier
tirage est imposé car Xn = n, il ne reste plus qu’à choisir l’emplacement des n− 1 autres pile parmi les k− 1

premiers lancers. Ainsi P(Xn = k) = 0 si k < n et P(Xn = k) =

(
nk− 1

n− 1

)
pn(1− p)n−k sinon. On en déduit

que E(Xn) =
+∞∑
k=n

k

(
k− 1

n− 1

)
pn(1 − p)k−n =

+∞∑
k=n

n

(
k

n

)
pn(1 − p)k−n =

npn

(1− (1− p))n+1
d’après l’exercice

précédent donc E(Xn) =
n

p
comme attendu.� �

11.3� �a. Les pi,j sont positifs. Ils définissent bien une loi de probabilité conjointe car leur somme totale

∑
(i,j)∈N2

pi,j =
+∞∑
i=0

(
i∑

j=0

λie−λpjqi−j

j!(i− j)!

)
=

+∞∑
i=0

λi

i!
e−λ ×

(
i∑

j=0

i!
j!(i− j)!

× pjqi−j

)
=

+∞∑
i=0

λi

i!
e−λ = eλe−λ = 1.

En effet, par le binôme de Newton :
i∑

j=0

i!
j!(i− j)!

× pjqi−j = (p+ q)i = 1.

On aurait pu aussi le vérifier en sommant par lignes :
+∞∑
j=0

(
+∞∑
i=j

λie−λpjqi−j

j!(i− j)!

)
= e−λ

+∞∑
j=0

λjpj

j!

(
+∞∑
i=j

(λq)i−j

(i− j)!

)
= e−λe−λq

+∞∑
j=0

(λp)j

j!
= e−λe−λqeλp = 1.

•] Loi marginale de Y : ∀j ∈ N, P(Y = j) =
+∞∑
i=0

pi,j =
(λp)j

j!
× e−λp : Y suit la loi de Poisson P(λp).

• Loi marginale de X : P(X = i) =
+∞∑
j=0

pi,j =
i∑

j=0

λie−λpjqi−j

j!(i− j)!
= λi

i!
× e−λ ×

i∑
j=0

i!
j!(i− j)!

× pjqi−j donc

P(X = i) = λi

i!
× e−λ × (p+ q)i = λi

i!
× e−λ : X suit la loi de Poisson P(λ).

b. • Loi conditionnelle de Y sachant (X = i) : PX=i(Y = j) =
P(X = i, Y = j)

P(X = i)
= i!

j!(i− j)!
pjqi−j si 0 6 j 6 i

et PX=i(Y = j) = 0 sinon. La loi conditionnelle de Y sachant (X = i) est la loi binomiale B(i, p).
Ce n’est pas la loi de Y : les variables X et Y ne sont donc pas indépendantes.
c. • Loi de Z = X−Y : pi,j est nul dès que j > i. Par conséquent, X est presque sûrement supérieur à Y. Z est

une variable aléatoire à valeurs entières positives ou nulles. ∀k ∈ N, (Z = k) =
+∞∪
k=0

(
(X = j+ k) ∩ (Y = j)

)
.

2



Ainsi P(Z = k) =
+∞∑
j=0

pj+k,j =
+∞∑
j=0

e−λλi

j!k!
pjqk =

(λq)k

k!
×e−λ×

+∞∑
j=0

(λp)j

j!
=

(λq)k

k!
×e−λ×eλp =

(λq)k

k!
×e−λq.

Z = X− Y suit donc la loi de Poisson P(λq).

• Loi conditionnelle de Y sachant Z = n : PZ=n(Y = j) =
P(Y = j, X− Y = n)

P(Z = n)
=

P(Y = j, X = j+ n)
P(Z = n)

ce

qui donne après calculs PZ=n(Y = j) =
(λp)j

j!
e−λp. La loi conditionnelle de Y sachant (Z = n) est la loi

binomiale P(λp). C’est exactement la loi de Y et ceci ∀n ∈ N : les variables Y et Z = X − Y sont donc
indépendantes.

On pouvait s’attendre au résultat en constatant au départ que (Y = j, Z = i) = (X = i + j, Y = j) ce

qui entrâıne : P(Y = j, Z = i) = P(X = i + j, Y = j) = pi+j,j = λi+je−λpjqi

j!i!
= λi+je−λp−λqpjqi

j!i!
car

p+ q = 1 donc P(Y = j, Z = i) =

(
(λp)j

j!
× e−λq

)(
(λq)i

i!
× e−λq

)
donc on se doute bien qu’on va obtenir

de l’indépendance avec P(Y = j) =
(λp)j

j!
× e−λq et P(Z = i) =

(λp)i

i!
× e−λp.

On peut alors utiliser le cours pour dire que comme X = Y +Z et que Y suit une loi P(λq) et Z une loi P(λp)
et qu’elles sont indépendantes, on a X qui suit une loi P(λp+ λq) = P(λ).� �

11.4� �a. On doit avoir
+∞∑
k=0

P(X = k) = 1, ce qui équivaut à C
+∞∑
k=0

1

3k
= C

1− 1

3

= 3C

2
donc C = 2

3
. Ainsi

∀k ∈ N∗, P(1+ X = k) = P(X = k− 1) = 2

3

1

3k−1 donc 1+ X suit une loi géométrique de paramètre p = 2

3
.

b. On a Z(Ω) = N et ∀k ∈ N, P(Z 6 k) = P(X 6 k, Y 6 k) = P(X 6 k)P(Y 6 k) par indépendance.

Or P(X 6 k) = P(Y 6 k) =
k∑

j=0

P(X = j) = 2

3

1− (1− p)k+1

1− (1− p)
= 1− 1

3k+1 . Ainsi P(Z 6 k) =

(
1− 1

3k+1

)2

.

Alors : ∀k ∈ N, P(Z = k) = P(Z 6 k)− P(Z 6 k− 1) =

(
1− 1

3k+1

)2

−
(
1− 1

3k

)2

.

On a W(Ω) = N et ∀k ∈ N, P(W > k) = P(X > k, Y > k) = P(X > k)P(Y > k) par indépendance. Or on a

P(X > k) = P(Y > k) = 1− P(X 6 k) = 1

3k+1 . Ainsi P(W > k) = 1

9k+1 . Comme P(W > −1) = 1 = 1

9−1+1 ),

il vient ∀k ∈ N, P(W = k) = P(W > k− 1)− P(W > k) = 1

9k
− 1

9k+1 = 8

9

(
1

9

)k

.

On en déduit que 1+W suit une loi géométrique de paramètre q = 8

9
.

On sait alors d’après le cours que E(1+W) = 1

q
= 9

8
donc, par linéarité : E(W) = 1

8
. Toujours par linéarité :

W + Z = X+ Y et E(1+ X) = E(1+ Y) = 1

p
= 3

2
donc E(X) = E(Y) = 1

2
d’où E(Z) = 1− 1

8
= 7

8
.� �

11.5� �Notons pi,j = P
(
(X, Y) = (i, j)

)
. On veut

∑
(i,j)∈N2

pi,j = 1. Or
+∞∑
i=0

pi,j =
+∞∑
i=0

α

2ij!
= α

j!
× 1

1− 1

2

. De plus,

+∞∑
j=0

(
+∞∑
i=0

pi,j

)
=

+∞∑
j=0

2α

j!
= 2αe. Ainsi : α = 1

2e
d’où ∀(i, j) ∈ N2, P((X, Y) = (i, j)) = e−1

2i+1j!
.

Les lois marginales sont aisées à déterminer :

• ∀i ∈ N, P(X = i) =
+∞∑
j=0

pi,j =
e−1

2i+1

+∞∑
j=0

1

j!
= 1

2i+1 .

• ∀j ∈ N, P(Y = j) =
+∞∑
i=0

pi,j =
e−1

j!

+∞∑
i=0

1

2i+1 = e−1

j!
= 1j

j!
e−1.

1+ X sui la loi géométrique de paramètre p = 1

2
et Y suit la loi de Poisson de paramètre λ = 1.
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� �
11.6� �a. Pour n ∈ N, comme {S = n} =

∪
k∈N

{N = k, X1+ · · ·+Xk = n} (réunion disjointe), on obtient la relation

P(S = n) =
+∞∑
k=0

P(N = k, X1+ · · ·+Xk = n) =
+∞∑
k=0

(
N = k)P(X1+ · · ·+Xk = n) par indépendance mutuelle.

Pour t ∈]− 1; 1[, GS(t) =
+∞∑
n=0

P(S = n)tn =
+∞∑
n=0

( +∞∑
k=0

P(N = k)P(X1 + · · ·+ Xk = n)tn
)
. D’après l’énoncé,

GS(t) =
+∞∑
k=0

( +∞∑
n=0

P(N = k)P(X1 + · · · + Xk = n)tn
)
=

+∞∑
k=0

( +∞∑
n=0

P(X1 + · · · + Xk = n)tn
)
P(N = k) donc

GS(t) =
+∞∑
k=0

GX1+···+Xk
(t)P(N = k). Or, par indépendance mutuelle, on a GX1+···+Xk

=
k∏

i=1

GXi
= Gk

X1
et

on arrive enfin à GS(t) =
+∞∑
k=0

P(N = k)
(
GX1

(t)
)k

= GN

(
GX(t)

)
.

b. GX et Gn sont donc des fonctions dérivables en 1 d’après le cours et, par composition, GS aussi avec

G′
S(1) = G′

X(1)G
′
N

(
GX(1)

)
= G′

X(1)G
′
N(1)) car GX(1) = 1. D’après le cours, E(S) = E(N)E(X).

c. • ∀t ∈ R, GS(t) = eλ(1−p+pt−1) = eλp(t−1) donc S suit la loi P(λp).

• Si |t| < 1, GS(t) =
q(1− p+ pt)

1− (1− q)(1− p+ pt)
=

q(1− p) + pqt

p+ q− pq− p(1− q)t
=

q(1− p) + pqt

p+ q− pq
× 1

1− p(1−q)t

p+q−pq

.

On développe avec la série géométrique, GS(t) =
q(1− p) + pqt

p+ q− pq
×

+∞∑
n=0

(
p(1− q)

p+ q− pq

)n
tn. En identifiant,

on a ∀n ∈ N∗, P(S = n) =
q(1− p)

p+ q− pq

(
p(1− q)

p+ q− pq

)n
+ pq

p+ q− pq

(
p(1− q)

p+ q− pq

)n−1

=
pnq(1− q)n−1

(p+ q− pq)n+1

(unicité des coefficients d’une série entière). De plus, P(S = 0) =
q(1− p)

p+ q− pq
.

� �
11.2 Exercices aux oraux des étudiants de PSI1� �� �

11.7� �Soit Xi la VA égale au nombre de point obtenu à la question i. Soit Ai l’évènement ”l’élève répond juste la

première fois à la question i”, Bi : ”l’élève répond juste la seconde fois à la question i. On note n le nombre

de questions et aussi X la note qu’obtient le candidat : X =
n∑

i=1

Xi.

Alors P(Xi = 1) = P(Ai) =
1

k
(réponse au hasard parmi k réponses possibles).

De plus, P
(
Xi =

1

2

)
= P(Ai ∩ Bi) = P

Ai
(Bi)P(Ai) =

1

k− 1

k− 1

k
= 1

k
.

Ainsi : P(Xi = 0) = 1− P(Xi = 1)− P
(
Xi =

1

2

)
= k− 2

k
.

On en déduit que E(Xi) = 0 × P(Xi = 0) + 1

2
× P

(
Xi = 1

2

)
+ 1 × P(Xi = 1) = 3

2k
donc, par linéarité

de l’espérance, la moyenne que peut obtenir l’élève est de E(X) =
n∑

i=1

E(Xi) = 3n

2k
. Si on veut que cette

moyenne soit égale à 5, 3n

2k
= 5 ⇐⇒ 3n = 10k. Mais 3 et 10 sont premiers entre eux donc ceci implique que

10|n et 3|k par le théorème de Gauss. Réciproquement, si n = 10p est un multiple de 10 et k = 3p, on a
E(X) = 5.

La note moyenne que peut obtenir l’élève est de 5 ssi il existe un entier p ∈ N∗ tel que n = 10p et k = 3p.� �
11.8� �a. Comme rang (UtU) 6 Min(rang (U), rang (tU)) 6 1 car U est une matrice colonne, on a rang (M) ∈ {0, 1}.

Or Tr (M) = Tr (UtU) = ||U||2 donc si M = 0, on a U = 0 et, si U = 0, il est clair que M = 0. Ainsi,
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M = 0 ⇐⇒ U = 0 donc rang (M) = 0 ⇐⇒ U = 0 : rang (M) suit la loi de Bernoulli de paramètre

q = P(U ̸= 0).

Comme (U = 0) =
n∩

k=1

(Xk = 0) et que les variables aléatoires X1, · · · , Xn sont mutuellement indépendantes,

P(rang (M) = 0) = P(U = 0) =
n∏

k=1

P(Xk = 0) = (1− p)n d’où P(rang (M) = 1) = 1− (1− p)n.

Ainsi, rang (M) suit une loi de Bernoulli B(q) de paramètre q = 1− (1− p)n.

b. Classiquement : M2 = UtUUtU = U(tUU)tU = ||U||2M et ||U||2 = Tr (tUU) = Tr (UtU) = Tr (M)

donc M2 = Tr (M)M. On en déduit que (M2 = M) = (Tr (M) = 1) ∪ (M = 0) (réunion disjointe) donc

P(M2 = M) = P(Tr (M) = 1)+ P(M = 0) mais Tr (M) = 1 ⇐⇒ X2
1+ · · ·+X2

n = 1 ⇐⇒ X1+ · · ·+Xn = 1 donc

P(Tr (M) = 1) =

(
n

1

)
p(1−p)n−1 car S =

n∑
k=1

Xk suit d’après le cours la loi binomiale B(n, p). La probabilité

que M soit une matrice de projection est P(M2 = M) = np(1−p)n−1+(1−p)n = (1−p)n−1((n− 1)p+ 1).� �
11.9� �a. En prenant B = (i), on a A = M et χA = X2 donc A est nilpotente et non nulle. Si elle était diagonalisable,

elle serait semblable à une matrice diagonale avec les valeurs propres sur la diagonale. Or a seule valeur propre
de A est 0 donc A serait semblable à la matrice 0 donc égale à 0 : NON ! A n’est donc pas diagonalisable.

b. D’abord le cas n = 1 : χA = X2 − b2(1+ b2) qui est scindé à racines simples si b /∈ {0, i,−i}. Donc A est
diagonalisable si et seulement si b /∈ {i,−i}.

Dans le cas n = 2, la matrice A′ =

(
B1 0

0 B2

)
diagonale par blocs est donc semblable à A par l’indication.

A est donc DZ si et seulement si chacun des blocs l’est donc si Sp(B) ∩ {i,−i} = ∅.
c. Les valeurs propres de B sont les X1, . . . , Xn. Si n ̸≡ 0 [4] alors p vaut 1 car i et −i ne peuvent pas être

dans Sp(B). Si n ≡ 0 [4], alors par indépendance, p =
(
n− 2

n

)n
.

� �
11.10� �a. Comme X est à valeurs dans N, pour tout entier n ∈ N, on a (Y = n) =

+∞∪
k=0

(Y = n, X = k) (réunion

d’évènements incompatibles) donc, par σ-additivité, comme P(Y = n, X = k) = 0 si k > n par hypothèse, on

a P(Y = n) =
n∑

k=0

P(Y = n, X = k) =
n∑

k=0

(
n

k

)
an(1 − p)np = an(1 − p)np

n∑
k=0

(
n

k

)
= p(2a(1 − p))n. De

plus, comme Y est aussi à valeurs dans N, Ω =
+∞∪
n=0

(Y = n) (incompatibles) donc, toujours par σ-additivité,

il vient P(Ω) = 1 =
+∞∑
n=0

P(Y = n) = p
+∞∑
n=0

(2a(1− p))n = p

1− 2a(1− p)
(la série converge forcément).

Ainsi, p = 1− 2a(1− p) devient a = 1

2
car p ̸= 1.

b. On a déjà calculé P(Y = n) = p(1− p)n à la question précédente sachant que a = 1

2
. Ainsi, 1+ Y suit la

loi géométrique de paramètre p car P(Y + 1 = n) = P(Y = n− 1) = p(1− p)n−1.

c. ∀k ∈ N, (X = k) =

+∞∪
n=0

(Y = n, X = k) (réunion disjointe) donc, par σ-additivité, on obtient comme avant

P(X = k) =
+∞∑
n=0

P(Y = n, X = k) = p
+∞∑
n=k

(
n

k

)(
1

2

)n
(1 − p)n. Or, en dérivant k fois la relation classique

∀x ∈] − 1; 1[, 1

1− x
=

+∞∑
n=0

xn (série entière de rayon de convergence 1), on obtient la formule du binôme

négatif ∀x ∈]− 1; 1[, k!
(1− x)k+1 =

+∞∑
n=k

n!
(n− k)!

xn−k ⇐⇒ 1

(1− x)k+1 =
+∞∑
n=k

(
n

k

)
xn−k.
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Ainsi P(X = k) = p

(
1− p

2

)k
× 1(

1−
(1− p

2

))k+1 =
(

2p

1+ p

)(
1− p

1+ p

)k
=
(

2p

1+ p

)(
1 − 2p

1+ p

)k
après

simplification. Ainsi, 1+ X suit la loi géométrique de paramètre 2p

1+ p
.

d. P(X = Y = 0) = p ̸= 2p2

1+ p
= P(X = 0)P(Y = 0) car p2 ̸= p : X et Y ne sont pas indépendantes.

e. Z prend presque sûrement ses valeurs dans N d’après les conditions imposées à X et Y et pour m ∈ N,

comme avant, on a (Z = m) =
+∞∪
k=0

(X = k, Y = m + k) donc P(Z = m) =
+∞∑
k=0

(
m+ k

k

)
am+k(1 − p)m+kp.

Comme

(
m+ k

k

)
=

(
m+ k

m

)
et en posant i = m + k, on a P(Z = m) =

+∞∑
i=m

(
i

m

)
(a(1 − p))ip donc

P(Z = m) = p(a(1 − p))m
+∞∑
i=m

(
i

m

)
(a(1 − p))i−m = p

(
1− p

2

)m
× 1(

1−
(1− p

2

))m+1
=

2p

1+ p

(
1− p

1+ p

)m
.

Ainsi, 1+ Z suit la loi géométrique de paramètre 2p

1+ p
, comme X.

f. Comme P(Y = n) = p(1 − p)n > 0, la loi de X sachant (Y = n) existe pour tout n ∈ N. Si k > n,

P(X = k|Y = n) = 0 par hypothèse et, si k ∈ [[0;n]], P(X = k|Y = n) =
P(X = k, Y = n)

P(Y = n)
par définition donc

P(X = k|Y = n) =

(
n

k

)
(1/2)n(1− p)np

p(1− p)n
=

(
n

k

)(
1

2

)n
. X sachant (Y = n) suit la loi binomiale B

(
n, 1

2

)
.� �

11.11� �a. En supposant que les résultats des parties sont indépendantes, X étant le nombre de succès dans une

répétition de n expériences suivant une loi de Bernoulli de loi B(0.4) (gagner ou pas la partie de golf), X

suit la loi binomiale B(7, 0.4). Ainsi : ∀k ∈ [[0; 7]], P(X = k) =

(
k

7

)
0.4k0.67−k.

Comme Y = 30(7− X) et que X(Ω) = [[0; 7]], on a Y(Ω) = {0, 30, 60, 90, 120, 150, 180, 210}.

b. Comme (X = 4) = (Y = 90), on a P(Y = 90) = P(X = 4) =

(
7

4

)
(0.4)4(0.6)3 ∼ 0.19.

c. Par linéarité de l’espérance, comme E(X) = 7× 0.4 = 2.8, il vient :

E(Y) = E(210− 30X) = 210− 30E(X) = 210− 30× 2.8 = 210− 84 = 126.

Question supplémentaire : on sait que V(aX+ b) = a2 V(X) en général et on connâıt la variance d’une VA

X qui suit une loi binomiale B(n, p) : V(X) = np(1− p).

Dans notre cas : V(Y) = V(210− 30X) = V(30X) = 900V(X) = 900× 7× 0.4× 0.6 = 1512.� �
11.12� �a. Xn est le nombre de succès dans une suite de n expériences indépendantes suivant la même loi de

Bernoulli B
(
1

n

)
(prendre ou pas la boule 1 parmi n boules avec probabilité uniforme). Ainsi Xn suit la

loi binomiale B

(
n, 1

n

)
ce qui se traduit par ∀k ∈ [[0;n]], P(Xn = k) =

(
n

k

)(
1

n

)k(n− 1

n

)n−k

.

On sait d’après le cours qu’en notant p = 1

n
, on a E(Xn) = np = 1 et V(Xn) = np(1− p) = n− 1

n
.

b. Pour k ∈ N∗ fixé, ∀n > k, P(Xn = k) = n!
k!(n− k)!

(n− 1)n−k

nn et avec l’équivalent q! ∼
+∞

√
2πq

(
q

e

)q
de

Stirling, on a P(Xn = k) ∼
+∞

√
2πnnnen−k

k!
√

2π(n− k)(n− k)n−ken
× (n− 1)n−k

nn ce qui devient après simplification

P(Xn = k) ∼
+∞

e−k

k!

(
n− 1

n− k

)n−k

. Or
(
n− 1

n− k

)n−k

= e
(n−k) ln

(
n−1
n−k

)
= e

(n−k) ln
(
1+ k−1

n−k

)
→ ek−1 par
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continuité de l’exponentielle et car ln

(
1+ k− 1

n− k

)
∼
+∞

k− 1

n− k
. Ainsi, lim

n→+∞
P(Xn = k) = e−kek−1

k!
= 1

ek!
.

Ou alors on écrit P(Xn = k) =
n(n− 1) · · · (n− k+ 1)

k!nk

(
n− 1

n

)n−k

et on conclut comme avant que l’on a

lim
n→+∞

P(Xn = k) = e−kek−1

k!
= 1

ek!
car lim

n→+∞

(
n− 1

n

)n−k

= 1

e
et lim

n→+∞
n(n− 1) · · · (n− k+ 1)

k!nk = 1

k!
.

La suite de variables aléatoires (Xn)n∈N∗ converge en loi vers X suivant la loi de Poisson de paramètre 1.

c. Comme Ω = (Xn pair) ∪ (Xn impair) (incompatibles), alors 1 = P(Xn pair)+ P(Xn impair) = q(n)+p(n).

Par définition, q(n) = P(Xn pair) or on décompose (Xn pair) =
∪

06k6n

kpair

(Xn = k) =
∪

062k6n

(Xn = 2k)

(incompatibles), d’où par σ-additivité : q(n) =
∑

062k6n

P(Xn = 2k) =
∑

062k6n

(
n

2k

)(
1

n

)2k(n− 1

n

)n−2k

.

De même p(n) =
∑

062k+16n

P(Xn = 2k+ 1) =
∑

062k+16n

(
n

2k+ 1

)(
1

n

)2k+1(n− 1

n

)n−2k−1

.

Par conséquent : q(n) − p(n) =
n∑

k=0

(−1)k
(
n

k

)(
1

n

)k(n− 1

n

)n−k

=
(
n− 1

n
− 1

n

)n
=
(
n− 2

n

)n
(car

on a (−1)2k = 1 et (−1)2k+1 = −1). Puisque p(n) − q(n) = exp

(
n ln

(
1 − 2

n

))
, on en déduit que

lim
n→+∞

(
q(n) − p(n)

)
= e−2 car ln

(
1 − 2

n

)
∼
+∞

− 2

n
. Ainsi, comme p(n) =

p(n) + q(n) + p(n)− q(n)
2

et

q(n) =
p(n) + q(n) + q(n)− p(n)

2
, on a lim

n→+∞
p(n) = 1

2
− 1

2e2
∼ 0.43 et lim

n→+∞
q(n) = 1

2
+ 1

2e2
∼ 0.57.

d. Si on ne fait que des 1 (ou des 2), P(Xn = n) = 1

nn (ou P(Yn = n) = 1

nn ). Mais il est impossible d’avoir

Xn = Yn = n : P(Xn = Yn = n) = 0 ̸= P(Xn = n)P(Yn = n). Ainsi, Xn et Yn ne sont pas indépendants.� �
11.13� �On numérote les figurines de 1 à n, on note Xk le numéro de la figurine obtenue au paquet k.

a. N1 = T1 = 1 et T2 suit la loi géométrique G

(
n− 1

n

)
: ∀k > 1, P(T2 = k) = n− 1

n

(
1

n

)k−1

(k − 1 échecs

consécutifs et un succès). En effet, la probabilité d’avoir une figurine différente vaut n− 1

n
car il y a n

figurines et une déjà obtenue au premier paquet.

b. Soit (λ2, λ3) ∈ (N∗)2, si λ2 > λ3, P
(
T2 = λ2, T3 = λ3

)
= 0 par construction de T2, T3. De plus, si λ2 < λ3,

P
(
T2 = λ2, T3 = λ3

)
= P(N2 = 1+λ2, N3 = 1+λ2+λ3) qui vaut, en revenant aux évènements élémentaires,

P(N2 = 1 + λ2, {Xλ2+1, · · · , Xλ2+λ3−1} ∈ {X1, Xλ2
}, X1+λ2+λ3

/∈ {X1, Xλ2
}). Par indépendance de (Xk)k>1,

P
(
T2 = λ2, T3 = λ3

)
= P(N2 = 1 + λ2)P({Xλ2+1, · · · , Xλ2+λ3−1} ∈ {X1, Xλ2

}, X1+λ2+λ3
/∈ {X1, Xλ2

}) ce qui

donne finalement P
(
T2 = λ2, T3 = λ3

)
=
(
1

n

)λ2−1(
n− 1

n

)(
2

n

)λ3−1(
n− 2

n

)
.

Par conséquent : P(T3 = λ3) =
λ3−1∑
λ2=2

P(T2 = λ2, T3 = λ3) =
(
(n− 1)(n− 2)

n2

)(
2

n

)λ3−1 +∞∑
λ2=1

(
1

n

)λ2−1

donc

P(T3 = λ3) =
(
(n− 1)(n− 2)

n2

)(
2

n

)λ3−1(
1− 1

n

)−1

=
(
n− 2

n

)(
2

n

)λ3−1

.

On en déduit que T3 suit la loi géométrique de paramètre n− 2

n
car 2

n
= 1− n− 2

n
.

c. On vérifie P
(
T2 = λ2, T3 = λ3

)
= P(T2 = λ2)P(T3 = λ3) = n− 1

n

(
1

n

)λ2−1(
n− 2

n

)(
2

n

)λ3−1

ce qui

prouve que T2 et T3 sont indépendantes.

d. Comme à la question b., pourm ∈ [[1;n]], Tm suit une loi géométrique de paramètre n−m+ 1

n
(quand on a
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m−1 figurines, on attend d’en avoir une de plus avec une probabilité de l’avoir à chaque paquet de n−m+ 1

n
).

En supposant T1, · · · , Tn deux à deux indépendants (ce qu’on pourrait démontrer par indépendance des

(Xk)k>1), on a donc Nn = T1 +
n∑

k=2

Tk. Comme l’espérance est linéaire, on a E(Nn) = n
n∑

k=1

1

k
= Hn donc

E(Nn) ∼
+∞

n ln(n) classiquement. Par indépendance, V(Nn) =
n∑

k=2

V(Tk) car V(N1) = 0. Or Tk suit la

loi géométrique pk = n− k+ 1

n
donc V(Tk) = 1− pk

p2k
=

(k− 1)n

(n− k+ 1)2
donc, en posant j = n − k + 1, on

a V(Nn) =
n−1∑
j=1

(n− j)n

j2
ce qui donne V(Nn) = n2

n−1∑
j=1

1

j2
− n

n−1∑
j=1

1

j
. Or on sait que ζ(2) = π2

6
et que

Hn ∼
+∞

ln(n) donc n
n−1∑
j=1

1

j
∼
+∞

n ln(n) =
+∞

o

(
n2

n−1∑
j=1

1

j2

)
car n2

n−1∑
j=1

1

j2
∼
+∞

π2n2

6
. Ainsi, V(Nn) ∼

+∞
n2π2

6
.

e. Par l’inégalité de Bienaymé-Tchebychev, ∀ε > 0, P
(∣∣Nn − E(Nn)

∣∣ > ε

)
6 V(Nn)

ε2
. On en déduit en

prenant α > 0 et ε = αE(Nn) que P
(∣∣Nn − E(Nn)

∣∣ > αE(Nn)
)
6 V(Nn)

α2 E(Nn)
2 ∼

+∞
π2

6α2 ln(n)2
qui tend vers

0 quand n tend vers +∞. Ainsi : ∀α > 0, lim
n→+∞

P

(∣∣∣ Nn

E(Nn)
− 1

∣∣∣ > α

)
= 0.

Soit ε ∈]0; 1[, il existe d’après d. un rang n0 ∈ N tel que
∣∣∣ E(Nn)
n ln(n)

− 1

∣∣∣ 6 ε

2
ce qui implique que

E(Nn)
n ln(n)

< 2.

Or, par inégalité triangulaire, on a
|Nn − n ln(n)|

n ln(n)
6 |Nn − E(Nn)|

n ln(n)
+

|E(Nn)− n ln(n)|
n ln(n)

ce qu’on peut

réécrire
∣∣∣ Nn

n ln(n)
− 1

∣∣∣ 6 E(Nn)
n ln(n)

∣∣∣ Nn

E(Nn)
− 1

∣∣∣+ ∣∣∣ E(Nn)
n ln(n)

− 1

∣∣∣. Par conséquent, ∀n > n0, si
∣∣∣ Nn

n ln(n)
− 1

∣∣∣ > ε,

comme
∣∣∣ E(Nn)
n ln(n)

− 1

∣∣∣ 6 ε

2
, on a

E(Nn)
n ln(n)

∣∣∣ Nn

E(Nn)
− 1

∣∣∣ > ε− ε

2
= ε

2
. De plus, comme

E(Nn)
n ln(n)

< 2, on en déduit

que
∣∣∣ Nn

E(Nn)
− 1

∣∣∣ > ε

4
= α. On vient d’établir que P

(∣∣∣ Nn

n ln(n)
− 1

∣∣∣ > ε

)
6 P

(∣∣∣ Nn

E(Nn)
− 1

∣∣∣ > α

)
.

On a montré que lim
n→∞

P

(∣∣∣ Nn

E(Nn)
−1

∣∣∣ > α

)
= 0 et on en déduit donc que lim

n→+∞
P

(∣∣∣ Nn

n ln(n)
−1

∣∣∣ > ε

)
= 0.� �

11.14� �a. Soit n ∈ N∗, par indépendance de X et Y, P(S = n) = P(X+ Y = n) =
n∑

k=0

P(X = k et Y = n− k) donc

P(S = n) =
n∑

k=0

P(X = k)P(Y = n− k) =
n∑

k=0

p(1− p)k−1p(1− p)n−k−1 = (n+ 1)p2(1− p)n−2.

b. Soit k ∈ N, PS=n(X = k) =
P(X = k, S = n)

P(S = n)
=

P(X = k, Y = n− k)
P(S = n)

donc PS=n(X = k) = 0 si k > n et

PS=n(X = k) =
p(1− p)k−1p(1− p)n−k−1

(n+ 1)p2(1− p)n−2 = 1

n+ 1
, la loi de X sachant S = n est la loi uniforme sur [[0;n]].

c. Prenons d’abord n = 0, alors PZ>0(Z > 1) = 1−p. Mais comme Z est à valeurs dans N∗, on a (Z > 0) = Ω

donc PZ>0(Z > 1) = P(Z > 1) = 1− p = 1− P(Z = 1) donc P(Z = 1) = p.

Montrons par récurrence que, ∀n > 1, P(Z > n) = (1− p)n. La propriété est vraie pour n = 0 et n = 1.

Soit n > 2 et P(Z > n) = (1 − p)n, PZ>n(Z > n + 1) = 1 − p =
P(Z > n+ 1)
P(Z > n)

car il est clair que l’on a

(Z > n+ 1, Z > n) = (Z > n+ 1). Ainsi, par hypothèse de récurrence : P(Z > n+ 1) = (1− p)n+1.

On a donc par principe de récurrence : ∀n > 1, P(Z > n) = (1 − p)n (vrai même pour n = 0) donc

∀n > 1, P(Z = n) = P(Z > n)− P(Z > n− 1) = (1− p)n − (1− p)n−1 = p(1− p)n−1. Ainsi, Z ∼ G(p).

Comme une loi géométrique modélise le numéro du premier succès (pile) dans une répétition infinie de tirages
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de pile ou face (où la probabilité de faire pile est p), le fait que E(X) = 1

p
signifie qu’en moyenne on va

attendre 1

p
coups pour faire un pile dans cette configuration.� �

11.15� �a. Il suffit de vérifier que ∀n ∈ N∗, P(X = n) > 0 et que
+∞∑
n=1

P(X = n) = 1 ce qui est bien le cas par

définition même de la fonction ζ de Riemann.

Comme Ak = (X ∈ kN∗) =
+∞∪
n=1

(X = nk), on a par σ-additivité : P(Ak) =
+∞∑
n=1

P(X = nk) ce qui permet de

calculer P(Ak) =
+∞∑
n=1

1

ζ(a)(nk)a
= 1

ka

+∞∑
n=1

P(X = n) = 1

ka
.

b. Comme i et j sont premiers entre eux : (i divise n et j divise n) ⇐⇒ ij divise n : on a (Ai ∩ Aj) = Aij

donc P(Ai ∩Aj) = P(Aij) : P(Ai ∩Aj) =
1

(ij)a
= 1

ia
× 1

ja
= P(Ai)P(Aj) donc Ai et Aj sont indépendants.

c. X admet un moment d’ordre 1 si et seulement si
∑
n>1

nP(X = n) converge, c’est-à-dire si a > 2 par critère

de Riemann. Alors E(X) =
+∞∑
n=1

n 1

ζ(a)na =
+∞∑
n=1

1

ζ(a)na−1 =
ζ(a− 1)
ζ(a)

.

d. De même, X admet un moment d’ordre 2 si et seulement si
∑
n>1

n2 P(X = n) converge, c’est-à-dire si a > 3.

Alors V(X) = E(X2)− E(X)2 =
+∞∑
n=1

1

ζ(a)na−2 −
(
ζ(a− 1)
ζ(a)

)2
=

ζ(α− 2)ζ(α)− ζ(α− 1)2

ζ(α)2
.

Pour aller plus loin : (X = 1) = (X > 2) or comme tout entier au moins égal à 2 possède un diviseur premier,

on a (X > 2) =
∪
p∈P

Ap où P est l’ensemble des nombres premiers. En les numérotant dans l’ordre croissant

(p1 = 2 < p2 = 3 < p3 = 5...), on a (X > 2) =

+∞∪
n=1

Apn
donc (X > 2) =

+∞∩
n=1

Apn
=

+∞∩
n=1

n∩
k=1

Apk
ce qui donne

par continuité décroissante : P(X = 1) = lim
n→+∞

P
(∩n

k=1 Apk

)
= lim

n→+∞

n∏
k=1

P
(
Apk

)
par indépendance de

ces évènements. On obtient donc 1

ζ(a)
= lim

n→+∞

n∏
k=1

P
(
Apk

)
= lim

n→+∞

n∏
k=1

(
1− 1

pak

)
=
∏
p∈P

(
1− 1

pa

)
.

Ainsi ζ(a) =
∏
p∈P

(
1

1− 1

pa

)
.

� �
11.16� �a. Comme p ̸= 0 et p ̸= 1, on en déduit que Yn(Ω) = {0, 1}. Par indépendance de Xn et Xn+1, il vient

P(Yn = 1) = P(Xn = Xn+1 = 1) = P(Xn = 1)P(Xn+1 = 1) = p2. Ainsi Yn suit la loi de Bernoulli

B(1, p2). D’après le cours, E(Yn) = p2, V(Yn) = p2(1− p2).

b. Bien sûr, si i = j, Yi et Yj sont plus que dépendantes (elles sont égales). Si i < j, on distingue deux cas :

• si j = i + 1, alors (Yi = 1, Yi+1 = 1) = (Xi = 1, Xi+1 = 1, Xi+2 = 1). Ainsi, par indépendance mutuelle de

Xi, Xi+1, Xi+2, on a P(Yi = 0, Yi+1 = 0) = P(Xi = 1)P(Xi+1 = 1)P(Xi+2 = 1) = p3. Or, d’après la question

a., P(Yi = 1)P(Yi+1 = 1) = p4. Comme p ̸= 0 et p ̸= 1, Yi et Yi+1 ne sont pas indépendantes.

• si j > i + 1, alors Yi dépend de Xi et Xi+1 alors que Yi+1 dépend de Xj et Xj+1, on sent que Yi et Yi+1

sont indépendantes (lemme des coalitions). Or (Yi = 1, Yj = 1) = (Xi = 1, Xi+1 = 1, Xj = 1, Xj+1 = 1), donc,

comme avant : P(Yi = 1, Yj = 1) = p4 = P(Yi = 1)P(Yj = 1). On vérifie de même qu’on a les égalités

P(Yi = 1, Yj = 0) = p2(1−p2) = P(Yi = 1)P(Yj = 0), P(Yi = 0, Yj = 1) = (1−p2)p2 = P(Yi = 0)P(Yj = 1) et

P(Yi = 0, Yj = 0) = (1−p2)2 = P(Yi = 0)P(Yj = 0). Ainsi Yi et Yj sont bien indépendantes : Cov(Yi, Yj) = 0.

c. On traite trois cas selon le couple (n,m) :

• Si n = m, comme YnYm = Y2
n = Yn, on en déduit que E(YnYm) = E(Yn) = p2.
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• Si |n−m| = 1, E(YnYm) = p3.

• Si |n−m| > 2, par indépendance de Yn et Ym, E(YnYm) = E(Yn)E(Ym) = p4.

Par linéarité de l’espérance, comme ∀k ∈ [[1;n]], E(Yk) = p2, on a E
(
Zn

n

)
= 1

n

n∑
k=1

E(Yk) = np2

n
= p2.

d. Comme Yn et Ym sont indépendantes dès que |n−m| > 2, on a V(Zn) =
n∑

k=1

V(Yk)+ 2
n−1∑
i=1

Cov(Yi, Yi+1)

d’après le cours. Si i ∈ [[1;n − 1]], Cov(Yi, Yi+1) = E(YiYi+1) − E(Yi)E(Yi+1) = p3 − p4 = p3(1 − p) donc

V(Zn) = np2(1−p2)+2(n−1)p3(1−p). Comme p3(1−p) > 0, V(Zn) 6 Cn avec C = p2(1−p2)+2p3(1−p)

donc C = p2(1− p)[1+ p+ 2p] = [p(1− p)](1+ 3p)p 6 1

4
× 4× 1 = 1 et V

(
Zn

n

)
= 1

n2 V(Zn) 6 C

n
.

D’après l’inégalité de Tchebychev, on a la majoration ∀ε > 0, P
(∣∣∣Zn

n
− p2

∣∣∣ > ε

)
6 V(Zn)

ε2
. Or

lim
n→+∞

np2(1− p2) + 2(n− 1)p3(1− p)

n2ε2
= 0 donc, par encadrement : ∀ε > 0, lim

n→+∞
P
(∣∣∣Zn

n
− p2

∣∣∣ > ε

)
= 0.

Par inégalité de Bienaymé-Tchebychev, nous avons P
(∣∣∣Sn

n
− p2

∣∣∣ > ε

)
6 1

ε2
V
(
Sn
n

)
6 C2

nε2
.

On conclut bien que ∀ε > 0, lim
n→+∞

P
(∣∣∣Zn

n
− p2

∣∣∣ > ε

)
= 0 par théorème d’encadrement.� �

11.17� �a. On constate que X+ Y = Z. Ainsi, (k, l) ∈ N2, P(X = k, Y = l) = P(X = k, Z = k+ l).

Si rk+l = 0, (Z = k+l) est négligeable, (X = k, Z = k+l) aussi : P(X = k, Y = l) = rk+l

(
k+ l

k

)
pk(1−p)l = 0.

Si rk+l > 0, P(X = k, Z = k + l) = P(Z=k+l)(X = k)P(Z = k + l). Or la loi conditionnelle de X sachant

Z = k+ l est la loi binomiale B(k+ l, p) donc PZ=k+l(X = k) =

(
k+ l

k

)
pk(1− p)l+k−k

On conclut, et ceci dans tous les cas : P(X = k, Y = l) = rk+l

(
k+ l

k

)
pk(1− p)l.

b. On sait que (X = k) =
+∞∪
l=0

(X = k, Y = l). Ces évènements étant incompatibles deux à deux, on trouve

par σ-additivité : P(X = k) =
+∞∑
l=0

P(X = k, Y = l) = pk =
+∞∑
l=0

rk+l

(
k+ l

k

)
pk(1− p)l.

Par symétrie : P(Y = l) =
+∞∑
k=0

P(X = k, Y = l) = ql =
+∞∑
k=0

rk+l

(
k+ l

k

)
pk(1− p)l.

c. Si Z suit une loi de Poisson de paramètre λ > 0, alors P(X = k) =
+∞∑
l=0

e−λλk+l

(k+ l)!

(
k+ l

k

)
pk(1 − p)l

d’où P(X = k) = pke−λλk

k!

+∞∑
l=0

(λ(1− p))l

l!
=

(pλ)ke−λ

k!
eλ(1−p) =

(pλ)ke−λp

k!
et X suit la loi de Poisson

de paramètre λp. De même P(Y = l) =
+∞∑
k=0

e−λλk+l

(k+ l)!

(
k+ l

k

)
pk(1 − p)l =

((1− p)λ)le−λ(1−p)

l!
et Y suit

la loi de Poisson de paramètre λ(1 − p). Ainsi les variables aléatoires X et Y sont indépendantes car

P(X = k)P(Y = l) =
(pλ)ke−λp

k!
((1− p)λ)le−λ(1−p)

l!
= e−λλk+l

(k+ l)!

(
k+ l

k

)
pk(1− p)l = P(X = k, Y = l).

d. On écrit (Z = n) =
∪

(k,l)∈ N2
k+l=n

(X = k, Y = l). C’est la réunion dénombrable d’évènements incompatibles

deux à deux donc rn = P(Z = n) =
∑

(k,l)∈ N2
k+l=n

(X = k, Y = l) =
∑

(k,l)∈ N2
k+l=n

P(X = k)P(Y = l) =
∑

(k,l)∈ N2
k+l=n

pkql.
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e. Comme Z est non presque sûrement nulle, il existe s > 1 tel que rs > 0. Ainsi p0 =
+∞∑
l=0

rl

(
l

0

)
p0(1−p)l > 0

et p1 =
+∞∑
l=0

rl+1

(
l+ 1

1

)
p(1− p)l > 0. De même q0 > 0 et q1 > 0.

f. D’après la question a., on a les relations P(X = k+ 1, Y = l) = rk+l+1

(
k+ l+ 1

k+ 1

)
pk+1(1− p)l = pk+1ql

et P(X = k, Y = l+ 1) = rk+l+1

(
k+ l+ 1

k

)
pk(1− p)l+1 = pkql+1.

• Si rk+l+1 = 0, on a pkql+1 = pk+1ql = 0 donc pkql+1(l+ 1)p = pk+1ql(k+ 1)p = 0.

• Si rk+l+1 > 0, on fait le rapport de ces deux relations pour avoir

rk+l+1

(
k+ l+ 1

k+ 1

)
pk+1(1− p)l

rk+l+1

(
k+ l+ 1

k

)
pk(1− p)l+1

=
pk+1ql

pkql+1

donc
pk+1ql

pkql+1

=
(k+ l+ 1)!k!(l+ 1)!pk+1(1− p)l

(k+ 1)!l!(k+ l+ 1)!pk(1− p)l+1 =
(l+ 1)p

(k+ 1)(1− p)
.

Dans les deux cas, pkql+1(l+ 1)p = pk+1ql(k+ 1)(1− p).

g. On prend k = 0 dans l’équation de la question précédente et il vient p0ql+1(l + 1)p = p1ql(1 − p) d’où

ql+1 = b
ql

l+ 1
en notant b =

p1(1− p)
p0p

. Par une récurrence facile, on montre que ∀l ∈ N, ql =
bl

l!
q0.

De même, on trouve que ∀k ∈ N, pk = ak

k!
p0 où a = q1p

q0(1− p)
.

Comme
+∞∑
l=0

ql = 1 et
+∞∑
k=0

pk = 1, on en déduit que q0 = e−b et que p0 = e−a. Alors, par définition, Y suit

la loi de Poisson P(b) et X suit la loi de Poisson P(a).

h. D’après c. et g., si Z est une variable aléatoire non presque sûrement nulle à valeurs dans N et X =
Z∑

i=1

Ui

et Y =
Z∑

i=1

(1− Ui), alors : Z suit une loi de Poisson si et seulement si X et Y sont indépendantes.� �
11.18� �a. Le nombre de victoires V de Pierre parmi les 2n premières parties suit (les parties sont indépendantes

mutuellement) une loi binomiale B(2n, p). Ainsi a2n = P(V = n) =

(
2n

n

)
pn(1−p)2n−n =

(
2n

n

)
(p(1−p))n.

Bien sûr, il ne peut pas y avoir d’égalité du nombre de victoires après un nombre impair de parties.

b. Pour n > 1, posons les évènements Bn = “il y a égalité pour la première fois après n parties” tel que

b2n = P(B2n) et An = “il y a égalité après n parties” tel que a2n = P(A2n). On pose a0 = b0 = 0.

Pour n > 1, s’il y a égalité du nombre de parties gagnées après 2n parties, alors il y a eu égalité pour

la première fois du nombre de parties gagnées au bout de 2k parties avec k ∈ [[1;n]]. Ceci nous donne la

partition suivante : A2n =

n∪
k=1

(A2n ∩ B2k). Comme ces évènements sont incompatibles, on en déduit que

a2n = P(A2n) =
n∑

k=1

P(A2n ∩B2k) =
n∑

k=1

PB2k
(A2n)P(B2k). Clairement, pour tout entier k ∈ [[1;n− 1]], on

a PB2k
(A2n) = a2(n−k) (si on a égalité après 2k parties, avoir égalité après 2n parties revient à avoir égalité

sur une période de 2(n−k) parties - elles sont indépendantes mutuellement). Par contre, comme B2n ⊂ A2n,

on a PB2n
(A2n) = 1. Ainsi a2n = b2n +

n−1∑
k=1

b2ka2(n−k) = b2n +
n∑

k=0

b2ka2(n−k) car on a posé a0 = b0 = 0.

Sous réserve de convergence, c’est-à-dire si |x| < R où R = Min(Ra, Rb) (avec des notations évidentes), on a

par produit de Cauchy de séries absolument convergentes :
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A(x)B(x) =
( +∞∑

n=0

a2nx
2n
)( +∞∑

n=0

b2nx
2n
)
=

+∞∑
n=0

( n∑
k=0

b2ka2(n−k)

)
x2n
)
= A(x)− B(x).

c. Soit x ̸= 0, si un = a2nx
2n, alors 0 <

un+1

un

=

(
2(n+ 1)

n+ 1

)
pn+1(1− p)n+1(

2n

n

)
pn(1− p)n

x2 =
2(2n+ 1)
n+ 1

p(1 − p)x2 qui

tend vers ℓ = 4p(1−p)x2. Par la règle ded’Alembert, si |x| < 1√
4p(1− p)

, alors ℓ < 1 donc
∑
n>0

un converge

ce qui prouve que Ra > 1√
4p(1− p)

. Si |x| > 1√
4p(1− p)

, on a ℓ > 1 et, par d’Alembert,
∑
n>0

un diverge

donc Ra 6 1√
4p(1− p)

. Par conséquent, le rayon de convergence de
∑
n>0

a2nx
2n vaut Ra = 1√

4p(1− p)
.

Il vaut donc Ra = +∞ si p = 0 ou p = 1 qui sont des cas inintéressants où l’un ou l’autre des deux joueurs

gagne presque sûrement toutes les parties.

d. Si p ̸= 1

2
, on a 4p(1 − p) = 1 − (1 − 2p)2 < 1 (parabole atteignant son maximum en 1

2
) donc Ra > 1 et

A(1) est bien défini car 1 ∈]Ra;Ra[ (intervalle ouvert de convergence).

Réciproquement, si p = 1

2
, alors a2n =

(2n)!

22n(n!)2
∼
+∞

√
4πn(2n)2n

e2n
× 1

22n
× e2n

(2πn)n2n ∼
+∞

1√
πn

avec la formule

de Stirling donc
∑
n>0

a2n diverge d’après Riemann et A(1) n’est pas défini.

En conclusion : A(1) existe si et seulement si p ̸= 1

2
.

e. On sait que ∀y ∈]− 1; 1[, 1√
1+ y

=
+∞∑
n=0

(−1)n(2n)!

4n(n!)2
yn. Pour x ∈]− Ra;Ra[, y = −4p(1− p)x2 ∈]− 1; 1[,

1√
1− 4p(1− p)x2

=
+∞∑
n=0

(−1)n(2n)!

4n(n!)2
4npn(1− p)n(−1)nx2n =

+∞∑
n=0

(2n)!

(n!)2
pn(1− p)nx2n = A(x) + 1. On en

déduit bien que ∀x ∈]− Ra;Ra[, A(x) = 1√
1− 4pqx2

− 1.

Comme B2n ⊂ A2n, on a 0 6 b2n 6 a2n donc Ra 6 Rb. On a donc ∀x ∈]− Ra;Ra[, B(x) =
A(x)

A(x) + 1
d’après

la relation de la question b.. Ainsi : ∀x ∈]− Ra;Ra[, B(x) =

1√
1− 4pqx2

− 1

1√
1− 4pqx2

= 1−
√

1− 4pqx2.

f. Or, ∀y ∈]− 1; 1[,
√
1+ y = 1+

+∞∑
n=1

(−1)n−1(2n)!

4n(n!)2(2n− 1)
yn. Pour x ∈]− Ra;Ra[, y = −4p(1− p)x2 ∈]− 1; 1[

donc B(x) = −
+∞∑
n=1

(−1)n−1(2n)!

4n(n!)2(2n− 1)
4npn(1 − p)n(−1)nx2n =

+∞∑
n=1

(2n)!

(n!)2(2n− 1)
pn(1 − p)nx2n. On peut

identifier car les rayons sont strictement positifs et ∀n > 1, b2n =

(
2n

n

)
pn(1− p)n

2n− 1
(inutile ici).

Mais cette expression de b2n nous permet de trouver Rb. En effet, pour x ̸= 0, en posant vn = b2nx
2n, on a

0 <
vn+1

vn
=

(
2(n+ 1)

n+ 1

)
pn+1(1− p)n+1(2n− 1)(

2n

n

)
pn(1− p)n(2n+ 1)

x2 =
2(2n− 1)
n+ 1

p(1−p)x2 qui tend aussi vers ℓ = 4p(1−p)x2.

Comme à la question c., on a Rb = Ra = 1√
4p(1− p)

. Si p ̸= 1

2
, 1 ∈]− Rb;Rb[ donc B(1) existe. Si p = 1

2
,

b2n =
(2n)!

(n!)2(2n− 1)
pn(1− p)n ∼

+∞
1

2
√
πn3/2

avec Stirling à nouveau donc B(1) existe pour tout p ∈ [0; 1].
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Notons l’évènement J = “ne jamais obtenir égalité du nombre de parties gagnées par Pierre et Marie”. Alors

on a clairement J =
+∞∪
n=1

B2n (réunion d’évènements deux à deux incompatibles).

Ainsi, par σ-additivité : η = P(J) = 1 − P(J) = 1 −
+∞∑
n=1

b2n = 1 − B(1). Or, en posant fn : x 7→ b2nx
2n,

on a ||fn||∞,[0;1] = b2n et
∑
n>0

b2n converge, ainsi par convergence normale de
∑
n>0

fn sur [0; 1] et continuité

de toutes les fn, on a B continue sur [0; 1] (ce qui était évident si Rb > 1 mais pas clair si p = 1

2
). Ainsi

η = 1− B(1) = 1− lim
x→1−

B(x) =
√

1− 4p(1− p).� �
11.19� �On note p = 0, 4 la probabilité que le caractère soit présent chez une personne. Quand on étudie un

échantillon de 200 personnes, le nombre X de personnes qui ont cette caractéristique suit la loi binomiale

B(200, p). Or X =
200∑
k=1

Xk où les Xk suivent la loi de Bernoulli de paramètre p et sont supposés mutuellement

indépendants. E(X1) = m = 0, 4 et V(X1) = σ2 = 0, 4×0, 6 = 0, 24. Ainsi, P(X = k) =

(
200

k

)
pk(1−p)200−k.

Ainsi P
(
0, 3 < X

200
< 0, 5

)
= P(60 < X < 100) =

99∑
k=61

P(X = k) =
99∑

k=61

(
200

k

)
pk(1− p)200−k ∼ 0.995.

Loi faible des grands nombres avec ε = 0, 1 : P
(∣∣ X

200
− 0, 4

∣∣ > 0, 1

)
6 0, 24

2
. Donc P

(
60 < X < 100

)
> 0, 88.

Le calcul direct est donc beaucoup plus précis que la majoration générale.� �
11.20� �a. En supposant X1, . . . , Xn mutuellement indépendantes (ce qui n’est pas clair dans l’énoncé), on sait

d’après le cours que GV = GX1
· · ·GXn

. Et puisqu’elles suivent toutes la même loi, on a même GV = (GX1
)n.

b. On admet pouvoir intervertir les indices dans la double série (théorème de Fubini). Alors, on peut

démontrer ce qui est admis : pour n ∈ N, comme {V = n} =
∪
k∈N

{N = k, X1 + · · · + Xk = n} (réunion

disjointe), on a : P(V = n) =
+∞∑
k=0

P(N = k, X1 + · · · + Xk = n) =
+∞∑
k=0

P(N = k)P(X1 + · · · + Xk = n) par

indépendance mutuelle des variables aléatoires N,X1, . . . , Xn, . . ..

Pour t ∈ [−1; 1] (au moins), GV(t) =
+∞∑
n=0

P(V = n)tn =
+∞∑
n=0

( +∞∑
k=0

P(N = k)P(X1+· · ·+Xk = n)tn
)
. D’après

Fubini : GV(t) =
+∞∑
k=0

( +∞∑
n=0

P(N = k)P(X1+ · · ·+Xk = n)tn
)
=

+∞∑
k=0

( +∞∑
n=0

P(X1+ · · ·+Xk = n)tn
)
P(N = k)

donc GV(t) =
+∞∑
k=0

GX1+···+Xk
(t)P(N = k). Or, par indépendance mutuelle, on a GX1+···+Xk

=
k∏

i=1

GXi
= Gk

X1

et on arrive enfin à GV(t) =
+∞∑
k=0

P(N = k)
(
GX1

(t)
)k

= GN

(
GX1

(t)
)
.

Comme GV = GN ◦ GX1
sur [−1; 1] et que les espérances sont finies, ces fonctions sont dérivables en 1 et on

a G′
V(1) = G′

X1
(GN(1))G′

N(1). Mais comme GN(1) = 1, cela donne E(V) = E(N)E(X1) (formule de Wald).
c. On note Xi la variable aléatoire telle que Xi = 1 si la personne numéro i (dans la journée) choisit le guichet
1 et Xi = 0 si elle choisit le guichet 2. Par hypothèse, chaque Xi suit la loi de Bernoulli B(p) et les Xi

sont supposées mutuellement indépendantes. Par conséquent, si V est le nombre de personnes se présentant

au guichet G1 dans la journée, on a V =
N∑
i=1

Xi où N est le nombre de personnes allant à la poste en une

journée : N suit la loi P(λ) par hypothèse. D’après la formule de Wald, comme X1 et N admettent des
espérances finies, E(V) = E(N)E(X1) = pλ (le nombre de personnes qui se présentent en moyenne à G1).
Questions subsidiaires :
• Si X1 et X2 sont indépendantes, alors f(X1) et g(X2) sont toujours indépendantes.
• Le rayon de convergence d’une série génératrice est supérieur ou égal à 1.
• Le théorème d’intégration terme à terme :
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Soit (fn)n∈N ∈ F(I, K)N une suite de fonctions qui vérifient les conditions :
(H1) la série

∑
n>0

fn converge simplement sur I vers S,

(H2) les fn sont continues par morc. et intég. sur I et S est continue par morceaux sur I,

(H3) la série
∑
n>0

(∫
I
|fn|
)
converge.

Alors on a les trois conclusions :
(R1) La fonction S est intégrable sur I.

(R2) La série
∑
n>0

∫
I
fn converge.

(R3)
∫
I
S =
∫
I

( +∞∑
n=0

fn

)
=

+∞∑
n=0

∫
I
fn.

• On peut dériver terme à terme dans l’intervalle ouvert ]− R;R[ de convergence de la série entière donc le

rayon R′ de sa série dérivée vérifie R′ > R. On peut intégrer terme à terme la série dérivée sur tout ˜[0; x]
inclus dans l’intervalle ]− R′;R′[ pour obtenir à nouveau la série entière originelle donc R > R′. Ainsi R = R′.

• Si X ∼ P(λ) avec λ > 0, alors d’après le cours E(X) = V(X) = λ.

• On sait que si X ∼ B(p) avec p ∈]0; 1[, alors GX(t) = 1− p+ pt d’après le cours.� �
11.21� �a. Il est sous-entendu que X1(Ω) = N. On veut alors que

+∞∑
k=0

P(X1 = k) = 1 donc que λ 1

1− θ

1+θ

= 1 ce qui

impose λ = 1

1+ θ
. De plus, GX1

(t) =
+∞∑
k=0

θk

(1+ θ)k+1 t
k qui converge si et seulement si |t| < 1 + 1

θ
= R. Et

toujours avec les séries géométriques : ∀t ∈]−R;R[, GX1
(t) = 1

1+ θ
× 1

1− θt

1+θ

= 1

1+ θ− θt
= 1

1+ θ(1− t)
.

b. Par linéarité de l’espérance, on a E(Sn) = nE(X1) car les X1, · · · , Xn suivent toutes la même loi. Or,

comme GX1
est dérivable en 1, on a E(X1) = G′

X1
(1) = θ car G′

X1
(t) = θ

(1+ θ− θt)2
. Ainsi : E(Sn) = nθ.

Comme les X1, · · · , Xn sont indépendantes (deux à deux ou mutuellement dans ce calcul ça ne change rien),

on a V(Sn) =
n∑

k=1

V(Xk) = nV(X1) car elles suivent toutes la même loi. Or G′′
X1

(t) = 2θ2

(1+ θ− θt)3
donc

G′′
X1

(1) = 2θ2 et V(X1) = G′′
X1

(1) + G′
X1

(1)− G′
X1

(1)2 = θ(θ+ 1). Ainsi V(Sn) = nθ(θ+ 1).

De plus, toujours par indépendance mutuelle (là c’est nécessaire) des variables aléatoires X1, · · · , Xn, on a

∀t ∈]− R;R[, GSn
(t) =

n∏
k=1

GXk
(t) = Gn

X1
(t) =

(
1

1+ θ− θt

)n
= 1

(1+ θ)n
(1− x)−n avec x = θt

1+ θ
.

Or ∀x ∈]−1; 1[, 1

1− x
=

+∞∑
k=0

xk, d’où
(n− 1)!
(1− x)n

=
+∞∑

k=n−1

k(k−1) · · · (k−n+2)xk−n+1 =
+∞∑
j=0

(n+ j− 1)!
j!

xj en

dérivant n− 1 fois. Ainsi (1− x)−n =
+∞∑
j=0

(
n+ j− 1

n− 1

)
xj. Alors GSn

(t) = 1

(1+ θ)n
+∞∑
j=0

(
n+ j− 1

n− 1

)(
θt

1+ θ

)j
qu’on simplifie en GSn

(t) =
+∞∑
j=0

(
n+ j− 1

n− 1

)
θj

(1+ θ)n+j
tj. Mais comme GSn

(t) =
+∞∑
j=0

P(Sn = j)tj, on peut

identifier pour obtenir la loi de Sn : P(Sn = j) =

(
n+ j− 1

n− 1

)
θj

(1+ θ)n+j
.

Questions supplémentaires :
• Pour une série de fonctions, on a le théorème :
Soit (fn)n∈N ∈ F(I, K)N une suite de fonctions, on suppose que :

(H1) la série
∑
n>0

fn converge simplement sur I vers S,

(H2) pour tout n ∈ N, la fonction fn est de classe C1 sur I,
(H3)

∑
n∈N

f′n CVU (ou CVN) sur I (ou CVU (ou CVN) sur tout segment de I).

Alors on peut conclure :
(R1) S est de classe C1 sur I.
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(R2) S′ =
+∞∑
n=0

f′n, c’est-à-dire que ∀x ∈ I,

( +∞∑
n=0

fn

)′
(x) =

+∞∑
n=0

(
f′n(x)

)
.

Pour une série entière, on peut dériver terme à terme dans l’intervalle ouvert de convergence.

• La variable X admet une espérance finie si et seulement si la fonction génératrice GX est dérivable en 1.
Dans ce cas, on a G′

X(1) = E(X).� �
11.22� �a. Comme (X > n) =

+∞∪
k=n

(X = k) (réunion dénombrable d’évènements incompatibles), par σ-additivité, on

a P(X > n) =
+∞∑
k=n

p(1− p)k−1 =
p(1− p)n−1

1− (1− p)
= (1− p)n−1. Par construction, (T > k) = (X > k) ∩ (Y > k)

pour k > 1. Par indépendance de X et Y, on en déduit que P(T > k) = P(X > k)P(Y > k) = (1 − p)2(k−1).

Comme P(T = k) = P(T > k) − P(T > k + 1) car (T > k) = (T = k)
⊔
(T > k + 1), on en déduit la loi de T

donnée, pour k ∈ N∗, par P(T = k) = (1−p)2(k−1)−(1−p)2k = (1−p)2(k−1)p(2−p) =
(
(1−p)2

)(k−1)
p(2−p).

La variable aléatoire T suit donc la loi géométrique de paramètre p(2− p) = 1− (1− p)2.

b. D’après le cours, E(X) = 1

p
. La variable aléatoire 1

X
est bornée donc elle admet une espérance finie

et, par la formule de transfert, E
(
1

X

)
=

+∞∑
n=1

p(1− p)n−1

n
= p

1− p

+∞∑
n=1

(1− p)n

n
et on reconnâıt la série

logarithmique : E
(
1

X

)
= p

1− p

(
− ln(1− (1− p))

)
= −p ln(p)

1− p
=

p ln(1/p)
1− p

.

c. • (T > k, Z = 0) = (X = Y > k) =

+∞∪
i=k

(X = Y = i) donc, par σ-additivité et par indépendance de X et Y,

on a P(T > k, Z = 0) = P(X = Y > k) =
+∞∑
i=k

P(X = i)P(Y = i) =
+∞∑
i=k

p2(1 − p)2(i−1) =
p2((1− p)2)k−1

1− (1− p)2
ce

qui se réduit à P(T > k, Z = 0) =
p(1− p)2k−2

2− p
.

• Si z > 1, on a (T > k, Z = z) =

(
+∞∪
i=k

(X = i, Y = i + z)

)
∪

(
+∞∪
i=k

(X = i + z, Y = i)

)
(réunion disjointe).

Par symétrie, indépendance et σ-additivité, il vient P(T > k, Z = z) = 2
+∞∑
i=k

P(X = i)P(Y = i + z) donc

P(T > k, Z = z) = 2
+∞∑
i=k

p2(1− p)2i+z−2 =
p2(1− p)2k+z−2

1− (1− p)2
=

2p(1− p)2k+z−2

2− p
.

d. • Comme (Z = 0) =
+∞∪
k=1

(X = Y = k), par incompatibilité des évènements de cette réunion et indépendance

de X et Y, on a P(Z = 0) =
+∞∑
k=1

P(X = k)P(Y = k) =
+∞∑
k=1

p2(1− p)2(k−1) = p2

1− (1− p)2
= p

2− p
.

On aurait aussi pu dire, comme (T > 1) = Ω, que (Z = 0) = (T > 1, Z = 0). Ainsi, d’après la question c., on

a P(Z = 0) = P(T > 1, Z = 0) =
p(1− p)2.1−2

2− p
= p

2− p
.

• Si z > 1, (Z = z) =

(
+∞∪
k=1

(X = k, Y = k+ z)

)
∪

(
+∞∪
k=1

(X = k+ z, Y = k)

)
donc, avec les mêmes arguments,

P(Z = z) = 2
+∞∑
k=1

p2(1− p)2k+z−2 =
2p2(1− p)z

1− (1− p)2
=

2p(1− p)z

2− p
. Ou (Z = z) = (T > 1, Z = z) comme avant.

Soit k ∈ N∗ et z ∈ N, traitons deux cas :

• Si z = 0, P(T > k, Z = z) =
p(1− p)2k−2

2− p
= (1− p)2(k−1) × p

2− p
= P(T > k)P(Z = z).
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• Si z > 1, P(T > k, Z = z) =
2p(1− p)2k+z−2

2− p
= (1− p)2(k−1) × 2p(1− p)z

2− p
= P(T > k)P(Z = z).

Ainsi ∀k ∈ N∗, ∀z ∈ N, P(T = k, Z = z) = P(T = k)P(Z = z) car P(T = k) = P(T > k) − P(T > k + 1) et

P(T = k, Z = z) = P(T > k, Z = z) − P(T > k + 1, Z = z) proviennent des réunions disjointes suivantes sur

les évènements : (T > k) = (T > k+ 1) ∪ (T = k) et (T > k, Z = z) = (T > k+ 1, Z = z) ∪ (T = k, Z = z).

On a bien établi que les variables aléatoires T et Z sont indépendantes.

On peut montrer la réciproque (à faire), à savoir que si X, Y sont des variables aléatoires de même loi à valeurs

dans N∗ telles T = Min(X, Y) et Z = |X− Y| sont indépendantes, alors X et Y suivent une loi géométrique.� �
11.23� �a. On note Mk = (Hk, Vk) le mouvement à l’instant k (de l’instant k − 1 à l’instant k en fait) : Hk pour

horizontal, Vk pour vertical. Alors toutes les VA Mk suivent la même loi, comme toutes les Hk et toutes

les Vk. De plus P(Hk = −1) = P(Hk = 1) = 1

4
et P(Hk = 0) = 1

2
. Ainsi E(Hk) = 0 et V(Hk) = 1

2
.

Comme par construction, on a Xn =
n∑

k=1

Hk et que les Hk sont indépendantes mutuellement (donc 2 à 2),

on a V(Xn) = nV(H1) =
n

2
. Bien sûr, on a aussi E(Yn) = 0 et V(Yn) = n

2
.

b. E(Z2
n) = E(X2

n+ Y2
n) = E(X2

n)+ E(Y2
n) = n. Or V(Zn) > 0 donc E(Zn)

2 6 E(Z2
n) = n et E(Zn) 6

√
n.

c.
k∑

i=0

(
k

i

)2

=

(
2k

k

)
est uniquement la formule de Vandermonde avec a = b = k.

Si n est impair, il est clair géométriquement que P(Zn = 0) = 0. Par contre, si n est pair, on pose n = 2k et
alors pour être à l’origine après 2k déplacements, il faut avoir autant de Nord que de Sud et autant d’Ouest

que d’Est. Chaque 2k-uplet de déplacements (EOSSONNE....) a une probabilité 1

42k
d’intervenir. Il suffit

donc de compter ces déplacements qui permettent de revenir en (0, 0) après 2k déplacements. On choisit

les i ∈ [[0; k]] déplacements qui vont vers l’ouest :

(
2k

i

)
choix, ensuite ceux (au nombre de i forcément) qui

vont vers m’est :

(
2k− i

i

)
choix. Puis ceux qui vont vers le nord (au nombre de k − i obligatoirement) :(

2k− 2i

k− i

)
choix, et enfin ceux qui vont vers l’est :

(
k− i

k− i

)
= 1 (clairement plus de choix).

Ainsi P(Z2k = 0) =
k∑

i=0

(
2k

i

)(
2k− i

i

)(
2k− 2i

k− i

)(
k− i

k− i

)
1

42k
=

k∑
i=0

(2k)!

i!2(k− i)!242k
=

(2k)!

42kk!2
k∑

i=0

(
k

i

)2

ce

qui donne avec la formule de Vandermonde P(Z2k = 0) =
(2k)!

42kk!2

(
2k

k

)
=

(2k)!2

42kk!4
.

Avec Stirling, on trouve P(Z2k = 0) ∼
+∞

1

πk
donc

∑
n>1

P(Zn = 0) diverge, on admet que ceci permet de

prouver que ”revenir une infinité de fois à l’origine” dans cette marche aléatoire plane est presque certain.� �
11.24� �a. On noteDk = “le tirage k est différent du tirage k−1”. On a (X = k) = D2∩· · ·Dk−1∩Dk pour k > 2 donc

P(X = k) = P(D2)× PD2
(D3)×· · ·× PD2∩···∩Dk−2

(Dk−1)× PD2∩···∩Dk−1
(Dk) par la formule des probabilités

composées. Par l’indépendance des tirages imposée dans l’énoncé, tirer au tirage k la même couleur qu’au

tirage k−1 ne dépend pas de ce qu’on a tiré avant le tirage k−1 donc, ∀i ∈ [[2; k]], PD2∩···∩Di−1
(Di) =

n− 1

n

et on trouve donc P(X = k) =
(
n− 1

n

)k−2
1

n
=
(
n− 1

n

)k−2

−
(
n− 1

n

)k−1

.

b. Soit A = “le processus s’arrête”. Comme A = (X < +∞) =
+∞⊔
k=2

(X = k) (réunion incompatible),
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par σ-additivité, P(A) =
+∞∑
k=2

P(X = k) =
+∞∑
k=2

((
n− 1

n

)k−2

−
(
n− 1

n

)k−1)
= 1 par télescopage car

lim
k→+∞

(
n− 1

n

)k−1

= 0. Le processus s’arrête donc presque sûrement.

c. Méthode 1 : pour k > 2, comme (X > k) =
+∞⊔
i=k

(X = i) (réunion incompatible), par σ-additivité,

on a P(X > k) =
+∞∑
i=k

((
n− 1

n

)i−2

−
(
n− 1

n

)i−1)
donc P(X > k) =

(
n− 1

n

)k−2

par télescopage car

lim
i→+∞

(
n− 1

n

)i−1

= 0. Par contre, P(X > 1) = 1. Comme X est une variable aléatoire à valeurs dans N,

d’après le cours, il vient E(X) =
+∞∑
k=1

P(X > k) = 1+
+∞∑
k=2

(
n− 1

n

)k−2

= 1+ 1

1− n−1

n

= n+ 1.

Par théorème de transfert, on a E(X(X − 1)) =
+∞∑
k=2

k(k − 1)P(X = k) = 1

n

+∞∑
k=2

k(k − 1)
(
n− 1

n

)k−2

car

X(Ω) ⊂ N∗ \{2} en cas de convergence. Or ∀t ∈]−1; 1[,
(

1

1− t

)′′
=
( +∞∑

k=0

tk
)′′

=
+∞∑
k=2

k(k−1)tk−2 = 2

(1− t)3

donc E(X(X− 1)) = 2n2. Ainsi V(X) = E(X(X− 1)) + E(X)− E(X)2 = 2n2 + n+ 1− (n+ 1)2 = n(n− 1).

Méthode 2 : comme (X− 1 = k) = (X = k+ 1) pour k ∈ N∗, on a P(X− 1 = k) =
(
1

n

)
×
(
1− 1

n

)k−1

donc

X− 1 suit la loi géométrique de paramètre pn = 1

n
. Ainsi, d’après le cours, E(X− 1) = 1

pn
= E(X)− 1 donc

E(X) = n+ 1 et V(X) = V(X− 1) = 1− pn

p2n
donc V(X) = n2

(
1− 1

n

)
= n(n− 1).� �

11.25� �Calculons χM = X3− (X1−X2)
2X− (X1−X3)

2X = X(X2− (X1−X2)
2− (X1−X3)

2). Les valeurs propres de

M, c’est-à-dire les racines de χM, sont donc 0,
√
(X1 − X2)2 + (X1 − X3)2 et −

√
(X1 − X2)2 + (X1 − X3)2.

Par conséquent, Sp(M) = {0} ⇐⇒ (X1 − X2)
2 = (X1 − X3)

2 = 0 ⇐⇒ X1 = X2 = X3.

On pouvait le prouver autrement. En effet, on sait d’après le théorème de Cayley-Hamilton qu’une

matrice M ∈ Mn(K) vérifie Sp(M) = {0} si et seulement si elle est nilpotente. La matrice M de l’énoncé

étant symétrique réelle, elle est diagonalisable par le théorème spectral. Ainsi, puisque qu’une matrice

nilpotente n’est diagonalisable que si elle est nulle, Sp(M) = {0} si et seulement si M = 0. On en déduit, en

termes d’évènements, que (Sp(M) = {0}) = (X1 = X2 = X3).

Ainsi, P(Sp(M) = {0}) = P(M = 0) = P(X1 = X2 = X3). Or (X1 = X2 = X3) =
+∞∪
n=1

(X1 = X2 = X3 = n)

(évènements incompatibles), X1, X2, X3 sont mutuellement indépendantes et suivent la même loi G(p) donc

P(X1 = X2 = X3) =
+∞∑
n=1

P(X1 = n)P(X2 = n)P(X3 = n) =
+∞∑
n=1

p3(1− p)3(n−1) = p3

1− (1− p)3
.� �

11.26� �a. Initialisation : la relation
p∑

k=p

(
k

p

)
=

(
p+ 1

p+ 1

)
= 1 est clairement vraie.

Hérédité : soit q > p tel que
q∑

k=p

(
k

p

)
=

(
q+ 1

p+ 1

)
. Alors, par hypothèse de récurrence et d’après la relation

de Pascal :
q+1∑
k=p

(
k

p

)
=
( q∑

k=p

(
k

p

))
+

(
q+ 1

p

)
=

(
q+ 1

p+ 1

)
+

(
q+ 1

p

)
=

(
q+ 2

p+ 1

)
.

On conclut par principe de récurrence que ∀q > p,
q∑

k=p

(
k

p

)
=

(
q+ 1

p+ 1

)
; encore vrai si q < p (0 = 0).
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On pouvait obtenir cette relation sans récurrence en constatant que

(
k

p

)
=

(
k+ 1

p+ 1

)
−
(
k+ 1

p

)
donc, par

télescopage,
q∑

k=p

(
k

p

)
=

q∑
k=p

((
k+ 1

p+ 1

)
−
(

k

p+ 1

))
=

(
q+ 1

p+ 1

)
−
(

p

p+ 1

)
=

(
q+ 1

p+ 1

)
(formule des colonnes).

b. On peut modéliser cette expérience par des n-uplets comme BAABBAA · · ·BA, celui-ci signifiant que le

premier jeton tiré est Blanc, les deux suivants d’Autres couleurs, etc..... sachant qu’il doit impérativement

y avoir b fois B et a fois A dans cette suite de lettres. On note Ω l’ensemble des tous ces n-uplets ; il y en

a

(
a+ b

b

)
car il faut choisir les b tirages qui vont donner un jeton blanc parmi les a+ b tirages. On prend

aussi la tribu pleine A = P(Ω) et pour P la probabilité uniforme sur Ω pour finaliser la modélisation. On a

X(Ω) = [[b;a+ b]] (au moins b tirages pour prendre tous les jetons blancs et au plus a+ b).

Soit k ∈ [[b;a + b]], alors P(X = k) =
card ((X = k))

card (Ω)
(loi uniforme sur Ω). Or card (Ω) =

(
a+ b

b

)
et

card ((X = k)) =

(
k− 1

b− 1

)
; en effet, il faut forcément un jeton blanc au tirage k et il faut choisir parmi les k−1

premiers tirages les b−1 tirages qui donnent un jeton blanc. Ainsi P(X = k) =

(
k− 1

b− 1

)
(
a+ b

b

) =
b(k− 1)!a!

(a+ b)!(k− b)!
.

c. Par définition, E(X) =
a+b∑
k=b

kP(X = k) = 1(
a+ b

b

) a+b∑
k=b

k

(
k− 1

b− 1

)
=

1(
a+ b

b

) a+b∑
k=b

b

(
k

b

)
. Ce qui se

simplifie d’après la question a. en E(X) =
b

(
a+ b+ 1

b+ 1

)
(
a+ b

b

) =
b(a+ b+ 1)

b+ 1
< a + b (comme il se doit). De

plus, E(X(X+1)) =
a+b∑
k=b

k(k+1)P(X = k) = 1(
a+ b

b

) a+b∑
k=b

k(k+1)

(
k− 1

b− 1

)
=

1(
a+ b

b

) a+b∑
k=b

b(b+1)

(
k+ 1

b+ 1

)
.

Ce qui se simplifie d’après la question a. en E(X(X+ 1)) =

b(b+ 1)

(
a+ b+ 2

b+ 2

)
(
a+ b

b

) =
b(a+ b+ 2)(a+ b+ 1)

b+ 2
.

Ainsi V(X) = E(X2) − E(X)2 = E(X(X + 1)) − E(X)2 − E(X) par linéarité de l’espérance. Les résultats

précédents montrent que V(X) =
b(a+ b+ 2)(a+ b+ 1)

b+ 2
− b2(a+ b+ 1)2

(b+ 1)2
− b(a+ b+ 1)

b+ 1
ce qui devient

V(X) =
b(b+ 1)2(a+ b+ 2)(a+ b+ 1)− b2(a+ b+ 1)2(b+ 2)− b(a+ b+ 1)(b+ 1)(b+ 2)

(b+ 1)2(b+ 2)
et encore en

V(X) = b(a+ b+ 1)
[
(b+ 1)2(a+ b+ 2)− b(a+ b+ 1)(b+ 2)− (b+ 1)(b+ 2)

]
(b+ 1)2(b+ 2)

=
ab(a+ b+ 1)

(b+ 1)2(b+ 2)
.� �

11.27� �a. ∀n ∈ N, pn =
∫ n+1

n
f(t)dt. D’après une proposition admise dans le cours, il existe une variable aléatoire

sur un espace probabilisé (Ω,A, P), à valeurs dans N, telle que ∀n ∈ N, P(X = n) =
∫ n+1

n
f(t)dt = pn si et

seulement si ∀n ∈ N, pn ∈ [0; 1] et
+∞∑
n=0

pn = 1.

f étant décroissante, elle possède une limite ℓ ∈ R en +∞ (en fait ℓ ∈ R ou ℓ = −∞).
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Supposons que ∀n ∈ N, pn ∈ [0; 1] et
+∞∑
n=0

pn = 1. Selon le signe de ℓ, la fonction F : x 7→
∫ x

0
f(t)dt est

monotone au voisinage de +∞ (croissante si ℓ > 0, décroissante si ℓ < 0). Avec Sn =
n∑

k=0

pk =
∫ n+1

0
f(t)dt,

la convergence de la série
+∞∑
n>0

pn montre que
(∫ n+1

0
f(t)dt = F(n + 1)

)
n>0

converge donc que l’intégrale∫ +∞

0
f(t)dt converge. Or f garde un signe constant au voisinage de +∞, ceci assure que f est intégrable sur

R+ donc que ℓ = 0 et f est positive sur R+. Comme
+∞∑
n=0

pn = 1, on a
∫ +∞

0
f(t)dt = 1 par Chasles.

Réciproquement, si f > 0, intégrable sur R+ et
∫ +∞

0
f(t)dt = 1, 0 6 pn =

∫ n+1

n
f(t)dt 6

∫ +∞

0
f(t)dt = 1 et

la convergence de
∫ +∞

0
f(t)dt montre la convergence de la série

+∞∑
n>0

pn. De plus,
+∞∑
n=0

pn =
∫ +∞

0
f(t)dt = 1.

On conclut par double implication à l’équivalence voulue.

b. Supposons que X admette une espérance finie, alors
∑
n>1

nP(X = n) converge. Par une sorte de comparai-

son série/intégrale, compte tenu que f > 0 : ∀n ∈ N, ∀t ∈ [n;n+1], nf(t) 6 tf(t) 6 n+1)f(t). En sommant,

on a ∀n ∈ N,
n−1∑
k=0

kP(X = k) 6
∫ n

0
tf(t)dt 6

n−1∑
k=0

(k+1)P(X = k). Si on pose Sn =
n∑

k=0

kP(X = k) =
n∑

k=0

kpk,

on a donc
∫ n

0
tf(t)dt 6 Sn−1 + 1 6 E(X) + 1. Mais comme t 7→ f(t) est positive, on a donc la croissance de

x 7→
∫ x

0
tf(t)dt donc la convergence de

∫ +∞

0
tf(t)dt donc t 7→ tf(t) est intégrable sur R+.

Réciproquement, c’est l’autre inégalité qui sert, si t 7→ tf(t) est intégrable sur R+, pour n ∈ N, on a

Sn 6
∫ n+1

0
tf(t)dt 6

∫ +∞

0
tf(t)dt donc la suite croissante (Sn)n>0 converge : X admet une espérance finie.

Par contre, dans ce cas, on n’a pas égalité entre E(X) et
∫ +∞

0
tf(t)dt.

c. Par le même argument, comme X admet une variance si et seulement si X2 admet une espérance finie, la

CNS cherchée est h : t 7→ t2f(t) est intégrable sur R+.� �
11.28� �a. Non. Par exemple, si B = (i), alors B est diagonalisable et A =

(
i −1

−1 −i

)
donc A2 = 0 alors que

A ̸= 0 donc A n’est pas diagonalisable (exemple classique de matrice symétrique complexe non DZ).

b. On pose B = diag(λ1, · · · , λn), la matrice A est composée de quatre blocs diagonaux. Si on appelle u

l’endomorphisme canoniquement associé à A et B = (e1, · · · , e2n) la base canonique de C2n, alors la matrice
A′ de u dans la base B′ = (e1, en+1, e2, en+2, . . . , en, e2n) est diagonale par blocs A′ = diag(B1, . . . , Bn) avec

Bk =

(
λk λ2k
λ2k −λk

)
. Bk est donc la matrice de l’endomorphisme induit par u dans Pk = Vect(ek, en+k).

Comme A et A′ sont semblables, A est diagonalisable si et seulement si A′ est diagonalisable.

Si u est DZ, alors tous les uk le sont (ils sont induits) donc tous les blocs Bk sont diagonalisables.

Si tous les blocs Bk sont diagonalisables, on raisonne matriciellement et la matrice A′ est DZ.

Ainsi, A est DZ si et seulement si tous les blocs Bk sont DZ. Or χBk
= X2 − λ2k(1+ λ2k).

• Si λk /∈ {0, i,−i}, χBk
est scindé à racines simples donc Bk est diagonalisable.

• Si λk = 0, alors Bk = 0 donc elle est diagonalisable.

• Si λk = ±i, alors B2
k = 0 alors que Bk ̸= 0 donc Bk n’est pas diagonalisable.

Ainsi, une condition nécessaire et suffisante pour que A soit diagonalisable est que {i,−i} ∩ Sp(B) = ∅.
c. Les complexes i et −i ne font partie des racines n-ièmes de l’unité que si n est un multiple de 4. De plus
les valeurs propres de B sont les X1, . . . , Xn. Ainsi :

• Si n ̸≡ 0 [4] alors p = 1 car {i,−i} ∩ Sp(B) = ∅.

• Si n ≡ 0 [4], alors la probabilité de choisir i ou −i dans Un est n− 2

n
. Il y a n termes à choisir sur la
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diagonale de B et de manière indépendante donc p =
(
n− 2

n

)n
.

Questions supplémentaires :

• L’ensemble des racines n-ièmes de l’unité est un groupe abélien de cardinal n.

• (G, ∗) est une groupe si ∗ est une loi interne associative sur G, s’il existe une neutre e dans G pour la loi ∗
et si tout élément x ∈ G possède un inverse pour la loi ∗ dans G.

• On sait que
∑

ω∈Un

ω = 0 si n > 2. En effet, en notant ωn = ε
2iπ
n , alors Un = {1,ωn, . . . , ω

n−1
n } donc

∑
ω∈Un

ω =
n−1∑
k=0

ωk
n =

1−ωn
n

1−ωn

= 0 car ωn ̸= 1 et ωn
n = 1.� �

11.29� �Bien sûr, on suppose les tirages mutuellement indépendants et équiprobables.

a. X1(Ω) = {n− 1, n}. P(X1 = n) = 1

2
(une chance sur deux de tirer une boule noire) et P(X1 = n− 1) = 1

2

(une chance sur deux de tirer une boule blanche transformée en boule noire).

On a aussi X2(Ω) = {n− 2, n− 1, n}. On note B1 : “boule blanche au premier tirage” et B2 : “ boule blanche

au second tirage”. Alors (X2 = n) = B1 ∩ B2 donc P(X2 = n) = P
B1

(B2)P(B1) = (1/2)× (1/2) = (1/4).

(X2 = n− 2) = B1 ∩ B2 donc P(X2 = n− 2) = PB1
(B2)P(B1) =

n− 1

2n
× 1

2
= n− 1

4n
.

Pour finir, soit P(X2 = n−1) = 1− P(X2 = n)− P(X2 = n−2) soit (X2 = n−1) = (B1∩B2)∪(B1∩B2). Ainsi

P(X = n−1) = 1− 1

4
−n− 1

4n
ou P(X2 = n−1) = n+ 1

2n
× 1

2
+ 1

2
× 1

2
; toujours est-il que P(X2 = n−1) = 2n+ 1

4n
.

b. Si, en général, pour i ∈ N∗ : Bi : “boule blanche au tirage i”, alors (Xk = n) = B1 ∩ · · · ∩Bk ce qui donne

par la formule des probabilités composées (puisque la configuration de l’urne ne change pas : on ne tire que

des boules noires) P(Xk = n) = 1

2k
.

c. Soit p > 1 et k > 0, alors pour avoir k boules blanches au bout de p+ 1 tirages, on avait soit k+ 1 boules

blanches au bout de p tirages et on a tiré une boule blanche au tirage p + 1 qui a été remplacée par une

boule noire, soit on avait déjà k boules blanches au bout de p tirages et on a tiré une boule noire au tirage

p+ 1, ceci se traduit par : (Xp+1 = k) =
(
(Xp = k)∩ Bp+1

)
∪
(
(Xp = k+ 1)∩ Bp+1

)
. Par incompatibilité de

ces évènements : P(Xp+1 = k) = P(Xp=k)(Bp+1)P(Xp = k) + P(Xp=k+1)(Bp+1)P(Xp = k+ 1).

Ou alors avec le système complet d’évènements
(
(Xp = i)

)
n−p6i6n

et la formule des probabilités totales,

P(Xp + 1 = k) =
n∑

i=n−p

P(Xp = i)P(Xp=i)(Xp+1 = k) sachant que i ̸= k et i ̸= k+ 1, P(Xp=i)(Xp+1 = k) = 0.

Or, si Xp = k, il y a dans l’urne k boules blanches et n− k boules noires donc P(Xp=k)(Bp+1) =
2n− k

2n
. De

même : P(Xp=k+1)(Bp+1) =
k+ 1

2n
. Ainsi : P(Xp+1 = k) = 2n− k

2n
P(Xp = k) + k+ 1

2n
P(Xp = k+ 1).

d. Par construction, comme Xp(Ω) ⊂ [[0;n]], on a Gp(t) =
n∑

k=0

tk P(Xp = k). De plus, P(Xp = n) = 2−n ̸= 0

d’après la question b. donc Gp est une fonction polynomiale de degré n.

e. Pour t ∈ R, Gp+1(t) =
n∑

k=0

tk P(Xp+1 = k) =
n∑

k=0

(
2n− k

2n
P(Xp = k) + k+ 1

2n
P(Xp = k + 1)

)
tk donc

Gp+1(t) =
n∑

k=0

P(Xp = k)tk − 1

2n

n∑
k=0

kP(Xp = k)tk + 1

2n

n∑
k=0

(k + 1)P(Xp = k + 1)tk et on reconnâıt

l’expression des dérivées Gp+1(t) = Gp(t)− 1

2n
tG′

p(t) +
1

2n
G′

p(t). On a bien Gp+1(t) = Gp(t) +
1− t

2n
G′

p(t).

On dérive la relation précédente (ce sont des polynômes) : G′
p+1(t) = G′

p(t) +
1− t

2n
G′′

p(t) − 1

2n
G′

p(t). On

évalue en 1 et on a E(Xp+1) = E(Xp)− 1

2n
E(Xp). Ainsi E(Xp+1) =

2n− 1

2n
E(Xp).

20



On calcule simplement E(X1) = n

2
+ n− 1

2
= 2n− 1

2
. Comme la suite

(
E(Xp)

)
p>1

est géométrique de

raison 2n− 1

2n
, on en déduit que ∀n ∈ N∗, ∀p ∈ N, E(Xp) = 2n− 1

2

(
2n− 1

2n

)p−1

. Or on peut écrire

E(Xn)
n

=
(
2n− 1

2n

)n
= e

n ln(1− 1
2n

) → e−1/2 car ln

(
1− 1

2n

)
∼
+∞

− 1

2n
. Ainsi, lim

n→+∞
E(Xn)

n
= 1√

e
∼ 0, 606

(c’est la proportion de boules blanches dans l’urne après n tirages par rapport à la configuration initiale).� �
11.30� �a. Comme Y est à valeurs positives, on a 0 6 X 6 Z. Et comme Z suit une loi géométrique, Z admet une

espérance finie. On en déduit par comparaison que X admet aussi une espérance finie.

De même, Z2 admet aussi une espérance finie car Z admet une variance finie. Ainsi, comme 0 6 X2 6 Z2, la

variable aléatoire X2 admet une espérance finie donc X admet une variance finie.

Par linéarité de l’espérance et d’après le cours, E(Z) = 1

p
= E(X)+ E(Y)+1 = 2E(X)+1 donc E(X) = 1− p

2p
.

Puisque X et Y sont indépendantes, V(Z) = 1− p

p2
= V(X+ Y) = V(X)+ V(Y) = 2V(X) donc V(X) = 1− p

2p2
.

b. Comme le rayon de convergence de toute série génératrice est supérieur à 1, et que d’après le cours

∀t ∈]− 1; 1[, GZ(t) =
pt

1− (1− p)t
, on a ∀t ∈]− 1; 1[, GX+Y+1(t) = E(tX+Y+1) = E(ttX+Y) = tE(tX+Y) par

linéarité de l’espérance. De plus, comme X et Y sont indépendantes, E(tX+Y) = GX+Y(t) = GX(t)GY(t) donc

GX+Y(t) = tGX(t)GY(t). Mais comme X et Y suivent la même loi, on a GX = GY donc GZ(t) = tGX(t)
2. On

en déduit donc que ∀t ∈]− 1; 1[, GX(t) =
√

p

1− (1− p)t
car GX est positive sur ]− 1; 1[.

c. On sait que ∀x ∈] − 1; 1[, 1√
1+ x

=
+∞∑
n=0

(−1)n(2n)!

4n(n!)2
xn ce qui donne, en remplaçant x par −(1 − p)t,

∀t ∈ [−1; 1] GX(t) =
√
p

+∞∑
n=0

(−1)n(2n)!

4n(n!)2
(−1)n(1 − p)ntn =

+∞∑
n=0

√
p (2n)!(1− p)n

4n(n!)2
tn. En identifiant les

coefficients, comme le rayon R de convergence vérifie R > 1, on a ∀n ∈ N, P(X = n) =

√
p (2n)!(1− p)n

4n(n!)2
.� �

11.31� �X est à valeurs dans N∗ donc Y aussi par définition de Y car X+ 1 > 2 donc X+ 1

2
> 1.

Soit un entier k ∈ N∗, alors (Y = k) = (X = 2k − 1) ∪ (X = 2k). Par incompatibilité de ces évènements,

on obtient P(Y = k) = P(X = 2k − 1) + P(X = 2k). Puisque X suit la loi géométrique G(p), il vient

P(Y = k) = (1 − p)2k−2p + (1 − p)2k−1p = (1 − p)2k−2p(1 + 1 − p), ce qui donne après simplification

P(Y = k) = ((1− p)2)k−1(1− (1− p)2) = (1− p(2− p))k−1[p(2− p)].

Puisque 1− (1− p)2 = p(2− p), Y suit la loi géométrique de paramètre p(2− p).� �
11.32� �a. Par construction, comme les Xi sont à valeurs positives, 0 6 Y 6 X1+ · · ·+Xk. Comme les Xi admettent

une espérance finie, alors leur somme aussi, et par comparaison, Y admet donc une espérance finie.

b. • Comme (Y = n) =

k∪
i=1

(T = i, X1 + · · ·+ Xi = n) (réunion disjointe), par σ-additivité et indépendance

mutuelle de T, X1, · · · , Xk : P(Y = n) =
k∑

i=1

P(T = i, X1 + · · ·+ Xi = n) =
k∑

i=1

P(T = i)P(X1 + · · ·+ Xi = n).

Ainsi E(Y) =
+∞∑
n=0

n
k∑

i=1

P(T = i)P(X1+· · ·+Xi = n) or, pour tout i ∈ [[1; k]], la série
∑
n>0

nP(X1+· · ·+Xi = n)

converge et sa somme vaut E(X1 + · · · + Xi) = iE(X1) par linéarité de l’espérance et car les Xj suivent

toutes la même loi. Ainsi, par somme d’un nombre fini de séries convergentes, on peut intervertir et avoir
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E(Y) =
k∑

i=1

( +∞∑
n=0

nP(X1 + · · ·+ Xi = n)
)
P(T = i) = E(X1)

k∑
i=1

iP(T = i) = E(X1)E(T) (formule de Wald).

• Les séries génératrices étant au moins de rayon 1, on peut définir, pour t ∈] − 1; 1[, comme Y(Ω) ⊂ N,

GY(t) =
+∞∑
n=0

P(Y = n)tn. Or, P(Y = n) =
k∑

i=1

P(T = i, X1+ · · ·+Xi = n) =
k∑

i=1

P(T = i)P(X1+ · · ·+Xi = n)

comme avant, donc GY(t) =
+∞∑
n=0

( k∑
i=1

P(T = i)P(X1+ · · ·+Xi = n)
)
tn. On peut intervertir car il s’agit d’un

nombre fini de séries convergentes et on obtient GY(t) =
k∑

i=1

P(T = i)
( +∞∑

n=0

P(X1 + · · · + Xi = n)tn
)
. Par

définition,
+∞∑
n=0

P(X1+· · ·+Xi = n)tn = GX1+···+Xi
(t) or les variables aléatoires X1, · · · , Xk sont mutuellement

indépendantes donc GX1+···+Xi
=

i∏
i=1

GXj
= Gi

X1
car X1, · · · , Xk ont la même loi. Ainsi, pour t ∈] − 1; 1[,

GY(t) =
k∑

i=1

P(T = i)
(
GX1

(t)
)i

= GT (GX1
(t)). Comme ces variables aléatoires admettent des espérances

finies, les fonctions génératrices correspondantes sont dérivables en 1 et on retrouve la formule de Wald car

on a E(Y) = G′
Y(1) = G′

X1
(1)× G′

T (GX1
(1)) = E(X1)E(T) puisque GX1

(1) = 1.� �
11.33� �a. (=⇒) Supposons que la suite (Xn)n∈N converge en loi vers X à valeurs dans N, alors par définition

∀k ∈ N, lim
n→+∞

P(Xn = k) = P(X = k). Ainsi, ∀k > m, P(X = k) = lim
n→+∞

P(Xn = k) = 0 donc X est

presque sûrement à valeurs dans [[0;m]]. Or ∀t ∈ R, GXn
(t) =

m∑
k=0

P(Xn = k)tk donc, par linéarité de la

limite, lim
n→+∞

GXn
(t) =

m∑
k=0

P(X = k)tk = GX(t). Ainsi, (GXn
)n∈N converge simplement sur R vers GX.

(⇐=) Supposons que (GXn
)n∈N converge simplement sur [0; 1] vers GX pour une variable aléatoire X à valeurs

dans N. Soit les m + 1 réels αk = k

m
pour k ∈ [[0;m]]. Alors en notant Lk le polynôme d’interpolation de

Lagrange associé, celui qui vérifie Lk(αi) = δi,k bien sûr, comme les fonctions GXn
sont polynomiales de

degré inférieur ou égal à m, on a ∀n ∈ N, ∀t ∈ R, GXn
(t) =

m∑
k=0

GXn
(αk)Lk(t).

Par hypothèse, on a donc GX(t) = lim
n→+∞

GXn
(t) =

m∑
k=0

GX(αk)Lk(t). La fonction GX est donc aussi poly-

nomiale de degré inférieur ou égal à m ce qui montre (par unicité des coefficients des séries entières) que
∀k > m, P(X = k) = 0. De plus, (GXn

)n∈N converge vers GX dans l’espace vectoriel normé Rm[X]
car les coordonnées (GXn

(α1), · · · , GXn
(αm)) de GXn

dans la base (L1, · · · , Lm) converge vers les coor-

données (GX(α1), · · · , GX(αm)) de GX dans cette même base. Comme on est en dimension finie, c’est vrai

dans n’importe quelle base. On peut donc revenir dans la base canonique où les coordonnées de GXn

sont (P(Xn = 0), · · · , P(Xn = m)) qui converge donc vers celle de GX dans cette même base, à savoir

(P(X = 0), · · · , P(X = m)). Ainsi ∀k ∈ N, lim
n→+∞

P(Xn = k) = P(X = k) : (Xn)n∈N converge en loi vers X.

b. Avec ces hypothèses, Xn suit la loi binomiale B(m, pn) donc Xn est une variable aléatoire à valeurs dans

[[0;m]] et GXn
(t) = (1 − pn + pnt)

m. D’après la question a., (Xn)n∈N converge en loi si et seulement si

la suite (GXn
)n∈N converge simplement sur [0; 1]. Par exemple, cela implique que la suite (GXn

(1/2))n∈N

converge donc encore que (e
ln(GXn (1/2))

m )n∈N converge et enfin que (pn)n∈N converge.

Réciproquement, si (pn)n∈N converge vers p ∈ [0; 1], lim
n→+∞

GXn
(t) = lim

n→+∞
(1−pn+pnt)

m = (1−p+pt)m

pour t ∈ R donc (Xn)n∈N converge en loi vers X qui suit la loi binomiale B(m, p).

La condition nécessaire et suffisante cherchée est donc la convergence de la suite (pn)n∈N.
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11.34� �a. Comme p ̸= 0 et p ̸= 1, on en déduit que Yn(Ω) = {0, 1}. Par indépendance de Xn et Xn+1, il vient

P(Yn = 1) = P(Xn = Xn+1 = 1) = P(Xn = 1)P(Xn+1 = 1) = p2. Ainsi Yn suit la loi de Bernoulli

B(1, p2). D’après le cours, E(Yn) = p2, V(Yn) = p2(1− p2).

b. Bien sûr, si i = j, Yi et Yj sont plus que dépendantes (elles sont égales). Si i < j, on distingue deux cas :

• si j = i + 1, alors (Yi = 1, Yi+1 = 1) = (Xi = 1, Xi+1 = 1, Xi+2 = 1). Ainsi, par indépendance mutuelle de

Xi, Xi+1, Xi+2, on a P(Yi = 0, Yi+1 = 0) = P(Xi = 1)P(Xi+1 = 1)P(Xi+2 = 1) = p3. Or, d’après la question

a., P(Yi = 1)P(Yi+1 = 1) = p4. Comme p ̸= 0 et p ̸= 1, Yi et Yi+1 ne sont pas indépendantes.

• si j > i + 1, alors Yi dépend de Xi et Xi+1 alors que Yi+1 dépend de Xj et Xj+1, on sent que Yi et Yi+1

sont indépendantes (lemme des coalitions). Or (Yi = 1, Yj = 1) = (Xi = 1, Xi+1 = 1, Xj = 1, Xj+1 = 1), donc,

comme avant : P(Yi = 1, Yj = 1) = p4 = P(Yi = 1)P(Yj = 1). On vérifie de même qu’on a les égalités

P(Yi = 1, Yj = 0) = p2(1−p2) = P(Yi = 1)P(Yj = 0), P(Yi = 0, Yj = 1) = (1−p2)p2 = P(Yi = 0)P(Yj = 1) et

P(Yi = 0, Yj = 0) = (1−p2)2 = P(Yi = 0)P(Yj = 0). Ainsi Yi et Yj sont bien indépendantes : Cov(Yi, Yj) = 0.

c. On traite trois cas selon le couple (n,m) :

• Si n = m, comme YnYm = Y2
n = Yn, on en déduit que E(YnYm) = E(Yn) = p2.

• Si |n−m| = 1, E(YnYm) = p3.

• Si |n−m| > 2, par indépendance de Yn et Ym, E(YnYm) = E(Yn)E(Ym) = p4.

Par linéarité de l’espérance, comme ∀k ∈ [[1;n]], E(Yk) = p2, on a E
(
Zn

n

)
= 1

n

n∑
k=1

E(Yk) = np2

n
= p2.

d. Comme Yn et Ym sont indépendantes dès que |n−m| > 2, on a V(Zn) =
n∑

k=1

V(Yk)+ 2
n−1∑
i=1

Cov(Yi, Yi+1)

d’après le cours. Si i ∈ [[1;n − 1]], Cov(Yi, Yi+1) = E(YiYi+1) − E(Yi)E(Yi+1) = p3 − p4 = p3(1 − p) donc

V(Zn) = np2(1−p2)+2(n−1)p3(1−p). Comme p3(1−p) > 0, V(Zn) 6 Cn avec C = p2(1−p2)+2p3(1−p)

donc C = p2(1− p)[1+ p+ 2p] = [p(1− p)](1+ 3p)p 6 1

4
× 4× 1 = 1 et V

(
Zn

n

)
= 1

n2 V(Zn) 6 C

n
.

D’après l’inégalité de Tchebychev, on a la majoration ∀ε > 0, P
(∣∣∣Zn

n
− p2

∣∣∣ > ε

)
6 V(Zn)

ε2
. Or

lim
n→+∞

np2(1− p2) + 2(n− 1)p3(1− p)

n2ε2
= 0 donc, par encadrement : ∀ε > 0, lim

n→+∞
P
(∣∣∣Zn

n
− p2

∣∣∣ > ε

)
= 0.

Par inégalité de Bienaymé-Tchebychev, nous avons P
(∣∣∣Sn

n
− p2

∣∣∣ > ε

)
6 1

ε2
V
(
Sn
n

)
6 C2

nε2
.

On conclut bien que ∀ε > 0, lim
n→+∞

P
(∣∣∣Zn

n
− p2

∣∣∣ > ε

)
= 0 par théorème d’encadrement.� �

11.35� �a. Si X est une VAD de type 2, comme P(Ω) =
+∞∑
n=0

P(X = n) = 1, on a |GX(−1)| = 1 car :

• soit r = 1 et P(X = 2k) = 0 d’où P(Ω) =
+∞∑
k=0

P(X = 2k+ 1) = 1 donc GX(−1) = −
+∞∑
k=0

P(X = 2k+ 1) = −1.

• soit r = 0 et P(X = 2k+ 1) = 0 d’où P(Ω) =
+∞∑
k=0

P(X = 2k) = 1 donc GX(−1) =
+∞∑
k=0

P(X = 2k) = 1.

Réciproquement, si GX(−1) =
+∞∑
k=0

P(X = 2k)−
+∞∑
k=0

P(X = 2k+ 1) = P(X pair)− P(X impair) = ±1, comme

P(X pair) ∈ [0; 1] et P(X impair) ∈ [0; 1] :

• soit GX(−1) = 1 donc P(X pair) = 1 et P(X impair) = 0 et on a bien (∀k ∈ N, P(X = 2k+ 1) = 0) : r = 0.

• soit GX(−1) = −1 donc P(X impair) = 1 et P(X pair) = 0 et on a bien (∀k ∈ N, P(X = 2k) = 0) : r = 1.

Et on a établi que X est de type 2. On a bien l’équivalence annoncée par double implication.
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b. On pose ω = e
2iπ
m ∈ Um. En distinguant selon le reste r de la division euclidienne de n par m, comme

ωn = ωqm+r = ωr, GX(ω) =
+∞∑
k=0

P(X = n)ωn =
m−1∑
r=0

( +∞∑
q=0

P(X = mq+ r)
)
ωr =

m−1∑
r=0

P(X ≡ r [m])ωr.

• Supposons X d’ordre m. Soit r ∈ [[0;m− 1]] tel que ∀k ∈ N, k ̸≡ r [m], P(X = k) = 0. Alors, en sommant,

on a P(X ≡ r′ [m]) = 0 si r′ ∈ [[0;m − 1]] et r′ ̸= r. Par conséquent, GX(ω) = P(X ≡ r [m])ωr = ωr car

P(X ≡ r [m]) = 1 et on a bien |GX(ω)| = 1.

• Réciproquement, si |GX(ω)| = 1, comme GX(ω) =
m−1∑
r=0

P(X ≡ r [m])ωr on a par inégalité triangulaire

1 = |GX(ω)| 6
m−1∑
r=0

P(X ≡ r [m])|ωr| =
m−1∑
r=0

P(X ≡ r [m]) = 1 donc on a égalité dans l’inégalité triangulaire.

Le cas d’égalité dans l’inégalité triangulaire montre que P(X ≡ 0 [m])ω0, · · · , P(X ≡ m − 1 [m])ωm−1 sont

positivement liés. Mais les m racines m-ièmes ω0, · · · , ωm−1 de l’unité sont non colinéaires, ceci n’est possible

que s’il existe r ∈ [[0;m− 1]] tel que P(X ≡ r [m]) = 1 et P(X ≡ r′ [m]) = 0 si r′ ̸= r. X est donc de type m.

Par double implication : X est de type m si et seulement si
∣∣∣GX

(
e
2iπ
m
)∣∣∣ = 1.

c. Si r et r′ dans [[1;m− 1]] vérifient cette condition, alors pour tout entier k ∈ N, on a soit k ̸≡ r [m], soit

k ̸= r′ [m] ce qui prouve que P(X = k) = 0. Mais on a alors
+∞∑
k=0

P(X = k) = 0 contredisant que X(Ω) ⊂ N ce

qui implique
+∞∑
k=0

P(X = k) = P(Ω) = 1. Ainsi, si r existe, r est bien unique.

d. (⇐=) Si X et Y sont de type m, alors
∣∣GX(ω)

∣∣ = 1 et
∣∣GY(ω)

∣∣ = 1 d’après la question b.. Ainsi, comme

X et Y sont indépendantes, GW = GXGY donc
∣∣GW(ω)

∣∣ = ∣∣GX(ω)
∣∣∣∣GX(ω)

∣∣ = 1× 1 = 1 et W est de type m.

(=⇒) D’après la question b., il vient
∣∣GW(ω)

∣∣ = 1 donc
∣∣GX(ω)

∣∣∣∣GX(ω)
∣∣ = 1. Or on a vu à la question b.

que
∣∣GX(ω)

∣∣ 6 1 et, de même,
∣∣GY(ω)

∣∣ 6 1. Or
∣∣GX(ω)

∣∣∣∣GX(ω)
∣∣ = 1 donc ces inégalités sont des égalités et∣∣GX(ω)

∣∣ = 1 et
∣∣GY(ω)

∣∣ = 1. Toujours d’après b. : X et Y sont donc de type m.

On conclut par double implication que W de type m ⇐⇒ X et Y de type m.� �
11.36� �a. Pour i ∈ [[1; 20]], soit Xi la variable aléatoire qui vaut 1 si le candidat répond juste à la question i et

0 sinon. On suppose que X1, · · · , X20 sont indépendantes mutuellement et elles suivent par hypothèse la loi

de Bernoulli de paramètre 1

k
. Comme X =

20∑
i=1

Xi par construction, on sait que X suit la loi binomiale

B

(
20, 1

k

)
, ce qui signifie que ∀n ∈ [[0; 20]], P(X = n) =

(
20

n

)(
1

k

)n(k− 1

k

)20−n

.

b. La famille ((X = n))n∈[[0;20]] constitue un système complet d’évènements donc, par la formule des

probabilités totales : ∀j ∈ [[1; 20]], P(Y = j) =
20∑

n=0

P(Y = j|X = n)P(X = n). Or P(Y = j|X = n) = 0 si

20−n < j et, si j 6 20−n, comme il reste 20−n questions et un choix parmi k−1 réponses pour trouver la bonne

pour chacune des 20−n questions, on a P(Y = j|X = n) =

(
20− n

j

)(
1

k− 1

)j(k− 2

k− 1

)20−n−j

. Ainsi, il vient

P(Y = j) =
20−j∑
n=0

(
20− n

j

)(
1

k− 1

)j(k− 2

k− 1

)20−n−j
(
20

n

)(
1

k

)n(k− 1

k

)20−n

.

Comme on a la relation classique

(
20− n

j

)(
20

n

)
=

(
20

j

)(
20− j

n

)
, Y suit aussi la loi binomiale B

(
20, 1

k

)

car P(Y = j) =

(
20

j

)
kn

20−j∑
n=0

(
20− j− n

n

)
(k− 2)20−j−n =

(
20

j

)
kn

(k− 1)20−j =

(
20

n

)
= j

(
1

k

)j(k− 1

k

)20−j

.
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À vérifier mais certainement que les variables aléatoires suivantes ”nombres de bonnes réponses obtenues à

la i-ième tentative” suivent toutes la même loi B
(
20, 1

k

)
(indépendamment de i donc).

c. La note obtenue est X+ Y

2
, la condition imposée revient à E(X) + 1

2
E(Y) = 20

k
+ 20

2k
= 5, soit à k = 6.� �

11.37� �a. Dans ces conditions, la famille (v1, · · · , vn) est orthonormale donc, par la relation de Pythagore, on

obtient
∣∣∣∣∣∣ n∑

k=1

εkvk

∣∣∣∣∣∣2 =
n∑

k=1

ε2k = n et on passe à la racine pour avoir
∣∣∣∣∣∣ n∑

k=1

εkvk

∣∣∣∣∣∣ = √
n.

b. En utilisant la bilinéarité du produit scalaire : U =
∑

16i,j6n

XiXj(vi|vj).

Par linéarité de l’espérance : E(U) =
∑

16i,j6n

(vi|vj)E(XiXj). Pour k ∈ [[1;n]], on a E(Xk) = 0 et E(X2
k) = 1.

Par indépendance de Xi et Xj, si i ̸= j, on a aussi E(XiXj) = E(Xi)E(Xj) = 0. Ainsi E(U) =
n∑

k=1

||vk||2 = n.

c. Par l’absurde, supposons qu’on ait ∀(ε1, · · · , εn) ∈ {−1, 1}n,
∣∣∣∣∣∣ n∑

k=1

εkvk

∣∣∣∣∣∣ > √
n. Notons X = (X1, · · · , Xn)

la variable aléatoire qui va de Ω dans {−1, 1}n et f : {−1, 1}n → R définie par f(ε1, · · · , εn) =
∣∣∣∣∣∣ n∑

k=1

εkvk

∣∣∣∣∣∣2.
Comme U = f(X1, · · · , Xn) = f(X), on a E(U) = E(f(X)) =

∑
(ε1,···,εn)∈{−1,1}n

P(X = (ε1, · · · , εn))f(ε1, · · · , εn)

par le théorème de transfert. P(X = (ε1, · · · , εn)) = P(X1 = ε1, · · · , Xn = εn) =
n∏

k=1

P(Xk = εk) =
1

2n
par

indépendance mutuelle des X1, · · · , Xn et il vient E(U) = 1

2n
∑

(ε1,···,εn)∈{−1,1}n

∣∣∣∣∣∣ n∑
k=1

εkvk

∣∣∣∣∣∣2. L’hypothèse

ci-dessus prouve que E(U) > 1

2n
∑

(ε1,···,εn)∈{−1,1}n

n = n

2n
card

(
{−1, 1}n

)
= n ce qui contredit le calcul de

la question b.. Ainsi, il existe une famille (ε1, · · · , εn) ∈ {−1, 1}n telle que
∣∣∣∣∣∣ n∑

k=1

εkvk

∣∣∣∣∣∣ 6 √
n.

d. On a montré (=⇒) à la question a.. Supposons que ∀(ε1, · · · , εn) ∈ {−1, 1}n,
∣∣∣∣∣∣ n∑

k=1

εkvk

∣∣∣∣∣∣ = √
n.

Alors U est constante sur Ω et on a U = n. Ainsi V(U) = E(U2) − E(U)2 = E(U − E(U))2) = 0. Or

E(U2) = E
(∣∣∣∣∣∣ n∑

k=1

Xkvk

∣∣∣∣∣∣4) = E
(( ∑

16i,j6n

XiXj(vi|vj)
)2)

. En développant par linéarité de l’espérance, par

indépendance mutuelle des Xi et puisque E(Xi) = 0, X2
i = 1 et E(X2

i ) = 1, on a la calcul suivant :

E(U2) = E
((

n+
∑

16i̸=j6n

XiXj(vi|vj)
)2)

= n2+2n
∑

16i̸=j6n

(vi|vj)E(Xi)E(Xj)+ E
(( ∑

16i̸=j6n

XiXj(vi|vj)
)2)

.

La somme centrale est nulle et il ne reste de la dernière que E(U2) = n2 +
∑

16i̸=j6n

(vi|vj)2. Par conséquent

V(U) = E(U2)− E(U)2 =
∑

16i̸=j6n

(vi|vj)2 = 0 donc tous les produits scalaires (vi|vj) sont nuls et (v1, · · · , vn)

est une famille orthonormale.

e. On suppose que (v1, · · · , vn) n’est pas une famille orthonormale. Par l’absurde, supposons que pour tout

(ε1, · · · , εn) ∈ {−1, 1}n, on a
∣∣∣∣∣∣ n∑

k=1

εkvk

∣∣∣∣∣∣ 6 √
n. Alors, avec la formule de la question c. mais appliquée

à U2, on a E(U2) = 1

2n
∑

(ε1,···,εn)∈{−1,1}n

∣∣∣∣∣∣ n∑
k=1

εkvk

∣∣∣∣∣∣4 6 1

2n
∑

(ε1,···,εn)∈{−1,1}n

n2 = n2. On en déduit que

V(U) = E(U2) − E(U)2 6 n2 − n2 = 0 donc V(U) = 0 car c’est une quantité positive. Mais d’après la

question d., il vient V(U) =
∑

16i ̸=j6n

(vi|vj)2 = 0 ce qui est impossible car la famille (v1, · · · , vn) n’étant pas

une famille orthonormale alors que les vecteurs vk sont unitaires, on a
∑

16i̸=j6n

(vi|vj)2 > 0. Par conséquent,

il existe bien (ε1, · · · , εn) ∈ {−1, 1}n telle que
∣∣∣∣∣∣ n∑

k=1

εkvk

∣∣∣∣∣∣ > √
n.
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� �
11.38� �a. Si ω ∈ A, alors Max

16k6n
|Sk| > 3x. Si on note r = Min{k ∈ [[1;n]] | |Sk| > 3x}, on a ω ∈ Ar donc

A ⊂ A1 ∪ · · ·An. L’inclusion inverse est clairement vérifiée donc A =

n∪
k=1

Ak. De plus, si 1 6 i < j 6 n et

si ω ∈ Aj, alors Max
16ℓ6j−1

|Sℓ| < 3x} donc |Si| < 3x car 1 6 i 6 j − 1 et alors ω /∈ Ai. Ainsi, les évènements

A1, · · · , An sont incompatibles deux à deux : ils forment bien une partition de A.

L’évènement Ak dépend des variables aléatoires X1, · · · , Xk et la variable aléatoire Sn−Sk =
n∑

i=k+1

Xi dépend

de Xk+1, · · · , Xn. Par le lemme des coalitions, les évènements Ak et {|Sn−Sk| > 2x} sont donc indépendants.

On a bien sûr A = (A ∩ (|Sn| > x)) ∪ (A ∩ (|Sn| < x)) en distinguant selon la valeur de |Sn|.

(A∩ (|Sn| > x)) et (A∩ (|Sn| < x)) étant incompatibles, on a P(A) = P(A∩ (|Sn| > x)) + P(A∩ (|Sn| < x)).

Mais comme A ∩ (|Sn| > x) ⊂ (|Sn| > x), on a P(A ∩ (|Sn| > x) 6 P(|Sn| > x) donc finalement, on obtient

la majoration P(A) 6 P(|Sn| > x) + P(A ∩ (|Sn| < x)).

b. Comme A ∩ (|Sn| < x) =
n∪

k=1

(Ak ∩ (|Sn| < x)), par incompatibilité de ces évènements, on a l’inégalité

P(A) 6 P(|Sn| > x) +
n∑

k=1

P(Ak ∩ (|Sn| < x)) or Ak ∩ (|Sn| < x) ⊂ Ak ∩ (|Sn − Sk| > 2x) donc, par

indépendance, il vient P(Ak ∩ (|Sn| < x)) 6 P(Ak ∩ (|Sn − Sk| > 2x) = P(Ak)P(|Sn − Sk| > 2x).

???????????� �
11.39� �a. Soit s ∈ C et n ∈ N∗, alors en notant A0 = 0, on a ak = Ak − Ak−1 pour tout entier k > 1 donc

n∑
k=1

ak

ks
=

n∑
k=1

Ak − Ak−1

ks
=

n∑
k=1

Ak

ks
−

n∑
k=2

Ak−1

ks
= An

ns +
n−1∑
k=1

Ak

ks
−

n∑
k=2

Ak−1

ks
= An

ns +
n−1∑
k=1

(
1

ks
− 1

(k+ 1)s

)
Ak

après avoir effectué le changement d’indice i = k− 1 dans la somme
n∑

k=2

Ak−1

ks
(transformation d’Abel).

b. Soit α ∈ R+ et s ∈ C tel que Re (s) > α, on suppose que An =
+∞

O(nα), alors lim
n→+∞

An

ns = 0 car

An

ns =
+∞

O(nα−s) = O(nα−Re (s)) et α− Re (s) < 0. De plus, en utilisant les développements limités, il vient

1

ks
− 1

(k+ 1)s
= 1

ks

(
1−
(
1+ 1

k

)−s)
=
+∞

1

ks

(
1−
(
1− s

k
+O

(
1

k2

))
∼
+∞

s

ks+1 (sauf si s = 0) donc, par hypothèse,(
1

ks
− 1

(k+ 1)s

)
Ak =

+∞
O( 1

ks−α+1 ) donc
∑
k>1

(
1

ks
− 1

(k+ 1)s

)
Ak converge absolument donc

∑
n>1

an

ns converge.

c. Comme (|An| > x) = (An > x) ∪ (An < −x) = (An > x) ∪ (−An > x) et que ces évènements sont

incompatibles, on a P(|An| > x) = P(An > x) + P(−An > x). Or, comme les ak ont même loi que les −ak,

An a même loi que −An donc P(−An > x) = P(An > x). Donc P(|An| > x) = 2P(An > x).

Comme λ > 0 et exp strictement croissante, (An > x) = (eλAn > eλx) et eλAn est une variable aléatoire

positive donc, par l’inégalité de Markov adaptée P(X > ε) 6 E(X)
ε

(avec la même preuve et la croissance

-mais pas stricte- de l’espérance), on a P(An > x) 6 E(eλAn)

eλx
. On en déduit que P(|An| > x) 6 2

E(eλAn)

eλx
.

d. Les variables aléatoires a1, · · · , an sont mutuellement indépendantes, donc aussi eλa1 , · · · , eλan , ainsi,

d’après le cours : E(eλAn) = E(eλa1) · · · E(eλan). Mais, pour k ∈ [[1;n]], E(eλak) = 1

2

(
eλ + e−λ

)
= ch (λ).

Ainsi : E(eλAn) = ch (λ)n. Or ∀a ∈ R, ch (a) =
+∞∑
n=0

a2n

(2n)!
et e

a2

2 =
+∞∑
n=0

a2n

2nn!
. Or si on pose an = 2nn!

(2n)!
,

on a an+1 =
2(n+ 1)an

(2n+ 2)(2n+ 1)
= an

2n+ 1
6 an donc la suite (an)n>0 est décroissante et a0 = 1. Ainsi,
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∀n ∈ N, an 6 1 ⇐⇒ 1

(2n)!
6 1

2nn!
. On en déduit que ∀a ∈ R, ch (a) 6 e

a2

2 .

Par conséquent, P(|An| > x) 6 2e
nλ2

2

eλx
= hx(λ) = 2e

nλ2

2
−λx. Or le minimum de λ 7→ nλ2

2
− λx est atteint

en λ = λ0 = x

n
(étude de parabole). Donc P(|An| > x) 6 hx(λ0) = 2e

−x2

2n .� �
11.40� �a. Concernant le premier tirage, comme les

(
2n

2

)
tirages de parties à 2 éléments de l’ensemble des 2n

boules sont équiprobables, et que seuls n parmi ces paires (paire 1, 1, paire 2, 2, etc...) permettent d’avoir

l’évènement An, on a P(An) =
n(
2n

2

) = 1

2n− 1
. On pouvait aussi modéliser l’expérience en disant qu’on

prend une boule après l’autre, et que quelle que soit la boule qu’on a pris en premier, il ne reste alors dans

l’urne qu’une boule pour faire une paire sur les 2n−1 boules restantes, ce qui donne encore P(An) =
1

2n− 1
.

b. D’abord T1 = 1 puisqu’il n’y a alors dans l’urne que deux boules numérotée 1 qu’on tire la première fois.

On note Tn = +∞ si on ne vide jamais l’urne. Tn(Ω) ⊂ [[n; +∞]] (au moins n tirages pour vider l’urne).

On suppose maintenant qu’il y a 4 boules (2 paires) dans l’urne. Pour k > 1, on note Pk l’évènement “on

tire une paire au tirage k”. Quand on aura tiré la première paire, il restera deux boules identiques dans

l’urne qu’on sera obligé de tirer. Alors, pour k > 2, (T2 = k) =
( k−2∩

i=1

Pi

)
∩ Pk−1 ∩ Pk. Par indépendance des

tirages et d’après la question a. avec n = 2 puis n = 1 : P(T2 = k) =
(
2

3

)k−2

× 1

3
× 1 = 1

3

(
2

3

)k−2

. Comme

(T2 < +∞) =

+∞⊔
k=2

(T2 = k) (évènements incompatibles), on a P(T2 < +∞) =
+∞∑
k=2

P(T2 = k) =
1/3

1− (2/3)
= 1

par σ-additivité donc P(T2 = +∞) = 0. Comme P(T2−1 = k) =
(
2

3

)k−1
1

3
et que (T2−1)(Ω) = N∗ (presque

sûrement), T2 − 1 suit la loi géométrique G

(
1

3

)
. D’après le cours, E(T2 − 1) = 3 et V(T2 − 1) = 6. Par les

propriétés de l’espérance et de la variance, on a donc E(T2) = 4 et V(T2) = 6.

c. Pour k ∈ [[1;n]], on note Tn,k le nombre de tirages pour retirer les k premières paires (temps d’attente

du k-ième retrait de paire) de sorte que, par définition, Tn,n = Tn. Comme la probabilité de retirer deux

boules dans une urne de 2n boules est de 1

2n− 1
d’après la question a., la variable aléatoire Tn,1 suit la

loi géométrique G

(
1

2n− 1

)
par indépendance des tirages. De même, Tn,2 − Tn,1 représente le nombre de

tirages nécessaires pour retirer la seconde paire une fois retirée la première. Mais comme il ne reste plus que

2n− 2 boules dans l’urne pendant cette période, Tn,2 − Tn,1 suit la loi géométrique G

(
1

2n− 3

)
. En général,

Tn,k − Tn,k−1 suit G

(
1

2n− 2k+ 1

)
pour k ∈ [[2;n]]. Or Tn = Tn,n =

n∑
k=1

(Tn,k − Tn,k−1) en convenant

que Tn,0 = 0. Les variables Tn,1, Tn,2 − Tn,1, · · · , Tn,n − Tn,n−1 sont indépendantes (le nombre de tirages

effectués pour retirer la première boule n’influe pas sur le nombre de tirages pour retirer la seconde, etc....)

donc E(Tn) =
n∑

k=1

E(Tn,k − Tn,k−1) et V(Tn) =
n∑

k=1

V(Tn,k − Tn,k−1). On sait d’après le cours qu’alors

E(Tn) =
n∑

k=1

(2n− 2k+ 1) =
n∑

j=1

(2j− 1) = n2 et V(Tn) =
n∑

j=1

((2j− 1)2 − (2j− 1)) =
n(n− 1)(4n+ 1)

3
(après

calculs). On vérifie que V(T1) = 0, ce qui est logique puisque T1 est constante égale à 1.
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On vérifie que ces formules fonctionnent pour n = 2 et redonnent E(T2) = 22 = 4 et V(T2) = 2.1.9

3
= 6.� �

11.41� �a. Comme ∀k ∈ [[1;n]], E(Xk) = 0, par linéarité de l’espérance, E(Sn) =
n∑

k=1

ak E(Xk) = mn = 0. Par

indépendance 2 à 2 des variables aléatoires X1, · · · , Xn, donc aussi des variables aléatoires a1X1, · · · , anXn

par transfert d’indépendance, on a V(Sn) = V
( n∑

k=1

akXk

)
=

n∑
k=1

a2
k V(Xk) =

n∑
k=1

a2
k = σ2

n d’après le cours.

b. ∀t ∈ R, ch (t) =
+∞∑
n=0

t2n

(2n)!
et e

t2

2 =
+∞∑
n=0

t2n

2nn!
. Si an = 2nn!

(2n)!
, an+1 =

2(n+ 1)an

(2n+ 2)(2n+ 1)
= an

2n+ 1
6 an

donc (an)n>0 décrôıt et a0 = 1. Ainsi, ∀n ∈ N, an 6 1 ⇐⇒ 1

(2n)!
6 1

2nn!
. D’où ∀t ∈ R, ch (t) 6 e

t2

2 .

On pouvait aussi étudier la fonction f : t 7→ t2

2
−ln(ch (t)), elle est deux fois dérivable et on a f′(t) = t−th (t)

et f′′(t) = th 2(t) > 0 pour t ∈ R donc, comme f′(0) = 0, f′ est négative sur R− et positive sur R+

ce qui montre que f est minimale en 0 et, comme f(0) = 0, que f est finalement positive sur R. Ainsi,

∀t ∈ R, ln(ch (t)) 6 t2

2
et on conclut par croissance de l’exponentielle que ∀t ∈ R, ch (t) 6 et

2/2.

c. Les variables aléatoires X1, · · · , Xn sont indépendantes par hypothèse, on sait qu’alors, par transfert

d’indépendance, les variables aléatoires ea1X1 , · · · , eanXn sont aussi indépendantes. D’après le cours, puisque

∀k ∈ [[1;n]], E(eλakXk) = 1

2

(
eλak + e−λak

)
= ch (λak) par la formule de transfert, et d’après la question b.,

∀λ > 0, E(eλSn) = E(eλa1X1 · · · eλanXn) =
n∏

k=1

E(eλakXk) =
n∏

k=1

ch (λak) 6
n∏

k=1

eλ
2a2

k/2 = e
λ2σ2

n

2 .

d. exp est strictement croissante et x > 0 donc (Sn > x) = (eλSn > eλx) donc P(Sn > x) = P(eλSn > eλx).

D’après l’inégalité de Markov appliquée à la variable aléatoire discrète réelle bornée et positive eλSn , on

a l’inégalité P(Sn > x) 6 E(eλSn)

eλx
6 e

λ2σ2
n

2

eλx
= hx(λ) = e

λ2σ2
n

2
−λx. Or le minimum de λ 7→ λ2σ2

n

2
− λx est

atteint en λ = λ0 = x

σ2
n

(étude de parabole). Par conséquent : P(Sn > x) 6 hx(λ0) = e

−x2

2σ2
n .

Par exemple, si on effectue une marche aléatoire classique avec a1 = · · · = an = 1, alors σ2
n = n et Sn

représente la position du marcheur après n pas et on a la majoration P(Sn > α
√
n) 6 e

−α2n
2n = e

−α2

2 .� �
11.42� �a. L’ensemble Xn est un compact car il est fini de cardinal 2n (un singleton est fermé dans un espace

vectoriel normé donc aussi une réunion finie de singletons) et l’application det est continue car polynomiale

sur l’espace vectoriel normé Mn(R) donc det est bornée et atteint ses bornes sur Xn donc il existe A ∈ Xn

tel que Max
Xn

(det) = det(A) de sorte que ∀M ∈ Xn, det(M) 6 det(A).

b. Soit B = (bi,j)16i,j6n ∈ Xn, (M = B) =
∩

16i,j6n

(Xi,j = bi,j) =
1

2n
> 0 donc, par indépendance mutuelle

des Xi,j, il vient P(M = B) =
∏

16i,j6n

P(Xi,j = bi,j) =
1

2n
> 0. Ainsi (M = B) ̸= ∅ donc il existe ω ∈ Ω tel

que M(ω) = B : B ∈ M(Ω) d’où Xn ⊂ M(Ω). Comme l’inclusion réciproque est claire : M(Ω) = Xn.

c. (M ∈ Sn(R)) =
∩

16i<j6n

(Xi,j = Xj,i) et les évènements (Xi,j = Xj,i)16i<j6n sont indépendants mutuelle-

ment par hypothèse donc P(M symétrique) =
∏

16i<j6n

P(Xi,j = Xj,i) =
1

2
n(n−1)

2

.

d. La matrice Bn+1 =

(
An 0

0 1

)
appartient à Xn+1 donc det(Bn+1) = det(An) = un 6 det(An+1) = un+1
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d’après la question a.. Ainsi, la suite (un)n>1 est croissante. On a u1 = u2 = 1 avec A1 = (1) et A2 = I2 par

exemple. Par contre u3 > 2 avec B3 =

 1 1 0

0 1 1

1 0 1

 de déterminant 2. En fait u3 = 2 (voir OEIS A003432).

Par conséquent, en considérant le matrice diagonale par blocs diag(B3, · · · , B3) ∈ X3n, on a u3n > 2n donc

lim
n→+∞

u3n = +∞. Comme (un)n>1 est croissante, lim
n→+∞

un = +∞ par le théorème de la limite monotone.� �
11.43� �a. Pour compléter la collection en m achats, il faut avoir m jouets différents en m achats ce qui se fait

de m! façons différentes. Ainsi, par indépendance et équiprobabilité des achats, qm = m!
mm car il y a mm

possibilités de faire m achats à m jouets. Dans ce raisonnement, on a choisi Ω = [[1;m]]m, la tribu pleine

A = P(Ω) et la probabilité uniforme sur Ω, ainsi en notant Cm = “on complète la collection en m achats”, on

a qm = P(Cm) =
card (Cm)
card (Ω)

= m!
mm car Cm est l’ensemble des m! m-listes d’éléments distincts de l’intervalle

[[1;m]] : tant de précision n’et pas forcément souhaitable à l’oral !

Ainsi,
qm+1

qm

=
(m+ 1)!mm

m!(m+ 1)m+1 =
(m+ 1)mm

(m+ 1)m+1 = mm

(m+ 1)m
=
(
1+ 1

m

)−m

or
(
1+ 1

m

)−m

= e−mln(1+(1/m))

avec lim
m→+∞

mln

(
1+ 1

m

)
= 1 car ln(1+ x)∼

0
x. Par continuité de l’exponentielle, lim

m→+∞
qm+1

qm

= 1

e
.

Si la question avait été de déterminer la probabilité qn de compléter la collection en exactement n achats,

alors qn = 0 si n < m. Posons Ji = “le jouet i n’a pas été acheté au cours des n premiers achats”.

Alors, l’évènement

m∩
i=1

Ji est justement Tn = “la collection est terminée en au plus n achats”. Si on pose

l’évènement En = “la collection est terminé en exactement n achats”, on a En = Tn \ Tn−1 alors que

Tn−1 ⊂ Tn donc qn = P(En) = P(Tn) − P(Tn−1). Or Tn =
m∪
i=1

Ji ce qui donne avec la formule du crible

P(Tn) = 1 − P(Tn) = P
( m∪

i=1

Ji

)
=

n∑
k=1

(−1)k+1
( ∑

16i1<···<ik6n

P
( k∩

j=1

Jij

))
, et comme la probabilité de

k∩
j=1

Jij (intersection de k évènements du type Ji) vaut
(
m− k

m

)n
(m−k jouets seulement sur m achats), on a

1− P(Tn) =
m∑

k=1

(−1)k−1

(
m

k

)(
m− k

m

)n
. Ainsi qn =

m∑
k=1

(−1)k−1

(
m

k

)((
m− k

m

)n−1

−
(
m− k

m

)n)
. C’est

beaucoup plus délicat et surtout hors programme.

b. Clairement, si on note X0 le nombre d’achats qu’il effectue pour l’obtention du premier jouet, on a X0 = 1

(tout jouet est un nouveau jouet au départ). Quand on a déjà obtenu k jouets différents, obtenir un nouveau

jouet se fait avec une probabilité m− k

m
. Par indépendance mutuelle des achats de jouets, Xk suit d’après le

cours la loi géométrique G

(
m− k

m

)
(temps d’attente d’un succès).

c. T représente le nombre d’achats nécessaires pour obtenir la collection complète des m jouets. E(T) est

donc la moyenne de T . Si un jouet coûte c, cE(T) représente le coût moyen de la collection complète.

Par linéarité, E(T) = 1+
m−1∑
k=1

E(Xk) =
m−1∑
k=0

m

m− k
= m

m∑
j=1

1

j
= mHm en posant j = m− k.

d. Il est classique, on le fait par comparaison série-intégrale, que Hm ∼
+∞

ln(m) ou alors on utilise le

développement asymptotique Hn =
+∞

ln(n) + γ+ o(1) (mais hors programme). Ainsi E(T) ∼
+∞

mln(m).

Plus précisément, mais encore moins au programme, on a Hn =
+∞

ln(n) + γ + 1

2n
+ o

(
1

n

)
ce qui donne
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E(T) = mln(m) + γm+ 1

2
+ o(1) ce qui est très précis.� �

11.44� �a. Comme Z est une variable aléatoire à valeurs entières, 2−Z est à valeurs dans ]0; 1] donc elle est bornée.

Ainsi 2−Z admet une espérance finie.

b. On vérifie que ceci est cohérent : P(Ω) =
+∞∑
n=0

P(Z = n) =
+∞∑
n=0

1

2n+1 = 1. De plus, par définition de r(Z),

on a r(Z) =
+∞∑
n=0

2−n P(Z = n) = 1

2

+∞∑
n=0

1

4n
= 1

2(1− (1/4))
= 2

3
.

c. Par indépendance mutuelle des X1, · · · , Xq, on a GSq
=

q∏
k=1

GXk
. Comme par hypothèse, GX1

, · · · , GXq

sont deux fois dérivables en 1, la fonction GSq
l’est par produit et on a G′

Sq
(1) =

q∑
k=1

( ∏
16i6q

i̸=k

GXi
(1)
)
G′

Xk
(1).

Or GXi
(1) = 1 donc E(Sq) = G′

Sq
(1) =

q∑
k=1

G′
Xk

(1) =
q∑

k=1

E(Xk) ; ceci est juste une vérification de la linéarité

de l’espérance. De même G′′
Sq

(1) =
q∑

k=1

( ∏
16i6q

i ̸=k

GXi
(1)
)
G′′

Xk
(1) +

∑
16i ̸=j6q

( ∏
16m6q

m̸=i,m ̸=j

GXi
(1)
)
G′

Xi
(1)G′

Xj
(1).

On obtient donc G′′
Sq

(1) =
q∑

k=1

G′′
Xk

(1)+
∑

16i̸=j6q

E(Xi)E(Xj). Puisque V(Sq) = G′′
Sq

(1) +G′
Sq

(1)−G′
Sq

(1)2,

on a V(Sq) =
q∑

k=1

(V(Xk)− E(Xk)+ E(Xk)
2)+

∑
16i ̸=j6q

E(Xi)E(Xj)+
q∑

k=1

E(Xk)−
( q∑

k=1

E(Xk)
)2

ce qui donne

après simplification des double-produits : V(Sq) =
q∑

k=1

V(Xk) comme attendu. Tout ça pour ça !!!!.� �
11.45� �a. Par construction, on a X(Ω) = N. Notons les évènements Pi : ” on a fait pile au lancer i”. Alors, pour

n ∈ N, (X = n) =
n+1∪
k=1

(
Pk ∩ Pn+2 ∩

n+1∩
i=1
i ̸=k

Pi

)
car il faut un premier pile (au lancer k), tout autour que des

face et enfin un second pile au lancer n+ 2 = n face + 2 pile. Comme la réunion est disjointe (évènements

incompatibles), que les évènements Pk ∩ Pn+2 ∩
n+1∩
i=1
i ̸=k

Pi ont même probabilité car les Pi sont indépendants

mutuellement, on obtient la loi de X : P(X = n) = (n+ 1)p2(1− p)n.

b. Comme nP(X = n) = n(n + 1)p2(1 − p)n et que la série
∑
n>0

n(n + 1)p2(1 − p)n converge absolument

car n(n + 1)p2(1− p)n =
+∞

o

(
1

n2

)
puisque 0 < 1 − p < 1, X admet une espérance finie. On dérive deux fois

∀x ∈]− 1; 1[, 1

1− x
=

+∞∑
n=0

xn donc 2

(1− x)3
=

+∞∑
n=1

n(n+ 1)xn−1.

Par conséquent E(X) =
+∞∑
n=1

n(n+ 1)p2(1− p)n =
p2(1− p)

(1− (1− p))3
= 1− p

p
.

c. Comme avant, on a Y(Ω) = N et, pour k ∈ N, (Y = k) =

+∞∪
n=k

(X = n, Y = k) (réunion disjointe). Comme

le choix des boules dans l’urne est équiprobable, P(Y = k|X = n) = 1

n+ 1
(loi uniforme) si k 6 n. Par σ-

additivité, on a donc P(Y = k) =
+∞∑
n=k

P(Y = k|X = n)P(X = n) =
+∞∑
n=k

p2(1− p)n =
(1− p)kp2

1− (1− p)
= p(1− p)k

donc Z = Y + 1 suit la loi géométrique G(p) car ∀i > 1, P(Z = i) = P(Y = i − 1) = p(1 − p)i−1. On sait

qu’alors E(Z) = E(Y) + 1 = 1

p
(par linéarité de l’espérance) donc E(Y) = 1− p

p
.
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d. Soit (Ω,A, P) un espace probabilisé et X : Ω → E tel que X(Ω) soit au plus dénombrable. On dit que X

est une variable aléatoire si ∀x ∈ X(Ω), (X = x) ∈ A.� �
11.46� �a. Le cours nous permet d’affirmer que, si α ∈ R et si x ∈] − 1; 1[, on a (1 + x)α =

+∞∑
k=0

(
α

k

)
xk, avec

bk =

(
α

k

)
=

α(α− 1) · · · (α− k+ 1)

k!
. En particulier, lorsque α = −1

2
, il vient bk =

(−1

2
) · · · (−k+

1

2
)

k!
donc

bk = (−1)k
(−1

2
) · · · (−k+

1

2
)

k!
=

1

2
· · · 2k− 1

2

k!
=

1× · · · × (2k− 1)

2kk!
=

1× 2× · · · × (2k− 1)× (2k)

(2kk!)2
et enfin

bk =
(2k)!

(2kk!)2
= 1

4k

(
2k

k

)
. Ainsi, ∀x ∈]− 1; 1[, f(x) =

+∞∑
n=0

(
2n

n

)
xn

4n
.

b. La condition imposée à r est d’être strictement positif et de vérifier
+∞∑
n=0

P(X = n) = 1. Or en prenant

x = 1

2
dans la question a., on a

√
2 =

+∞∑
n=0

(2n)!

23n(n!)2
. Ainsi, la seule valeur r qui convient est r = 1√

2
.

c. Quand r = 1√
2
, la variable aléatoire X définie comme en b. vérifie GX(t) =

+∞∑
n=0

(2n)!tn

23n(n!)2
√
2
pour des

t convenables. En posant un =
(2n)!tn

23n(n!)2
√
2
, on a, pout t ̸= 0 et n > 0,

un+1

un

=
(2n+ 2)(2n+ 1)t

8(n+ 1)2
donc

lim
n→+∞

∣∣∣un+1

un

∣∣∣ = |t|
2
. Ainsi

∑
n>0

un converge absolument si |t| < 2 et diverge grossièrement si |t| > 2. Le

rayon de convergence de cette série génératrice est donc RX = 2 ce qui fait que GX est de classe C∞ sur

] − 2; 2[ donc X admet une espérance finie et un moment d’ordre 2 car elle est deux fois dérivable en 1. De

plus, d’après la question a., ∀t ∈]− 2; 2[, GX(t) =
1√

2
√

1− (t/2)
= 1√

2− t
. Comme G′

X(t) =
1

2(2− t)3/2
et

G′′
X(t) =

3

4(2− t)5/2
, on a E(X) = G′

X(1) =
1

2
et V(X) = G′′

X(1) + G′
X(1)− G′

X(1)
2 = 1.� �

11.47� �a. On choisit donc une partie de Ω = P(E) de manière aléatoire de sorte que la probabilité l’obtention de

la partie A soit proportionnelle à son cardinal. On prend donc A = P(Ω) et il existe une constante α > 0

telle que ∀A ∈ Ω, P({A}) = α card (A). Pour connâıtre α, il suffit d’utiliser la relation P(Ω) = 1. Comme

Ω =
∪
A∈Ω

{A}, on a P(Ω) = 1 = α
∑

A∈P(E)

card (A). Or il existe

(
n

k

)
parties de E de cardinal k ce qui montre

que 1 = α
∑

A∈P(E)

card (A) = α
n∑

k=0

∑
A∈P(E)

card(A)=k

card (A) = α
n∑

k=0

∑
A∈P(E)

card(A)=k

k = α
n∑

k=0

k

(
n

k

)
= α

n∑
k=1

k

(
n

k

)
= 1.

Or k

(
n

k

)
= n

(
n− 1

k− 1

)
donc

n∑
k=1

k

(
n

k

)
= n

n∑
k=1

(
n− 1

k− 1

)
= n

n−1∑
j=0

(
n− 1

j

)
= n2n−1. Ainsi, α = 1

n2n−1 .

En notant S = “obtenir un singleton” en prenant au hasard une partie dans ce cadre, on a donc S =
∪
x∈E

{{x}}

donc P(S) =
∑
x∈E

P({x}) = 1

n2n−1

∑
x∈E

1 = 1

2n−1 .

b. C est une variable aléatoire car C(Ω) = [[0;n]] et A est la tribu pleine. Comme il existe

(
n

k

)
parties de

cardinal k dans E et que chaque partie A de cardinal k vérifie P({A}) = k

n2n−1 , on a P(C = k) =

(
n

k

)
k

n2n−1
.

Comme C(Ω) = [[0;n]], par définition, E(C) =
n∑

k=0

kP(C = k) = 1

n2n−1

n∑
k=1

k2

(
n

k

)
. On écrit k2 = k(k−1)+k
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et
n∑

k=1

k2

(
n

k

)
=

n∑
k=2

k(k − 1)

(
n

k

)
+

n∑
k=1

k

(
n

k

)
= n(n − 1)

n∑
k=2

(
n− 2

k− 2

)
+ n

n∑
k=1

(
n− 1

k− 1

)
. On reconnâıt des

binômes de Newton et
n∑

k=1

k2

(
n

k

)
= n(n−1)2n−2+n2n−1. Ainsi E(C) = n(n− 1)2n−2 + n2n−1

n2n−1 = n+ 1

2
.

On écrit V(C) = E(C2)− E(C)2 = E((C−1)(C−2))+3E(C)−2− E(C)2 pour faire apparâıtre, avec la formule

de transfert, E((C− 1)(C− 2)) =
n∑

k=0

(k− 1)(k− 2)P(C = k) = 1

n2n−1

n∑
k=3

k(k− 1)(k− 2)

(
n

k

)
. On poursuit

classiquement, E((C− 1)(C− 2)) =
n(n− 1)(n− 2)

n2n−1

n∑
k=3

(
n− 3

k− 3

)
=

n(n− 1)(n− 2)2n−3

n2n−1
=

(n− 1)(n− 2)

4
.

Ainsi, V(C) = (n− 1)(n− 2)
4

+
3(n+ 1)

2
− 2− (n+ 1)2

4
= n− 1

4
ce qui est logique car si n = 1, il est certain

de prendre un singleton donc C = 1 est constant donc de variance nulle.

c. Notons U (resp. V et W) l’évènement (card (A) < card (B)) (resp. (card (A) > card (B)) et enfin

(card (A) > card (B))). Alors Ω = U ∪ V ∪ W (ils sont incompatibles) donc 1 = P(U) + P(V) + P(W). Or,

P(U) = P(V) par symétrie entre les parties A et B.

L’évènement Z = (card (A) 6 card (B)) vaut donc Z = U ∪W donc P(Z) = P(U) + P(W) =
1+ P(W)

2
.

Or W =
n∪

k=0

Wk où Wk = (card (A) = card (B) = k). Par incompatibilité des Wk, P(W) =
n∑

k=0

P(Wk).

Or par indépendance des choix de A et B, (card (A) = k) et (card (B) = k) sont indépendants donc on a

P(Wk) = P(card (A) = k)P(card (B) = k) = P(card (A) = k)2 par symétrie entre A et B.

Or P(card (A) = k) =
∑

X∈P(E)
card(X)=k

P({X}) =
(
n

k

)
k

n2n−1
. Par conséquent, P(card (A) = 0) = 0 et, si k ∈ [[1;n]],

P(card (A) = k) = 1

2n−1

(
n− 1

k− 1

)
. Ainsi P(W) = 1

4n−1

n∑
k=1

(
n− 1

k− 1

)2

=
1

4n−1

n−1∑
j=0

(
n− 1

j

)(
n− 1

n− 1− j

)
donc

P(W) = 1

4n−1

(
2n− 2

n− 1

)
d’après la formule de Vandermonde. Ainsi, P(Z) = 1

2
+ 1

22n−1

(
2n− 2

n− 1

)
.

D’après Stirling, P(W) ∼
+∞

1

4
√
nπ

−→
n→+∞

0 donc lim
n→+∞

P(U) = 1

2
comme attendu.� �

11.48� �a. Par le théorème de transfert, la variable aléatoire Y = euN admet une espérance finie si et seulement si

la série
∑
n>0

eun P(X = n) =
∑
n>0

eune−λ λ
n

n!
converge. Or eune−λ λ

n

n!
= e−λ (λe

u)n

n!
donc la série précédente

converge comme une série exponentielle. Classiquement, E(euN) =
+∞∑
n=0

e−λ (λe
u)n

n!
= e−λeλe

u

= eλ(e
u−1).

b. Pour y > 0 et u > 0, eu(N−(1+y)λ) = e−(1+y)uλeuN donc Z = eu(N−(1+y)λ) admet aussi une espérance

finie et, par linéarité de l’espérance, E(Z) = e−(1+y)uλ E(euN) = e−(1+y)uλe−λeλe
u

= eλ(e
u−1−(1+y)u).

Considérons la fonction fy : R∗
+ → R définie par fy(u) = eu − 1 − (1 + y)u. Comme fy est dérivable et

que f′y(u) = eu − (1 + y), fy est croissante sur [ln(1 + y);+∞[ et décroissante sur ]0; ln(1 + y)], ainsi on a

Inf
u>0

fy(u) = Min
u>0

fy(u) = fy(ln(1 + y)) = y − (1 + y) ln(1 + y) = −h(y). Ainsi, par stricte croissante de la

fonction exp et comme λ > 0, on a aussi Inf
u>0

(
E(eu(N−(1+y)λ))

)
= Min

u>0

(
E(eu(N−(1+y)λ))

)
= e−λh(y).

c. Soit y > 0 et u > 0, (N > (1 + y)λ) = (uN > (1 + y)uλ) = (u(N − (1 + y)λ) > 0) = (eu(N−(1+y)λ) > 1)

par stricte croissance de exp donc, d’après l’inégalité de Markov, comme eu(N−(1+y)λ) est une variable

aléatoire réelle positive, on a P(N > (1 + y)λ) = P(eu(N−(1+y)λ) > 1) 6 E(eu(N−(1+y)λ))
1

= eλfy(u).
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Comme cette inégalité est vraie quel que soit u ∈ R∗
+, elle l’est en particulier si on prend u = ln(1 + y) et

on a P(N > (1+ y)λ) 6 e−λh(y) = e−λ((y+1) ln(1+y)−y) (1) d’après la question précédente.

Comme N est une variable aléatoire positive admettant une espérance, on peut appliquer directement

Markov et avoir P(N > (1+ y)λ) 6 E(N)
(1+ y)λ

= 1

1+ y
(2) car E(N) = λ.

Laquelle de ces deux majorations est la meilleure, sachant que (1) est meilleure de (2) si et seulement

si e−λ((y+1) ln(1+y)−y) 6 1

1+ y
ce qui équivaut, par stricte croissance de l’exponentielle, à la condition

(λ(1+y)− 1) ln(1+y) > λy. Or cette dernière est clairement vraie, par croissances comparées, si y est assez

grand car y =
+∞

o(y ln(1+ y)). Elle est fausse, puisque (λ(1+ y)− 1) ln(1+ y)∼
0
(λ− 1)y et que (λ− 1)y 6 λy

car y > 0, quand y est assez petit.

Il y a donc certainement (à vérifier par une étude de fonction) une valeur limite y0 (dépendant bien sûr de

λ) telle que (2) est meilleure que (1) si y 6 y0 et telle que (1) est meilleure que (2) si y > y0.� �
11.49� �a. On modélise l’expérience par Ω = (P(E))2 (on ordonne les deux parties A et B choisies). La probabilité

choisie sur A = P(Ω) est la probabilité uniforme. Comme card ((P(E))2) = (2n)2 = 4n, la probabilité qu’on

choisisse un couple (A, B) particulier est 1

4n
. On note D = ”A et B sont disjoints”. On décompose D =

n∪
k=0

Dk

où Dk = ”A et B sont disjoints et card (A) = k”. Pour choisir un couple (A, B) ∈ Dk, on choisit :

• A dans E ayant k éléments : on a

(
n

k

)
choix.

• B quelconque dans E \ A : on a 2n−k choix.

D’où card (Dk) =

(
n

k

)
2n−k. Or (Dk)06k6n est une partition de D, donc card (D) =

n∑
k=0

(
n

k

)
2n−k = 3n

par le binôme de Newton. On en déduit que P(D) =
card (D)

4n
=
(
3

4

)n
.

b. Soit k ∈ [[0;n]], comme la probabilité est uniforme, il suffit de calculer card (I = k). Or pour choisir un

couple (A, B) ∈ Ω tel que card (A ∩ B) = k, il faut :

• choisir les k éléments de A ∩ B :

(
n

k

)
choix.

• pour j ∈ [[0;n−k]], on choisit A en prenant X dans E\(A∩B) et en posant A = (A∩B)∪X :

(
n− k

j

)
choix ; et choisir B en prenant Y ∈ P(E \ A) et en posant B = (A ∩ B) ∪ Y : 2n−k−j choix.

Ainsi, on a card (I = k) =

(
n

k

)
n−k∑
j=0

(
n− k

j

)
2n−k−j =

(
n

k

)
3n−k par le binôme de Newton. Par conséquent

P(I = k) =

(
n

k

)
3n−k

4n
=

(
n

k

)(
1

4

)k(3
4

)n−k

. Ainsi I suit la loi binomiale B

(
n, 1

4

)
.

Plus simplement, on note, pour k ∈ [[1;n]] si E = {x1, · · · , xn}, Ak (resp. Bk et Ik) la variable aléatoire qui

prend la valeur 1 si xk ∈ A (resp. xk ∈ B et xk ∈ A ∩ B) et 0 sinon. Alors Ik = AkBk, Ak et Bk sont

indépendantes et suivent la loi de Bernoulli de paramètre 1

2
car il y a autant de parties qui contiennent xk

que de parties qui ne le contiennent pas (via A 7→ E\A). Ainsi, Ik suit la loi de Bernoulli B
(
1

4

)
et, comme

I =
n∑

k=1

Ik et que les Ik sont mutuellement indépendants par hypothèse, I suit la loi binomiale B

(
n, 1

4

)
.

De même, calculons card (U = k) pour k ∈ [[0;n]]. Pour choisir (A, B) ∈ Ω tel que card (A ∪ B) = k, il faut :

• choisir les k éléments de A ∪ B :

(
n

k

)
choix.
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• pour chaque j ∈ [[0; k]], on choisit A dans A∪B :

(
k

j

)
choix ; et choisir B en prenant Y ∈ P(A) et en

posant B = ((A ∪ B) \ A) ∪ Y : 2k−j choix.

Ainsi, on a card (U = k) =

(
n

k

)
k∑

j=0

(
k

j

)
2k−j =

(
n

k

)
3n−k par le binôme de Newton. Par conséquent

P(U = k) =

(
n

k

)
3k

4n
=

(
n

k

)(
3

4

)k(1
4

)n−k

. Ainsi U suit la loi binomiale B

(
n, 3

4

)
.

Plus simplement, avec les mêmes notations que pour I et en notant Uk la variable aléatoire qui prend la

valeur 1 si xk ∈ A ∪ B et 0 sinon. Alors Uk = Ak + Bk − AkBk suit la loi de Bernoulli de paramètre 3

4

car P(Uk = 0) = P(Ak = 1, Bk = 1) = P(Ak = 1)P(Bk = 1) = 1

4
. Comme U =

n∑
k=1

Uk et que les Uk sont

mutuellement indépendants par hypothèse, U suit la loi binomiale B

(
n, 3

4

)
.

c. On sait d’après le cours que E(I) = n

4
, E(U) = 3n

4
et que V(I) = V(U) = 3n

16
.� �

11.50� �a. Par définition, ∀k ∈ N, P(X = k) = e−λλk

k!
. Si n ∈ N, (X 6 n) =

n∪
k=0

(X = k) (incompatibles)

donc P(X 6 n) =
n∑

k=0

e−λλk

k!
. Notons In = 1

n!

∫ +∞

λ
e−ttndt. On a I0 = e−λ = P(X 6 0) = P(X = 0)

et, si In =
n∑

k=0

e−λλk

k!
= P(X 6 n) pour un entier n ∈ N, alors par intégration par parties en posant les

deux fonctions de classe C1 u : t 7→ −e−t et v : t 7→ tn+1

n+ 1
telles que lim

t→+∞
u(t)v(t) = 0 par croissances

comparées, on a la relation In+1 = 1

(n+ 1)!

∫ +∞

λ
e−ttn+1dt = 1

n!

([
− e−ttn+1

n+ 1

]+∞

λ
−
∫ +∞

λ
(−e−t)tndt

)
donc In+1 = e−λλn+1

(n+ 1)!
+ In = P(X = n+ 1) + P(X 6 n) = P(X 6 n+ 1).

Par principe de récurrence : ∀n ∈ N, P(X 6 n) = 1

n!

∫ +∞

λ
e−ttndt.

On peut aussi appliquer la formule de Taylor reste intégral à exp entre 0 et λ pour avoir la relation

eλ =
n∑

k=0

λk

k!
+ 1

n!

∫ λ

0
(λ− t)netdt et en déduire P(X 6 n) = 1− 1

n!

∫ λ

0
(λ− t)net−λdt. On effectue ensuite le

changement de variable t = λ−u = φ(u) facile à justifier pour avoir P(X 6 n) = 1

n!

(
n!−
∫ λ

0
une−udu

)
. Or

on sait que n! = Γ(n+1) =
∫ +∞

0
un+1−1e−udu donc, avec Chasles, il vient P(X 6 n) = 1

n!

∫ +∞

λ
e−uundu.

b. Comme X(Ω) = N, on a
∪
n∈N

(X 6 n) = Ω. De plus, la suite ((X 6 n))n∈N est croissante, donc par

théorème de continuité croissante, on a lim
n→+∞

P(X 6 n) = P(Ω) = 1. Par conséquent, avec la question a.,

on a lim
n→+∞

1

n!

∫ +∞

λ
e−ttndt = 1 ce qui revient à

∫ +∞

λ
e−ttndt ∼

+∞
n! (indépendant de λ > 0).

c. ∀t ∈ R, GX(t) =
+∞∑
n=0

P(X = n)tn = e−λ
+∞∑
n=0

λntn

n!
= eλ(t−1). Ainsi, GX(1) = 1 et GX(−1) = e−2λ.

d. (X paire) =

+∞∪
n=0

(X = 2n) (évènements incompatibles) donc, par σ-additivité, P(X paire) =
+∞∑
n=0

P(X = 2n).

Avec c., GX(1) + GX(−1) =
+∞∑
k=0

(1+ (−1)k)P(X = k) = 2P(X paire) donc P(X paire) = 1+ e−2λ

2
> 1

2
.

e. Avec ces hypothèses, (XY paire) = (X paire, Y = 1)∪ (X quelconque, Y = 2). Ainsi, par indépendance entre

les variables aléatoires X et Y, P(XY paire) = 1

2
P(X paire) + 1

2
= 3

4
+ e−2λ

4
.
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� �
11.51� �On vérifie la cohérence de la définition : comme 1

20
= 1, l’énoncé impose visiblement N(Ω) = N∗ et on a

bien
+∞∑
n=1

P(N = n) =
+∞∑
n=0

1

2n
=

1/2

1− (1/2)
= 1. Si on note V l’évènement ”le joueur gagne”, alors on a par

définition V =
+∞∪
n=1

(N = 2n) (réunion disjointe) donc, par σ-additivité, P(V) =
+∞∑
n=1

1

22n
=

1/4

1− (1/4)
= 1

3
.

Par définition G = (−1)NN donc, par le théorème de transfert : E(G) =
+∞∑
n=1

(−1)n

2n
=

−(1/2)
1+ (1/2)

= −1

3
.� �

11.52� �a. Il y a j bactéries dans l’éprouvette, numérotées de 1 à j. Pour la bactérie i, on note Xi = 1 si elle a

la propriété P et Xi = 0 sinon. Alors Xi suit la loi de Bernoulli B(p). En posant S =
j∑

i=1

Xi, comme les

(X1, · · · , Xj) sont mutuellement indépendantes, on sait d’après le cours que S suit la loi binomiale B(j, p).

Mais dans ce cas S = X donc la loi de X sachant (Y = j) est la loi binomiale B(j, p).

b. Soit (i, j) ∈ N2, par construction P(X = i, Y = j) = 0 si i > j.

Par contre, si i 6 j, P(X = i, Y = j) = P(Y=j)(X = i)P(Y = j) =

(
j

i

)
pi(1− p)j−ie−λ λ

j

j!
.

On en déduit : ∀i ∈ N, P(X = i) =
+∞∑
j=i

P(X = i, Y = j) = e−λpiλi

i!

+∞∑
j=i

(1− p)j−iλj−i

(j− i)!
= e−λpiλi

i!
e(1−p)λ.

Ainsi P(X = i) =
(λp)i

i!
e−λp donc X suit la loi de Poisson de paramètre λp.

c. On sait d’après le cours que E(X) = λp et V(X) = λp.� �
11.53� �a. D’après le cours, l’indépendance mutuelle des (Xi)16i6n et le fait qu’elles suivent toutes la loi de

Bernoulli de paramètre p justifie que Sn suit la loi binomiale B(n, p).

b. On commence par la série géométrique ∀x ∈]− 1; 1[, 1

1− x
=

+∞∑
n=0

xn. On dérive terme à terme (c’est la

somme d’une série entière sur l’intervalle ouvert de convergence) k fois pour obtenir classiquement la relation

∀x ∈]− 1; 1[, k!
(1− x)k+1 =

+∞∑
n=k

n(n− 1) · · · (n− k+ 1)xn−k ce qui revient à
+∞∑
n=k

(
n

k

)
xn−k =

1

(1− x)k+1
.

c. Comme ((N = n))n∈N est un système complet d’évènements, par la formule des probabilités totales,

P(SN = k) =
+∞∑
n=0

P(Sn = k|N = n)P(N = n). Il est clair que P(Sn = k|N = n) = 0 si n < k et qu’on a

aussi P(Sn = k|N = n) =

(
n

k

)
pk(1− p)n−k d’après a. donc P(SN = k) =

+∞∑
n=k

(
n

k

)
pk(1− p)n−kp(1− p)n

car P(N + 1 = n + 1) = P(N = n) = p(1 − p)n+1−1 = p(1 − p)n puisque N + 1 suit la loi géométrique de

paramètre p. Ainsi P(SN = k) = p
+∞∑
n=k

(
n

k

)
pk(1−p)2n−k = p(1−p)kpk

+∞∑
n=k

(
n

k

)
(1−p)2n−2k et on conclut

avec la question précédente que ∀k ∈ N, P(SN = k) =
p(1− p)kpk

(1− (1− p)2)k+1 = 1

2− p

(
1− p

2− p

)k
. Ainsi, comme

1− p

2− p
= 1− 1

2− p
, la variable aléatoire 1+ SN suit la loi géométrique de paramètre 1

2− p
.� �

11.54� �a. On a (T = 0) = (X0 = 1, X1 = 1) donc, par indépendance : P(T = 0) = P(X0 = 1)P(X1 = 1) = 1

4
.

De même, (T = 1) = (X0 = 0, X1 = 1, X2 = 1) donc P(T = 1) = 1

8
. Maintenant, on décompose l’évènement

(T = 2) en (T = 2) = (X0 = 1, X1 = 0, X2 = 1, X3 = 1) ∪ (X0 = 0, X1 = 0, X2 = 1, X3 = 1) donc, par

incompatibilité de ces deux évènements : P(T = 2) = 2

16
= 1

8
.

b. Il est clair que An ∪Bn = “pas deux 1 consécutifs lors des n premiers tirages”. De plus, An+1 ⊂ An ∪Bn
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car si on ne fait pas deux 1 consécutifs lors des n+ 1 premiers tirages, on ne les fait pas non plus lors des n

premiers. Ainsi An+1 = (An+1 ∩ An) ∪ (An+1 ∩ Bn) (réunion disjointe) donc :

pn+1 = P(An+1) = P(An+1 ∩An)+ P(An+1 ∩Bn) = P(An+1|An)P(An)+ P(An+1|Bn)P(Bn) =
pn
2

+ qn

2
.

De même, Bn+1 ⊂ An ∪ Bn donc Bn+1 = (Bn+1 ∩ An) ∪ (Bn+1 ∩ Bn) (réunion disjointe) donc

qn+1 = P(Bn+1) = P(Bn+1 ∩ An) + P(Bn+1 ∩ Bn) = P(Bn+1|An)P(An) + P(Bn+1|Bn)P(Bn) =
pn
2
.

Matriciellement, cela donne bien : ∀n ∈ N,

(
pn+1

qn+1

)
= 1

2

(
1 1

1 0

) (
pn

qn

)
.

c. Il est clair que p0 = q0 = 1

2
, et que p1 = 1

2
, q1 = 1

4
car B1 = (X0 = 0, X1 = 1).

La question précédente montre que ∀n ∈ N, qn+2 = 1

2
pn+1 = 1

4
(pn + qn) = 1

2
qn+1 + 1

4
qn. Posons

un = 2n+1qn, alors on a ∀n ∈ N, un+2 = 2n+3qn+2 = 2n+2qn+1 + 2n+1qn = un+1 + un. De plus, u0 = 1

et u1 = 1. On reconnâıt alors la suite de Fibonacci : ∀n ∈ N, un = Fn.

Or (T = n) = Bn ∩ (Xn+1 = 1) d’où P(T = n) = P(Bn)P(Xn+1 = 1) = qn

2
= Fn

2n+2 par indépendance des

tirages. Un calcul classique prouve que Fn = an+1 − bn+1
√
5

avec a = 1+
√
5

2
(le nombre d’or) et b = 1−

√
5

2
.

d. T admet une espérance finie si et seulement si
∑
n>0

P(T > n) converge or il vient (T > n) = An+1 ∪ Bn+1

(réunion disjointe) : P(T > n) = pn+1 + qn+1. Or qn+1 =
Fn+1

2n+2 et pn+1 = 2qn+2 =
Fn+2

2n+2 ce qui donne

P(T > n) =
Fn+1 + Fn+2

2n+2 =
Fn+3

2n+2 ∼
+∞

an+4

2n+2
√
5

=
+∞

o

(
1

n2

)
: E(T) existe. Le rayon de la série entière

∑
n>0

Fnt
n

est R = 1

a
car Fn ∼

+∞
an+1
√
5

. Pour t ∈]−R;R[, on pose F(t) =
+∞∑
n=0

Fnt
n = F(t) = 1+ t+

+∞∑
n=2

Fnt
n donc, comme

Fn+2 = Fn + Fn+1, F(t) = 1+ t+ t2
+∞∑
n=0

(Fn + Fn+1)t
n = 1+ t+ t2F(t) + t(F(t)− 1) donc F(t) = 1

1− t− t2
.

Par conséquent, E(T) =
+∞∑
n=0

Fn+3

2n+2 = 2
+∞∑
n=0

Fn+3

2n+3 = 2

[
F

(
1

2

)
− F0 − F1

2
− F2

4

]
= 4.� �

11.55� �a. Pour simplifier le modèle, on estime qu’on relance les dès même s’ils sont tombés sur 6. Pour k ∈ N∗,

(X 6 k) =

6∩
i=1

(Xi 6 k) où Xi est le nombre de lancers nécessaires pour que le dé i tombe sur 6. Comme les

Xi sont mutuellement indépendants et de même loi (les dés sont identiques), on a P(X 6 k) = (P(X1 6 k))6.

Or P(X1 6 k) = 1− P(X1 > k) et (X1 > k) est l’évènement ”le dé i n’a jamais donné 6 pendant les k premiers

lancers” donc P(X1 > k) = qk où q = 5

6
est la probabilité de ne pas donner 6 pour un dé non pipé. Par

conséquent P(X 6 k) = (1 − qk)6. Puisque (X 6 k) = (X = k) ∪ (X 6 k − 1) et que ces évènements sont

incompatibles : P(X 6 k) = P(X = k) + P(X 6 k− 1) donc P(X = k) = (1− qk)6 − (1− qk−1)6.

b. On sait que X admet une espérance finie si et seulement si la série
∑
n>0

P(X > n) converge et qu’alors

E(X) =
+∞∑
n=0

P(X > n). Or P(X > n) = 1− P(X 6 n) = 1− (1− qn)6 ∼
+∞

6qn donc E(X) existe. De plus, on a

E(X) =
+∞∑
n=0

(6qn−15q2n+20q3n−15q4n+6q5n−q6n) = 6

1− q
− 15

1− q2 +
20

1− q3 −
15

1− q4 +
6

1− q5 −
1

1− q6

donc E(X) ∼ 13, 94 en demandant à Wolfram.
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De plus, X admet un moment d’ordre 2 si
∑
n>1

n2 P(X = n) converge. Or P(X = n) ∼
+∞

qn−1 donc, par

croissances comparées, n2 P(X = n) =
+∞

o

(
1

n2

)
. Ainsi X admet une variance. Or, en développant par le

binôme de Newton, P(X = n) = qn−1− 55

12
q2n−2+ ....... E(X(X−1)) =

+∞∑
n=2

n(n−1)(qn−1− 55

12
q2n−2+ ......)

qu’on calcule en se servant de la relation ∀x ∈]− 1; 1[,
+∞∑
n=2

n(n− 1)xn−2 = 2

(1− x)3
en dérivant deux fois la

classique série géométrique. Wolfram annonce que E(X2) ∼ 239, 211 donc σ(X) =
√

E(X2)− E(X)2 ∼ 6, 7.� �
11.56� �a. Chaque Xi vérifie E(Xi) = p = 1

2
et V(Xi) = p(1 − p) = 1

4
d’après le cours. Si n > 1, par linéarité

de l’espérance E(Sn) =
n∑

i=1

E(Xi) = np = n

2
et, puisque X1, · · · , Xn sont mutuellement indépendantes par

hypothèse, on a V(Sn) =
n∑

i=1

V(Xi) = np(1− p) = n

4
. Ou alors, d’après le cours, Sn = X1 + · · ·+ Xn suit la

loi binomiale B

(
n, 1

2

)
par indépendance mutuelle de X1, · · · , Xn et on connâıt son espérance et sa variance.

b. Par le théorème du transfert, si i > 1 et λ > 0, E(Zi) = e
λ

(
0−1

2

)
P(Xi = 0) + e

λ

(
1−1

2

)
P(Xi = 1) car

Xi(Ω) = {0, 1}. Donc, E(Zi) =
1

2

(
e
λ
2 + e

−λ
2
)
= ch

(
λ

2

)
.

c. Soit n > 1, Sn est bornée donc admet une espérance finie et E(eλ(Sn−E(Sn))) = E
( n∏

i=1

e
λ

(
Xi−1

2

))
. Or,

par linéarité de l’espérance et comme les Z1, · · · , Zn sont mutuellement indépendantes car les X1, · · · , Xn le

sont, le cours nous apprend que E(eλ(Sn−E(Sn))) =
n∏

i=1

E(Zi) =
n∏

i=1

ch
(
λ

2

)
= ch

(
λ

2

)n
.

d. Soit λ > 0, t > 0 et n ∈ N, alors (Sn − E(Sn) > nt) = (eλ(Sn−E(Sn)) > enλt) par stricte croissance de
la fonction exp. Puisque la variable aléatoire eλ(Sn−E(Sn)) est réelle positive, l’inégalité de Markov montre

que P(Sn − E(Sn) > nt) = P(eλ(Sn−E(Sn)) > enλt) 6 P(eλ(Sn−E(Sn)) > enλt) 6 E(eλ(Sn−E(Sn)))

enλt . D’après

la question précédente, P(Sn − E(Sn) > nt) 6
ch
(λ
2

)n
enλt = e−nft(λ) en posant ft(λ) = λt− ln

(
ch
(
λ
2

))
.

e. Si t > 1

2
, comme Sn 6 n et E(Sn)+nt = n

2
+nt > n, (Sn− E(Sn) > nt) = ∅ donc P(Sn− E(Sn) > nt) = 0.

Si t < 1

2
, la fonction ft est dérivable sur R∗

+ et f′t(λ) = t− 1

2

sh
(λ
2

)
ch
(λ
2

) =
2t− th

(λ
2

)
2

. Or si b ∈]−1; 1[ et a ∈ R,

th (a) = b ⇐⇒ e2a − 1

e2a + 1
= b ⇐⇒ e2a = 1+ b

1− b
⇐⇒ a = 1

2
ln

(
1+ b

1− b

)
. Ainsi, en posant λ0 = ln

(
1+ 2t

1− 2t

)
> 0,

la fonction ft est croissante sur ]0; λ0] et décroissante sur [λ0; +∞[ donc elle admet son maximum en λ0 de

sorte que I(t) = Max
λ>0

(ft(λ)) = ft(λ0) =
(
1

2
+t

)
ln(1+2t)+

(
1

2
−t

)
ln(1−2t) (après calculs). On remplace donc

λ par λ0 dans l’inégalité de la question d. pour obtenir P(Sn− E(Sn) > nt) 6 1

(1+ 2t)n(1
2
+t)(1− 2t)n(1

2
−t)

.

f. À faire.� �
11.57� �On peut écrire ∀n ∈ N, (M = n) = ((X = n)

∩
(Y < n))

∪
((X < n)

∩
(Y = n))

∪
((X = n)

∩
(Y = n)).

Comme ces évènements sont disjoints, P(M = n) = P(X = n, Y < n) + P(X < n, Y = n) + P(X = n, Y = n).

Par indépendance de X et Y, P(M = n) = P(X = n)P(Y < n) + P(X < n)P(Y = n) + P(X = n)P(Y = n).

Enfin, X et Y suivent la même loi donc P(X = n) = P(Y = n) et P(X < n) = P(Y < n).

Tout ceci justifie que ∀n ∈ N, P(M = n) = 2P(X = n)P(X < n) + P(X = n)2.
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Comme X suit la loi de Poisson de paramètre λ, P(X = n) = e−λλn

n!
. De plus, (X < n) =

n−1∪
k=0

(X = k),

il vient P(X < n) =
n−1∑
k=0

P(X = k) =
n−1∑
k=0

e−λλk

k!
. Mais P(Ω) =

+∞∑
k=0

P(X = k) car X(Ω) = N donc

lim
n→+∞

P(X < n) = 1. Puisque lim
n→+∞

P(X = n) = 0 (terme d’une série convergente par exemple), on a

P(X = n)2 =
+∞

o(P(X = n)) donc P(M = n) ∼
+∞

2P(X = n)P(x < n) ∼
+∞

2e−λλn

n!
.� �

11.58� �Comme (X+Y = 0) = (X = 0, Y = 0) car X et Y sont à valeurs dans N, P(X+Y = 0) = P(X = 0)P(Y = 0) = 1

6

car X et Y sont indépendantes donc P(X = 0) > 0 et P(Y = 0) > 0. Ainsi, pour k > 5, P(X + Y = k) = 0

et (X = 0, Y = k) ⊂ (X + Y = k), on en déduit que P(X = 0)P(Y = k) = 0 donc P(Y = k) = 0. De même,

P(X = k) = 0 si k > 5. Ainsi, X et Y sont presque sûrement à valeurs dans [[0; 4]] et les fonctions génératrices

GX et GY sont des fonctions polynomiales de degré inférieur ou égal à 4. Comme X et Y sont indépendantes,

∀t ∈ R, GX+Y(t) = GX(t)GY(t) =
1

6
+ t2

2
+ t4

3
. Or P = 1

6
+ X2

2
+ X4

3
= 1

6
(X2 + 1)(2X2 + 1). Comme X et

Y ne sont pas presque sûrement constantes, GX et GY ne sont pas des fonctions constantes. Par unicité de

la décomposition de P dans R[X], GX(t) =
t2 + 1

2
et GY(t) =

2t2 + 1

3
ou l’inverse (attention à la condition

GX(1) = GY(1) = 1 qui impose à la somme des coefficients de chacun de ces deux polynômes de valoir 1).

Par conséquent, en échangeant éventuellement les rôles joués par X et Y, on a P(X = 0) = P(X = 2) = 1

2
et

P(Y = 0) = 2

3
et P(Y = 2) = 1

3
(les autres valeurs de P(X = i) et P(Y = j) étant nulles).� �

11.59� �a. Comme α > 0, la suite
(

1

nα

)
n>1

est positive, décroissante et tend vers 0, ainsi, par le critère spécial

des séries alternées, la série
∑
n>1

(−1)n

nα converge donc la suite (un)n>1 de ses sommes partielles converge.

b. Si n > 1, par transformation d’Abel,
n∑

k=1

uk

kβ+ε =
n∑

k=1

sk − sk−1

kβ+ε =
n∑

k=1

sk
kβ+ε −

n∑
k=1

sk−1

kβ+ε . Après

changement d’indice
n∑

k=1

uk

kβ+ε =
n∑

k=1

sk
kβ+ε −

n−1∑
k=0

sk
(k+ 1)β+ε = sn

nβ+ε +
n−1∑
k=1

sk

(
1

kβ+ε − 1

(k+ 1)β+ε

)
(1)

car s0 = 0. Or 1

kβ+ε − 1

(k+ 1)β+ε = 1

kβ+ε

(
1−
(
1+ 1

k

)−β−ε
)

=
+∞

1

kβ+ε

(
1− 1+ β+ ε

k
+ o

(
1

k

))
∼
+∞

β+ ε

kβ+ε+1 .

Par conséquent, comme sk =
+∞

O(kβ) par hypothèse et que 1

kβ+ε − 1

(k+ 1)β+ε = 1

kβ+ε ∼
+∞

β+ ε

kβ+ε+1 , on a

sk

(
1

kβ+ε − 1

(k+ 1)β+ε

)
=
+∞

O

(
1

k1+ε

)
et la série

∑
k>1

sk

(
1

kβ+ε − 1

(k+ 1)β+ε

)
converge par Riemann. De

plus, lim
n→+∞

sn
nβ+ε = 0 car sn

nβ+ε =
+∞

O

(
nβ

nβ+ε

)
=
+∞

O

(
1

nε

)
avec ε > 0.

Ainsi, avec l’expression (1) vue ci-dessus, on en déduit que
∑
n>1

un

nβ+ε converge.

c. On sait que ∀a ∈ R, ch (a) =
+∞∑
n=0

a2n

(2n)!
et e

a2

2 =
+∞∑
n=0

a2n

2nn!
. Or si on pose an = 2nn!

(2n)!
, on a la

relation an+1 =
2(n+ 1)an

(2n+ 2)(2n+ 1)
= an

2n+ 1
6 an donc la suite (an)n>0 est décroissante et a0 = 1. Ainsi,

∀n ∈ N, an 6 1 ⇐⇒ 1

(2n)!
6 1

2nn!
. On en déduit que ∀a ∈ R, ch (a) 6 e

a2

2 .

On peut aussi constater que puisque ln est strictement croissante, ch (a) 6 e
a2

2 ⇐⇒ ln(ch (a)) 6 a2

2
. On

définit f : R → R par f(a) = a2

2
− ln(ch (a)), alors f est paire et dérivable sur R avec f′(a) = a− th (a). Or
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th est 1-lipschitzienne car th ′(x) = 1− th 2(x) ∈ [0; 1[, on a ∀a > 0, |th(a)| 6 |a| donc ∀a ∈ R+, f′(a) > 0.

Ainsi, f est croissante sur R+, or elle est nulle en 0 donc f est positive sur R+ donc positive sur R par parité.

On obtient à nouveau : ∀a ∈ R, ch (a) 6 e
a2

2 .

d. Soit n > 1 et x > 0, (|Sn| > x) = (Sn > x) ∪ (Sn < −x) = (Sn > x) ∪ (−Sn > x). Comme (Sn > x) et

(−Sn > x) sont incompatibles, on a P(|Sn| > x) = P(Sn > x) + P(Sn < −x). Or, comme Xk et −Xk ont la

même loi, Sn et −Sn ont aussi la même loi donc P(|Sn| > x) = 2P(Sn > x). Or par stricte croissance de exp

et puisque t > 0, on a (Sn > x) = (tSn > tx) = (etSn < etx) donc P(Sn > x) = P(etSn > etx) 6 E(etSn)
etx

d’après l’inégalité de Markov car etSn est une variable aléatoire réelle positive. Mais etSn =
n∏

k=1

etXk

et (etXk)16k6n est une famille de variables aléatoires mutuellement indépendantes par hypothèse donc

E(etSn) =
n∏

k=1

E(etXk) = (ch (t))n car E(etX1) = P(X1 = 1)et×1 + P(X1 = −1)× et×(−1) = et + e−t

2
.

Par conséquent, P(|Sn| > x) 6 2e
nt2

2

etx
= hx(t) = 2e

nt2

2
−tx. Or le minimum de t 7→ nt2

2
− tx = nt

2

(
t− 2x

n

)
est atteint en t = t0 = x

n
(étude de parabole). Donc P(|Sn| > x) 6 hx(t0) = 2e

−x2

2n .

e. Pour n ∈ N, posons Un =
+∞∪
k=n

Ak de sorte que Eε =
+∞∩
n=1

Un. Comme la suite (Un)n>1 est décroissante

pour l’inclusion, par théorème de continuité décroissante, on a P(Eε) = lim
n→+∞

P(Un).

Par croissances comparées, e
−n2ε

2 =
+∞

o

(
1

n2

)
donc la série

∑
n>1

e
−n2ε

2 converge d’après Riemann ce qui

prouve que lim
n→+∞

+∞∑
k=n

e
−k2ε

2 = 0 (la suite des restes tend vers 0). Par sous-additivité et d’après la question

précédente, P(Un) 6
+∞∑
k=n

P(Ak) 6 2
+∞∑
k=n

e
−k2ε

2 . Par encadrement, on a lim
n→+∞

P(Un) = 0 d’où P(Eε) = 0.

f. Prenons ε = s

2
− 1

4
de sorte que ε > 0. Soit ω ∈ Eε =

+∞∪
n=1

+∞∩
k=n

Ak, alors ∃n ∈ N∗, ∀k > n, |Sk(ω)| 6 kβ

en posant β = 1

2
+ ε > 0. Ainsi,

(
Sk(ω)

kβ

)
k>1

est bornée et il existe M > 0 tel que ∀k ∈ N∗, |Sk(ω)| 6 Mkβ.

D’après la question b., la série
∑
n>1

Xn(ω)

nβ+ε converge et on a donc ω ∈ Cs car s = β + ε. On vient donc de

montrer que Eε ⊂ Cs, ce qui prouve que P(Eε) 6 P(Cs) 6 1 donc P(Cs) = 1 d’après la question e..� �
11.60� �a. En prenant x = y = 0 dans la formule, on a G(0)2 =

G(0)
2

donc G(0) = 0 ou G(0) = 1

2
. Si on avait

G(0) = 0, alors en prenant y = 0 et x quelconque dans la formule, on aurait ∀x ∈]− R;R[, G(|x|) = 0 donc G

serait nulle sur [0;R[. On en déduirait que ∀n ∈ N, G(n)(0) = 0 donc la série de Taylor de G serait nulle

ce qui contredit le fait que G est développable en série entière car G(1) = 1 ̸= 0. Par conséquent, G(0) = 1

2
.

b. Prenons maintenant y = 0 et x quelconque dans la formule et on a ∀x ∈]−R;R[, G(x) = G(|x|) donc G est

paire. Or ∀x ∈]−R;R[, G(x) =
+∞∑
n=0

P(X = n)xn, la parité de G montre bien que ∀n ∈ N, P(X = 2n+ 1) = 0.

c. On dérive la relation G(x)G(y) = 1

2
G(
√

x2 + y2) par rapport à x pour y fixé, d’où, si x2 + y2 < R2,

G′(x)G(y) = x

2
√

x2 + y2
G′(
√

x2 + y2). Pour y = 1, ∀x ∈]−
√
R2 − 1;

√
R2 − 1[, G′(x) = x

2
√

x2 + 1
G′(

√
x2 + 1)

puisque G(1) = 1. Pour x = 1, on a donc, ∀y ∈] −
√
R2 − 1;

√
R2 − 1[, G′(1)G(y) = 1

2
√

1+ y2
G′(
√

1+ y2).
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On remplace y par x et on trouve ainsi : ∀x ∈]−
√
R2 − 1;

√
R2 − 1[, G′(x) = xG′(1)G(x).

d. On résout classiquement l’équation différentielle y′ = xG′(1)y dont les solutions sont les y : x 7→ λe
x2G′(1)

2

avec λ ∈ R. Mais comme G(0) = 1

2
, on a donc ∀x ∈∈]−

√
R2 − 1;

√
R2 − 1[, G(x) = 1

2
e
x2G′(1)

2 .

On développe cette fonction en série entière, ce qui donne ∀x ∈]−
√
R2 − 1;

√
R2 − 1[, G(x) =

+∞∑
n=0

(G′(1))nx2n

2n+1n!
.

Par unicité des coefficients : ∀x ∈]− R;R[, G(x) =
+∞∑
n=0

(G′(1))nx2n

2n+1n!
= 1

2
e
x2G′(1)

2 donc, puisque G(1) = 1, on

a 1

2
e
G′(1)

2 = 1 d’où G′(1) = E(X) = 2 ln(2). On sait aussi que V(X) = G′′(1) + G′(1)− G′(1)2 donc, comme

G′′(x) = ln(2)(1+ 2x2)ex
2 ln(2) donc V(X) = 4 ln(2)(2− ln(2)) après calculs.� �

11.61� �a. On suppose que C est construit sur les racines n-ièmes de l’unité (toute homothétie, translation ou

rotation ne change radicalement rien au problème). Si une isométrie laisse invariant le polygone C, elle laisse

invariant son centre de gravité. Ainsi, 0 est stable par toute isométrie du plan qui laisse invariant C, ce sera

donc une isométrie vectorielle. Les isométries vectorielles du plan sont soit des réflexions, soit des rotations.

• Si s est une réflexion laissant globalement le polygone C, alors s envoie 1 sur e2ikπ/n (pour k ∈ [[0;n− 1]])

donc elle se fait par rapport à la droite d’équation cos

(
kπ

2n

)
y = sin

(
kπ

2n

)
x et admet donc pour matrice dans

la base canonique S =

(
cos(θk) sin(θk)
sin(θk) − cos(θk)

)
avec θk = kπ

n
.

• Si r est une réflexion laissant globalement le polygone C, alors s envoie 1 sur e2ikπ/n (pour k ∈ [[0;n− 1]])

donc elle est d’angle θk = kπ

n
et a donc pour matrice dans la base canonique (d’ailleurs dans toute base

orthonormée directe du plan) R =

(
cos(θk) − sin(θk)
sin(θk) cos(θk)

)
.

b. Comme n > 3, deux ”vecteurs” adjacents de C (on est passé en espace vectoriel plutôt qu’affine) définissent

une base de R2 donc un élément de En est entièrement défini par l’image de (A, B). Il y a 2n images possibles

de (A, B) parce que c’est le cardinal de En mais aussi parce qu’il faut choisir l’image de A (n choix) et ensuite

l’image de B à côté de A et il y a donc deux choix. En effet, comme une isométrie conserve les distances,

elles transforme deux vecteurs adjacents en deux vecteurs adjacents.

c. Si X ∈ En est une réflexion, alors X−1 = X ∈ En. Si X = idC ∈ En, alors X−1 = X = idC ∈ En. Si

X ∈ En est une rotation d’angle θ ̸≡ 0 [2π], alors X−1 = R−θ et si θ = θk = kπ

n
(avec k ∈ [[1;n − 1]]) alors

−θ = θk = −kπ

n
≡ θk =

(n− k)π
n

[2π] et n − k ∈ [[1;n − 1]] donc X−1 ∈ En. Tout élément de En admet

donc un unique inverse dans En. Comme la composée d’isométries laissant globalement invariant le polygone

C est encore une isométrie laissant globalement invariant C, l’ensemble En a donc une structure de groupe

pour la loi ◦. Ce groupe n’est pas abélien (pas commutatif). On l’appelle Dn, le groupe diédral d’ordre n.

d. (X2 ◦ X1 = id ) =
∪

X∈En\{id C}

(X1 = X, X2 = X−1) d’après c. par hypothèse. Par incompatibilité de ces

évènements et indépendance de X1 et X2, P(X2 ◦X1 = idC) =
(2n− 1)

(2n− 1)2
= 1

2n− 1
car P(X1 = X) = 1

2n− 1
.

e. Notons, pour N ∈ [[1;n]], l’évènement AN,n = (XN ◦ · · · ◦ X1 = idC) ∩
( N−1∩

M=1

(XM ◦ · · · ◦ X1 ̸= idC)
)
. Par

la formule des probabilités composées, en notant AM = (XM ◦ · · · ◦ X1 = idC) pour M ∈ [[1;N]] de sorte que
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AN,n = AN ∩
( N−1∩

M=1

AM

)
, on a pN,n = P(A1)PA1

(A2) · · · PA1∩···AN−2
(AN−1)PA1∩···AN−1

(AN). Or par

hypothèse A1 = Ω et les données de l’énoncé donnent pN,n =
(
2n− 2

2n− 1

)N−2

×
(

1

2n− 1

)
.

f. D’après e., pn,n =
(
2n− 2

2n− 1

)n−2

×
(

1

2n− 1

)
=
(
1 − 1

2n− 1

)n−2

×
(

1

2n− 1

)
or 1

2n− 1
∼
+∞

1

2n
et(

1− 1

2n− 1

)n−2

= exp

(
(n− 2) ln

(
1− 1

2n−1

))
→ −1

2
donc pn,n ∼

+∞
1

2
√
e n

.� �
11.62� �a. Soit X une variable aléatoire réelle positive admettant une espérance finie et ε > 0, alors en distinguant

selon que X(ω) > ε ou X(ω) < ε, on a ∀ω ∈ Ω, X(ω) > ε11(X6ε)(ω) ce qui montre que X > ε11(X6ε) (inégalité

sur des variables aléatoires). Par croissance de l’espérance et comme E(11(X6ε)) = P(X 6 ε) d’après le cours,

on obtient la majoration E(X) > εP(X > ε) : c’est l’inégalité de Markov.

Soit X une variable aléatoire réelle admettant un moment d’ordre 2. Soit ε > 0, alors les deux évènements

(|X− E(X)| > ε) et ((X− E(X))2 > ε2) sont égaux donc P(|X− E(X)| > ε) = P((X− E(X))2 > ε2) 6 V(X)
ε2

d’après Markov donc P(|X− E(X)| > ε) 6 V(X)
ε2

: c’est l’inégalité de Bienaymé-Tchebychev.

b. Soit λ > 0, E((Y+ λ)2) = E(Y2 + 2λY+ λ2) = E(Y2)+ 2λE(Y)+ λ2 E(1) par linéarité de l’espérance (tout

existe par hypothèse). Or on sait que E(1) = 1, que σ2 = V(X) = E((X− E(X))2) = E(Y2) par définition et

que E(Y) = E(X)− E(E(X)) = 0 ce qui donne bien E((Y + λ)2) = σ2 + λ2.

c. Soit λ > 0, (Y > α) = (Y + λ > α + λ) ⊂ ((Y + λ)2 > (α + λ)2) (on n’a pas égalité en général).

D’après l’inégalité de Markov, puisque (Y + λ)2 est une variable aléatoire réelle positive d’espérance finie,

on a P((Y + λ)2 > (α + λ)2) 6 E((Y + λ)2 > (α+ λ)2)

(α+ λ)2
= σ2 + λ2

λ2 + α2 + 2αλ
d’après la question a.. Ainsi,

0 6 P(Y > α) 6 P((Y + λ)2 > (α+ λ)2) 6 σ2 + λ2

λ2 + α2 + 2αλ
par croissance de la probabilité.

d. • Si σ = 0, on fait tendre λ vers 0+ dans l’inégalité ci-dessus et on trouve P(Y > α) = 0 par encadrement.

• Si σ > 0, posons f : λ 7→ σ2 + λ2

λ2 + α2 + 2αλ
. La fonction f est positive, dérivable sur R+ et f′(λ) =

2(λα− σ2)

(α+ λ)3
.

La fonction f est donc décroissante sur ]0; λ0] et croissante sur [λ0; +∞[ avec λ0 = σ2

α
, avec f(0) = σ2

α2 et

lim
λ→+∞

f(λ) = 1. Ainsi, f atteint son minimum sur R+ en λ0. Ainsi, comme ∀λ > 0, P(Y > α) 6 f(λ), en

évaluant cette inégalité en λ0, on obtient P(Y > α) > f(λ0) =
σ2

σ2 + α2 .

Dans les deux cas, on a l’inégalité attendue : P(Y > α) > σ2

σ2 + α2 .

e. On décompose l’évènement (|Y| > α) = (Y > α) ∪ (Y 6 −α) en deux évènements incompatibles donc

P(|Y| > α) = P(Y > α) + P(−Y > α). Comme la variable aléatoire −X vérifie les mêmes hypothèses

que X (−X admet un moment d’ordre 2 et V(−X) = V(X) = σ2) et que Y′ = −X − E((−X)) = −Y, on

a P(−Y > α) 6 σ2

σ2 + α2 d’après d., ce qui donne bien P(|Y| > α) = P(|X − E(X)| > α) 6 2σ2

σ2 + α2 .

2σ2

σ2 + α2 6 σ2

α2 ⇐⇒ σ > α (cette nouvelle inégalité est meilleure que Bienaymé-Tchebychev).

2σ2

σ2 + α2 > σ2

α2 ⇐⇒ σ 6 α (cette nouvelle inégalité est moins bonne que Bienaymé-Tchebychev).
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� �
11.63� �a. N est par construction le nombre d’entiers n ∈ N∗ tels que Sn = 0. Cette suite (Xn)n>1 de variables

aléatoires modélise une marche aléatoire symétrique dans Z : à chaque étape, on fait un pas vers la droite

ou vers la gauche (avec probabilité 1

2
) en partant de 0. N est alors le nombre de retours à l’origine.

b. Comme N = 0 ⇐⇒ (∀n > 1, Sn ̸= 0), on a (N = 0) =
+∞∩
n=1

(Sn = 0) par définition.

c. Comme (N = +∞) ⇐⇒ (∀n ∈ N, ∃k > n, Sk = 0), on a (N = +∞) =
+∞∩
n=0

+∞∪
k=n

(Sk = 0) et, en posant

Un =
+∞∪
k=n

(Sk = 0), Un = Un+1 ∪ (Sn = 0) donc la suite (Un)n∈N est une suite décroissante d’évènements.

d. Si N(ω) < +∞, considérons le plus grand entier k tel que Sk(ω) = 0 (avec la convention k = 0 si un tel

entier n’existe pas). Alors ω ∈ (Sk = 0) ∩
( ∩

i>k

(Si ̸= 0)
)
. Cette appartenance marche encore si k = 0 car

(S0 = 0) = Ω et que ω ∈
∩
i>1

(Si ̸= 0). Réciproquement, si ω ∈
∪
k∈N

(
(Sk = 0)∩

( ∩
i>k

(Si ̸= 0)
))

, par définition

N(ω) 6 k + 1 donc N(ω) < +∞. Par double inclusion, (N < +∞) =
∪
k∈N

(
(Sk = 0) ∩

( ∩
i>k

(Si ̸= 0)
))

. Les

évènements Bk = (Sk = 0) ∩
( ∩

i>k

(Si ̸= 0)
)
sont incompatibles car k représente le plus grand entier tel que

Sk s’annule, ainsi par σ-additivité, on a P(N < +∞) =
+∞∑
k=0

P(Bk).

Si k ∈ N, (Sk = 0) ∩
( ∩

i>k

(Si ̸= 0)
)
= (Sk = 0) ∩

( ∩
i>k

(Si − Sk ̸= 0)
)
= (

k∑
i=0

Xi = 0) ∩
( ∩

i>k

(
i∑

j=k+1

Xj ̸= 0)
)

donc ces deux évènements sont indépendants d’après le lemme des coalitions. Par conséquent, on a la relation

P(Bk) = P(Sk = 0)× P
( ∩

i>k

(
Si−Sk ̸= 0

))
et on a bien P(N < +∞) =

+∞∑
k=0

P(Sk = 0)P
( ∩

i>k

(
Si−Sk ̸= 0

))
.

e. Pour k ∈ N,
∩
i>k

(
Si − Sk ̸= 0

)
=
∩
i>k

( i∑
j=k+1

Xj ̸= 0
)
et la famille de variables aléatoires (Xj)j>k+1 vérifie

les mêmes propriétés (les mêmes lois) que la famille (Xj)j>1 (indépendance mutuelle et loi de Bernoulli).

Ainsi, P
( ∩

i>k

(
Si−Sk ̸= 0

))
= P

( ∩
j>1

(
Sj ̸= 0

))
= P(N = 0). Ainsi, P(N < +∞) =

+∞∑
k=0

P(N = 0)P(Sk = 0).

Or il est impossible d’effectuer un retour à l’origine après un nombre impair de pas (Sn est de la parité de

n) donc P(S2k+1 = 0) = 0 et P(S2k = 0) = 1

22k

(
2k

k

)
car pour revenir à l’origine après 2k pas, il faut en

choisir k vers la gauche (parmi 2k pas) et les autres seront vers la droite. Par l’équivalent de Stirling,

P(S2k = 0) = 1

22k
(2k)!

(k!)2
∼

√
4πk(2k)2k(ek)2

22ke2k(
√
2πk)2(kk)2

∼
+∞

1√
πk

après simplification donc
∑
k>0

P(Sk = 0) diverge par

Riemann. Ceci impose P(N = 0) = 0 donc P(N < +∞) = 0 aussi et on vient de prouver que lors de cette

marche aléatoire symétrique dans Z, on revient presque sûrement une infinité de fois à l’origine.

Questions de cours :

• Une variable aléatoire X suivant la loi géométrique de paramètre p ∈]0; 1[ vérifie X(Ω) = N∗ et les relations

∀n > 1, P(X = n) = p(1 − p)n−1. Si on considère une suite (Bn)n>1 de variables aléatoires mutuellement

indépendantes suivant toutes le loi de Bernoulli de paramètre p, alors T = Min(k ∈ N∗ | Bk = 1) est une

variable aléatoire suivant la loi géométrique de paramètre p (modulo le fait que l’évènement (T = +∞) n’est

pas impossible mais juste négligeable).
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• On considère une suite (Bn)n>1 de variables aléatoires mutuellement indépendantes suivant toutes le loi

de Bernoulli et on pose T2 = Min(k ∈ N∗ | k > T et Bk = 1) (avec les notations ci-dessus). Pour n > 2,

(T2 = n) =

n−1∪
k=1

(T = k)∩
( n−1∩

i=k+1

(Bi = 0)
)
∩(Bn = 1). Ainsi, par indépendance mutuelle et incompatibilité de

ces évènements, on a P(T2 = n) =
n−1∑
k=1

(1−p)k−1p(1−p)n−k−1p = (1−p)n−2p2
n−1∑
k=1

1 = (n−1)(1−p)n−2p2.

• On appelle système complet d’évènements d’un univers Ω toute famille finie ou dénombrable (An)n>0

d’évènements telle que Ω =
∪
n∈N

An et ∀(n,m) ∈ N2, n ̸= m =⇒ An ∩ Am = ∅.� �
11.64� �a. Le rayon de convergence de la série génératrice de X est infini car

(
e−λλntn

n!

)
n>0

est bornée pour tout

réel t par croissances comparées. Classiquement ∀t ∈ R, GX(t) =
+∞∑
n=0

e−λλntn

n!
= e−λ

+∞∑
n=0

(λt)n

n!
= eλ(t−1).

Toutes les séries qui suivent convergent absolument. On peut donc écrire :

E(X) =
+∞∑
n=0

nP(X = n) =
+∞∑
n=0

ne−λλn

n!
= λe−λ

+∞∑
n=1

λn−1

(n− 1)!
= λ. Par le théorème du transfert, on a aussi

E(X2 − X) =
+∞∑
n=0

(n2 − n)P(X = n) =
+∞∑
n=2

e−λλn

(n− 2)!
= λ2e−λ

+∞∑
n=2

λn−2

(n− 2)!
= λ2 et, avec la même méthode, il

vient E(X(X− 1)(X− 2)) =
+∞∑
n=0

n(n− 1)(n− 2)P(X = n) =
+∞∑
n=3

e−λλn

(n− 3)!
= λ3e−λ

+∞∑
n=3

λn−3

(n− 3)!
= λ3. Ainsi,

par linéarité de l’espérance, on obtient E(X2) = E(X(X− 1)) + E(X) = λ2 + λ et, de la même manière, on a
E(X3) = E(X(X− 1)(X− 2)) + 3E(X2)− 2E(X) = λ3 + 3(λ2 + λ)− 2λ = λ3 + 3λ2 + λ.

Ou alors en dérivant plusieurs fois GX car G′
X(t) =

+∞∑
n=1

nP(X = n)tn−1, G′′
X(t) =

+∞∑
n=2

n(n− 1)P(X = n)tn−2

et G′′′
X (t) =

+∞∑
n=3

n(n − 1)(n − 2)P(X = n)tn−3 donc on obtient E(X) = G′
X(1), E(X2) = G′′

X(1) + G′
X(1) et

enfin E(X3) = G′′′
X (1) + 3G′′

X(1) +G′
X(1) car n3 = n(n− 1)(n− 2) + 3n(n− 1) + n. On retrouve les résultats

précédents car G′
X(t) = λeλ(t−1), G′′

X(t) = λ2eλ(t−1) et G′′
X(t) = λ3eλ(t−1).

b. Déjà, on a Y(Ω) = N et ∀n ∈ N, (Y = n) =
+∞∪
m=n

(X = m, Y = n) (évènements incompatibles) donc

Y est une variable aléatoire et P(Y = n) =
+∞∑
m=n

P(Y = n|X = m)P(X = m). Mais la loi de Y sachant

(X = m) est la loi binomiale B(m, p) par hypothèse (en supposant l’indépendance mutuelle des clients)

donc P(Y = n) =
+∞∑
m=n

(
m

n

)
pn(1 − p)m−n e−λλm

m!
. Ainsi, en réorganisant les termes, on trouve la nouvelle

expression P(Y = n) = pnλne−λ

n!

+∞∑
m=n

(λ(1− p))m−n

(m− n)!
= pnλne−λ

n!
eλ(1−p) =

(λp)ne−λp

n!
donc Y ∼ P(λp).

c. Comme (Z = 0) =
+∞∪
k=0

(Z = 0, X = k) (réunion d’évènements incompatibles), on a par σ-additivité la

relation P(Z = 0) =
+∞∑
k=0

P(Z = 0, X = k). Or P(Z = 0|X = k) = (1 − p)k puisqu’aucun des clients ne doit

être mis en attente parmi les k clients ce jour-là. Ainsi, P(Z = 0) =
+∞∑
k=0

P(Z = 0|X = k)P(X = k) donc

P(Z = 0) =
+∞∑
k=0

λke−λ

k!
(1− p)k = e−λeλ(1−p) = e−λp.

Si n > 1, (Z = n) =
+∞∪
k=n

(Z = n, X = k), on a de même P(Z = n) =
+∞∑
k=n

P(Z = n|X = k)P(X = k)

mais P(Z = n|X = k) = p(1 − p)n−1 (les n − 1 premiers ne sont pas mis en attente et le n-ième oui) d’où
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P(Z = n) =
+∞∑
k=n

p(1− p)n−1 λ
ke−λ

k!
= p(1− p)n−1e−λ

+∞∑
k=n

λk

k!
. On ne reconnâıt aucune loi classique pour Z.� �

11.65� �D’abord, ce sont bien des droites car pour tout ω ∈ Ω et k ∈ [[1; 3]], le couple (1, Zk(ω)) est non nul.

Si les trois droites D1, D2, D3 sont concourantes en le point M0 = (x0, y0), alors le système homogène x+ Z1y+ Z2
1z = 0

x+ Z2y+ Z2
2z = 0

x+ Z3y+ Z2
3z = 0

admet une solution non nulle (x0, y0, 1) donc son déterminant est nul, ce qui d’après

Vandermonde, donne

∣∣∣∣∣∣
1 Z1 Z2

1

1 Z2 Z2
2

1 Z3 Z2
3

∣∣∣∣∣∣ = (Z3 − Z2)(Z3 − Z1)(Z2 − Z1) = 0. Si les trois droites sont parallèles,

comme elles admettent pour vecteurs directeurs respectifs v1 = (−Z1, 1), v2 = (−Z2, 1) et v3 = (−Z3, 1), on

obtient Z1 = Z2 = Z3. Dans les deux cas, on a donc (Z3 − Z2)(Z3 − Z1)(Z2 − Z1) = 0.

Réciproquement, si (Z3−Z2)(Z3−Z1)(Z2−Z1) = 0, alors par exemple Z1 = Z2 donc D1 = D2 et D1, D2, D3

sont concourantes si D1 et D3 sont sécantes et D1, D2, D3 sont parallèles si D1 et D3 le sont.

Au final, la condition nécessaire et suffisante cherchée pour que les trois droites D1, D2, D3 soient parallèles

ou concourantes est (Z3 − Z2)(Z3 − Z1)(Z2 − Z1) = 0.

Par conséquent, q = P((Z3 − Z2)(Z3 − Z1)(Z2 − Z1) = 0) = P((Z1 = Z2) ou (Z1 = Z3) ou (Z2 = Z3)). On

en déduit que q = P(Z1 = Z2) + P(Z2 = Z3) + P(Z1 = Z3)− 2P(Z1 = Z2 = Z3) car en général, pour trois

évènements A, B, C, on a P(A∪B∪C) = P(A)+ P(B)+ P(C)− P(A∩B)− P(A∩C)− P(B∩C)+ P(A∩B∩C).

Comme Z1, Z2, Z3 suivent les mêmes lois, P(Z1 = Z2) = P(Z1 = Z3) = P(Z2 = Z3) ce qui nous donne la

formule compacte : p = 3P(Z1 = Z2) − 2P(Z1 = Z2 = Z3). Or (Z1 = Z2) =
+∞∪
n=1

(Z1 = n, Z2 = n) donc,

par indépendance de Z1 et Z2, il vient P(Z1 = Z2) =
+∞∑
n=1

P(Z1 = n)P(Z2 = n). Si Z1, Z2, Z3 suivent la

loi géométrique de paramètre p ∈]0; 1[, alors P(Z1 = Z2) =
+∞∑
n=1

p2(1 − p)2(n−1) = p2

1− (1− p)2
= p

2− p
.

(Z1 = Z2 = Z3) =
+∞∪
n=1

(Z1 = n, Z2 = n, Z3 = n) donc P(Z1 = Z2 = Z3) =
+∞∑
n=1

P(Z1 = n)3 ce qui donne

P(Z1 = Z2 = Z3) =
+∞∑
n=1

p3(1− p)3(n−1) = p3

1− (1− p)3
= p2

3− 3p+ p2
. Ainsi, q =

p(9− 13p+ 5p2)

(2− p)(3− 3p+ p2)
.� �

11.66� �a. On admet qu’il existe un espace probabilisé portant la suite de variables aléatoires mutuellement

indépendantes (Bk)k>1 telle que Bk vaut 1 si le k-ième tirage donne une boule blanche et 0 si c’est une boule

noire. D’après l’énoncé, ces variables aléatoires suivent toutes la même loi de Bernoulli de paramètre p.

Clairement, X(Ω) = Y(Ω) ⊂ N∗ (on verra qu’on a même égalité). Si (m,n) ∈ (N∗)2, (X = m, Y = n)

vaut
( m∩

i=1

(Bi = 0) ∩
n+m∩

j=m+1

(Bj = 1) ∩ (Bn+m+1 = 0)
)
∪
( m∩

i=1

(Bi = 1) ∩
n+m∩

j=m+1

(Bj = 0) ∩ (Bn+m+1 = 1)
)

(incompatibles) donc (X = m, Y = n) ∈ A car Bi sont des variables aléatoires et, par indépendance mutuelle

de la famille (Bi)i>1, on a P(X = m, Y = n) = (1−p)mpn(1−p)+pm(1−p)np = (1−p)m+1pn+pm+1(1−p)n.

b. Soit m ∈ N∗, comme on peut décomposer (X = m) =

+∞∪
n=1

(X = m, Y = n), par σ-additivité, on a la relation

P(X = m) =
+∞∑
n=1

((1 − p)m+1pn + pm+1(1 − p)n) = p(1 − p)m+1
+∞∑
n=1

pn−1 + (1 − p)pm+1
+∞∑
n=1

(1 − p)n−1 ce
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qui donne, comme 0 < p < 1, P(X = m) =
p(1− p)m+1

1− p
+

(1− p)pm+1

1− (1− p)
= p(1− p)m + (1− p)(1− p)m. On

pouvait aussi écrire que (X = m) = (B1 = 1, · · · , Bm = 1, Bm+1 = 0) ∪ (B1 = 0, · · · , Bm = 0, Bm+1 = 1) et

conclure comme à la question a., ce qui est nettement plus simple.

Par croissances comparées, mP(X = m) =
+∞

o

(
1

m2

)
donc X admet une espérance finie qu’on peut calculer en

se rappelant que ∀x ∈] − 1; 1[,
+∞∑
m=1

mxm−1 =
( +∞∑

m=0

xm
)′

=
(

1

1− x

)′
= 1

(1− x)2
. Par conséquent, il vient

E(X) =
+∞∑
m=0

mP(X = m) =
+∞∑
m=1

(mp(1−p)m+m(1−p)(1−p)m) = p(1−p)
( +∞∑

m=1

m(1−p)m−1+
+∞∑
m=1

mpm−1
)

donc E(X) = p(1− p)

(1− (1− p))2
+

p(1− p)

(1− p)2
= 1− p

p
+ p

1− p
=

(1− p)2 + p2

p(1− p)
.

On pouvait constater que la loi de X est en quelque sorte la ”somme” de deux lois géométriques. En effet,
si X1 vérifie P(X1 + 1 = m) = p(1− p)m−1, alors P(X1 = m) = p(1− p)m et X1 + 1 suit la loi géométrique

de paramètre p. On sait qu’alors E(X1 + 1) = 1

p
donc E(X1) = 1

p
− 1 = 1− p

p
. De même, si X2 vérifie

P(X2 + 1 = m) = (1− p)pm−1, alors P(X2 = m) = (1− p)pm et X2 + 1 suit la loi géométrique de paramètre

1−p. On sait qu’alors E(X2+ 1) = 1

1− p
donc E(X2) =

1

1− p
− 1 = p

1− p
. Par linéarité de la somme d’une

série, on retrouve E(X) = E(X1) + E(X2) =
1− p

p
+ p

1− p
.

De même, pour n ∈ N∗, comme on a aussi (Y = n) =
+∞∪
m=1

(X = m, Y = n), on a encore par σ-additivité

P(Y = n) =
+∞∑
m=1

((1−p)m+1pn+pm+1(1−p)n) =
pn(1− p)2

1− (1− p)
+

p2(1− p)n

1− p
= (1−p)2pn−1+p2(1−p)n−1.

Comme avant, E(Y) =
+∞∑
n=1

(n(1−p)2pn−1+np2(1−p)n−1) =
(1− p)2

(1− p)2
+ p2

(1− (1− p))2
= 2. WEIRD NO ?

c. P(X = 1, Y = 1)− P(X = 1)P(Y = 1) = p2(1−p)+(1−p)2p−2p(1−p)(p2+(1−p)2) = p(4p3−8p2+5p−1)

donc P(X = 1, Y = 1) − P(X = 1)P(Y = 1) = p(2p − 1)(2p2 − 3p + 1) = −p(1 − p)(2p − 1)2 donc si X et

Y sont indépendantes, comme p(1 − p) ̸= 0, on a forcément p = 1

2
. Réciproquement, si p = 1

2
, on a

∀n > 1, P(X = n) = P(Y = n) = 1

2n
et ∀(m,n) ∈ (N∗)2, P(X = m, Y = n) = 1

2m+n = P(X = m)P(Y = n)

donc X et Y sont indépendantes (et de même loi géométrique de paramètre 1

2
). La condition nécessaire et

suffisante cherchée pour que X et Y soient indépendantes est donc p = 1

2
.� �

11.67� �Clairement Z(Ω) ⊂ N (on a même égalité comme on va le voir). De plus, (Z = 0) =
∪

k∈N∗

(X = k, Y = k) et,

pour n ∈ N∗, on a (Z = n) =
( ∪

k∈N∗

(X = n+ k, Y = k)
)
∪
( ∪

k∈N∗

(X = k, Y = n+ k)
)
. Par conséquent, Z est

une variable aléatoire discrète car Z(Ω) est dénombrable et que ∀n ∈ N, (Z = n) ∈ A d’après les propriétés

des tribus (car X et Y sont elles-mêmes des variables aléatoires discrètes).

Par indépendance de X et Y, incompatibilité des évènements écrits ci-dessus, et comme X et Y suivent la loi

géométrique G(p), on a P(Z = 0) =
+∞∑
k=1

P(X = k)2 =
+∞∑
k=1

p2(1 − p)2(k−1) = p2

1− (1− p)2
= p

2− p
(série

géométrique). Pour n > 1, on a pour les mêmes raisons P(Z = n) = 2
+∞∑
k=1

P(X = n+ k)P(X = k) qui devient

P(Z = n) = 2
+∞∑
k=1

p2(1 − p)n+2k−2 =
2p2(1− p)n

1− (1− p)2
=

2p(1− p)n

2− p
. On vérifie la cohérence de ces résultats :
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+∞∑
n=0

P(Z = n) = p

2− p
+

2p(1− p)
2− p

+∞∑
n=1

(1− p)n−1 = p

2− p
+

2(1− p)
2− p

= 1.

Comme nP(Z = n) = 2p

2− p
(n(1 − p)n) et que la série

∑
n>1

nxn est de rayon 1, la série
∑
n>0

nP(Z = n)

converge donc Z admet une espérance finie par définition.

Puisque ∀x ∈]− 1; 1[,
+∞∑
n=0

xn = 1

1− x
, en dérivant, on a

+∞∑
n=1

nxn−1 = 1

(1− x)2
donc

+∞∑
n=1

nxn = x

(1− x)2
.

Ainsi, E(Z) =
+∞∑
n=0

nP(Z = n) = 2p

2− p

+∞∑
n=1

n(1− p)n = 2p

2− p

1− p

(1− (1− p))2
=

2(1− p)
p(2− p)

.� �
11.68� �a. On admet l’existence d’un espace probabilisé qui supporte la suite de variables aléatoires mutuellement

indépendantes (Jn)n>1 telle que Jn = 1 si la fille répond bien le jour n et Jn = 0 sinon. D’après l’énoncé,

toutes les Jn suivent la même loi de Bernoulli de paramètre p = 1/3. Soit B = “fille répond bien les R

premiers jours”. Alors B = (J1 = 1, · · · , JR = 1) donc P(B) = pR =
R∏

k=1

P(Jk = 1) = pR =
(
1

3

)R
.

b. On a calculé P(Z = 0) = P(B) = pR = pR. Si n ∈ [[1;R]], (Z = n) = (J1 = 1, · · · , Jn−1 = 1, Jn = 0) donc,

par indépendance mutuelle encore : P(Z = n) = pn−1(1− p) = 2

3n
.

On vérifie bien que
R∑

n=0

P(Z = n) = pR +
R∑

n=1

(pn−1 − pn) = pR + 1− pR = 1 par télescopage.

c. Notons A l’instant où le jeu s’arrête avec comme convention A = 0 s’il ne s’arrête jamais. Alors A est une

variable aléatoire car A(Ω) ⊂ N, que (A = R) = (J1 = 1, · · · , JR = 1) ∈ A et que pour tout entier n > R, on a

(A = n) = (A < n) ∩ (Jn−R+1 = 1, · · · , Jn = 1) ∈ A (par récurrence) et qu’enfin (A = 0) =

+∞∩
k=R

(A = k) ∈ A.

Soit n > R, pn+1 = P(A = n+ 1) =
R∑

i=0

P(A = n+ 1|Z = i)P(Z = i) par la formule des probabilités totales

car ((Z = i)06i6R est un système complet d’évènements. Comme P(A = n+ 1|Z = 0) = 0 par construction,

on a P(A = n + 1) =
R∑

i=1

2

3i
P(A = n + 1|Z = i). De plus, P(A = n + 1|Z = i) = pn+1−i car indépendance

mutuelle puisque quand la sœur se trompe au jour i, c’est comme si on recommençait tout à l’instant 0.

Ainsi, P(A = n+ 1) =
R∑

i=1

2

3i
pn+1−i et, avec le changement d’indice k = i− 1, pn+1 =

R−1∑
k=0

2

3k+1 pn−k.

d. On sait que p0 = p1 = 0 et que p2 = 1

9
. Avec la question précédente, ∀n > 1, pn+2 = 2

3
pn+1+

2

9
pn. Les

racines de X2− 2

3
X− 2

9
étant 1

3
± 1√

3
, il existe (A, B) ∈ R2 tel que ∀n ∈ N∗, pn = A

(
1

3
+ 1√

3

)n
+B

(
1

3
− 1√

3

)n
.

Je vous laisse terminer les calculs en trouvant A et B avec les valeurs de p1 et p2.� �
11.69� �a. On fait le choix de dire que si une personne est servie en p secondes, alors la suivante peut être servie à

partir de la seconde p. On suppose aussi que X1, X2, X3 sont mutuellement indépendantes. Ainsi, si k ∈ N,

(Y > k) = (X1 > k) ∩ (X2 > k). Or (X1 > k) =
+∞∪
i=k

(X1 = i) donc, par σ-additivité, on a la relation

P(X1 > k) =
+∞∑
i=k

P(X1 = i) =
+∞∑
i=k

(1− p)pi = (1− p)pk
+∞∑
j=0

pj = pk. Par conséquent, par indépendance de X1

et X2, il vient P(Y > k) = P(X1 > k)P(X2 > k) = p2k. On en déduit, puisque (Y > k) = (Y = k)∪(Y > k+1),
que P(Y = k) = P(Y > k)− P(Y > k+ 1) = p2k − p2(k+1) = (1− p2)(p2)k.

b. A3 quitte le bureau de poste au bout de X3 secondes à partir du moment où elle est servie. Ainsi,
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avec la convention choisi ci-dessus, on a Z = Y + X3. Si n ∈ N, (Z = n) =
n∪

k=0

(Y = k, X3 = n − k)

(évènements incompatibles) donc, par indépendance de Y et X3, P(Z = n) =
n∑

k=0

(1 − p2)(p2)k(1 − p)pn−k

donc P(Z = n) = (1− p2)(1− p)
n∑

k=0

pn+k = (1− p2)(1− p)pn
n∑

k=0

pk = (1− p2)pn(1− pn+1).

c. Par linéarité de l’espérance, E(Z) = E(Y)+ E(X3). Or X3+ 1 ∼ G(1−p) donc E(X3+ 1) = 1

1− p
d’après

le cours d’où E(X3) =
p

1− p
. De même, d’après la question a., Y + 1 ∼ G(1 − p2) donc E(Y + 1) = 1

1− p2

et E(Y) = p2

1− p2
. Par conséquent, E(Z) = p

1− p
+ p2

1− p2
=

p(1+ p) + p2

1− p2
=

p(1+ 2p)

1− p2
.� �

11.70� �a. On note Tk le numéro de la boule tirée au tirage k. On admet l’existence d’un espace probabilisé

qui supporte cette suite (Tk)k>1 de variables aléatoires mutuellement indépendantes (remarque du cours).

D’abord Xn(Ω) = (N∗ \ {1}) ∪ {+∞} car on rajoute la possibilité de ne jamais avoir une autre boule

que la première tirée, qu’on note Xn = +∞. De plus, (Xn = +∞) =
+∞∩
k=2

(Xn = k) par convention et

(Xn = k) =
n∪

i=1

(
(T1 = i) ∩ · · · ∩ (Tk−1 = i) ∩ (Tk ̸= i)

)
∈ A pour k > 2 donc Xn est une variable aléatoire

car les Ti le sont. Par incompatibilité de ces n évènements, indépendance mutuelle des Tk qui suivent toutes

la loi uniforme sur [[1;n]], on a P(Xn = k) =
n∑

i=1

(
1

n

)k−1(
n− 1

n

)
= n− 1

nk−1 pour k > 2.

On vérifie la cohérence de ces résultats car
+∞∑
k=2

n− 1

nk−1 = n− 1

n

+∞∑
j=0

(
1

n

)j
= n− 1

n
× 1

1− (1/n)
= 1. Ceci

justifie que l’évènement (Xn = +∞) (toujours la même boule) est négligeable comme attendu.

b. kP(Xn = k) =
k(n− 1)

nk−1 et
∑
k>2

k(n− 1)

nk−1 converge car le rayon de la série entière
∑
k>1

kxk−1 est égal à 1

et que
∣∣∣ 1
n

∣∣∣ < 1. De plus, comme ∀x ∈]− 1; 1[,
+∞∑
k=0

xk = 1

1− x
, on obtient en dérivant

+∞∑
k=1

kxk−1 = 1

(1− x)2

donc
+∞∑
k=2

kxk−1 = 1

(1− x)2
− 1. Ainsi, E(Xn) = (n − 1) ×

(
n2

(n− 1)2
− 1

)
= 2n− 1

n− 1
. Par conséquent,

lim
n→+∞

E(Xn) = 2 ce qu’on subodorait car plus n augmente, plus l’évènement (Xn = 2) devient presque sûr.

c. Comme X2 = Y2, pour k > 2, on a (Y2 = k) = (X2 = k) donc P(Y2 = k) = 1

2k−1 d’après a.. On reconnâıt

cette loi, Y2−1 suit la loi géométrique de paramètre 1

2
car P(Y2−1 = k) = P(Y2 = k+1) = 1

2k
= 1

2

(
1− 1

2

)k−1

.

d. Pour k > 3, en notant i le numéro de la première boule tirée, r le premier rang pour lequel on tire une

boule de numéro j ̸= i, comme 6− i− j est le numéro tiré autre que i et j (car i+ j+(6− i− j) = 1+2+3 = 6),

on a (Y3 = k) =
3∪

i=1

3∪
j=1
j̸=i

k−1∪
r=2

(( r−1∩
a=1

(Ta = i)
)
∩ (Tr = j) ∩

( k−1∩
b=r+1

(Tk = i) ∪ (Tk = j)
))

∩ (Tk = 6 − i − j).

Ainsi, par incompatibilité de tous ces évènements, indépendance mutuelle des tirages et symétrie entre les

numéros, P(Y3 = k) = 3× 2×
k−1∑
r=2

(
1

3

)r−1

×
(
1

3

)
×
(
2

3

)k−r−1

×
(
1

3

)
= 6

3k

k−1∑
r=2

2k−r−1 =
6(2k−2 − 1)

3k
.

À nouveau, comme Y3(Ω) = {3, 4, 5, · · · ,+∞}, on vérifie que
+∞∑
k=3

P(Y3 = k) =
+∞∑
k=3

6(2k−2 − 1)

3k
= 1. En effet,
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on a
+∞∑
k=3

6(2k−2 − 1)

3k
= (6/4)

(2/3)3

1− (2/3)
− 6

(1/3)3

1− (1/3)
= 4

3
− 1

3
= 1. Ceci justifie que l’évènement (Y3 = +∞)

(seulement deux numéros tirés éternellement) est négligeable comme attendu.� �
11.71� �a. Pour k ∈ [[1;n]], la variable aléatoire Xk suit la loi uniforme sur [[1; 6]] donc ∀i ∈ [[1; 6]], P(Xk = i) = 1

6
.

Par définition, la fonction de répartition F de Xk (qui ne dépend pas de k), vérifie F(t) = 0 si t < 1,

∀i ∈ [[1; 5]], ∀t ∈ [i; i+ 1[, F(t) = i

6
et F(t) = 1 si t > 6.

b. Soit t ∈ R, comme Mn = Max(X1, · · · , Xn), on a (Mn 6 t) =
n∩

k=1

(Xk 6 t) donc, par indépendance

mutuelle des X1, · · · , Xn, il vient Gn(t) = P(Mn 6 t) =
n∏

k=1

P(Xk 6 t) = F(t)n.

c. De même, si t ∈ R, comme mn = Min(X1, · · · , Xn), (mn > t) =
n∩

k=1

(Xk > t) donc, par indépendance

mutuelle des X1, · · · , Xn : 1−Hn(t) = P(mn > t) = 1− P(mn 6 t) = 1−Hn(t) =
n∏

k=1

P(Xk > t) = (1−F(t))n.

On en déduit que Hn(t) = 1− (1− F(t))n.

d. Grâce aux expressions de la question a., la suite de fonctions (Gn)n>1 converge simplement vers la

fonction G : R → R définie par G(t) = 0 si t < 6 et G(t) = 1 si t > 6. De même, la suite de fonctions

(Hn)n>1 converge simplement vers la fonction H : R → R définie par H(t) = 0 si t < 1 et H(t) = 1 si t > 1.

En traçant le graphe de Gn et G, on se rend compte que ∀n ∈ N∗, ||Gn−G||∞,R =
∣∣∣Gn

(
5

6

)
−G

(
5

6

)∣∣∣ = (5
6

)n
.

Or 5

6
< 1 donc lim

n→+∞
||Gn − G||∞,R = 0 et la convergence de la suite (Gn)n>1 vers G est uniforme sur R.

De même, ∀n ∈ N∗, ||Hn − H||∞,R =
∣∣∣Hn

(
1

6

)
− H

(
1

6

)∣∣∣ = (
5

6

)n
d’où lim

n→+∞
||Hn − H||∞,R = 0 et la

convergence de la suite (Hn)n>1 vers H est uniforme sur R.� �
11.72� �a. Pour n ∈ N, comme (SN = n) =

∪
k∈N

(N = k, X1 + · · ·+Xk = n) (réunion d’évènements incompatibles),

on a par σ-additivité P(S = n) =
+∞∑
k=0

P(N = k, X1 + · · · + Xk = n) =
+∞∑
k=0

P(N = k)P(X1 + · · · + Xk = n)

par indépendance de N et X1 + · · · + Xk pour tout k ∈ N. Mais X1 + · · · + Xk suit d’après le cours la loi

binomiale B(k, p) car X1, · · · , Xk sont mutuellement indépendantes et suivent toutes la loi de Bernoulli

de paramètre p. Ainsi, P(X1 + · · · + Xk = n) = 0 si k < n et P(X1 + · · · + Xk = n) =

(
k

n

)
pn(1 − p)k−n

si k > n. De plus, comme N suit la loi de Poisson P(λ), on a par définition P(N = k) = e−λλk

k!
. Ainsi,

P(SN = n) =
+∞∑
k=n

e−λλk

k!

(
k

n

)
pn(1 − p)k−n =

e−λpn

n!

+∞∑
k=n

λk

(k− n)!
(1 − p)k−n car

(
k

n

)
=

k!

n!(k− n)!
. En

écrivant, P(SN = n) = e−λpnλn

n!

+∞∑
k=n

λk−n(1− p)k−n

(k− n)!
, on reconnâıt la série exponentielle et on parvient à

P(SN = n) = e−λpnλn

n!
eλ(1−p) =

e−λp(λp)n

n!
. Au final, SN suit la loi de Poisson P(λp).

b. Pour n ∈ N, comme (SN = n) =
∪
k∈N

(N = k, X1 + · · ·+ Xk = n) (réunion d’évènements incompatibles),

on a par σ-additivité P(SN = n) =
+∞∑
k=0

P(N = k, X1 + · · ·+ Xk = n) =
+∞∑
k=0

P(N = k)P(X1 + · · ·+ Xk = n)

par indépendance de N et X1 + · · ·+ Xk pour tout k ∈ N.
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Pour t ∈] − 1; 1[ (au moins), GSN
(t) =

+∞∑
n=0

P(SN = n)tn =
+∞∑
n=0

( +∞∑
k=0

P(N = k)P(X1 + · · · + Xk = n)tn
)
.

On intervertit d’après l’énoncé : GSN
(t) =

+∞∑
k=0

( +∞∑
n=0

P(N = k)P(X1 + · · ·+Xk = n)tn
)
qui se transforme en

GSN
(t) =

+∞∑
k=0

( +∞∑
n=0

P(X1 + · · ·+ Xk = n)tn
)
P(N = k) donc GSN

(t) =
+∞∑
k=0

GX1+···+Xk
(t)P(N = k). Or, par

indépendance mutuelle des (Xi)i>1, on a GX1+···+Xk
=

k∏
i=1

GXi
= Gk

X1
car toutes les Xk suivent la même loi,

d’où la formule GSN
(t) =

+∞∑
k=0

P(N = k)
(
GX1

(t)
)k

= GN

(
GX(t)

)
qui justifie que GSN

= GN ◦ GX1
.

c. Puisque X1 et N admettent des espérances finies, les fonctions GX et GN sont dérivables en 1 d’après le

cours et, par composition, GSN
l’est aussi avec G′

SN
(1) = G′

X(1)G
′
N

(
GX(1)

)
= G′

X(1)G
′
N(1) car GX(1) = 1.

Ainsi, toujours d’après le cours, on obtient E(SN) = E(N)E(X) (formule de Wald).

d. Puisque X1 et N admettent des variances finies, les fonctions GX et GN sont deux fois dérivables en 1

d’après le cours et, par composition, GSN
l’est aussi avec G′′

SN
(1) = G′′

X(1)G
′
N

(
GX(1)

)
+ G′

X(1)
2G′′

N

(
GX(1)

)
donc G′′

SN
(1) = G′′

X(1)G
′
N(1) + G′

X(1)
2G′′

N(1) toujours parce que GX(1) = 1. Or on sait d’après le cours que

V(SN) = G′′
SN

(1)+G′
SN

(1)−G′
SN

(1)2 donc, avec la question précédente, comme G′
SN

(1) = E(SN) = E(N)E(X)

et G′′
SN

(1) = (V(X)− E(X) + E(X)2))E(N) + E(X)2(V(N)− E(N) + E(N)2)), cela donne

V(SN) = (V(X)− E(X) + E(X)2))E(N) + E(X)2(V(N)− E(N) + E(N)2)) + E(N)E(X)− E(N)2 E(X)2

qui, après simplification, revient à V(SN) = V(X)E(N) + E(X)2 V(N).� �
11.73� �a. La matrice BAT est dans Mn(R) et toutes ses colonnes sont proportionnelles à la matrice colonne B

donc rang (BAT ) 6 1. On distingue alors deux cas :

• Si A = 0 ou B = 0, alors BAT = 0 donc rang (BAT ) = 0.

• Si A ̸= 0 et B ̸= 0, alors en notant A = (ak)16k6n et B = (bk)16k6n, ∃(i, j) ∈ [[1;n]]2, ai ̸= 0 et

bj ̸= 0. Or BAT = (ajbi)16i,j6n donc BAT n’est pas nulle donc pas de rang 0. Ainsi, rang (BAT ) = 1.

b. Traduisons la condition d’appartenance à E. Soit C ∈ Mn,1(R) et posons M = BCT , alors M2 = BCTBCT .

Or CTB ∈ M1(R) qui contient le réel
n∑

k=1

ckbk = Tr (BCT ) = Tr (M) (en notant C = (ck)16k6n). Ainsi,

M2 = Tr (M)M, le polynôme P = X2− Tr (M)X est donc annulateur de M. Distinguons à nouveau deux cas :

• Si Tr (M) = 0, alors X2 annule M donc Sp(M) = {0} (car M est nilpotente donc non inversible et

0 est valeur propre de M et la seule racine de X2 est 0) et M est diagonalisable si et seulement si

E0(M) = Rn, c’est-à-dire si et seulement si M = 0.

• Si Tr (M) ̸= 0, alors P = X(X− Tr (M)) annule M et ce polynôme est scindé à racines simples dans

R[X] donc la matrice M est diagonalisable dans Mn(R).

On en déduit l’équivalence : M est diagonalisable ⇐⇒ (M = 0 ou Tr (M) ̸= 0). Ce qui peut aussi s’écrire :

(M = 0 ou M non diagonalisable) ⇐⇒ Tr (M) = 0. Ainsi, E = {C ∈ Mn,1(R) | Tr (BCT ) = 0}.

E ⊂ Mn,1(R) et 0 ∈ E. Soit (C1, C2) ∈ E2 et λ ∈ R, Tr (B(λC1 +C2)
T ) = λTr (BCT

1 )+ Tr (BCT
2 ) = λ.0+ 0 = 0

donc λC1 + C2 ∈ E. Ainsi, E est un sous-espace vectoriel de Mn,1(R) donc lui-même un espace vectoriel.

Traitons deux cas :
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• si B = 0, E = Mn,1(R) donc dim(E) = n.

• si B ̸= 0, φ : Mn,1(R) → R définie par φ(C) = Tr (BCT ) est une forme linéaire non nulle car

φ(B) = Tr (BBT ) = ||B||2 > 0 et E = Ker(φ) donc E est un hyperplan de Mn,1(R) donc dim(E) = n−1.

c. D’après ce qui précède, BXT diagonalisable si et seulement si BXT = 0 ou Tr (BXT ) ̸= 0. Or comme B ̸= 0

et X ̸= 0, on ne peut pas avoir BXT = 0. Ainsi, BXT diagonalisable si et seulement si Tr (BXT ) =
n∑

k=1

Xk ̸= 0.

Traitons deux cas :

• si n est impair, comme tous les Xk sont à valeurs ±1, donc impaires, Tr (BXT ) impair donc on ne

peut pas avoir Tr (BXT ) = 0 et U = Ω donc P(U) = 1.

• si n = 2p est pair, les variables aléatoires Bk = Xk + 1

2
suivent des lois de Bernoulli de paramètre

1

2
et sont mutuellement indépendantes donc Sn =

n∑
k=1

Bk = n

2
+ 1

2
Tr (BXT ) suit la loi binomiale de

paramètres n, 1

2
donc P(Tr (BXT ) = 0) = P(Sn = p) = P(U) =

(
2p

p

)(
1

2

)p(1
2

)2p−p

=

(
2p

p

)(
1

2

)2p
.

On en déduit donc que P(U) = 1− P(U) = 1−
(
2p

p

)(
1

2

)2p
.� �

11.74� �a. Pour (i, j) ∈ [[1;n]]2 tel que i ̸= j, on note l’évènement Ri,j =“les points Ai et Aj sont reliés”. Alors,

par définition (X1 = 1) =

n∩
j=2

R1,j et, par hypothèse, les évènements Ri,j sont indépendants mutuellement

donc P(X1 = 1) =
n∏

j=2

P(Ri,j) = (1− pn)
n−1. Comme X1 ne peut prendre que les valeurs 0 et 1, on a aussi

P(X1 = 0) = 1− P(X1 = 1) = 1− (1− pn)
n−1 donc X1 suit la loi de Bernoulli de paramètre (1− pn)

n−1.

Par symétrie entre les différents points, toutes les variables aléatoires Xi suivent la même loi que X1. Ainsi,

par linéarité de l’espérance, E(Sn) =
n∑

i=1

E(Xi) = n(1− pn)
n−1.

Sn représente le nombre de points isolés dans le graphe.

b. Méthode 1 : Comme Sn est une variable aléatoire réelle positive, d’après l’inégalité de Markov avec

ε = 1, P(Sn > 1) 6 E(Sn)
1

= n(1− pn)
n−1 et (Sn > 1) est l’évènement “il y a au moins un point isolé”.

Méthode 2 : (Sn > 1) = (Sn = 0) =

n∩
k=1

(Xk = 0) =

n∪
k=1

(Xk = 0) =

n∪
k=1

(Xk = 1) donc, par sous-additivité,

on a à nouveau la majoration P(Sn > 1) 6
n∑

k=1

P(Xk = 1) = n(1− pn)
n−1.

c. Méthode 1 : l’inégalité de Bienaymé-Tchebychev appliquée à la variable aléatoire Y qui admet bien

un moment d’ordre 2 donne, avec ε = |E(Y)| > 0, la majoration P(|Y − E(Y)| > |E(Y)|) 6 V(Y)
E(Y)2

. Or

(Y = 0) ⊂ (|Y − E(Y)| > |E(Y)|) donc, par croissance de P, P(Y = 0) 6 P(|Y − E(Y)| > |E(Y)|) 6 V(Y)
E(Y)2

.

Méthode 2 : en notant Y(Ω) = {yi | i ∈ N} (a fortiori c’est plus simple si Y(Ω) est fini), on a par la formule

du transfert V(Y) = E((Y− E(Y))2) =
+∞∑
i=0

P(Y = yk)(yk− E(Y))2. Tous ces termes sont positifs, ainsi V(Y)

est supérieur au terme correspond au cas où yi = 0 (si 0 /∈ Y(Ω) alors P(Y = 0) = 0 et c’est clair), c’est-à-dire

V(Y) > P(Y = 0)(0− E(Y))2 = P(Y = 0)E(Y)2 donc P(Y = 0) 6 V(Y)
E(Y)2

car E(Y) ̸= 0 par hypothèse.

50



d. E(Sn) = n(1 − pn)
n−1 = exp

(
ln(n) + (n − 1) ln

(
1 − c

ln(n)
n

))
or, comme lim

n→+∞
ln(n)
n

= 0, on a

(n−1) ln
(
1−c

ln(n)
n

)
∼
+∞

−cn
ln(n)
n

= −c ln(n) donc ln(n)+(n−1) ln
(
1−c

ln(n)
n

)
=
+∞

(1−c) ln(n)+o(ln(n))

ce qui prouve que lim
n→+∞

(
ln(n) + (n− 1) ln

(
1− c

ln(n)
n

))
= −∞ car c > 1. Ainsi lim

n→+∞
E(Sn) = 0 donc,

avec b. et par encadrement, il vient lim
n→+∞

P(Sn > 1) = 0 donc, comme P(Sn = 0) = 1 − P(Sn > 1), on

trouve lim
n→+∞

P(Sn = 0) = 1. On n’a presque sûrement aucun sommet isolé quand n tend vers +∞ si c > 1.

e. Soit (i, j) ∈ [[1;n]]2 tel que i ̸= j, XiXj suit une loi de Bernoulli car XiXj ne peut prendre que les valeurs

0 et 1. Comme (XiXj = 1) = Ri,j ∩
n∩

k=1
k/∈{i,j}

Ri,k ∩
n∩

k=1
k/∈{i,j}

Rj,k, par indépendance mutuelle à nouveau, on a

P(XiXj = 1) = (1− pn)
2n−3. Or S2n =

n∑
k=1

X2
k + 2

∑
16i<j6n

XiXj avec X2
k = Xk et les XiXj qui suivent la même

loi dès que i ̸= j, donc E(S2n) = n(1− pn)
n−1 + 2

(
n

2

)
(1− pn)

2n−3. Avec la formule de König-Huyghens,

V(Sn) = E(S2n)− E(Sn)2 = n(1− pn)
n−1 +n(n− 1)(1− pn)

2n−3 −n2(1−pn)
2n−2 donc, en factorisant par

rapport aux puissances de 1− pn, V(Z) = n(1− pn)
n−1(1− (1− pn)

n−2) + n2pn(1− pn)
2n−3.

Comme (1− pn)
n−1 ∼

+∞
n−c et lim

n→+∞
(1− pn) = 1, (1− pn)

2n−3 =
(1− pn)

2n−2

1− pn
∼
+∞

n−2c donc on obtient

n2pn(1− pn)
2n−3 ∼

+∞
cn1−2c ln(n). De plus, comme on a lim

n→+∞
(1− (1− pn)

n−2) = 1, il vient l’équivalent

n(1−pn)
n−1(1−(1−pn)

n−2) ∼
+∞

n1−c d’où n2pn(1−pn)
2n−3 =

+∞
o(n1−c) ce qui prouve que V(Sn) ∼

+∞
n1−c.

Par conséquent,
V(Sn)
E(Sn)2

∼
+∞

1

n1−c donc lim
n→+∞

V(Sn)
E(Sn)2

= 0 si c < 1. D’après c. et par encadrement, on a

donc lim
n→+∞

P(Sn = 0) = 0. Il y a presque sûrement au moins un point isolé si c < 1 quand n tend vers +∞

(en fait il y en a beaucoup puisque lim
n→+∞

E(Sn) = +∞).

f. E(Sn) = n(1 − pn)
n−1 = n exp

(
(n − 1) ln

(
1 − c

ln(n)
n

))
or, comme lim

n→+∞
ln(n)
n

= 0, on a le

développement suivant : (n− 1) ln
(
1− c

ln(n)
n

)
=
+∞

n

(
1− 1

n

)(
− c

ln(n)
n

+O

(
ln(n)2

n2

))
=
+∞

−c ln(n)+ o(1).

Ainsi, exp

(
(n − 1) ln

(
1 − c

ln(n)
n

))
=
+∞

e−c ln(n)+o(1) =
+∞

n−ceo(1) ∼
+∞

n−c donc E(Sn) ∼
+∞

n1−c. Ainsi, il

vient lim
n→+∞

E(Sn) = +∞ si c < 1, lim
n→+∞

E(Sn) = 0 si c > 1 et lim
n→+∞

E(Sn) = 1 si c = 1.� �
11.75� �a. Comme X(Ω) = Y(Ω) = N∗, on a S(Ω) ⊂ N∗ \ {1}. Soit k > 2, comme (S = k) =

k−1∪
i=1

(X = i, Y = k− i)

(réunion incompatible) et que X et Y sont indépendantes par hypothèse, on en déduit la relation suivante :

P(S = k) =
k−1∑
i=1

P(X = i)P(Y = k− i) =
k−1∑
i=1

p(1−p)i−1p(1−p)k−i−1. Ainsi, P(S = k) = (k− 1)p2(1−p)k−2

(on dit que S suit une loi binomiale négative ou loi de Polya).

b. Si k = 1, (S = 1) = ∅ donc la loi de X sachant (S = 1) n’est pas définie.

Pour k > 2 et i ∈ N∗, comme S = X + Y et que Y > 1, P(X = i | S = k) = 0 si i > k − 1. Par contre,

si i ∈ [[1; k − 1]], P(X = i | S = k) =
P(X = i, S = k)

P(S = k)
or (X = i, S = k) = (X = i, Y = k − i) donc

P(X = i, S = k) = P(X = i)P(Y = k − i) = p(1 − p)i−1p(1 − p)k−i−1 = p2(1 − p)k−2 comme avant. Par
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conséquent, P(X = i | S = k) = P(S=k)(X = i) =
p2(1− p)k−2

(k− 1)p2(1− p)k−2 = 1

k− 1
donc la loi de X sachant

(S = k) est la loi uniforme sur [[1; k− 1]].

c. C’est quasiment du cours : Z suit la loi géométrique de paramètre p. On le montre par récurrence en

posant P(n) = “P(Z > n) = (1 − p)n”. Comme Z(Ω) = N∗, P(0) est vrai. Si n ∈ N et P(n) est vrai,

alors P(Z > n + 1) = P(Z > n + 1|Z > n)P(Z > n) = (1 − p)(1 − p)n par hypothèse de récurrence donc

P(Z > n + 1) = (1 − p)n+1 et P(n + 1) est vrai. Par principe de récurrence, ∀n ∈ N, P(Z > n) = (1 − p)n

donc, pour tout entier n ∈ N∗, P(Z = n) = P(Z > n− 1)− P(Z > n) = (1− p)n−1 − (1− p)n = p(1− p)n−1

ce qui prouve que Z suit la loi géométrique de paramètre p.

d. Comme (X+Y = Z) =
+∞∪
k=1

(X+Y = k, Z = k) (réunion incompatible) et que X+Y et Z sont indépendantes

par le lemme des coalitions, P(X+Y = Z) =
+∞∑
k=1

P(X+Y = k)P(Z = k) =
+∞∑
k=1

(k−1)p2(1−p)k−2p(1−p)k−1.

Ainsi, P(X+ Y = Z) = p3
+∞∑
k=2

(k− 1)(1−p)2k−3 = p3(1−p)
+∞∑
m=1

m(1−p)2(m−1) si m = k− 1. Or on sait que

∀x ∈]− 1; 1[,
+∞∑
m=0

xm = 1

1− x
donc, en dérivant cette série entière sur son intervalle ouvert de convergence,

∀x ∈]− 1; 1[,
+∞∑
m=1

mxm−1 = 1

(1− x)2
. Par conséquent, P(X+ Y = Z) = p3(1−p) 1

(1− (1− p)2)2
=

p(1− p)

(2− p)2
.� �

11.76� �a. Notons, pour tout client numéro i ∈ [[1;n]] et toute vague d’appels j ∈ N∗, l’évènement Ri,j = “le client

numéro i répond au cours de la vague j” (avec pour convention que Ri,j = ∅ si le client i a déjà répondu au

cours des précédentes vagues d’appels donc n’est pas appelé lors de la vague j).

Alors, par exemple, (X1 = n, X2 = n) = ∅ donc P(X1 = n, X2 = n) = 0 alors que (X1 = n) =
n∩

i=1

Ri,1

(tous les clients répondent lors de la vague 1) donc, par indépendance entre les comportements des clients,

P(X1 = n) =
n∏

i=1

P(Ri,1) = pn et (X2 = n) =
n∩

i=1

(Ri,1 ∩ Ri,2) donc, toujours par indépendance entre les

clients, comme P(Ri,1 ∩ Ri,2) = P(Ri,1) × P(Ri,2|Ri,1) = (1 − p)p, on a P(X2 = n) = pn(1 − p)n ̸= 0. Par

conséquent, P(X1 = n, X2 = n) ̸= P(X1 = n)P(X2 = n).

Bien sûr, les variables aléatoires X1 et X2 ne sont pas indépendantes.

b. • Fixons le numéro i ∈ [[1;n]] d’un client, alors Yi est le rang du premier succès dans une suite d’expériences

indépendantes suivant une loi de Bernoulli de paramètre p (le client i répond à la vague i) donc, d’après

le cours, Yi suit la loi géométrique de paramètre p.

• X1 suit d’après le cours la loi binomiale B(n, p) par indépendance des réponses des n personnes car Xi

compte le nombre de succès dans une répétition (les n appels) d’expériences indépendantes (le client i répond

au premier appel) suivant le loi de Bernoulli de paramètre p.

• La famille ((X1 = j))06j6n constitue un système complet d’évènements donc, par la formule des probabilités

totales, P(X2 = k) =
n∑

j=0

P(X1 = j, X2 = k) pour tout pour k ∈ [[0;n]] car X2(Ω) = [[0;n]]. Comme on appelle

n− X1 clients lors de la deuxième vague d’appels, P(X1 = j, X2 = k) = 0 si n− j < k et, comme la loi de X2

sachant (X1 = j) est la loi binomiale B(n− j, p) pour les mêmes raisons que précédemment si n− j > k, on a
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P(X2 = k|X1 = j) =

(
n− j

k

)
pk(1− p)n−j−k. Comme

(
n− j

k

)(
n

j

)
=

(
n

k

)(
n− k

j

)
pour j ∈ [[0;n− k]], on a

P(X2 = k) =
n−k∑
j=0

(
n− j

k

)
pk(1− p)n−j−k

(
n

j

)
pj(1− p)n−j =

(
n

k

)
(1− p)kpk

n−k∑
j=0

(
n− k

j

)
((1− p)2)n−j−kpj

donc P(X2 = k) =

(
n

k

)
pk(1−p)k((1−p)2+p)n−k =

(
n

k

)
(p(1−p))k(1−p(1−p))n−k : X2 ∼ B(n, p(1−p)).

c. Par construction, pour k > 3, on a Xk(Ω) = [[0;n]] et, si j ∈ [[0;n]], pour que l’on ait Xk = j, il

est nécessaire et suffisant qu’exactement j clients vérifient Yi = k. On a donc Xk =
n∑

i=1

11(Yi=k) et les

variables aléatoires (11(Yi=k))16i6n sont indépendantes par hypothèse (les clients sont indépendants) et,

comme P(11(Yi=k) = 1) = P(Yi = k) = p(1 − p)k−1, les variables aléatoires 11(Y1=k), · · · , 11(Yn=k) suivent

toutes la loi de Bernoulli B(p(1− p)k−1). D’après le cours, Xk suit la loi binomiale B(n, p(1− p)k−1).

d. Par définition, pour k ∈ N∗, on a Sk(Ω) = [[0;n]] et, si j ∈ [[0;n]], pour que l’on ait Sk = j, il est

nécessaire et suffisant qu’exactement j clients vérifient Yi 6 k (eus au téléphone avant l’appel k). Ainsi,

comme avant, Sk =
n∑

i=1

11(Yi6k) et les variables aléatoires (11(Yi6k))16i6n suivent la loi de Bernoulli de

paramètre 1− (1− p)k d’après la question b. puisque Yi suit la loi géométrique de paramètre p et qu’on a

donc P(11(Yi6k) = 1) = P(Yi 6 k) = 1− P(Yi > k) = 1− (1− p)k et elles sont indépendantes.

D’après le cours, Sk suit la loi binomiale B(n, 1− (1− p)k).

e. Méthode 1 : par définition de la variable aléatoire N, on a N = Max(Y1, · · · , Yn) de sorte que, pour k ∈ N∗,

on a (N 6 k) =

n∩
i=1

(Yi 6 k) donc, par indépendance entre les personnes appelées, on parvient à la relation

P(N 6 k) =
n∏

i=1

P(Yi 6 k) = (1− (1− p)k)n. Comme, pour k ∈ N∗, on a (N 6 k) = (N = k) ⊔ (N 6 k− 1)

(incompatibles), on a P(N = k) = P(N 6 k)− P(N 6 k− 1) = (1− (1− p)k)n − (1− (1− p)k−1)n.

Méthode 2 : on a aussi (N 6 k) = (Sk = n) donc P(N 6 k) = (1 − (1 − p)k)n avec la question d. mais

comme (N = k) = (Sk = n) \ (Sk−1 = n) (on a contacté tous les clients à la vague k mais pas avant) avec

(Sk−1 = n) ⊂ (Sk = n) donc P(N = n) = P(Sk = n)− P(Sk−1 = n) = (1− (1− p)k)n − (1− (1− p)k−1)n.

• Comme N est à valeurs dans N (car N(Ω) = N∗), d’après le cours, N admet une espérance finie si et

seulement
∑
k>0

P(N > k) converge. Or P(N > k) = 1 − P(N 6 k) = 1 − (1 − (1 − p)k)n qui devient

P(N > k) = 1−
n∑

j=0

(−1)j
(
n

j

)
((1− p)k)j =

n∑
j=1

(−1)j+1

(
n

j

)
(1− p)kj. Comme toutes les séries géométriques∑

k>0

(1− p)kj convergent pour j ∈ [[1;n]] car leurs raisons (1− p)j sont dans ]− 1; 1[, par somme d’un nombre

fini de séries convergentes, on a la convergence de
∑
k>0

P(N > k) donc N est d’espérance finie et on a enfin la

relation E(N) =
n∑

j=1

(
(−1)j+1

(
n

j

)
+∞∑
k=0

(1− p)kj
)
=

n∑
j=1

(
n

j

)
(−1)j+1

1− (1− p)j
.� �

11.77� �a. Comme les variables aléatoires X1, · · · , Xn sont mutuellement indépendantes et suivent toutes la loi de

Bernoulli de paramètre p ∈]0; 1[, d’après le cours, Sn =
n∑

k=1

Xk suit la loi binomiale de paramètre n et p.

b. Soit x ∈]− 1; 1[, on sait que
+∞∑
n=0

xn = 1

1− x
. Dérivons k fois cette série entière sur son intervalle ouvert
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de convergence, on obtient
+∞∑
n=k

n(n− 1) · · · (n− k+ 1)xn−k = k!
(1− x)k+1 (dérivée facile par récurrence). En

divisant par k!, on arrive à ∀x ∈]−1; 1[,
+∞∑
n=k

n!
k!(n− k)!

xn−k = 1

(1− x)k+1 donc
+∞∑
n=k

(
n

k

)
xn−k =

1

(1− x)k+1
.

c. Pour k ∈ N, (Y = k) =

+∞∪
n=1

(N = n, Sn = k) (réunion incompatible) ainsi, par indépendance mutuelle et

σ-additivité, il vient P(Y = k) =
+∞∑
n=1

P(N = n)P(Sn = k). On distingue deux cas :

• Si k = 0, on obtient donc P(Y = 0) =
+∞∑
n=1

P(N = n)P(Sn = 0) =
+∞∑
n=1

p(1 − p)n−1(1 − p)n donc

P(Y = 0) = p(1− p)
+∞∑
n=1

(1− p)2(n−1) =
p(1− p)

1− (1− p)2
= 1− p

2− p
.

• Si k > 1, comme P(Sn = k) = 0 si n < k, on a P(Y = k) =
+∞∑
n=k

P(N = n)P(Sn = k). Avec a., il

vient P(Y = k) =
+∞∑
n=k

p(1 − p)n−1

(
n

k

)
pk(1 − p)n−k = (1 − p)k−1pk+1

+∞∑
n=k

(
n

k

)
(1 − p)2n−2k donc,

d’après la question b., P(Y = k) = (1− p)k−1pk+1 × 1

(1− (1− p)2)k+1 =
(1− p)k−1

(2− p)k+1 .

Pour m > 1, comme (Y > m) =
+∞∪
k=m

(Y = k) (réunion incompatible), P(Y > m) = 1

(2− p)2
+∞∑
k=m

(
1− p

2− p

)k−1

donc P(Y > m) = 1

(2− p)2

(
1− p

2− p

)m−1

× 1

1− 1−p

2−p

= 1

2− p

(
1− p

2− p

)m−1

. Alors, la série
∑

m>1

P(Y > m)

converge donc Y admet une espérance finie et E(Y) =
+∞∑
m=1

P(Y > m) = 1

2− p

+∞∑
m=1

(
1− p

2− p

)m−1

= 1 !!� �
11.78� �Énoncé mal posé : tout se passe comme si on avait une infinité de lapins et qu’on prenait les lapins un par

un sans se soucier des lapins déjà pris, la probabilité d’être un mâle reste égale à 1

2
.

a. Par construction, M(Ω) ⊂ [[0; 2n]]. Par indépendance mutuelle entre les lapins et comme le fait de tomber

sur un mâle suit une loi de Bernoulli de paramètre 1

2
par hypothèse, M suit la loi binomiale de paramètre

n et 1

2
de sorte que ∀k ∈ [[0; 2n]], P(M = k) =

(
2n

k

)
1

22n
(N n’intervient pas).

b. Clairement, C = Min(M, 2n − M) car il y a M mâles et 2n − M femelles parmi les lapins. Ainsi,

C(Ω) = [[0;n]] et on distingue deux cas selon la valeur de k ∈ [[0;n]] :

• si k = n, alors (C = n) = (M = n) donc P(C = n) =

(
2n

n

)
1

22n
.

• si k < n, (C = k) = (M = k)∪(M = 2n−k) (incompatible) : P(C = k) = 2P(M = k) =

(
2n

k

)
1

22n−1
.

c. Comme C est bornée, C admet une espérance finie et, par définition, E(C) =
n∑

k=0

kP(C = k) donc, avec

la question précédente, on a E(C) = n

(
2n

n

)
1

22n
+

n−1∑
k=1

k

(
2n

k

)
1

22n−1
. Or k

(
2n

k

)
= (2n)

(
2n− 1

k− 1

)
donc il

vient E(C) = n

(
2n

n

)
1

22n
+

2n

22n−1

n−2∑
j=0

(
2n− 1

j

)
en ayant posé j = k − 1. Si on pose Sn =

n−2∑
j=0

(
2n− 1

j

)
,

alors 22n−1 =
2n−1∑
j=0

(
2n− 1

j

)
=

n−2∑
j=0

(
2n− 1

j

)
+

(
2n− 1

n− 1

)
+

(
2n− 1

n

)
+

2n−1∑
j=n+1

(
2n− 1

j

)
. Or on sait que
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(
2n− 1

j

)
=

(
2n− 1

2n− 1− j

)
donc 22n−1 = 2Sn + 2

(
2n− 1

n

)
et Sn = 22n−2 −

(
2n− 1

n

)
. Par conséquent,

E(C) = n

(
2n

n

)
1

22n
+

2n

22n−1

(
22n−2 −

(
2n− 1

n

))
= n− n

22n

(
2n

n

)
(après calculs car

(
2n

n

)
= 2

(
2n− 1

n

)
).

Bien sûr que E(C) < n car C(Ω) ⊂ [[0;n]]. Avec Stirling, on a

(
2n

n

)
=

(2n)!

(n!)2
∼
+∞

√
4πn(2n)2ne2n

(2πn)n2ne2n
∼
+∞

22n√
πn

donc n− E(C) = n

22n

(
2n

n

)
∼
+∞

√
n√
π
. Cela peut s’écrire aussi E(C) =

+∞
n−

√
n

π
+ o(

√
n).� �

11.79� �a. Par construction, Y = Min(X1, X2) donc, pour k ∈ N, (Y > k) = (X1 > k) ∩ (X2 > k). Or on a

(X1 > k) =
+∞∪

i=k+1

(X1 = i) (réunion incompatible) donc P(X1 > k) =
+∞∑

i=k+1

(1−p)pi = (1−p)× pk+1

1− p
= pk+1

par σ-additivité. Comme X2 suit la même loi que X1, on a aussi P(X2 > k) = pk+1. On suppose X1 et X2

indépendantes donc P(Y > k) = P(X1 > k)P(X2 > k) = p2(k+1) (marche encore si k = −1). Ainsi, comme

(Y 6 k) = (Y > k), on a P(Y 6 k) = 1− P(Y > k) = 1−pk+1. De plus, comme (Y > k−1) = (Y = k)⊔(Y > k),

on en déduit finalement la loi de Y, ∀k ∈ N, P(Y = k) = P(Y > k−1)− P(Y > k) = p2k−p2(k+1) = (1−p2)p2k.

b. Par construction encore, Z = Y + X3 (il faut le temps que A3 accède au guichet et le temps qu’elle soit

servie). On suppose à nouveau Y et X3 indépendantes (ou plutôt X1, X2, X3 mutuellement indépendantes

et le lemme des coalitions). Si n ∈ N, (Z = n) =

n∪
k=0

(Y = k, X3 = n − k) (évènements incompatibles)

donc, par indépendance de Y et X3, il vient P(Z = n) =
n∑

k=0

(1 − p2)(p2)k(1 − p)pn−k donc, au final,

P(Z = n) = (1− p2)(1− p)
n∑

k=0

pn+k = (1− p2)(1− p)pn 1− pn+1

1− p
= (1− p2)pn(1− pn+1).

c. Par linéarité de l’espérance, E(Z) = E(Y) + E(X3). Or X3 + 1 ∼ G(1− p) par définition donc, d’après le

cours, E(X3 + 1) = 1

1− p
d’où E(X3) =

p

1− p
. De même, d’après la question a., Y + 1 ∼ G(1 − p2) donc

E(Y+ 1) = 1

1− p2
et E(Y) = p2

1− p2
. Par conséquent, E(Z) = p

1− p
+ p2

1− p2
=

p(1+ p) + p2

1− p2
=

p(1+ 2p)

1− p2
.

On pouvait aussi utiliser la loi de Z vue en b. et la définition E(Z) =
+∞∑
n=0

nP(Z = n) mais cela fait intervenir

des calculs de somme de série entière plus délicats.� �
11.80� �a. Pour k ∈ N, on a (X > k) =

+∞∪
i=k+1

(X = i) (réunion d’évènements incompatibles) donc, par σ-additivité,

P(X > k) =
+∞∑

i=k+1

p(1−p)i−1 =
p(1− p)k

1− (1− p)
= (1−p)k. Par construction, ∀k > 0, (M > k) = (X > k)∩(Y > k).

Par indépendance de X et Y, on en déduit que P(M > k) = P(X > k)P(Y > k) = (1 − p)2k. Comme, pour

k ∈ N∗, P(M = k) = P(M > k−1)− P(M > k) car on a l’égalité (M = k) = (M > k−1)\(M > k) et l’inclusion

(M > k) ⊂ (M > k−1), on en déduit la loi de M : P(M = k) = (1−p)2(k−1)−(1−p)2k = p(2−p)(1−p)2(k−1).

La variable aléatoire M suit donc la loi géométrique de paramètre p(2− p) = 1− (1− p)2.

b. • (D = 0,M = m) = (X = m, Y = m) donc, par indépendance, P(D = 0,M = m) = p2(1− p)2m−2.

• Si d > 1, (D = d,M = m) = (X = m, Y = m+ d) ∪ (X = m+ d, Y = m) (réunion disjointe) donc toujours

par indépendance et additivité, il vient P(D = d,M = m) = 2p2(1− p)2m+d−2.
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c. • (D = 0) =

+∞∪
m=1

(D = 0,M = m) (réunion d’évènements incompatibles) donc, par σ-additivité, on a

P(D = 0) =
+∞∑
m=1

p2(1− p)2m−2 = p2

1− (1− p)2
= p

2− p
.

• Si d > 1, (D = d) =
+∞∪
m=1

(D = 0,M = m) donc, avec les mêmes arguments que ci-dessus, on parvient à

P(D = d) =
+∞∑
m=1

2p2(1− p)2m+d−2 =
2p2(1− p)d

1− (1− p)2
=

2p(1− p)d

2− p
.

Ainsi, si d = 0, on a P(M = m|D = 0) =
P(D = 0,M = m)

P(D = 0)
=

p2(1− p)2m−2

p

2− p

= p(2− p)(1− p)2(m−1) et, si

d > 1, il vient P(M = m|D = d) =
P(D = d,M = m)

P(D = d)
=

2p2(1− p)2m+d−2

2p(1− p)d

2− p

= p(2− p)(1− p)2(m−1).

Que d soit nul ou pas, on a donc d’après la question b. la relation P(M = m|D = d) = P(M = m). On en

déduit que les variables aléatoires D et M sont indépendantes.

d. Soit m ∈ N∗, comme D et M sont indépendantes, on a P(D = 0,M = m) = P(D = 0)P(M = m).

Or (D = 0,M = m) = (X = m, Y = m) donc, par indépendance de X et Y, on obtient aussi la relation

P(D = 0)P(M = m) = P(X = m)P(Y = m) = P(X = m)2 car X et Y suivent la même loi. De même,

comme on a vu en c. que (D = 1,M = m) = (X = m, Y = m + 1) ∪ (X = m + 1, Y = m), il vient

P(D = 1)P(M = m) = P(X = m)P(X = m+ 1). De plus, comme (D = 0) =

+∞∪
m=1

(X = m, Y = m), on a encore

P(D = 0) =
+∞∑
m=1

P(X = m)2 > 0. Ainsi, la relation P(D = 0)P(M = m) = P(X = m)2 et l’hypothèse de

l’énoncé montrent que ∀m ∈ N∗, P(X = m) > 0.

Par conséquent, comme (D = 1) =
( +∞∪

m=1

(X = m, Y = m + 1)
)
∪
( +∞∪

m=1

(X = m + 1, Y = m)
)
, on a à

nouveau P(D = 1) = 2
+∞∑
m=1

P(X = m)P(X = m + 1) > 0. Ainsi, en mixant les deux relations, on a

P(X = m+ 1) =
P(D = 1)P(M = m)

2P(X = m)
=

P(D = 1)
2P(X = 0)

P(X = m) et la suite (P(X = m))m>1 est géométrique de

raison q =
P(D = 1)
2P(X = 0)

> 0 et on sait qu’alors ∀m ∈ N∗, P(X = m) = qm−1 P(X = 1).

Si on avait q > 1, cette suite ne tendrait pas vers 0 ce qui est absurde car la série
∑

m>1

P(X = m) converge.

Ainsi, q ∈]0; 1[. Posons p = 1− q ∈]0; 1[.

Comme X est à valeurs dans N∗,
+∞∑
m=1

P(X = m) = 1 donc P(X = 1) × 1

1− q
= 1 donc p = P(X = 1) et on

en déduit que ∀m ∈ N∗, P(X = m) = p(1− p)m−1 : X et Y suivent donc la loi géométrique de paramètre p.� �
11.81� �a. Comme X et Y sont à valeurs dans N, Z(Ω) ⊂ N. Pour k ∈ N, (Z = k) =

k∪
i=0

(X = i, Y = k − i)

(réunion incompatible) donc (Z = k) par réunion d’intersection d’évènements. Par conséquent, Z est une

variable aléatoire et P(Z = k) =
k∑

i=0

P(X = i)P(Y = k− i) car X et Y sont indépendantes. Ainsi, on obtient

P(Z = k) =
k∑

i=0

e−λλi

i!
e−µµk−i

(k− i)!
= e−(λ+µ)

k!

k∑
i=0

(
k

i

)
λiµk−i =

e−(λ+µ)(λ+ µ)k

k!
par le binôme de Newton.
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On en déduit que Z suit la loi de Poisson de paramètre λ+ µ.

b. Pour n ∈ N, si (Z = n), comme Y est positive, on a forcément X ∈ [[0;n]]. Soit i ∈ [[0;n]], alors

P(X = i|Z = n) =
P(X = i, Z = n)

P(Z = n)
. Or (X = i, Z = n) = (X = i, Y = n−i) donc, toujours par indépendance de

X et Y, P(X = i, Y = n−i) = P(X = i)P(Y = n−i) = e−λλi

i!
e−µµn−i

(n− i)!
ce qui donne la loi de X sachant (Z = n) :

P(Z=n)(X = i) = P(X = i|Z = n) = e−λλi

i!
e−µµn−i

(n− i)!
× n!

e−(λ+µ)(λ+ µ)n
=

(
n

i

)(
λ

λ+ µ

)i( µ

λ+ µ

)n−i

. Ainsi,

la loi de X sachant (Z = n) est la loi binomiale B

(
n, λ

λ+ µ

)
.� �

11.82� �a. Comme X(Ω) ⊂ N par hypothèse, P(Ω) = 1 =
+∞∑
n=0

P(X = n) = a

1− (1/e)
donc a = e− 1

e
= 1− 1

e
.

b. Comme nP(X = n) =
n(e− 1)

en+1 =
+∞

o

(
1

n2

)
par croissances comparées, la série

∑
n>0

nP(X = n) converge

donc E(X) existe. D’après le cours, E(X) =
+∞∑
n=1

P(X > n). Comme (X > n) =
+∞∪
k=n

(X = k) (réunion

incompatible), P(X > n) =
+∞∑
k=n

P(X = k) =
+∞∑
k=n

a

ek
= a

en
× 1

1− (1/e)
= 1

en
. Ainsi, E(X) =

+∞∑
n=1

1

en
= 1

e− 1
.� �

11.83� �det(A) = X2 − Y2 = (X− Y)(X+ Y) et X+ Y ̸= 0 car X(Ω) = Y(Ω) = N∗ : A inversible ⇐⇒ X ̸= Y.

Or (X = Y) =
+∞∪
n=1

(X = n, Y = n) (réunion d’évènements incompatibles) donc, par σ-additivité, on a

P(X = Y) =
+∞∑
n=1

P(X = n, Y = n). Or, X et Y ont été supposées indépendantes ce qui donne la relation

P(X = Y) =
+∞∑
n=1

P(X = n)P(Y = n) =
+∞∑
n=1

p(1− p)n−1q(1− q)n−1. Comme 0 < (1− p)(1− q) < 1, on peut

calculer avec les séries géométriques : P(X = Y) = pq

1− (1− p)(1− q)
= pq

p+ q− pq
. La probabilité que A

soit inversible est donc 1− P(X = Y) = p+ q− 2pq

p+ q− pq
.� �

11.84� �a. On note p ∈]0; 1[ la probabilité d’obtenir Pile pour un tirage donné et on suppose la suite de tirages

mutuellement indépendante. On note, pour n ∈ N∗, les événements Pn = “on obtient pile au tirage n”.

Pour avoir T > n, il est nécessaire et suffisant de commencer par une série de k Face (avec 0 6 k 6 n, k = 0

si cette série est vide), de continuer par des Pile jusqu’au tirage n, le premier tirage après n au cours duquel

on obtiendra un Face sera l’entier T (avec T = +∞ si on n’obtient jamais de Face après le n-ième tirage ou

si on n’a que des Face depuis le début jusqu’à la nuit des temps). Ainsi, on a

(T > n) =

n∪
k=0

(( k∩
i=1

Pi

)
∩
( n∩

i=k+1

Pi

))
.

Comme les évènements
( k∩

i=1

Pi

)
∩
( n∩

i=k+1

Pi

)
pour k ∈ [[0;n]] sont incompatibles et par indépendance des

tirages, on en déduit par σ-additivité que

P(T > n) =
n∑

k=0

P
(( k∩

i=1

Pi

)
∩
( n∩

i=k+1

Pi

))
=

n∑
k=0

(1− p)kpn−k =
(1− p)n+1 − pn+1

(1− p)− p
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si p ̸= 1

2
avec bien sûr P(T > n) = n+ 1

2n
si p = 1

2
. Ces formules sont exactes aussi si n = 0.

b. Notons A = ”on tire Pile puis Face au cours de la suite de lancers”. Alors A = (T = +∞) =

+∞∩
n=1

(T > n).

Comme la suite d’événements
(
(T > n)

)
n∈N∗ est décroissante pour l’inclusion, le théorème de continuité

décroissante permet d’affirmer que P(A) = lim
n→+∞

P(T > n) = 0 par croissances comparées. Ainsi, on obtient

P(A) = 1− P(A) = 1 donc l’évènement A est presque sûr.

c. Comme T est une variable aléatoire presque sûrement à valeurs dans N∗, on sait d’après le cours qu’en

cas de convergence, E(T) =
+∞∑
n=0

P(T > n). Ce réel existe bien encore une fois par croissances comparées :

• Si p = 1

2
, comme ∀x ∈] − 1; 1[,

+∞∑
n=0

(n + 1)xn =
( +∞∑

n=0

xn
)′

=
(

1

1− x

)′
= 1

(1− x)2
en dérivant une série

entière dans son intervalle ouvert de convergence, il vient E(T) =
+∞∑
n=0

n+ 1

2n
= 1

(1− (1/2))2
= 4.

• Si p ̸= 1

2
, E(T) = 1

2− p

+∞∑
n=0

(
(1− p)n+1 − pn+1

)
= 1

2− p

+∞∑
n=0

(
(1− p)n − pn

)
car (1− p)0 − p0 = 0 donc

E(T) = 1

2− p

(
1

1− (1− p)
− 1

1− p

)
= 1

p(1− p)
(après simplification).

Par conséquent, quelle que soit la valeur de p ∈]0; 1[, on a E(T) = 1

p(1− p)
et on constate deux choses :

• cette espérance reste invariante si on échange la probabilité de faire Pile ou Face (remplacer p par 1− p).

• cette espérance est minimale quand p = 1

2
car p 7→ p(1− p) est maximal sur ]0; 1[ quand p = 1

2
.� �

11.85� �a. Pour tout i ∈ [[1;n− 1]], on pose Yi = |Xi+1 − Xi|. Ainsi,

• Yi(Ω) ⊂ [[0;n− 1]] est fini (on verra qu’on a même égalité).

• (Yi = 0) =

n∪
k=1

(Xi = k, Xi+1 = k) est un évènement comme réunion des intersections des évènements

(Xi = k) et (Xi+1 = k) (puisque Xi et Xi+1 sont des variables aléatoires).

• Pour j ∈ [[1;n− 1]], (Yi = j) =

n−j∪
k=1

(
(Xi = k, Xi+1 = k+ j)∪ (Xi = k+ j, Xi+1 = k)

)
est un évènement

encore une fois comme réunion d’intersection d’évènements.

Par conséquent, Yi est une variable aléatoire (et ceci pour tout i ∈ [[1;n− 1]]).

De même, ∆n(Ω) ⊂ [[0;n− 1]] et, pour k ∈ [[0;n− 1]], (∆n 6 k) =
n−1∩
i=1

(Yi 6 k) car ∆n = Max
16i6n−1

(Yi) donc

(∆n 6 k) est un évènement comme intersection d’évènements. Enfin, pour tout entier k ∈ [[0;n − 1]], on a

(∆n = k) = (∆n 6 k) \ (∆n 6 k − 1) (avec (∆n 6 −1) = ∅ qui est un évènement) donc (∆n = k) est un

évènement comme différence de deux évènements. On peut enfin conclure que ∆n est une variable aléatoire.

b. Soit un entier k ∈ N, comme ∆n = Max
16i6n−1

(Yi) à nouveau, on a (∆n 6 k) =
n−1∩
i=1

(Yi 6 k) donc

(∆n 6 k) ⊂
⌊n/2⌋∩
i=1

(Y2i−1 6 k) (car 2i− 1 6 n− 1 ⇐⇒ i 6 n/2 ⇐⇒ i 6 ⌊n/2⌋). Par le lemme des coalitions,

comme Y2i−1 est fonction de X2i−1 et de X2i et que X1, · · · , Xn sont mutuellement indépendantes, les variables

aléatoires Y1, Y3, · · · , Y2⌊n/2⌋−1 le sont aussi. Par mutuelle indépendance des évènements (Y2i−1 6 k) et
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croissance de P, on a donc P(∆n 6 k) 6
⌊n/2⌋∏
i=1

P(Y2i−1 6 k). Or (X1, X2) suit la même loi que (X2i−1, X2i)

pour i ∈ [[1; ⌊n/2⌋]] par hypothèse, donc P(Y2i−1 6 k) = P(|X2i − X2i−1| 6 k) = P(|X2 − X1| 6 k), ce qui

donne comme attendu l’inégalité P(∆n 6 k) 6
(
P(|X2 − X1| 6 k)

)⌊n/2⌋
.

c. • Si k = 0, (|X2 − X1| 6 0) = (X2 = X1) =
n∪

i=1

(X1 = i, X2 = i), et par incompatibilité de ces évènements

et indépendance de X1 et X2 qui suivent la loi uniforme sur [[1;n]], on a P(|X2 − X1| 6 0) =
n∑

i=1

1

n
× 1

n
= 1

n
.

• Si k > 1, (|X2 − X1| 6 k) = (X2 = X1) ∪
(n−k∪

j=1

(X1 = j, X2 = j+ k

)
∪
(n−k∪

j=1

(X1 = j+ k, X2 = j

)
et, avec les

mêmes arguments, P(|X2 − X1| 6 k) = 1

n
+ 2

n−k∑
j=1

1

n2 =
(2k+ 1)n− k(k+ 1)

n2 (après calculs).

Ainsi, pour tout k ∈ [[0;n− 1]], on a la formule P(|X2 − X1| 6 k) =
(2k+ 1)n− k(k+ 1)

n2 .

d. • On sait que ⌊λn⌋ 6 λn < ⌊λn⌋ + 1, donc (∆n 6 λn) ⊂ (∆n 6 ⌊λn⌋ + 1) donc, par croissance de

P, P(∆n 6 λn) 6 P(∆n 6 ⌊λn⌋ + 1) 6
(
P(|X2 − X1| 6 ⌊λn⌋ + 1)

)⌊n/2⌋
. Or a vu en question c. que

P(|X2 − X1| 6 ⌊λn⌋ + 1) =
(2k+ 1)n− k(k+ 1)

n2 avec k = ⌊λn⌋ + 1 qui vérifie λn < k 6 λn + 1. Or

2k+ 1 6 2λn+ 3 et k(k+ 1) > λn(λn+ 1) de sorte que P(|X2 − X1| 6 ⌊λn⌋+ 1) 6 (2λn+ 3)n− λn(λn+ 1)

n2 .

Mais lim
n→+∞

(2λn+ 3)n− λn(λn+ 1)

n2 = λ(2 − λ) < 1 (car (λ − 1)2 > 0). Ainsi, par encadrement, on trouve

d’abord lim
n→+∞

(
P(|X2 − X1| 6 ⌊λn⌋ + 1)

)⌊n/2⌋
= 0 puis lim

n→+∞
P(∆n 6 λn) = 0. Par conséquent, comme

P(∆n > λn) = 1− P(∆n 6 λn), il vient lim
n→+∞

P(∆n > λn) = 1.

• D’abord, quels que soient a > 0 et α ∈
]
1

2
; 1
[
, il existe n0 ∈ N tel que ∀n > n0, 0 6 n−anα 6 n. Dès que

n > n0, comme ⌊n− anα⌋ 6 n−anα < ⌊n− anα⌋+1, donc (∆n 6 n−anα) ⊂ (∆n 6 ⌊n− anα⌋+1) donc,

par croissance de P, on a P(∆n 6 n−anα) 6 P(∆n 6 ⌊n− anα⌋+1) 6
(
P(|X2−X1| 6 ⌊n− anα⌋+1)

)⌊n/2⌋
.

Or P(|X2 − X1| 6 ⌊n− anα⌋+ 1) 6 1 donc P(∆n 6 n− anα) 6
(
P(|X2 − X1| 6 ⌊n− anα⌋+ 1)

)(n/2)−1
car⌊

n

2

⌋
> n

2
− 1. D’après c., P(|X2 − X1| 6 ⌊n− anα⌋+ 1) =

(2k+ 1)n− k(k+ 1)

n2 avec k = ⌊n− anα⌋+ 1 qui

vérifie n−anα < k 6 n−anα+1. Or 2k+1 6 2n−2anα+3 et k(k+1) > (n−anα)(n−anα+1) de sorte que

P(|X2 − X1| 6 ⌊n− anα + 1⌋ + 1) 6 (2n− 2anα + 3)n− (n− anα)(n− anα + 1)

n2 . Ainsi, par croissance de

ln et exp, on a P(∆n 6 n − anα) 6 exp

((
n

2
− 1

)
ln

(
(2n− 2anα + 3)n− (n− anα)(n− anα + 1)

n2

))
. Or

(2n− 2anα + 3)n− (n− anα)(n− anα + 1)

n2 = 1−a2n2α−2+ 2n−1+anα−2 =
+∞

1− a2

n2(1−α) +o

(
1

n2(1−α)

)
.

Par conséquent, on obtient les équivalents ln

(
(2n− 2anα + 3)n− (n− anα)(n− anα + 1)

n2

)
∼
+∞

− a2

n2(1−α)

puis
(
n

2
−1

)
ln

(
(2n− 2anα + 3)n− (n− anα)(n− anα + 1)

n2

)
∼
+∞

−a2

2
n2α−1 −→

n→+∞
−∞. Enfin, on a établi

par encadrement que lim
n→+∞

P(∆n 6 n− anα) = 0. Comme avant, lim
n→+∞

P(∆n > n− anα) = 1.� �
11.86� �a. Une arête dans ce graphe est caractérisée par les deux sommets qu’elle relie. On a n sommets et il faut en

choisir deux parmi ceux-ci, cela fait exactement
n(n− 1)

2
arêtes (2 parmi n). Si la question est de déterminer
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le nombre d’arêtes une fois les choix de liaison effectués, alors ce nombre d’arêtes vaut N =
∑

16x<y6n

Tx,y.

b. Si k ∈ [[1;n]], on note Rk le nombre de sommets qui sont reliés au sommet k (le degré de ce sommet). Par

définition, on a Rk =
n∑

i=1
i ̸=k

Ti,k (n− 1 termes dans cette somme). Or les Tx,y sont indépendants et suivent la

loi de Bernoulli de paramètre p par hypothèse. D’après le cours, Rk suit la loi binomiale B(n − 1, p) ce

qui signifie que ∀j ∈ [[0;n− 1]], P(Rk = j) =

(
n− 1

j

)
pj(1− p)n−1−j.

c. Aucune arête ne part du sommet k si et seulement si Rk = 0. Ainsi, comme Z =
n∑

k=1

11(Rk=0), on déduit

de la linéarité de l’espérance que E(Z) =
n∑

k=1

E(11(Rk=0)) =
n∑

k=1

P(Rk = 0) = n(1− p)n−1.

d. Méthode 1 : on peut appliquer l’inégalité de Bienaymé-Tchebychev à la variable aléatoire Z qui

admet bien un moment d’ordre 2 car elle est bornée. Ainsi, avec ε = E(Z) > 0, on obtient la majoration

P(|Z− E(Z)| > E(Z)) 6 V(Z)
E(Z)2

. Or (|Z− E(Z)| > E(Z)) = (Z 6 0) ∪ (Z > 2E(Z)) = (Z = 0) ∪(Z > 2E(Z))

car Z est une variable aléatoire positive. Ainsi, on a l’inclusion (Z = 0) ⊂ (|Z − E(Z)| > E(Z)) donc, par

croissance de la probabilité P, P(Z = 0) 6 P(|Z− E(Z)| > E(Z)) 6 V(Z)
E(Z)2

et on a l’inégalité voulue.

Méthode 2 : comme Z(Ω) ⊂ [[0;n]] par construction, V(Z) = E((Z− E(Z))2) =
n∑

k=0

P(Z = k)(k− E(Z))2 par

théorème de transfert. Tous les termes de cette somme sont positifs, ainsi V(Z) est supérieur au premier,

V(Z) > P(Z = 0)(0− E(Z))2 = P(Z = 0)E(Z)2 donc P(Z = 0) 6 V(Z)
E(Z)2

car E(Z) > 0 d’après c..

e. E(Z) = n(1−p)n−1 = n exp

(
(n−1) ln

(
1−c

ln(n)
n

))
or, comme lim

n→+∞
ln(n)
n

= 0, on a le calcul suivant :

(n − 1) ln
(
1 − c

ln(n)
n

)
=
+∞

n

(
1 − 1

n

)(
− c

ln(n)
n

+ O

(
ln(n)2

n2

))
=
+∞

−c ln(n) + o(1) (après regroupement).

Ainsi, exp
(
(n− 1) ln

(
1− c

ln(n)
n

))
=
+∞

e−c ln(n)+o(1) =
+∞

n−ceo(1) ∼
+∞

n−c donc E(Z) ∼
+∞

n1−c.

Ainsi, lim
n→+∞

E(Z) = 0 si c > 1, lim
n→+∞

E(Z) = +∞ si c < 1 et lim
n→+∞

E(Z) = 1 si c = 1.

f. Comme Z est à valeurs entières, E(Z) =
+∞∑
k=1

P(Z > k) =
n∑

k=1

P(Z > k). Ainsi, P(Z > 1) 6 E(Z). Or

lim
n→+∞

E(Z) = 0 car c > 1 et E(Z) ∼
+∞

n1−c donc P(Z > 1) = 1 − P(Z = 0) tend vers 0, ce qui montre que

lim
n→+∞

P(Z = 0) = 1 si c > 1. On n’a presque sûrement aucun sommet isolé quand n tend vers +∞ si c > 1.

g. V(Z) = E(Z2)− E(Z)2 et Z2 =
( n∑

k=1

11(Rk=0)

)2
=

n∑
k=1

112(Rk=0) + 2
∑

16i<j6n

11(Ri=0)11(Rj=0) ce qui donne

Z2 = E(Z) + 2
∑

16i<j6n

11(Ri=0)∩(Rj=0) d’où E(Z2) = E(Z) + 2
∑

16i<j6n

P(Ri = 0, Rj = 0). Il y a une arête

possible entre les sommets i et j, et n − 2 autres arêtes possibles arrivant en i et n − 2 autres arrivant

en j. Par indépendance mutuelle, on a P(Ri = 0, Rj = 0) = (1 − p)2n−3. Ainsi, en reportant, on obtient

V(Z) = n(1− p)n−1 + n(n− 1)(1− p)2n−3 − n2(1− p)2n−2 donc, en factorisant par rapport aux puissances

de 1 − p, cela donne V(Z) = n(1 − p)n−1(1 − (1 − p)n−2) + n2p(1 − p)2n−3. Comme (1 − p)n−1 ∼
+∞

n−c

et lim
n→+∞

(1 − p) = 1, (1 − p)2n−3 =
(1− p)2n−2

1− p
∼
+∞

n−2c donc n2p(1 − p)2n−3 ∼
+∞

cn1−2c ln(n). De plus,

comme lim
n→+∞

(1−(1−p)n−2) = 1, on a n(1−p)n−1(1−(1−p)n−2) ∼
+∞

n1−c d’où n2p(1−p)2n−3 =
+∞

o(n1−c)

ce qui prouve que V(Z) ∼
+∞

n1−c. Par conséquent,
V(Z)
E(Z)2

∼
+∞

1

n1−c donc lim
n→+∞

V(Z)
E(Z)2

= 0 si c < 1. D’après
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la question d. et par encadrement, on a donc lim
n→+∞

P(Z = 0) = 0. Il y a presque sûrement au moins un

point isolé si c < 1 quand n tend vers +∞ (en fait il y en a beaucoup puisque lim
n→+∞

E(Z) = +∞).� �
11.87� �a. Les relations de l’énoncé s’écrivent aussi matriciellement Vn = AnUn en notant tUn = (u0 · · · un),

tVn = (v0 · · · vn) et An =
((

i

j

))
06i,j6n

∈ Mn+1(R). Or tAn est la matrice dans la base canonique

de Rn[X] de l’endomorphisme fn : P 7→ P(X + 1). Or fn est clairement bijective avec f−1
n : P 7→ P(X − 1)

donc (tAn)
−1 = t(A−1

n ) =
(
(−1)i−j

(
i

j

))
06i,j6n

∈ Mn+1(R). Ainsi, comme Un = A−1
n Vn, on a la formule

d’inversion de Pascal, ∀n ∈ N, un =
n∑

k=0

(−1)n−k

(
n

k

)
vn−k = (−1)n

n∑
k=0

(−1)k
(
n

k

)
vn−k.

b. On note Sn l’ensemble de toutes les permutations de [[1;n]]. On sait que card (Sn) = n!. On partitionne

(ou plutôt on partage) Sn selon le nombre de points fixes des permutations. Notons donc Sn,k l’ensemble

des permutations de Sn qui ont exactement k points fixes. Alors Sn =
n∪

k=0

Sn,k (réunion disjointe) avec

Sn,n−1 = ∅ car si une permutation a au moins n− 1 points fixes, c’est forcément l’identité donc elle a en fait

n points fixes. On a donc card (Sn) = n! =
n∑

k=0

card (Sn,k).

Pour dénombrer Sn,k, on choisit les k points fixes parmi les éléments de [[1;n]] ; ensuite on choisit une

permutation des n−k éléments restants sans point fixe, elles sont au nombre de dn−k par définition (le nombre

de dérangements, c’est le nom des permutations de Sn,0, ne dépend que du nombre d’éléments de l’ensemble

qu’on “dérange”). On obtient donc card (Sn,k) =

(
n

k

)
dk. Ainsi, il vient ∀n ∈ N, n! =

n∑
k=0

(
n

k

)
dn−k.

D’après a., ∀n ∈ N, dn = (−1)n
n∑

k=0

(−1)k
(
n

k

)
(n− k)! = n!

n∑
k=0

(−1)k

k!
.

c. Pour toute permutation σ0 de Sn, (σ = σ0) =
n∩

k=1

(σ(k) = σ0(k)) donc, avec la formule des probabilités

composées, P(σ = σ0) = P(σ(1) = σ0(1))× P(σ(1)=σ0(1))(σ(2) = σ0(2))×· · ·× Pn−1

∩
i=1

(σ(i)=σ0(i))
(σ(n) = σ0(n))

ce qui donne, comme une fois k boules sorties de l’urne, la probabilité qu’on tire une boule donnée est 1

n− k
,

P(σ = σ0) =
1

n
× 1

n− 1
× · · · × 1

2
× 1

1
= 1

n!
. Comme card (Sn) = n!, σ suit donc la loi uniforme sur Sn.

d. Par construction 11Q(Ω) ⊂ {0, 1} donc 11Q suit une loi de Bernoulli. Par définition, 11Q = f(σ) où

f : Sn → {0, 1} est définie par f(s) = 1 si tous les éléments de Q sont invariants par la permutation s et

f(s) = 0 sinon. Par le théorème de transfert, E(11Q) = P(11Q = 1) =
∑

s∈Sn

f(s)P(σ = s). Or, on sait que la

loi de σ est uniforme sur Sn, donc P(11Q = 1) = 1

n!

∑
s∈Sn

f(s). Or le nombre de permutations laissant tous les

éléments de Q invariants est (n−card (Q))! car les images des éléments de Q sont fixés et on permute comme

on veut les n− card (Q) autres. Ainsi, 11Q suit la loi de Bernoulli de paramètre pQ =
(n− card (Q))!

n!
.

e. F est une variable aléatoire bornée donc, pour j ∈ [[0;n]],

(
F

j

)
=

∑
Q⊂[[1;n]], card(Q)=j

11Q étant le nombre de

parties à j éléments de l’ensemble des points fixes de σ l’est aussi ; elle admet donc une espérance finie. Par

linéarité de l’espérance et d’après d., E
((

F

j

))
=

∑
Q⊂[[1;n]], card(Q)=j

E(11Q). Si j ∈ [[0;n]], comme il y a

(
n

j

)
parties de [[1;n]] à j éléments et E(11Q) = pQ =

(n− j)!
n!

si card (Q) = j, on a E
((

F

j

))
=

(
n

j

)
(n− j)!

n!
=

1

j!
.
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f. F est bornée par n donc f est polynomiale et ∀x ∈ R, f(x) =
n∑

k=0

P(F = k)xk. Pour j ∈ [[0;n]], on dérive j fois

et ∀x ∈ R, f(j)(x) =
n∑

k=j

k(k−1) · · · (k−j+1)P(F = k)xk−j donc f(j)(1) =
n∑

k=j

k(k−1) · · · (k−j+1)P(F = k) d’où

f(j)(1)
j!

=
n∑

k=j

k(k− 1) · · · (k− j+ 1)
j!

P(F = k) =
n∑

k=0

(
k

j

)
P(F = k) = E

((
F

j

))
par la formule de transfert.

D’après e.,
f(j)(1)

j!
= 1

j!
donc f(j)(1) = 1. Par Taylor, ∀x ∈ R, f(x) =

n∑
j=0

f(j)(1)
j!

(x− 1)j =
n∑

j=0

(x− 1)j

j!
.

g. Pour k ∈ N fixé, P(F = k) =
f(k)(0)

k!
toujours d’après Taylor (mais en 0) donc, dès que n > k,

P(F = k) = 1

k!

n∑
j=k

(−1)j−k

(j− k)!
= 1

k!

n−k∑
i=0

(−1)i

i!
car f(k)(x) =

n∑
j=k

j!
(j− k)!

(x− 1)j−k

j!
=

n∑
j=k

(x− 1)j−k

(j− k)!
. Ainsi,

lim
k→+∞

P(F = k) = e−1

k!
, ce qui est cohérent car

+∞∑
k=0

e−1

k!
= 1.

� �
11.88� �a. Par construction, T(Ω) = N ∪ {+∞} et, pour n ∈ N, (T = n) =

(n−1∩
k=0

(Xk = 1)
)
∩ (Xn = 0)

est un évènement car les Xi sont des variables aléatoires. Ainsi, T est une variable aléatoire car, de plus

(T = +∞) =

+∞∩
k=0

(Xk = 1). Par indépendance des Xi, on a P(T = n) =
(n−1∏

k=0

1

2

)
× 1

2
= 1

2n+1 . De même,

comme (T > n) =
n∩

k=0

(Xk = 1), on a P(T > n) = 1

2n+1 pour n ∈ N.

b. Comme (T = +∞) =
+∞∩
n=0

(T > n) et que la suite
(
(T > n)

)
n∈N est une suite décroissante d’évènements,

par continuité décroissante, on a P(T = +∞) = lim
n→+∞

P(T > n) = 0 d’après a.. Plus simplement, pour tout

entier n ∈ N, on peut dire que (T = +∞) ⊂ (T > n) donc 0 6 P(T = +∞) 6 P(T > n) = 1

2n+1 donc, par

passage à la limite, on en déduit que P(T = +∞) = 0. On pouvait aussi écrire (T < +∞) =
+∞∪
n=0

(T = n)

(réunion incompatible) donc, par σ-additivité, P(T < +∞) =
+∞∑
n=0

P(T = n) =
+∞∑
n=0

1

2n+1 = 1

2
× 1

1− (1/2)
= 1

donc on retrouve à nouveau P(T = +∞) = 1− P(T < +∞) = 1− 1 = 0.

c. On sait d’après le cours que T admet une espérance finie si et seulement si la série
∑
n>0

P(T > n)

converge, ce qui est le cas car c’est une série géométrique de raison 1

2
< 1, et qu’on a alors la relation

E(T) =
+∞∑
n=0

P(T > n) =
+∞∑
n=0

(
1

2

)n+1

= 1

2
× 1

1− (1/2)
= 1. De même, T admet une variance finie si et

seulement si T admet un moment d’ordre 2, ce qui équivaut par la formule de transfert à la convergence de la

série
∑
n>0

n2 P(T = n). Or n2

2n+1 =
+∞

o

(
1

n2

)
par croissances comparées donc T admet une variance finie. On

sait qu’alors V(T) = E(T2)−E(T)2 = E(T(T−1))+E(T)−E(T)2 = E(T(T−1)) car E(T) = 1. Par le théorème

de transfert, E(T(T − 1)) =
+∞∑
n=0

n(n− 1)P(T = n) =
+∞∑
n=2

n(n− 1)
(
1

2

)n+1

. Or ∀x ∈]− 1; 1[, 1

1− x
=

+∞∑
n=0

xn

qu’on dérive deux fois (sur l’intervalle ouvert de convergence) pour avoir 2

(1− x)3
=

+∞∑
n=2

n(n − 1)xn−2 et

enfin 2x3

(1− x)3
=

+∞∑
n=2

n(n− 1)xn+1. En prenant x = 1

2
, E(T(T − 1)) =

2(1/2)3

(1− (1/2))3
= 2 donc V(T) = 2.
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Beaucoup plus simplement, ∀n > 1, P(T + 1 = n) = P(T = n− 1) = 1

2n
= 1

2n−1 × 1

2
donc T + 1 suit la loi

géométrique de paramètre 1

2
. Ainsi, d’après le cours, E(T + 1) = 1

(1/2)
= 2 et V(T + 1) =

1− (1/2)

(1/2)2
= 2.

Comme E(T + 1) = E(T) + 1 et V(T + 1) = V(T), on retrouve E(T) = 1 et V(T) = 2.

d. Par définition de T ′,

• (T ′ = 1) = (X0 = 1, X1 = 1) donc, par indépendance de X0 et X1, P(T ′ = 1) = 1

4
.

• (T ′ = 2) = (X0 = 0, X1 = 1, X2 = 1). Par indépendance mutuelle de X0, X1, X2, on a P(T ′ = 2) = 1

8
.

• De même, (T ′ = 3) = (X1 = 0, X2 = 1, X3 = 1) (peu importe X0) donc, comme avant, P(T ′ = 3) = 1

8
.

• À nouveau, (T ′ = 4) ∪ (X0 = 1, X1 = 1, X2 = 0, X3 = 1, X4 = 1) = (X2 = 0, X3 = 1, X4 = 1) donc, par

incompatibilité de ces deux évènements, P(T ′ = 4) + 1

32
= 1

8
ce qui donne P(T ′ = 4) = 3

32
.

e. Il est clair que si on a T ′ > n, on a a fortiori T ′ > n− 2 et on ne peut pas avoir Xn−1 = Xn = 1 sinon on

aurait T ′ 6 n. Ceci se résume en l’inclusion (T ′ > n) ⊂ (T ′ > n− 2)∩ (Xn−1 = 1, Xn = 1). Or (T ′ > n− 2) ne

dépend que des variables X0, · · · , Xn−2 donc, par le lemme des coalitions, (T ′ > n− 2) et (Xn−1 = 1, Xn = 1)

sont indépendants. Ainsi, P(T ′ > n) 6 P(T ′ > n− 2)× P
(
(Xn−1 = 1, Xn = 1)

)
=

3P(T ′ > n− 2)
4

.

f. Comme avant, la suite
(
(T ′ > n)

)
n>0

est décroissante et on a (T ′ = +∞) =

+∞∩
n=0

(T ′ > n) donc, par

continuité décroissante, P(T ′ = +∞) = lim
n→+∞

P(T ′ = n). Comme la suite
(
P(T ′ > n)

)
n>0

est décroissante et

positive donc converge vers un réel ℓ > 0, en passant à la limite dans l’inégalité P(T ′ > n) 6 3P(T ′ > n− 2)
4

,

il vient ℓ 6 3ℓ

4
ce qui impose ℓ = 0. Ainsi P(T ′ = +∞) = 0 et, comme attendu, T ′ est presque sûrement finie.

g. Si on a T ′ = n pour n > 2, on ne peut pas commencer par X0 = X1 = 1 sinon ça donnerait T ′ = 1. Ainsi, on

peut écrire (T ′ = n) = (T ′ = n, X0 = 0)∪(T ′ = n, X0 = 1, X1 = 0) (réunion de deux évènements incompatibles)

donc P(T ′ = n) = P(T ′ = n, X0 = 0) + P(T ′ = n, X0 = 1, X1 = 0). Par les probabilités conditionnelles,

P(T ′ = n) = P(X0 = 0) × P(X0=0)(T
′ = n) + P(X0 = 1, X1 = 0) × P(X0=1,X1=0)(T

′ = n). Si X0 = 0, c’est

comme si on repartait au point de départ après un tirage donc P(X0=0)(T
′ = n) = P(T ′ = n−1). De même, si

X0 = 1 et X1 = 0, on repart au point de départ après deux étapes donc P(X0=1,X1=0)(T
′ = n) = P(T ′ = n−2).

On a donc bien P(T ′ = n) = 1

2
P(T ′ = n− 1) + 1

4
P(T ′ = n− 2).

Pour être totalement “rigoureux”, mais la méthode précédente suffit largement à l’oral, on peut écrire

l’égalité (T ′ = n, X0 = 0) = (X0 = 0) ∩
(n−1∩

k=2

(Xk = Xk−1 = 1)
)
∩ (Xn = Xn−1 = 1) donc, par le lemme

des coalitions, P(T ′ = n, X0 = 0) = P(X0 = 0) × P

((n−1∩
k=2

(Xk = Xk−1 = 1)
)
∩ (Xn = Xn−1 = 1)

)
. Mais

P

((n−1∩
k=2

(Xk = Xk−1 = 1)
)
∩ (Xn = Xn−1 = 1)

)
= P

((n−2∩
k=1

(Xk = Xk−1 = 1)
)
∩ (Xn−1 = Xn−2 = 1)

)
car la famille de variables aléatoires (X1, · · · , Xn) suit la même loi que (X0, · · · , Xn−1). Et comme on a

(T ′ = n − 1) =
(n−2∩

k=1

(Xk = Xk−1 = 1)
)
∩ (Xn−1 = Xn−2 = 1) par définition de T ′, on en déduit que
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P(T ′ = n, X0 = 0) = P(X0 = 0)P(T ′ = n − 1) = 1

2
P(T ′ = n − 1). De la même manière, on montre que

P(T ′ = n, X0 = 1, X1 = 0) = P(X0 = 1)P(X1 = 0)P(T ′ = n− 2).

De nouveau, on retrouve la relation P(T ′ = n) = 1

2
P(T ′ = n− 1) + 1

4
P(T ′ = n− 2).

h. Comme P(T ′ > 0) = 1 et P(T ′ > 1) = 3

4
d’après d., par récurrence avec e., ∀n ∈ N, P(T ′ > 2n) 6

(
3

4

)n
et P(T ′ > 2n + 1) 6

(
3

4

)n+1

. Ainsi, la série
∑
n>0

P(T ′ > n) converge (comme une série géométrique car

P(T ′ > n) =
+∞

O

((
3

4

)n/2)
, ce qui assure l’existence d’une espérance finie pour T ′ (à valeurs dans N). Et

E(T ′) =
+∞∑
n=1

nP(T ′ = n) = P(T ′ = 1) +
+∞∑
n=2

n

(
1

2
P(T ′ = n − 1) + 1

4
P(T ′ = n − 2)

)
d’après g.. Comme les

deux séries convergent, E(T ′) = P(T ′ = 1)+ 1

2

+∞∑
n=2

(n− 1+ 1)P(T ′ = n− 1)+ 1

4

+∞∑
n=2

(n− 2+ 2)P(T ′ = n− 2)
)

ce qui devient, après séparation des séries convergentes et ré-indexation et comme T ′(Ω) ⊂ N∗ ∪{+∞} donc
+∞∑
n=1

P(T ′ = n) = 1 d’après f., E(T ′) = 1

4
+ 1

2
E(T ′) + 1

2
+ 1

4
E(T ′) + 1

2
.

On pouvait écrire E(T ′) = P(T ′ = 1)+
+∞∑
n=2

n

(
1

2
P(T ′+1 = n)+ 1

4
P(T ′+2 = n)

)
= 1

4
+

E(T ′ + 1)
2

+
E(T ′ + 2)

4

avec le même résultat. On trouve finalement la valeur E(T ′) = 5 (6 tirages).� �
11.89� �a. Comme Ω = N∗, les conditions imposées à λ ∈ R sont ∀n > 1, P({n}) ∈ [0; 1] et

+∞∑
n=1

P({n}) = 1. On

doit donc prendre λ > 0 et λ vérifiant la relation
+∞∑
n=1

λn−s = λζ(s) = 1 (la série de Riemann converge car

justement s > 1). La seule valeur λ telle que la famille
(
λn−s

)
n∈N∗ définit une loi de probabilité sur N∗ avec

∀n > 1, P({n}) = λn−s est donc λ = 1

ζ(s)
.

b. Par définition, la variable aléatoire X admet une espérance finie si et seulement si la série
∑
n>1

nP(X = n)

converge. Or nP(X = n) = nn−s

ζ(s)
= 1

ζ(s)ns−1 . Ainsi, d’après les résultats sur les séries de Riemann, on

sait que X admet une espérance finie si et seulement si s− 1 > 1, c’est-à-dire si et seulement si s > 2.

c. Par définition, Ap =
∪

n∈N∗

{pn} et, par σ-additivité, on a donc

P(Ap) =
+∞∑
n=1

P({pn}) =
+∞∑
n=1

(pn)−s

ζ(s)
= 1

ps

+∞∑
n=1

n−s

ζ(s)
= 1

ps
.

Soit p et q deux nombres premiers distincts. Il est clair qu’un multiple de pq est un multiple à la fois de

p et de q donc Apq ⊂ Ap ∩ Aq. Réciproquement, soit un entier n à la fois multiple de p et de q. La

décomposition en produit de nombres premiers de n contient donc au moins p1 et q1, ce qui fait que n est

aussi un multiple de pq et on a établi que Ap ∩ Aq ⊂ Apq. On aurait pu dire que puisque p et q sont

premiers entre eux, on a (p|n et q|n) ⇐⇒ pq|n) mais ce n’est pas au programme dans notre filière. Par

double inclusion, Apq = Ap ∩ Aq donc P(Ap ∩ Aq) = P(Apq) =
1

(pq)s
= 1

ps
1

qs = P(Ap)P(Aq) donc les

évènements Ap et Aq sont indépendants par définition.

Plus généralement, on se donne une famille pi1 , · · · , pir une liste de nombres premiers tous différents.
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• Un multiple de
r∏

k=1

pik est (par transitivité de la divisibilité) un multiple de chaque pij pour j ∈ [[1; r]].

• Réciproquement, si n est un multiple de tous les pi1 , · · · , pir , alors la décomposition en produit de nombres

premiers de n contient au moins p1i1 × · · · p1ir donc n est un multiple de m =
r∏

k=1

pik . Par double inclusion,

comme ci-dessus, on a Am =

r∩
k=1

Aik donc

P(Am) = P
( r∩

k=1

Aik

)
=

1

ms
=

r∏
k=1

1

psik

=
r∏

k=1

P(Aik).

Par définition, les évènements (Ap)p∈P sont mutuellement indépendants (pour la loi précédente).

d. Tout entier n > 2 est le multiple d’au moins un nombre premier donc N∗ \ {1} =
+∞∪
k=1

Apk
ce qui donne,

en passant au complémentaire,
+∞∩
k=1

Apk
= {∀k ∈ N∗, pk ̸ |n} = {1}. On peut écrire {1} =

+∞∩
N=1

IN avec

IN =

N∩
k=1

Apk
et la suite des (IN)N>1 étant décroissante pour l’inclusion, on peut conclure avec le théorème de

continuité décroissante que P({1}) = 1

ζ(s)
= lim

N→+∞
P(IN). Or les (Apk

)k∈N∗ étant indépendants mutuelle-

ment, les (Apk
)k∈N∗ le sont aussi ce qui montre que P(IN) =

N∏
k=1

P(Apk
) =

N∏
k=1

(
1 − 1

psk

)
. On a bien, en

passant à l’inverse : ζ(s) = lim
N→+∞

N∏
k=1

1

1− p
−s
k

qu’on note ζ(s) =
+∞∏
k=1

(
1− 1

psk

)
.

e. On va montrer que la série à termes positifs
∑
n>1

1

pn
diverge. Si s > 1, la fonction t 7→ 1

ts
est continue

et strictement décroissante sur R∗
+ donc, pour k ∈ N∗, on a 1

ks
>
∫ k+1

k

dt

ts
par comparaison série-intégrale.

On somme pour k ∈ N∗ (tout converge) et on trouve avec Chasles ζ(s) >
∫ +∞

1

dt

ts
=
[
t1−s

1− s

]+∞

1
= 1

s− 1
.

Ainsi, par encadrement, lim
s→1+

ζ(s) = +∞.

Soit A > 0, il existe donc α > 0 tel que ∀s ∈]1; 1+α], A+1 6 ζ(s). Or ζ(1+α) = lim
N→+∞

N∏
n=1

1

1− p−1−α
n

d’après

la question d., donc il existe un rang N0 ∈ N∗ tel que ∀N > N0, ζ(1+ α)− 1 6
N∏

n=1

1

1− p−1−α
n

(6 ζ(1+ α)).

Par conséquent, ∀N > N0,
N∏

n=1

1

1− p−1−α
n

> A. Or
N∏

n=1

1

1− p−1
n

>
N∏

n=1

1

1− p−1−α
n

donc
N∏

n=1

1

1− p−1
n

> A.

Ceci montre que lim
N→+∞

N∏
n=1

1

1− p−1
n

= +∞ ce qui s’énonce aussi lim
N→+∞

N∑
n=1

ln

(
1− 1

pn

)
= −∞ en passant

au logarithme. Ainsi, la série
∑
n>1

ln

(
1− 1

pn

)
diverge. Or, comme il existe une infinité de nombres premiers,

lim
n→+∞

pn = +∞ donc ln

(
1− 1

pn

)
∼
+∞

− 1

pn
< 0 d’où la divergence de

∑
n>1

1

pn
.� �

11.90� �a. Soit X une variable aléatoire réelle positive admet une espérance finie et ε > 0, alors P(X > ε) 6 E(X)
ε

.

En effet, on dispose de l’inégalité X > ε11(X>ε) puisque si X(ω) > ε, elle se résume à X(ω) > ε × 1 = ε et,

si X(ω) < ε, elle revient à X(ω) > ε × 0 = 0 qui est vrai car X est positive. Par croissance et linéarité de

l’espérance, on a E(X) > εE(11(X>ε)) = εP(X > ε) et on divise par ε > 0 pour avoir l’inégalité de Markov.
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b. D’après l’énoncé, Sn(Ω) = [[0;n]] donc Sn − n

2
est une variable aléatoire bornée mais pas toujours

positive. Par contre
(∣∣∣Sn − n

2

∣∣∣ > ε

)
=
(
Sn − n

2
> ε

)
∪
(
Sn − n

2
< −ε

)
=
(
Sn − n

2
> ε

)
∪
(
S′n − n

2
> ε

)
en notant S′n =

n∑
k=1

(1 − Xk). En notant Yk = 1 − Xk, la famille (Y1, · · · , Yn) est une famille de variables

aléatoires mutuellement indépendantes suivant la loi de Bernoulli de paramètre 1

2
donc S′n − n

2
suit la

même loi que Sn − n

2
. Par conséquent, comme les évènements

(
Sn − n

2
> ε

)
et
(
Sn − n

2
< −ε

)
sont

incompatibles, on a P
(∣∣∣Sn − n

2

∣∣∣ > ε

)
= 2P

(
Sn − n

2
> ε

)
. Comme Sn est bornée, elle admet un moment

d’ordre 2 donc, puisque E(Sn) =
n∑

k=1

E(Xk) = n

2
et d’après l’inégalité de Bienaymé-Tchebychev, on a

P
(∣∣∣Sn − n

2

∣∣∣ > ε

)
6 V(Sn)

ε2
mais V(Sn) =

n∑
k=1

V(Xk) par indépendance deux à deux des X1, · · · , Xn donc

V(Sn) = n

4
et, comme

(∣∣∣Sn − n

2

∣∣∣ > ε

)
⊂
(∣∣∣Sn − n

2

∣∣∣ > ε

)
et par croissance de P, on a donc la majoration

P
(∣∣∣Sn − n

2

∣∣∣ > ε

)
6 n

4ε2
donc P

(
Sn − n

2
> ε

)
6 n

8ε2
.� �

11.91� �a. Comme p ̸= 0 et p ̸= 1, on en déduit que Yn(Ω) = {0, 1}. Par indépendance de Xn et Xn+1, il vient

P(Yn = 1) = P(Xn = Xn+1 = 1) = P(Xn = 1)P(Xn+1 = 1) = p2. Ainsi Yn suit la loi de Bernoulli B(p2).

D’après le cours, E(Yn) = p2, V(Yn) = p2(1− p2).

b. • Si i = j, Yi = Yj donc Cov(Yi, Yj) = V(Yi) = p2(1− p2) > 0. Yi et Yj ne sont pas indépendantes.

• Si j = i+1, YiYj = Xi−1X
2
iXi+1 = Xi−1XiXi+1 et Cov(Yi, Yj) = E(Xi−1XiXi+1)− E(Yi)E(Yj) = p3−p4 > 0

par indépendance de Xi−1, Xi et Xi+1. Ainsi, Yi et Yj ne sont pas non plus indépendantes.

• si j > i+1, alors Yi dépend de Xi−1 et Xi alors que Yj dépend de Xj−1 et Xj, ainsi, Yi et Yj sont indépendantes

par le lemme des coalitions. Ainsi, Cov(Yi, Yj) = 0.

c. Comme Sn est bornée, elle admet un moment d’ordre 2, donc une variance, et on a d’après l’inégalité de

Bienaymé-Tchebychev, pour ε > 0, P(|Sn − E(Sn)| > ε) 6 V(Sn)
ε2

.

d. On traite trois cas selon le couple (n,m) :

• Si n = m, comme YnYm = Y2
n = Yn, on en déduit que E(YnYm) = E(Yn) = p2.

• Si |n−m| = 1, E(YnYm) = p3 d’après la question b..

• Si |n−m| > 2, par indépendance de Yn et Ym, E(YnYm) = E(Yn)E(Ym) = p4.

Les Yn ne sont pas indépendants donc les hypothèses de la loi faible des grands nombres ne sont pas respectées.

Par linéarité de l’espérance, comme ∀k ∈ [[1;n]], E(Yk) = p2, on a E
(
Sn
n

)
= 1

n

n∑
k=1

E(Yk) = np2

n
= p2.

Comme Yn et Ym sont indépendantes dès que |n − m| > 2, on a V(Sn) =
n∑

k=1

V(Yk) + 2
n−1∑
i=1

Cov(Yi, Yi+1)

d’après le cours. Si i ∈ [[1;n − 1]], Cov(Yi, Yi+1) = E(YiYi+1) − E(Yi)E(Yi+1) = p3 − p4 = p3(1 − p) donc

V(Sn) = np2(1−p2)+2(n−1)p3(1−p). Comme p3(1−p) > 0, V(Sn) 6 Cn avec C = p2(1−p2)+2p3(1−p)

donc C = p2(1− p)[1+ p+ 2p] = [p(1− p)](1+ 3p)p 6 1

4
× 4× 1 = 1 et V

(
Sn
n

)
= 1

n2 V(Sn) 6 C

n
6 1

n
.

D’après l’inégalité de Tchebychev, on a la majoration ∀ε > 0, P
(∣∣∣Sn

n
− p2

∣∣∣ > ε

)
6 V(Sn/n)

ε2
6 1

nε2
. Or
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lim
n→+∞

1

nε2
= 0 donc, par encadrement, ∀ε > 0, lim

n→+∞
P
(∣∣∣Sn

n
− p2

∣∣∣ > ε

)
= 0 donc la suite (Yn)n>1 satisfait

les hypothèses de la loi faible des grands nombres même si elle n’en vérifie pas les hypothèses.� �
11.92� �a. Le nombre de victoires V de Pierre parmi les 2n premières parties suit (les parties sont indépendantes

mutuellement) une loi binomiale B(2n, p). Ainsi a2n = P(V = n) =

(
2n

n

)
pn(1−p)2n−n =

(
2n

n

)
(p(1−p))n.

Bien sûr, il ne peut pas y avoir d’égalité du nombre de victoires après un nombre impair de parties.

b. Soit x ̸= 0, si un = a2nx
2n, alors 0 <

un+1

un

=

(
2(n+ 1)

n+ 1

)
pn+1(1− p)n+1(

2n

n

)
pn(1− p)n

x2 =
2(2n+ 1)
n+ 1

p(1− p)x2 qui

tend vers ℓ = 4p(1−p)x2. Par la règle ded’Alembert, si |x| < 1√
4p(1− p)

, alors ℓ < 1 donc
∑
n>0

un converge

ce qui prouve que Ra > 1√
4p(1− p)

. Si |x| > 1√
4p(1− p)

, on a ℓ > 1 et, par d’Alembert,
∑
n>0

un diverge

donc Ra 6 1√
4p(1− p)

. Par conséquent, le rayon de convergence de
∑
n>0

a2nx
2n vaut Ra = 1√

4p(1− p)
.

Il vaut donc Ra = +∞ si p = 0 ou p = 1 qui sont des cas inintéressants où l’un ou l’autre des deux joueurs

gagne presque sûrement toutes les parties.

c. Si p ̸= 1

2
, on a 4p(1 − p) = 1 − (1 − 2p)2 < 1 (parabole atteignant son maximum en 1

2
) donc Ra > 1 et

A(1) est bien défini car 1 ∈]Ra;Ra[ (intervalle ouvert de convergence).

Réciproquement, si p = 1

2
, alors a2n =

(2n)!

22n(n!)2
∼
+∞

√
4πn(2n)2n

e2n
× 1

22n
× e2n

(2πn)n2n ∼
+∞

1√
πn

avec la formule

de Stirling donc
∑
n>0

a2n diverge d’après Riemann et A(1) n’est pas défini.

En conclusion : A(1) existe si et seulement si p ̸= 1

2
.

d. On sait que ∀y ∈]− 1; 1[, 1√
1+ y

=
+∞∑
n=0

(−1)n(2n)!

4n(n!)2
yn. Pour x ∈]− Ra;Ra[, y = −4p(1− p)x2 ∈]− 1; 1[,

1√
1− 4p(1− p)x2

=
+∞∑
n=0

(−1)n(2n)!

4n(n!)2
4npn(1− p)n(−1)nx2n =

+∞∑
n=0

(2n)!

(n!)2
pn(1− p)nx2n = A(x) + 1. On en

déduit bien que ∀x ∈]− Ra;Ra[, A(x) = 1√
1− 4pqx2

− 1.

e. Pour n > 1, posons les évènements Bn = “il y a égalité pour la première fois après n parties” tel que

b2n = P(B2n) et An = “il y a égalité après n parties” tel que a2n = P(A2n). On pose a0 = b0 = 0.

Pour n > 1, s’il y a égalité du nombre de parties gagnées après 2n parties, alors il y a eu égalité pour

la première fois du nombre de parties gagnées au bout de 2k parties avec k ∈ [[1;n]]. Ceci nous donne la

partition suivante : A2n =

n∪
k=1

(A2n ∩ B2k). Comme ces évènements sont incompatibles, on en déduit que

a2n = P(A2n) =
n∑

k=1

P(A2n ∩B2k) =
n∑

k=1

PB2k
(A2n)P(B2k). Clairement, pour tout entier k ∈ [[1;n− 1]], on

a PB2k
(A2n) = a2(n−k) (si on a égalité après 2k parties, avoir égalité après 2n parties revient à avoir égalité

sur une période de 2(n−k) parties - elles sont indépendantes mutuellement). Par contre, comme B2n ⊂ A2n,

on a PB2n
(A2n) = 1. Ainsi a2n = b2n +

n−1∑
k=1

b2ka2(n−k) = b2n +
n∑

k=0

b2ka2(n−k) car on a posé a0 = b0 = 0.
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Sous réserve de convergence, c’est-à-dire si |x| < R où R = Min(Ra, Rb) (avec des notations évidentes), on a

par produit de Cauchy de séries absolument convergentes :

A(x)B(x) =
( +∞∑

n=0

a2nx
2n
)( +∞∑

n=0

b2nx
2n
)
=

+∞∑
n=0

( n∑
k=0

b2ka2(n−k)

)
x2n
)
= A(x)− B(x).

Comme B2n ⊂ A2n, on a 0 6 b2n 6 a2n donc Ra 6 Rb. On a donc ∀x ∈]− Ra;Ra[, B(x) =
A(x)

A(x) + 1
d’après

la relation de la question b.. Ainsi : ∀x ∈]− Ra;Ra[, B(x) =

1√
1− 4pqx2

− 1

1√
1− 4pqx2

= 1−
√

1− 4pqx2.

f. Or, ∀y ∈]− 1; 1[,
√
1+ y = 1+

+∞∑
n=1

(−1)n−1(2n)!

4n(n!)2(2n− 1)
yn. Pour x ∈]− Ra;Ra[, y = −4p(1− p)x2 ∈]− 1; 1[

donc B(x) = −
+∞∑
n=1

(−1)n−1(2n)!

4n(n!)2(2n− 1)
4npn(1 − p)n(−1)nx2n =

+∞∑
n=1

(2n)!

(n!)2(2n− 1)
pn(1 − p)nx2n. On peut

identifier car les rayons sont strictement positifs et ∀n > 1, b2n =

(
2n

n

)
pn(1− p)n

2n− 1
(inutile ici).

Mais cette expression de b2n nous permet de trouver Rb. En effet, pour x ̸= 0, en posant vn = b2nx
2n, on a

0 <
vn+1

vn
=

(
2(n+ 1)

n+ 1

)
pn+1(1− p)n+1(2n− 1)(

2n

n

)
pn(1− p)n(2n+ 1)

x2 =
2(2n− 1)
n+ 1

p(1−p)x2 qui tend aussi vers ℓ = 4p(1−p)x2.

Comme à la question c., on a Rb = Ra = 1√
4p(1− p)

. Si p ̸= 1

2
, 1 ∈]− Rb;Rb[ donc B(1) existe. Si p = 1

2
,

b2n =
(2n)!

(n!)2(2n− 1)
pn(1− p)n ∼

+∞
1

2
√
πn3/2

avec Stirling à nouveau donc B(1) existe pour tout p ∈ [0; 1].

Notons l’évènement J = “ne jamais obtenir égalité du nombre de parties gagnées par Pierre et Marie”. Alors

on a clairement J =
+∞∪
n=1

B2n (réunion d’évènements deux à deux incompatibles) donc P(J) =
+∞∑
n=1

P(B2n) (ce

qui prouve que B(1) existe dans tous les cas comme on l’a vérifié ci-dessus).

Ainsi, par σ-additivité : η = P(J) = 1 − P(J) = 1 −
+∞∑
n=1

b2n = 1 − B(1). Or, en posant fn : x 7→ b2nx
2n,

on a ||fn||∞,[0;1] = b2n et
∑
n>0

b2n converge, ainsi par convergence normale de
∑
n>0

fn sur [0; 1] et continuité

de toutes les fn, on a B continue sur [0; 1] (ce qui était évident si Rb > 1 mais pas clair si p = 1

2
). Ainsi

η = 1− B(1) = 1− lim
x→1−

B(x) =
√

1− 4p(1− p).� �
11.93� �a. Bien sûr, les variables aléatoires X1 et X2 ne sont pas indépendantes.

En effet, (X1 = n, X2 = n) = ∅ donc P(X1 = n, X2 = n) = 0 alors que P(X1 = n) = pn (par indépendance

des personnes appelées) et P(X2 = n) = P(X1 = 0, X2 = n) = P(X2 = n|X1 = 0)P(X1 = 0) = pn(1−p)n ̸= 0.

Par conséquent, P(X1 = n, X2 = n) ̸= P(X1 = n)P(X2 = n).

b. X1 suit naturellement la loi binomiale B(n, p) par indépendance des réponses des n personnes. La famille

((X1 = j))06j6n constitue un système complet d’évènements donc P(X2 = k) =
n∑

j=0

P(X1 = j, X2 = k) pour

tout pour k ∈ [[0;n]]. Or P(X1 = j, X2 = k) = 0 si n − j < k et, comme la loi de X2 sachant (X1 = j)

est la loi binomiale B(n − j, p) si n − j > k, on a P(X2 = k|X1 = j) =

(
n− j

k

)
pk(1 − p)n−j−k. Ainsi,
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P(X2 = k) =
n−k∑
j=0

(
n− j

k

)
pk(1− p)n−j−k

(
n

j

)
pj(1− p)n−j =

(
n

k

)
(1− p)kpk

n−k∑
j=0

(
n− k

j

)
((1− p)2)n−j−kpj

donc P(X2 = k) =

(
n

k

)
pk(1−p)k((1−p)2+p)n−k =

(
n

k

)
(p(1−p))k(1−p(1−p))n−k : X2 ∼ B(n, p(1−p)).

Yi est le premier succès dans une répétition infinie de variables aléatoires suivant une loi de Bernoulli

de paramètre p donc, d’après le cours, Yi suit la loi géométrique de paramètre p pour tout i ∈ [[1;n]] donc

∀m > 1, P(Yi = m) = p(1− p)m−1.

c. Par construction, pour k > 3, on a Xk(Ω) = [[0;n]] et, si j ∈ [[0;n]], pour que l’on ait Xk = j, il est nécessaire

et suffisant qu’exactement j clients vérifient Yi = k (eus au téléphone exactement lors de l’appel k) et n− j

clients vérifient Yi ̸= k (pas eus lors de l’appel k). Ainsi, (Xk = j) =
∪

I⊂[[1;n]]
card(I)=j

(∩
i∈I

(Yi = k) ∩
∩
i/∈I

(Yi ̸= k)
)
.

Cette réunion est disjointe, comporte

(
n

j

)
termes de probabilités égales car les (Yi)16n sont mutuellement

indépendants et suivent la même loi. Or P(Yi = k) = p(1−p)k−1 car Yi suit la loi géométrique de paramètre

p et donc P(Yi ̸= k) = 1−p(1−p)k−1. Par conséquent, P(Xk = j) =

(
n

j

)
(p(1−p)k−1)j(1−p(1−p)k−1)n−j

donc Xk suit la loi binomiale B(n, p(1− p)k−1). Plus simplement, on aurait pu écrire que Xk =
n∑

i=1

11(Yi=k)

et les variables aléatoires (11(Yi=k))16i6n suivent la loi de Bernoulli de paramètre p(1− p)k−1 d’après la

question b. puisque Yi suit la loi géométrique de paramètre p. D’après le cours, la somme Xk de ces n

variables aléatoires mutuellement indépendantes suivant la loi B(p(1− p)k−1) suit la loi B(n, p(1− p)k−1).

d. Par définition, pour k ∈ N∗, on a Sk(Ω) = [[0;n]] et, si j ∈ [[0;n]], pour que l’on ait Sk = j, il est nécessaire

et suffisant qu’exactement j clients vérifient Yi 6 k (eus au téléphone avant l’appel k) et n− j clients vérifient

Yi > k (pas eus lors des k premiers appels). Ainsi, (Sk = j) =
∪

I⊂[[1;n]]
card(I)=j

(∩
i∈I

(Yi 6 k) ∩
∩
i/∈I

(Yi > k)
)
.

Cette réunion est disjointe, comporte

(
n

j

)
termes de probabilités égales car les (Yi)16n sont mutuellement

indépendants et suivent la même loi. Or P(Yi > k) = (1−p)k car Yi suit la loi géométrique de paramètre p et

donc P(Yi 6 k) = 1− P(Yi > k) = 1− (1−p)k. Par conséquent, P(Sk = j) =

(
n

j

)
(1− (1−p)k)j(1−p)k(n−j)

donc Sk suit la loi binomiale B(n, 1− (1− p)k). Plus simplement, on aurait pu écrire que Sk =
n∑

i=1

11(Yi6k)

et les variables aléatoires (11(Yi6k))16i6n suivent la loi de Bernoulli de paramètre 1 − (1 − p)k d’après

la question b. puisque Yi suit la loi géométrique de paramètre p. D’après le cours, la somme Sk de ces n

variables aléatoires mutuellement indépendantes suivant la loi B(1− (1− p)k) suit la loi B(n, 1− (1− p)k).

e. Par définition de la variable aléatoire N, on a N = Max(Y1, · · · , Yn) de sorte que, pour k ∈ N∗, on a

(N 6 k) =
n∩

i=1

(Yi 6 k) donc, par indépendance mutuelle entre les personnes appelées, on parvient à la relation

P(N 6 k) =
n∏

i=1

P(Yi 6 k) = (1− (1− p)k)n. Comme, pour k ∈ N∗, on a (N 6 k) = (N = k) ∪ (N 6 k− 1)

(incompatibles), on a P(N = k) = P(N 6 k)− P(N 6 k− 1) = (1− (1− p)k)n − (1− (1− p)k−1)n.

On aurait aussi pu écrire que (N 6 k) = (Sk = n) avec directement P(N = k) = (1 − (1 − p)k)n avec la

question d. ou que (N = k) = (Sk = n) \ (Sk−1 = n) (le premier instant où on a contacté les n personnes)

avec (Sk−1 = n) ⊂ (Sk = n) donc P(N = n) = P(Sk = n)− P(Sk−1 = n) avec la même conclusion.
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On sait que N admet une espérance finie si et seulement
∑
k>0

P(N > k) converge. Or, avec ce qui précède,

il vient P(N > k) = 1 − P(N 6 k) = 1 − (1 − (1 − p)k)n = 1 − exp(n ln(1 − (1 − p)k)) et, comme

ln(1− (1−p)k) =
+∞

−(1−p)k+o((1−p)k) et que eu =
0
1+u+o(u), en composant les développements limités

d’ordre 1, on a P(N > k) =
+∞

n(1 − p)k + o((1 − p)k) ∼
+∞

n(1 − p)k =
+∞

o

(
1

k2

)
donc la série

∑
k>0

P(N > k)

converge. Ainsi, N admet une espérance finie et E(N) =
+∞∑
k=0

P(N > k). Or, par le binôme de Newton,

P(N > k) = 1− (1− (1− p)k)n = 1−
n∑

j=0

(−1)j
(
n

j

)
((1− p)k)j =

n∑
j=1

(−1)j+1

(
n

j

)
(1− p)kj et toutes les séries

géométriques
∑
k>0

(1 − p)kj convergent pour j > 1 car |(1 − p)j| < 1. Ainsi, par somme d’un nombre fini de

séries convergentes, on a E(N) =
n∑

j=1

(
(−1)j+1

(
n

j

)
+∞∑
k=0

(1− p)kj
)
=

n∑
j=1

(−1)j+1

(
n

j

)
1− (1− p)j

.� �
11.94� �Si n = 1, la seule permutation de [[1; 1]] = {1} est l’identité donc F1 = 1 et E(F1) = 1, V(F1) = 0.

Si n > 2, soit k ∈ [[1;n]], on définit l’évènement Ak = “k est fixe” et on pose Xk = 11Ak
de sorte que Xk = 1

si k est fixe et Xk = 0 s’il ne l’est pas. Par définition, on a Fn =
n∑

k=1

Xk donc, par linéarité de l’espérance, on

a E(Fn) =
n∑

k=1

E(Xk) =
n∑

k=1

P(Ak). Parmi les n! permutations de [[1;n]], il y a en a (n − 1)! qui laisse fixe

l’élément k (il faut permuter les n− 1 autres éléments), ainsi, comme on prend les permutations selon la loi

uniforme, on a P(Ak) =
(n− 1)!

n!
= 1

n
. Alors, E(Fn) = 1.

Comme V(Fn) = E(F2n) − E(Fn)2, on calcule F2n =
n∑

k=1

X2
k +

∑
16i,j6n

i ̸=j

XiXj =
n∑

k=1

Xk + 2
∑

16i<j6n

XiXj car

X2
k = Xk. Or, si i ̸= j, XiXj = 11Ai

11Aj
= 11Ai∩Aj

donc E(XiXj) = P(Ai ∩ Aj) =
(n− 2)!

n!
= 1

n(n− 1)
comme

avant. Il y a
n(n− 1)

2
couples (i, j) ∈ [[1;n]] tels que i < j, d’où E(F2n) = n× 1

n
+2× n(n− 1)

2
× 1

n(n− 1)
= 2

et V(Fn) = 2 − 1 = 1. En ce qui concerne l’espérance et la variance, c’est comme si Fn suivait la loi de

Poisson de paramètre λ = 1 car E(Fn) = V(Fn) = 1.

En notant dn le nombre de dérangements de Sn, c’est-à-dire les permutations sans aucun point fixe, alors

P(Fn = k) =

(
n

k

)
× dn−k

n!
car il faut d’abord choisir les k points fixes parmi les n entiers de [[1;n]] et ensuite

“déranger” les n − k autres entiers pour ne pas faire évoluer le nombre de points fixes. On se rappelle que

dn = n!
n∑

k=0

(−1)k

k!
donc dn ∼

+∞
n!
e
. Ainsi, pour k fixé, dès que n > k, on a P(Fn = k) = 1

ek!
= 1ke−1

k!
ce qui

prouve que la suite de variables aléatoires (Fn)n>1 converge en loi vers une variable aléatoire suivant la loi

de Poisson de paramètre 1 comme attendu.� �
11.95� �a. Soit un entier n ∈ N∗, par définition d’une probabilité conditionnelle, on a déjà un ∈ [0; 1]. Si on

avait un =
P(X = n, X > n− 1)

P(X > n− 1)
= 1, on aurait P(X = n, X > n − 1) = P(X > n − 1) = P(X = n) car

(X = n, X > n − 1) = (X = n). Or (X > n − 1) = (X = n) ∪ (X > n) et ces deux évènements sont
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incompatibles donc P(X > n− 1) = P(X = n) + P(X > n) et on aurait donc P(X > n) = 0 contrairement à

l’hypothèse de l’énoncé. On a montré par l’absurde que un ̸= 1 et on a bien un ∈ [0; 1[.

De plus, comme (X > n−1) = (X > 1)∩(X > 2)∩· · ·∩(X > n−1), d’après la formule des probabilités composées

et car

k−1∩
i=1

(X > i) = (X > k− 1) pour k ∈ [[2;n− 1]], on a P(X > n− 1) = P(X > 1)
n−1∏
k=2

P(X > k|X > k− 1). À

nouveau, pour k ∈ [[1;n− 1]], on a (X > k− 1) = (X = k)∪ (X > k) donc P(X > k− 1) = P(X = k)+ P(X > k)

ce qui, en divisant par P(X > k − 1), devient 1 = P(X = k|X > k − 1) + P(X > k|X > k − 1) puis

P(X > k|X > k − 1) = 1 − uk. Ainsi, comme P(X > 1) = P(X > 1|X > 0) = 1 − u1 car (X > 0) = Ω sachant

que X est à valeurs dans N∗, on a bien P(X > n− 1) =
n−1∏
k=1

(1− uk).

b. D’après la question a., ln(P(X > n − 1)) =
n−1∑
k=1

ln(1 − uk). Or la suite d’évènements
(
(X > n − 1)

)
n>1

est décroissante et
+∞∩
n=1

(X > n − 1) = ∅ car X est à valeurs dans N∗ donc, par continuité décroissante, on a

lim
n→+∞

P(X > n−1) = P(∅) = 0 d’où lim
n→+∞

ln(P(X > n−1)) = −∞ ce qui justifie avec la relation précédente

que la série
∑

n∈N∗
ln(1− un) diverge car la suite de ses sommes partielles tend vers −∞. Traitons deux cas :

• si (un)n>1 ne tend pas vers 0, alors
∑
n>1

un diverge grossièrement.

• si (un)n>1 tend vers 0, alors ln(1− un) ∼
+∞

−un < 0 et, par comparaison,
∑
n>1

un diverge.

Dans les deux cas, on a la même conclusion,
∑
n>1

un diverge.

c. On admet qu’une telle variable aléatoire Y à valeurs dans N∗ existe si on arrive à trouver une suite

(pn)n∈N∗ telle que ∀n ∈ N∗, pn ∈ [0; 1] et
+∞∑
n=1

pn = 1 et qu’on impose ∀n ∈ N∗, P(Y = n) = pn.

Posons, pour tout entier n ∈ N∗, pn =
n−1∏
k=1

(1 − vk) −
n∏

k=1

(1 − vk) = vn

n−1∏
k=1

(1 − vk) (car Y joue ici le rôle

du X de la question a. où on avait P(X = n) = P(X > n − 1) − P(X > n)). Par hypothèse, on a bien
pn ∈ [0; 1[. De plus, p1 = v1, p2 = v2(1 − v1) donc p1 + p2 = v1 + v2 − v1v2 = 1 − (1 − v1)(1 − v2), ce

qui nous fait conjecturer que
n∑

k=1

pk = 1 −
n∏

k=1

(1 − vk). Cette relation est vérifiée si n = 1. Supposons-la

vraie pour un entier n ∈ N∗, alors pn+1 = vn+1

n∏
k=1

(1 − vk) donc, par hypothèse de récurrence, il vient

n+1∑
k=1

pk = pn+1 +
n∑

k=1

pk = vn+1

n∏
k=1

(1− vk) + 1−
n∏

k=1

(1− vk) = 1−
n+1∏
k=1

(1− vk). Par principe de récurrence,

∀n ∈ N∗,
n∑

k=1

pk = 1−
n∏

k=1

(1−vk). Or ln
( n∏

k=1

(1−vk)
)
=

n∑
k=1

ln(1−vk) 6 −
n∑

k=1

vk par l’inégalité classique

ln(1 + x) 6 x pour x > −1. Comme
∑
n>1

vn diverge, par encadrement, lim
n→+∞

ln

( n∏
k=1

(1 − vk)
)
= −∞ donc

lim
n→+∞

n∏
k=1

(1− vk) = 0 et on a donc lim
n→+∞

n∑
k=1

pk =
+∞∑
n=1

pn = 1 comme attendu.

Il existe donc une variable aléatoire Y à valeurs dans N∗ telle que ∀n ∈ N∗, P(Y = n) = pn.

Pour n ∈ N∗, P(Y > n− 1) =
+∞∑
k=n

pk = 1−
n−1∑
k=1

pk =
n−1∏
k=1

(1− vk) > 0 car (Y > n− 1) =
+∞∪
k=n

(Y = k) (réunion

incompatible) et ∀k ∈ [[1;n−1]], vk < 1 par hypothèse. Enfin, avec ce qui précède, on obtient bien la relation
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P(Y = n|Y > n− 1) =
P(Y = n, Y > n− 1)

P(Y > n− 1)
= vn car (Y = n, Y > n− 1) = (Y = n).� �

11.96� �a. D’après l’énoncé et par indépendance mutuelle des n = 5 tirages puisque les tirages se font avec remise,

comme la probabilité de tirer une boule blanche est de p = 2

2+ 8
= 1

5
, la variable aléatoire X suit la loi

binomiale B(n, p) = B

(
5, 1

5

)
. D’après le cours, E(X) = np = 1 et V(X) = np(1− p) = 4

5
.

b. Le nombre de boules noires tirées vaut X′ = 5−X et, d’après l’énoncé, Y = 2X−3X′ = 2X−3(5−X) = 5X−15.

Ainsi, Y(Ω) = {−15,−10,−5, 0, 5, 10} et ∀k ∈ [[0; 5]], P(Y = 5k − 15) =

(
5

k

)
pk(1 − p)5−k. Par linéarité de

l’espérance, E(Y) = 5E(X)− 15 = −10. De plus, on sait que V(Y) = V(5X− 15) = 52 V(X) = 20.

c. Cette fois-ci, comme il n’y a plus remise, on a X(Ω) = {0, 1, 2}. Or, en notant Bk = “on tire une boule

blanche ou tirage k”, on a (X = 0) = B1 ∩B2 ∩B3 ∩B4 ∩B5 donc, par la formule des probabilités composées,

on obtient P(X = 0) = 8

10
× 7

9
× 6

8
× 5

7
× 4

6
= 5× 4

10× 9
= 2

9
. De même, on peut décomposer l’évènement

(X = 1) en les cinq évènements incompatibles suivants :

• B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5 : une boule blanche au premier tirage et, après, des boules noires.

• B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5 : une boule blanche au second tirage uniquement.

• B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5 : une boule blanche au troisième tirage exclusivement.

• B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5 : une boule blanche au quatrième tirage seulement.

• B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5 : quatre boules noires d’affilée et on termine par une boule blanche.

Ainsi, toujours par la formule des probabilités composées, on obtient P(X = 1) sous forme de somme avec

P(X = 1) = 2

10
× 8

9
× 7

8
× 6

7
× 5

6
+ 8

10
× 2

9
× 7

8
× 6

7
× 5

6
+ 8

10
× 7

9
× 2

8
× 6

7
× 5

6
+ 8

10
× 7

9
× 6

8
× 2

7
× 5

6
+ 8

10
× 7

9
× 6

8
× 5

7
× 2

6
,

ce qui donne après calculs P(X = 1) = 5

9
car ces cinq évènements sont la même probabilité qui vaut 1

9
. Enfin,

comme (X = 0) ∪ (X = 1) ∪ (X = 2) = Ω, on a P(X = 2) = 1− P(X = 0)− P(X = 1) = 2

9
.

On revient à la définition de l’espérance E(X) =
∑

x∈X(Ω)

xP(X = x) = 0× 2

9
+1× 5

9
+2× 2

9
= 1 (comme dans le

cas “avec remise”) et de la variance V(X) = E((X− E(X))2) = (0− 1)2× 2

9
+(1− 1)2× 5

9
+(2− 1)2× 2

9
= 4

9
.

d. À nouveau, on a Y = 5X− 15 donc E(Y) = 5E(X)− 15 = −10 et V(Y) = 25V(X) = 100

9
.� �

11.97� �a. Comme rang (UtU) 6 Min(rang (U), rang (tU)) 6 1 car U est une matrice colonne, on a rang (M) ∈

{0, 1}. Or Tr (M) = Tr (UtU) = ||U||2 donc si M = 0, on a U = 0 et, si U = 0, il est clair que M = 0. Ainsi,

M = 0 ⇐⇒ rang (M) = 0 ⇐⇒ U = 0 donc rang (M) suit la loi de Bernoulli de paramètre q = P(U ̸= 0).

Comme (U = 0) =
n∩

k=1

(Xk = 0) et que les variables aléatoires X1, · · · , Xn sont mutuellement indépendantes,

P(rang (M) = 0) = P(U = 0) =
n∏

k=1

P(Xk = 0) = (1− p)n d’où P(rang (M) = 1) = 1− (1− p)n.

Ainsi, rang (M) suit une loi de Bernoulli B(q) de paramètre q = 1− (1− p)n.

De plus Tr (M) =
n∑

k=1

X2
i =

n∑
k=1

Xi car comme Xi suit une loi de Bernoulli, on a X2
i = Xi. À nouveau,

comme X1, · · · , Xn sont mutuellement indépendantes et suivent toutes le loi de Bernoulli de paramètre p,

on sait d’après le cours que Tr (M) suit la loi binomiale B(n, p).
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b. Classiquement, on a M2 = UtUUtU = U(tUU)tU = ||U||2M et ||U||2 = Tr (tUU) = Tr (UtU) = Tr (M)

donc M2 = Tr (M)M. On en déduit que (M2 = M) = (Tr (M) = 1) ∪ (M = 0) (réunion disjointe) donc

P(M2 = M) = P(Tr (M) = 1)+ P(M = 0) mais d’après la question a. on a P(Tr (M) = 1) =

(
n

1

)
p(1−p)n−1

car Tr (M) suit la loi binomiale B(n, p). La probabilité que la matrice M soit une matrice de projection est

donc P(M2 = M) = np(1− p)n−1 + (1− p)n = (1− p)n−1((n− 1)p+ 1).

c. On calcule S =
∑

16i,j6n

XiXj = Tr (M) + 2
∑

16i<j6n

XiXj, il s’agit de la somme de toutes les cases de

la matrice M. Par linéarité de l’espérance, E(S) = E(Tr (M)) + 2
∑

16i<j6n

E(Xi)E(Xj) car Xi et Xj sont

indépendantes. Il y a
n(n− 1)

2
couples (i, j) ∈ [[1;n]]2 tels que i < j, E(Xi) = p et E(Tr (M)) = np d’après

la question a. donc E(S) = np+ 2
n(n− 1)

2
p2 = np(1+ (n− 1)p).

On sait que V(S) = E(S2) − E(S)2. Or S2 =
( ∑

16i,j6n

XiXj

)( ∑
16k,ℓ6n

XkXℓ

)
=

∑
16i,j,k,ℓ6n

XiXjXkXℓ. En

considérant les quadruplets (i, j, k, ℓ) selon le cardinal de A = {i, j, k, ℓ}, la contribution à E(S2) est :
• np pour les n quadruplets (i, i, i, i).

• 4n(n− 1)p2 pour les 4n(n− 1) quadruplets (i, i, i, j), · · · , (j, i, i, i) avec i ̸= j car X3
i = Xi et que Xi et

Xj sont des variables aléatoires indépendantes.

• 3n(n − 1)p2 pour les 3n(n − 1) =

(
4

2

)(
n

2

)
quadruplets (i, i, j, j), · · · , (j, j, i, i) avec i ̸= j car i et j

jouent des rôles symétriques.

• 6n(n− 1)(n− 2)p3 pour les 6n(n− 1)(n− 2) = 12n

(
n− 1

2

)
quadruplets (i, i, j, k), · · · , (j, k, i, i) tels

que card (A) = 3 car j et k jouent des rôles symétriques.

• n(n− 1)(n− 2)(n− 3)p4 pour les n(n− 1)(n− 2)(n− 3) quadruplets (i, j, k, ℓ) tels que card (A) = 4.

Comme il y a n4 quadruplets (i, j, k, ℓ) ∈ [[1;n]]4, on vérifie qu’on n’a oublié aucun quadruplet ci-dessus car

n4 = n+ 4n(n− 1) + 3n(n− 1) + 6n(n− 1)(n− 2) + n(n− 1)(n− 2)(n− 3).

Ainsi, E(S2) = np+7n(n−1)p2+6n(n−1)(n−2)p3+n(n−1)(n−2)(n−3)p4 et, avec la formule de König-

Huygens, on a donc V(S) = np+7n(n−1)p2+6n(n−1)(n−2)p3+n(n−1)(n−2)(n−3)p4−(np(1+(n−1)p))2.� �
11.98� �a. Par définition, N(Ω) = N et, comme X 6 N, on a X(Ω) ⊂ N. On suppose qu’il y a indépendance

mutuelle pour le genre des N enfants. Soit (n, k) ∈ (N∗)2, traitons deux cas :

• Si k > n, comme X 6 N par définition, on a P(N = n, X = k) = 0.

• Si 0 6 k 6 n, à N = n fixé, le nombre de filles suit, par l’indépendance mutuelle supposée, la loi

binomiale de paramètres n et p de sorte que P(N = n, X = k) = P(N = n)× P(X = k |N = n) donne

la loi conjointe P(N = n, X = k) = e−λλn

n!
×
(
n

k

)
pk(1− p)n−k.

b. Pour k ∈ N, on a (X = k) =
+∞∪
n=k

(X = k,N = n) (réunion incompatible) donc, par σ-additivité, on a

P(X = k) =
+∞∑
n=k

P(N = n, X = k) =
+∞∑
n=k

e−λλn

n!
×
(
n

k

)
pk(1 − p)n−k =

λkpke−λ

k!

+∞∑
n=k

(λ(1− p))n−k

(n− k)!
. Bien

sûr, comme
(
(N = n)

)
n∈N est un système complet d’évènements, la formule des probabilités totales donne
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aussi P(X = k) =
+∞∑
n=0

P(N = n, X = k) =
+∞∑
n=k

P(N = n, X = k) car P(X = k,N = n) = 0 si n < k. On pose

i = n − k et P(X = k) = λkpke−λ

k!

+∞∑
i=0

(λ(1− p))i

i!
= λkpke−λ

k!
eλ(1−p) =

(λp)ke−λp

k!
en reconnaissant une

série exponentielle. Ainsi, X suit la loi de Poisson de paramètre λp.� �
11.99� �a. Comme Y est à valeurs positives, on a 0 6 X 6 Z. Et comme Z suit une loi géométrique, Z admet une

espérance finie. On en déduit par comparaison que X admet aussi une espérance finie.

De même, Z2 admet aussi une espérance finie car Z admet une variance finie. Ainsi, comme 0 6 X2 6 Z2, la

variable aléatoire X2 admet une espérance finie donc X admet une variance finie.

Par linéarité de l’espérance et d’après le cours, E(Z) = 1

p
= E(X)+ E(Y)+1 = 2E(X)+1 donc E(X) = 1− p

2p
.

Puisque X et Y sont indépendantes, V(Z) = 1− p

p2
= V(X+ Y) = V(X)+ V(Y) = 2V(X) donc V(X) = 1− p

2p2
.

b. Comme le rayon de convergence de toute série génératrice est supérieur à 1, et que d’après le cours

∀t ∈]− 1; 1[, GZ(t) =
pt

1− (1− p)t
, on a ∀t ∈]− 1; 1[, GX+Y+1(t) = E(tX+Y+1) = E(ttX+Y) = tE(tX+Y) par

linéarité de l’espérance. De plus, comme X et Y sont indépendantes, E(tX+Y) = GX+Y(t) = GX(t)GY(t) donc

GX+Y(t) = tGX(t)GY(t). Mais comme X et Y suivent la même loi, on a GX = GY donc GZ(t) = tGX(t)
2. On

en déduit donc que ∀t ∈]− 1; 1[, GX(t) =
√

p

1− (1− p)t
car GX est positive sur ]− 1; 1[.

c. On sait que ∀x ∈] − 1; 1[, 1√
1+ x

=
+∞∑
n=0

(−1)n(2n)!

4n(n!)2
xn ce qui donne, en remplaçant x par −(1 − p)t,

∀t ∈ [−1; 1] GX(t) =
√
p

+∞∑
n=0

(−1)n(2n)!

4n(n!)2
(−1)n(1 − p)ntn =

+∞∑
n=0

√
p (2n)!(1− p)n

4n(n!)2
tn. En identifiant les

coefficients, par unicité du développement en série entière, comme le rayon R de convergence vérifie R > 1,

on a la loi de X donnée par ∀n ∈ N, P(X = n) =

√
p (2n)!(1− p)n

4n(n!)2
.� �

11.100� �a. On a Y(Ω) ⊂ (N∗ ∪ {+∞}) \ {1} par construction. Pour k > 2, en notant Ni le numéro du jeton

obtenu au tirage i, on a (Y = k) =
∪

16a,b63

a̸=b

(N1 = a, · · · , Nk−1 = a,Nk = b) (on tire d’abord tout le temps

le numéro a et enfin, au tirage k, on obtient le numéro b). Ces évènements étant incompatibles, comme il y

a 6 couples (a, b) possibles, que les Ni sont mutuellement indépendantes par hypothèse et suivent toutes la

loi uniforme sur [[1; 3]], P(Y = k) = 6

( k−1∏
i=1

P(Ni = a)
)
P(Nk = b) = 6

3k
. (Y ̸= +∞) =

+∞∪
k=2

(Y = k) (réunion

incompatible) donc, par σ-additivité, P(Y ̸= +∞) =
+∞∑
k=2

6

3k
= 6

9

+∞∑
k=2

1

3k−2 = 6

9
× 1

1− (1/3)
= 1. Comme

attendu, on en conclut que P(Y = +∞) = 0 (il est presque sûr d’arriver à avoir deux numéros différents).

b. D’après la question précédente, (Y − 1)(Ω) = N∗ et ∀k ∈ N∗, P(Y − 1 = k) = 6

3k+1 = 2

3
×
(
1

3

)k−1

donc Y − 1 suit la loi géométrique de paramètre 2

3
. Ainsi, d’après le cours et par linéarité de l’espérance,

E(Y) = E(Y − 1) + 1 = 3

2
+ 1 = 5

2
et V(Y) = V(Y − 1) =

1− (2/3)

(2/3)2
= 3

4
.

c. Pour (m,n) ∈ (N∗)2, on a P(Y = m,Z = n) = 0 si n 6 m ou si m = 1 par construction. Si n > m > 2,

on a (Y = m,Z = n) = (Y = m,Z− Y = n−m) et Z− Y représente le temps d’attente du troisième numéro
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une fois obtenus les deux premiers. Z − Y et Y sont donc indépendants et Z − Y suit la loi géométrique de

paramètre 1

3
donc P(Y = m,Z = n) = P(Y = m)P(Z− Y = n−m) = 6

3m
×
(
2

3

)n−m−1

× 1

3
= 2n−m

3n−1 .

d. Par construction, Z(Ω) ⊂ (N∗ ∪ {+∞}) \ {1, 2}. Pour n > 3, (Z = n) =
n−1∪
m=2

(Y = m,Z = n) (réunion

incompatible) donc P(Z = n) =
n−1∑
m=2

2n−m

3n−1 = 2n−2

3n−1

n−1∑
m=2

1

2m−2 = 2n−2

3n−1 × 1− (1/2)n−2

1− (1/2)
= 2n−1 − 2

3n−1 .

À nouveau, (Z ̸= +∞) =
+∞∪
n=3

(Z = n) donc P(Z ̸= +∞) =
+∞∑
n=3

2n−1 − 2

3n−1 = 4

9

+∞∑
n=3

2n−3

3n−3 − 2

9

+∞∑
n=3

1

3n−3 donc

P(Z ̸= 0) = 4

9
× 1

1− (2/3)
− 2

9
× 1

1− (1/3)
= 4

3
− 1

3
= 1. Comme attendu, on a P(Z = +∞) = 0 (il est

presque sûr d’arriver à avoir les trois numéros).
∑
n>3

nP(Z = n) converge car, par croissances comparées,

nP(Z = n) = n2n−1 − 2

3n−1 =
+∞

o

(
1

n2

)
. Ainsi, E(Z) =

+∞∑
n=3

nP(Z = n) =
+∞∑
n=3

n2n−1 − 2

3n−1 . Or, pour tout

x ∈]− 1; 1[,
+∞∑
n=3

nxn−1 =
( +∞∑

n=3

xn
)′

=
(

1

1− x
− 1− x− x2

)′
= 1

(1− x)2
− 1− 2x en dérivant terme à terme

à l’intérieur de l’intervalle ouvert de convergence. En écrivant E(Z) =
+∞∑
n=3

n

(
2

3

)n−1

− 2
+∞∑
n=3

n

(
1

3

)n−1

, on a

donc E(Z) = 1

(1− (2/3))2
− 1− 2(2/3)− 2

(
1

(1− (1/3))2
− 1− 2(1/3)

)
= 11

2
.

On pouvait dire, par indépendance de Y et Z− Y, que E(Z) = E(Y) + E(Z− Y) = 5

2
+ 3 puisque Z− Y suit

la loi géométrique de paramètre 1

3
.� �

11.101� �a. Par construction, (Xn, Yn)(Ω) = {(x, y) ∈ [[1;n]]2 | x > y}. Et comme on peut supposer que la

loi de Xn est uniforme sur [[1;n]] et que la loi de Yn sachant (Xn = x) est aussi uniforme sur [[1; x]], on a

∀x ∈ [[1;n]], ∀y ∈ [[1; x]], P(Xn = x, Yn = y) = P(Xn = x)P(Yn = y | Xn = x) = 1

n
× 1

x
= 1

nx
.

b. On a Yn(Ω) = [[1;n]] et, pour y ∈ [[1;n]], (Yn = y) =
n∪

x=y

(Xn = x, Yn = y) (car on ne peut tirer la boule

numéro y que dans une urne de numéro x tel que y 6 x 6 n). Comme ces évènements sont incompatibles,

on a P(Yn = y) =
n∑

x=y

P(Xn = x, Yn = y) =
n∑

x=y

1

nx
.

c. Yn est bornée donc admet une espérance finie, E(Yn) =
n∑

y=1

yP(Yn = y) =
n∑

y=1

n∑
x=y

y

nx
=

∑
16y6x6n

y

nx
et,

en inversant les sommes doubles, E(Yn) = 1

n

n∑
x=1

(
1

x

x∑
y=1

y

)
= 1

n

n∑
x=1

x+ 1

2
= 1

2n

(
n(n+ 1)

2
+ n

)
= n+ 3

4
.

On vérifie bien que si n = 1, on a E(Y1) = 1 ce qui est logique car, dans ce cas, on a X1 = Y1 = 1 sûrement.

d. De même, Y2
n étant bornée, elle admet une espérance finie et E(Y2

n) =
n∑

y=1

y2 P(Yn = y) par la formule

de transfert. Comme avant, E(Y2
n) =

n∑
y=1

n∑
x=y

y2

nx
=

∑
16y6x6n

y2

nx
=

n∑
x=1

x∑
y=1

y2

nx
= 1

n

n∑
x=1

(
1

x

x∑
y=1

y2
)

donc

E(Y2
n) =

1

n

n∑
x=1

(x+ 1)(2x+ 1)
6

= 1

6n

n∑
x=1

(2x2+3x+1) = 1

6n

(
n(n+ 1)(2n+ 1)

3
+

3n(n+ 1)
2

+n

)
et on trouve

E(Y2
n) =

4n2 + 15n+ 17

36
. Par la formule de König-Huygens, comme V(Yn) = E(Y2

n)− E(Yn)2, on obtient

V(Yn) = 4n2 + 15n+ 17

36
−
(
n+ 3

4

)2
=

(n− 1)(7n+ 13)
144

après calcul. Encore une fois, c’est logique qu’on
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retrouve V(Y1) = 0 car Y1 est constante.� �
11.102� �a. Par construction, Yk = Xk + 1

2
suit la loi de Bernoulli de paramètre 1

2
car Yk = 0 ⇐⇒ Xk = −1 et

Yk = 1 ⇐⇒ Xk = 1. Ainsi, d’après le cours, par indépendance de X1, · · · , Xn donc de Y1, · · · , Yn, Tn =
n∑

k=1

Yk

suit la loi binomiale B

(
n, 1

2

)
. Or Xk = 2Yk − 1 donc Sn = 2

( n∑
k=1

Yk

)
− n = 2Tn − n. Ainsi, comme

Tn(Ω) = [[0;n]], il vient Sn(Ω) = {−n,−(n − 2), · · · , (n − 2), n} et, pour la loi de Sn, si k ∈ [[0;n]], on a

P(Sn = 2k − n) = P(Tn = k) =

(
n

k

)(
1

2

)k(1
2

)n−k

=
1

2n

(
n

k

)
. Par les propriétés classiques de l’espérance

et la variance, E(Sn) =
n∑

k=1

E(Xk) = 0 et V(Sn) =
n∑

k=1

V(Xk) = n car X1, · · · , Xn sont indépendantes car

on a clairement E(Xk) = 0 et V(Xk) = 1. On pouvait aussi utiliser la linéarité de l’espérance et la relation

V(Sn) = V(2Tn − n) = 4V(Tn) donc E(Sn) = 2E(Tn) − n = 2(n/2) − n = 0 et V(Sn) = 4(n/4) = n car

Tn ∼ B

(
n, 1

2

)
donc E(Tn) = n

(
1

2

)
et V(Tn) = n

(
1

2

)
×
(
1− 1

2

)
.

b. (T = 2) = (X1 = 1, X2 = −1) ⊔ (X1 = −1, X2 = 1) donc, par incompatibilité de ces deux évènements

et indépendance de X1 et X2, P(T = 2) =
(
1

2

)2
+
(
1

2

)2
= 1

2
. De même, il vient P(T = 4) = 1

8
car

(T = 4) = (X1 = 1, X2 = 1, X3 = −1, X4 = −1) ⊔ (X1 = −1, X2 = −1, X3 = 1, X4 = 1).

Au bout de 2n+ 1 étapes dans cette marche aléatoire, on a forcément S2n+1 =
2n+1∑
k=1

Xk impair car tous les

Xk sont impairs, ainsi (S2n+1 = 0) = ∅ donc (T = 2n+ 1) = ∅ et P(T = 2n+ 1) = 0.

c. Soit x ∈]− 1; 1[, on a |pnxn| 6 |x|n car pn ∈ [0; 1] donc, comme la série géométrique
∑
n>0

|x|n converge car

|x| < 1, par comparaison,
∑
n>0

pnx
n converge absolument.

d. Pour n > 1, on peut partitionner (S2n = 0) en (S2n = 0) =

n⊔
k=1

((S2n = 0)∩ (T = 2k)) en distinguant selon

la première fois (notée T) où l’on va avoir (S2k = 0) (il est impossible d’avoir S2k+1 = 0). Ces évènements

étant incompatibles, pn = P(S2n = 0) =
n∑

k=1

P(S2n = 0, T = 2k) =
n∑

k=1

P(T=2k)(S2n = 0)P(T = 2k) avec les

probabilités conditionnelles. Pour tout k ∈ [[1;n−1]], on a P(T=2k)(S2n = 0) = P(S2(n−k) = 0) (on repart de

0 après 2k “mouvements” et on veut être à 0 au bout de 2n étapes). Par contre, comme (T = 2n) ⊂ (S2n = 0),

on a P(T=2n)(S2n = 0) = 1. Ainsi pn = qn +
n−1∑
k=1

qkpn−k =
n∑

k=0

qkpn−k car on a posé p0 = 1.

La série génératrice
∑
n>0

P(T = n)xn de T , qui est bien à valeurs dans N, a un rayon de convergence au

moins égal à 1 d’après le cours. Si x ∈] − 1; 1[, d’après c., on peut effectuer le produit de Cauchy, comme

P(T = 2n+ 1) = 0 pour tout n ∈ N, GT (x)p(x
2) =

( +∞∑
n=0

qnx
2n
)( +∞∑

n=0

pnx
2n
)
=

+∞∑
n=0

( n∑
k=0

qkpn−k

)
x2n.

Or pn =
n∑

k=0

pn−kqk si n ∈ N∗ car q0 = 0 mais
0∑

k=0

pn−kqk = p0q0 = 0 alors que p0 = 1. Ainsi, pour tout

x ∈]− 1; 1[, GT (x)p(x
2) =

+∞∑
n=1

pnx
2n = p(x2)− 1. Mais p(x2) = 1+

+∞∑
n=1

pnx
2n > 1 car pn > 0 donc p(x2) > 0

et on a donc la relation attendue : GT (x) =
p(x2)− 1

p(x2)
.

e. D’après a., comme pn = P(S2n = 0) = 1

22n

(
2n

n

)
, il vient ∀x ∈] − 1; 1[, p(x) =

+∞∑
n=0

(2n)!

22n(n!)2
xn. Or,
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on sait ou on retrouve facilement que ∀y ∈] − 1; 1[, 1√
1+ y

=
+∞∑
n=0

(−1)n(2n)!

4n(n!)2
yn. On en déduit donc que

p(x) = 1√
1− x

donc p(x2) = 1√
1− x2

et GT (x) =

1√
1− x2

− 1

1√
1− x2

= 1 −
√
1− x2. Or on sait aussi que, pour

y ∈]− 1; 1[, on a le développement en série entière
√
1+ y = 1+

+∞∑
n=1

(−1)n−1(2n)!

4n(n!)2(2n− 1)
yn.

Ainsi, pour x ∈]− 1; 1[, GT (x) = −
+∞∑
n=1

(−1)n−1(2n)!

4n(n!)2(2n− 1)
(−1)nx2n =

+∞∑
n=1

(2n)!

22n(n!)2(2n− 1)
x2n. On identifie

car les rayons sont strictement positifs et ∀n > 1, P(T = 2n) = 1

22n(2n− 1)

(
2n

n

)
.

GT : x 7→ 1−
√
1− x2 n’est pas dérivable en 1 car

√
ne l’est pas en 0. D’après le cours, T n’admet pas une

espérance finie. Pourtant, P(T = +∞) = 1−
+∞∑
n=1

P(T = n) = 1−GT (1) = 1− 1 = 0 : T est presque sûrement

finie mais admet une espérance infinie. Bizarre.� �
11.103� �a. Si X est une VAD de type 2, comme P(Ω) =

+∞∑
n=0

P(X = n) = 1, on a |GX(−1)| = 1 car :

• soit r = 1 et P(X = 2k) = 0 d’où P(Ω) =
+∞∑
k=0

P(X = 2k+ 1) = 1 donc GX(−1) = −
+∞∑
k=0

P(X = 2k+ 1) = −1.

• soit r = 0 et P(X = 2k+ 1) = 0 d’où P(Ω) =
+∞∑
k=0

P(X = 2k) = 1 donc GX(−1) =
+∞∑
k=0

P(X = 2k) = 1.

Réciproquement, si GX(−1) =
+∞∑
k=0

P(X = 2k)−
+∞∑
k=0

P(X = 2k+ 1) = P(X pair)− P(X impair) = ±1, comme

P(X pair) ∈ [0; 1] et P(X impair) ∈ [0; 1] :

• soit GX(−1) = 1 donc P(X pair) = 1 et P(X impair) = 0 et on a bien (∀k ∈ N, P(X = 2k+ 1) = 0) : r = 0.

• soit GX(−1) = −1 donc P(X impair) = 1 et P(X pair) = 0 et on a bien (∀k ∈ N, P(X = 2k) = 0) : r = 1.

Et on a établi que X est de type 2. On a bien l’équivalence annoncée par double implication.

b. On pose ω = e
2iπ
m ∈ Um. En distinguant selon le reste r de la division euclidienne de n par m, comme

ωn = ωqm+r = ωr, GX(ω) =
+∞∑
k=0

P(X = n)ωn =
m−1∑
r=0

( +∞∑
q=0

P(X = mq+ r)
)
ωr =

m−1∑
r=0

P(X ≡ r [m])ωr.

• Supposons X d’ordre m. Soit r ∈ [[0;m− 1]] tel que ∀k ∈ N, k ̸≡ r [m], P(X = k) = 0. Alors, en sommant,

on a P(X ≡ r′ [m]) = 0 si r′ ∈ [[0;m − 1]] et r′ ̸= r. Par conséquent, GX(ω) = P(X ≡ r [m])ωr = ωr car

P(X ≡ r [m]) = 1 et on a bien |GX(ω)| = 1.

• Réciproquement, si |GX(ω)| = 1, comme GX(ω) =
m−1∑
r=0

P(X ≡ r [m])ωr on a par inégalité triangulaire

1 = |GX(ω)| 6
m−1∑
r=0

P(X ≡ r [m])|ωr| =
m−1∑
r=0

P(X ≡ r [m]) = 1 donc on a égalité dans l’inégalité triangulaire.

Le cas d’égalité dans l’inégalité triangulaire montre que P(X ≡ 0 [m])ω0, · · · , P(X ≡ m − 1 [m])ωm−1 sont

positivement liés. Mais les m racines m-ièmes ω0, · · · , ωm−1 de l’unité sont non colinéaires, ceci n’est possible

que s’il existe r ∈ [[0;m− 1]] tel que P(X ≡ r [m]) = 1 et P(X ≡ r′ [m]) = 0 si r′ ̸= r. X est donc de type m.

Par double implication : X est de type m si et seulement si
∣∣∣GX

(
e
2iπ
m
)∣∣∣ = 1.

c. Si r et r′ dans [[1;m− 1]] vérifient cette condition, alors pour tout entier k ∈ N, on a soit k ̸≡ r [m], soit
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k ̸= r′ [m] ce qui prouve que P(X = k) = 0. Mais on a alors
+∞∑
k=0

P(X = k) = 0 contredisant que X(Ω) ⊂ N ce

qui implique
+∞∑
k=0

P(X = k) = P(Ω) = 1. Ainsi, si r existe, r est bien unique.

d. (⇐=) Si X et Y sont de type m, alors
∣∣GX(ω)

∣∣ = 1 et
∣∣GY(ω)

∣∣ = 1 d’après la question b.. Ainsi, comme

X et Y sont indépendantes, GW = GXGY donc
∣∣GW(ω)

∣∣ = ∣∣GX(ω)
∣∣∣∣GX(ω)

∣∣ = 1× 1 = 1 et W est de type m.

(=⇒) D’après la question b., il vient
∣∣GW(ω)

∣∣ = 1 donc
∣∣GX(ω)

∣∣∣∣GX(ω)
∣∣ = 1. Or on a vu à la question b.

que
∣∣GX(ω)

∣∣ 6 1 et, de même,
∣∣GY(ω)

∣∣ 6 1. Or
∣∣GX(ω)

∣∣∣∣GX(ω)
∣∣ = 1 donc ces inégalités sont des égalités et∣∣GX(ω)

∣∣ = 1 et
∣∣GY(ω)

∣∣ = 1. Toujours d’après b. : X et Y sont donc de type m.

On conclut par double implication que W de type m ⇐⇒ X et Y de type m.

e. Avec ces conditions, si n ̸≡ r(X) + r(Y) [m], comme (W = n) =
n⊔

k=0

(X = k, Y = n− k), par indépendance

de X et Y, on a P(W = n) =
n∑

k=0

P(X = k)P(Y = n− k). Pour k ∈ [[0;n]], on a deux cas :

• si k ̸≡ r(X) [m], on a P(X = k) = 0 par définition de r(X) donc P(X = k)P(Y = n− k) = 0.

• si k ≡ r(X) [m], alors n−k ≡ n−r(X) ̸≡ r(Y) [m] par hypothèse donc P(Y = n−k) = 0 par définition

de r(Y) donc on a encore P(X = k)P(Y = n− k) = 0.

Dans tous les cas, P(X = k)P(Y = n− k) = 0 donc P(W = n) = 0 si n ̸≡ r(X) + r(Y) [m]. C’est la définition

de r(W) qui vérifie donc r(W) ≡ r(X) + r(Y) [m].� �
11.104� �a. Tous les tirages sont des pics si et seulement si on tire dans l’ordre les boules numérotées 1, 2, · · · , n

donc (Sn = n) = (X1 = 1) ∩ · · · ∩ (Xn = n) ce qui donne, par la formule des probabilités composées,

P(Sn = n) = P(X1 = 1)× PX1=1(X2 = 2)× · · · × P(X1=1)∩···∩(Xn−1=n−1)(Xn = n) = 1

n
× · · · × 1

1
= 1

n!
.

Puisqu’on a toujours un pic au tirage 1, on n’a qu’un seul pic lors de ces tirages si et seulement si X1 = n.

Ainsi, (Sn = 1) = (X1 = n) donc P(Sn = 1) = P(X1 = n) = 1

n
.

b. Par construction, si on note σ : [[1;n]] → [[1;n]] tel que σ(k) est le numéro de la k-ième boule tirée, alors

σ est une permutation de [[1;n]] et elles sont équiprobables. L’évènement (Tk = 1) a donc pour probabilité

P(Tk = 1) =
card ({Tk = 1})

n!
car il y a n! permutations de [[1;n]]. Pour choisir une permutation σ qui admet

un pic au tirage k, il faut et il suffit que σ(k) soit le maximum de σ(1), · · · , σ(k). Protocole de choix :

• On choisit les k boules tirées lors des k premiers tirages :

(
n

k

)
choix.

• La plus grande de ces k boules est forcément σ(k) : 1 seul choix.

• On répartit les k− 1 autres boules parmi ces k boules dans σ(1), · · · , σ(k− 1) : (k− 1)! choix.

• On répartit les n− k boules restantes dans σ(k+ 1), · · · , σ(n) : (n− k)! choix.

Ainsi, P(Tk = 1) =

(
n

k

)
(k− 1)!(n− k)!

n!
=

n!(k− 1)!(n− k)!
k!(n− k)!n!

= 1

k
donc Tk ∼ B

(
1

k

)
.

c. Comme Sn =
n∑

k=1

Tk par définition, on a E(Sn) =
n∑

k=1

E(Tk) =
n∑

k=1

1

k
= Hn ∼

+∞
ln(n).

d. D’après la question b., si (i, j) ∈ [[1;n]] et i ̸= j, P(Ti = 1, Tj = 1) = 1

ij
= 1

i
× 1

j
= P(Ti = 1)P(Tj = 1).

Ainsi, les évènements A = (Ti = 1) et B = (Tj = 1) sont indépendants. On sait d’après le cours qu’alors A et B
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le sont aussi, A et B le sont encore, et A et B le sont toujours. Ainsi, P(Ti = 1, Tj = 0) = P(Ti = 1)P(Tj = 0),

P(Ti = 0, Tj = 1) = P(Ti = 0)P(Tj = 1) et P(Ti = 0, Tj = 0) = P(Ti = 0)P(Tj = 0). Comme Ti et Tj ne

prennent que les valeurs 0 et 1, les variables aléatoires Ti et Tj sont indépendantes.

e. D’après le cours, comme Sn =
n∑

k=1

Tk, on a V(Sn) =
n∑

k=1

V(Tk) + 2
∑

16i<j6n

Cov(Ti, Tj). Comme Ti et Tj

sont indépendantes si i < j, on a Cov(Ti, Yj) = 0 et V(Sn) =
n∑

k=1

V(Tk) =
n∑

k=1

1

k

(
1 − 1

k

)
= Hn −

n∑
k=1

1

k2
. Il

est classique qu’alors on a V(Sn) =
+∞

ln(n) + γ− π2

6
+ o(1).

Résultat admis : pour choisir une permutation σ telle que Ti = 1 et Tj = 1 (avec i < j), on a le protocole :

• On choisit les j boules tirées lors des j premiers tirages :

(
n

j

)
choix.

• La plus grande de ces j boules est forcément σ(j) : 1 seul choix.

• On choisit parmi les j− 1 restantes les i qui seront σ(1), · · · , σ(i) :
(
j− 1

i

)
choix.

• La plus grande de ces i boules est forcément σ(i) : 1 seul choix.

• On répartit les i− 1 restantes dans σ(1), · · · , σ(i− 1) : (i− 1)! choix.

• On répartit les j− i+ 1 restantes (les j privées des i+ 1) dans σ(i+ 1), · · · , σ(j− 1) : (j− i+ 1)! choix.

• On répartit les n− j boules restantes dans σ(j+ 1), · · · , σ(n) : (n− j)! choix.

Ainsi, P(Ti = 1, Tj = 1) =

(
n

j

)(
j− 1

i

)
(i− 1)!(j− i+ 1)!(n− j)!

n!
=

n!(j− 1)!(i− 1)!(j− i+ 1)!(n− j)!
j!(n− j)!(j− 1− i)i!

= 1

ij
.� �

11.105� �a. On dit qu’une variable aléatoire X à valeurs dans {−1, 1} telle P(X = −1) = P(X = 1) = 1

2
suit la loi

de Rademacher. Comme −1 6 Xk 6 1 pour tout k ∈ [[1;n]], on a Sn ∈ [[−n;n]]. De plus, Xk étant impair,

Sn a la parité de n. Ainsi, Sn(Ω) ⊂ {−n,−(n− 2), · · · , (n− 2), n}.

Pour aller plus loin, si Bk = 1+ Xk

2
pour k ∈ [[1;n]], on a Bk(Ω) = {0, 1} et, comme (Bk = 0) = (Xk = −1)

et (Bk = 1) = (Xk = 1), on a P(Bk = 0) = P(Bk = 1) = 1

2
donc Bk suit la loi de Bernoulli de paramètre

1

2
. Comme X1, · · · , Xn sont indépendantes, B1, · · · , Bn le sont aussi d’après le cours, et on sait qu’alors

Tn =
n∑

k=1

Bk suit la loi binomiale de paramètres n, 1

2
. Comme Sn = 2Tn − n, on connâıt donc la loi de Sn,

donnée par les relations ∀k ∈ [[0;n]], P(Sn = 2k−n) =

(
n

k

)(
1

2

)k(
1− 1

2

)n−k

=
1

2n

(
n

k

)
= P(Sn = n− 2k).

b. Soit n ∈ N∗, (|Sn+1| = 1) = (Sn+1 = 1) ⊔ (Sn+1 = −1) donc, par incompatibilité de ces évènements,

on a P(|Sn+1| = 1) = P(Sn+1 = 1) + P(Sn+1 = −1). Par incompatibilité et indépendance de Sn et Xn+1

par le lemme des coalitions, comme (Sn+1 = 1) = (Sn = 0, Xn+1 = 1) ⊔ (Sn = 2, Xn+1 = −1), on a la

relation P(Sn+1 = 1) =
P(Sn = 0)

2
+

P(Sn = 2)
2

. Comme on peut décomposer l’évènement (Sn+1 = −1)

en (Sn+1 = −1) = (Sn = 0, Xn+1 = −1) ⊔ (Sn = −2, Xn+1 = 1), on en déduit de la même manière que

P(Sn+1 = −1) =
P(Sn = 0)

2
+

P(Sn = −2)
2

. Or (Sn = 0) = (|Sn| = 0) et (|Sn| = 2) = (Sn = 2)⊔ (Sn = −2),

ce qui donne P(|Sn+1| = 1) = P(|Sn| = 0) +
P(|Sn| = 2)

2
.

c. Comme avant, (|Sn+1| = k) = (|Sn| = k + 1, Xn+1 = −εn+1) ⊔ (|Sn| = k − 1, Xn+1 = εn+1) en notant

εn+1 le signe de Sn+1 donc, avec les mêmes arguments d’incompatibilité et d’indépendance de Sn et Xn+1,
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on a la relation P|Sn+1| = k) =
P(|Sn| = k− 1)

2
+

P(|Sn| = k− 1)
2

.

d. Comme |Sn| est à valeurs dans [[0;n]], E(|Sn|) =
n∑

k=1

kP(|Sn| = k). Ainsi, E(|Sn+1|) =
n+1∑
k=1

kP(|Sn+1| = k)

qu’on écrit E(|Sn+1|) = P(|Sn+1| = 1) +
n+1∑
k=2

kP(|Sn+1| = k). Or, d’après la question précédente, on a

kP(|Sn+1| = k) =
(k− 1+ 1)P(|Sn| = k− 1)

2
+

(k+ 1− 1)P(|Sn| = k+ 1)
2

si k > 2 donc on a

E(|Sn+1|) = P(|Sn| = 0) +
P(|Sn| = 2)

2
+

n+1∑
k=2

(k− 1)P(|Sn| = k− 1)
2

+
n+1∑
k=2

(P(|Sn| = k− 1)
2

+
n+1∑
k=2

(k+ 1)P(|Sn| = k+ 1)
2

−
n+1∑
k=2

P(|Sn| = k+ 1)
2

Ainsi, E(|Sn+1|) = P(|Sn| = 0)+
P(|Sn| = 2)

2
+

E(|Sn|)
2

+
P(|Sn| = 1)

2
+

E(|Sn|)
2

− P(|Sn| = 1)
2

− P(|Sn| = 2)
2

car
n+1∑
k=2

(P(|Sn| = k− 1)
2

−
n+1∑
k=2

P(|Sn| = k+ 1)
2

=
P(|Sn| = 1)

2
− P(|Sn| = n+ 1)

2
− P(|Sn| = n+ 2)

2
et que

P(|Sn| = n+ 1)
2

=
P(|Sn| = n+ 2)

2
= 0. On en déduit bien que E(|Sn+1|) = E(|Sn|) + P(|Sn| = 0).

e. Par imparité de S2n+1, on ne peut pas avoir S2n+1 = 0 donc P(S2n+1 = 0). Par contre, S2n = 0 si et

seulement si il y a autant de 1 que de −1 dans les 2n étapes de cette marche aléatoire. Par indépendance

des pas, on en déduit d’après le cours que P(S2n = 0) =

(
2n

n

)(
1

2

)n(1
2

)n
=

(2n)!

22n(n!)2
.

f. D’après la question e., la suite (E(|Sn|)n>1 est croissante et, par dualité suite-série, elle converge si

et seulement si
∑
n>1

(
E(|Sn+1|) − E(|Sn|)

)
converge. Or E(|S2n+2|) − E(|S2n+1|) = P(|S2n+1| = 0) et

E(|S2n+1|) − E(|S2n|) = P(|S2n| = 0) =
(2n)!

22n(n!)2
∼
+∞

√
4πn(2n)2ne2n

22n(2πn)n2ne2n
∼
+∞

1√
πn

. Sachant que la série∑
n>1

1√
πn

diverge par Riemann, on en déduit par comparaison que
∑
n>1

(
E(|Sn+1|)− E(|Sn|)

)
diverge donc

que (E(|Sn|)n>1 diverge, c’est-à-dire que lim
n→+∞

E(|Sn|) = +∞.

g. J’ai rajouté cette question, pas sûr qu’elle fasse partie de l’oral ! D’après une remarque du cours, si

an > 0 ∼
+∞

bn > 0 et si
∑
n>0

an diverge, alors
n∑

k=0

ak ∼
+∞

n∑
k=0

bk (c’est hors programme). On l’applique ici avec

E(|S2n+1|) − E(|S2n|) ∼
+∞

1√
πn

, ce qui, comme
n∑

k=1

(E(|S2k+1|) − E(|S2k|) = E(|S2n+1|) − E(|S2|) donne

E(|S2n+1|) ∼
+∞

n∑
k=1

1√
πk

. Par comparaison série-intégrale, on montre classiquement que
n∑

k=1

1√
k

∼
+∞

2
√
n avec

la décroissante et la continuité de la fonction t 7→ 1√
t
sur [1; +∞[ dont une primitive est t 7→ 2

√
t. Ainsi,

E(|S2n+1|) ∼
+∞

2

√
n

π
∼
+∞

√
2(2n+ 1)

π
. Comme E(|S2n|) = E(|S2n+1|), on a E(|S2n|) ∼

+∞
2

√
n

π
∼
+∞

√
2(2n)
π

donc la suite
( E(|Sn|)√

n

)
n>1

tend vers
√

2

π
et on a E(|Sn|) ∼

+∞

√
2n

π
.� �

11.106� �a. On a det(M) = X2 − Y2 = (X − Y)(X + Y) et X + Y ̸= 0 car X(Ω) = Y(Ω) = N∗ par hypothèse donc

X + Y > 2. Ainsi, M inversible ⇐⇒ X ̸= Y. Or (X = Y) =
+∞⊔
n=1

(X = n, Y = n) (réunion d’évènements
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incompatibles) donc, par σ-additivité, on a P(X = Y) =
+∞∑
n=1

P(X = n, Y = n). Or, X et Y ont été supposées

indépendantes ce qui donne la relation P(X = Y) =
+∞∑
n=1

P(X = n)P(Y = n) =
+∞∑
n=1

p(1 − p)n−1p(1 − p)n−1.

Comme 0 < (1− p)2 < 1, on peut calculer avec les séries géométriques : P(X = Y) = p2

1− (1− p)2
= p

2− p
.

La probabilité que M soit inversible est donc 1− P(X = Y) = 2− 2p

2− p
.

b. La matrice M est symétrique réelle donc elle est diagonalisable dans M2(R) et les valeurs propres α et β

vérifient α+β = Tr (M) = X+Y et αβ = det(M) = X2−Y2 = (X−Y)(X+Y). Ainsi, les deux valeurs propres de

M sont X+Y et X−Y. Par conséquent, comme Y > 0, on a U = X+Y > 2 et V = X−Y ∈ Z. D’après le cours,

Cov(U, V) = E(UV)− E(U)E(V). Or E(V) = E(X−Y) = E(X)− E(Y) = 0 par linéarité de l’espérance et que

X et Y suivent la même loi. Ainsi, Cov(UV) = E(UV) = E((X+Y)(X−Y)) = E(X2−Y2) = E(X2)− E(Y2) = 0.

Or (U = 2, V = 0) = (U = 2) = (X = Y = 1) donc P(U = 2, V = 0) = P(X = 1, Y = 1) = P(X = 1)P(Y = 1)

car X, Y indépendantes donc P(U = 2) = P(U = 2, V = 0) = p2.

Par contre, (V = 0) = (X = Y) =
+∞∪
n=1

(X = Y = n) (réunion incompatible) donc P(V = 0) =
+∞∑
n=1

P(X = n)2

par σ-additivité, indépendance de X et Y qui suivent la même loi. Comme P(U = 2, V = 0) ̸= P(U = 2)(V = 0)

car P(V = 0) =
+∞∑
n=1

p2(1− p)2(n−1) = p2

1− (1− p)2
= p

2− p
< 1, U et V ne sont pas indépendantes.

c. Comme Z(Ω) = N∗ ⊂ N, on a E(Z) =
+∞∑
n=1

P(Z > n) d’après le cours. Pour tout entier n ∈ N∗,

(Z < n) = (X < n) ∩ (Y < n) donc, par indépendance de X et Y, P(Z < n) = P(X < n)2 = (1 − P(X > n))2

car X et Y suivent la même loi. Ainsi, P(Z > n) = 1− P(Z < n) = 1− (1− (1− p)n−1)2 (classique). On en

déduit donc que P(Z > n) = 2(1−p)n−1 − (1−p)2(n−1). On sait sommer les séries géométriques, et comme

|1− p| < 1, Z admet une espérance finie et E(Z) = 2

1− (1− p)
− 1

1− (1− p)2
= 3− 2p

p(2− p)
.

s� �
11.107� �a. Pour k ∈ N∗ et n ∈ N∗, par définition du maximum, on a (Mn 6 k− 1) =

n∩
i=1

(Xi 6 k− 1) donc, par

indépendance des Xi, on a P(Mn 6 k − 1) =
n∏

i=1

P(Xi 6 k − 1) or X1, · · · , Xn suivent la même loi que X1

donc ∀i ∈ [[1;n]], P(Xi 6 k− 1) = P(X1 6 k− 1) et on a bien P(Mn 6 k− 1) = P(X1 6 k− 1)n.

b. D’abord, on a P(X1 6 k − 1) = 1 − P(X1 > k − 1). Mais comme X1 est à valeurs entières, on a

(X1 > k− 1) = (X1 > k). Comme x 7→ xα est strictement croissante, (X1 > k) = (Xα
1 > kα) donc, comme Xα

1

est une variable aléatoire positive admettant une espérance finie par hypothèse et kα > 0, par l’inégalité de

Markov, P(X1 > k) = P(Xα
1 > kα) 6 E(Xα

1 )
kα

= mα

kα
. Ainsi, P(X1 6 k− 1) > 1− mα

kα
pour k ∈ N∗.

Comme Mn est aussi à valeurs entières, on a (Mn > k − 1) = (Mn > k) pour k ∈ N∗ donc on obtient

P(Mn > k) = P(Mn > k− 1) = 1− P(Mn 6 k− 1) = 1− P(X1 6 k− 1)n 6 1−
(
1− mα

kα

)
. Quand k tend

vers +∞, on effectue un développement limité et 1−
(
1−mα

kα

)
=
+∞

1−
(
1− nmα

kα
+o

(
1

kα

))
=
+∞

nmα

kα
+o

(
1

kα

)
donc 1−

(
1− mα

kα

)
∼
+∞

nmα

kα
. Puisque la série de Riemann

∑
k>1

1

kα
converge car α > 1 et que n et mα sont
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des constantes, par comparaison, la série
∑
k>1

P(Mn > k) converge donc, d’après le cours, Mn admet une

espérance finie qui vaut E(Mn) =
+∞∑
k=1

P(Mn > k).

c. Ici X1 suit la loi géométrique de paramètre 1

2
. Prenons α = 2, alors X1 admet un moment d’ordre 2 (une

variance finie) d’après le cours donc, d’après la question b. avec α = 2 > 1, Mn admet une espérance finie

et E(Mn) =
+∞∑
k=1

P(Mn > k) =
+∞∑
k=1

(1− P(Mn 6 k− 1)) =
+∞∑
k=1

(1− P(X1 6 k− 1)n) avec la question a..

Ici, P(X1 6 k − 1) = 1 − P(X1 > k − 1) = 1 − 21−k. En effet, classiquement, (X1 > k − 1) =
+∞⊔
n=k

(X1 = n)

donc, par σ-additivité, P(X1 > k − 1) =
+∞∑
n=k

P(X1 = n) =
+∞∑
n=k

1

2
×
(
1 − 1

2

)n−1

=
(1/2)k

1− (1− (1/2))
= 21−k.

On a bien la relation attendue, E(Mn) =
+∞∑
k=1

(
1− (1− 21−k)n

)
.

d. Par le binôme de Newton, on a E(Mn) =
+∞∑
k=1

( n∑
j=1

(
n

j

)
(−1)j+12−(k−1)j

)
. Or les n séries géométriques

de raison 1

2j
pour j ∈ [[1;n]] convergent donc, par somme d’un nombre fini de séries convergentes, on peut

écrire E(Mn) =
n∑

j=1

(
n

j

)
(−1)j+1

( +∞∑
k=1

(2−j)k−1
)
=

n∑
j=1

(
n

j

)
(−1)j+1 1

1− 2−j
=

n∑
j=1

(
n

j

)
(−1)j+12j

2j − 1
.� �

11.108� �a. Comme la variable aléatoire eitX est bornée sur Ω, elle admet une espérance finie et on a, par théorème

de transfert, E(eitX) =
n∑

k=1

eitxk P(X = xk) =
n∑

k=1

pke
itxk . Par inégalité triangulaire sur les complexes,

|E(eitX)| =
∣∣∣ n∑
k=1

pke
itxk

∣∣∣ 6 n∑
k=1

|pkeitxk | =
n∑

k=1

pk =
∑
k=1

P(X = xk) = P
( n⊔

k=1

(X = xk)
)
= P(Ω) = 1.

b. Comme ∀t ∈ R, |Φ(t)|2 = Φ(t)Φ(t) il vient avec a. la relation |Φ(t)|2 =
( n∑

j=1

pje
itxj

)( n∑
k=1

pke
−itxk

)
,

d’où |Φ(t)|2 =
n∑

k=1

p2k +
∑

16j̸=k6n

pjpke
it(xj−xk). Si on passe en mode développement limité en 0, on obtient

|Φ(t)|2 =
0

n∑
k=1

p2k +
∑

16j̸=k6n

pjpk

(
1 + it(xj − xk) −

t2(xj − xk)
2

2
+ o(t2)

)
. Or, en échangeant les rôles joués

par j et k, on a
∑

16j ̸=k6n

pjpk(xj − xk) =
∑

16k̸=j6n

pkpj(xk − xj) = −
∑

16j̸=k6n

pjpk(xj − xk) = 0. Or,

1 =
( n∑

k=1

pk

)2
donc, en développant, 1 =

n∑
k=1

p2k+
∑

16j̸=k6n

pjpk. En reportant dans le développement limité,

|Φ(t)|2 =
0
1−

∑
16j̸=k6n

pjpk+
∑

16j̸=k6n

pjpk

(
1− t2(xj − xk)

2

2
+o(t2)

)
=
0
1−1

2

( ∑
16j̸=k6n

pjpk(xj−xk)
2
)
t2+o(t2).

De plus, V(X2) = E(X2)− E(X)2 =
n∑

k=1

x2kpk −
( n∑

k=1

xkpk

)2
par formule de transfert donc, en développant,

V(X) =
n∑

k=1

x2k(pk − p2k)−
∑

16j̸=k6n

xjxkpjpk =
n∑

k=1

pkx
2
k

( n∑
j=1
j̸=k

pj

)
−

∑
16j̸=k6n

xjxkpjpk qu’on peut aussi écrire

V(X) = 1

2

( ∑
16j̸=k6n

pjpkx
2
k +

∑
16j̸=k6n

pkpjx
2
j − 2

∑
16j̸=k6n

xjxkpjpk

)
par symétrie entre j et k et on obtient

bien la relation V(X) = 1

2

( ∑
16j̸=k6n

pjpk(x
2
k + x2j − 2xjxk)

)
= 1

2

( ∑
16j̸=k6n

pjpk(xj − xk)
2
)
qui justifie bien

le développement attendu : |Φ(t)|2 =
0
1− V(X)t2 + o(t2).

c. L’hypothèse X(Ω) ⊂ a + Zb se traduit par ∀k ∈ [[1;n]], ∃mk ∈ Z, xk = a + mkb. Ainsi, pour tout
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t ∈ R, Φ(t) = E(eitX) =
n∑

k=1

pke
it(a+mkb) = eita

n∑
k=1

pk(e
itb)mk donc |Φ(t)| =

∣∣∣ n∑
k=1

pk(e
itb)mk

∣∣∣. Il suffit

de prendre t0 ̸= 0 tel que eit0b = 1, par exemple t0 = 2π

b
̸= 0, pour que |Φ(t0)| =

∣∣∣ n∑
k=1

pk

∣∣∣ = n∑
k=1

pk = 1.

d. Réciproquement, supposons qu’il existe t0 ∈ R∗ tel que |Φ(t0)| = 1. Alors, Φ(t0) ∈ U donc il existe

α ∈ R tel que Φ(t0) = eiα. Ainsi,
n∑

k=1

pke
it0xk = eiα = eiα

n∑
k=1

pk donc, en multipliant par e−iα, on a la

relation
n∑

k=1

pk =
n∑

k=1

pke
it0xk−iα =

n∑
k=1

pke
i(t0xk−α).

Ainsi, par inégalité triangulaire, 1 =
∣∣∣ n∑
k=1

pke
i(t0xk−α)

∣∣∣ 6 n∑
k=1

pk|ei(t0xk−α)| =
n∑

k=1

pk = 1. Or, on sait

que le cas d’égalité dans l’inégalité triangulaire traduit le fait que les complexes (pke
i(t0xk−α))16k6n sont

positivement alignés, ou encore, comme pk > 0 qu’il existe θ ∈ R tel que ∀k ∈ [[1;n]], pke
i(t0xk−α) = pke

iθ.

Par conséquent, comme ∀k ∈ [[1;n]], ei(t0xk−α−θ) = 1, il existe mk ∈ Z tel que t0xk − α − θ = 2πmk donc

xk = a+mkb en posant b = 2π

t0
∈ R∗ et a = α+ θ

t0
∈ R. On a donc bien X(Ω) ⊂ a+ Zb.� �

11.109� �Notons pour toute la suite Tk la variable aléatoire qui est le résultat du tirage d’indice k s’il a lieu. Par

construction, Xn(Ω) ⊂ [[1;n]] donc Xn est bornée et admet donc une espérance finie. On suppose bien sûr

aussi que chaque boule de l’urne a autant de chance d’être tirée à chaque étape.

a. Si n = 1, on vide l’urne en un seul tirage. Ainsi, X1 est constante égale à 1 donc E(X1) = 1.

Si n = 2, (X2 = 1) = (T1 = 1) et (X2 = 2) = (T1 = 2, T2 = 1) donc P(X2 = 1) = P(T1 = 1) = 1

2
et

P(X2 = 2) = P(T1 = 2)P(T2 = 1 | T1 = 2) = 1

2
× 1 = 1

2
. Ainsi, par définition, E(X2) =

1

2
× 1+ 1

2
× 2 = 3

2
.

b. Pour n > 2 et i = 1, on a (Xn = 1) = (T1 = 1) donc P(Xn = 1) = 1

n
.

Pour n > 2 et i ∈ [[2;n]], on a (Xn = i) =

n⊔
j=2

(T1 = j, Xn = i). Cette réunion étant disjointe, on a donc

P(Xn = i) =
n∑

j=2

P(T1 = i)P(Xn = i | T1 = j). Or, quand on a tiré la boule j au premier tirage, on

enlève les boules numérotées j, j + 1, · · · , n et on se retrouve au point de départ du problème définissant

Xj−1, une urne contenant les boules numérotées de 1 à j − 1, avec les mêmes règles, sauf qu’on a déjà

effectué un tirage. Ainsi, P(Xn = i |T1 = j) = P(Xj−1 = i − 1). Par conséquent, si n > 2 et i ∈ [[2;n]],

P(Xn = i) = 1

n

n∑
j=2

P(Xj−1 = i− 1) = 1

n

n−1∑
k=1

P(Xk = i− 1) en posant k = j− 1.

Alors, E(Xn) =
n∑

i=1

iP(Xn = i) = 1

n
+ 1

n

n∑
i=2

i
n−1∑
k=1

P(Xk = i− 1) = 1

n
+ 1

n

n−1∑
k=1

n∑
i=2

iP(Xk = i− 1) en inversant

la somme double. Mais P(Xk = i− 1) = 0 dès que i > k donc E(Xn) =
1

n
+ 1

n

n−1∑
k=1

k+1∑
i=2

iP(Xk = i− 1). Ainsi,

E(Xn) =
1

n
+ 1

n

n−1∑
k=1

k+1∑
i=2

(i−1+1)P(Xk = i−1) = 1

n
+ 1

n

n−1∑
k=1

(
1+ E(Xk)

)
car E(Xk) =

k+1∑
i=2

(i−1)P(Xk = i−1)

et P(Ω) = 1 =
k+1∑
i=2

P(Xk = i− 1). On a donc bien la relation attendue, E(Xn) = 1+ 1

n

n−1∑
k=1

E(Xk) si n > 2.

c. Méthode 1 : d’après b., on a E(X3) = 1 + 1

3

(
1 + 3

2

)
= 1 + 1

2
+ 1

3
= 11

6
. De même, on obtient

E(X4) = 1 + 1

4

(
1 + 3

2
+ 1 + 1

2
+ 1

3

)
= 1 + 1

2
+ 1

3
+ 1

4
= 25

12
. Il semble que E(Xn) = Hn =

n∑
k=1

1

k
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pour tout entier n ∈ N∗. On a déjà réalisé l’initialisation pour n = 1, et n = 2. Soit n > 2 tel que

∀k ∈ [[1;n− 1]], E(Xk) = Hk, d’après la question b., on a E(Xn) = 1+ 1

n

n−1∑
k=1

E(Xk) = 1+ 1

n

n−1∑
k=1

k∑
j=1

1

j
donc

E(Xn) = 1+ 1

n

n−1∑
j=1

n−1∑
k=j

1

j
= 1+ 1

n

n−1∑
j=1

n− j

j
= 1+

(n−1∑
j=1

1

j

)
− n− 1

n
= Hn. Par principe de récurrence forte,

on a bien ∀n ∈ N∗, E(Xn) = Hn donc E(Xn) ∼
+∞

ln(n) (par comparaison série-intégrale avec x 7→ 1

x
).

Méthode 2 : d’après b., pour n > 2, nE(Xn) = n +
n−1∑
k=1

E(Xk) et (n + 1)E(Xn+1) = (n + 1) +
n∑

k=1

E(Xk)

donc (n + 1)E(Xn+1) = 1 + nE(Xn) + E(Xn) = (n + 1)E(Xn) + 1 d’où E(Xn+1) − E(Xn) = 1

n+ 1
. Par

télescopage, on a donc E(Xn) = E(X1)+
n−1∑
k=1

(
E(Xk+1)− E(Xk)

)
= 1+

n−1∑
k=1

1

k+ 1
= Hn et E(Xn) ∼

+∞
ln(n).

Question supplémentaire : comme f : t 7→ 1

t
est continue et décroissante sur [1; +∞[, on a la majoration

∀k ∈ [[1;n]],
∫ k+1

k
f(t)dt =

∫ k+1

k

dt

t
6 f(k) = 1

k
et ∀k ∈ [[2;n]],

∫ k

k−1

dt

t
> 1

k
. En sommant la première

inégalité pour k ∈ [[1;n]] et par Chasles, on obtient
∫ n+1

1

dt

t
6 Hn =

n∑
k=1

1

k
. Si on fait de même pour

la seconde pour k ∈ [[2;n]], on a
∫ n

1

dt

t
> Hn − 1 =

n∑
k=2

1

k
. Ainsi, ln(n + 1) 6 Hn 6 1 + ln(n). Comme

ln(n+ 1) ∼
+∞

ln(n) ∼
+∞

ln(n) + 1, par encadrement, on a donc Hn ∼
+∞

ln(n).� �
11.110� �a. • Par définition de X1X2, on a X1X2(Ω) ⊂ {−1, 1} et (X1X2 = 1) = (X1 = 1, X2 = 1) ⊔ (X1 = −1, X2 =

−1) donc, par incompatibilité de ces deux évènements et indépendance de X1, X2, P(X1X2 = 1) = p2+(1−p)2.

De même, (X1X2 = 1) = (X1 = 1, X2 = −1) ⊔ (X1 = −1, X2 = 1) donc P(X1X2 = −1) = 2p(1− p).

(⇐=) Si X1X2 et X1 sont indépendantes, P(X1X2 = −1, X1 = 1) = P(X1X2 = −1)P(X1 = 1) par exemple.

Or (X1X2 = −1, X1 = 1) = (X1 = 1, X2 = −1) donc P(X1X2 = −1, X1 = 1) = P(X1 = 1, X2 = −1)

donc P(X1X2 = −1, X1 = 1) = P(X1 = 1)P(X2 = −1) = p(1 − p) car X1, X2 indépendantes et on a

p(1− p) = 2p(1− p)p qui équivaut à p(1− p)(1− 2p) = 0 donc p = 1

2
car p ∈]0; 1[.

(=⇒) Réciproquement, si p = 1

2
, on a P(X1X2 = 1) = P(X1X2 = −1) = 1

4
. De plus, pour tout couple

(ε1, ε2) ∈ {−1, 1}2, on a (X1 = ε1, X1X2 = ε2) = (X1 = ε1, X2 = ε1ε2) car 1

ε1
= ε1 puisque ε1 ∈ {−1, 1},

ainsi P(X1 = ε1, X1X2 = ε2) = P(X1 = ε1, X2 = ε1ε2) = P(X1 = ε1)P(X2 = ε1ε2) =
1

4
donc on en déduit

la relation P(X1 = ε1, X1X2 = ε2) = P(X1 = ε1)P(X1X2 = ε2), les variables X1 et X1X2 sont indépendantes.

Par symétrie entre X1 et X2, X2 et X2X1 = X1X2 le sont aussi.

En conclusion, X1 et X1X2 (resp. X2 et X1X2) sont indépendantes si et seulement si p = 1

2
.

b. Écrivons la loi du couple (X1, X2). Pour (ε1, ε2) ∈ {−1, 1}2,
(
(X1, X2) = (ε1, ε2)

)
= (X1 = ε1, X2 = ε2)

donc, par indépendance de X1 et X2, P
(
(X1, X2) = (ε1, ε2)

)
= P(X1 = ε1, X2 = ε2) = P(X1 = ε1)P(X2 = ε2)

donc P
(
(X1, X2) = (1, 1)

)
= p2, P

(
(X1, X2) = (1,−1)

)
= p(1 − p), P

(
(X1, X2) = (−1, 1)

)
= p(1 − p) et

P
(
(X1, X2) = (−1,−1)

)
= (1− p)2.

X1X2 et (X1, X2) ne sont indépendantes pour aucune valeur de p car (X1X2 = −1, (X1, X2) = (1, 1)) = ∅ donc

P(X1X2 = −1, (X1, X2) = (1, 1)) = 0 alors que P(X1X2 = −1)P((X1, X2) = (1, 1)) = 2p3(1− p) ̸= 0.
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11.111� �a. Par construction, Zm(Ω)[[1;n]]. Soit k ∈ [[1;n]], on a deux cas :

• si k 6 m, (Zm = k) =

m⊔
i=0

(X = k, Y = i) (réunion disjointe) donc P(Zm = k) =
m∑
i=0

P(X = k, Y = i)

et, puisque X ⊥⊥ Y et suivent la loi uniforme sur [[1;n]], P(Zm = k) =
m∑
i=0

P(X = k)P(Y = i) = m

n2 .

• si k > m, on a (Zm = k) = (Y = k) ∪
( m⊔

i=0

(X = k, Y = i)
)

(réunion disjointe à nouveau) donc

P(Zm = k) = P(Y = k) +
m∑
i=0

P(X = k, Y = i) et, puisque X et Y sont indépendantes et suivent la loi

uniforme sur [[1;n]], on a P(Zm = k) = P(Y = k) +
m∑
i=0

P(X = k)P(Y = i) = 1

n
+ m

n2 .

b. E(X) = E(Y) =
n∑

k=1

kP(X = k) = 1

n

n∑
k=1

k =
n(n+ 1)

2n
= n+ 1

2
.

Pour m ∈ [[1;n]], E(Zm) =
n∑

k=1

kP(Zm = k) =
m∑

k=1

k m

n2 +
n∑

k=m+1

k

(
1

n
+ m

n2

)
d’après a.. On en déduit que

E(Zm) = m

n2

n∑
k=1

k+ 1

n

n∑
k=m+1

k = m

n2

n∑
k=1

k+ 1

n

n∑
k=1

k− 1

n

m∑
k=1

k =
mn(n+ 1)

2n2 +
n(n+ 1)

2n
− m(m+ 1)

2n
donc

on l’expression compacte E(Zm) =
(m+ n)(n+ 1)−m(m+ 1)

2n
.

c. Posons f : x 7→ (x+n)(n+1)−x(x+1) polynomiale sur R donc dérivable et f′(x) = n+1−2x−1 = n−2x.

Ainsi, f est strictement croissante sur [1;n/2] et strictement décroissante sur [n/2;n] donc maximale en n

2
.

Traitons donc deux cas :

• Si n est pair, n = 2p et f est maximale en p donc E(Zm) est maximale pour m0 = p uniquement et

E(Zm0
) = E(Zp) =

5p− 2

4
(après calculs).

• Si n est impair, n = 2p + 1 donc la valeur maximale de E(Zm) est soit E(Zp), soit E(Zp+1). Or,

après calculs toujours, on vérifie que E(Zp) = E(Zp+1) = 5p2 + 7p+ 2

2(2p+ 1)
donc E(Zm) est maximale

pour les deux valeurs m0 = p ou m0 = p+ 1 et E(Zm0
) = 5p2 + 7p+ 2

2(2p+ 1)
.� �

11.112� �a. Quand on choisit l’urne Ui, la probabilité de tirer une boule blanche est de i

p
, et comme les tirages

se font avec remise, ils sont indépendants. D’après le cours, la loi de Np sachant Ai est la loi binomiale

B

(
n, i

p

)
. Par conséquent, PAi

(Np = k) =

(
n

k

)(
i

p

)k(
1− i

p

)n−k

pour i ∈ [[0; p]] et k ∈ [[0;n]].

b. La variable aléatoire Np est bornée car 0 6 Np 6 n donc elle admet une espérance finie et on a

par définition E(Np) =
n∑

k=0

kP(Np = k). Comme {A0, · · · , Ap} est un système complet d’évènements,

on a P(Np = k) =
p∑

i=0

PAi
(Np = k)P(Ai) par la formule des probabilités totales. Si on suppose que

toutes les urnes ont la même chance d’être choisies, P(Np = k) =
p∑

i=0

PAi
(Np = k)

p+ 1
. En reportant, on

a donc la relation E(Np) = 1

p+ 1

n∑
k=0

k
p∑

i=0

(
n

k

)(
i

p

)k(
1 − i

p

)n−k

. En inversant cette somme double, on

obtient E(Np) =
1

p+ 1

p∑
i=0

n∑
k=1

k

(
n

k

)(
i

p

)k(
1 − i

p

)n−k

qui devient, car k

(
n

k

)
= n

(
n− 1

k− 1

)
et en posant le

changement d’indice j = k − 1, E(Np) =
n

p+ 1

p∑
i=0

i

p

n−1∑
j=0

(
n− 1

j

)(
i

p

)j(
1 − i

p

)n−1−j

. Or, avec le binôme
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de Newton, on a
n−1∑
j=0

(
n− 1

j

)(
i

p

)j(
1 − i

p

)n−1−j

=
(
1 − i

p
+

i

p

)n−1

= 1 donc on obtient finalement

E(Np) =
n

p+ 1

p∑
i=0

i

p
=

np(p+ 1)
2(p+ 1)p

= n

2
. Rien que de très prévisible car il y a autant de chance en général

de tirer des boules blanches ou noires et on en tire n en tout.

c. Pour k ∈ [[1;n−1]], on a P(Np = k) = 1

p+ 1

p∑
i=0

(
n

k

)(
i

p

)k(
1− i

p

)n−k

d’après la question précédente donc

P(Np = k) =

(
n

k

)
p

p+ 1

[
0k1n−k

p
+

1

p

p∑
i=1

(
i

p

)k(
1− i

p

)n−k]
. Comme fk : x 7→ xk(1− x)n−k est continue sur

le segment [0; 1], et que 1

p

p∑
i=1

(
i

p

)k(
1 − i

p

)n−k

= 1− 0

p

p∑
i=1

fk

(
i

p

)
est une somme de Riemann associée à

cette fonction, par théorème, lim
p→+∞

1

p

p∑
i=1

(
i

p

)k(
1− i

p

)n−k

=
∫ 1

0
fk(x)dx. Il est clair que lim

p→+∞
p

p+ 1
= 1

et lim
p→+∞

0k1n−k

p
= 0 donc, par somme et produit, lim

p→+∞
P(Np = k) =

(
n

k

)∫ 1

0
xk(1− x)n−kdx.� �

11.113� �a. Par construction, on a X(Ω) = [[2; +∞]] et Y(Ω) = [[1; +∞]] en convenant que Y = +∞ si on n’obtient

jamais pile et X = +∞ si on n’obtient jamais la séquence “pile-face”. On a aussi X > Y + 1. En notant

l’évènement Pk = “on tombe sur pile au lancer k”, on peut écrire, pour des entiers x > 2 et y > 1 tels que

x > y, (X = x, Y = y) =
( y−1∩

i=1

Pi

)
∩
( x−1∩

i=y

Pi

)
∩ Px. On suppose que (Pi)i>1 est une suite d’évènements

indépendants, ce qui montre d’après le cours que P1, · · · Py−1, Py, · · · , Px−1, Px le sont aussi, ce qui donne

P(X = x, Y = y) =
y−1∏
i=1

P(Pi)×
x−1∏
i=y

P(Pi)× P(Px) = 1

2x
car la pièce est équilibrée par hypothèse.

Pour n > 1, (Y = +∞) ⊂
n∩

y=1

Py donc 0 6 P(Y = +∞) 6 1

2n
. Par encadrement, P(Y = +∞) = 0.

b. Soit x > 2, on a (X = x) =
x−1⊔
y=1

(X = x, Y = y) (réunion disjointe) donc P(X = x) =
x−1∑
y=1

P(X = x, Y = y)

par σ-additivité. Ainsi, P(X = x) = x− 1

2x
. On sait que ∀t ∈] − 1; 1[,

+∞∑
x=2

tx−1 = t

1− t
= 1

1− t
− 1. On

dérive à l’intérieur de l’intervalle ouvert de convergence pour avoir ∀t ∈] − 1; 1[,
+∞∑
x=2

(x − 1)tx−2 = 1

(1− t)2

donc ∀t ∈] − 1; 1[,
+∞∑
x=2

(x − 1)tx = t2

(1− t)2
. En prenant t = 1

2
, on a

+∞∑
x=2

P(X = x) = 1 donc, comme

Ω = (X = +∞) ⊔
( +∞⊔

x=2

(X = x)
)
, il vient P(X = +∞) = 1−

+∞∑
x=2

P(X = x) = 0 comme attendu.

c. E(X) =
+∞∑
x=2

xP(X = x) =
+∞∑
x=2

x(x− 1)
2x

. On dérive une autre fois ∀t ∈] − 1; 1[,
+∞∑
x=2

(x − 1)tx = t2

(1− t)2

pour avoir ∀t ∈]− 1; 1[,
+∞∑
x=2

x(x− 1)tx−1 = 2t

(1− t)3
d’où ∀t ∈]− 1; 1[,

+∞∑
x=2

x(x− 1)tx = 2t2

(1− t)3
. Avec t = 1

2

à nouveau, on a E(X) = 4.� �
11.114� �a. Comme X(Ω) ⊂ N, pour n ∈ N, on a (Y = n) =

+∞⊔
k=0

P(X = k, Y = n) (incompatible) donc,

par σ-additivité, on a P(Y = n) =
+∞∑
k=0

P(X = k, Y = n) =
n∑

k=0

(
n

k

)
p

2n
(1 − p)n d’après l’énoncé. Ainsi,
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P(Y = n) = p

2n
(1 − p)n

n∑
k=0

(
n

k

)
=

p

2n
(1 − p)n(1 + 1)n = p(1 − p)n. Par conséquent, 1 + Y suit la loi

géométrique de paramètre p car (1+ Y)(Ω) ⊂ N∗ et P(Y + 1 = n) = P(Y = n− 1) = p(1− p)n−1.

b. On sait que ∀x ∈] − 1; 1[, 1

1− x
=

+∞∑
n=0

xn. En dérivant cette relation k fois sur l’intervalle ouvert de

convergence de cette fonction développable en série entière, on obtient la formule du binôme négatif, qui

s’écrit ∀x ∈]− 1; 1[, k!
(1− x)k+1 =

+∞∑
n=k

n!
(n− k)!

xn−k ⇐⇒ 1

(1− x)k+1 =
+∞∑
n=k

(
n

k

)
xn−k.

c. ∀k ∈ N, (X = k) =

+∞⊔
n=0

(Y = n, X = k) (réunion disjointe) donc, par σ-additivité, on obtient comme

avant P(X = k) =
+∞∑
n=0

P(Y = n, X = k) = p
+∞∑
n=k

(
n

k

)(
1

2

)n
(1 − p)n = p

(
1− p

2

)k +∞∑
n=k

(
n

k

)(
1− p

2

)n−k

.

Ainsi P(X = k) = p

(
1− p

2

)k
× 1(

1−
(1− p

2

))k+1 =
(

2p

1+ p

)(
1− p

1+ p

)k
=
(

2p

1+ p

)(
1 − 2p

1+ p

)k
après

simplification. Comme en question a., 1+ X suit la loi géométrique de paramètre 2p

1+ p
.

P(X = Y = 0) = p ̸= 2p2

1+ p
= P(X = 0)P(Y = 0) car p2 ̸= p : X et Y ne sont pas indépendantes.

d. Z prend presque sûrement ses valeurs dans N d’après les conditions imposées à X et Y et pour m ∈ N,

comme avant, on a (Z = m) =
+∞⊔
k=0

(X = k, Y = m + k) donc P(Z = m) =
+∞∑
k=0

(
m+ k

k

)
am+k(1 − p)m+kp.

Comme

(
m+ k

k

)
=

(
m+ k

m

)
et en posant i = m + k, on a P(Z = m) =

+∞∑
i=m

(
i

m

)
(a(1 − p))ip donc

P(Z = m) = p(a(1 − p))m
+∞∑
i=m

(
i

m

)
(a(1 − p))i−m = p

(
1− p

2

)m
× 1(

1−
(1− p

2

))m+1
=

2p

1+ p

(
1− p

1+ p

)m
.

Ainsi, 1+ Z suit la loi géométrique de paramètre 2p

1+ p
, comme X.

e. Comme P(Y = n) = p(1 − p)n > 0, la loi de X sachant (Y = n) existe pour tout n ∈ N. Si k > n,

P(X = k|Y = n) = 0 par hypothèse et, si k ∈ [[0;n]], P(X = k|Y = n) =
P(X = k, Y = n)

P(Y = n)
par définition donc

P(X = k|Y = n) =

(
n

k

)
(1/2)n(1− p)np

p(1− p)n
=

(
n

k

)(
1

2

)n
. La loi de X sachant (Y = n) est la loi B

(
n, 1

2

)
.� �

11.115� �a. Si n ∈ N∗, k ∈ [[0;n]],

(
n

k

)
=

n!

k!(n− k)!
=

k+ 1

n+ 1
× (n+ 1)!

(k+ 1)!(n+ 1− (k+ 1))!
= α

(
n+ 1

k+ 1

)
si

α = k+ 1

n+ 1
.

b. Comme X(Ω) = [[0;n]], on a
n∑

k=0

P(X = k) = 1 =
n∑

k=0

a

n+ 1

(
n+ 1

k+ 1

)
d’après a. donc, en posant m = k+1,

a

n+ 1

n∑
k=0

(
n+ 1

k+ 1

)
=

a

n+ 1

(( n+1∑
m=0

(
n+ 1

m

))
− 1

)
=

a

n+ 1
(2n+1 − 1) = 1 ce qui donne a = n+ 1

2n+1 − 1
.

c. Comme X est bornée, X admet des moments à n’importe quel ordre. Par définition de l’espérance, on a

E(X) =
n∑

k=0

kP(X = k) = 1

2n+1 − 1

n∑
k=0

k(n+ 1)
k+ 1

(
n

k

)
=

1

2n+1 − 1

n∑
k=0

k

(
n+ 1

k+ 1

)
. En écrivant k = (k+ 1)− 1,

on a E(X) = 1

2n+1 − 1

n∑
k=0

(k + 1)

(
n+ 1

k+ 1

)
− 1

2n+1 − 1

n∑
k=0

(
n+ 1

k+ 1

)
et (k + 1)

(
n+ 1

k+ 1

)
= (n + 1)

(
n

k

)
donc
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E(X) = n+ 1

2n+1 − 1

n∑
k=0

(
n

k

)
− 1

2n+1 − 1

n∑
k=0

(
n+ 1

k+ 1

)
=

(n+ 1)2n

2n+1 − 1
− 2n+1 − 1

2n+1 − 1
=

(n− 1)2n + 1

2n+1 − 1
.

De plus, V(X) = E(X2) − E(X)2 = E(X(X + 1)) − E(X) − E(X)2 par linéarité de l’espérance. Or, par la

formule de transfert, E(X(X + 1)) =
n∑

k=0

(k+ 1)ka
k+ 1

(
n

k

)
= a

n∑
k=1

k

(
n

k

)
= a

n∑
k=1

n

(
n− 1

k− 1

)
= an2n−1. Ainsi,

V(X) = n(n+ 1)2n−1

2n+1 − 1
− (n− 1)2n + 1

2n+1 − 1
− ((n− 1)2n + 1)2

(2n+1 − 1)2
=

(n+ 1)22n − (n+ 1)(n+ 2)2n−1

(2n+1 − 1)2
.� �

11.116� �a. On a Y(Ω) ⊂ (N∗ ∪ {+∞}) \ {1} par construction. Pour k > 2, en notant Ni le numéro du jeton

obtenu au tirage i, on a (Y = k) =
∪

16a,b63

a̸=b

(N1 = a, · · · , Nk−1 = a,Nk = b) (on tire d’abord tout le temps

le numéro a et enfin, au tirage k, on obtient le numéro b). Ces évènements étant incompatibles, comme il

y a 6 couples (a, b) possibles, que les Ni sont indépendantes par hypothèse et suivent toutes la loi uniforme

sur [[1; 3]], P(Y = k) = 6

( k−1∏
i=1

P(Ni = a)
)
P(Nk = b) = 6

3k
. (Y ̸= +∞) =

+∞∪
k=2

(Y = k) (réunion incompatible)

donc, par σ-additivité, P(Y ̸= +∞) =
+∞∑
k=2

6

3k
= 6

9

+∞∑
k=2

1

3k−2 = 6

9
× 1

1− (1/3)
= 1. Comme attendu, on en

conclut que P(Y = +∞) = 0 (il est presque sûr d’arriver à avoir deux numéros différents).

b. D’après la question précédente, (Y − 1)(Ω) = N∗ et ∀k ∈ N∗, P(Y − 1 = k) = 6

3k+1 = 2

3
×
(
1

3

)k−1

donc Y − 1 suit la loi géométrique de paramètre 2

3
. Ainsi, d’après le cours et par linéarité de l’espérance,

E(Y) = E(Y − 1) + 1 = 3

2
+ 1 = 5

2
et V(Y) = V(Y − 1) =

1− (2/3)

(2/3)2
= 3

4
.

c. Pour (m,n) ∈ (N∗)2, on a P(Y = m,Z = n) = 0 si n 6 m ou si m = 1 par construction. Si n > m > 2,

on a (Y = m,Z = n) = (Y = m,Z− Y = n−m) et Z− Y représente le temps d’attente du troisième numéro

une fois obtenus les deux premiers. Z − Y et Y sont donc indépendants et Z − Y suit la loi géométrique de

paramètre 1

3
donc P(Y = m,Z = n) = P(Y = m)P(Z− Y = n−m) = 6

3m
×
(
2

3

)n−m−1

× 1

3
= 2n−m

3n−1 .

d. Par construction, Z(Ω) ⊂ (N∗ ∪ {+∞}) \ {1, 2}. Pour n > 3, (Z = n) =

n−1∪
m=2

(Y = m,Z = n) (réunion

incompatible) donc P(Z = n) =
n−1∑
m=2

2n−m

3n−1 = 2n−2

3n−1

n−1∑
m=2

1

2m−2 = 2n−2

3n−1 × 1− (1/2)n−2

1− (1/2)
= 2n−1 − 2

3n−1 .

À nouveau, (Z ̸= +∞) =
+∞∪
n=3

(Z = n) donc P(Z ̸= +∞) =
+∞∑
n=3

2n−1 − 2

3n−1 = 4

9

+∞∑
n=3

2n−3

3n−3 − 2

9

+∞∑
n=3

1

3n−3 donc

P(Z ̸= 0) = 4

9
× 1

1− (2/3)
− 2

9
× 1

1− (1/3)
= 4

3
− 1

3
= 1. Comme attendu, on a P(Z = +∞) = 0 (il est

presque sûr d’arriver à avoir les trois numéros).
∑
n>3

nP(Z = n) converge car, par croissances comparées,

nP(Z = n) = n2n−1 − 2

3n−1 =
+∞

o

(
1

n2

)
. Ainsi, E(Z) =

+∞∑
n=3

nP(Z = n) =
+∞∑
n=3

n2n−1 − 2

3n−1 . Or, pour tout

x ∈]− 1; 1[,
+∞∑
n=3

nxn−1 =
( +∞∑

n=3

xn
)′

=
(

1

1− x
− 1− x− x2

)′
= 1

(1− x)2
− 1− 2x en dérivant terme à terme

à l’intérieur de l’intervalle ouvert de convergence. En écrivant E(Z) =
+∞∑
n=3

n

(
2

3

)n−1

− 2
+∞∑
n=3

n

(
1

3

)n−1

, on a

donc E(Z) = 1

(1− (2/3))2
− 1− 2(2/3)− 2

(
1

(1− (1/3))2
− 1− 2(1/3)

)
= 11

2
.
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On pouvait dire, par indépendance de Y et Z− Y, que E(Z) = E(Y) + E(Z− Y) = 5

2
+ 3 puisque Z− Y suit

la loi géométrique de paramètre 1

3
.

� �
11.117� �a. Z(Ω) ⊂ N et ∀k ∈ N, comme X et Y sont à valeurs dans N, on a (Z = k) =

k⊔
i=0

(X = i, Y = k − i)

donc Z est une variable aléatoire car X et Y le sont. Comme ces évènements sont incompatibles, on a

P(Z = k) =
k∑

i=0

P(X = i)P(Y = k− i) =
k∑

i=0

e−λ λ
i

i!
e−µ µk−i

(k− i)!
= e−(λ+µ)

k!

k∑
i=0

(
k

i

)
λiµk−i =

e−(λ+µ)

k!
(λ+ µ)k.

Ceci prouve que Z = X+ Y suit la loi de Poisson de paramètre λ+ µ.

b. Si Z = n, on a forcément X ∈ [[0;n]]. Soit k ∈ [[0;n]], calculons P(X = k|Z = n) =
P(X = k, Z = n)

P(Z = n)
. Or

(X = k, Z = n) = (X = k, Y = n − k) donc, par indépendance de X et Y, en posant p = λ

λ+ µ
∈]0; 1[, on a

P(X = k|Z = n) =
P(X = k)P(Y = n− k)

P(Z = n)
= e−λλke−µµn−kn!

k!(n− k)!e−(λ+µ)(λ+ µ)n
=

(
n

k

)
pk(1 − p)n−k. Ainsi, la loi

de X sachant (Z = n) est la loi binomiale B

(
n, λ

λ+ µ

)
.� �

11.118� �a. On peut mettre un jeton dans chaque urne et on peut mettre tous les jetons dans l’urne U1, ce sont les

cas extrêmes. Tous les cas intermédiaires sont possibles. Ainsi, Xn(Ω) = [[0;n− 1]]. Si on note Lk le numéro

de l’urne dans laquelle on met le k-ième jeton, on a (Xn = 0) =
n∩

k=1

(Lk = k) (le jeton k dans l’urne Uk)

ou (Xn = n − 1) =
n∩

k=1

(Lk = 1) (tous les jetons dans l’urne U1) donc, par indépendance des “placements”,

P(Xn = 0) =
n∏

k=1

P(Lk = k) =
n∏

k=1

1

k
= 1

n!
et P(Xn = n) =

n∏
k=1

P(Lk = 1) =
n∏

k=1

1

k
= 1

n!
.

b. Comme le premier jeton va dans l’urne U1 par définition, P(B1 = 1) = 0 et P(B1 = 0) = 1.

Soit k ∈ [[2;n]], les k− 1 premiers jetons ne peuvent pas aller dans l’urne Uk par construction, et l’urne Uk

est vide à la fin si et seulement si les n − k + 1 derniers jetons ne sont pas mis dans l’urne Uk. Ainsi, on a

(Bk = 1) =

n∩
i=k

(Li ̸= k). Par “indépendance des jetons”, P(Bk = 1) =
n∏

i=k

P(Li ̸= k) =
n∏

i=k

i− 1

i
= k− 1

n

par télescopage multiplicatif (marche aussi si k = 1) : Bk suit la loi de Bernoulli de paramètre k− 1

n
.

c. Comme Xn =
n∑

k=2

Bk, E(Xn) =
n∑

k=2

E(Bk) =
n∑

k=2

k− 1

n
=

n(n− 1)
2n

= n− 1

2
par linéarité de l’espérance.

D’après le cours, V
( n∑

k=2

Bk

)
=

n∑
k=2

V(Bk) + 2
∑

26i<j6n

Cov(Bi, Bj). Comme Bk ∼ B

(
k− 1

n

)
, on sait que

V(Bk) =
k− 1

n

(
1− k− 1

n

)
=

(k− 1)(n− k+ 1)

n2 . De plus, Cov(Bi, Bj) = E(BiBj)− E(Bi)E(Bj) et la variable

aléatoire BiBj suit la loi de Bernoulli de paramètre P(BiBj = 1) = P(Bi = 1, Bj = 1) car elle ne peut valoir

que 0 ou 1. Comme avant, si i < j et n > 2, (Bi = 1, Bj = 1) =
( j−1∩

k=i

(Lk ̸= i)
)
×
( n∩

k=j

(Lk /∈ {i, j})
)
d’où

P(Bi = 1, Bj = 1) =
( j−1∏

k=i

k− 1

k

)
×
( n∏

k=j

k− 2

k

)
= i− 1

j− 1
× (j− 2)(j− 1)

n(n− 1)
=

(i− 1)(j− 2)
n(n− 1)

par indépendance des

Lk. Ainsi, V(Xn) =
n∑

k=2

(k− 1)(n− k+ 1)

n2 + 2
∑

26i<j6n

(i− 1)(j− 2)
n(n− 1)

. En décalant les indices dans les deux
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sommes, on obtient V(Xn) =
1

n2

n−1∑
m=1

m(n−m)+ 2

n(n− 1)

n−1∑
v=2

(v−1)
( v−1∑

u=1

u

)
. On connâıt ces sommes, et on

a V(Xn) =
n2(n− 1)

2n2 − (n− 1)n(2n− 1)

6n2 + 1

n(n− 1)

n−1∑
v=2

(v−1)2v. En écrivant v = (v−1)+1 et en décalant à

nouveau, V(Xn) =
n− 1

2
− (n− 1)(2n− 1)

6n
+ 1

n(n− 1)

(
(n− 2)2(n− 1)2

4
+

(n− 2)(n− 1)(2n− 3)
6

)
. Après

simplifications, avec V(X1) = 0, on a ∀n > 2, V(Xn) =
3n3 − 9n2 + 10n− 2

12n
.� �

11.119� �a. X est le nombre de succès dans une répétition de n expériences (obtenir la face 1 au k-ième lancer) de

Bernoulli indépendantes de même paramètre p. D’après le cours, X suit alors la loi binomiale B(n, p). De

même, Y ∼ B(n, q). Bien sûr, puisqu’il n’y a que des faces 1, 2 ou 3, en notant Z le nombre de 3 obtenus, on

a Z = n− X− Y et, comme avant, Z ∼ B(n, r).

b. Notons, pour un lancer m, Lm le résultat du m-ième lancer. Pour (i, j) ∈ [[1;n]]2 tel que i + j 6 n, on

a (X = i, Y = j) =
⊔

16a1<···<ai6n

16b1<···<bj6n

I={a1,···,ai}∩{b1,···,bj}=∅

( i∩
k=1

(Lak
= 1)

)
∩
( j∩

k=1

(Lbk
= 2)

)
∩
( ∩

k∈[[1;n]]\I

(Lk = 3)
)
. Par

indépendance des Lk, chaque évènement
( i∩

k=1

(Lak
= 1)

)
∩
( j∩

k=1

(Lbk
= 2)

)
∩
( ∩

k∈[[1;n]]\I

(Lk = 3)
)
a pour

probabilité piqjrn−i−j. Or il y a

(
n

i

)(
n− i

j

)
évènements de ce type, c’est-à-dire de manière de choisir i

entiers dans [[1;n]] (les lancers qui vont donner 1) puis j entiers dans les n− i restants (ceux qui vont donner

2), les autres donnant forcément 3.

On trouve donc, si (i, j) ∈ [[1;n]]2 tel que i+ j 6 n, P(X = i, Y = j) =

(
n

i

)(
n− i

j

)
piqjrn−i−j.

Comme (X = n, Y = n) = ∅ car on ne peut pas avoir n fois 1 et n fois 2 en n lancers, P(X = n, Y = n) = 0

alors que P(X = n)P(Y = n) = pnqn ̸= 0 d’après a.. Ainsi, X et Y ne sont pas indépendantes.

d. Comme N(Ω) = N, on a aussi X(Ω) = N. Pour i ∈ N, (X = i) =
+∞⊔
n=i

(X = i, N = n) car on a forcément

X 6 N. Ces évènements étant incompatibles, par σ-additivité, on a P(X = i) =
+∞∑
n=i

P(X = i, N = n) donc

P(X = i) =
+∞∑
n=i

P(X = i|N = n)P(N = n). Or, la loi de X sachant (N = n) est la loi binomiale de la

question a. car on compte le nombre de 1 dans une répétition indépendante de lancers de même loi. Ainsi,

P(X = i) =
+∞∑
n=i

(
n

i

)
pi(1 − p)n−i e

−λλn

n!
=

e−λpiλi

i!

+∞∑
n=i

λn−i(1− p)n−i

(n− i)!
= e−λpiλi

i!
× eλ(1−p) =

e−pλ(pλ)i

i!
.

Par conséquent, X suit dans ce cas la loi de Poisson de paramètre pλ. Par symétrie, Y ∼ P(qλ).

Soit (i, j) ∈ N2, (X = i, Y = j) =
+∞⊔

n=i+j

(X = i, Y = j, N = n) car on a X + Y 6 N. À nouveau, par

incompatibilité de ces évènements et σ-additivité, on a P(X = i, Y = j) =
+∞∑

n=i+j

P(X = i, Y = j, N = n)

donc P(X = i, Y = j) =
+∞∑

n=i+j

P(X = i, Y = j|N = n)P(N = n). En se servant de la question b., on a donc
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P(X = i, Y = j) =
+∞∑

n=i+j

(
n

i

)(
n− i

j

)
piqjrn−i−j e

−λλn

n!
=

e−λpiqjλi+j

i!j!

+∞∑
n=i+j

rn−i−jλn−i−j

(n− i− j)!
qui se simplifie

en P(X = i, Y = j) = e−λpiqjλi+jerλ

i!j!
= e−λ(p+q)piqjλi+j

i!j!
= e−pλpiλi

i!
× e−qλ)qjλj

j!
car r = 1− p− q. On a

donc ∀(i, j) ∈ N2, P(X = i, Y = j) = P(X = i)× P(Y = j) d’après d. donc X et Y sont indépendantes.� �
11.120� �a. L’application nulle est une variable aléatoire admettant un moment d’ordre 2 de Ω dans R et une

combinaison linéaire de deux variables aléatoires admettant des moments d’ordre 2 est aussi une variable

aléatoire admettant un moment d’ordre 2 d’après le cours, donc E est un espace vectoriel de dimension

inférieure ou égale à n car engendré par n “vecteurs”. La variable aléatoire nulle appartient à G. Si (X, Y) ∈ G2

et (λ, µ) ∈ R2, λX+ µY est une variable aléatoire réelle sur Ω et, comme 0 6 E(XY)2 6 E(X2)E(Y2) = 0 par

l’inégalité de Cauchy-Schwarz, E((λX+ µY)2) = λ2 E(X2) + 2λµE(XY) + µ2 E(Y2) = 0. Ainsi, G est bien

un sous-espace vectoriel de E et, en tant que tel en dimension finie, admet un supplémentaire F.

Si (X, Y) ∈ E2, par l’inégalité de Cauchy-Schwarz, XY admet une espérance finie donc f est bien définie sur

E. f est bilinéaire par linéarité de l’espérance, symétrique par commutativité du produit dans R et positive

car X2 étant une variable aléatoire positive, on a E(X2) = f(X, X) > 0. Par contre, f(X, X) = E(X2) = 0 pour

toute variable aléatoire X non nulle de G donc f n’est pas définie positive donc pas un produit scalaire sur E

si G ̸= {0} car pour toute variable aléatoire X non nulle de G. Néanmoins, si G = {0} et si f(X) = E(X2) = 0,

alors X ∈ G donc X = 0 et f est bien définie positive.

b. Par contre, g = f|F2 : F2 → R définie par ∀(X, Y) ∈ F2, g(X, Y) = f(X, Y) = E(XY) a les mêmes propriétés

de bilinéarité, symétrie, et positivité en tant qu’application induite mais elle est aussi définie positive car

si X ∈ F et g(X, X) = E(X2) = 0, on a X ∈ F ∩ G = {0E} donc X = 0 est la variable aléatoire nulle. Par

conséquent, g = f|F2 est un produit scalaire sur F.

c. Pour (X, Y) ∈ F2, on a E(XY)2 6 E(X2)E(Y2) par l’inégalité de Cauchy-Schwarz.

d. Méthode 1 : les variables aléatoires Z et 11(Z>0) admettent un moment d’ordre 2 donc, par l’inégalité

de Cauchy-Schwarz, on a E(11(Z>0)Z)
2 6 E(112(Z>0))E(Z

2). Or 112(Z>0) = 11(Z>0) ce qui montre que

E(112(Z>0)) = P(Z > 0) et 11(Z>0)Z = Z car Z est positive. On a donc E(Z)2 6 P(Z > 0)E(Z2) donc, comme

E(Z2) > 0 par hypothèse, on a bien P(Z > 0) > E(Z)2

E(Z2)
.

Méthode 2 : par définition E(Z) =
∑

z∈Z(Ω)

zP(Z = z) > 0 puis par inégalité de Cauchy-Schwarz sur

les séries, en écrivant E(Z) =
∑

z∈Z(Ω)
z>0

(z
√

P(Z = z))(
√

P(Z = z)), comme ces séries convergent, on obtient

E(Z) 6
( ∑

z∈Z(Ω)
z>0

z2 P(Z = z)
)
×
( ∑

z∈Z(Ω)
z>0

P(Z = z)
)
= E(Z2)P(Z > 0) donc P(Z > 0) > E(Z)2

E(Z2)
car E(Z2) > 0.

e. Notons Ai le nombre d’arêtes issues du sommet i, on a Ai =
n∑

j=1
j ̸=i

Xi,j par définition donc, comme les

variables aléatoires Xi,j suivent la même loi de Bernoulli et qu’elles sont indépendantes, d’après le cours,

Ai suit la loi binomiale B(n− 1, pn).

f. Aucune arête ne part du sommet i si et seulement si Ai = 0. Ainsi, Zn =
n∑

i=1

11(Ai=0) et, par linéarité de
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l’espérance, E(Zn) =
n∑

i=1

E(11(Ai=0)) =
n∑

i=1

P(Ai = 0) = n(1− pn)
n−1.

g. Comme pn = c
ln(n)
n

, on a E(Zn) = n(1− p)n−1 = n exp

(
(n− 1) ln

(
1− c

ln(n)
n

))
et lim

n→+∞
ln(n)
n

= 0

donc (n−1) ln
(
1−c

ln(n)
n

)
=
+∞

n

(
1− 1

n

)(
−c

ln(n)
n

+O

(
ln(n)2

n2

))
=
+∞

−c ln(n)+o(1) (après regroupement).

Ainsi, exp
(
(n−1) ln

(
1−c

ln(n)
n

))
=
+∞

e−c ln(n)+o(1) =
+∞

n−ceo(1) ∼
+∞

n−c et on conclut que E(Zn) ∼
+∞

n1−c.

Ainsi, lim
n→+∞

E(Zn) = 0 si c > 1, lim
n→+∞

E(Zn) = +∞ si c < 1 et lim
n→+∞

E(Zn) = 1 si c = 1.

h. Comme Zn est à valeurs dans N, on a E(Zn) =
+∞∑
k=1

P(Zn > k) > P(Zn > 1) = P(Zn > 0). Ainsi, il vient

P(Zn > 1) 6 E(Zn). C’est d’ailleurs direct par Markov car Zn est à valeurs positives donc, avec ε = 1 > 0,

P(Zn > 1) 6 E(Zn)
1

. Or, comme ∀n > n0, E(Zn) 6 n exp

(
(n − 1) ln

(
1 − c

ln(n)
n

))
car c

ln(n)
n

6 pn < 1

pour tout n > n0. On a donc, d’après g. et par encadrement, lim
n→+∞

P(Zn > 0) = 0 dans ces conditions.

On n’a presque sûrement aucun sommet isolé quand n tend vers +∞.

i. On développe Z2
n =

( n∑
i=1

11(Ai=0)

)2
=

n∑
i=1

112(Ai=0) + 2
∑

16i<j6n

11(Ai=0)11(Aj=0) ce qui donne, comme

112(Ai=0) = 11(Ai=0), la relation Z2
n = Zn + 2

∑
16i<j6n

11(Ai=0)∩(Aj=0) d’où, par linéarité de l’espérance,

E(Z2
n) = E(Zn) + 2

∑
16i<j6n

P(Ai = 0, Aj = 0). Il y a une arête possible entre les sommets i et j, et n − 2

autres arêtes possibles arrivant en i et n − 2 autres arrivant en j. Par indépendance mutuelle, on obtient

P(Ai = 0, Aj = 0) = (1 − pn)
2n−3. Ainsi, en reportant, E(Z2

n) = n(1 − pn)
n−1 + n(n − 1)(1 − pn)

2n−3

donc, en factorisant par rapport aux puissances de 1− pn, E(Z2
n) = n(1− pn)

n−1(1+ (n− 1)(1− pn)
n−2).

D’après la question d., on a donc 1 > P(Zn > 0) > E(Zn)
2

E(Z2
n)

= n

n− 1
× (1− pn)× 1

1+
1

(n− 1)(1− pn)
n−2

.

Or lim
n→+∞

n

n− 1
= 1, lim

n→+∞
(1 − pn) = 1 car ∃n0 ∈ N∗, ∀n > n0, pn 6 c

ln(n)
n

et, comme en question g.,

on a ∀n > n0, (n− 1)(1− pn)
n−2 > (n− 1) exp

(
(n− 2) ln(1− c

ln(n)
n

)
−→

n→+∞
+∞ donc lim

n→+∞
E(Zn)

2

E(Z2
n)

= 1

donc lim
n→+∞

P(Zn > 0) = 1 par encadrement. Il y a presque sûrement au moins un point isolé dans ce cas

quand n tend vers +∞ (en fait il y en a beaucoup puisque lim
n→+∞

E(Zn) = +∞).� �
11.121� �a. Xn représente le nombre de succès (la face du dé lancé vaut 1) lors d’une répétition de lancers

indépendants suivant la même loi de Bernoulli de paramètre 1

2
(deux faces sur quatre). D’après le cours,

Xn suit la loi binomiale B

(
n, 1

2

)
. De même, comme il n’existe qu’une face sur quatre marquée 0 ou 2, Yn et

Zn = n−Xn − Yn (qui représente le nombre de faces 2) suivent la loi binomiale B

(
n, 1

4

)
. Ainsi, E(Xn) =

n

2

et E(Yn) = n

4
.

b. Comme dit à la question précédente, Zn = n−Xn−Yn suit la loi B
(
n, 1

4

)
donc (Xn+Yn)(Ω) = [[0;n]] et,

pour k ∈ [[0;n]], P(Xn + Yn = k) = P(Zn = n− k) =

(
n

n− k

)(
1

4

)n−k(3
4

)k
ce qui montre que Xn + Yn suit

la loi binomiale B

(
n, 3

4

)
. On pouvait aussi dire que Xn + Yn représente le nombre de fois où l’on tombe sur
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les faces 0 ou 1 (3 faces sur 4) lors de n lancers indépendants avec la même conclusion, Xn + Yn ∼ B

(
n, 3

4

)
.

c. Si Fk est le numéro de la face du lancer k, pour (i, j) ∈ [[0;n]]2,
(
(Xn, Yn) = (i, j)

)
= ∅ si i + j > n et(

(Xn, Yn) = (i, j)
)
=

⊔
16m1<···<mi6n

16p1<···<pj6n

{m1,···,mi}(=M)∩{p1,···,pj}(=P)=∅

i∩
k=1

(Fmk
= 1) ∩

j∩
k=1

(Fpk
= 0) ∩

∩
k/∈M∪P

(Fk = 2) (réunion

d’évènements incompatibles) donc, par indépendance des Fm et σ-additivité, on obtient la relation suivante :

P((Xn, Yn) = (i, j)) = N

(
1

2

)i(
1

4

)j(
1

4

)n−i−j

où N est le nombre de (i + j)-uplets (m1, · · · , mi, p1, · · · , pj)

vérifiant les conditions imposées. Or il y a

(
n

i

)
façons de choisir les (m1, · · · , mi) et, une fois choisi ce

i-uplet, il y a, de manière indépendante,

(
n− i

j

)
façons de choisir le j-uplet (p1, · · · , pj) parmi les n − i

lancers restants et un seul choix pour les indices correspondant à la face 2. Au total, cela donne l’expression

N =

(
n

i

)
×
(
n− i

j

)
=

n!

i!j!(n− i− j)!
choix de tels (i+ j)-uplets (m1, · · · , mi, p1, · · · , pj).

Ainsi, P
(
(Xn, Yn) = (i, j)

)
= 0 si i+ j > n et P

(
(Xn, Yn) = (i, j)

)
= n!

i!j!(n− i− j)!

(
1

2

)i(
1

4

)n−i

si i+ j 6 n.

d. Comme Xn et Yn sont bornées, la covariance demandée existe et Cov(Xn, Yn) = E(XnYn)− E(Xn)E(Yn)

donc Cov(Xn, Yn) = E(XnYn)− n2

8
d’après la question a..

Méthode 1 : pour une variable aléatoire réelle U admettant un moment d’ordre 2, on a E(U2) = V(U)+E(U)2

donc, comme on a aussi XnYn =
(Xn + Yn)

2 − X2
n − Y2

n

2
, par linéarité de l’espérance, cela donne la relation

E(XnYn) =
1

2

(
V(Xn + Yn) + E(Xn + Yn)

2 − V(Xn) − V(Yn) − E(Xn)
2 − E(Yn)2

)
. Or on connâıt les lois

de Xn, Yn et Xn + Yn donc E(Xn + Yn) = 3n

4
, E(Xn) = n

2
, E(Yn) = n

4
, V(Xn) = n

4
, V(Yn) = 3n

16
et

V(Xn+Yn) =
3n

16
ce qui donne E(XnYn) =

1

2

(
3n

16
+ 9n2

16
− n

4
− 3n

16
− n2

4
− n2

16

)
=

n(n− 1)
8

. Ainsi, on trouve

Cov(Xn, Yn) = E(XnYn)− n2

8
= −n

8
.

Méthode 2 : par le théorème de transfert appliqué à (Xn, Yn) dont on connâıt la loi avec c. et avec f : N2 → N

définie par f(i, j) = ij, on a E(XnYn) =
∑

i+j6n

ijP
(
(Xn, Yn) = (i, j)

)
=

∑
i+j6n

ij n!
i!j!(n− i− j)!

(
1

2

)i(
1

4

)n−i

.

Traitons deux cas :

n = 1 Alors X1Y1 = 0 car il n’y a qu’un seul lancer donc E(X1Y1) = 0.

n > 2 E(XnYn) =
n(n− 1)

8

∑
i+j6n

i>0,j>0

(n− 2)!
(i− 1)!(j− 1)!((n− 2)− (i− 1)− (j− 1))!

(
1

2

)i−1(
1

4

)(n−2)−(i−1)

et,

avec i′ = i − 1, j′ = j − 1, E(XnYn) =
n(n− 1)

8

∑
i′+j′6n−2

(n− 2)!
i′!j′!((n− 2)− i′ − j′)!

(
1

2

)i′(
1

4

)n−2−i′

.

Avec c. appliquée avec n− 2 à la place de n, comme Ω =
⊔

i′+j′6n−2

(
(Xn−2, Yn−2) = (i′, j′)

)
, on a

∑
i′+j′6n−2

P
(
(Xn−2, Yn−2) = (i′, j′)

)
=

∑
i′+j′6n−2

(n− 2)!
i′!j′!(n− 2− i′ − j′)!

(
1

2

)i′(
1

4

)n−2−i′

= 1. Cette

relation est même vraie pour n = 2 car
∑

i′+j′60

n!
i′!j′!(0− i′ − j′)!

(
1

2

)i′(
1

4

)0−i′

=
(
1

2

)0(
1

4

)0
= 1.

Ainsi, E(XnYn) =
n(n− 1)

8
.
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Dans tous les cas, on a donc E(XnYn) =
n(n− 1)

8
donc Cov(Xn, Yn) =

n(n− 1)
8

− n2

8
= −n

8
.� �

11.122� �Bien sûr, on suppose les tirages indépendants et équiprobables. Pour tout entier n ∈ N, on pose

l’évènement Rn = “on tire une boule rouge au tirage n”.

a. Soit n > 0 et k ∈ [[0;N− 1]], on a deux possibilités pour avoir k boules rouges au bout de n+ 1 tirages :

• soit on a k+ 1 boules rouges au bout de n tirages et on a tiré une boule rouge au tirage n+ 1 qui a

été remplacée par une boule verte.

• soit on a déjà k boules rouges au bout de p tirages et on a tiré une boule verte au tirage p+ 1.

Ceci se traduit par (Xn+1 = k) =
(
(Xn = k) ∩ Rn+1

)
⊔
(
(Xn = k + 1) ∩ Rn+1

)
. Par incompatibilité de ces

deux évènements, P(Xn+1 = k) = P(Xn=k)(Rn+1)P(Xn = k) + P(Xn=k+1)(Rn+1)P(Xn = k+ 1) (1).

Ou alors, comme Xn(Ω) ⊂ [[N − n;N]], avec le système complet d’évènements
(
(Xn = i)

)
N−n6i6N

et la

formule des probabilités totales, P(Xn + 1 = k) =
N∑

i=N−n

P(Xn = i)P(Xn=i)(Xn+1 = k) sachant que i ̸= k et

i ̸= k+ 1, P(Xn=i)(Xn+1 = k) = 0, ce qui donne à nouveau la formule (1).

Or, si Xn = k, il y a dans l’urne k boules rouges et N− k boules vertes donc P(Xn=k)(Rn+1) =
N− k

N
. Et si

Xn = k+ 1, il y a dans l’urne k+ 1 boules rouges et N− k− 1 boules vertes donc P(Xn=k)(Rn+1) =
k+ 1

N
.

Ainsi, avec la relation (1), on a P(Xn+1 = k) = N− k

N
P(Xn = k) + k+ 1

N
P(Xn = k+ 1).

Il reste à parler des cas particuliers :

• si n = 0 et k = N, on a (X1 = N) = ∅ = (X0 = N+1) = ∅ et (X0 = N) = Ω donc, comme N−N

N
= 0,

on a encore la relation P(X0+1 = N) = N−N

N
P(X0 = N) + N+ 1

N
P(X0 = N+ 1) = 0.

• si (n > 1 et k > N) ou (n = 0 et k > N), on a (Xn+1 = N) = ∅ = (Xn = N) = (Xn = N+ 1) donc on

a toujours la relation P(Xn+1 = k) = N− k

N
P(Xn = k) + k+ 1

N
P(Xn = k+ 1) = 0.

Ainsi, dans tous les cas, ∀n > 0, ∀k > 0, P(Xn+1 = k) = N− k

N
P(Xn = k) + k+ 1

N
P(Xn = k+ 1).

b. Pour n > 0, on a E(Xn+1) =
N∑

k=0

kP(Xn+1 = k) car Xn(Ω) ⊂ [[0;N]] donc, avec la question précédente, il

vient E(Xn+1) =
N∑

k=0

k

(
N− k

N
P(Xn = k)+ k+ 1

N
P(Xn = k+1)

)
qu’on décompose, puisque k = (k+1)−1, en

E(Xn+1) =
N∑

k=0

kP(Xn = k)− 1

N

N∑
k=0

k2 P(Xn = k)+ 1

N

N∑
k=0

(k+1)2 P(Xn = k+1)− 1

N

N∑
k=0

(k+1)P(Xn = k+1).

Après simplification et changement d’indice, comme P(Xn = N+ 1) = 0, il ne reste dans cette formule que

E(Xn+1) =
N∑

k=0

kP(Xn = k)− 1

N

N−1∑
k=0

(k+ 1)P(Xn = k+ 1) =
(
1− 1

N

)
E(Xn).

c.
(
E(Xn)

)
n>0

est géométrique et, comme E(X0) = N, ∀n ∈ N, E(Xn) = N

(
1− 1

N

)n
avec 1− 1

N
∈]−1; 1[. Or

E(Xn) =
N∑

k=0

kP(Xn = k) =
N∑

k=1

kP(Xn = k) >
N∑

k=1

P(Xn = k) = P(Xn > 1) donc 0 6 P(Xn > 1) 6 E(Xn).

Comme Xn est à valeurs positives, on a aussi directement P(Xn > 1) 6 E(Xn)
1

= E(Xn) par inégalité de

Markov. Comme lim
n→+∞

E(Xn) = 0, par encadrement, lim
n→+∞

P(Xn > 1) = 0.

Comme
E(XN)

N
=
(
1− 1

N

)N
= exp

(
N ln

(
1− 1

N

))
et ln

(
1− 1

N

)
∼
+∞

− 1

N
donc lim

N→+∞
N ln

(
1− 1

N

)
= −1,
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par continuité de exp, on a lim
N→+∞

E(XN)
N

= 1

e
∼ 0, 37.

d. On a Y = 0 si et seulement s’il reste des boules rouges (il y en a au moins une dans l’urne) à toutes

les étapes. Ainsi, (Y = 0) =

+∞∩
n=0

(Xn > 1) donc on a bien (Y = 0) ⊂
n∩

k=1

(Xk > 1) pour un entier n ∈ N∗.

Comme la suite d’évènements
(
(Xk > 1)

)
k>1

est décroissante car si Xk+1 > 1, a fortiori, on a Xk > 1, on

a (Y = 0) ⊂
n∩

k=1

(Xk > 1) = (Xn > 1). Par croissance de P, il vient 0 6 P(Y = 0) 6 P(Xn > 1) donc, par

encadrement, P(Y = 0) = 0 en passant à la limite dans cette double inégalité d’après c..� �
11.123� �a. Posons M =

(
x y

z x

)
, alors χM =

∣∣∣∣X− x −y

−z X− x

∣∣∣∣ = (X− x)2 − yz. Traitons trois cas :

• Si yz > 0, χM = (X− x−√
yz)(X− x+

√
yz) est scindé à racines simples sur R donc la matrice M

est diagonalisable dans M2(R) d’après le cours.

• Si yz = 0, χM = (X − x)2 est scindé sur R et M − xI2 =

(
0 y

z 0

)
donc M est diagonalisable si

et seulement si dim(Ex(M)) = 2 car x est valeur propre de M d’ordre de multiplicité 2. D’après la

formule du rang, dim(Ex(M)) = 2− rang (M− xI2) donc la matrice M est diagonalisable dans M2(R)

si et seulement si M− xI2 = 0 ce qui est équivalent à y = z = 0.

• Si yz < 0, χM = (X − x − i
√
−yz)(X − x + i

√
−yz) donc χM n’est même pas scindé sur R donc la

matrice M n’est pas diagonalisable dans M2(R).

Ainsi, M est diagonalisable dans M2(R) si et seulement yz > 0 ou (y = z = 0).

b. Projecteur : M2 =

(
x2 + yz 2xy

2xz x2 + yz

)
donc M2 = M ⇐⇒ (x − x2 − yz = (2x − 1)y = (2x − 1)z = 0).

Or (2x− 1)y = 0 ⇐⇒
(
x = 1

2
ou y = 0

)
et (2x− 1)z = 0 ⇐⇒

(
x = 1

2
ou z = 0

)
, (x− x2 = 0 ⇐⇒ (x = 0 ou

x = 1) et
(
1

2
− 1

4
− yz = 0

)
⇐⇒

(
yz = 1

4

)
. Ainsi, on a l’équivalence suivante, juste pour l’aspect projecteur

de M : M2 = M ⇐⇒
(
(x = y = z = 0) ou (x = 1, y = z = 0) ou

(
x = 1

2
, yz = 1

4

))
. Il y a donc une infinité

de matrices M de F dont l’endomorphisme canoniquement associé est un projecteur.

Projecteur orthogonal : comme la base canonique est une base orthonormale dans R2 euclidien canonique,

M représente un endomorphisme auto-adjoint si et seulement si M est symétrique et MT = M ⇐⇒ y = z. Or

y2 = 1

4
⇐⇒ y = ±1

2
et on sait d’après le cours que M représente un projecteur orthogonal si et seulement

si l’endomorphisme canoniquement associé est un projecteur auto-adjoint. D’après les deux équivalences

précédentes, l’endomorphisme canoniquement associé à M est un projecteur orthogonal si et seulement si(
(x = y = z = 0) ou (x = 1, y = z = 0) ou

(
x = y = z = 1

2

))
ou
(
x = 1

2
, y = z = −1

2

))
. Il n’y a donc

que quatre telles matrices,

(
0 0

0 0

)
(endomorphisme nul de rang 0),

(
1 0

1 0

)
(endomorphisme identité de

rang 2, 1

2

(
1 1

1 1

)
(projection orthogonale sur la droite Vect((1, 1)) de rang 1) et 1

2

(
1 −1

−1 1

)
(projection

orthogonale sur la droite Vect((1,−1)) de rang 1).

c. Comme det(M) = X2 − YZ, (M ∈ GL2(R) ⇐⇒ (det(M) ̸= 0) ⇐⇒ (X2 ̸= YZ). Or, en étudiant tous les
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cas, (X2 = YZ) =
( 6⊔

k=1

(X = k, Y = k, Z = k)
)
⊔
(
(X = 2, Y = 1, Z = 4) ⊔ (X = 2, Y = 4, Z = 1)

)
. On a

P(X2 = YZ) =
6∑

k=1

P(X = k, Y = k, Z = k)+P(X = 2, Y = 1, Z = 4)+P(X = 2, Y = 4, Z = 1) par incompatibilité

de ces évènements. De plus, comme X, Y, Z sont indépendantes et suivent la loi uniforme sur [[1; 6]], on a

P(X2 = YZ) = 6

63
+ 1

63
+ 1

63
= 8

216
= 1

27
de sorte que P(M inversible) = 1− P(X2 = YZ) = 26

27
∼ 0, 96.

� �
11.124� �a. Comme X(Ω) = N par hypothèse et que (X > k) =

+∞⊔
n=k+1

(X = n), par incompatibilité de cette infinité

dénombrable d’évènements et σ-additivité, on a P(X > k) =
+∞∑

n=k+1

P(X = n) =
+∞∑

n=k+1

e−λλn

n!
. Or on sait

d’après le cours que eλ =
+∞∑
n=0

λn

n!
donc que 1 =

+∞∑
n=0

e−λλn

n!
et on a donc P(X > k) = 1−

k∑
n=0

e−λλn

n!
(1).

Or la formule de Taylor reste intégral appliquée à la fonction f = exp entre 0 et λ à l’ordre k donne,

puisque exp est de classe Ck+1 sur R, eλ = f(λ) =
k∑

n=0

(λ− 0)nf(n)(0)
n!

+
∫ λ

0

(λ− t)kf(k+1)(t)
k!

dt. Ainsi,

comme ∀n ∈ [[0; k]], f(n)(0) = 1, et ∀t ∈ [0; λ], f(k+1)(t) = et 6 eλ, par croissance de l’intégrale, on obtient

eλ 6
k∑

n=0

λn

n!
+ eλ
∫ λ

0

(λ− t)k

k!
dt =

k∑
n=0

λn

n!
+ eλ

[−(λ− t)k+1

(k+ 1)!

]λ
0
=

k∑
n=0

λn

n!
+ eλλk+1

(k+ 1)!
. On multiplie par

e−λ > 0 et 1−
k∑

n=0

e−λλn

n!
6 λk+1

(k+ 1)!
et, avec (1), cela donne bien P(X > k) = 1−

k∑
n=0

e−λλn

n!
6 λk+1

(k+ 1)!
.

b. N(Ω) = N∗ ∪ {+∞} et, pour n ∈ N∗, on a (N > n) =
+∞⊔
k=0

(
(X0 = k) ∩

n∩
i=1

(Xi 6 k)
)

en distinguant

selon les valeurs possibles de X0 puisque X0(Ω) = X(Ω) = N. Par incompatibilité de ces évènements et

indépendance de X0, · · · , Xn, on a donc P(N > n) =
+∞∑
k=0

(
P(X0 = k)

n∏
i=1

P(Xi 6 k)
)
. Comme X0, · · · , Xn

suivent la même loi de Poisson, on a P(N > n) =
+∞∑
k=0

e−λλk

k!

(
P(X 6 k)

)n
=

+∞∑
k=0

e−λλk

k!

(
1− P(X > k)

)n
.

Comme N est à valeurs dans N, N est d’espérance finie si et seulement si la série
∑
n>0

P(N > n) converge, ce

qui revient, grâce à l’expression précédente, à la sommabilité de la famille
(
e−λλk

k!

(
1− P(X > k)

)n)
(n,k)∈N2

.

On parle de familles de termes dans [0; +∞], donc le théorème de Fubini s’applique et on a la relation

E(N) =
+∞∑
n=0

P(N > n) =
+∞∑
n=0

( +∞∑
k=0

e−λλk

k!

(
1− P(X > k)

)n)
=

+∞∑
k=0

( +∞∑
n=0

e−λλk

k!

(
1− P(X > k)

)n))
. Comme

P(X > k) > 0 pour tout k ∈ N, on aurait donc E(N) =
+∞∑
k=0

e−λλk

k!
× 1

1− (1− P(X > k))
=

+∞∑
k=0

e−λλk

k!P(X > k)
.

Mais d’après la question précédente, ∀k ∈ N, e−λλk

k!P(X > k)
> e−λλk(k+ 1)!

k!λk+1 = (k+ 1)e
−λ

λ
ce qui est absurde

par comparaison car la série
∑
k>0

(k + 1)e
−λ

λ
diverge grossièrement. Par conséquent, la variable aléatoire N

n’admet pas une espérance finie.

c. Comme (N = +∞) =
+∞⊔
n=1

(N = n) et que ces évènements sont incompatibles, par σ-additivité, on parvient

à 1 − P(N = +∞) =
+∞∑
n=1

P(N = n). Or (N = n) =
+∞⊔
k=0

(
(X0 = k) ∩

n−1∩
i=1

(Xi 6 k) ∩ (Xn > k)
)
et, toujours

par incompatibilité de ces évènements, indépendance de X0, · · · , Xn, et comme X0, · · · , Xn suivent la même
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loi que X, P(N = n) =
+∞∑
k=0

(
P(X0 = k)

(n−1∏
i=1

P(Xi 6 k)
)
P(Xn > k)

)
=

+∞∑
k=0

P(X = k)P(X 6 k)n−1 P(X > k).

Ainsi,
+∞∑
n=1

P(N = n) =
+∞∑
n=1

+∞∑
k=0

P(X = k)P(X 6 k)n−1 P(X > k) =
+∞∑
k=0

P(X = k)P(X > k)
+∞∑
n=1

P(X 6 k)n−1

avec Fubini et, comme P(X > k) < 1,
+∞∑
n=1

P(N = n) =
+∞∑
k=0

P(X = k)P(X > k)
1− P(X 6 k)

=
+∞∑
k=0

P(X = k)P(X > k)
P(X > k)

d’où
+∞∑
n=1

P(N = n) =
+∞∑
k=0

P(X = k) = 1 car X(Ω) = N. P(N = +∞) = 0 donc N est presque sûrement finie.� �
11.125� �a. Par définition de ⌈X⌉, on a X 6 Y mais on n’a pas X 6 Y − 1 car Y est le plus petit entier k vérifiant

X 6 k donc X > Y− 1 et on a la double inégalité, comme pour la partie entière, X 6 Y < X+ 1. Comme Y est

à valeurs dans R+, que Y 6 X+ 1 alors que X+ 1 admet une espérance finie par hypothèse, par comparaison,

Y admet aussi une espérance finie. Comme Y est à valeurs dans N, d’après le cours, E(Y) =
+∞∑
k=0

P(Y > k).

De plus, pour k ∈ N, comme X 6 Y, on a l’inclusion (X > k) ⊂ (Y > k). De plus, comme Y − 1 < X, et que k

est un entier, on a (Y > k) = (Y > k+1) ⊂ (X > k). Ainsi, par double inclusion, on a (X > k) = (Y > k) ce qui

donne P(X > k) = P(Y > k). Cependant, 0 6 X 6 Y donc, par croissance de l’espérance, 0 6 E(X) 6 E(Y)

et on obtient bien 0 6 E(X) 6
+∞∑
k=0

P(Y > k) =
+∞∑
k=0

P(X > k).

b. Soit k ∈ N fixé et n ∈ N, par hypothèse on a 0 6 Xn+1 6 Xn donc (Xn+1 > k) ⊂ (Xn > k). En

posant An = (Xn > k), la suite (An)n∈N est donc décroissante et, par théorème de continuité décroissante, si

A =
∩
n∈N

An, on a P(A) = lim
n→+∞

P(An). Comme ∀ω ∈ Ω, lim
n→+∞

Xn(ω) = 0, on a A = ∅ car pour un ω ∈ Ω

fixé, ∃n0 ∈ N, ∀n > n0, 0 6 Xn 6 ε = k donc ω /∈ A. Ainsi, on a bien ∀k ∈ N, lim
n→+∞

P(Xn > k) = 0.

c. Pour k ∈ N, soit uk : R+ → R telle que uk(x) = P(X⌊x⌋ > k). On pose, pour x ∈ R+, u(x) =
+∞∑
k=0

uk(x).

(H1) Pour k ∈ N et x ∈ R+, on a 0 6 X⌊x⌋ 6 X0 par hypothèse donc (X⌊x⌋ > k) ⊂ (X0 > k) et uk est

bornée sur R+ avec ||uk||∞,R+ 6 P(X0 > k). Comme
∑
k>0

P(X0 > k) converge d’après a. car X0

est positive et admet une espérance finie, on a la convergence de la série
∑
k>0

||uk||∞,R+ donc la

convergence normale de la série de fonctions
∑
k>0

uk vers u sur R+.

(H2) Pour tout k ∈ N, la fonction uk admet une limite finie en +∞ d’après la question b. et on a

lim
x→+∞

uk(x) = lim
x→+∞

P(X⌊x⌋ > k) = ℓk = 0.

Par le théorème de double limite, on a donc lim
x→+∞

u(x) =
+∞∑
k=0

ℓk = 0 donc, en particulier, lim
n→+∞

u(n) = 0 ce

qui donne lim
n→+∞

+∞∑
k=0

P(Xn > k) = 0. Par encadrement, comme on a ∀n ∈ N, 0 6 E(Xn) 6
+∞∑
k=0

P(Xn > k)

d’après la question a., on en déduit que lim
n→+∞

E(Xn) = 0 (c’est le théorème de convergence dominée pour

les variables aléatoires).� �
11.126� �a. Il est implicitement admis dans l’énoncé qu’une suite (Sn)n∈N∗ de variables aléatoires indépendantes

de même loi de Bernoulli B(p) avec p ∈]0; 1[ est telle que toutes les Xn sont définies sur un même espace

probabilisé (Ω,A, P). On pose X1 = +∞ s’il n’existe aucun entier k tel que Sk = 1 et, dans le cas contraire,

X1 = Min({k ∈ N∗ | Sk = 1}) qui existe bien car la partie A = {k ∈ N∗ | Sk = 1} est alors non vide, incluse
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dans N et minorée par 0 donc son minimum existe.

On a déjà, par construction, X1(Ω) ⊂ N∗ ∪ {+∞} donc X1(Ω) est bien un ensemble au plus dénombrable.

Pour k ∈ N∗, (X1 = k) =
( k−1∩

i=1

(Si = 0)
)
∩(Sk = 1) donc, comme les évènements (Si = 0) et (Si = 1) sont des

évènements par hypothèse car les Si sont des variables aléatoires, par intersection finie d’évènements, on a

(X1 = k) ∈ A. De plus, (X1 = +∞) =

+∞∩
k=1

(X1 = k) donc, par intersection dénombrable de complémentaires

d’évènements, (X1 = +∞) ∈ A. Par conséquent, X1 est une variable aléatoire sur (Ω,A, P).
b. On sait d’après le cours que X1 suit la loi géométrique de paramètre p en tant que temps d’attente du

premier succès dans une répétition d’expériences de Bernoulli indépendantes de même loi. Ainsi, d’après

le cours toujours, on a E(X1) =
1

p
et V(X1) =

1− p

p2
.

c. Si k > n, (Xn = k) =

( ⊔
16i1<···<in−16k−1

(
n−1∩
j=1

(Sij = 1)
)

∩
∩

m∈[[1;k−1]]
m/∈{i1,···,in−1}

(Sm = 0)

))
∩ (Sk = 1) car

Xn(Ω) ⊂ [[n; +∞]] par construction. En effet, on doit avoir n − 1 succès entre les étapes 1 et k − 1 et un

dernier succès à l’étape k. Avec les mêmes arguments que précédemment, comme il y a

(
k− 1

n− 1

)
de choisir

ces (k− 1)-uplets (i1, · · · , in−1), on a P(Xn = k) =

(
k− 1

n− 1

)
pn(1− p)k−n (c’est la loi de Polya).

d. Comme Y1, · · · , Yn sont à valeurs dans N, sont indépendantes et suivent la même loi que X1, on a

GSn
=

n∏
k=1

GYk
= (GX1

)n donc ∀t ∈
]
− 1

1− p
; 1

1− p

[
, GSn

(t) =
(

pt

1− (1− p)t

)n
= pntn 1

(1− (1− p)t)n
.

Or on sait d’après le cours sur les séries entières que ∀x ∈] − 1; 1[, (1 + x)−n =
+∞∑
k=0

(
−n

k

)
xk avec le calcul(

−n

k

)
=

(−n)(−n− 1) · · · (−n− k+ 1)

k!
=

(−1)k(n+ k− 1)!

k!(n− 1)!
donc, pour t ∈

]
− 1

1− p
; 1

1− p

[
, il vient

GSn
(t) = pntn 1

(1− (1− p)t)n
= pntn

+∞∑
k=0

(n+ k− 1)!
k!(n− 1)!

(1−p)ktk =
+∞∑
k=0

(n+ k− 1)!
k!(n− 1)!

pn(1−p)ktk+n. Avec le

changement d’indice j = n+k, on a GSn
(t) =

+∞∑
j=n

(j− 1)!
(n− j)!(n− 1)!

pn(1−p)j−ntj =
+∞∑
j=n

(
j− 1

n− 1

)
pn(1−p)j−ntj.

Comme GSn
(t) =

+∞∑
j=n

P(Sn = j)tj par définition et que le rayon de convergence est strictement positif, on

peut identifier et on a ∀k > n, P(Sn = k) =

(
k− 1

n− 1

)
pn(1− p)k−n.

Comme on retrouve la loi du n-ième succès comme en question c., on se doute qu’il y a un lien. On écrit

Xn = X1 +
n−1∑
k=1

(Xk+1 − Xk) et on interprète Xk+1 − Xk comme le temps d’attente du (k + 1)-ième succès

une fois qu’on a eu le k-ième succès, qui suit donc la même loi géométrique de paramètre p que X1. En

admettant que les variables aléatoires Y1 = X1, Y2 = X2 − X1, · · · , Yn = Xn − Xn−1 sont indépendantes, on

retrouve le fait que Sn =
n∑

k=1

Yk = Xn suit la loi de Polya (ou loi binomiale négative ou loi de Pascal).� �
11.127� �Notons pour toute la suite Tk la variable aléatoire qui est le résultat du tirage d’indice k s’il a lieu. Par

construction, Xn(Ω) ⊂ [[1;n]] donc Xn est bornée et admet donc une espérance finie. On suppose bien sûr

aussi que chaque boule de l’urne a autant de chance d’être tirée à chaque étape.

a. Bien sûr, si n = 1, on vide l’urne en un seul tirage de manière certaine donc X1 ≡ 1 et E(X1) = 1.
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Si n = 2, (X2 = 1) = (T1 = 1) et (X2 = 2) = (T1 = 2, T2 = 1) donc P(X2 = 1) = P(T1 = 1) = 1

2
et

P(X2 = 2) = P(T1 = 2)P(T2 = 1 | T1 = 2) = 1

2
× 1 = 1

2
. Ainsi, par définition, E(X2) =

1

2
× 1+ 1

2
× 2 = 3

2
.

b. Pour n > 2 et i = 1, on a (Xn = 1) = (T1 = 1) donc P(Xn = 1) = 1

n
.

Pour n > 2 et i ∈ [[2;n]], on a (Xn = i) =
n⊔

j=2

(T1 = j, Xn = i). Cette réunion étant disjointe, on a donc

P(Xn = i) =
n∑

j=2

P(T1 = i)P(Xn = i | T1 = j). Or, quand on a tiré la boule j au premier tirage, on

enlève les boules numérotées j, j + 1, · · · , n et on se retrouve au point de départ du problème définissant

Xj−1, une urne contenant les boules numérotées de 1 à j − 1, avec les mêmes règles, sauf qu’on a déjà

effectué un tirage. Ainsi, P(Xn = i |T1 = j) = P(Xj−1 = i − 1). Par conséquent, si n > 2 et i ∈ [[2;n]],

P(Xn = i) = 1

n

n∑
j=2

P(Xj−1 = i− 1) = 1

n

n−1∑
k=1

P(Xk = i− 1) en posant k = j− 1.

Alors, E(Xn) =
n∑

i=1

iP(Xn = i) = 1

n
+ 1

n

n∑
i=2

i
n−1∑
k=1

P(Xk = i− 1) = 1

n
+ 1

n

n−1∑
k=1

n∑
i=2

iP(Xk = i− 1) en inversant

la somme double. Mais P(Xk = i− 1) = 0 dès que i > k donc E(Xn) =
1

n
+ 1

n

n−1∑
k=1

k+1∑
i=2

iP(Xk = i− 1). Ainsi,

E(Xn) =
1

n
+ 1

n

n−1∑
k=1

k+1∑
i=2

(i−1+1)P(Xk = i−1) = 1

n
+ 1

n

n−1∑
k=1

(
1+ E(Xk)

)
car E(Xk) =

k+1∑
i=2

(i−1)P(Xk = i−1)

et P(Ω) = 1 =
k+1∑
i=2

P(Xk = i− 1). On a donc bien la relation attendue, E(Xn) = 1+ 1

n

n−1∑
k=1

E(Xk) si n > 2.

c. Méthode 1 : d’après b., on a E(X3) = 1 + 1

3

(
1 + 3

2

)
= 1 + 1

2
+ 1

3
= 11

6
. De même, on obtient

E(X4) = 1 + 1

4

(
1 + 3

2
+ 1 + 1

2
+ 1

3

)
= 1 + 1

2
+ 1

3
+ 1

4
= 25

12
. Il semble, surtout avec l’aide de la question

supplémentaire, que E(Xn) = Hn =
n∑

k=1

1

k
pour tout entier n ∈ N∗. On a déjà réalisé l’initialisation. Soit

n > 2 tel que ∀k ∈ [[1;n − 1]], E(Xk) = Hk, d’après b., on a E(Xn) = 1 + 1

n

n−1∑
k=1

E(Xk) = 1 + 1

n

n−1∑
k=1

k∑
j=1

1

j

donc E(Xn) = 1+ 1

n

n−1∑
j=1

n−1∑
k=j

1

j
= 1+ 1

n

n−1∑
j=1

n− j

j
= 1+

(n−1∑
j=1

1

j

)
− n− 1

n
= Hn. Par principe de récurrence

forte, on a bien ∀n ∈ N∗, E(Xn) = Hn donc E(Xn) ∼
+∞

ln(n).

Méthode 2 : d’après b., pour n > 2, nE(Xn) = n +
n−1∑
k=1

E(Xk) et (n + 1)E(Xn+1) = (n + 1) +
n∑

k=1

E(Xk)

donc (n + 1)E(Xn+1) = 1 + nE(Xn) + E(Xn) = (n + 1)E(Xn) + 1 d’où E(Xn+1) − E(Xn) = 1

n+ 1
. Par

télescopage, on a donc E(Xn) = E(X1) +
n−1∑
k=1

(
E(Xk+1)− E(Xk)

)
= 1+

n−1∑
k=1

1

k+ 1
= Hn.

Question supplémentaire : comme f : t 7→ 1

t
est continue et décroissante sur [1; +∞[, on a la majoration

∀k ∈ [[1;n]],
∫ k+1

k
f(t)dt =

∫ k+1

k

dt

t
6 f(k) = 1

k
et ∀k ∈ [[2;n]],

∫ k

k−1

dt

t
> 1

k
. En sommant la première

inégalité pour k ∈ [[1;n]] et par Chasles, on obtient
∫ n+1

1

dt

t
6 Hn =

n∑
k=1

1

k
. Si on fait de même pour

la seconde pour k ∈ [[2;n]], on a
∫ n

1

dt

t
> Hn − 1 =

n∑
k=2

1

k
. Ainsi, ln(n + 1) 6 Hn 6 1 + ln(n). Comme

ln(n+ 1) ∼
+∞

ln(n) ∼
+∞

ln(n) + 1, par encadrement, on a donc Hn ∼
+∞

ln(n).
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11.128� �a. Pour i ∈ N, (X = i) =

i⊔
j=0

(X = i, Y = j) (réunion disjointe) donc, par σ-additivité, on a la relation

P(X = i) =
i∑

j=0

P(X = i, Y = j) = e−λλi

i!

i∑
j=0

(
i

j

)
αj(1− α)i−j =

e−λλi

i!
(α+ 1− α)i =

e−λλi

i!
par le binôme de

Newton donc X suit la loi de Poisson de paramètre λ.

b. De même, pour j ∈ N, (Y = j) =
+∞⊔
i=j

(X = i, Y = j) (réunion disjointe) donc, par σ-additivité, on a aussi

P(Y = j) =
+∞∑
i=j

P(X = i, Y = j) = e−λαjλj

j!

+∞∑
i=j

λi−j(1− α)i−j

(i− j)!
= e−λαjλj

j!

+∞∑
k=0

λk(1− α)k

k!
en posant k = i− j.

Ainsi, P(Y = j) = e−λαjλj

j!
eλ(1−α) =

e−αλ(αλ)j

j!
donc Y suit la loi de Poisson de paramètre αλ.

c. Par hypothèse, P(X = 0, Y = 1) = 0 alors que P(X = 1) = e−λλ1

1!
> 0 et P(Y = 0) =

e−αλ(αλ)0

0!
> 0 donc

P(X = 1, Y = 0) ̸= P(X = 1)P(Y = 0). Ainsi, X et Y ne sont pas indépendantes.

d. On a Z(Ω) ⊂ Z et, pour k ∈ Z, comme (Z = k) =
+∞∪
j=0

(X = k + j, Y = j) (réunion disjointe), par

σ-additivité, on a P(Z = k) =
+∞∑
j=0

P(X = k+ j, Y = j). Traitons deux cas :

Si k < 0, on a P(Z = k) = 0 car ∀j ∈ N, P(X = k+ j, Y = j) = 0.

Si k > 0, il vient P(Z = k) =
+∞∑
j=0

e−λλk+jαj(1− α)k

j!k!
=

e−λλk(1− α)k

k!
×

+∞∑
j=0

λjαj

j!
et on reconnâıt une

série exponentielle qui donne P(Z = k) =
e−λλk(1− α)keλα

k!
=

e−λ(1−α)(λ(1− α))k

k!
.

Ainsi, Z suit a loi de Poisson de paramètre λ(1− α).

e. Pour (j, k) ∈ N2, comme P(Z = k) > 0, on a par définition P(Z=k)(Y = j) =
P(Z = k, Y = j)

P(Z = k)
donc,

puisque X = Y + Z, P(Z=k)(Y = j) =
P(X = k+ j, Y = j)

P(Z = k)
=

e−λλk+jαj(1− α)kk!

j!k!e−λ(1−α)(λ(1− α))k
=

e−αλ(αλ)j

j!
avec d..

f. Comme ∀(j, k) ∈ N2, P(Z=k)(Y = j) = P(Y = j) =
e−αλ(αλ)j

j!
avec la question b. et qu’on a même

∀j ∈ N, ∀k ∈ Z∗
−, P(Z = k, Y = j) = 0 = P(Z = k)P(Y = j), Y et Z sont indépendantes.� �

11.129� �a. XA est le temps d’attente du succès (appel concernant le produit A) dans une répétition d’appels

indépendants (on le suppose) qui suivent la même loi de Bernoulli de paramètre p = 1

5

(
1

5
de probabilité

que l’appel concerne le produit A et 1 − p qu’il concerne le produit B). D’après le cours, XA suit la loi

géométrique de paramètre p. D’après le cours, on a E(XA) = 1

p
= 5 et V(XA) = 1− p

p2
= 20. De même,

XB ∼ G(1− p) donc E(XB) =
1

1− p
= 5

4
et V(XB) =

1− (1− p)

(1− p)2
= 5

16
.

b. Pour tout k ∈ N∗, on note l’évènement Ak = “le k-ième appel concerne le produit A”. Pour tout

entier n ∈ N∗, en suivant l’indication de l’énoncé, on a (L = n) = (L = n,An+1) ⊔ (L = n,An+1) (soit n

appels concernant A puis un concernant B ou l’inverse). Par construction, (L = n,An+1) = (XB = n + 1)

et (L = n,An+1) = (XA = n + 1). Comme ces deux évènements sont incompatibles, on obtient la relation

P(L = n) = P(XB = n+ 1) + P(XA = n+ 1) = pn(1− p) + (1− p)np d’après la question a.. On en déduit
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bien P(L = n) = (1− p)P(XA = n) + pP(XB = n) = 0, 8P(XA = n) + 0, 2P(XB = n).

c. Comme nP(L = n) = (1 − p)nP(XA = n) + pnP(XB = n) et que les deux séries
∑
n>1

nP(XA = n) et∑
n>1

nP(XB = n) puisque XA et XB admettent des espérances finies d’après le cours, on en déduit par somme

que
∑
n>1

nP(L = n) converge (et absolument car elle est à termes positifs) donc L admet une espérance finie

qui vaut E(L) = (1− p)E(XA) + pE(XB) =
1− p

p
+ p

1− p
= 0, 8

0, 2
+ 0, 2

0, 8
= 21

5
= 4, 25.� �

11.130� �a. Il s’agit juste de vérifier que pour P(X = i) > 0 pour tout entier i ∈ N∗, ce qui est évident, et que

+∞∑
i=1

P(X = i) = 1, ce qui l’est moins.

Méthode 1 : en mode famille sommable, par sommation par paquets, comme on a i

2i+1 =
i∑

j=1

1

2i+1 , il vient

+∞∑
i=1

P(X = i) =
+∞∑
i=1

i∑
j=1

1

2i+1 =
∑

16j6i

1

2i+1 =
+∞∑
j=1

+∞∑
i=j

1

2i+1 =
+∞∑
j=1

1

2j+1 × 1

1− 1

2

=
+∞∑
j=1

1

2j
= 1

2
× 1

1− 1

2

= 1.

Méthode 2 : soit f :] − 1; 1[→ R définie par f(x) = 1

1− x
=

+∞∑
n=0

xn. On peut dériver terme à terme dans

l’intervalle ouvert de convergence de cette série entière de rayon de convergence 1 pour avoir la relation

∀x ∈] − 1; 1[, f′(x) = 1

(1− x)2
=

+∞∑
n=1

nxn−1 donc x2f′(x) = x2

(1− x)2
=

+∞∑
n=1

nxn+1. En prenant x = 1

2
dans

cette relation, on a
+∞∑
n=1

P(X = n) =
1/4

1/4
= 1.

Quelle que soit la méthode, la définition de la loi de X est cohérente.

b. En reprenant la fonction f de la question précédente et en dérivant une fois de plus, on obtient la relation

∀x ∈]−1; 1[, f′′(x) = 2

(1− x)3
=

+∞∑
n=2

n(n−1)xn−2 donc x3f′′(x) =
+∞∑
n=1

n(n−1)xn+1 =
+∞∑
n=1

n2xn+1−
+∞∑
n=1

nxn+1

donc
+∞∑
n=1

n2xn+1 = x3f′′(x) + x2f′(x) = 2x3

(1− x)3
+ x2

(1− x)2
. En prenant x = 1

2
à nouveau, on arrive à

E(X) =
+∞∑
n=1

nP(X = n) =
+∞∑
n=1

n2

2n+1 =
2(1/8)
1/8

+
1/4

1/4
= 3.

c. Comme on prélève une boule dans une urne n’ayant des boules numérotées que de 1 à X, la boule tirée

à un numéro Y ∈ [[1;X]]. Soit n ∈ N∗ et k ∈ [[1;n]], on a P(X = n, Y = k) = P(X = n)P(X=n)(Y = k) car

P(X = n) > 0 et on a P(X=n)(Y = k) = 1

n
car les n boules de l’urne ont autant de chances d’être prises. Par

conséquent, P(X = n, Y = k) =
P(X = n)

n
= 1

2n+1 . Bien sûr, P(X = n, Y = k) = 0 si n ∈ N∗ et k > n.

d. On a clairement Y(Ω) = N∗ et, pour tout entier k ∈ N∗, on a (Y = k) =

+∞⊔
n=k

(X = n, Y = k) (réunion

d’évènements incompatibles) donc, par σ-additivité, on a P(Y = k) =
+∞∑
n=k

P(X = n, Y = k) ce qui donne

P(Y = k) =
+∞∑
n=k

1

2n+1 = 1

2k+1 × 1

1− 1

2

= 1

2k
. Ainsi, Y suit la loi géométrique de paramètre p = 1

2
. On sait

d’après le cours que E(Y) = 1

p
= 2 et que V(Y) = 1− p

p2
= 2.� �

11.131� �a. Par construction et comme les cas extrêmes sont “n fois piles” ou “n fois faces” d’un côté et “alternance

pile/face” ou “alternance face/pile” de l’autre, on a N(Ω) = [[1;n]].
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b. • Si Pk = “on fait pile au lancer numéro k”, on a (N = 1) =
( n∩

k=1

Pk

)
⊔
( n∩

k=1

Pk

)
. Par incompatibilité de

ces deux évènements et indépendance de P1, · · · , Pn, on a P(N = 1) =
n∏

k=1

P(Pk)+
n∏

k=1

P(Pk) = pn+(1−p)n.

• Avec ces mêmes notations, (N = 2) =

(
n−1∪
k=1

( k∩
i=1

Pi

)
∩
( n∩

i=k+1

Pi

))
⊔

(
n−1∪
j=1

( j∩
i=1

Pi

)
∩
( n∩

i=j+1

Pi

))
et,

avec les mêmes arguments, P(N = 2) =
(n−1∑

k=1

pk(1− p)n−k
)
+
(n−1∑

j=1

(1− p)jpn−j
)
= 2

n−1∑
k=1

pk(1− p)n−k en

posant k = n− j dans la seconde somme. Ainsi, P(N = 2) = 2p(1− p)
n−2∑
m=0

pm(1− p)n−2−m avec m = k− 1.

• Si p = 1

2
, on a donc P(N = 2) =

(n− 1)

2n−1 .

• Si p ̸= 1

2
, classiquement, P(N = 2) = 2p(1− p)

pn−1 − (1− p)n−1

p− (1− p)
.

c. Pour k ∈ [[1;n− 1]], comme (Ik = 1) =
(
Pk ∩ Pk+1

)
⊔
(
Pk ∩ Pk+1

)
, on obtient P(Ik) = 2p(1− p). Puisque

Ik ne prend que les valeurs 0 et 1, Ik suit la loi de Bernoulli de paramètre 2p(1−p) avec E(Ik) = 2p(1−p)

et V(Ik) = 2p(1− p)(1− 2p(1− p)).

d. On a une série supplémentaire à chaque changement de pile à face ou de face à pile entre les tirages k

et k + 1 (et on a ce cas si et seulement si Ik = 1) ce qui donne, en comptant le premier tirage qui amène

forcément une première série, N = 1+
n−1∑
k=1

Ik.

e. Par linéarité de l’espérance, on a E(N) = 1+
n−1∑
k=1

E(Ik). Ainsi, E(N) = 1+ 2p(1− p)(n− 1).

D’après le cours, on a V(N) = V
(
1 +

n−1∑
k=1

Ik

)
= V

(n−1∑
k=1

Ik

)
=

n−1∑
k=1

V(Ik) + 2
∑

16i<j6n−1

Cov(Ii, Ij). Or

Cov(Ii, Ij) = E(IiIj) − E(Ii)E(Ij) et la variable aléatoire IiIj ne prend que les valeurs 0 et 1 donc suit une

loi de Bernoulli. Traitons deux cas selon la proximité des entiers i et j :

Si j = i+ 1 , (IiIj = 1) = (Ii = 1, Ii+1 = 1) = (Pi ∩ Pi+1 ∩ Pi+2) ⊔ (Pi ∩ Pi+1 ∩ Pi+2) donc, avec les mêmes

arguments qu’avant, P(IiIj = 1) = p(1−p)p+(1−p)p(1−p) = p(1−p) donc E(IiIj) = p(1−p)

et Cov(Ii, Ij) = p(1− p)− 4p2(1− p)2 = p(1− p)(1− 4p(1− p)) = p(1− p)(1− 2p)2.

Si j > i+ 1 , comme la variable Ii ne dépend que des lancers i et i + 1 et Ij ne dépend que des lancers

j > i+ 1 et j+ 1, par le lemme des coalitions, Ii et Ij sont indépendantes donc Cov(Ii, Ij) = 0.

Ainsi, V(N) =
n−1∑
k=1

V(Ik) + 2
n−2∑
i=1

Cov(Ii, Ii+1) = 2p(1− p)(1− 2p(1− p))(n− 1) + 2p(1− p)(1− 2p)2(n− 2)

qu’on peut factoriser en V(N) = 2p(1 − p)
[
(1 − 2p(1 − p))(n − 1) + (1 − 2p)2(n − 2)

]
ou écrire encore sous

la forme V(N) = 2p(1− p)(2n− 3)− 4p2(1− p)2(3n− 5).� �
11.132� �a. Comme Ω = N et qu’on a P(Ω) = 1 =

+∞∑
i=0

P(X = i) par σ-additivité car N est dénombrable, il vient

α
+∞∑
i=0

i

2i
= 1. Or on sait que ∀x ∈] − 1; 1[, f(x) =

+∞∑
i=0

xi = 1

1− x
qui donne f′(x) =

+∞∑
i=1

ixi−1 = 1

(1− x)2
en

dérivant terme à terme à l’intérieur de l’intervalle ouvert de cette série entière de rayon de convergence 1, ce

qui donne
+∞∑
i=0

ixi = x

(1− x)2
en multipliant par x. Ainsi,

+∞∑
i=0

i

2i
=

1/2

(1− (1/2))2
= 2 d’où α = 1

2
.
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b. Comme ∀i ∈ N, P(X = i) = i

2i+1 , on a iP(X = i) ∼
+∞

o

(
1

i2

)
par croissances comparées donc X

admet une espérance finie par comparaison aux séries de Riemann et E(X) =
+∞∑
i=0

iP(X = i) =
+∞∑
i=1

i2

2i+1 .

On dérive une fois de plus terme à terme la relation ∀x ∈] − 1; 1[, xf′(x) =
+∞∑
i=1

ixi = x

(1− x)2
et on

obtient ∀x ∈] − 1; 1[, 1+ x

(1− x)3
=

+∞∑
i=1

i2xi−1 donc
+∞∑
i=1

i2xi+1 =
x2(1+ x)

(1− x)3
. En prenant encore x = 1

2
, on a

E(X) =
+∞∑
i=1

iP(X = i) =
+∞∑
i=1

i2

2i+1 =
(1/4)(3/2)

1/8
= 3.

c. Comme i2 P(X = i) ∼
+∞

o

(
1

i2

)
par croissances comparées, X admet un moment d’ordre 2 et, par la

formule de König-Huygens, V(X) = E(X2) − E(X)2 = E(X(X − 1)) + E(X) − E(X)2. Or, par la formule

de transfert, on a E(X(X − 1)) =
+∞∑
i=0

i(i − 1)P(X = i) =
+∞∑
i=2

i2(i− 1)

2i+1 . On peut dériver une fois de plus

la relation ∀x ∈] − 1; 1[,
+∞∑
i=1

i2xi−1 = 1+ x

(1− x)3
dans l’intervalle ouvert ] − 1; 1[ de convergence pour avoir

∀x ∈] − 1; 1[,
+∞∑
i=2

i2(i − 1)xi−2 =
2(2+ x)

(1− x)4
donc ∀x ∈] − 1; 1[,

+∞∑
i=2

i2(i − 1)xi+1 =
2(2+ x)x3

(1− x)4
. On prend

toujours x = 1

2
pour avoir E(X(X− 1)) =

2(5/2)(1/8)
1/16

= 10. Ainsi, V(X) = 10+ 3− 9 = 4.� �
11.133� �a. Pour tout entier n ∈ N∗, posons Yn = Xn + 1

2
. On a donc Yn(Ω) = {0, 1} et (Yn = 1) = (Xn = 1),

(Yn = 0) = (Xn = −1) donc P(Yn = 0) = P(Yn = 1) = 1

2
de sorte que Yn suit la loi de Bernoulli de

paramètre 1

2
. De plus, par transfert d’indépendance, les variables aléatoires Yn sont indépendantes car les

Xn le sont. Posons Tn =
n∑

k=1

Yk, on sait d’après le cours que Yn suit la loi binomiale de paramètres n et 1

2
.

Or Tn = n

2
+ Sn

2
donc Sn = 2Tn − n. Comme Tn(Ω) = [[0;n]], on a Sn(Ω) = {−n,−(n− 2), · · · , n− 2, n} et

∀k ∈ [[0;n]], P(Sn = 2k− n) = P(Tn = k) =

(
n

k

)(
1

2

)k(1
2

)n−k

=
1

2n

(
n

k

)
.

Par linéarité de l’espérance, comme E(Xk) = 1× 1

2
+(−1)× 1

2
= 0 pour tout k ∈ [[1;n]], on a E(Sn) = 0. Par

indépendance des Xk, on a V(Sn) =
n∑

k=1

V(Xk) = n car V(Xk) = E(X2
k)− E(Xk)

2 = E(X2
k) et que X2

k = 1.

b. Par Bienaymé-Tchebychev, pour a > 0, on a P(|Sn − E(Sn)| > na) 6 V(Sn)
(na)2

= 1

na2 . Or E(Sn) = 0

et (Sn > na) ⊂ (|Sn| > na) donc, par croissance de P, on a P(Sn > na) 6 P(|Sn| > na) 6 1

na2 .

c. Pour a > 0 et s > 0, par stricte croissance de la fonction t 7→ est, on a (X > a) = (esX > esa). Or la

variable aléatoire esX est positive donc, même si esX admet une espérance infinie auquel cas l’inégalité est

triviale, on a P(X > a) = P(esX > esa) 6 E(esX)
esa

d’après l’inégalité de Markov.

d. Pour s > 0, on a esSn =
n∏

k=1

esXk or, par transfert d’indépendance, les variables aléatoires esX1 , · · · , esXn

sont indépendantes donc, d’après le cours, E(esSn) =
n∏

k=1

E(esXk). Mais, par théorème de transfert,

E(esXk) = 1

2
es×1 + 1

2
es×(−1) = ch (s) donc, en prenant X = Sn dans la question précédente, on obtient
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la majoration P(Sn > na) 6 1

esa

n∏
k=1

ch (s) =
(
ch (s)
esa

)n
.

e. Méthode 1 : Pour tout réel s, d’après le cours, ch (s) =
+∞∑
n=0

s2n

(2n)!
et e

s2

2 =
+∞∑
n=0

s2n

2nn!
. Si an = 2nn!

(2n)!
,

on a an+1 =
2(n+ 1)an

(2n+ 2)(2n+ 1)
= an

2n+ 1
6 an donc (an)n>0 décrôıt et a0 = 1. Ainsi, on obtient l’inégalité

∀n ∈ N, an 6 1 ⇐⇒ 1

(2n)!
6 1

2nn!
. D’où ∀s ∈ R, ch (s) 6 e

s2

2 .

Méthode 2 : la fonction f : s 7→ s2

2
− ln(ch (s)) est bien définie sur R car ch (s) > 0, deux fois dérivable par

opérations et f′(s) = s−th (s) et f′′(s) = th 2(s) > 0 pour s ∈ R donc, comme f′(0) = 0, f′ est négative sur R−

et positive sur R+ ce qui montre que f est minimale en 0 et, comme f(0) = 0, que f est finalement positive sur

R. Ainsi, ∀s ∈ R, ln(ch (s)) 6 s2

2
et on conclut par croissance de l’exponentielle que ∀s ∈ R, ch (s) 6 es

2/2.

f. Avec d. et e., on a P(Sn > na) 6
(
ch (s)
esa

)n
6 en(s2/2)−sna. Posons g : s 7→ s2

2
−sa, alors g est dérivable

sur R∗
+ et g′(s) = s − a donc g est décroissante sur ]0;a] et croissante sur [a; +∞[ donc elle est minimale

en s = a où g(a) = −a2

2
. En prenant s = a dans la majoration précédente, on obtient bien la majoration

P(Sn > na) 6 e
−na2

2 pour a > 0.

g. Pour x > 0, on sait que g(x) = 1

x2

( +∞∑
n=0

xn

n!
−1−x

)
=

+∞∑
n=2

xn−2

n!
=

+∞∑
n=0

xn

(n+ 2)!
. Ainsi, comme la fonction

h : R → R définie par h(x) =
+∞∑
n=0

xn

(n+ 2)!
est développable en série entière sur R donc qu’elle y est de

classe C∞, la fonction g, qui en est sa restriction à R∗
+, se prolonge bien en une fonction continue (et même

C∞) sur R+ telle que ∀x ∈ R+, g′(x) =
+∞∑
n=1

nxn−1

(n+ 2)!
> 0 donc g est croissante sur l’intervalle R+.� �

11.134� �a. Pour x ̸= 0, en posant un =

(
2n

n

)
x2n

4n
pour le critère de d’Alembert, on obtient après simplifications,∣∣∣un+1

un

∣∣∣ = (2n+ 2)!(n!)24nx2n+2

(2n)!((n+ 1)!)24n+1 =
(2n+ 2)(2n+ 1)x2

4(n+ 1)2
=

2(2n+ 1)x2

4(n+ 1)
donc lim

n→+∞

∣∣∣un+1

un

∣∣∣ = ℓ = x2.

• si |x| < 1, on a ℓ < 1 donc
∑
n>0

un converge absolument par le critère de d’Alembert. Ainsi, R > 1.

• si |x| > 1, on a ℓ > 1 donc
∑
n>0

un diverge grossièrement par le critère de d’Alembert. Ainsi, R 6 1.

Par conséquent, le rayon R de convergence de la série entière lacunaire
∑
n>0

(
2n

n

)
x2n

4n
vaut R = 1. On sait

d’après le cours ou on retrouve facilement que ∀y ∈] − 1; 1[, 1√
1+ y

=
+∞∑
n=0

(−1)n(2n)!

4n(n!)2
yn. Ainsi, pour

x ∈]− 1; 1[, en prenant y = −x2 ∈]− 1; 1[, on obtient 1√
1− x2

=
+∞∑
n=0

(2n)!

4n(n!)2
x2n =

+∞∑
n=0

(
2n

n

)
x2n

4n
.

b. Par construction, Yk = Xk + 1

2
suit la loi B

(
1

2

)
car Yk = 0 ⇐⇒ Xk = −1 et Yk = 1 ⇐⇒ Xk = 1. Par

indépendance de X1, · · · , Xn donc de Y1, · · · , Yn, d’après le cours, Tn =
n∑

k=1

Yk suit la loi binomiale B

(
n, 1

2

)
.

c. Or ∀k ∈ [[1;n]], Xk = 2Yk − 1 donc Sn = 2

( n∑
k=1

Yk

)
− n = 2Tn − n. Comme Tn(Ω) = [[0;n]], on obtient

Sn(Ω) = {−n,−(n − 2), · · · , (n − 2), n} et P(Sn = 2k − n) = P(Tn = k) =

(
n

k

)(
1

2

)k(1
2

)n−k

=
1

2n

(
n

k

)
pour tout entier k ∈ [[0;n]]. Par les propriétés de l’espérance et la variance, on a E(Sn) =

n∑
k=1

E(Xk) = 0 et
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V(Sn) =
n∑

k=1

V(Xk) = n car X1, · · · , Xn sont indépendantes car on a clairement E(Xk) = 0 et V(Xk) = 1. On

pouvait passer par Tn, en effet, V(Sn) = V(2Tn − n) = 4V(Tn) donc E(Sn) = 2E(Tn)− n = 2(n/2)− n = 0

et V(Sn) = 4(n/4) = n car Tn ∼ B

(
n, 1

2

)
donc E(Tn) = n

(
1

2

)
et V(Tn) = n

(
1

2

)
×
(
1− 1

2

)
.

d. Soit x ∈] − 1; 1[, on a |pnxn| 6 |x|n car pn ∈ [0; 1] donc, comme la série géométrique
∑
n>0

|x|n converge

car |x| < 1, par comparaison,
∑
n>0

pnx
n converge absolument.

e. Pour n > 1, on peut partitionner (S2n = 0) en (S2n = 0) =
n⊔

k=1

((S2n = 0) ∩ (T = 2k)) en distinguant

selon la première fois (notée T) où l’on va avoir (S2k = 0) (S2k+1 ̸= 0 car Sn a la même parité que n). Par

α-additivité, pn = P(S2n = 0) =
n∑

k=1

P(S2n = 0, T = 2k) =
n∑

k=1

P(T=2k)(S2n = 0)P(T = 2k). Pour tout

k ∈ [[1;n− 1]], on a P(T=2k)(S2n = 0) = P(S2(n−k) = 0) (on repart de 0 après 2k “mouvements” et on veut

être à 0 au bout de 2n étapes). Par contre, comme (T = 2n) ⊂ (S2n = 0), on a P(T=2n)(S2n = 0) = 1. Ainsi

pn = qn +
n−1∑
k=1

qkpn−k =
n∑

k=0

qkpn−k car on a posé p0 = 1 par convention.

La série génératrice
∑
n>0

P(T = n)xn de T , qui est bien une variable aléatoire à valeurs dans N, a un rayon de

convergence au moins égal à 1 d’après le cours. Si x ∈]−1; 1[, on peut effectuer le produit de Cauchy, comme

P(T = 2n+ 1) = 0 pour tout n ∈ N, GT (x)p(x
2) =

( +∞∑
n=0

qnx
2n
)( +∞∑

n=0

pnx
2n
)
=

+∞∑
n=0

( n∑
k=0

qkpn−k

)
x2n.

Or pn =
n∑

k=0

pn−kqk si n ∈ N∗ car q0 = 0 mais
0∑

k=0

pn−kqk = p0q0 = 0 alors que p0 = 1. Ainsi, pour tout

x ∈]− 1; 1[, GT (x)p(x
2) =

+∞∑
n=1

pnx
2n = p(x2)− 1. Mais p(x2) = 1+

+∞∑
n=1

pnx
2n > 1 car pn > 0 donc p(x2) > 0

et on a donc la relation attendue, à savoir GT (x) =
p(x2)− 1

p(x2)
.

D’après c., comme pn = P(S2n = 0) = P(T2n = n) = 1

22n

(
2n

n

)
, il vient ∀x ∈]−1; 1[, p(x) =

+∞∑
n=0

(2n)!

22n(n!)2
xn.

On en déduit donc que p(x) = 1√
1− x

donc p(x2) = 1√
1− x2

et GT (x) =

1√
1− x2

− 1

1√
1− x2

= 1−
√
1− x2. Or on

sait aussi que, pour y ∈]− 1; 1[, on a le développement en série entière
√
1+ y = 1+

+∞∑
n=1

(−1)n−1(2n)!

4n(n!)2(2n− 1)
yn.

Ainsi, pour x ∈]− 1; 1[, GT (x) = −
+∞∑
n=1

(−1)n−1(2n)!

4n(n!)2(2n− 1)
(−1)nx2n =

+∞∑
n=1

(2n)!

22n(n!)2(2n− 1)
x2n. On identifie

car les rayons sont strictement positifs et ∀n > 1, P(T = 2n) = 1

22n(2n− 1)

(
2n

n

)
.

GT : x 7→ 1−
√
1− x2 n’est pas dérivable en 1 car

√
ne l’est pas en 0. D’après le cours, T n’admet pas une

espérance finie. Pourtant, P(T = +∞) = 1−
+∞∑
n=1

P(T = n) = 1−GT (1) = 1− 1 = 0 : T est presque sûrement

finie mais admet une espérance infinie. Bizarre.� �
11.135� �a. Soit n ∈ N, pour avoir Xn = 0, il est d’abord nécessaire que le nombre de pas n soit pair. Ainsi,

P(Xn = 0) = 0 si n est impair. Par contre, si n = 2p avec p ∈ N∗, X2p = 0 si et seulement si p
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pas parmi 2p s’effectuent vers la gauche (réussite) et les p autres s’effectuant vers la droite (échec). Ce

schéma binomial se traduit d’après le cours, en supposant bien sûr que tous les pas de cette marche sont

indépendants, par la relation P(X2p = 0) =

(
2p

p

)(
1

2

)p(1
2

)p
=

(2p)!

22p(p!)2
. Par l’équivalent de Stirling, on

a P(X2p = 0) ∼
+∞

√
4πp(2p)2pe2p

22pe2p(2πp)p2p
= 1√

πp
. Par comparaison aux séries de Riemann,

∑
n>0

P(Xn = 0) diverge.

b. Bi ne prend que les valeurs 0 et 1 (si Xi = 0), cette variable aléatoire suit donc la loi de Bernoulli de

paramètre P(Xi = 0). Ainsi, E(Bi) = P(Xi = 0). Soit p ∈ N, la variable aléatoire
p∑

i=1

Bi prend des valeurs

dans N donc, d’après le cours, E
( p∑

i=1

Bi

)
=

+∞∑
k=1

P
( p∑

i=1

Bi > k

)
. Ainsi, par linéarité de l’espérance et avec

ce qui précède,
+∞∑
k=1

P
( p∑

i=1

Bi > k

)
=

p∑
i=1

E(Bi) =
p∑

i=1

P(Xi = 0).

c. Si k ∈ N∗, par définition de Ek et des Bi, on a Ek =

+∞∪
p=1

( p∑
i=1

Bi > k

)
puisque

p∑
i=1

Bi est le nombre

de retours à l’origine pendant les p premiers pas de la marche. Comme la suite

(( p∑
i=1

Bi > k

))
p∈N∗

est

croissante, on obtient, par continuité croissante, la relation P(Ek) = lim
p→+∞

P
( p∑

i=1

Bi > k

)
. Plus simplement,

pour tout p ∈ N∗, on a P(Ek) > P
( p∑

i=1

Bi > k

)
. Ainsi,

+∞∑
k=1

P(Ek) >
+∞∑
k=1

P
( p∑

i=1

Bi > k

)
=

p∑
i=1

P(Xi = 0) en

sommant. Comme cette minoration est vraie pour tout p ∈ N∗ et que
∑
i>1

P(Xi = 0) diverge d’après a., on

en déduit que
+∞∑
k=1

P(Ek) = +∞ et
∑
k>1

P(Ek) diverge.

d. On a E2 =
⊔

16i<j

(( i−1∩
n=1

(Xn ̸= 0)
)
∩ (Xi = 0) ∩

( j−1∩
m=i+1

(Xm ̸= 0)
)
∩ (Xj = 0)

)
donc, par σ-additivité et

probabilité conditionnelle,
( j−1∩

m=i+1

(Xm ̸= 0)
)
∩ (Xj = 0) ne dépend que de la position de la marche après le

i-ième pas, on a P(E2) =
+∞∑
i=1

+∞∑
j=i+1

P
(( i−1∩

n=1

(Xn ̸= 0)
)
∩ (Xi = 0)

)
P(Xi=0)

(( j−1∩
m=i+1

(Xm ̸= 0)
)
∩ (Xj = 0)

)
d’où P(E2) =

+∞∑
i=1

P
(( i−1∩

n=1

(Xn ̸= 0)
)
∩ (Xi = 0)

)( +∞∑
j=i+1

P(Xi=0)

(( j−1∩
m=i+1

(Xm ̸= 0)
)
∩ (Xj = 0)

))
.

Or (Xi = 0)∩
( j−1∩

m=i+1

(Xm ̸= 0)
)
∩(Xj = 0)

)
= (Xi = 0)∩

( j−1∩
m=i+1

(
j−1∑

k=i+1

pk ̸= 0)
)
∩(

j∑
k=i+1

pk = 0)
)
en notant

pk = ±1 le k-ième pas de sorte que Xi =
i∑

k=1

pk. Par le lemme des coalitions, (Xi = 0) =
( i∑

k=1

pk = 0

)
est indépendant de

( j−1∩
m=i+1

(
j−1∑

k=i+1

pk ̸= 0)
)
∩ (

j∑
k=i+1

pk = 0)
)

car p1, · · · , pj indépendants. Et en on a

donc P(Xi=0)

(( j−1∩
m=i+1

(Xm ̸= 0)
)
∩ (Xj = 0)

))
= P

( j−1∩
m=i+1

(
m∑

k=i+1

pk ̸= 0)
)
∩ (

j∑
k=i+1

pk = 0)
)
. Or on

a P
( j−1∩

m=i+1

(
m∑

k=i+1

pk ̸= 0)
)
∩ (

j∑
k=i+1

pk = 0)
)

= P
( j−1∩

m=i+1

(
m∑

k=i+1

pk−i ̸= 0)
)
∩ (

j∑
k=i+1

pk−i = 0)
)

car
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(p1, · · · , pj−i) suit la même loi que (pi+1, · · · , pj). Tout ceci prouve, en posant p = m − i et ℓ = k − i,

la relation P(Xi=0)

(( j−1∩
m=i+1

(Xm ̸= 0)
)
∩ (Xj = 0)

))
= P

( j−i−1∩
p=1

(
p∑

ℓ=1

pℓ ̸= 0)
)
∩ (

j−i∑
ℓ=1

pℓ = 0)
)
. Ainsi, on

arrive à P(E2) =

(
+∞∑
i=1

P
(( i−1∩

n=1

(Xn ̸= 0)
)
∩ (Xi = 0)

))( +∞∑
j=i+1

P
( j−i−1∩

p=1

(
p∑

ℓ=1

pℓ ̸= 0)
)
∩ (

j−i∑
ℓ=1

pℓ = 0)
))

.

Comme
p∑

ℓ=1

pℓ = Xp, qu’on a aussi
j−i∑
ℓ=1

pℓ = Xj−i, et avec le changement d’indices k = j− i, on arrive enfin à

P(E2) =

(
+∞∑
i=1

P
(( i−1∩

n=1

(Xn ̸= 0)
)
∩ (Xi = 0)

))( +∞∑
k=1

P
( k−1∩

p=1

(Xp ̸= 0)
)
∩ (Xk = 0)

))
= P(E1)

2.

De la même manière, ∀k ∈ N∗, P(Ek+1) = P(Ek)P(E1) donc, par récurrence, ∀k ∈ N∗, P(Ek) = (P(E1))
k.

Puisque la série géométrique
∑
k>1

(P(E1))
k diverge d’après c., on a forcément P(E1) = 1.

e. D’après d., on a donc ∀k ∈ N∗, P(Ek) = 1. Notons O = “on revient une infinité de fois à l’origine”, de

sorte que O =
+∞∩
k=1

Ek. Comme la suite (Ek)k∈N∗ est décroissante, par théorème de continuité décroissante, on

a P(O) = lim
k→+∞

P(Ek) = 1. Il est donc presque sûr que le marcheur revienne une infinité de fois à l’origine.� �
11.136� �a. Comme X et Y sont à valeurs dans N, on a Ω =

⊔
i,j>0

(X = i, Y = j) donc, par σ-additivité, on obtient

+∞∑
i=0

(+∞∑
j=0

P(X = i, Y = j)
)
= 1 donc a

+∞∑
i=0

qi

1− q
= a

(1− q)2
= 1 (séries géométriques) donc a = p2.

b. Pour i ∈ N, (X = i) =

+∞⊔
j=0

(X = i, Y = j) donc, toujours par σ-additivité, P(X = i) = p2qi
+∞∑
j=0

qj = p(1−p)i.

Comme X+ 1 est à valeurs dans N∗ et que ∀k ∈ N∗, P(X+ 1 = k) = P(X = k− 1) = p(1−p)k−1, la variable

aléatoire X+1 suit la loi géométrique de paramètre p. Par symétrie, Y+1 suit aussi la même loi géométrique

de paramètre p. D’après le cours, E(X+ 1) = 1

p
donc E(X) = 1− p

p
= q

p
par linéarité de l’espérance et on

sait aussi que V(X+ 1) = 1− p

p2
= V(X).

c. Soit f : N2 → N définie par f(a, b) = ab de sorte que XY = f(X, Y). Par théorème de transfert, la

variable aléatoire XY admet une espérance finie si et seulement si (ijP(X = i, Y = j))(i,j)∈N2 est sommable.

Or
∑

(i,j)∈N2

ijP(X = i, Y = j) =
∑

(i,j)∈N2

ijp2qi+j =
∑

(i,j)∈N2

ijp2qi+j = p2
∑

(i,j)∈N2

(iqi)(jqj) = p2
( ∑

k∈N
kqk

)2
(famille produit). Or on sait que ∀x ∈] − 1; 1[, 1

1− x
=

+∞∑
n=0

xn qu’on dérive terme à terme sur l’intervalle

ouvert de convergence pour avoir 1

(1− x)2
=

+∞∑
n=1

nxn−1 donc x

(1− x)2
=

+∞∑
n=0

nxn.

Par conséquent, E(XY) = p2
(

q

(1− q)2

)2
= q2

p2
et Cov(X, Y) = E(XY)− E(X)E(Y) = q2

p2
−
(
q

p

)2
= 0.

Mais c’est bien sûr, comme ∀(i, j) ∈ N2, P(X = i, Y = j) = p2qi+j = (pqi)(pqj) = P(X = i)P(Y = j), par

définition, les variables aléatoires X et Y sont indépendantes et, d’après le cours, Cov(X, Y) = 0.

d. Soit n ∈ N, les valeurs prises par U sachant que X+Y = 2n+1 sont tous les entiers de n+1 à 2n+1. Pour

k ∈ [[n+1; 2n+1]], on a (U = Max(X, Y) = k)∩(X+Y = 2n+1) = (X = k, Y = 2n+1−k)⊔(X = 2n+1−k, Y = k)

car 2n+ 1− k < k donc P(U = k, X+ Y = 2n+ 1) = P(X = k)P(Y = 2n+ 1− k)+ P(X = 2n+ 1− k)P(Y = k)
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par indépendance de X et Y donc P(U = k, X + Y = 2n + 1) = 2(pqk)(pq2n+1−k) = 2p2q2n+1. De plus,

(X + Y = 2n + 1) =

2n+1⊔
k=0

(X = k, Y = 2n + 1 − k) donc, par σ-additivité et indépendance de X et Y,

P(X + Y = 2n + 1) =
2n+1∑
k=0

P(X = k)P(Y = 2n + 1 − k) =
2n+1∑
k=0

(pqk)(pq2n+1−k) = (2n + 2)p2q2n+1. Ainsi,

pour k ∈ [[n+ 1; 2n+ 1]], P(U = k|X+Y = 2n+ 1) =
P(U = k, X+ Y = 2n+ 1)

P(X+ Y = 2n+ 1)
= 2p2q2n+1

(2n+ 2)p2q2n+1 = 1

n+ 1
.

Par conséquent, la loi de U sachant X+ Y = 2n+ 1 est uniforme sur l’intervalle [[n+ 1; 2n+ 1]].� �
11.137� �a. Notons Pk = “on fait pile au lancer numéro k” (le premier lancer est de numéro 1). On pose X = +∞

si on ne fait pas deux fois pile au cours du processus. On a X(Ω) = N ∪ {+∞} et, pour tout k ∈ N,

(X = k) =
k+1⊔
i=1

(( i−1∩
j=1

Pj

)
∩ Pi ∩

( k+1∩
j=i+1

Pj

)
∩ Pk+2

)
(en notant i ∈ [[1; k + 1]] et k + 2 les numéros des

deux lancers donnant pile). Comme ces évènements sont incompatibles et que P1, · · · , Pk+2 sont supposés

indépendants, on a P(X = k) =
k+1∑
i=1

( i−1∏
j=1

(1− p)
)
p

( k+1∏
j=i+1

(1− p)
)
p = (k+ 1)p2(1− p)k.

(X = +∞) =
+∞⊔
k=0

(X = k) donc, par σ-additivité, on a 1 − P(X = +∞) = p2
+∞∑
k=0

(k + 1)(1 − p)k. Or on sait

que ∀x ∈] − 1; 1[, 1

1− x
=

+∞∑
k=0

xk qu’on dérive à l’intérieur de l’intervalle ouvert de convergence pour avoir

+∞∑
k=0

(k+ 1)xk = 1

(1− x)2
. Comme 1− p ∈]0; 1[, 1− P(X = +∞) = p2

(1− (1− p))2
= 1 donc P(X = +∞) = 0.

b. Par définition, X admet une espérance finie si et seulement si
∑
k>0

kP(X = k) est absolument convergente.

Or kP(X = k) = k(k+ 1)p2(1− p)k =
+∞

o

(
1

k2

)
par croissances comparées donc

∑
k>0

kP(X = k) converge par

comparaison aux séries de Riemann, ce qui prouve que X admet une espérance finie.

On dérive une fois de plus terme à terme la relation ∀x ∈]− 1; 1[,
+∞∑
k=0

(k+ 1)xk = 1

(1− x)2
dans l’intervalle

ouvert de convergence et ∀x ∈] − 1; 1[,
+∞∑
k=1

k(k + 1)xk−1 = 2

(1− x)3
donc

+∞∑
k=0

k(k + 1)xk = 2x

(1− x)3
. Ainsi,

E(X) =
+∞∑
k=0

kP(X = k) =
+∞∑
k=0

k(k+ 1)p2(1− p)k = p2
+∞∑
k=0

k(k+ 1)(1− p)k =
2p2(1− p)

(1− (1− p))3
car 1− p ∈]0; 1[

et on a l’espérance attendue, E(X) = 2(1− p)
p

.

c. On suppose que la boule piochée dans l’urne l’est de manière uniforme. On a Y(Ω) = N ∪ {+∞} en

convenant que Y = +∞ si X = +∞. Comme on a vu que (X = +∞) est négligeable, (Y = +∞) = (X = +∞)

l’est aussi. Pour k ∈ N, comme
(
(X = n)

)
n∈N est un système quasi-complet d’évènements, par la formule

des probabilités totales, P(Y = k) =
+∞∑
n=0

P(X = n)P(Y = k|X = n). Or P(Y = k|X = n) = 0 si k > n et

P(Y = k|X = n) = 1

n+ 1
si k 6 n donc P(Y = k) =

+∞∑
n=k

(n+ 1)p2(1− p)n

n+ 1
= p2

+∞∑
n=k

(1 − p)n =
p2(1− p)k

1− (1− p)

(série géométrique) donc P(Y = k) = p(1− p)k.

d. Comme (Y + 1)(Ω) = N∗ ∪ {+∞} et que ∀k ∈ N∗, P(Y + 1 = k) = P(Y = k − 1) = p(1 − p)k−1, la

variable aléatoire Y + 1 suit (presque sûrement) la loi géométrique de paramètre p. On sait d’après le cours

108



que E(Y + 1) = E(Y) + 1 = 1

p
et que V(Y + 1) = V(Y) = 1− p

p2
. Ainsi, E(Y) = 1− p

p
et V(Y) = 1− p

p2
.� �

11.138� �Comme
∑
k>1

Xk(ω)
k

est une série à termes positifs pour ω ∈ Ω, elle converge si et seulement si la suite de ses

sommes partielles est majorée. Ainsi, en discrétisant les majorants M ∈ N∗, on a l’expression A =

+∞∪
M=1

AM

où AM =
{
ω ∈ Ω

∣∣∣ ∀n ∈ N∗, Sn(ω) =
n∑

k=1

Xk(ω)
k

6 M

}
=

+∞∩
n=1

Bn avec Bn = (Sn 6 M).

Soit M ∈ N∗, comme la suite (Sn(ω))n∈N∗ est croissante pour tout ω ∈ Ω, la suite (Bn)n∈N∗ est décroissante

pour l’inclusion car Bn+1 ⊂ Bn puisque si Sn+1(ω) 6 M, alors Sn(ω) 6 Sn+1(ω) 6 M. Par le théorème de

continuité décroissante, on a donc P(AM) = lim
n→+∞

P(Bn).

Par linéarité de l’espérance, E(Sn) =
n∑

k=1

E(Xk)
k

= pHn en posant Hn =
n∑

k=1

1

k
la somme partielle de la série

harmonique. Par indépendance de X1, · · · , Xn, V(Sn) =
n∑

k=1

V(Xk)

k2
= p(1− p)Tn en posant Tn =

n∑
k=1

1

k2
la

somme partielle de la série de Riemann
∑
n>1

1

n2 qui converge et dont la somme est ζ(2) = π2

6
.

Comme Sn admet un moment d’ordre 2, d’après l’inégalité de Bienaymé-Tchebychev, pour tout ε > 0,

on a la majoration P(|Sn − E(Sn)| > ε) = P(|Sn − pHn| > ε) 6 p(1− p)Tn
ε2

=
V(Sn)
ε2

6 p(1− p)π2

6ε2
.

Soit M ∈ N∗, puisque lim
n→+∞

Hn = +∞, il existe n0 ∈ N tel que ∀n > n0, pHn > M. Pour tout n > n0,

comme M < pHn, on a (Sn 6 M) ⊂ (|Sn − pHn)| > pHn − M) donc, en posant ε = pHn − M > 0 dans

la majoration précédente, on obtient 0 6 P(Sn 6 M) 6 p(1− p)π2

6ε2
=

p(1− p)π2

6(pHn −M)2
. Par encadrement,

comme lim
n→+∞

Hn = +∞, on a lim
n→+∞

P(Sn 6 M) = 0 donc P(AM) = 0.

Méthode 1 : par sous-additivité, comme A =

+∞∪
M=1

AM, on a P(A) 6
+∞∑
M=1

P(AM) = 0 donc P(A) = 0.

Méthode 2 : Pour M ∈ N∗, si la suite (Sn(ω))n∈N∗ est majorée par M, elle est a fortiori majorée par

M+ 1 donc AM ⊂ AM+1. Ainsi, la suite d’évènements (AM)M∈N∗ est croissante pour l’inclusion donc, par

continuité croissante, on a P(A) = lim
M→+∞

P(AM) = 0.� �
11.139� �On note qu’ici λn > 0 contrairement à ce qu’on a vu en cours où on a imposé que le paramètre d’une

variable aléatoire suivant une loi de Poisson soit strictement positif. Il est donc possible, si λn = 0, que Xn

soit presque sûrement nulle car alors on a P(Xn = 0) = e−000

0!
= 1 et ∀k > 1, P(Xn = k) = e−00k

k!
= 0.

On a (S = 0) =

+∞∩
n=1

(Xn = 0) car les Xn sont à valeurs positives. Comme (S = 0) =

+∞∩
n=1

( n∩
k=1

(Xk = 0)
)
et que

la suite
(
In =

n∩
k=1

(Xk = 0)
)
n∈N∗

est décroissante pour l’inclusion, par théorème de continuité décroissante,

on a P(S = 0) = lim
n→+∞

P(In). Par indépendance des Xk, P(In) =
n∏

k=1

P(Xk = 0) =
n∏

k=1

e−λk = e

−
n∑

k=1

λk
.

On a donc deux cas :
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• Si
∑
n>1

λn converge, on a P(S = 0) = exp

(
−

+∞∑
k=1

λk

)
> 0.

• Si
∑
n>1

λn diverge, on a P(S = 0) = 0.

Dans le cas général, pour p ∈ N, en posant les sommes partielles Sn =
n∑

k=1

Xk, on constate que la suite

(Sn(ω))n∈N∗ est croissante pour tout ω ∈ Ω et que (S 6 p) =
∩

n∈N∗

(Sn 6 p). Or
(
(Sn 6 p)

)
n∈N∗ est

décroissante pour l’inclusion donc, par le théorème de continuité décroissante, P(S 6 p) = lim
n→+∞

P(Sn 6 p).

On a vu dans le cours que si X et Y sont deux variables aléatoires indépendantes suivant des lois de Poisson

de paramètres respectifs λ et µ, alors X+ Y suit la loi de Poisson de paramètre λ+ µ.

Initialisation : X1 suit la loi de Poisson de paramètre λ1 par hypothèse et, avec ce qui précède, X1+X2 suit

la loi de Poisson de paramètre λ1 + λ2.

Hérédité : soit n > 2 tel que la variable aléatoire Sn suit la loi de Poisson de paramètre λ =
n∑

k=1

λk. Comme

Sn et Xn+1 sont indépendantes par le lemme des coalitions, Sn + Xn+1 = Sn+1 suit la loi de Poisson de

paramètre λ+ λn+1 =
n+1∑
k=1

λk.

Par principe de récurrence, pour tout n ∈ N∗, Sn suit la loi de Poisson de paramètre
n∑

k=1

λk.

Pour n ∈ N∗, (Sn 6 p) =

p⊔
i=0

(Sn = i) donc P(Sn 6 p) =
p∑

i=0

P(Sn = i) =
p∑

i=0

exp

(
−

n∑
k=1

λk

)( n∑
k=1

λk

)i
i!

(1).

Traitons deux cas :

• Si
∑
k>1

λk converge, en notant S =
+∞∑
k=1

λk ∈ R+, par continuité de t 7→ et et de t 7→ ti pour i ∈ [[0; p]]

en S, en passant à la limite quand n tend vers +∞ dans (1), on obtient P(S 6 p) =
p∑

i=0

e−SSi

i!
.

• Si
∑
k>1

λk diverge, comme lim
t→+∞

e−tti = 1 si i = 0 et lim
t→+∞

e−tti = 0 si i > 1, en passant à la limite

quand n tend vers +∞ dans (1), on obtient P(S 6 p) = 1.

Pour avoir la loi de S, on écrit (S = 0) = (S 6 0) et, pour p ∈ N∗, (S 6 p) = (S = p) ⊔ (S 6 p− 1) de sorte

que, en traitant à nouveau deux cas :

• Si
∑
k>1

λk converge, P(S = 0) = e−S et P(S = p) =
p∑

i=0

e−SSi

i!
−

p−1∑
i=0

e−SSi

i!
= e−SSp

p!
si p ∈ N∗.

• Si
∑
k>1

λk diverge, P(S = 0) = 1 et P(S = p) = 1− 1 = 0 si p ∈ N∗.

Dans les deux cas, S suit la loi de Poisson de paramètre S =
+∞∑
k=1

λk.� �
11.140� �a. Pour que l’on ait Sk = 0, il est nécessaire et suffisant qu’il y ait k indices i ∈ [[1; 2k]] tels que Xi = 1

(considérés comme des réussites) et que les k autres indices i ∈ [[1; 2k]] vérifient Xi = −1 (échecs). Ce schéma

binomial se traduit par le fait que p(k) = P(Sk = 0) =

(
2k

k

)
pk(1− p)k.

Avec l’équivalent de Stirling, p(k) =
(2k)!

(k!)2
pk(1− p)k ∼

+∞

√
4πk(2k)2ke2k

e2k(2πk)k2k
pk(1− p)k =

(4p(1− p))k√
πk

.

b. Notons R le nombre de retours à l’origine, c’est-à-dire R = card
({

k ∈ N∗ | Sk = 0

})
∈ N ∪ {+∞}.
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On revient une infinité de fois à l’origine si et seulement si, pour chaque entier i ∈ N∗, il existe un entier

j > i pour lequel Sj = 0. Ceci se traduit par (R = +∞) =
+∞∩
i=1

(
+∞∪

j=i+1

(Sj = 0)

)
. Comme la suite

d’évènements

(
Ai =

+∞∪
j=i+1

(Sj = 0)

)
i∈N∗

est décroissante pour l’inclusion, par le théorème de continuité

décroissante, on a P(R = +∞) = lim
i→+∞

P(Ai). Or, par sous-additivité, on a P(Ai) 6
+∞∑

j=i+1

P(Sj = 0).

Comme p ̸= 1

2
dans cette question, 4p(1 − p) < 1 car

(
p − 1

2

)2
> 0 donc, avec la question précédente,

p(j) = P(Sj = 0) =
+∞

o((4p(1− p))j) et la série géométrique
∑
j>1

(4p(1− p))j converge donc, par comparaison,

la série
∑
j>1

P(Sj = 0) converge. En notant Ri =
+∞∑

j=i+1

P(Sj = 0) son reste d’ordre i, on a donc 0 6 P(Ai) 6 Ri

donc, par encadrement, lim
i→+∞

P(Ai) = 0 et P(R = +∞) = 0.� �
11.141� �Pour k ∈ N∗, on note Bk = “on tire une boule blanche au tirage k”. Il n’y a pas indépendance des tirages

puisque si on tire une boule blanche, on arrête le jeu.

Pour n ∈ N∗, on a donc (Y = n) = B1 ∩ · · · ∩ Bn−1 ∩ Bn et, d’après la formule des probabilités composées,

on a P(Y = n) = P(B1)× P(B2|B1)× · · · × P(Bn|B1 ∩ · · · ∩ Bn−1) ce qui donne, avec les règles des tirages,

P(Y = n) = 1

2
× 1

3
× · · · × 1

n
× n

n+ 1
= n

(n+ 1)!
.

Comme (Y = 0) =
+∞⊔
n=1

(Y = n) d’après l’énoncé, par σ-additivité, on a 1 − P(Y = 0) =
+∞∑
n=1

n

(n+ 1)!
donc

P(Y = 0) = 1 −
+∞∑
n=1

(n+ 1)− 1

(n+ 1)!
= 1 −

+∞∑
n=1

1

n!
+

+∞∑
n=1

1

(n+ 1)!
= 1 − (e − 1) + (e − 1 − 1) = 0 et l’évènement

(Y = 0) = “jamais de boule blanche” est négligeable.

D’après le cours, Y admet une espérance finie si et seulement si la série (nP(Y = n))n∈N est sommable,

ce qui revient à la convergence (tout est positif) de la série
∑
n>1

n2

(n+ 1)!
. Or n2

(n+ 1)!
∼
+∞

1

(n− 1)!
et la

série exponentielle
∑
n>1

1

(n− 1)!
converge. Ainsi, Y admet une espérance finie et E(Y) =

+∞∑
n=1

n2

(n+ 1)!
donc

E(Y) =
+∞∑
n=1

n(n+ 1)− (n+ 1) + 1

(n+ 1)!
=

+∞∑
n=1

1

(n− 1)!
−

+∞∑
n=1

1

n!
+

+∞∑
n=1

1

(n+ 1)!
e−(e−1)+(e−1−1) = e−1 ∼ 1, 72.� �

11.142� �a. On connâıt le développement en série entière géométrique de rayon R = 1 : ∀x ∈] − 1; 1[, 1

1− x
=

+∞∑
m=0

xm.

b. Soit un entier d ∈ N∗, on peut dériver terme à terme d−1 fois le développement de la question précédente.

Une récurrence simple montre que ∀d ∈ N∗, ∀x ∈]− 1; 1[,
(

1

1− x

)(d)
= d!

(1− x)d+1 . Ainsi, avec r = d− 1,

on a
(

1

1− x

)(r−1)

=
(r− 1)!
(1− x)r

=
+∞∑

m=r−1

m!
(m− r+ 1)!

xm−(r−1) =
( +∞∑

m=0

xm
)(r−1)

.

c. Pour x ∈]− 1; 1[ et r ∈ N, 1

(1− x)r
=

+∞∑
m=r−1

m!
(r− 1)!(m− r+ 1)!

xm−(r−1) =
+∞∑
n=0

(n+ r− 1)!
(r− 1)!n!

xr en posant

n = m − r + 1 donc 1

(1− x)r
=

+∞∑
n=0

(
n+ r− 1

n

)
xn. En prenant x = p ∈] − 1; 1[ dans cette relation, on
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obtient donc
+∞∑
n=0

(
n+ r− 1

n

)
pn =

1

qr
, c’est-à-dire

+∞∑
n=0

pn = 1 car

(
n+ r− 1

n

)
=

(
n+ r− 1

r− 1

)
alors que

∀n ∈ N, pn > 0. Par conséquent, (pn)n∈N est une distribution de probabilité.

d. La série génératrice de X est de rayon R > 1 d’après le cours et ∀t ∈]−R;R[, GX(t) =
+∞∑
n=0

P(X = n)tn donc

GX(t) =
+∞∑
n=0

pnt
n = qr

+∞∑
n=0

(
n+ r− 1

r− 1

)
(pt)n. On a donc R = 1

p
puisque le rayon de

∑
n>0

(
n+ r− 1

r− 1

)
tn

vaut 1 d’après la question b.. Ainsi, ∀t ∈
]
− 1

p
; 1
p

[
, GX(t) =

qr

(1− pt)r
.

e. Comme R > 1, GX est dérivable deux fois en 1 donc, d’après le cours, X admet un moment d’ordre 2 donc

une espérance et une variance finies et que E(X) = G′
X(1) et V(X) + E(X)2 − E(X) = E(X(X− 1)) = G′′

X(1).

Or ∀t ∈
]
− 1

p
; 1
p

[
, G′

X(t) = rpqr

(1− pt)r+1 et G′′
X(t) =

r(r+ 1)p2qr

(1− pt)r+2 , d’où E(X) = rpqr

(1− p)r+1 = rp

q
et

V(X) + r2p2

q2 − rp

q
=

r(r+ 1)p2

q2 donc V(X) = r(r+ 1)p2 − r2p2 + rp(1− p)

q2 = rp

q2 .� �
11.143� �a. On note Tk le numéro de la boule tirée au tirage k. On admet l’existence d’un espace probabilisé

qui supporte cette suite (Tk)k>1 de variables aléatoires mutuellement indépendantes (remarque du cours).

D’abord Xn(Ω) = (N∗ \ {1}) ∪ {+∞} car on rajoute la possibilité de ne jamais avoir une autre boule

que la première tirée, qu’on note Xn = +∞. De plus, (Xn = +∞) =
+∞∩
k=2

(Xn = k) par convention et

(Xn = k) =
n∪

i=1

(
(T1 = i) ∩ · · · ∩ (Tk−1 = i) ∩ (Tk ̸= i)

)
∈ A pour k > 2 donc Xn est une variable aléatoire

car les Ti le sont. Par incompatibilité de ces n évènements, indépendance mutuelle des Tk qui suivent toutes

la loi uniforme sur [[1;n]], on a P(Xn = k) =
n∑

i=1

(
1

n

)k−1(
n− 1

n

)
= n− 1

nk−1 pour k > 2.

On vérifie la cohérence de ces résultats car
+∞∑
k=2

n− 1

nk−1 = n− 1

n

+∞∑
j=0

(
1

n

)j
= n− 1

n
× 1

1− (1/n)
= 1. Ceci

justifie que l’évènement (Xn = +∞) (toujours la même boule) est négligeable comme attendu.

b. kP(Xn = k) =
k(n− 1)

nk−1 et
∑
k>2

k(n− 1)

nk−1 converge car le rayon de la série entière
∑
k>1

kxk−1 est égal à 1

et que
∣∣∣ 1
n

∣∣∣ < 1. De plus, comme ∀x ∈]− 1; 1[,
+∞∑
k=0

xk = 1

1− x
, on obtient en dérivant

+∞∑
k=1

kxk−1 = 1

(1− x)2

donc
+∞∑
k=2

kxk−1 = 1

(1− x)2
− 1. Ainsi, E(Xn) = (n − 1) ×

(
n2

(n− 1)2
− 1

)
= 2n− 1

n− 1
. Par conséquent,

lim
n→+∞

E(Xn) = 2 ce qu’on subodorait car plus n augmente, plus l’évènement (Xn = 2) devient presque sûr.

Comme (Xn − 1)(Ω) = N∗ ∪ {+∞} et que ∀k > 1, P(Xn − 1 = k) = P(Xn = k+ 1) = n− 1

nk qui s’écrit aussi

P(Xn−1 = k) =
(
1

n

)k−1(
1− 1

n

)
=
(
1−
(
1− 1

n

))k−1(
1− 1

n

)
avec p = 1− 1

n
∈]0; 1[, la variable aléatoire Xn−1

suit la loi géométrique de paramètre p = n− 1

n
ce qui simplifie les calculs car alors E(Xn − 1) = 1

p
= n

n− 1

donc, par linéarité de l’espérance, E(Xn) = 1+ n

n− 1
= 2n− 1

n− 1
.

c. Comme X2 = Y2, pour k > 2, on a (Y2 = k) = (X2 = k) donc P(Y2 = k) = 1

2k−1 d’après a.. On reconnâıt

cette loi, Y2−1 suit la loi géométrique de paramètre 1

2
car P(Y2−1 = k) = P(Y2 = k+1) = 1

2k
= 1

2

(
1− 1

2

)k−1

.
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d. Pour k > 3, en notant i le numéro de la première boule tirée, r le premier rang pour lequel on tire une

boule de numéro j ̸= i, comme 6− i− j est le numéro tiré autre que i et j (car i+ j+(6− i− j) = 1+2+3 = 6),

on a (Y3 = k) =
3⊔

i=1

3⊔
j=1
j ̸=i

k−1⊔
r=2

(( r−1∩
a=1

(Ta = i)
)
∩ (Tr = j) ∩

( k−1∩
b=r+1

(
(Tk = i) ∪ (Tk = j)

)))
∩ (Tk = 6− i− j).

Ainsi, par incompatibilité de tous ces évènements, indépendance mutuelle des tirages et symétrie entre les

numéros, P(Y3 = k) = 3× 2×
k−1∑
r=2

(
1

3

)r−1

×
(
1

3

)
×
(
2

3

)k−r−1

×
(
1

3

)
= 6

3k

k−1∑
r=2

2k−r−1 =
6(2k−2 − 1)

3k
.

À nouveau, comme Y3(Ω) = {3, 4, 5, · · · ,+∞}, on vérifie que
+∞∑
k=3

P(Y3 = k) =
+∞∑
k=3

6(2k−2 − 1)

3k
= 1. En effet,

on a
+∞∑
k=3

6(2k−2 − 1)

3k
= (6/4)

(2/3)3

1− (2/3)
− 6

(1/3)3

1− (1/3)
= 4

3
− 1

3
= 1. Ceci justifie que l’évènement (Y3 = +∞)

(maximum deux numéros tirés éternellement) est négligeable comme attendu.� �
11.144� �a. Par définition, comme X est une variable aléatoire à valeurs dans N, sous réserve de convergence, on

a GX(t) =
+∞∑
n=0

P(X = n)tn. Or, pour t ∈ R, la suite
(
P(X = n)tn

)
n>0

=
(
e−λ(λt)n

n!

)
n>0

est bornée par

croissances comparées. Ainsi, le rayon de convergence de la série génératrice
∑
n>0

P(X = n)tn vaut R = +∞

et on a ∀t ∈ R, GX(t) =
+∞∑
n=0

e−λ(λt)n

n!
= e−λeλt = eλ(t−1).

b. Soit a > 0 et t > 1, comme (X > a) =
⊔
k>a

(X = k), par σ-additivité, et car t > 1 donc ∀k > a, ta 6 tk,

on a P(X > a) =
∑
k>a

P(X = k) = 1

ta
∑
k>a

ta P(X = k) 6 1

ta
∑
k>a

tk P(X = k) . Ainsi, P(X > a) 6 GX(t)
ta

car

GX(t) =
( ∑

k<a

P(X = k)tk
)
+
( ∑

k>a

P(X = k)tk
)
et que

∑
k<a

P(X = k)tk > 0.

c. D’après les questions précédentes, en prenant a = 2λ > 0, P(X > 2λ) 6 eλ(t−1)

t2λ
= eλ(t−1)−2λ ln(t) pour

tout t > 1. Soit f : [1; +∞[→ R définie par f(t) = λ(t − 1) − 2λ ln(t), alors f est dérivable sur [1; +∞[

et f′(t) = λ − 2λ

t
=

λ(t− 2)
t

donc f est décroissante sur [1; 2] et croissante sur [2; +∞[ et elle atteint son

minimum en t = 2. En prenant t = 2 dans la question b., on a donc P(X > 2λ) 6 ef(2) = eλ−2λ ln(2) =
(
e

4

)λ
.� �

11.145� �a. Soit Bk = “on tire une boule blanche ou tirage k”, Nk = Bk = “on tire une boule blanche ou tirage k”.

Cas r = 1 : il y a N−1 boules blanches et une seule boule noire dans l’urne. On a XN(Ω) = [[1;N]] dans ce cas

et, pour k ∈ [[1;N]], on a (XN = k) =
( k−1∩

i=1

Bi

)
∩Nk donc, avec la formule des probabilités composées en tenant

compte de la composition de l’urne à chaque étape, P(XN = k) = P(B1)× P(B2|B1)× · · · × P
(
Nk

∣∣∣ k−1∩
i=1

Bi

)
donc P(XN = k) =

( k−1∏
i=1

N− i

N− i+ 1

)
× 1

N− k+ 1
= 1

N
après télescopage. Ainsi, XN suit la loi uniforme sur

[[1;N]] et on a E(XN) =
N∑

k=1

kP(XN = k) = 1

N

N∑
k=1

k =
N(N+ 1)

2N
= N+ 1

2
.

Cas r = N : il n’y a que des boules noires dans l’urne : XN = N est certain, XN(Ω) = {N} et E(XN) = N.

b. On peut modéliser cette expérience par des N-uplets comme BNNBBNN · · ·BN, celui-ci signifiant que la

première boule tirée est Blanche, les deux suivantes Noires, etc..... sachant qu’il doit impérativement y avoir
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N− r fois B et r fois N dans cette suite de lettres : en d’autres termes l’ “évènement” BNNBBNN · · ·BN est

égal à B1 ∩N2 ∩N3 ∩ B4 ∩ B5 ∩N6 ∩N7 ∩ · · · ∩ BN−1 ∩NN. On note Ω l’ensemble des tous ces N-uplets, il

y en a

(
N

r

)
car il faut choisir les r tirages qui vont donner une boule noire parmi les N tirages. On prend

aussi la tribu pleine A = P(Ω) et pour P la probabilité uniforme (par symétrie) sur Ω. On a XN(Ω) = [[r;N]]

car il faut au moins r tirages pour prendre toutes les boules noires et au plus N.

Soit k ∈ [[r;N]], alors P(XN = k) =
card ((XN = k))

card (Ω)
(loi uniforme sur Ω, ce qui est justifié dans l’autre

méthode). Or on a card (Ω) =

(
N

r

)
et card ((X = k)) =

(
r− 1

k− 1

)
car il faut forcément tirer une boule noire

au tirage k, des blanches à tous les tirages suivants et il faut choisir parmi les r− 1 premiers tirages les k− 1

tirages qui donnent une boule noire. Ainsi P(XN = k) =

(
k− 1

r− 1

)
(
N

r

) =
(k− 1)!(N− r)!r!
(r− 1)!(k− r)!N!

=
r(k− 1)!(N− r)!

(k− r)!N!
.

Autre méthode : pour k ∈ [[r;N]] = XN(Ω), on pouvait aussi décrire, avec la définition de XN, l’évènement

(XN = k) par (XN = k) =
⊔

16i1<···<ir−16k−1

(( r−1∩
j=1

Nij

)
∩
( ∩

p∈[[1;k−1]]
p/∈{i1,···,ir−1}

Bp

))
∩Nk ∩

( N∩
m=k+1

Bm

)
, ce qui

fait une réunion de

(
k− 1

r− 1

)
évènements incompatibles car il faut choisir les r− 1 entiers i1, · · · , ir−1 parmi

les k− 1 entiers de [[1; k− 1]]. Le premier (dans l’ordre lexicographique par exemple) de ces évènements est

U =
( r−1∩

j=1

Nj

)
∩
( k−1∩

p=r

Bp

)
∩Nk∩

( N∩
m=k+1

Bm

)
et le dernier V =

(( k−r∩
p=1

Bp

)
∩

k−1∩
j=k−r+1

Nj

)
∩Nk∩

( N∩
m=k+1

Bm

)
.

Pour le premier de ces deux évènements, avec la formule des probabilités composées, on obtient la relation

P(U) =
( r−1∏

j=1

r− j+ 1

N− j+ 1

)
×
( k−1∏

p=r

N− p

N− p+ 1

)
× 1

N− k+ 1
×
( N∏

m=k+1

N−m+ 1

N−m+ 1

)
=

r!(N− r)!
N!

. Pour le second,

P(V) =
( k−r∏

p=1

N− r− p+ 1

N− p+ 1

)
×
( k−1∏

j=k−r+1

k− j+ 1

N− j+ 1

)
× 1

N− k+ 1
×
( N∏

m=k+1

N−m+ 1

N−m+ 1

)
=

r!(N− r)!
N!

. On

se rend compte que pour chacun des évènements dont (XN = k) est la réunion incompatible, on va avoir

les mêmes dénominateurs allant en décroissant de N à 1 et les mêmes numérateurs mais pas dans le même

ordre. Comme tous ces évènements ont pour probabilité
r!(N− r)!

N!
et qu’ils sont au nombre de

(
k− 1

r− 1

)
, il

vient P(XN = k) =

(
k− 1

r− 1

)
× r!(N− r)!

N!
=

r(k− 1)!(N− r)!

(k− r)!N!
.

c. Par définition, E(XN) =
N∑

k=r

kP(XN = k) = 1(
N

r

) N∑
k=r

k

(
k− 1

r− 1

)
=

1(
N

r

) N∑
k=r

r

(
k

r

)
avec la formule du

capitaine, ce qui se simplifie avec la formule des colonnes en E(XN) =

r

(
N+ 1

r+ 1

)
(
N

r

) =
r(N+ 1)
r+ 1

< N comme il

se doit. La formule est aussi valable pour les cas limites r = 1 et r = N de la question a..� �
11.146� �a. Comme S est symétrique réelle, ses valeurs propres sont réelles par le théorème spectral. Pour λ ∈ R,

χS(λ) = (λ − X)2 − Y2 = (λ − X + Y)(λ − X − Y) donc Sp(S) = {X − Y, X + Y} donc, puisque Y(Ω) = N∗ par
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définition donc Y > 0, il vient λ = X− Y et µ = X+ Y.

b. S est inversible si et seulement si det(S) = X2 − Y2 = (X − Y)(X + Y) ̸= 0 donc, puisque X + Y > 0, S

est inversible si et seulement si X ̸= Y. Ainsi, (S /∈ GL2(N∗)) = (X = Y) =

+∞⊔
k=1

(X = k, Y = k) et, puisque

ces évènements sont incompatibles et que X et Y sont indépendants et de même loi, par σ-additivité et car

|1− p| < 1, on a P(S /∈ GL2(N∗)) =
+∞∑
k=1

P(X = k)2 =
+∞∑
k=1

p2(1− p)2(k−1) = p2
+∞∑
j=0

((1− p)2)j = p2

1− (1− p)2

simplifié en P(S /∈ GL2(N∗)) = p

2− p
. Ainsi, P(S ∈ GL2(N∗)) = 1− P(S /∈ GL2(N∗)) = 1− p

2− p
=

2(1− p)
2− p

.

c. On sait d’après le cours que S, étant déjà symétrique réelle, est définie positive si et seulement si ses

valeurs propres sont strictement positives donc (S ∈ S
++
2 (R)) = (λ > 0) = (X > Y) =

+∞⊔
k=1

(X > k, Y = k)

car on a toujours µ > 0. À nouveau, par incompatibilité de ces évènements et indépendance de X et Y, par

σ-additivité, on a P(S ∈ S
++
2 (R)) =

+∞∑
k=1

P(Y = k)P(X > k) =
+∞∑
k=1

p(1− p)k−1(1− p)k qui se calcule comme

à la question précédente, P(S ∈ S
++
2 (R)) = p(1− p)

+∞∑
k=1

(
(1− p)2

)k−1
=

p(1− p)

1− (1− p)2
= 1− p

2− p
.

Il est logique de trouver P(S ∈ S
++
2 (R)) = 1

2
P(S ∈ GL2(N∗)) car (λ < 0) et (λ > 0) sont deux évènements

de même probabilité par symétrie entre X et Y.

� �
11.3 Officiel de la Taupe� �� �

11.147� �Par la formule des probabilités totales, on a ∀k ∈ [[0;n− 1]] :

P(Xk+1 = 0) = PXk=0(Xk+1 = 0)P(Xk = 0)+ PXk=1(Xk+1 = 0)P(Xk = 1) = pP(Xk = 0)+(1−p)P(Xk = 1).
P(Xk+1 = 1) = PXk=0(Xk+1 = 1)P(Xk = 0)+ PXk=1(Xk+1 = 1)P(Xk = 1) = (1−p)P(Xk = 0)+pP(Xk = 1).

Ainsi, pour tout entier k ∈ [[0;n− 1]], on a Ak+1 = SAk avec S =

(
p 1− p

1− p p

)
.

b. Si p = 1, A0 = · · · = An. Si p = 0, A0 = A2 = · · · et A1 = A3 = · · · : cas sans intérêt !
Par une récurrence simple, on a ∀k ∈ [[0;n]], Ak = SkA0 or χS = X2 − 2pX + 2p − 1 = (X − 1)(X − 2p + 1).

S est diagonalisable (car symétrique réelle) et on a S = PDtP avec P = 1√
2

(
1 1

1 −1

)
et D =

(
1 0

0 2p− 1

)
.

Alors An = PDntPA0 = 1

2

(
1+ (2p− 1)n 1− (2p− 1)n

1− (2p− 1)n 1+ (2p− 1)n

)
A0, comme on peut supposer que p ∈]0; 1[, on a

P(Xn = 1) = 1

2

(
1+ (2p− 1)n

)
P(X0 = 1) + 1

2

(
1− (2p− 1)n

)
P(X0 = 0) donc on a lim

n→+∞
P(Xn = 1) = 1

2
.� �

11.148� �En notant Ri,k la variable aléatoire valant 1 si on fait k au tirage i et 0 sinon, alors Nk =
n∑

i=1

Ri,k donc

Nk est la somme de n variables aléatoires indépendantes suivant une loi de Bernoulli de paramètre p(k).

Ainsi Nk suit la loi binomiale B(n, p(k)) et on a P(Nk = i) =

(
n

i

)
p(k)i(1− p(k))n−i et E(Nk) = np(k).

Puisque les V.A. Ri,k sont indépendantes et suivant toutes la même loi, si m = E(Ri,k) = p(k) (moyenne)

et σ = σ(Ri,k) =
√

p(k)(1− p(k)) (écart-type), on sait d’après l’inégalité de Bienaymé-Tchebychev que

P
(∣∣∣∣Nk

n
−m

∣∣∣∣ > ε

)
6

V
(Nk

n

)
ε2

= σ2

nε2
. Puisque P

(∣∣∣∣Nk

n
− p(k)

∣∣∣∣ > ε

)
6 p(k)(1− p(k))

nε2
, on en déduit la loi
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faible des grands nombres : lim
n→+∞

P
(∣∣∣∣Nk

n
− p(k)

∣∣∣∣ > ε

)
= 0.

Soit Sn =

6∩
k=1

(Nk = np(k)), il faut que sur les n tirages, xk = np(k) parmi ces tirages donnent la face k :

• on choisit les numéros des tirages qui vont donner la face 1 :

(
n

x1

)
choix.

• on impose pour chacun de ces tirages la face 1 : probabilité p(1)x1 .

• on choisit les numéros des tirages qui vont donner la face 2 :

(
n− x1

x2

)
choix.

• on impose pour chacun de ces tirages la face 2 : probabilité p(2)x2 choix..... etc...

On obtient au final par indépendance des choix et des tirages : P(Sn) =
6∏

k=1

(
n− x1 − · · · − xk−1

xk

)
p(k)xk .

Après simplification, on arrive à P(Sn) = n!
6∏

k=1

(xk)!

×
( 6∏

k=1

p(k)p(k)
)n

. Si le dé n’est pas pipé, ∀k ∈

[[1; 6]], p(k) = 1

6
, donc si n ≡ 0[6], P(Sn) = n!

6n
6∏

k=1

(n/6)!

. Avec Stirling et après calculs : P(Sn) ∼
+∞

27
√
2

(πn)
5
2

.

� �
11.149� �On suppose que dans chaque paquet il y a une seule vignette : ce n’est pas précisé par l’énoncé ! On

numérote les vignettes de 1 à n et pour k ∈ [[1;n]], on note Tk le premier moment où le paquet acheté donne

la vignette k. On note T l’instant où la collection sera complète. Pour m ∈ N∗, on a (T 6 m) =
n∩

k=1

(Tk 6 m).

Mais les variables aléatoires Tk ne sont pas mutuellement indépendantes. On note tk le nombres d’achats

supplémentaires à effectuer sachant que l’on a exactement k− 1 vignettes différentes et qu’on en veut une de
plus ; par exemple t1 = 1. Quand on veut calculer tk on a k−1 vignettes différentes, la probabilité de ne pas

en avoir de nouvelle quand on achète un paquet est donc de k− 1

n
et la probabilité d’avoir la k-ième est de

n− k+ 1

n
. Ainsi tk suit une loi géométrique de paramètre n− k+ 1

n
. Or par construction on a T =

n∑
k=1

tk

donc E(T) =
n∑

k=1

E(tk) =
n∑

k=1

n− k+ 1

n
= nHn avec Hn =

n∑
k=1

1

k
.

Par une comparaison série/intégrale classique, on sait que Hn ∼
+∞

ln(n) donc E(T) ∼
+∞

n ln(n) ; E(T) est

aussi l’argent moyen à dépenser pour avoir toute la collection de vignettes.� �
11.150� �Le rayon d’une série génératrice est supérieur à 1 donc ∀r ∈]0; 1[, GX(r) =

+∞∑
n=0

P(X = n)rn. Comme

X(Ω) = N,
+∞∑
n=0

P(X = n) = P(X ∈ N) = 1 donc 1− GX(r) =
+∞∑
n=0

P(X = n)(1− rn).

Comme toutes ces quantités sont positives, on a clairement ∀n ∈ N, 1 − GX(r) > P(X = n)(1 − rn) donc

∀n ∈ N∗, P(X > n) 6 1− GX(r)
1− rn

car 1− rn > 0. Si n = 0, cette inégalité n’a pas de sens.

De plus, s’il existe un entier n ∈ N∗ tel que P(X > n) =
1− GX(r)
1− rn

, on a 1 − GX(r) = P(X = n)(1 − rn),

alors ∀k ̸= n, P(X = k)(1 − rk) = 0 ⇐⇒ (P(X = k) = 0 ou k = 0) car 1 − rk > 0 pour k > 1. Il y a donc

égalité dans l’inégalité précédente si et seulement si la variable aléatoire X prend presque sûrement les deux

valeurs 0 et n ce qui se traduit par P(X = 0) + P(X = n) = 1.
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On vérifie le résultat a posteriori : soit n > 1 et p ∈ [0; 1] tels que P(X = 0) = p et P(X = n) = 1− p, alors

GX(r) = p+ (1− p)rn donc
1− GX(r)
1− rn

=
1− p− (1− p)rn

1− rn
= 1− p = P(X = n).� �

11.151� �Par définition : f(t) = E(tX) =
n∑

i=0

P(X = i)ti. Ainsi f(k)(t) =
( n∑

i=k

P(X = i)ti
)(k)

(avec abus

de notation) donc f(k)(t) =
n∑

i=k

P(X = i) i!
(i− k)!

ti−k. Toujours par la formule de transfert, en notant

Qk =
k−1∏
p=0

(X−p), on a uk(X) = E
(
Qk(X)

)
=

n∑
i=0

P(X = i)Qk(i) =
n∑

i=k

P(X = i) i!
(i− k)!

donc f(k)(1) = uk(X).

Soit j ∈ [[0;n]], il vient Aj =
1

j!

n∑
k=j

(−1)j−k uk(X)
(k− j)!

=
n∑

k=j

(−1)j−k

j!(k− j)!

( n∑
i=k

P(X = i) i!
(i− k)!

)
et on inverse cette

somme triangulaire : Aj =
∑

j6k6i6n

(−1)j−ki!
(i− k)!j!(k− j)!

P(X = i) =
n∑
i=j

i!
j!(i− j)!

( i∑
k=j

(−1)j−k(i− j)!
(i− k)!(k− j)!

)
P(X = i).

On conclut : Aj =
n∑
i=j

(
i

j

)( i∑
k=j

(−1)j−k

(
i− j

k− j

))
P(X = i) =

n∑
i=j

(
i

j

)
(1 − 1)i−j P(X = i) = P(X = j) car

(1− 1)i−j = 0 si i > j et (1− 1)0 = 1. Ainsi : ∀j ∈ [[0;n]], P(X = j) = 1

j!

n∑
k=j

(−1)j−k uk(X)
(k− j)!

.� �
11.152� �Par hypothèse P(T = 0) = 0 et ∀k ∈ N, P(T = k) = P(Y = k− 1) = e−22k−1

(k− 1)!
.

pk =
e−24k(1+ αk)

(2k)!
=
+∞

o

(
1

k2

)
quelle que soit la valeur de α donc

∑
k>0

pk converge.

De plus, comme
+∞∑
k=0

pk = e−2
+∞∑
k=0

22k

(2k)!
+ αe−2

+∞∑
k=1

22k−1

(2k− 1)!
= e−2ch (2) + αe−2sh (2) donc (pk) définit une

probabilité si et seulement si 1+ α > 0 (pour que les pk soient positifs) et e−2ch (2) + αe−2sh (2) = 1.

La condition nécessaire et suffisante pour que (pk) définisse une probabilité est donc α = 1.

Par définition, on a alors E(X) =
+∞∑
k=0

kP(X = k) =
+∞∑
k=1

kpk =
+∞∑
k=1

e−24kk(1+ k)
(2k)!

(la convergence est claire).

On sait que ∀x ∈ R, ch (x) =
+∞∑
k=0

x2k

(2k)!
donc ∀x > 0, f(x) = xch (

√
x) =

+∞∑
k=0

xk+1

(2k)!
. Le rayon de convergence

de cette série étant R = +∞, on peut dériver deux fois sans problème sur R∗
+ : f′′(x) =

+∞∑
k=1

(k+ 1)kxk−1

(2k)!
.

Or f′′(x) = 3

4
√
x
sh (

√
x) + 1

4
ch (

√
x). Donc E(X) = 4e−2f′′(4) = e−2

2

(
3sh (2) + 2ch (2)

)
= 5

4
− e−4

4
.� �

11.153� �Par hypothèse ∀n ∈ N, P(X = n) = e−λλn

n!
. Par le théorème du transfert, f(X) = 1

1+ X
admet

une espérance finie si et seulement si
∑
n>0

f(n)P(X = n) =
∑
n>0

e−λλn

(n+ 1)× n!
converge absolument. Or

e−λλn

(n+ 1)× n!
=
+∞

o

(
1

n2

)
et

∑
n>1

1

n2 converge d’après Riemann donc 1

1+ X
admet une espérance finie et

E
(

1

1+ X

)
=

+∞∑
n=0

e−λλn

(n+ 1)!
= e−λ

λ

+∞∑
n=0

λn+1

(n+ 1)!
= e−λ

λ

(
eλ − 1

)
= 1− e−λ

λ
.� �

11.154� �Pour (i, j) ∈, N2, P(X = i, Y = j) = PX=i(Y = j)P(X = i) =

(
i

j

)
pj(1− p)i−j e

−λλi

i!
par hypothèse.

∀j ∈ N, (Y = j) =
+∞∪
i=0

(X = i, Y = j) qui donne par σ-additivité : P(Y = j) =
+∞∑
i=0

P(X = i, Y = j) donc

P(Y = j) =
+∞∑
i=j

P(X = i, Y = j) car P(X = i, Y = j) = 0 si j > i. Alors P(Y = j) =
+∞∑
i=j

(
i

j

)
pj(1 − p)i−j e

−λλi

i!
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d’où P(Y = j) = pje−λλj

j!

+∞∑
i=j

(1− p)i−jλi−j

(i− j)!
ce qui prouve que P(Y = j) = pje−λλj

j!
e(1−p)λ =

e−(λp)j(λp)j

j!
.

On en déduit que Y suit une loi de Poisson de paramètre λp.

On a Z(Ω) = N car Y 6 X par construction. De plus, pour n ∈ N, (Z = n) =
+∞∪
k=0

(X = n + k, Y = k)

(réunion disjointe) donc, par σ-additivité, on trouve P(Z = n) =
+∞∑
k=0

P(X = n+k, Y = k) qui permet d’écrire

P(Z = n) =
+∞∑
k=0

(
n+ k

k

)
pk(1 − p)n+k−k e−λλn+k

(n+ k)!
=

(1− p)ne−λλn

n!

+∞∑
k=0

pkλk

k!
et on reconnâıt une série

exponentielle : P(Z = n) =
(1− p)ne−λλneλp

n!
= e−(1−p)λ

((1− p)λ)n
n! donc Z suit la loi de Poisson P(λ(1− p)).

Comme P(X = 1, Y = 0) = 0 ̸= P(X = 1)P(Y = 0), X et Y ne sont pas indépendantes.

Par contre, les variables Z et Y le sont car P(Z = i, Y = j) = P(X = i+ j, Y = j) =

(
i+ j

j

)
pj(1− p)i

e−λλi+j

(i+ j)!

(voir ci-dessus) qui se simplifie en P(Z = i, Y = j) = pj(1−p)i e
−λpe−λ(1−p)λiλj

i!j!
et on a par ailleurs le calcul

P(Z = i)P(Y = j) =
e−(1−p)λ((1− p)λ)i

i!
× e−(λp)j(λp)j

j!
= P(Z = i, Y = j).� �

11.155� �Par définition Cov(X, Y) = E

((
X− E(X)

)(
Y − E(Y)

))
ce qui donne ici Cov(X, Y) = E((X− p)(Y − q)) or

le couple (X, Y) ne peut prendre que 4 valeurs, la covariance Cov(X, Y) vaut donc

pqP(X = 0, Y = 0)− (1− p)qP(X = 1, Y = 0)− p(1− q)P(X = 0, Y = 1) + (1− p)(1− q)P(X = 1, Y = 1).

Mais on a aussi la formule Cov(X, Y) = E(XY) − E(X)E(Y) = E(XY) − pq. Or la variable aléatoire XY ne

prend que les valeurs 0 ou 1 donc Cov(XY) = 1.P(X = 1, Y = 1) − pq. Comme par hypothèse P(X = 1) = p

et P(Y = 1) = q, on a bien la première des quatre relations voulues : P(X = 1, Y = 1) = P(X = 1)P(Y = 1).

• Comme X ne peut prendre que les valeurs 0 et 1, on a (X = 0, Y = 1) ∪ (X = 1, Y = 1) = (Y = 1) (réunion

disjointe) ce qui implique en matière de probabilité : P(X = 0, Y = 1) + P(X = 1, Y = 1) = P(Y = 1). Ainsi

P(X = 0, Y = 1) = q− pq = (1− p)q = P(X = 0)P(Y = 1).

• Comme Y aussi ne prend que les valeurs 0 et 1, (X = 1, Y = 0) ∪ (X = 1, Y = 1) = (X = 1) d’où

P(X = 1, Y = 0)+ P(X = 1, Y = 1) = P(X = 1) ⇐⇒ P(X = 1, Y = 0) = p−pq = p(1−q) = P(X = 1)P(Y = 0).

• Enfin (X = 0, Y = 0) ∪ (X = 1, Y = 0) = (Y = 0) =⇒ P(X = 0, Y = 0) + P(X = 1, Y = 0) = P(Y = 0) et on a

la dernière : P(X = 0, Y = 0) = 1− q− p(1− q) = (1− p)(1− q) = P(X = 0)P(Y = 0).

On a donc ∀(i, j) ∈ [[0; 1]]2 = (X, Y)(Ω), P(X = i, Y = j) = P(X = i)P(Y = j) ce qui est la définition de

l’indépendance des variables aléatoires X et Y.� �
11.156� �Ici X(Ω) = Y(Ω) = N. X+ 1 et Y + 1 suivent des lois géométriques de paramètre p. Si p = 1, X et Y sont

presque sûrement égale à 0 et ça n’a que très peu d’intérêt : on supposera par la suite que p ∈]0; 1[.

• Soit k ∈ N, comme (U = V = k) = (X = k) ∩ (Y = k), P(U = V = k) = P(X = Y = k) = P(X = k)P(Y = k)

par indépendance de X et Y donc P(U = V = k) = p2(1− p)2k.

• Si (i, j) ∈ N2 avec i < j, on a P(U = j, V = i) = P(X = i, Y = j) + P(X = j, Y = i) = 2P(X = i)P(Y = j) car

(U = j, V = i) = (X = i, Y = j) ∪ (X = j, Y = i) (réunion disjointe) et par indépendance de X et Y.

Ainsi, si i < j, nous avons P(U = j, V = i) = 2p2(1− p)i+j.

On peut réunir tous les cas : ∀(i, j) ∈ N2, P(U = j, V = i) = (δi6j + δi<j)p
2(1− p)i+j.
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• Pour i ∈ N, (V = i) =

+∞∪
j=i

(U = j, V = i) (réunion disjointe) donc, par σ-additivité, on obtient la

relation P(V = i) =
+∞∑
j=i

P(U = j, V = i) = p2(1− p)2i + 2
+∞∑

j=i+1

p2(1− p)i+j qui devient après factorisation

P(V = i) = p2(1−p)2i+2p2(1−p)2i+1
+∞∑
k=0

(1−p)k = p2(1−p)2i+
2p2(1− p)2i+1

1− (1− p)
et enfin après simplification

P(V = i) = p2(1− p)2i + 2p(1− p)2i+1 = p(1− p)2i[p+ 2(1− p)] = p(2− p)(1− p)2i.

V + 1 suit la loi géométrique de paramètre p(2− p) car (1− p)2 = 1− p(2− p).

• Pour j ∈ N, (U = j) =

j∪
i=0

(U = j, V = i) (réunion disjointe) donc, par σ-additivité, on obtient la relation

P(U = j) =
j∑

i=0

P(U = j, V = i) = p2(1 − p)2j + 2
j−1∑
i=0

p2(1 − p)i+j = p2(1 − p)2j + 2p2(1 − p)j
j−1∑
i=0

(1 − p)i,

après factorisation P(U = j) = p2(1− p)2j + 2p2(1− p)j
1− (1− p)j

1− (1− p)
= p2(1− p)2j + 2p(1− p)j(1− (1− p)j)

et après simplification P(U = j) = p(1− p)j[p(1− p)j + 2(1− (1− p)j)] = p(1− p)j[2− (2− p)(1− p)j].

Comme P(U = 0, V = 1) = 0 ̸= P(U = 0)P(V = 1) car V 6 U, U et V ne sont pas indépendantes.

S = U + V = X + Y donc, comme X et Y admettent des espérances finies E(X + 1) = E(Y + 1) = 1

p
(loi

géométrique), E(X) = E(Y) = 1− p

p
. Par linéarité de l’espérance, E(S) = E(X) + E(Y) = 2(1− p)

p
.

De plus, pour k ∈ N, on a (S = k) =
k∪

i=0

(X = i, Y = k − i) (réunion disjointe) donc, par σ-additivité et

indépendance de X et Y : P(S = k) =
k∑

i=0

P(X = i)P(Y = k− i) =
k∑

i=0

p(1−p)ip(1−p)k−i = (k+1)p2(1−p)k.� �
11.157� �Si ϕ : [c;d] → R est continue, de classe C2 sur ]c;d[, et vérifie ϕ(c) = ϕ(d) = 0 et ϕ′′ > 0 (par exemple),

alors ϕ′ est strictement croissante sur ]c;d[, or ϕ′ s’annule sur ]c;d[ d’après le théorème de Rolle car
ϕ(c) = ϕ(d) donc il existe e ∈]c;d[ tel que ϕ′ soit négative sur ]c; e[ et positive sur ]e;d[ : ϕ est croissante
sur ]c; e[ et décroissante sur ]e;d[ donc elle reste positive sur [c;d] car elle est continue sur [c;d] et vaut 0 en
c et en d.

On pose ϕ : y 7→ esy − c− y

c− d
esd − y− d

c− d
esc, cette fonction est de classe C2 sur [c;d], elle vaut 0 en c et en

d et sa dérivée seconde vaut ϕ′′(y) = s2esy > 0. Le résultat précédent nous montre que ϕ est négative sur

[c;d], ainsi : ∀y ∈ [c;d] , esy 6 c− y

c− d
esd + y− d

c− d
esc.

E(esY) =
n∑

k=1

esyk P(Y = yk) 6
n∑

k=1

(
c− yk

c− d
esd + yk − d

c− d
esc
)
P(Y = yk) d’après l’inégalité précédente et

car P(Y = yk) > 0 si on prend Y(Ω) = {yn}n∈N ⊂ [c;d] (fini ou dénombrable). On obtient donc, puisque
+∞∑
k=0

P(Y = yk) = P(Ω) = 1 et
+∞∑
k=0

yk P(Y = yk) = E(Y) = 0, l’inégalité E(esY) 6 c

c− d
esd + −d

c− d
esc donc

ln
(
E(esY)

)
6 ln

(
c

c− d
esd + −d

c− d
esc

)
car ln est croissante.

Ainsi ln
(
E(esY)

)
6 ln

(
c

− d
esd + y− d

c− d
esc

)
6 s2(d− c)2

8
, d’où E(esY) 6 e

s2(d−c)2

8 car exp est croissante.

Puisque exp est strictement croissante et s > 0, (S− E(S) > t) = (es(X−E(X)) > est) donc, comme es(X−E(X))

est positive, par l’inégalité de Markov : P(S − E(S) > t) = P(es(X−E(X)) > est) 6 E(es(S−E(S)))
est

. Or on

a aussi es(S−E(S)) =
n∏

k=1

es(Xk−E(Xk)) et les es(Xk−E(Xk)) sont mutuellement indépendantes par hypothèse,
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ainsi E(es(S−E(S))) =
n∏

k=1

E(es(Xk−E(Xk))) ce qui donne bien P (S− E(S) > t) 6 e−st

n∏
k=1

E(es(Xk−E(Xk))).

En prenant Y = Xk− E(Xk) d’espérance nulle et qui prend ses valeurs dans le segment [c;d] où c = a− E(Xk)

et d = b− E(Xk), on a par l’inégalité précédente E(es(Xk−E(Xk))) 6 e
s2(d−c)2

8 = e
s2(b−a)2

8 . Grâce à ce qui

précède, P (S− E(S) > t) 6 e−st

n∏
k=1

E(es(Xk−E(Xk))) 6 e−st
(
e
s2(b−a)2

8

)n
= e

−st+n
s2(b−a)2

8 .

Le graphe de l’application θ : s 7→ −st + n
s2(b− a)2

8
est une parabole qui atteint son minimum en s0 tel

que θ′(s0) = 0 ⇐⇒ s0 = 4t

n(b− a)2
. Ainsi P (S− E(S) > t) 6 eθ(s0) = e

−s0t+n
s2
0(b−a)2

8 = e

−2t2

n(b−a)2 .� �
11.158� �a. On constate que X+ Y = Z. Ainsi, (k, l) ∈ N2, P(X = k, Y = l) = P(X = k, Z = k+ l).

Si rk+l = 0, (Z = k+l) est négligeable, (X = k, Z = k+l) aussi : P(X = k, Y = l) = rk+l

(
k+ l

k

)
pk(1−p)l = 0.

Si rk+l > 0, P(X = k, Z = k + l) = P(Z=k+l)(X = k)P(Z = k + l). Or la loi conditionnelle de X sachant

Z = k+ l est la loi binomiale B(k+ l, p) donc PZ=k+l(X = k) =

(
k+ l

k

)
pk(1− p)l+k−k.

On conclut, et ceci dans tous les cas : P(X = k, Y = l) = rk+l

(
k+ l

k

)
pk(1− p)l.

On sait que (X = k) =

+∞∪
l=0

(X = k, Y = l). Ces évènements étant incompatibles deux à deux, on trouve par

σ-additivité : P(X = k) =
+∞∑
l=0

P(X = k, Y = l) = pk =
+∞∑
l=0

rk+l

(
k+ l

k

)
pk(1− p)l.

Par symétrie : P(Y = l) =
+∞∑
k=0

P(X = k, Y = l) = ql =
+∞∑
k=0

rk+l

(
k+ l

k

)
pk(1− p)l.

Si Z suit une loi de Poisson de paramètre λ > 0, alors P(X = k) =
+∞∑
l=0

e−λλk+l

(k+ l)!

(
k+ l

k

)
pk(1 − p)l d’où

P(X = k) = pke−λλk

k!

+∞∑
l=0

(λ(1− p))l

l!
=

(pλ)ke−λ

k!
eλ(1−p) =

(pλ)ke−λp

k!
et X suit la loi de Poisson de

paramètre λp. De même P(Y = l) =
+∞∑
k=0

e−λλk+l

(k+ l)!

(
k+ l

k

)
pk(1 − p)l =

((1− p)λ)le−λ(1−p)

l!
et Y suit la loi

de Poisson de paramètre λ(1−p). Ainsi les variables aléatoires X et Y sont indépendantes car elles vérifient

P(X = k)P(Y = l) =
(pλ)ke−λp

k!
((1− p)λ)le−λ(1−p)

l!
= e−λλk+l

(k+ l)!

(
k+ l

k

)
pk(1− p)l = P(X = k, Y = l).

On écrit (Z = n) =
∪

(k,l)∈ N2
k+l=n

(X = k, Y = l). C’est la réunion dénombrable d’évènements incompatibles deux à

deux donc rn = P(Z = n) =
∑

(k,l)∈ N2
k+l=n

(X = k, Y = l) =
∑

(k,l)∈ N2
k+l=n

P(X = k)P(Y = l) =
∑

(k,l)∈ N2
k+l=n

pkql.

Comme Z est non presque sûrement nulle, il existe s > 1 tel que rs > 0. Ainsi p0 =
+∞∑
l=0

rl

(
l

0

)
p0(1− p)l > 0

et p1 =
+∞∑
l=0

rl+1

(
l+ 1

1

)
p(1− p)l > 0. De même q0 > 0 et q1 > 0.

D’après ce qui précède, on a les relations P(X = k+ 1, Y = l) = rk+l+1

(
k+ l+ 1

k+ 1

)
pk+1(1− p)l = pk+1ql et

P(X = k, Y = l+ 1) = rk+l+1

(
k+ l+ 1

k

)
pk(1− p)l+1 = pkql+1.

• Si rk+l+1 = 0, on a pkql+1 = pk+1ql = 0 donc pkql+1(l+ 1)p = pk+1ql(k+ 1)p = 0.
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• Si rk+l+1 > 0, on fait le rapport de ces deux relations pour avoir

rk+l+1

(
k+ l+ 1

k+ 1

)
pk+1(1− p)l

rk+l+1

(
k+ l+ 1

k

)
pk(1− p)l+1

=
pk+1ql

pkql+1

donc
pk+1ql

pkql+1

=
(k+ l+ 1)!k!(l+ 1)!pk+1(1− p)l

(k+ 1)!l!(k+ l+ 1)!pk(1− p)l+1 =
(l+ 1)p

(k+ 1)(1− p)
.

Dans les deux cas, pkql+1(l+ 1)p = pk+1ql(k+ 1)(1− p).

On prend k = 0 dans l’équation de la question précédente et il vient p0ql+1(l + 1)p = p1ql(1 − p) d’où

ql+1 = b
ql

l+ 1
en notant b =

p1(1− p)
p0p

. Par une récurrence facile, on montre que ∀l ∈ N, ql =
bl

l!
q0.

De même, on trouve que ∀k ∈ N, pk = ak

k!
p0 où a = q1p

q0(1− p)
.

Comme
+∞∑
l=0

ql = 1 et
+∞∑
k=0

pk = 1, on en déduit que q0 = e−b et que p0 = e−a. Alors, par définition, Y suit

la loi de Poisson P(b) et X suit la loi de Poisson P(a).

En conclusion de cet exercice, si Z est une variable aléatoire non presque sûrement nulle à valeurs dans N et

X =
Z∑

i=1

Ui et Y =
Z∑

i=1

(1−Ui), alors : Z suit une loi de Poisson si et seulement si X et Y sont indépendantes.� �
11.159� �rang (UtU) 6 Min(rang (U), rang (tU)) 6 1 car U est une matrice colonne et on a aussi M = 0 ⇐⇒ U = 0

car Tr (M) = Tr (UtU) = ||U||2. Ainsi rang (M) ∈ {0, 1} et rang (M) = 0 ⇐⇒ U = 0.

Comme (U = 0) =
n∪

k=1

(Xk = 0) et que les variables aléatoires X1, · · · , Xn sont indépendantes, on a :

P(rang (M) = 0) = P(U = 0) =
n∏

k=1

P(Xk = 0) = (1− p)n. De plus P(rang (M) = 1) = 1− (1− p)n.

Ainsi, rang (M) suit une loi de Bernoulli B(q) de paramètre q = 1− (1− p)n.

Comme Tr (M) = X2
1 + · · ·+ X2

n = X1 + · · ·+ Xn, Tr (M) est la somme de variables aléatoires indépendantes
suivant la même loi de Bernoulli B(p). On sait d’après le cours que Tr (M) suit la loi binomiale B(n, p)

de sorte que ∀k ∈ [[0;n]], P(Tr (M) = k) =

(
n

k

)
pk(1− p)n−k.

Classiquement, M2 = UtUUtU = U(tUU)tU = ||U||2M et ||U||2 = Tr (tUU) = Tr (UtU) = Tr (M) donc

M2 = Tr (M)M. On en déduit que (M2 = M) = (Tr (M) = 1) ∪ (M = 0) (évènements incompatibles) donc

P(M2 = M) = P(Tr (M) = 1) + P(M = 0) mais P(Tr (M) = 1) =

(
n

1

)
p(1 − p)n−1 ainsi la probabilité que

M soit une matrice de projection est P(M2 = M) = np(1− p)n−1 + (1− p)n.

Par le calcul matriciel, S = tVMV =
∑

16i,j6n

XiXj =
n∑

k=1

Xk + 2
∑

16i<j6n

XiXj. Par linéarité de l’espérance et

comme Xi et Xj sont indépendants si i ̸= j, on a E(S) = np+ (n2 − n)p2.

On aurait aussi pu constater que S = tUtUV = tXX = X2 en posant X = tUV =
n∑

k=1

Xk, alors X étant la

somme de n variables aléatoires indépendantes suivant la même loi de Bernoulli, X suit la loi binomiale

B(n, p) donc E(S) = E(X2) = V(X) + E(X)2 = np(1− p) + (np)2 = np+ (n2 − n)p2.

De plus V(S) = E(S2) − E(S)2 = E(X4) − (np + (n2 − np2)2. Or, par le théorème de transfert, il vient

E(X4) =
n∑

k=0

k4

(
n

k

)
et on écrit k4 = k(k − 1)(k − 2)(k − 3) + 6k(k − 1)(k − 2) + 7k(k − 1) + k pour

avoir
n∑

k=0

k4

(
n

k

)
= 24

n∑
k=0

(
k

4

)(
n

k

)
+ 36

n∑
k=0

(
k

3

)(
n

k

)
+ 14

n∑
k=0

(
k

2

)(
n

k

)
+

n∑
k=0

(
k

1

)(
n

k

)
et on utilise la

relation

(
n

k

)(
k

p

)
=

n!

(n− k)!(k− p)!p!
=

n!(n− p)!

(n− p)!p!(n− k)!(k− p)!
=

(
n

p

)(
n− p

k− p

)
pour simplifier ceci en
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n∑
k=0

k4

(
n

k

)
= 24

n∑
k=4

(
n

4

)(
n− 4

k− 4

)
+ 36

n∑
k=3

(
n

3

)(
n− 3

k− 3

)
+ 14

n∑
k=2

(
n

2

)(
n− 2

k− 2

)
+

n∑
k=1

(
n

1

)(
n− 1

k− 1

)
.

Ainsi :
n∑

k=0

k4

(
n

k

)
= 24

(
n

4

)
2n−4 + 36

(
n

3

)
2n−3 + 14

(
n

2

)
2n−2 +

(
n

1

)
2n−1 et on en déduit V(S).� �

11.160� �Comme X(Ω) = Y(Ω) = N∗, par construction Z(Ω) = T(Ω) = N∗.

Soit k ∈ N∗, alors (Z > k) = (X > k) ∩ (Y > k) or (X > k) et (Y > k) sont des évènements puisque X et
Y sont des variables aléatoires donc, par intersection, (Z > k) est un évènement pour tout k. De même,
(T 6 k) = (X 6 k) ∩ (Y 6 k) donc (T 6 k) est un évènement.

Ainsi, (Z = k) = (Z > k − 1) \ (Z > k) est un évènement (stabilité par intersection et complémentaire). De
même, (T = k) = (T 6 k) \ (T 6 k− 1) est un évènement. Au final, Z et T sont des variables aléatoires.

D’abord, 1 6 Z 6 X et 1 6 T 6 X+ Y donc, par comparaison, Z et T admettent des espérances finies.

Or (X 6 k) =
k∪

i=1

(X = i) (réunion disjointe) donc P(X 6 k) =
k∑

i=1

P(X = i) =
k∑

i=1

p(1−p)i−1 = p
1− (1− p)k

1− (1− p)

d’où P(X 6 k) = 1 − (1 − p)k. De même, on a P(Y 6 k) = 1 − (1 − q)k donc P(X > k) = (1 − p)k et
P(Y > k) = (1− q)k. Par indépendance de X et Y, on a P(Z > k) = P(X > k)P(Y > k) = (1− p)k(1− q)k et
P(T 6 k) = P(X 6 k)P(Y 6 k) = 1− (1− p)k − (1− q)k + (1− p)k(1− q)k.

On sait que Z admet une espérance finie si et seulement si
∑
k>0

P(Z > k) converge et que dans ce cas on a :

E(Z) =
+∞∑
k=0

P(Z > k). Il vient E(Z) = 1

1− (1− p)(1− q)
= 1

p+ q− pq
car 0 < 1−p < 1 et 0 < 1−q < 1 donc

les séries géométriques convergent. Comme P(T > k) = 1− P(T 6 k) = (1−p)k+(1−q)k− ((1−p)(1−q))k,

on a aussi E(T) = 1

1− (1− p)
+ 1

1− (1− q)
− 1

1− (1− p)(1− q)
= 1

p
+ 1

q
− 1

p+ q− pq
.

Puisque P(Z = k) = P(Z > k−1)− P(Z > k) = (1−p)k−1(1−q)k−1−(1−p)k(1−q)k, il vient en factorisant
P(Z = k) = (1 − (1 − p)(1 − q))(1 − p)k−1(1 − q)k−1 donc on constate que Z suit la loi géométrique de

paramètre r = 1− (1− p)(1− q) = p+ q− pq donc E(Z) = 1

p+ q− pq
.

On en déduit aussi que si x ∈
]
− 1

p+ q− pq
; 1

p+ q− pq

[
, GZ(x) =

+∞∑
k=1

P(Z = k)xk =
(p+ q− pq)x

1− (1− p)(1− q)x
.

De même, si x ∈]1; 1[ au moins, on a GT (x) =
+∞∑
k=1

P(T = k)xk = 1 − (x − 1)
+∞∑
k=1

P(T > k)xk qui se calcule :

GT (x) = 1 − (x − 1)
(

1

1− (1− p)x
+ 1

1− (1− q)x
− 1

1− (1− p)(1− q)x

)
. Les espérances de Z et T existent

si et seulement si GZ et GT sont dérivables en 1 et dans ce cas : E(Z) = G′
Z(1) et E(T) = G′

T (1). On vérifie

G′
Z(x) =

(p+ q− pq)(1− (1− p)(1− q)x) + (1− p)(1− q)(p+ q− pq)x

(1− (1− p)(1− q)x)2
donc G′

Z(1) =
p+ q− pq

(p+ q− pq)2
OK !� �

11.161� �On vérifie la cohérence de la définition : comme 1

20
= 1, l’énoncé impose visiblement N(Ω) = N∗ et on a

bien
+∞∑
n=1

P(N = n) =
+∞∑
n=0

1

2n
=

1/2

1− (1/2)
= 1. Si on note V l’évènement ”le joueur gagne”, alors on a par

définition V =

+∞∪
n=1

(N = 2n) (réunion disjointe) donc P(V) =
+∞∑
n=1

1

22n
=

1/4

1− (1/4)
= 1

3
.

Par définition G = (−1)NN donc, par le théorème de transfert : E(G) =
+∞∑
n=1

(−1)n

2n
=

−(1/2)
1+ (1/2)

= −1

3
.� �

11.162� �Posons mn = 1

n

n∑
i=1

pi et Mn = X1 + X2 + . . .+ Xn

n
de sorte que E(Mn) = mn par linéarité. D’après

l’inégalité de Bienaymé-Tchebychev, ∀α > 0, P
(
|Mn − E(Mn)| > α

)
6 V(Mn)

α2 . Les Xk étant indépen-

dantes, V(Mn) =
1

n2

n∑
k=1

V(Xk) =
1

n2

n∑
k=1

pk(1−pk) 6 1

n
. Ainsi, ∀α > 0, lim

n→+∞
P
(
|Mn−E(Mn)| > α

)
= 0.
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Soit ε > 0 et n0 ∈ N tel que ∀n > n0, |mn−p| 6 ε

2
. (|Mn−p| > ε) ⊂

(
|Mn−mn| > ε

2

)
car si |Mn−p| > ε,

on a ε < |Mn − p| = |Mn − p+ p−mn| 6 |Mn − p|+ |mn − p| 6 |Mn − p|+ ε

2
donc |Mn −mn| > ε

2
.

Ainsi P(|Mn − p| > ε) 6 P

(
|Mn −mn| > ε

2

)
→ 0 d’après ce qui précède : lim

n→+∞
P(|Mn − p| > ε) = 0.� �

11.163� �Par le théorème du transfert, E(Y) = E(X2 + 1) =
+∞∑
n=0

(n2 + 1)e
−λλn

n!
. Or n2 + 1 = n(n − 1) + n + 1

donc E(Y) = e−λ
+∞∑
n=0

(n(n− 1)+n+ 1)λ
n

n!
= e−λ

(
λ2

+∞∑
n=2

λn−2

(n− 2)!
+ λ

+∞∑
n=1

n λn−1

(n− 1)!
+

+∞∑
n=0

λn

n!

)
(car n(n− 1)

est nul pour n = 0 et n = 1 par exemple) qui se réduit à E(Y) = e−λ(λ2 + λ+ 1)eλ = λ2 + λ+ 1. Ou alors

E(Y) = E(X2) + E(1) = V(X) + E(X)2 + 1 = λ+ λ2 + 1 d’après le cours et par linéarité de l’espérance.

Comme (2X < Y) = (X2+ 1− 2X > 0) = ((X− 1)2 > 0) = (X ̸= 1), on a P(2X < Y) = 1− P(X = 1) = 1−λe−λ.

De même, (X pair) =

+∞∪
n=0

(X = 2n) (réunion disjointe) donc P(X pair) =
+∞∑
n=0

e−λλ2n

(2n)!
= e−λch (λ) qu’on

transforme en P(X pair) = 1

2
+ e−2λ

2
< 1

2
: il y a donc plus de chance que X soit pair qu’impair.� �

11.164� �Par construction, N suit une loi géométrique. Lors d’un lancer de deux dés (de façon indépendante),

la probabilité d’obtenir un 6 est de 11

36
puisque sur les 36 configurations (i, j) ∈ [[1; 6]]2 possibles, seules

(1, 6), · · · , (5, 6), (6, 6), (6, 5), · · · , (6, 1) amènent au moins un 6. Ainsi, N suit la loi géométrique de paramètre

p = 11

36
de sorte que ∀k > 1, P(N = k) = (1− p)k−1p =

(
25

36

)k−1
11

36
.� �

11.165� �On sait que N(Ω) = N par définition de la loi de Poisson donc K(Ω) = N aussi. D’après l’énoncé, la loi de

K sachant (N = n) est la loi binomiale B(n, p) car on a indépendance mutuelle entre les œufs et que l’éclosion

de chacun d’entre eux suit un schéma de Bernoulli de paramètre p : P(K = k|N = n) =

(
n

k

)
pk(1−p)n−k.

Il suffit alors d’écrire que, pour k ∈ N, on a (K = k) =
+∞∪
n=k

(K = k,N = n) (incompatibles), ce qui justifie

que P(K = k) =
+∞∑
n=k

P(K = k|N = n)P(N = n) =
+∞∑
n=k

(
n

k

)
pk(1 − p)n−k e−λλn

n!
. Bien sûr, on pouvait aussi

invoquer la formule des probabilités totales sachant que ((N = n))n∈N et un système complet d’évènements

donc P(K = k) =
+∞∑
n=0

P(K = k|N = n)P(N = n) et que P(K = k|N = n) = 0 si k ∈ [[0;n − 1]], ce qui

donne bien le même résultat. Ainsi, P(K = k) = e−λpkλk

k!

+∞∑
n=k

(1 − p)n−k λn−k

(n− k)!
= e−λpkλk

k!
e(1−p)λ en

reconnaissant une série exponentielle aux indices décalés. Par conséquent P(X = k) =
e−pλ(λp)k

k!
donc K

suit la loi de Poisson de paramètre λp.� �
11.166� �Notons Xk = 0 si le dé A est inférieur au dé B au tirage k et Xk = 1 sinon. Alors X =

n∑
k=1

Xk et les Xk sont

mutuellement indépendants par indépendance des lancers. Comme les Xk suivent des lois de Bernoulli

de paramètre p = 15

36
(avec une probabilité 1

6
les deux dès donnent la même face, et on partage le reste en

deux), X suit la loi binomiale B(n, p). Ainsi E(X) = np et V(X) = np(1− p) d’après le cours.

Pour une variable aléatoire X admettant une variance finie et ε > 0 : P
(
|X− E(X)| > ε

)
6 V(X)

ε2
(inégalité de

Bienaymé-Tchebychev). Par conséquent, comme E(X) > 0, en notant ε = 0, 1E(X), on peut transformer

pn = P
(
0, 9 < X

E(X) < 1, 1

)
= P(−0, 1 × E(X) < X − E(X) < 0, 1 × E(X)) = P(|X− E(X)| < ε) donc, avec
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Bienaymé-Tchebychev : pn = 1− P(|X− E(X)| > ε) > 1− 100V(X)
E(X)2

= 1− 100np(1− p)

n2p2
= 1− 140

n
. Ainsi

pn > 0, 99 dès que 140

n
6 1

100
⇐⇒ n > 14000.� �

11.167� �On note Vi l’indicatrice de l’évènement Bi : ”le i-ème chasseur est visé”. Alors par définition V =
c∑

i=1

Vi

donc, par linéarité de l’espérance : E(V) =
c∑

i=1

E(Vi). Or Bi =
l∩

j=1

Ii,j où Ii,j est l’évènement : ”le lapin j ne

vise pas le chasseur i” (I pour ignoré). Comme les choix des lapins sont supposés indépendants, les Ii,j sont

mutuellement indépendants donc 1 − P(Bi) =
l∏

j=1

P(Ii,j) mais P(Ii,j) = c− 1

c
(tous les chasseurs sauf 1 de

manière équiprobable en supposant qu’un lapin ne vise qu’un seul chasseur) donc 1− P(Bi) =
(c− 1)l

cl
. Ainsi

Vi suit la loi de Bernoulli de paramètre q =
cl − (c− 1)l

cl
donc E(Vi) = q et d’où E(V) = c.

cl − (c− 1)l

cl
.

On recommence : Ci =
l∩

j=1

Li,j où Li,j est l’évènement : ”le lapin j ne touche pas le chasseur i”. Comme les

choix des lapins sont indépendants, les Li,j le sont aussi donc 1 − P(Ci) =
l∏

j=1

P(Li,j). Or Li,j = Ri,j ∪ Ii,j

(incompatibles) où Ri,j : ”le lapin j vise le chasseur j mais le rate” (R pour raté) et Ii,j : ”le lapin j ne vise

même pas le chasseur j” (I pour ignoré). Ainsi, P(Li,j) = P(Ri,j)+ P(Ii,j) or P(Ii,j) = c− 1

c
(comme avant)

et P(Ri,j) = P(Ii,j ∩ Li,j) = P
Ii,j

(Li,j)× P(Ii,j) = 1− p

c
.

Ainsi P(Li,j) = 1− p

c
+ c− 1

c
= c− p

c
. Donc P(Ci) =

cl − (c− p)l

cl
.� �

11.168� �On peut choisir Ω = P([[1;n]]) comme univers sur lequel l’énoncé nous dit de prendre la probabilité

uniforme. Détermine la loi de S est très compliqué. On peut néanmoins calculer E(S) en faisant intervenir
les variables aléatoires Xi, pour i ∈ [[1;n]], définie par Xi(ω) = 1 si i ∈ ω et Xi(ω) = 0 sinon. Par définition,

S =
n∑

i=1

iXi. (Xi = 1) = (ω ∈ Ω | i ∈ ω} donc card (Xi = 1) = P([[1;n]] \ {i}) = 2n−1 (i est dans la partie

(pas de choix) et on choisit si les autres y sont ou pas) donc P(Xi = 1) = 2n−1

2n
= 1

2
(normal non ?). Ainsi,

comme les Xi sont des variables aléatoires suivant des lois de Bernoulli de paramètre p = 1

2
, S est une

variable aléatoire et, par linéarité de l’espérance, E(S) =
n∑

i=1

i.p =
n(n+ 1)

4
.� �

11.169� �Soit n ∈ N∗, par indépendance de X et Y, on obtient P(S = n) = P(X+Y = n) =
n∑

k=0

P(X = k et Y = n−k)

donc P(S = n) =
n∑

k=0

P(X = k)P(Y = n− k) =
n∑

k=0

p(1− p)k−1p(1− p)n−k−1 = (n+ 1)p2(1− p)n−2.

Soit k ∈ N, PS=n(X = k) =
P(X = k, S = n)

P(S = n)
=

P(X = k, Y = n− k)
P(S = n)

donc PS=n(X = k) = 0 si k > n et

PS=n(X = k) =
p(1− p)k−1p(1− p)n−k−1

(n+ 1)p2(1− p)n−2 = 1

n+ 1
: la loi de X sachant S = n est la loi uniforme sur [[0;n]].

Prenons d’abord n = 0, alors PZ>0(Z > 1) = 1− p. Mais comme Z est à valeurs dans N∗, on a (Z > 0) = Ω

donc PZ>0(Z > 1) = P(Z > 1) = 1− p = 1− P(Z = 1) donc P(Z = 1) = p.

Montrons par récurrence que : ∀n > 1, P(Z > n) = (1− p)n. La propriété est vraie pour n = 0 et n = 1.
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Si n > 2 et P(Z > n) = (1−p)n, PZ>n(Z > n+1) = 1−p =
P(Z > n+ 1)
P(Z > n)

car (Z > n+1, Z > n) = (Z > n+1).

Ainsi, par hypothèse de récurrence : P(Z > n+ 1) = (1− p)n+1.

On a donc par principe de récurrence : ∀n > 1, P(Z > n) = (1 − p)n (vrai même pour n = 0) donc

∀n > 1, P(Z = n) = P(Z > n)− P(Z > n− 1) = (1− p)n − (1− p)n−1 = p(1− p)n−1 : Z ∼ G(p).

Comme une loi géométrique modélise le numéro du premier succès (pile) dans une répétition infinie de tirages

de pile ou face (où la probabilité de faire pile est p), le fait que E(X) = 1

p
signifie qu’en moyenne on va

attendre 1

p
coups pour faire un pile dans cette configuration.
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