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19.1� �a. Par le théorème de transfert, la variable aléatoire Y = euN admet une espérance finie si et seulement si

la série
∑
n>0

eun P(X = n) =
∑
n>0

eune−λ λ
n

n!
converge. Or eune−λ λ

n

n!
= e−λ (λe

u)n

n!
donc la série précédente

converge comme une série exponentielle. Classiquement, E(euN) =
+∞∑
n=0

e−λ (λe
u)n

n!
= e−λeλe

u

= eλ(e
u−1).

b. Pour y > 0 et u > 0, eu(N−(1+y)λ) = e−(1+y)uλeuN donc Z = eu(N−(1+y)λ) admet aussi une espérance

finie et, par linéarité de l’espérance, E(Z) = e−(1+y)uλ E(euN) = e−(1+y)uλe−λeλe
u

= eλ(e
u−1−(1+y)u).

Considérons la fonction fy : R∗
+ → R définie par fy(u) = eu − 1 − (1 + y)u. Comme fy est dérivable et

que f′y(u) = eu − (1 + y), fy est croissante sur [ln(1 + y);+∞[ et décroissante sur ]0; ln(1 + y)], ainsi on a

Inf
u>0

fy(u) = Min
u>0

fy(u) = fy(ln(1 + y)) = y − (1 + y) ln(1 + y) = −h(y). Ainsi, par stricte croissante de la

fonction exp et comme λ > 0, on a aussi Inf
u>0

(
E(eu(N−(1+y)λ))

)
= Min

u>0

(
E(eu(N−(1+y)λ))

)
= e−λh(y).

c. Soit y > 0 et u > 0, (N > (1 + y)λ) = (uN > (1 + y)uλ) = (u(N − (1 + y)λ) > 0) = (eu(N−(1+y)λ) > 1)

par stricte croissance de exp donc, d’après l’inégalité de Markov, comme eu(N−(1+y)λ) est une variable

aléatoire réelle positive, on a P(N > (1 + y)λ) = P(eu(N−(1+y)λ) > 1) 6 E(eu(N−(1+y)λ))
1

= eλfy(u).

Comme cette inégalité est vraie quel que soit u ∈ R∗
+, elle l’est en particulier si on prend u = ln(1 + y) et

on a P(N > (1+ y)λ) 6 e−λh(y) = e−λ((y+1) ln(1+y)−y) (1) d’après la question précédente.

Comme N est une variable aléatoire positive admettant une espérance, on peut appliquer directement

Markov et avoir P(N > (1+ y)λ) 6 E(N)
(1+ y)λ

= 1

1+ y
(2) car E(N) = λ.

Laquelle de ces deux majorations est la meilleure, sachant que (1) est meilleure de (2) si et seulement

si e−λ((y+1) ln(1+y)−y) 6 1

1+ y
ce qui équivaut, par stricte croissance de l’exponentielle, à la condition

(λ(1+y)− 1) ln(1+y) > λy. Or cette dernière est clairement vraie, par croissances comparées, si y est assez

grand car y =
+∞

o(y ln(1+ y)). Elle est fausse, puisque (λ(1+ y)− 1) ln(1+ y)∼
0
(λ− 1)y et que (λ− 1)y 6 λy

car y > 0, quand y est assez petit.

Il y a donc certainement (à vérifier par une étude de fonction) une valeur limite y0 (dépendant bien sûr de

λ) telle que (2) est meilleure que (1) si y 6 y0 et telle que (1) est meilleure que (2) si y > y0.� �
19.2� �Comme (X+Y = 0) = (X = 0, Y = 0) car X et Y sont à valeurs dans N, P(X+Y = 0) = P(X = 0)P(Y = 0) = 1

6

car X et Y sont indépendantes donc P(X = 0) > 0 et P(Y = 0) > 0. Ainsi, pour k > 5, P(X + Y = k) = 0

et (X = 0, Y = k) ⊂ (X + Y = k), on en déduit que P(X = 0)P(Y = k) = 0 donc P(Y = k) = 0. De même,

P(X = k) = 0 si k > 5. Ainsi, X et Y sont presque sûrement à valeurs dans [[0; 4]] et les fonctions génératrices

GX et GY sont des fonctions polynomiales de degré inférieur ou égal à 4. Comme X et Y sont indépendantes,

∀t ∈ R, GX+Y(t) = GX(t)GY(t) =
1

6
+ t2

2
+ t4

3
. Or P = 1

6
+ X2

2
+ X4

3
= 1

6
(X2 + 1)(2X2 + 1). Comme X et

Y ne sont pas presque sûrement constantes, GX et GY ne sont pas des fonctions constantes. Par unicité de

la décomposition de P dans R[X], GX(t) =
t2 + 1

2
et GY(t) =

2t2 + 1

3
ou l’inverse (attention à la condition

GX(1) = GY(1) = 1 qui impose à la somme des coefficients de chacun de ces deux polynômes de valoir 1).



Par conséquent, en échangeant éventuellement les rôles joués par X et Y, on a P(X = 0) = P(X = 2) = 1

2
et

P(Y = 0) = 2

3
et P(Y = 2) = 1

3
(les autres valeurs de P(X = i) et P(Y = j) étant nulles).� �

19.3� �a. Tous les tirages sont des pics si et seulement si on tire dans l’ordre les boules numérotées 1, 2, · · · , n

donc (Sn = n) = (X1 = 1) ∩ · · · ∩ (Xn = n) ce qui donne, par la formule des probabilités composées,

P(Sn = n) = P(X1 = 1)× PX1=1(X2 = 2)× · · · × P(X1=1)∩···∩(Xn−1=n−1)(Xn = n) = 1

n
× · · · × 1

1
= 1

n!
.

Puisqu’on a toujours un pic au tirage 1, on n’a qu’un seul pic lors de ces tirages si et seulement si X1 = n.

Ainsi, (Sn = 1) = (X1 = n) donc P(Sn = 1) = P(X1 = n) = 1

n
.

Par construction, si on note σ : [[1;n]] → [[1;n]] tel que σ(k) est le numéro de la k-ième boule tirée, alors

σ est une permutation de [[1;n]] et elles sont équiprobables. L’évènement (Tk = 1) a donc pour probabilité

P(Tk = 1) =
card ({Tk = 1})

n!
car il y a n! permutations de [[1;n]]. Pour choisir une permutation σ qui admet

un pic au tirage k, il faut et il suffit que σ(k) soit le maximum de σ(1), · · · , σ(k). Protocole de choix :

• On choisit les k boules tirées lors des k premiers tirages :

(
n

k

)
choix.

• La plus grande de ces k boules est forcément σ(k) : 1 seul choix.

• On répartit les k− 1 autres boules parmi ces k boules dans σ(1), · · · , σ(k− 1) : (k− 1)! choix.

• On répartit les n− k boules restantes dans σ(k+ 1), · · · , σ(n) : (n− k)! choix.

Ainsi, P(Tk = 1) =

(
n

k

)
(k− 1)!(n− k)!

n!
=

n!(k− 1)!(n− k)!
k!(n− k)!n!

= 1

k
donc Tk ∼ B

(
1

k

)
.

b. Comme Sn =
n∑

k=1

Tk par définition, on a E(Sn) =
n∑

k=1

E(Tk) =
n∑

k=1

1

k
= Hn ∼

+∞
ln(n).

c. Pour choisir une permutation σ telle que Ti = 1 et Tj = 1 (avec i < j), on a le protocole :

• On choisit les j boules tirées lors des j premiers tirages :

(
n

j

)
choix.

• La plus grande de ces j boules est forcément σ(j) : 1 seul choix.

• On choisit parmi les j− 1 restantes les i qui seront σ(1), · · · , σ(i) :
(
j− 1

i

)
choix.

• La plus grande de ces i boules est forcément σ(i) : 1 seul choix.

• On répartit les i− 1 restantes dans σ(1), · · · , σ(i− 1) : (i− 1)! choix.

• On répartit les j− i+ 1 restantes (les j privées des i+ 1) dans σ(i+ 1), · · · , σ(j− 1) : (j− i+ 1)! choix.

• On répartit les n− j boules restantes dans σ(j+ 1), · · · , σ(n) : (n− j)! choix.

Ainsi, P(Ti = 1, Tj = 1) =

(
n

j

)(
j− 1

i

)
(i− 1)!(j− i+ 1)!(n− j)!

n!
=

n!(j− 1)!(i− 1)!(j− i+ 1)!(n− j)!
j!(n− j)!(j− 1− i)i!

= 1

ij
.

D’après la question a., si (i, j) ∈ [[1;n]] et i ̸= j, P(Ti = 1, Tj = 1) = 1

ij
= 1

i
× 1

j
= P(Ti = 1)P(Tj = 1). Ainsi,

les évènements A = (Ti = 1) et B = (Tj = 1) sont indépendants. On sait d’après le cours qu’alors A et B le

sont aussi, A et B le sont encore, et A et B le sont toujours. Ainsi, P(Ti = 1, Tj = 0) = P(Ti = 1)P(Tj = 0),

P(Ti = 0, Tj = 1) = P(Ti = 0)P(Tj = 1) et P(Ti = 0, Tj = 0) = P(Ti = 0)P(Tj = 0). Comme Ti et Tj ne

prennent que les valeurs 0 et 1, les variables aléatoires Ti et Tj sont indépendantes.

d. D’après le cours, comme Sn =
n∑

k=1

Tk, on a V(Sn) =
n∑

k=1

V(Tk) + 2
∑

16i<j6n

Cov(Ti, Tj). Comme Ti et Tj



sont indépendantes si i < j, on a Cov(Ti, Yj) = 0 et V(Sn) =
n∑

k=1

V(Tk) =
n∑

k=1

1

k

(
1 − 1

k

)
= Hn −

n∑
k=1

1

k2
. Il

est classique qu’alors on a V(Sn) =
+∞

ln(n) + γ− π2

6
+ o(1).� �

19.4� �a. On dit qu’une variable aléatoire X à valeurs dans {−1, 1} telle P(X = −1) = P(X = 1) = 1

2
suit la loi de

Rademacher. Comme −1 6 Xk 6 1 pour tout k ∈ [[1;n]], on a Sn ∈ [[−n;n]]. De plus, Xk étant impair, Sn

a la parité de n. Ainsi, Sn(Ω) ⊂ {−n,−(n− 2), · · · , (n− 2), n}.

Pour aller plus loin, si Bk = 1+ Xk

2
pour k ∈ [[1;n]], on a Bk(Ω) = {0, 1} et, comme (Bk = 0) = (Xk = −1)

et (Bk = 1) = (Xk = 1), on a P(Bk = 0) = P(Bk = 1) = 1

2
donc Bk suit la loi de Bernoulli de paramètre

1

2
. Comme X1, · · · , Xn sont indépendantes, B1, · · · , Bn le sont aussi d’après le cours, et on sait qu’alors

Tn =
n∑

k=1

Bk suit la loi binomiale de paramètres n, 1

2
. Comme Sn = 2Tn − n, on connâıt donc la loi de Sn,

donnée par les relations ∀k ∈ [[0;n]], P(Sn = 2k−n) =

(
n

k

)(
1

2

)k(
1− 1

2

)n−k

=
1

2n

(
n

k

)
= P(Sn = n− 2k).

b. Soit n ∈ N∗, (|Sn+1| = 1) = (Sn+1 = 1) ⊔ (Sn+1 = −1) donc, par incompatibilité de ces évènements,

on a P(|Sn+1| = 1) = P(Sn+1 = 1) + P(Sn+1 = −1). Par incompatibilité et indépendance de Sn et Xn+1

par le lemme des coalitions, comme (Sn+1 = 1) = (Sn = 0, Xn+1 = 1) ⊔ (Sn = 2, Xn+1 = −1), on a la

relation P(Sn+1 = 1) =
P(Sn = 0)

2
+

P(Sn = 2)
2

. Comme on peut décomposer l’évènement (Sn+1 = −1)

en (Sn+1 = −1) = (Sn = 0, Xn+1 = −1) ⊔ (Sn = −2, Xn+1 = 1), on en déduit de la même manière que

P(Sn+1 = −1) =
P(Sn = 0)

2
+

P(Sn = −2)
2

. Or (Sn = 0) = (|Sn| = 0) et (|Sn| = 2) = (Sn = 2)⊔ (Sn = −2),

ce qui donne P(|Sn+1| = 1) = P(|Sn| = 0) +
P(|Sn| = 2)

2
.

c. Comme avant, (|Sn+1| = k) = (|Sn| = k + 1, Xn+1 = −εn+1) ⊔ (|Sn| = k − 1, Xn+1 = εn+1) en notant

εn+1 le signe de Sn+1 donc, avec les mêmes arguments d’incompatibilité et d’indépendance de Sn et Xn+1,

on a la relation P|Sn+1| = k) =
P(|Sn| = k− 1)

2
+

P(|Sn| = k− 1)
2

.

d. Comme |Sn| est à valeurs dans [[0;n]], E(|Sn|) =
n∑

k=1

kP(|Sn| = k). Ainsi, E(|Sn+1|) =
n+1∑
k=1

kP(|Sn+1| = k)

qu’on écrit E(|Sn+1|) = P(|Sn+1| = 1) +
n+1∑
k=2

kP(|Sn+1| = k). Or, d’après la question précédente, on a

kP(|Sn+1| = k) =
(k− 1+ 1)P(|Sn| = k− 1)

2
+

(k+ 1− 1)P(|Sn| = k+ 1)
2

si k > 2 donc on a

E(|Sn+1|) = P(|Sn| = 0) +
P(|Sn| = 2)

2
+

n+1∑
k=2

(k− 1)P(|Sn| = k− 1)
2

+
n+1∑
k=2

(P(|Sn| = k− 1)
2

+
n+1∑
k=2

(k+ 1)P(|Sn| = k+ 1)
2

−
n+1∑
k=2

P(|Sn| = k+ 1)
2

Ainsi, E(|Sn+1|) = P(|Sn| = 0)+
P(|Sn| = 2)

2
+

E(|Sn|)
2

+
P(|Sn| = 1)

2
+

E(|Sn|)
2

− P(|Sn| = 1)
2

− P(|Sn| = 2)
2

car
n+1∑
k=2

(P(|Sn| = k− 1)
2

−
n+1∑
k=2

P(|Sn| = k+ 1)
2

=
P(|Sn| = 1)

2
− P(|Sn| = n+ 1)

2
− P(|Sn| = n+ 2)

2
et que

P(|Sn| = n+ 1)
2

=
P(|Sn| = n+ 2)

2
= 0. On en déduit bien que E(|Sn+1|) = E(|Sn|) + P(|Sn| = 0).

e. Par imparité de S2n+1, on ne peut pas avoir S2n+1 = 0 donc P(S2n+1 = 0). Par contre, S2n = 0 si et



seulement si il y a autant de 1 que de −1 dans les 2n étapes de cette marche aléatoire. Par indépendance

des pas, on en déduit d’après le cours que P(S2n = 0) =

(
2n

n

)(
1

2

)n(1
2

)n
=

(2n)!

22n(n!)2
.

f. D’après la question e., la suite (E(|Sn|)n>1 est croissante et, par dualité suite-série, elle converge si

et seulement si
∑
n>1

(
E(|Sn+1|) − E(|Sn|)

)
converge. Or E(|S2n+2|) − E(|S2n+1|) = P(|S2n+1| = 0) et

E(|S2n+1|) − E(|S2n|) = P(|S2n| = 0) =
(2n)!

22n(n!)2
∼
+∞

√
4πn(2n)2ne2n

22n(2πn)n2ne2n
∼
+∞

1√
πn

. Sachant que la série∑
n>1

1√
πn

diverge par Riemann, on en déduit par comparaison que
∑
n>1

(
E(|Sn+1|)− E(|Sn|)

)
diverge donc

que (E(|Sn|)n>1 diverge, c’est-à-dire que lim
n→+∞

E(|Sn|) = +∞.

g. J’ai rajouté cette question, pas sûr qu’elle fasse partie de l’oral ! D’après une remarque du cours, si

an > 0 ∼
+∞

bn > 0 et si
∑
n>0

an diverge, alors
n∑

k=0

ak ∼
+∞

n∑
k=0

bk (c’est hors programme). On l’applique ici avec

E(|S2n+1|) − E(|S2n|) ∼
+∞

1√
πn

, ce qui, comme
n∑

k=1

(E(|S2k+1|) − E(|S2k|) = E(|S2n+1|) − E(|S2|) donne

E(|S2n+1|) ∼
+∞

n∑
k=1

1√
πk

. Par comparaison série-intégrale, on montre classiquement que
n∑

k=1

1√
k

∼
+∞

2
√
n avec

la décroissante et la continuité de la fonction t 7→ 1√
t
sur [1; +∞[ dont une primitive est t 7→ 2

√
t. Ainsi,

E(|S2n+1|) ∼
+∞

2

√
n

π
∼
+∞

√
2(2n+ 1)

π
. Comme E(|S2n|) = E(|S2n+1|), on a E(|S2n|) ∼

+∞
2

√
n

π
∼
+∞

√
2(2n)
π

donc la suite
( E(|Sn|)√

n

)
n>1

tend vers
√

2

π
et on a E(|Sn|) ∼

+∞

√
2n

π
.

s� �
19.5� �a. Pour k ∈ N∗ et n ∈ N∗, par définition du maximum, on a (Mn 6 k − 1) =

n∩
i=1

(Xi 6 k − 1) donc, par

indépendance des Xi, on a P(Mn 6 k − 1) =
n∏

i=1

P(Xi 6 k − 1) or X1, · · · , Xn suivent la même loi que X1

donc ∀i ∈ [[1;n]], P(Xi 6 k− 1) = P(X1 6 k− 1) et on a bien P(Mn 6 k− 1) = P(X1 6 k− 1)n.

b. D’abord, on a P(X1 6 k − 1) = 1 − P(X1 > k − 1). Mais comme X1 est à valeurs entières, on a

(X1 > k− 1) = (X1 > k). Comme x 7→ xα est strictement croissante, (X1 > k) = (Xα
1 > kα) donc, comme Xα

1

est une variable aléatoire positive admettant une espérance finie par hypothèse et kα > 0, par l’inégalité de

Markov, P(X1 > k) = P(Xα
1 > kα) 6 E(Xα

1 )
kα

= mα

kα
. Ainsi, P(X1 6 k− 1) > 1− mα

kα
pour k ∈ N∗.

Comme Mn est aussi à valeurs entières, on a (Mn > k − 1) = (Mn > k) pour k ∈ N∗ donc on obtient

P(Mn > k) = P(Mn > k− 1) = 1− P(Mn 6 k− 1) = 1− P(X1 6 k− 1)n 6 1−
(
1− mα

kα

)
. Quand k tend

vers +∞, on effectue un développement limité et 1−
(
1−mα

kα

)
=
+∞

1−
(
1− nmα

kα
+o

(
1

kα

))
=
+∞

nmα

kα
+o

(
1

kα

)
donc 1−

(
1− mα

kα

)
∼
+∞

nmα

kα
. Puisque la série de Riemann

∑
k>1

1

kα
converge car α > 1 et que n et mα sont

des constantes, par comparaison, la série
∑
k>1

P(Mn > k) converge donc, d’après le cours, Mn admet une

espérance finie qui vaut E(Mn) =
+∞∑
k=1

P(Mn > k).

c. Ici X1 suit la loi géométrique de paramètre 1

2
. Prenons α = 2, alors X1 admet un moment d’ordre 2 (une



variance finie) d’après le cours donc, d’après la question b. avec α = 2 > 1, Mn admet une espérance finie

et E(Mn) =
+∞∑
k=1

P(Mn > k) =
+∞∑
k=1

(1− P(Mn 6 k− 1)) =
+∞∑
k=1

(1− P(X1 6 k− 1)n) avec la question a..

Ici, P(X1 6 k − 1) = 1 − P(X1 > k − 1) = 1 − 21−k. En effet, classiquement, (X1 > k − 1) =
+∞⊔
n=k

(X1 = n)

donc, par σ-additivité, P(X1 > k − 1) =
+∞∑
n=k

P(X1 = n) =
+∞∑
n=k

1

2
×
(
1 − 1

2

)n−1

=
(1/2)k

1− (1− (1/2))
= 21−k.

On a bien la relation attendue, E(Mn) =
+∞∑
k=1

(
1− (1− 21−k)n

)
.

d. Par le binôme de Newton, on a E(Mn) =
+∞∑
k=1

( n∑
j=1

(
n

j

)
(−1)j+12−(k−1)j

)
. Or les n séries géométriques

de raison 1

2j
pour j ∈ [[1;n]] convergent donc, par somme d’un nombre fini de séries convergentes, on peut

écrire E(Mn) =
n∑

j=1

(
n

j

)
(−1)j+1

( +∞∑
k=1

(2−j)k−1
)
=

n∑
j=1

(
n

j

)
(−1)j+1 1

1− 2−j
=

n∑
j=1

(
n

j

)
(−1)j+12j

2j − 1
.� �

19.6� �a. Comme la variable aléatoire eitX est bornée sur Ω, elle admet une espérance finie et on a, par théorème

de transfert, E(eitX) =
n∑

k=1

eitxk P(X = xk) =
n∑

k=1

pke
itxk . Par inégalité triangulaire sur les complexes,

|E(eitX)| =
∣∣∣ n∑
k=1

pke
itxk

∣∣∣ 6 n∑
k=1

|pkeitxk | =
n∑

k=1

pk =
∑
k=1

P(X = xk) = P
( n⊔

k=1

(X = xk)
)
= P(Ω) = 1.

Comme ∀t ∈ R, |Φ(t)|2 = Φ(t)Φ(t) il vient avec a. la relation |Φ(t)|2 =
( n∑

j=1

pje
itxj

)( n∑
k=1

pke
−itxk

)
,

d’où |Φ(t)|2 =
n∑

k=1

p2k +
∑

16j̸=k6n

pjpke
it(xj−xk). Si on passe en mode développement limité en 0, on obtient

|Φ(t)|2 =
0

n∑
k=1

p2k +
∑

16j̸=k6n

pjpk

(
1 + it(xj − xk) −

t2(xj − xk)
2

2
+ o(t2)

)
. Or, en échangeant les rôles joués

par j et k, on a
∑

16j ̸=k6n

pjpk(xj − xk) =
∑

16k̸=j6n

pkpj(xk − xj) = −
∑

16j̸=k6n

pjpk(xj − xk) = 0. Or,

1 =
( n∑

k=1

pk

)2
donc, en développant, 1 =

n∑
k=1

p2k+
∑

16j̸=k6n

pjpk. En reportant dans le développement limité,

|Φ(t)|2 =
0
1−

∑
16j̸=k6n

pjpk+
∑

16j̸=k6n

pjpk

(
1− t2(xj − xk)

2

2
+o(t2)

)
=
0
1−1

2

( ∑
16j̸=k6n

pjpk(xj−xk)
2
)
t2+o(t2).

De plus, V(X2) = E(X2)− E(X)2 =
n∑

k=1

x2kpk −
( n∑

k=1

xkpk

)2
par formule de transfert donc, en développant,

V(X) =
n∑

k=1

x2k(pk − p2k)−
∑

16j̸=k6n

xjxkpjpk =
n∑

k=1

pkx
2
k

( n∑
j=1
j̸=k

pj

)
−

∑
16j̸=k6n

xjxkpjpk qu’on peut aussi écrire

V(X) = 1

2

( ∑
16j̸=k6n

pjpkx
2
k +

∑
16j̸=k6n

pkpjx
2
j − 2

∑
16j̸=k6n

xjxkpjpk

)
par symétrie entre j et k et on obtient

bien la relation V(X) = 1

2

( ∑
16j̸=k6n

pjpk(x
2
k + x2j − 2xjxk)

)
= 1

2

( ∑
16j̸=k6n

pjpk(xj − xk)
2
)
qui justifie bien

le développement attendu : |Φ(t)|2 =
0
1− V(X)t2 + o(t2).

b. L’hypothèse X(Ω) ⊂ a + Zb se traduit par ∀k ∈ [[1;n]], ∃mk ∈ Z, xk = a + mkb. Ainsi, pour tout

t ∈ R, Φ(t) = E(eitX) =
n∑

k=1

pke
it(a+mkb) = eita

n∑
k=1

pk(e
itb)mk donc |Φ(t)| =

∣∣∣ n∑
k=1

pk(e
itb)mk

∣∣∣. Il suffit

de prendre t0 ̸= 0 tel que eit0b = 1, par exemple t0 = 2π

b
̸= 0, pour que |Φ(t0)| =

∣∣∣ n∑
k=1

pk

∣∣∣ = n∑
k=1

pk = 1.

c. Réciproquement, supposons qu’il existe t0 ∈ R∗ tel que |Φ(t0)| = 1. Alors, Φ(t0) ∈ U donc il existe



α ∈ R tel que Φ(t0) = eiα. Ainsi,
n∑

k=1

pke
it0xk = eiα = eiα

n∑
k=1

pk donc, en multipliant par e−iα, on a la

relation
n∑

k=1

pk =
n∑

k=1

pke
it0xk−iα =

n∑
k=1

pke
i(t0xk−α).

Ainsi, par inégalité triangulaire, 1 =
∣∣∣ n∑
k=1

pke
i(t0xk−α)

∣∣∣ 6 n∑
k=1

pk|ei(t0xk−α)| =
n∑

k=1

pk = 1. Or, on sait

que le cas d’égalité dans l’inégalité triangulaire traduit le fait que les complexes (pke
i(t0xk−α))16k6n sont

positivement alignés, ou encore, comme pk > 0 qu’il existe θ ∈ R tel que ∀k ∈ [[1;n]], pke
i(t0xk−α) = pke

iθ.

Par conséquent, comme ∀k ∈ [[1;n]], ei(t0xk−α−θ) = 1, il existe mk ∈ Z tel que t0xk − α − θ = 2πmk donc

xk = a+mkb en posant b = 2π

t0
∈ R∗ et a = α+ θ

t0
∈ R. On a donc bien X(Ω) ⊂ a+ Zb.� �

19.7� �a. Pour x ̸= 0, en posant un =

(
2n

n

)
x2n

4n
pour le critère de d’Alembert, on obtient après simplifications,∣∣∣un+1

un

∣∣∣ = (2n+ 2)!(n!)24nx2n+2

(2n)!((n+ 1)!)24n+1 =
(2n+ 2)(2n+ 1)x2

4(n+ 1)2
=

2(2n+ 1)x2

4(n+ 1)
donc lim

n→+∞

∣∣∣un+1

un

∣∣∣ = ℓ = x2.

• si |x| < 1, on a ℓ < 1 donc
∑
n>0

un converge absolument par le critère de d’Alembert. Ainsi, R > 1.

• si |x| > 1, on a ℓ > 1 donc
∑
n>0

un diverge grossièrement par le critère de d’Alembert. Ainsi, R 6 1.

Par conséquent, le rayon R de convergence de la série entière lacunaire
∑
n>0

(
2n

n

)
x2n

4n
vaut R = 1. On sait

d’après le cours ou on retrouve facilement que ∀y ∈] − 1; 1[, 1√
1+ y

=
+∞∑
n=0

(−1)n(2n)!

4n(n!)2
yn. Ainsi, pour

x ∈]− 1; 1[, en prenant y = −x2 ∈]− 1; 1[, on obtient 1√
1− x2

=
+∞∑
n=0

(2n)!

4n(n!)2
x2n =

+∞∑
n=0

(
2n

n

)
x2n

4n
.

b. Par construction, Yk = Xk + 1

2
suit la loi B

(
1

2

)
car Yk = 0 ⇐⇒ Xk = −1 et Yk = 1 ⇐⇒ Xk = 1. Par

indépendance de X1, · · · , Xn donc de Y1, · · · , Yn, d’après le cours, Tn =
n∑

k=1

Yk suit la loi binomiale B

(
n, 1

2

)
.

c. Or ∀k ∈ [[1;n]], Xk = 2Yk − 1 donc Sn = 2

( n∑
k=1

Yk

)
− n = 2Tn − n. Comme Tn(Ω) = [[0;n]], on obtient

Sn(Ω) = {−n,−(n − 2), · · · , (n − 2), n} et P(Sn = 2k − n) = P(Tn = k) =

(
n

k

)(
1

2

)k(1
2

)n−k

=
1

2n

(
n

k

)
pour tout entier k ∈ [[0;n]]. Par les propriétés de l’espérance et la variance, on a E(Sn) =

n∑
k=1

E(Xk) = 0 et

V(Sn) =
n∑

k=1

V(Xk) = n car X1, · · · , Xn sont indépendantes car on a clairement E(Xk) = 0 et V(Xk) = 1. On

pouvait passer par Tn, en effet, V(Sn) = V(2Tn − n) = 4V(Tn) donc E(Sn) = 2E(Tn)− n = 2(n/2)− n = 0

et V(Sn) = 4(n/4) = n car Tn ∼ B

(
n, 1

2

)
donc E(Tn) = n

(
1

2

)
et V(Tn) = n

(
1

2

)
×
(
1− 1

2

)
.

d. Soit x ∈] − 1; 1[, on a |pnxn| 6 |x|n car pn ∈ [0; 1] donc, comme la série géométrique
∑
n>0

|x|n converge

car |x| < 1, par comparaison,
∑
n>0

pnx
n converge absolument.

e. Pour n > 1, on peut partitionner (S2n = 0) en (S2n = 0) =

n⊔
k=1

((S2n = 0) ∩ (T = 2k)) en distinguant

selon la première fois (notée T) où l’on va avoir (S2k = 0) (S2k+1 ̸= 0 car Sn a la même parité que n). Par

α-additivité, pn = P(S2n = 0) =
n∑

k=1

P(S2n = 0, T = 2k) =
n∑

k=1

P(T=2k)(S2n = 0)P(T = 2k). Pour tout



k ∈ [[1;n− 1]], on a P(T=2k)(S2n = 0) = P(S2(n−k) = 0) (on repart de 0 après 2k “mouvements” et on veut

être à 0 au bout de 2n étapes). Par contre, comme (T = 2n) ⊂ (S2n = 0), on a P(T=2n)(S2n = 0) = 1. Ainsi

pn = qn +
n−1∑
k=1

qkpn−k =
n∑

k=0

qkpn−k car on a posé p0 = 1 par convention.

La série génératrice
∑
n>0

P(T = n)xn de T , qui est bien une variable aléatoire à valeurs dans N, a un rayon de

convergence au moins égal à 1 d’après le cours. Si x ∈]−1; 1[, on peut effectuer le produit de Cauchy, comme

P(T = 2n+ 1) = 0 pour tout n ∈ N, GT (x)p(x
2) =

( +∞∑
n=0

qnx
2n
)( +∞∑

n=0

pnx
2n
)
=

+∞∑
n=0

( n∑
k=0

qkpn−k

)
x2n.

Or pn =
n∑

k=0

pn−kqk si n ∈ N∗ car q0 = 0 mais
0∑

k=0

pn−kqk = p0q0 = 0 alors que p0 = 1. Ainsi, pour tout

x ∈]− 1; 1[, GT (x)p(x
2) =

+∞∑
n=1

pnx
2n = p(x2)− 1. Mais p(x2) = 1+

+∞∑
n=1

pnx
2n > 1 car pn > 0 donc p(x2) > 0

et on a donc la relation attendue, à savoir GT (x) =
p(x2)− 1

p(x2)
.

D’après c., comme pn = P(S2n = 0) = P(T2n = n) = 1

22n

(
2n

n

)
, il vient ∀x ∈]−1; 1[, p(x) =

+∞∑
n=0

(2n)!

22n(n!)2
xn.

On en déduit donc que p(x) = 1√
1− x

donc p(x2) = 1√
1− x2

et GT (x) =

1√
1− x2

− 1

1√
1− x2

= 1−
√
1− x2. Or on

sait aussi que, pour y ∈]− 1; 1[, on a le développement en série entière
√
1+ y = 1+

+∞∑
n=1

(−1)n−1(2n)!

4n(n!)2(2n− 1)
yn.

Ainsi, pour x ∈]− 1; 1[, GT (x) = −
+∞∑
n=1

(−1)n−1(2n)!

4n(n!)2(2n− 1)
(−1)nx2n =

+∞∑
n=1

(2n)!

22n(n!)2(2n− 1)
x2n. On identifie

car les rayons sont strictement positifs et ∀n > 1, P(T = 2n) = 1

22n(2n− 1)

(
2n

n

)
.

GT : x 7→ 1−
√
1− x2 n’est pas dérivable en 1 car

√
ne l’est pas en 0. D’après le cours, T n’admet pas une

espérance finie. Pourtant, P(T = +∞) = 1−
+∞∑
n=1

P(T = n) = 1−GT (1) = 1− 1 = 0 : T est presque sûrement

finie mais admet une espérance infinie. Bizarre.� �
19.8� �a. Comme X et Y sont à valeurs dans N, on a Ω =

⊔
i,j>0

(X = i, Y = j) donc, par σ-additivité, on obtient

+∞∑
i=0

(+∞∑
j=0

P(X = i, Y = j)
)
= 1 donc a

+∞∑
i=0

qi

1− q
= a

(1− q)2
= 1 (séries géométriques) donc a = p2.

Pour i ∈ N, (X = i) =
+∞⊔
j=0

(X = i, Y = j) donc, toujours par σ-additivité, P(X = i) = p2qi
+∞∑
j=0

qj = p(1− p)i.

Comme X+ 1 est à valeurs dans N∗ et que ∀k ∈ N∗, P(X+ 1 = k) = P(X = k− 1) = p(1−p)k−1, la variable

aléatoire X+1 suit la loi géométrique de paramètre p. Par symétrie, Y+1 suit aussi la même loi géométrique

de paramètre p. D’après le cours, E(X+ 1) = 1

p
donc E(X) = 1− p

p
= q

p
par linéarité de l’espérance et on

sait aussi que V(X+ 1) = 1− p

p2
= V(X).

Soit f : N2 → N définie par f(a, b) = ab de sorte que XY = f(X, Y). Par théorème de transfert, la variable

aléatoire XY admet une espérance finie si et seulement si (ijP(X = i, Y = j))(i,j)∈N2 est sommable. Or∑
(i,j)∈N2

ijP(X = i, Y = j) =
∑

(i,j)∈N2

ijp2qi+j =
∑

(i,j)∈N2

ijp2qi+j = p2
∑

(i,j)∈N2

(iqi)(jqj) = p2
( ∑

k∈N
kqk

)2



(famille produit). Or on sait que ∀x ∈] − 1; 1[, 1

1− x
=

+∞∑
n=0

xn qu’on dérive terme à terme sur l’intervalle

ouvert de convergence pour avoir 1

(1− x)2
=

+∞∑
n=1

nxn−1 donc x

(1− x)2
=

+∞∑
n=0

nxn.

Par conséquent, E(XY) = p2
(

q

(1− q)2

)2
= q2

p2
et Cov(X, Y) = E(XY)− E(X)E(Y) = q2

p2
−
(
q

p

)2
= 0.

Mais c’est bien sûr, comme ∀(i, j) ∈ N2, P(X = i, Y = j) = p2qi+j = (pqi)(pqj) = P(X = i)P(Y = j), par

définition, les variables aléatoires X et Y sont indépendantes et, d’après le cours, Cov(X, Y) = 0.

b. Soit n ∈ N, les valeurs prises par U sachant que X+Y = 2n+1 sont tous les entiers de n+1 à 2n+1. Pour

k ∈ [[n+1; 2n+1]], on a (U = Max(X, Y) = k)∩(X+Y = 2n+1) = (X = k, Y = 2n+1−k)⊔(X = 2n+1−k, Y = k)

car 2n+ 1− k < k donc P(U = k, X+ Y = 2n+ 1) = P(X = k)P(Y = 2n+ 1− k)+ P(X = 2n+ 1− k)P(Y = k)

par indépendance de X et Y donc P(U = k, X + Y = 2n + 1) = 2(pqk)(pq2n+1−k) = 2p2q2n+1. De plus,

(X + Y = 2n + 1) =
2n+1⊔
k=0

(X = k, Y = 2n + 1 − k) donc, par σ-additivité et indépendance de X et Y,

P(X + Y = 2n + 1) =
2n+1∑
k=0

P(X = k)P(Y = 2n + 1 − k) =
2n+1∑
k=0

(pqk)(pq2n+1−k) = (2n + 2)p2q2n+1. Ainsi,

pour k ∈ [[n+ 1; 2n+ 1]], P(U = k|X+Y = 2n+ 1) =
P(U = k, X+ Y = 2n+ 1)

P(X+ Y = 2n+ 1)
= 2p2q2n+1

(2n+ 2)p2q2n+1 = 1

n+ 1
.

Par conséquent, la loi de U sachant X+ Y = 2n+ 1 est uniforme sur l’intervalle [[n+ 1; 2n+ 1]].� �
19.9� �Comme

∑
k>1

Xk(ω)
k

est une série à termes positifs pour ω ∈ Ω, elle converge si et seulement si la suite de ses

sommes partielles est majorée. Ainsi, en discrétisant les majorants M ∈ N∗, on a l’expression A =

+∞∪
M=1

AM

où AM =
{
ω ∈ Ω

∣∣∣ ∀n ∈ N∗, Sn(ω) =
n∑

k=1

Xk(ω)
k

6 M

}
=

+∞∩
n=1

Bn avec Bn = (Sn 6 M).

Soit M ∈ N∗, comme la suite (Sn(ω))n∈N∗ est croissante pour tout ω ∈ Ω, la suite (Bn)n∈N∗ est décroissante

pour l’inclusion car Bn+1 ⊂ Bn puisque si Sn+1(ω) 6 M, alors Sn(ω) 6 Sn+1(ω) 6 M. Par le théorème de

continuité décroissante, on a donc P(AM) = lim
n→+∞

P(Bn).

Par linéarité de l’espérance, E(Sn) =
n∑

k=1

E(Xk)
k

= pHn en posant Hn =
n∑

k=1

1

k
la somme partielle de la série

harmonique. Par indépendance de X1, · · · , Xn, V(Sn) =
n∑

k=1

V(Xk)

k2
= p(1− p)Tn en posant Tn =

n∑
k=1

1

k2
la

somme partielle de la série de Riemann
∑
n>1

1

n2 qui converge et dont la somme est ζ(2) = π2

6
.

Comme Sn admet un moment d’ordre 2, d’après l’inégalité de Bienaymé-Tchebychev, pour tout ε > 0,

on a la majoration P(|Sn − E(Sn)| > ε) = P(|Sn − pHn| > ε) 6 p(1− p)Tn
ε2

=
V(Sn)
ε2

6 p(1− p)π2

6ε2
.

Soit M ∈ N∗, puisque lim
n→+∞

Hn = +∞, il existe n0 ∈ N tel que ∀n > n0, pHn > M. Pour tout n > n0,

comme M < pHn, on a (Sn 6 M) ⊂ (|Sn − pHn)| > pHn − M) donc, en posant ε = pHn − M > 0 dans

la majoration précédente, on obtient 0 6 P(Sn 6 M) 6 p(1− p)π2

6ε2
=

p(1− p)π2

6(pHn −M)2
. Par encadrement,

comme lim
n→+∞

Hn = +∞, on a lim
n→+∞

P(Sn 6 M) = 0 donc P(AM) = 0.



Méthode 1 : par sous-additivité, comme A =

+∞∪
M=1

AM, on a P(A) 6
+∞∑
M=1

P(AM) = 0 donc P(A) = 0.

Méthode 2 : Pour M ∈ N∗, si la suite (Sn(ω))n∈N∗ est majorée par M, elle est a fortiori majorée par

M+ 1 donc AM ⊂ AM+1. Ainsi, la suite d’évènements (AM)M∈N∗ est croissante pour l’inclusion donc, par

continuité croissante, on a P(A) = lim
M→+∞

P(AM) = 0.� �
19.10� �a. On connâıt le développement en série entière géométrique de rayon R = 1 : ∀x ∈]−1; 1[, 1

1− x
=

+∞∑
m=0

xm.

Soit un entier d ∈ N∗, on peut dériver terme à terme d− 1 fois le développement de la question précédente.

Une récurrence simple montre que ∀d ∈ N∗, ∀x ∈]− 1; 1[,
(

1

1− x

)(d)
= d!

(1− x)d+1 . Ainsi, avec r = d− 1,

on a
(

1

1− x

)(r−1)

=
(r− 1)!
(1− x)r

=
+∞∑

m=r−1

m!
(m− r+ 1)!

xm−(r−1) =
( +∞∑

m=0

xm
)(r−1)

.

b. Pour x ∈]−1; 1[ et r ∈ N, 1

(1− x)r
=

+∞∑
m=r−1

m!
(r− 1)!(m− r+ 1)!

xm−(r−1) =
+∞∑
n=0

(n+ r− 1)!
(r− 1)!n!

xr en posant

n = m − r + 1 donc 1

(1− x)r
=

+∞∑
n=0

(
n+ r− 1

n

)
xn. En prenant x = p ∈] − 1; 1[ dans cette relation, on

obtient donc
+∞∑
n=0

(
n+ r− 1

n

)
pn =

1

qr
, c’est-à-dire

+∞∑
n=0

pn = 1 car

(
n+ r− 1

n

)
=

(
n+ r− 1

r− 1

)
alors que

∀n ∈ N, pn > 0. Par conséquent, (pn)n∈N est une distribution de probabilité.

c. La série génératrice de X est de rayon R > 1 d’après le cours et ∀t ∈]−R;R[, GX(t) =
+∞∑
n=0

P(X = n)tn donc

GX(t) =
+∞∑
n=0

pnt
n = qr

+∞∑
n=0

(
n+ r− 1

r− 1

)
(pt)n. On a donc R = 1

p
puisque le rayon de

∑
n>0

(
n+ r− 1

r− 1

)
tn

vaut 1 d’après la question b.. Ainsi, ∀t ∈
]
− 1

p
; 1
p

[
, GX(t) =

qr

(1− pt)r
.

Comme R > 1, GX est dérivable deux fois en 1 donc, d’après le cours, X admet un moment d’ordre 2 donc

une espérance et une variance finies et que E(X) = G′
X(1) et V(X) + E(X)2 − E(X) = E(X(X− 1)) = G′′

X(1).

Or ∀t ∈
]
− 1

p
; 1
p

[
, G′

X(t) = rpqr

(1− pt)r+1 et G′′
X(t) =

r(r+ 1)p2qr

(1− pt)r+2 , d’où E(X) = rpqr

(1− p)r+1 = rp

q
et

V(X) + r2p2

q2 − rp

q
=

r(r+ 1)p2

q2 donc V(X) = r(r+ 1)p2 − r2p2 + rp(1− p)

q2 = rp

q2 .� �
19.11� �a. On note Tk le numéro de la boule tirée au tirage k. On admet l’existence d’un espace probabilisé

qui supporte cette suite (Tk)k>1 de variables aléatoires mutuellement indépendantes (remarque du cours).

D’abord Xn(Ω) = (N∗ \ {1}) ∪ {+∞} car on rajoute la possibilité de ne jamais avoir une autre boule

que la première tirée, qu’on note Xn = +∞. De plus, (Xn = +∞) =
+∞∩
k=2

(Xn = k) par convention et

(Xn = k) =

n∪
i=1

(
(T1 = i) ∩ · · · ∩ (Tk−1 = i) ∩ (Tk ̸= i)

)
∈ A pour k > 2 donc Xn est une variable aléatoire

car les Ti le sont. Par incompatibilité de ces n évènements, indépendance mutuelle des Tk qui suivent toutes

la loi uniforme sur [[1;n]], on a P(Xn = k) =
n∑

i=1

(
1

n

)k−1(
n− 1

n

)
= n− 1

nk−1 pour k > 2.

On vérifie la cohérence de ces résultats car
+∞∑
k=2

n− 1

nk−1 = n− 1

n

+∞∑
j=0

(
1

n

)j
= n− 1

n
× 1

1− (1/n)
= 1. Ceci

justifie que l’évènement (Xn = +∞) (toujours la même boule) est négligeable comme attendu.



b. kP(Xn = k) =
k(n− 1)

nk−1 et
∑
k>2

k(n− 1)

nk−1 converge car le rayon de la série entière
∑
k>1

kxk−1 est égal à 1

et que
∣∣∣ 1
n

∣∣∣ < 1. De plus, comme ∀x ∈]− 1; 1[,
+∞∑
k=0

xk = 1

1− x
, on obtient en dérivant

+∞∑
k=1

kxk−1 = 1

(1− x)2

donc
+∞∑
k=2

kxk−1 = 1

(1− x)2
− 1. Ainsi, E(Xn) = (n − 1) ×

(
n2

(n− 1)2
− 1

)
= 2n− 1

n− 1
. Par conséquent,

lim
n→+∞

E(Xn) = 2 ce qu’on subodorait car plus n augmente, plus l’évènement (Xn = 2) devient presque sûr.

Comme (Xn − 1)(Ω) = N∗ ∪ {+∞} et que ∀k > 1, P(Xn − 1 = k) = P(Xn = k+ 1) = n− 1

nk qui s’écrit aussi

P(Xn−1 = k) =
(
1

n

)k−1(
1− 1

n

)
=
(
1−
(
1− 1

n

))k−1(
1− 1

n

)
avec p = 1− 1

n
∈]0; 1[, la variable aléatoire Xn−1

suit la loi géométrique de paramètre p = n− 1

n
ce qui simplifie les calculs car alors E(Xn − 1) = 1

p
= n

n− 1

donc, par linéarité de l’espérance, E(Xn) = 1+ n

n− 1
= 2n− 1

n− 1
.

c. Comme X2 = Y2, pour k > 2, on a (Y2 = k) = (X2 = k) donc P(Y2 = k) = 1

2k−1 d’après a.. On reconnâıt

cette loi, Y2−1 suit la loi géométrique de paramètre 1

2
car P(Y2−1 = k) = P(Y2 = k+1) = 1

2k
= 1

2

(
1− 1

2

)k−1

.

Pour k > 3, en notant i le numéro de la première boule tirée, r le premier rang pour lequel on tire une boule

de numéro j ̸= i, comme 6− i− j est le numéro tiré autre que i et j (car i+ j+ (6− i− j) = 1+ 2+ 3 = 6),

on a (Y3 = k) =
3⊔

i=1

3⊔
j=1
j ̸=i

k−1⊔
r=2

(( r−1∩
a=1

(Ta = i)
)
∩ (Tr = j) ∩

( k−1∩
b=r+1

(
(Tk = i) ∪ (Tk = j)

)))
∩ (Tk = 6− i− j).

Ainsi, par incompatibilité de tous ces évènements, indépendance mutuelle des tirages et symétrie entre les

numéros, P(Y3 = k) = 3× 2×
k−1∑
r=2

(
1

3

)r−1

×
(
1

3

)
×
(
2

3

)k−r−1

×
(
1

3

)
= 6

3k

k−1∑
r=2

2k−r−1 =
6(2k−2 − 1)

3k
.

À nouveau, comme Y3(Ω) = {3, 4, 5, · · · ,+∞}, on vérifie que
+∞∑
k=3

P(Y3 = k) =
+∞∑
k=3

6(2k−2 − 1)

3k
= 1. En effet,

on a
+∞∑
k=3

6(2k−2 − 1)

3k
= (6/4)

(2/3)3

1− (2/3)
− 6

(1/3)3

1− (1/3)
= 4

3
− 1

3
= 1. Ceci justifie que l’évènement (Y3 = +∞)

(maximum deux numéros tirés éternellement) est négligeable comme attendu.� �
19.12� �Comme X est à valeurs dans N, sous réserve de convergence, on a GX(t) =

+∞∑
n=0

P(X = n)tn. Or, pour

t ∈ R, la suite
(
P(X = n)tn

)
n>0

=
(
e−λ(λt)n

n!

)
n>0

est bornée par croissances comparées. Ainsi, le rayon de

convergence de
∑
n>0

P(X = n)tn vaut R = +∞ et on a ∀t ∈ R, GX(t) =
+∞∑
n=0

e−λ(λt)n

n!
= e−λeλt = eλ(t−1).

Soit a > 0 et t > 1, comme (X > a) =
⊔
k>a

(X = k), par σ-additivité, et car t > 1 donc ∀k > a, ta 6 tk, on

a P(X > a) =
∑
k>a

P(X = k) = 1

ta
∑
k>a

ta P(X = k) 6 1

ta
∑
k>a

tk P(X = k) . Ainsi, P(X > a) 6 GX(t)
ta

car

GX(t) =
( ∑

k<a

P(X = k)tk
)
+
( ∑

k>a

P(X = k)tk
)
et que

∑
k<a

P(X = k)tk > 0.

Avec a = 2λ > 0, P(X > 2λ) 6 eλ(t−1)

t2λ
= eλ(t−1)−2λ ln(t) pour tout t > 1. Soit f : [1; +∞[→ R dérivable

définie par f(t) = λ(t− 1)− 2λ ln(t), f′(t) = λ− 2λ

t
=

λ(t− 2)
t

donc f est décroissante sur [1; 2] et croissante

sur [2; +∞[. En prenant t = 2 ci-dessus car Min
[1;+∞[

(f) = f(2), P(X > 2λ) 6 ef(2) = eλ−2λ ln(2) =
(
e

4

)λ
.


