TD 19 : VARIABLES ALEATOIRES

PSI 1 2025-2026 vendredi 06 février 2026

a. Par le théoreme de transfert, la variable aléatoire Y = e*™N admet une espérance finie si et seulement si

, . AAT AAT A (Ae™)™ - -
la série >0 e""P(X =n) = } e""e "~ converge. Or e""e 25 = e —— donc la série précédente
n>0 n>0 n. n. n.

—+o00 A u\n
L . . Y _ u w_
converge comme une série exponentielle. Classiquement, E(e*N) = Y e A (Ae)? = e Mehe” = A1)
n=0

n!
b. Pour y > 0 et u > 0, e*MN-T+HWA) — o=(1+Y)uAuN qope 7 = e (N=+Y)A) admet aussi une espérance
finie et, par linéarité de Pespérance, E(Z) = e~ TTWUAR(euN) = ¢~ (THu)ure—Aghe™ — pAle®—T-(T+y)u),
Considérons la fonction fy : R% — R définie par fy(u) = e* —1 — (1 +y)u. Comme fy est dérivable et
que fy (u) = e* — (1 +y), fy est croissante sur [In(1 +y); +oo[ et décroissante sur ]0; In(1 + y)], ainsi on a
Img fy(u) = Migl fy(u) = fy(In(1 +vy)) =y — (1 +y)In(1 +y) = —h(y). Ainsi, par stricte croissante de la
u> u>
fonction exp et comme A > 0, on a aussi Inf (E(e*N=U+WN)) = Min (E(e*(N=U+0IN)) = ¢=ARW),

u>0 u>0

c. Soity>0etu>0 (N> (1+y)A)=uN=(1+yur) = uN-—>1+yAr) =0) = (etMN-0+0N) > 1)
par stricte croissance de exp donc, d’apres I'inégalité de MARKOV, comme e*(N=(+YA) est une variable
E(eu(N—(Hy)?\))
1
Comme cette inégalité est vraie quel que soit u € R*, elle I'est en particulier si on prend u = In(1 +y) et

ona P(N = (1+y)A) < e M) = =AM+ In(0+9)=y) (1) d’apres la question précédente.

aléatoire réelle positive, on a P(N > (1 + y)A) = P(e*(N=UT+wA) > 1) < = My,

Comme N est une variable aléatoire positive admettant une espérance, on peut appliquer directement
EN) _ 1
(T4+y)A 1+y
Laquelle de ces deux majorations est la meilleure, sachant que (1) est meilleure de (2) si et seulement

MARKOV et avoir P(N > (1 +y)A) <

(2) car E(N) = A.

si e M+ In(+y)—y) < 1 _:_ ce qui équivaut, par stricte croissance de l’exponentielle, a la condition
Y

(A(T+y)—1)In(1+y) = Ay. Or cette derniere est clairement vraie, par croissances comparées, si y est assez

grand car y = o(yIn(1+vy)). Elle est fausse, puisque (A(1+y) — 1) In(1 +y) rg(?\ —T)lyet que (A—1)y < Ay
o0

car y > 0, quand y est assez petit.

Il y a donc certainement (& vérifier par une étude de fonction) une valeur limite yo (dépendant bien sir de

A) telle que (2) est meilleure que (1) si y < yo et telle que (1) est meilleure que (2) siy > yo.

Comme (X+Y =0) = (X=0,Y =0) car X et Y sont a valeurs dans N, P(X+Y =0) = PX=0)P(Y =0) = é

car X et Y sont indépendantes donc P(X = 0) > 0 et P(Y =0) > 0. Ainsi, pour k > 5, P(X+Y=%k) =0
et (X=0,Y=%k) C (X+Y=X), on en déduit que P(X = 0)P(Y = k) = 0 donc P(Y = k) = 0. De méme,
P(X =k) =0 si k > 5. Ainsi, X et Y sont presque stirement & valeurs dans [[0;4] et les fonctions génératrices

Gx et Gy sont des fonctions polynomiales de degré inférieur ou égal a 4. Comme X et Y sont indépendantes,

Vte R, G = _1 2t e 10X X T2 2 C
, X+y(t)—Gx(t)Gy(t)—6+ 2 + 3 1"P—6—|- 7 + 3 G(X +1)(2x# 4+ 1). Comme X et

Y ne sont pas presque sirement constantes, Gx et Gy ne sont pas des fonctions constantes. Par unicité de

. . 2 41 262 11 . N .
la décomposition de P dans R[X], Gx(t) = 5 et Gy(t) = T ou linverse (attention & la condition

Gx(1) = Gy(1) =1 qui impose & la somme des coeflicients de chacun de ces deux polynomes de valoir 1).
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Par conséquent, en échangeant éventuellement les roles joués par X et Y, on a P(X = 0)

P(Y=0)=2et P(Y=2) =

3 (les autres valeurs de P(X = 1) et P(Y = j) étant nulles).

U\J\—*

a. Tous les tirages sont des pics si et seulement si on tire dans l'ordre les boules numérotées 1,2,---,n

donc (Sp =n) = (X3 =1)N---N(Xn, = n) ce qui donne, par la formule des probabilités composées,
P(Sp =n) = P(X; =1) X Px,=1(X2 =2) X - X Pix,=1)nn(Xe_1=n_1)(Xn =n) = Tll X e X } = %

Puisqu’on a toujours un pic au tirage 1, on n’a qu’un seul pic lors de ces tirages si et seulement si X; = n.
Ainsi; (S, =1)= (X3 =n) donc P(S,, =1)=P(X; =n) =

:\~

Par construction, si on note o : [1;n] — [1;n] tel que o(k

~—

est le numéro de la k-ieme boule tirée, alors

o est une permutation de [1;n] et elles sont équiprobables. L’événement (T, = 1) a donc pour probabilité

P(Te = 1) = card ({T]r =1})
n!

un pic au tirage k, il faut et il suffit que o(k) soit le maximum de o(1),-- -, o(k). Protocole de choix :

car il y a n! permutations de [1;n]. Pour choisir une permutation o qui admet

e On choisit les k boules tirées lors des k premiers tirages : (Z choix.
e La plus grande de ces k boules est forcément o(k) : 1 seul choix.
e On répartit les k — 1 autres boules parmi ces k boules dans o(1),---,0(k —1) : (k — 1)! choix.

e On répartit les n — k boules restantes dans o(k +1),---,0(n) : (n —k)! choix.

Ainsi, P(Ty =1) = (:) o _ k=D =it _ 1 donc Ty ~ B(%)

n! kl(n — k)'n'

k=1

n

b. Comme S,, = Z Ty par définition, on a E(S,) = Z E(Ty) = Z % =Hn ~ In(n).
— o0

c. Pour choisir une permutation o telle que T; =1 et T] =1 (avec i <j),

on a le protocole :
e On choisit les j boules tirées lors des j premiers tirages : <n choix.

e La plus grande de ces j boules est forcément o(j) : 1 seul clloix.

e On choisit parmi les j — 1 restantes les i qui seront o(1),---,0(i) : (j _1 ]) choix.
e La plus grande de ces i boules est forcément o(i) : 1 seul choix.

e On répartit les i — 1 restantes dans o(1),---,0(i—1) : (i — 1)! choix.

e On répartit les j —i+1 restantes (les j privées des i+1) dans o(i+1),---,0(j —1) : (j —i+1)! choix.

e On répartit les n — j boules restantes dans o(j +1),---,0(n) : (n —j)! choix.
)
. C)E=DG iD=
Ainsi, P(T; = 1,T; = 1) = (] ' ' _“'(J_l)'(l_”(]_“r Mn—jt _ 1,
n! =96 —1 =il ij
D’apres la question a., si (i,j) € [I;n] eti#j, P(li=1,Tj=1) = 1-1,1- P(Ty = 1) P(T; = 1). Ainsi,
Y LI

les évenements A = (Ty = 1) et B = (Tj = 1) sont indépendants. On sait d’apres le cours qu’alors A et B le
sont aussi, A et B le sont encore, et A et B le sont toujours. Ainsi, P(T; = 1,T; =0) = P(Ty = 1) P(T; = 0),
P(Ti = 0,Tj = 1) = P(T; = 0)P(T; = 1) et P(T; = 0,T; = 0) = P(T; = 0)P(T; = 0). Comme T; et Tj ne
prennent que les valeurs 0 et 1, les variables aléatoires T; et T; sont indépendantes.

n n
d. D’apres le cours, comme Sy, = Y Ty, ona V(Sy) = > V(Te)+2 > Cov(Ty,Tj). Comme T; et Tj
k=1 k=1 1<i<i<n



n n
sont indépendantes si i < j, on a Cov(Ti,Yj) =0et V(Sn) = > V(Tx) = >
k=1 k=1

(-8 =r-25k

&=

2
est classique qu’alors on a V(Sy) = In(n) +v— % +o(1).
o0

a. On dit qu’une variable aléatoire X & valeurs dans {—1,1} telle P(X = —-1) = P(X =1) = % suit la loi de
RADEMACHER. Comme —1 < Xy < 1 pour tout k € [1;n], on a Sy, € [-n;n]. De plus, Xi étant impair, Sy,
a la parité de n. Ainsi, Sp(Q) C {-n,—(n—2),---,(n —2),n}.
Pour aller plus loin, si By = ! + 1+ Xee pour k € [1;n], on a By (2) = {0,1} et, comme (Bx =0) = (Xx = —1)

t (Bx=1)=(Xx=1),0na P(Bk =0)=PBx=1)= % donc By suit la loi de BERNOULLI de parametre

%. Comme Xj,---,X, sont indépendantes, Bi,---,B; le sont aussi d’apres le cours, et on sait qu’alors
n

Tn = Y. By suit la loi binomiale de parametres n, . Comme S,, = 2T, — n, on connait donc la loi de S,
. - . n\ /1\k 1\ n—k 1 /n

donnée par les relations Vk € [[0;n], P(Sn, =2k —n) = (7) (1 - 7) = — = P(Sn =n—2k).
k/)\2 2 2™ \k

b. Soit n € N*, (|Sqt1| =1) = (Sne1 = 1) U (Sny1 = —1) dong, par incompatibilité de ces événements,

on a P(IShy1] =1) = P(Sng1 = 1) + P(Shy1 = —1). Par incompatibilité et indépendance de Sy et Xy 41

par le lemme des coalitions, comme (Sni1 = 1) = (Sn = 0,Xn41 = 1) U (Sn = 2,Xn41 = —1), on a la
. P(S, =0)  P(Sn =2) . N

relation P(Spy1 = 1) = 5 + 5 . Comme on peut décomposer I'évenement (Sn41 = —1)

en (Spy1 = —1) = (S = 0, Xn41 = —1) U (Sn = —2,Xpn41 = 1), on en déduit de la méme maniere que

P(S, =0 P(S, = -2
P(snpr = —1) = LOn=0), FOn =2 0r (5, = 0) = (5] = 0) et (150 =2) = (S = )L (S0 = ~2),

ce qui donne P(|Sp 1| =1) = P(|Sp| =0) + w

c. Comme avant, (|Snt+1] = k) = (ISn] = k+ 1, Xnt1 = —ent1) U (|Sn] = k — 1, Xn41 = €n41) en notant

en+t1 le signe de Sy, 1 donc, avec les mémes arguments d’incompatibilité et d’indépendance de S;, et Xy 41,
P(Sn|=k=1)  P(Sn|=k=1)
2 2 '

on a la relation P|S, 1] =%k) =
n n+1

d. Comme Sy | est a valeurs dans [0;n], E(|Sn|) = Z kP(|Sn| = k). Ainsi, E(|Sn1]) = D) kP(|Sne1| =k)
k=1 k=1

quon écrit E(|Snt1|) = P(|Sny1] = 1) + Z kP(|Sn+1] = k). Or, d’aprés la question précédente, on a

P([Sns1 =%) = (k=1+7) g|5n| _k_]) + (k+1-1) g|5n| =k+1) si k > 2 donc on a
E(|Sn1) = P(Sn|=0)+ Mﬁf (e = 1)P(Sn] =k = 1)
+:§2 (P(ISnlzzk— 1) +:§ (k—i-])]P’(|Szn| =k+1) _:iw
Ainsi, E(|Spi1]) = B(|Sn| = 0)+ IP’(lsnzl =2) +E(I§nl) n IP’(ISnZI =1, E(|an\) B P(|snz| 1) IP’(|Snz\ —2)
o ni1 (]P’(|5n|2:k— 1) _:Zi P(|Sn| 2:k+1) _ IP’(|ST12| =1)  P(|Su| 2:n+1) _ P(|Sa] jnJrz) ot que

(|S I—n+ ) _ P(Snl=n+2)
2 2

= 0. On en déduit bien que E(|Sn11]) = E(|Sn|) + P(|Sn| = 0).

e. Par imparité de Son11, on ne peut pas avoir Son41 = 0 donc P(Son41 = 0). Par contre, Sz, = 0 si et



seulement si il y a autant de 1 que de —1 dans les 2n étapes de cette marche aléatoire. Par indépendance

2n 1\ /T (2n)!
des pas, on en déduit d’apres le cours que P(S;, =0) = <f) <7> == .
P P d (S2n ) <n) 2 2 22“(71!)2
f. D’apres la question e., la suite (E(|Sn|)n>1 est croissante et, par dualité suite-série, elle converge si
et seulement si > (E(|Sni1]) — E(|Sn|)) converge. Or E(|Szn+2|) — E(|S2n41]) = P(|Szn+1| = 0) et

n>l
2n)! VA (2n) e 1
E(|S — E(|S = IP(|S = 0) = ( ~ ~ .
(l 211+1|) (| 271|) (l 211' ) ZZn(n!)Z Too 22n<27_[n)n2n62n too /TN

>~ ——= diverge par RIEMANN, on en déduit par comparaison que Y. (E(|Sny1]) — E(|Sn|)) diverge donc
n>l Tin n>l

Sachant que la série

que (E(|Sn|)n>1 diverge, c’est-a-dire que lim E(|Sn|) = +o00.
n—-+4oo
g. J’ai rajouté cette question, pas sir qu’elle fasse partie de Toral ! D’apres une remarque du cours, si

an > O ~ bn >0etsi Y. an diverge, alors Z ax ~ Z by (c’est hors programme). On l'applique ici avec
n>0 k=0 +°Ok 0

, ce qui, comme Z (E(|52k+1|) — ]E(‘SZkD = ]E(|52n+1|) — E(|52|) donne
k=1

E(|San41]) — E(\san

%\*
=

n n
E(|Sznt1]) ~ D L. Par comparaison série-intégrale, on montre classiquement que Z 2,/n avec
oo Vk =1 \f Foo

la décroissante et la continuité de la fonction t — \1[ sur [1;+oo[ dont une primitive est t — 24/t. Ainsi,

2(2 1 (2
2241 Gomme B(|Son|) = E(|Szrst]), on a E (Is2n) ~ 2, [E [2(2n)
+oo s +oo
donc la suite <(|%“l))n21 tend vers \/? et on a E(|S, |) o /?n.

S

a. Pour k € N* et n € N*, par définition du maximum, on a (M < k—1) = ﬂ(Xi < k — 1) dong, par

E(|S2n+1 |) ~ 2

S

n
indépendance des Xi, on a P(M;, < k—1) = H P(X; < k—1) or Xy,---, Xy, suivent la méme loi que X;
1)

donc Vi€ [1;n], P(Xi <k—1)=P(X; <k—1)etonabien PMp <k—1)=P(X; <k—-1)"
b. D’abord, on a P(X; < k—1) =1 — P(X; > k —1). Mais comme X; est & valeurs entieres, on a
(X1 >k—=1)= (X7 2 k). Comme x — x* est strictement croissante, (X7 > k) = (X§ > k%) donc, comme X§

est une variable aléatoire positive admettant une espérance finie par hypothese et k* > 0, par 'inégalité de
E(XT)
kO(.

MARKOV, P(X7 > k) = P(X$ > k%) < = % Ainsi, P(X; <k—1)>1— % pour k € N*.

Comme My, est aussi & valeurs entieres, on a (My, > k—1) = (M, > k) pour k € N* donc on obtient

P(Mp > k) = P(Mp > k= 1) = 1= P(Mn <k—1) = 1= P(X; <k = 1" <1 (1= ). Quand k tend

. s s m nm 1 nm 1
vers +00, on effectue un développement limité et 1— (1 — k—o‘}) = 1— (1 k"‘(x +o0 (k“)) = k‘x(x +o0 (k“)

donc 1 — (1 — m—o‘z‘) ~ BMa Pyisque la série de RIEMANN 3 % converge car x > 1 et que n et my sont
k, “+oo k k21 k,
des constantes, par comparaison, la série > P(M, > k) converge done, d’apres le cours, My, admet une
k>1

+o0
espérance finie qui vaut E(M,) = Y. P(Myn > k).
k=1

c. Ici Xy suit la loi géométrique de parametre % Prenons o = 2, alors X; admet un moment d’ordre 2 (une



variance finie) d’apres le cours donc, d’apres la question b. avec « = 2 > 1, M, admet une espérance finie

“+o00 +o00 +oo
et EMp) = > PMp=2k)= > (1 —PMuy<k—1))= > (1= P(X; <k—1)") avec la question a..
k=1 k=1 k=1
—+oo

Ici, P(X; <k—1)=1—P(X; >k —1) =1-2""%_ En effet, classiquement, (X; >k —1) = |_| (X1 =mn)
n=k

+oo +oo n-1 k
donc, par o-additivité, P(X; >k —1) = > P(X3 =n) = % X ( - 15) = % =21k

n=k
—+oo

On a bien la relation attendue, E(My) = (1= =2""%m).
k=1

—+o0 n . .
d. Par le binéme de NEWTON, on a E(M,) = > ( > (n) (—1)”‘12_(]‘_])]). Or les n séries géométriques
k=1 Vj=1 \)

de raison — pour j € [1;n] convergent donc, par somme d’un nombre fini de séries convergentes, on peut
n . ) n ) 1 n —1)i*19i
caire EMn) = 3 ()0 (S ) = £ (N —5 - 2 (5) 5
) =1\) -

=1 k=1 j=1 \J 1-270
a. Comme la variable aléatoire e'*X est bornée sur , elle admet une espérance finie et on a, par théoréme

. no. n .
de transfert, E(e''X) = Z e P(X = xi) = > pre't™ . Par inégalité triangulaire sur les complexes,
k=1
. n . n n
[EE)] = | 3 puet™™| < 3 peei™| = 2 pe= T P(x =) = B | |(x=)) = B@) =
k=1 k=1 e

n ) n .
Comme Vt € R, |®(t)]> = ®(t)®(t) il vient avec a. la relation |®(t)]? = (E pjelt"i>( > pke_”"k>,
j=1 k=1

n .
d’ou |®(t)]? = Z pE+ > pipkett™~*x). Si on passe en mode développement limité en 0, on obtient

1<j#ksn
0 . t? (Xj — Xk)z 2 p A -y
|®(1)]% = Z > PiPk (1 +it(xy — xi) — —2L=—""—+o(t )) Or, en échangeant les roles joués
0 k=1 1<j¢k<n 2
parjetk ona Y ppk(y-x) = X pepilk—x) = — X pypk(y —x) = 0. Or,
1< 7k<n 1<kAj<n 1< 7k<n

n 2 n

= K onc, en développant, 1 = + ipk. En reportant dans le développement limité

P donc, en développant, 1 pﬁ Pjpk. En reportant dans le développ t limité,
=1 k=1 1<j#k<n

2 2

t7(x; —x

_ | | j

TAEED DRI DR (R St DR
1<#ksn 1<j#k<n

n n 2
De plus, V(X?) = E(X?) — E(X)? = E xZ2px — ( > xkpk) par formule de transfert donc, en développant,

@ (1)]2 =100 pipkly—x)?) (i),

0 2\qgiFkgn

n
VX)= > e —p2)— > xjxpjpx = Z pkxk( Z pJ) Y. XjxkPp;jpk qu'on peut aussi écrire

k=1 1<jZk<n = 1<#k<n

V(X) = l( > opipkxi+ > pkpjsz -2 xjxkpjpk) par symétrie entre j et k et on obtient
2\ 1gFk<n 1<j7k<n 1<j7k<n

bien la relation V(X) = %( > pipk(xE + sz - Zx]-xk)> = %( > pipk(xy — xk)z) qui justifie bien

1<j#k<n 1<j7k<n

le développement attendu : |®(t)|? §1 — V(X)t? + o(t?).
b. L’hypotheése X(Q2) C a + Zb se traduit par Vk € [1;n], Imx € Z, xx = a + myb. Ainsi, pour tout

. n . ) n ) n i
t e R, @(t) — ]E(eltx) — Z pkelt(aerkb) — elt(l Z pk(eltb)mk donc \@(t)| — Z pk(eltb)m
k=1 k=1 k=1

k|, 11 suffit

) n
de prendre to # 0 tel que e'*o® = 1, par exemple to = %T # 0, pour que |®(to)| = ‘ > Pk‘ Z px=1.
k=1 k=1

c. Réciproquement, supposons qu’il existe to € R* tel que |®(tg)] = 1. Alors, ®(tp) € U donc il existe



. n . . . n .
o« € R tel que ®(tg) = e'*. Ainsi, > pre'toXx = e'* = e'* 3 py donc, en multipliant par e™**, on a la

k=1 k=1
n n i . n )
relation Y pr = > pyrettoxr—ic = pret(toxi—o)
k=1 K=1 S
D i n . n
Ainsi, par inégalité triangulaire, 1 = | 3 pret(toXk=) | < 5™ pyjetltoxk=a)| = S~ py = 1. Or, on sait

que le cas d’égalité dans 'inégalité triangulaire traduit le fait que les complexes (pkei(toxk*“)hgkgn sont

0

i(toxk—o) — 'Pkei )

positivement alignés, ou encore, comme py > 0 qu’il existe 8 € R tel que Vk € [[1;n], pke
Par conséquent, comme Yk € [1;n]], e'(toxx=*=0) — 1 il existe my € 7Z tel que toxx — a — 0 = 27tmy. donc

Xk = a + mib en posant b = %ci[ € R eta= ‘xti"_e € R. On a donc bien X(2) C a + Zb.
0 0
2n) X2 . , . . .
a. Pour x # 0, en posant u,, = s pour le critere de D’ ALEMBERT, on obtient apres simplifications,
n

1(1)2g1, 2142 2 2
‘unH ’ _ (n+2)!(n!) 42xn+1 _ (2n+2)(2n421)x _2(2n+1)x done  lim | tmtd ’ =2,
Un ) (n+1)H"4 4n+1) 4n+1) notoo | uUpn
esi|x|]<1,onal<1donc ) un converge absolument par le critéere de D’ALEMBERT. Ainsi, R > 1.
n=0
esi|x|>1,onal>1donc > u, diverge grossiérement par le critere de D’ALEMBERT. Ainsi, R < 1.
n=>0

2n
. - " . 2n x .
Par conséquent, le rayon R de convergence de la série entiere lacunaire ( )471 vaut R = 1. On sait
n>0 \ 1

d’apreés le cours ou on retrouve facilement que Vy €] — 1;1] 1 = +fjo my“. Ainsi, pour
TP VTHy 2 4t ()? ’
400 | 400 2 2n
x €] — 1;1[, en prenant y = —x? €] — 1;1[, on obtient 1= > T(LG)-ZXZn: > " XT
1 —x2 n=o04 (TL') n=o\n/ 4

b. Par construction, Yy = XkT—’_] suit la loi B(%) car Yy =0 <= Xy = —let Yy =1<«= Xy =1. Par
n

indépendance de Xj,---, Xy, donc de Yq,- -+, Yy, d’apreés le cours, T, = Y Yy suit la loi binomiale B (n, %)
k=1

n
c. Or Vk € [1;n], Xx =2Yx — 1 donc Sy, = 2( Yk) —n = 2T, —n. Comme T,(Q) = [0;n], on obtient
=1

k

Sn(@) = {—n,—(n = 2),-++,(n — 2),n} et P(Sy = 2k —n) = B(Ty = k) = (E) () = ;(E)

2/ \2
n
pour tout entier k € [[0;n]. Par les propriétés de l'espérance et la variance, on a E(Sn) = > E(Xx) =0 et
k=1
n
V(Sn) = Y. V(Xx) =ncar Xy, -+, Xn sont indépendantes car on a clairement E(Xy) = 0et V(Xi) =1. On
k=1

pouvait passer par Tn, en effet, V(Sn) = V(2T —n) =4V(T,) donc E(Sy) =2E(Tp) —n=2(n/2) —m =0
- - ~ 1 —n(l — _1
et V(Sn) =4(n/4) =n car T B(n, 2) donc E(Ty) n(z) et V(Tyn) n(z) X (1 2).

d. Soit x €] — 1;1[, on a |pnx™| < |x|™ car pn, € [0;1] donc, comme la série géométrique Y |x|™ converge

n=0
car |x| < 1, par comparaison, Y. pnx™ converge absolument.
n=0
n
e. Pour n > 1, on peut partitionner (Szn = 0) en (Spn = 0) = |_| ((San = 0) N (T = 2k)) en distinguant
k=T

selon la premiere fois (notée T) ol 'on va avoir (Sax = 0) (Sz2k+1 # 0 car Sy, a la méme parité que n). Par

n n
a-additivité, pn, = P(San = 0) = > P(San =0, T = 2k) = > P(T:Zk)(SZn = 0)P(T = 2k). Pour tout
k=1 k=1



ke [1in—=1], ona Pr_s)(San = 0) = P(Sy(n—x) = 0) (on repart de 0 apres 2k “mouvements” et on veut

étre a 0 au bout de 2n étapes). Par contre, comme (T = 2n) C (S2n =0), on a P(r—2n)(S2n = 0) = 1. Ainsi

n—1

Pn=0n+ D> qPn-k = Z qxPn_k Car on a posé po = 1 par convention.
k=1 =0
La série génératrice > IP’(T =n)x" de T, qui est bien une variable aléatoire & valeurs dans N, a un rayon de
n=0
convergence au moins égal & 1 d’apres le cours. Six €]—1;1[, on peut effectuer le produit de CAUCHY, comme
+o00 “+oo +oo n
P(T =2n+1) =0 pour tout n € N, Gt(x)p(x?) = ( > anZn)( > pan“) = > ( > qkpn,k)xzn.
n=0 n=0 n=0 k=0
n 0
Or pn = > pn-xqx sin € N* car qo = 0 mais Y pn_xqx = poqo = 0 alors que po = 1. Ainsi, pour tout
k=0 k=0
“+o0
x €] =11 GT(x)p(x?) = 3 pnx?™ = p(x?) — 1. Mais p(xz) =1+ Z pnx?™ = 1 car pn = 0 donc p(x?) > 0
n=1 n=1
2 J—
et on a donc la relation attendue, & savoir Gy(x) = (X iy e
p(x

= (n)! .

—= ( ),1 vient Vx €]—=1;1[, p(x) nZ::O ZZn(n!)ZX
1

D’apres c., comme py, = P(S2n, =0) = P(Tzn = 1) =3

—1

V1 — x2
On en déduit donc que p(x) = \/]]7 donc p(x?) = \/1772 et Gr(x) = * =1-v1—x% Oron
-X 1T—x I

1T—x
COMRIE N

-1’

sait aussi que, pour y €] — 1; 1], on a le développement en série entiere /T +y =1+ Z

& (=)™ (2n)! B (2n)!
Ainsi, pour x €] — 1;1], G = - —~ M ()2 = . 21 On identifie
) P x ] ’ [ T(X) = 4n(n!)2(2n — ]) ( ) X n;] zln(n!)l(zn _ ]) X
2
car les rayons sont strictement positifs et Vn > 1, P(T =2n) = 22n(211)< n).
n—

Gt :x+ 1 —11—x2 nest pas dérivable en 1 car J/ ne I’est pas en 0. D’apres le cours, T n’admet pas une
espérance finie. Pourtant, P(T = 400) =1— Ej P(T=n)=1-G7(1)=1—1=0: T est presque sirement
oy
finie mais admet une espérance infinie. Bizarre.
a. Comme X et Y sont a valeurs dans N, on a Q = |_| (X = 1,Y =j) donc, par o-additivité, on obtient
4,20

+00 ,+00 i
> ( Z P(X =1i,Y = ))) =1 donc a Z = —& _ =1 (séries géométriques) donc a = p?.
i=0 i=0 ] q (] - q)

e oo ‘
Pourie N, (X =1) = |_| (X =1,Y =j) donc, toujours par c-additivité, P(X = i) = p?q* > ¢’ =p(1 —p)-.
j=0 =0
Comme X + 1 est & valeurs dans N* et que Yk € N*, P(X+1=k) = P(X=k—1) =p(1 —p)*~', la variable

aléatoire X+ 1 suit la loi géométrique de parametre p. Par symétrie, Y+ 1 suit aussi la méme loi géométrique

de parametre p. D’apres le cours, E(X 4+ 1) = ] donc E(X) = I-p_4a par linéarité de l’espérance et on
p p
sait aussi que V(X +1) = 1;29 = V(X).
P

Soit f : N* — N définie par f(a,b) = ab de sorte que XY = f(X,Y). Par théoreme de transfert, la variable

aléatoire XY admet une espérance finie si et seulement si ({jP(X = 1,Y = j))¢,j)en2 est sommable. Or

S OHBX =Y =) = X it = % ket = 3 (@)i0) = p2( ¥ ke¥)’

(i,))eN2 (i,j)eN2 (i,j)eN2 (i,))eN2 keN



—+o0
= > x™ qu'on dérive terme & terme sur lintervalle
n=0

—1 = JFZO:O ™! donc —*— = Jrzojonx“.
(] - X)Z n=1 (1 - X)z n=0

2 2 2 2
Par conséquent, E(XY) = p? ((]—q?) = 95 et Cov(X,Y) = E(XY) — EX)E(Y) = 45 — (g) =0.
—q p p

Mais c’est bien siir, comme V(i,j) € N2, P(X =1,Y =j) = p2q"" = (pq')(pq’) = P(X = i) P(Y = j), par

définition, les variables aléatoires X et Y sont indépendantes et, d’apres le cours, Cov(X,Y) = 0.

1
1—x

(famille produit). Or on sait que Vx €] — 1;1],

ouvert de convergence pour avoir

b. Soit n € N, les valeurs prises par U sachant que X+Y = 2n+1 sont tous les entiers de n+1 a 2n+1. Pour
k € [n+1;2n+1], ona (U= Max(X,Y) = k)N(X+Y =2n+1) = (X =%, Y = 2n+1-k)U(X = 2n+1-k, Y = k)
car 2n+1—k <kdonc PU=kX+Y=2n+1)=PX=%KP(Y=2n+1—k)+ P(X=2n+1—-k)P(Y =k)
par indépendance de X et Y donc P(U = k,X +Y = 2n + 1) = 2(pq*)(pg?™*'=¥) = 2p2q?™*+!. De plus,

2n+1
X+Y=2n+41) = |_| (X = kY = 2n+ 1 — k) donc, par o-additivité et indépendance de X et Y,
k=0
2n+1 2n+1
PX+Y=2n+1)= > PX=KPY=2n+1-k)= > (pq")(pg?™t'7%) = (2n + 2)p%q*™*+!. Ainsi,
k=0 k=0
PU=kX+Y=2n+1) 2p%g*t! 1
k 1;2 1], P(U=Kk|X+Y =2 1) = ? = = .
pour k € [[n‘f‘ ;2n+ Hv ( | + n+ ) P(X+Y:2n+l) (2n+2)p2q2n+1 n-+1

Par conséquent, la loi de U sachant X +Y = 2n 4 1 est uniforme sur l'intervalle [n + 1;2n + 1].

Comme Xkliw) est une série a termes positifs pour w € €2, elle converge si et seulement si la suite de ses

k>1
“+oo
sommes partielles est majorée. Ainsi, en discrétisant les majorants M € N*, on a I'expression A = U AM
M=T
N * 2 Xi(w) =
ouAMz{wEQ’VnEN,Sn(w):E . SM}:ﬂBnavecan(SnéM).
k=1 n=1

Soit M € N*, comme la suite (Sn(w))nen+ est croissante pour tout w € €, la suite (Bn)ne n- st décroissante

pour inclusion car By 1 C By, puisque si Spt1(w) < M, alors Sy (w) < Spt1(w) < M. Par le théoreme de

continuité décroissante, on a donc P(Am) = 11111 P(Bn).
n——+oo
s s ez 5 , I E(Xk) . 1 . so.
Par linéarité de 'espérance, E(S,,) = > — = pHy, en posant Hp, = > X la somme partielle de la série
k=1 k=1
. . , o I V(Xk) o . o 1
harmonique. Par indépendance de X1, -+, Xy, V(S,) = kzl —z = p(1 —p)Ty, en posant T, = k21 oz la
= > =

somme partielle de la série de RIEMANN 3 iz qui converge et dont la somme est ¢(2) = o
n>1n

Comme S,, admet un moment d’ordre 2, d’aprés I'inégalité de BIENAYME-TCHEBYCHEV, pour tout ¢ > 0,

_ 2
on a la majoration P(|Sy — E(Sn)| =€) = P(|Sq — pHn| = ¢) < p(l ZP)T” = V(gn) < p(l c f)ﬂ .
€ € 3

Soit M € N*, puisque liT Hp = +00, il existe np € N tel que Vn > ng, pH, > M. Pour tout n > nog,
n—+oo

comme M < pHp, on a (S, < M) C (|Sn — pHn)| = pHn — M) donc, en posant ¢ = pHy, — M > 0 dans

N2 N2
la majoration précédente, on obtient 0 < P(S;, < M) < p(l ;3)7[ = p(1 —p)m 5.
6e 6(pHn — M)

comme Um H, =+oo,ona lm P(S;, <M)=0donc P(Apm)=0.

n—-+oo n—-4oo

Par encadrement,




+o0 +o0
Méthode 1 : par sous-additivité, comme A = U Am,on a P(A) < > P(Anm) =0 donc P(A) = 0.
M=1 M=1

Méthode 2 : Pour M € N*| si la suite (Sp(w))nen+ est majorée par M, elle est a fortiori majorée par
M + 1 donc Apm C Am1- Ainsi, la suite d’événements (Apm)men+ est croissante pour U'inclusion donc, par

continuité croissante, on a P(A) = (Am) = 0.

lim P
M—+o00
1 =
19.10a. On connait le développement en série entiere géométrique de rayon R =1: Vx €]—1;1], T >ox™.
-X m=0

Soit un entier d € N*, on peut dériver terme a terme d — 1 fois le développement de la question précédente.

(d)
Une récurrence simple montre que Vd € N*, Vx €] — 1;1], (] lx) = #. Ainsi, avecr =d — 1,
Ona( 1 )<f—‘>: (-1 AR m! XW(T?]):(*fxm)“—”'
T—x (] _X)T m=r—1 (m—r—l— ])' m=0
+o0 +oo —_ 1\
. 1 _ m! —(r=1) _ (TL+T ])~ T
b. P —T1;1] et N, ——— = m = e t
our x €] —1;1[et r € N, 0= m§_1 (r—])!(m—r+1)!x nz::O = 1) x" en posan
1 T Mm4r—1
n=m-r+1donc ————= = x™. En prenant x = p €] — 1;1[ dans cette relation, on
(1=x)"
— X n=0 n

+oo +r—1 1 too —1 —1
obtient donc Y (n ’ )p" = —, Clest-a-dire ) pn =1 car <n+r ) = (n+T > alors que
n

n=0 n q n=0 r—1

Vn € N, pn > 0. Par conséquent, (pn)nen est une distribution de probabilité.

—+o0
c. La série génératrice de X est de rayon R > 1 d’apres le cours et Vt €] —R; R[, Gx(t) = > P(X =n)t™ donc
n=0

+oo 400 - .
Gx(t) = > pat™ =q" X <n+r >(Pt)“. On a donc R = 1 puisque le rayon de 3 <n+r )t“
n=0 n=0 r—1 P =0 o
1.1 v

vaut 1 d’apres la question b.. Ainsi, Vt € } — == [, Gx(t) = —q—r
p'p (1—pt)

Comme R > 1, Gx est dérivable deux fois en 1 donc, d’apres le cours, X admet un moment d’ordre 2 donc

une espérance et une variance finies et que E(X) = G4 (1) et V(X) + E(X)? — E(X) = E(X(X — 1)) = G%(1).
T —|—1)pzqT ) s g’ T
Othe}—l;l[, Gh(t) = — P9 op gr(e) = SUHEIPT gy mx) = P4 TR o
PP X( ) (1 _pt)r+1 X( ) (] _pt)r+2 ( ) (1 _p)r+1 q
2.2 2 2 2.2 o
VO + B - T IO e yx) = Mk Up” = pt £ rp(1=p) _ 1p

q q q q” q”

19.11| a. On note Ty le numéro de la boule tirée au tirage k. On admet 'existence d’'un espace probabilisé
qui supporte cette suite (Ty)k>1 de variables aléatoires mutuellement indépendantes (remarque du cours).

D’abord Xn(©2) = (N*\ {1}) U {+00} car on rajoute la possibilité de ne jamais avoir une autre boule
—+oo

que la premiere tirée, qu’on note X, = 4o0o0. De plus, (X, = +o0) = ﬂ (Xn, = k) par convention et
k=2

n
Xn =%k) = U ((T1 =N N(Teo1 =) N (Tx # 1)) € A pour k > 2 donc X,, est une variable aléatoire
i=1

car les T le sont. Par incompatibilité de ces n éveénements, indépendance mutuelle des Ty qui suivent toutes

n k—1
la loi uniforme sur [[1;n], on a P(Xn =k) = > (l) (nf—l) =n=1 bourk > 2.
S \n n n

Xn] 11y —1 1
On vérifie la cohérence de ces résultats car » =g = 2= %" (—) =10 X = 1. Ceci
k=n no5o\n n 1—(/n)

justifie que I’événement (X, = +00) (toujours la méme boule) est négligeable comme attendu.



k(n—1) k(n—1)

b. kP(Xn = k) = =2 et >, =~ converge car le rayon de la série entiere Y kx*~! est égal a 1
n k=2 N k>1
1 = w 1
et que ’f‘ < 1. De plus, comme Vx €] — 1;1], 3 x* = , on obtient en dérivant Y kx*1 = ——
n k=0 k=1 (] - X)
1 - n? 2n —1 .
donc = ——— — 1. Ainsi, E(X,) = (n—1) x (7 — 1) = . Par conséquent
3 B P B0 = = D n auent

liT E(Xn) = 2 ce qu’on subodorait car plus n augmente, plus I’événement (X, = 2) devient presque sr.
n——+oo

Comme (Xn —1)(2) = N*U {400} et que Yk > 1, P(Xn —1=k) = P(Xp =k+1) = “n—k‘

k-1
P(Xn—1=%) = (l) (1—l> ( ( —l)) <1—7) avecp = 1—l €]0; 1], la variable aléatoire Xy, —1

n n n

] ce qui simplifie les calculs car alors E(X;, — 1) = 1__n_

p n-—1
donc, par linéarité de l'espérance, E(X,) =1+ 7] = @
— n—

suit la loi géométrique de parametre p =

c. Comme X; = Y,, pour k > 2, ona (Y =k) = (X2 = k) donc P(Y, =k) = zk]i’] d’apres a.. On reconnait

k—1
cette loi, Yo —1 suit la loi géométrique de parametre % car P(Y2—1=k) = P(Y2 = k+1) = Zl—k = %(1 —%) .
Pour k > 3, en notant i le numéro de la premiere boule tirée, r le premier rang pour lequel on tire une boule

de numéro j # i, comme 6 — i — j est le numéro tiré autre que ietj (cari+j+ (6—i—j)=1+2+3=6),

on a ( |_||i|]i_|] ((rﬂ] ))ﬁ(Tr:i)ﬂ( kﬁ] ((Tki)U(Tkj)))>ﬂ(Tk6ij)_

i=1 J ‘ r=2 b=r+1
Ainsi, par mcompatlblhte de tous ces évenements, indépendance mutuelle des tirages et symétrie entre les

k—1 T—1 k—r—1 k-1 k-2 _
numéros, P(Y3 =k) =3 x2x (l) X <l> X (;) X (l) = 3% DPA A= 6(27”
r=2

= \3 3 3 3 3
\ = )
A nouveau, comme Y3(Q) = {3,4,5,---, 400}, on vérifie que > P(Y3=%k)= >, =—7—~*
k=3

k=3 3*
X622 —1) (2/3)° (1/3)° _ 4 _1 R
2 = (6/4 - =2_1_1 stifi Péve Ya: —
on a Z 3K (6/ )] =23 6= 053 "3 3 Ceci justifie que I'évenement (Y3 = +00)

(maxurnum deux numéros tirés éternellement) est négligeable comme attendu.

+oo
19.12) Comme X est & valeurs dans N, sous réserve de convergence, on a Gx(t) = >, P(X = n)t™. Or, pour
n=0

= 1. En effet,

t € R, la suite (]P(X = n)t“)n>0 = (&) . est bornée par croissances comparées. Ainsi, le rayon de
= n. n2

+oo _—A n
convergence de Y, P(X =n)t"™ vaut R=+occ et on aVt € R, Gx(t) = > G0 e MMt = M),
n>0

n=0 n!
Soit a >0ett>1, comme (X > a) = |_| (X = k), par o-additivité, et car t > 1 donc Yk > a, t¢ < t*, on
k>a
APX>a)= Y PX=kK = L T PX =k < - 3 *P(X = k) . Ainsi, P(X > a) < Gx§t) car
K>a 7 >a t K>a t
Gx(t) = ( T P(X :k)tk> n ( B :k)tk> et que 3 P(X = k)t* > 0.
k<a k>a k<a
At—1)
Avec a =27 > 0, P(X > 27) < etW = MED=22A) pour tout t > 1. Soit f : [1;+0o[— R dérivable
o , A A(t—=2) .. .
définie par f(t) = At —1) —2AIn(t), f'(t) = A — T donc f est décroissante sur [1;2] et croissante

A
sur [2; +oo[. En prenant t = 2 ci-dessus car [Mm[( ) =1f(2), P(X > 2)) < ef(@) = A-221n(2) — (%) )
15400



