L'usage des calculatrices est interdit

Le sujet se compose de deux problèmes indépendants.

PROBLÈME 1

(d'après École de l'air MP 2002 maths 1)

Dans tout ce problème, on note $\Omega = \mathbb{C} \setminus \mathbb{R}^-$, l'ensemble des nombres complexes qui ne sont pas des réels négatifs ou nuls. On notera en particulier que $0 \notin \Omega$.

Pour f, fonction continue sur \mathbb{R}^{+*} , on considère la fonction g définie, lorsque l'intégrale converge, par

$$g(z) = \int_0^{+\infty} \frac{f(t)}{z+t} \, \mathrm{d}t,$$

Partie I: Étude d'exemples

Dans toute cette partie, on s'intéresse à la restriction de la fonction g à \mathbb{R}^{+*} ; x désigne donc toujours un réel strictement positif et g sera définie par :

$$g(x) = \int_0^{+\infty} \frac{f(t)}{x+t} dt, \text{ avec } x > 0,$$

lorsque cette intégrale converge.

- 1. On suppose dans cette question que f est la fonction définie sur \mathbb{R}^{+*} par $f(t) = \frac{1}{\sqrt{t}}$; la fonction g est donc définie par $g(x) = \int_0^{+\infty} \frac{\mathrm{d}t}{(t+x)\sqrt{t}}$, lorsque cette intégrale converge, avec x > 0.
 - a) Montrer que si x > 0, la fonction $t \mapsto \frac{1}{(t+x)\sqrt{t}}$ est intégrable sur \mathbb{R}^{+*} .
 - b) En utilisant le changement de variable $t = u^2$, déterminer la valeur de g(x) lorsque x est un réel strictement positif.
- **2.** On suppose dans cette question que f est la fonction définie sur \mathbb{R}^+ par $f(t) = \frac{1}{\sqrt{1+t}}$.
 - a) Justifier que g est définie sur \mathbb{R}^{+*} .
 - b) En utilisant le changement de variable $u = \frac{1}{\sqrt{1+t}}$, montrer que, si x > 0, on a

$$g(x) = \int_0^1 \frac{2}{1 + (x - 1)u^2} \, \mathrm{d}u$$

- c) En déduire la valeur de g(x), où $x \in \mathbb{R}^{+*}$; on distinguera les cas x > 1, $x \in]0,1[$ et x = 1.
- d) Vérifier que la fonction g est continue sur \mathbb{R}^{+*} .

Partie II: Des conditions suffisantes de convergence

On s'intéresse cette fois à l'existence de g(z) pour $z \in \Omega$.

1. On suppose dans cette question uniquement que f est une fonction intégrable sur \mathbb{R}^{+*} . Montrer que g est définie sur Ω .

Dans toute la suite de cette partie, on suppose que f est une fonction continue sur \mathbb{R}^{+*} telle que $\int_{0}^{+\infty} f(t) dt$ converge.

- **2.** Pour $a \in \mathbb{R}^+$ et $x \in \mathbb{R}^{+*}$, on pose $F_a(x) = \int_a^x f(t) dt$.
 - a) Justifier que, si a > 0, alors F_a est une fonction de classe \mathcal{C}^1 sur \mathbb{R}^{+*} et préciser la valeur de sa dérivée F'_a .
 - b) Montrer que, si a > 0, la fonction F_a est bornée sur \mathbb{R}^{+*} .
 - c) Les résultats des deux questions précédentes sont-ils encore valables lorsque a = 0? (Justifier votre réponse)

- **3.** Soient $a \ge 0$ et $z \in \Omega$. Montrer que $t \mapsto \frac{F_a(t)}{(t+z)^2}$ est intégrable sur \mathbb{R}^{+*} .
- 4. À l'aide d'une intégration par parties, montrer que g est définie sur Ω .

Partie III : Étude d'une application linéaire

Dans cette partie, on note E l'ensemble des fonctions définies sur \mathbb{R}^+ , lipschitziennes et telles que la fonction $t \mapsto \frac{f(t)}{t}$ soit intégrable sur $[1, +\infty[$.

On rappelle que f est lipschitzienne s'il existe une constante k>0 telle que

$$\forall (x,y) \in (\mathbb{R}^+)^2, |f(x) - f(y)| \leqslant k|x - y|$$

On rappelle aussi que si f est lipschitzienne sur \mathbb{R}^+ alors f est continue sur \mathbb{R}^+ . Dans toute cette partie, f est une fonction de E.

1. On pose
$$h(t) = \frac{f(t)}{t}$$
 et $H(x) = \int_{1}^{x} h(t) dt$.

- a) Soit $z \in \Omega$. Montrer que g(z) existe si et seulement si $\int_{1}^{+\infty} \frac{h(t)}{t+z} dt$ converge.
- b) Justifier que $t\mapsto \frac{H(t)}{(t+z)^2}$ est intégrable sur $[1,+\infty[$.
- c) En déduire que g est définie sur Ω .

On peut donc définir une application T sur E en posant

$$\begin{array}{cccc} T & : & E & \longrightarrow & \mathcal{F}(\Omega, \mathbb{C}) \\ & f & \longmapsto & g \end{array}$$

On a donc $T(f)(z) = \int_0^{+\infty} \frac{f(t)}{t+z} dt$ pour tout $z \in \Omega$.

- **2.** a) Montrer que E est un espace vectoriel.
 - b) Justifier que T est une application linéaire sur E.
- **3.** Étude de l'injectivité de T.

Dans toute cette question, on considère un réel a > 0 fixé.

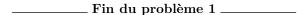
- a) Pour y > 0, déterminer une primitive sur $[0, +\infty[$ de $\varphi : t \mapsto \left| \frac{t-a}{t-a+iy} \frac{t-a}{t-a-iy} \right|$.
- b) En déduire $\lim_{y\to 0^+} \int_0^{2a} (f(t) f(a)) \left(\frac{1}{t-a+iy} \frac{1}{t-a-iy} \right) dt = 0.$
- c) On pose $H_{2a}(t) = \int_0^t h(u) du$.

Montrer que
$$\int_{2a}^{+\infty} f(t) \left(\frac{1}{t - a + iy} - \frac{1}{t - a - iy} \right) dt = \int_{2a}^{+\infty} H_{2a}(t) \left(\frac{a - iy}{(t - a + iy)^2} - \frac{a + iy}{(t - a - iy)^2} \right) dt$$

 $\mathrm{d)} \quad \mathrm{Montrer\ que}\ \lim_{y\to 0^+} \int_{2a}^{+\infty} \left| \frac{a-iy}{(t-a+iy)^2} - \frac{a+iy}{(t-a-iy)^2} \right| \, \mathrm{d}t = 0.$

En déduire la limite, quand y tend vers 0 par valeurs supérieures, de $\int_{2a}^{+\infty} f(t) \left(\frac{1}{t-a+iy} - \frac{1}{t-a-iy} \right) dt$.

- e) Calculer $\lim_{y\to 0^+} \int_0^{2a} \left(\frac{1}{t-a+iy} \frac{1}{t-a-iy}\right) dt$ et en déduire la limite, quand y tend vers 0 par valeurs supérieures, de g(-a+iy) g(-a-iy).
- f) Déterminer le novau de T.



PROBLÈME II : matrices « toutes-puissantes »

(d'après CCP MP 2013 maths 2)

Notations:

Dans tout le texte \mathbb{K} désigne le corps \mathbb{R} ou \mathbb{C} et p un entier naturel non nul.

On note $\mathcal{M}_p(\mathbb{K})$ le \mathbb{K} -espace vectoriel des matrices carrées de taille p à coefficients dans \mathbb{K} et I_p la matrice unité de $\mathcal{M}_p(\mathbb{K})$.

On pourra confondre $\mathcal{M}_1(\mathbb{K})$ et \mathbb{K} .

Une matrice N de $\mathcal{M}_p(\mathbb{K})$ est dite nilpotente s'il existe un entier naturel r tel que $N^r = 0$.

Si M_1, \ldots, M_k sont des matrices carrées, la matrice diag (M_1, \ldots, M_k) désigne la matrice diagonale par blocs dont les blocs diagonaux sont M_1, \ldots, M_k .

Si E est un $\mathbb{K}\text{-espace}$ vectoriel, on note id_E l'application identité de E.

Enfin, on note $\mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} .

On dit qu'une matrice A de $\mathcal{M}_p(\mathbb{K})$ est « **toute-puissante** sur \mathbb{K} » et on notera en abrégé TPK si, pour tout $n \in \mathbb{N}^*$, il existe une matrice B de $\mathcal{M}_p(\mathbb{K})$ telle que $A = B^n$.

On note $T_p(\mathbb{K})$ l'ensemble des matrices de $\mathcal{M}_p(\mathbb{K})$ toutes-puissantes sur \mathbb{K} :

$$T_p(\mathbb{K}) = \{ A \in \mathcal{M}_p(\mathbb{K}) | \forall n \in \mathbb{N}^*, \exists B \in \mathcal{M}_p(\mathbb{K}), A = B^n \}$$

Partie I : Quelques exemples

- 1. Le cas de la taille 1
 - a) Démontrer que $T_1(\mathbb{R}) = [0, +\infty[$.
 - b) Soient $n \in \mathbb{N}^*$ et $b = re^{i\theta}$ avec r > 0 et $\theta \in \mathbb{R}$. Donner les racines $n^{\text{ème}}$ du nombre complexe b, c'est-à-dire les solutions de l'équation $z^n = b$, d'inconue $z \in \mathbb{C}$.
 - c) En déduire $T_1(\mathbb{C})$
- 2. Une condition nécessaire...
 - a) Démontrer que si $A \in T_p(\mathbb{K})$ alors $\det(A) \in T_1(\mathbb{K})$.
 - b) En déduire un exemple de matrice de $\mathcal{M}_2(\mathbb{R})$ qui n'est pas TP \mathbb{R} .
- 3. ...mais pas suffisante

Soit $A = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$. Démontrer qu'il n'existe aucune matrice $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ de $\mathcal{M}_2(\mathbb{R})$ telle que $A = B^2$. En déduire que la condition nécessaire de la question précédente n'est pas suffisante.

4. Un cas où A est diagonalisable

Soit
$$A = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 4 & 0 \\ 2 & -4 & 0 \end{pmatrix}$$

- a) Montrer que $\mathbb{R}^3 = \ker(A) \oplus \ker(A 2I_3) \oplus \ker(A 4I_3)$
- b) En déduire qu'il existe une matrice $P \in \mathcal{M}_3(\mathbb{R})$, inversible et telle que

$$A = P \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix} P^{-1}$$

- c) Démontrer que la matrice A est $TP\mathbb{R}$.
- 5. Un autre cas particulier

On suppose dans cette question que $A \in \mathcal{M}_p(\mathbb{R})$ est telle que $(A - I_p)^2(A - 2I_p) = 0$.

On définit alors les matrices

$$N = (A - I_p)(A - 2I_p)$$
 , $D = A + N$, $P_1 = 2I_p - D$ et $P_2 = D - I_p$

- a) Montrer que $N^2 = 0$.
- b) Vérifier $P_1 = A(2I_p A), P_2 = (A I_p)^2$ et $P_1 = I_p P_2$.
- c) En déduire les relations

$$P_1P_2 = P_2P_1 = 0$$
 , $P_1^2 = P_1$ et $P_2^2 = P_2$

d) Pour $n \in \mathbb{N}^*$, on pose $B = P_1 + 2^{1/n}P_2$. Calculer B^n et en déduire que D est $TP\mathbb{R}$.

- e) Vérifier que D est inversible et que $D^{-1} = P_1 + \frac{1}{2}P_2$.
- f) Pour $n \in \mathbb{N}^*$, on pose $C = I_p \frac{1}{n}D^{-1}N$. Calculer C^n et en déduire que A est $TP\mathbb{R}$.
- 6. Le cas des matrices nilpotentes

Soit N une matrice nilpotente de $\mathcal{M}_p(\mathbb{K})$. On suppose que N est $TP\mathbb{K}$

- a) Montrer que si $M \in \mathcal{M}_p(\mathbb{K})$ est une matrice telle que $M^n = N$ alors M est nilpotente.
- b) Montrer qu'il existe un entier $k \leq p$ tel que $\ker(N^k) = \ker(N^{k+h})$ pour tout $h \in \mathbb{N}$ et en déduire $N^p = 0$.
- c) En déduire quelles sont les matrices nilpotentes et $TP\mathbb{K}$ de $\mathcal{M}_{p}(\mathbb{K})$.

Partie II: Cas des matrices unipotentes

Dans cette partie, N désigne une matrice nilpotente de $\mathcal{M}_p(\mathbb{K})$. On va prouver que la matrice $I_p + N$ est $TP\mathbb{K}$.

On rappelle que si f est une fonction, la notation $f(x) = o(x^p)$ signifie qu'il existe une fonction ε qui tend vers 0 en 0 telle que $f(x) = \varepsilon(x)x^p$ au voisinage de 0.

- 1. Une application des développements limités
 - a) Soit V un polynôme de $\mathbb{R}[X]$ tel que $V(x) = o(x^p)$. Démontrer, à l'aide d'une division euclidienne, qu'il existe un polynôme $Q \in \mathbb{R}[X]$ tel que

$$V(X) = X^p Q(X)$$

b) Soit $n \in \mathbb{N}^*$. Démontrer l'existence de deux polynômes U et Q de $\mathbb{R}[X]$ tels que

$$1 + X = (U(X))^n + X^p Q(X)$$

On pourra utiliser le développement limité en 0 de $(1+x)^{\alpha}$ à l'ordre p

- 2. Déduire de la question précédente que $A = I_p + N$ est $TP\mathbb{K}$ si $N \in \mathcal{M}_p(\mathbb{K})$ est nilpotente.
- 3. Soit $A \in \mathcal{M}_p(\mathbb{C})$ pour laquelle il existe une matrice $P \in \mathcal{GL}_p(\mathbb{C})$, des complexes $\lambda_1, \ldots, \lambda_k$ distincts, des entiers p_1, \ldots, p_k non nuls et des matrices nilpotentes N_1, \ldots, N_k de $\mathcal{M}_{p_1}(\mathbb{C}), \ldots, \mathcal{M}_{p_k}(\mathbb{C})$, tels que

$$A = P \operatorname{diag}(\lambda_1 I_{p_1} + N_1, \lambda_2 I_{p_2} + N_2, \dots, \lambda_k I_{n_k} + N_k) P^{-1}$$

- a) Montrer que A est TP \mathbb{C} si et seulement si chacun des blocs $\lambda_i I_{p_i} + N_i$ est TP \mathbb{C} . On pourra commencer par vérifier que si $A = B^n$ alors A et B commutent.
- b) En déduire une condition nécessaire et suffisante pour que A soit TP \mathbb{C} .

