${ m DM7}$

(Extrait de E4A PSI 2002 maths 2)

Soit α un nombre réel strictement positif.

Pour $n \in \mathbb{N}^*$, on considère l'application u_n de $[0, +\infty[$ vers \mathbb{R} définie par

$$u_n(x) = \frac{x}{n^{\alpha} \left(1 + nx^2\right)}$$

- 1. Étude des modes de convergence de la série de fonctions $\sum u_n$
 - a) Montrer que la série $\sum u_n$ converge simplement sur $[0, +\infty[$.
 - b) Démontrer que la série $\sum u_n$ converge normalement sur $[0, +\infty[$ si et seulement si $\alpha > \frac{1}{2}$.
 - c) Soient a et b deux réels tels que 0 < a < b. Prouver que la série $\sum u_n$ converge normalement sur [a,b].
 - d) On suppose dans cette question que $\alpha \leqslant \frac{1}{2}$. Pour $x \in [0, +\infty[$, on pose

$$R_n(x) = \sum_{k=n+1}^{+\infty} u_k(x)$$

- i. Établir l'inégalité : $R_n(x) \geqslant \sum_{k=n+1}^{2n} \frac{x}{\sqrt{2n} (1+kx^2)}$
- ii. En déduire que la série $\sum u_n$ n'est pas uniformément convergente sur [0, a], où a est un réel strictement positif.

On note S l'application de $[0,+\infty[$ vers $\mathbb R$ définie par $S=\sum_{n=1}^{+\infty}u_n$

- **2.** Étude de la continuité de S
 - a) Montrer que, pour tout α , S est continue sur $]0, +\infty[$
 - b) Déterminer la limite et un équivalent de S en $+\infty$.
 - c) Montrer que, si $\alpha > \frac{1}{2}$, alors S est continue sur $[0, +\infty[$.
 - d) On suppose $\alpha \leqslant \frac{1}{2}$. Soient x un réel strictement positif et f l'application définie sur $[1, +\infty[$ par

$$f(t) = \frac{x}{t^{\alpha} \left(1 + tx^2\right)}$$

- i. Prouver que f est intégrable sur $[1, +\infty[$.
- ii. Montrer que $\int_1^{+\infty} f(t) dt \leqslant S(x)$.
- iii. Calculer $\int_{1}^{+\infty} \frac{x}{\sqrt{t}(1+tx^2)} dt$ (on pourra poser $u=\sqrt{t}$)
- iv. En déduire que S n'est pas continue en 0.
- e) Pour $\alpha \leq \frac{1}{2}$, déterminer un équivalent de S en 0. (on pourra réutiliser la comparaison série-intégrale précédente)