L'usage des calculatrices est interdit

Le sujet se compose de deux problèmes indépendants. Veuillez commencer chaque problème sur une nouvelle page.

PROBLEME I

(inspiré de CCP PC 2003 maths 2)

On notera D l'ensemble des réels qui ne sont pas des entiers relatifs autres que $0: D = \mathbb{R} \setminus \mathbb{Z}^*$. Pour $n \ge 1$, on définit la fonction u_n sur D par

$$\forall x \in D, u_n(x) = \frac{2x}{x^2 - n^2}$$

Lorsque la série $\sum_{n\geqslant 1}u_n(x)$ converge, on note U(x) sa somme :

$$U(x) = \sum_{n=1}^{+\infty} \frac{2x}{x^2 - n^2}$$

Partie I : Étude de U et lien avec une intégrale

- 1. Montrer que U est définie sur D.
- **2.** a) Soit a un réel tel que 0 < a < 1. Montrer que la série $\sum u_n$ converge normalement sur [-a, a]. Que peut-on en déduire pour la fonction U (justifier)?
 - b) Montrer que U est de classe C^1 sur]-1,1[.
- 3. Soit φ la fonction définie, lorsque l'intégrale converge, par

$$\varphi(x) = \int_0^{+\infty} \frac{\sinh(xt)}{e^t - 1} \, \mathrm{d}t$$

- a) Déterminer le domaine de définition de φ .
- b) Pour $x \in]-1,1[$, à l'aide du théorème d'intégration terme à terme, trouver une relation entre $\varphi(x)$ et U(x).
- **4.** On note v_n la primitive de la fonction u_n qui s'annule en 0, définie sur [0,1[:

$$\forall n \geqslant 1, \forall x \in [0, 1[, v_n(x) = \int_0^x u_n(t) dt$$

De plus, lorsque la série converge, on note V(x) la somme de la série de terme général $v_n(x)$:

$$V(x) = \sum_{n=1}^{+\infty} v_n(x)$$

- a) Expliciter $v_n(x)$, pour $n \ge 1$ et $x \in [0, 1]$.
- b) Montrer que V est définie sur [0,1[et que

$$\forall x \in [0, 1[, V(x) = \int_0^x U(t) dt$$

5. On définit cette fois, pour $x \in \mathbb{R}$, la suite $(s_n(x))_{n \in \mathbb{N}^*}$ par

$$\forall n \geqslant 1, \forall x \in \mathbb{R}, s_n(x) = x \prod_{k=1}^n \left(1 - \frac{x^2}{k^2}\right)$$

- a) Déterminer, pour $x \in [0, 1[$ et $n \ge 1$ une relation entre $s_n(x)$ et $V_n(x) = \sum_{k=1}^n v_k(x)$.
- b) En déduire que la suite (s_n) converge simplement sur [0,1[vers une fonction s et exprimer s(x) en fonction de x et V(x).

Partie II : Développement eulérien du \sin et valeur de U

1. Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$, on définit les deux suites $(I_n(x))_{n \in \mathbb{N}}$ et $(w_n)_{n \in \mathbb{N}}$ par

$$I_n(x) = \int_0^{\frac{\pi}{2}} \cos(2xt) \cos^{2n} t \, dt$$
 et $w_n = I_n(0) = \int_0^{\frac{\pi}{2}} \cos^{2n} t \, dt$

a) À l'aide de deux intégrations par parties, montrer la relation suivante, valable pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$:

$$\left(1 - \frac{x^2}{n^2}\right) I_n(x) = \frac{2n - 1}{2n} I_{n-1}(x)$$

- b) En déduire, pour $n \in \mathbb{N}$, $w_n = \frac{(2n)!}{2^{2n}(n!)^2} \times \frac{\pi}{2}$ puis un équivalent de w_n quand n tend vers $+\infty$.
- c) Montrer que, pour $n \ge 1$ et $x \in \mathbb{R}$, on a

$$s_n(x) \times I_n(x) = \frac{1}{\pi} w_n \times \sin(\pi x)$$

- 2. a) Justifier les deux inégalités suivantes :
 - i. $\forall u \in \mathbb{R}, 1 \cos u \leqslant \frac{u^2}{2}$
 - ii. $\forall u \in \left[0, \frac{\pi}{2}\right], \sin u \geqslant \frac{2}{\pi}u$
 - b) En déduire, pour $t\in\left[0,\frac{\pi}{2}\right]$ et $x\in\mathbb{R},\,1-\cos(2xt)\leqslant\frac{x^2\pi^2}{2}\sin(t)$
 - c) Montrer que

$$\lim_{n \to +\infty} \sqrt{n} \left(I_n(x) - w_n \right) = 0$$

3. Déduire des questions précédentes le développement eulérien de la fonction sin :

$$\forall x \in \mathbb{R}, \frac{\sin(\pi x)}{\pi} = \lim_{n \to +\infty} x \prod_{k=1}^{n} \left(1 - \frac{x^2}{k^2}\right)$$

- **4.** Déterminer, pour $x \in]0,1[$, une expression explicite de V(x) puis de U(x).
- **5.** En utilisant **I.2.b**, en déduire la valeur de $\zeta(2) = \sum_{n=1}^{+\infty} \frac{1}{n^2}$.

_____ Fin du problème 1 _____

PROBLÈME II

(Extrait de CCP PC 2010 maths 1)

Dans tout ce problème, n est un entier naturel supérieur ou égal à 2 et E est un espace vectoriel de dimension fine n sur le corps $\mathbb R$ des nombres réels.

 $\mathcal{L}(E)$ désigne l'algèbre des endomorphismes de E et $\mathcal{GL}(E)$ l'ensemble des endomorphismes de E qui sont bijectifs.

On note 0 l'endomorphisme nul et id l'application identité de E.

Pour tout endomorphisme f, ker(f) et Im(f) désigneront respectivement le noyau et l'image de f.

L'ensemble des valeurs propres de f sera noté Sp(f) et on notera :

$$\mathcal{R}(f) = \{ h \in \mathcal{L}(E) | h^2 = f \}.$$

 $\mathbb{R}[X]$ désigne l'espace des polynômes à coefficients réels.

Étant donné $f \in \mathcal{L}(E)$ et $P \in \mathbb{R}[X]$ donné par $P(X) = \sum_{k=0}^{c} a_k X^k$, on définit $P(f) \in \mathcal{L}(E)$ par :

$$P(f) = \sum_{k=0}^{\ell} a_k f^k$$

où
$$f^0 = id$$
 et pour $k \in \mathbb{N}^*$, $f^k = \underbrace{f \circ \cdots \circ f}_{k \text{ fois}}$

où $f^0 = id$ et pour $k \in \mathbb{N}^*$, $f^k = \underbrace{f \circ \cdots \circ f}_{k \text{ fois}}$. Si f_1, \dots, f_q désignent q endomorphismes de E $(q \in \mathbb{N}^*)$ alors $\prod_{1 \leqslant i \leqslant q} f_i$ désignera l'endomorphisme $f_1 \circ \cdots \circ f_q$. On note $\mathbb{R}[f]$ l'ensemble des polynômes en $f : \mathbb{R}[f] = \{g \in \mathcal{L}(E) | \exists P \in \mathbb{R}[X], g = P(f)\}$

Pour tout entier p non nul, $\mathcal{M}_p(\mathbb{R})$ désigne l'espace des matrices carrées à p lignes et p colonnes à coefficients dans \mathbb{R} . I_p est la matrice identité de $\mathcal{M}_p(\mathbb{R})$.

L'objectif du problème est d'étudier des conditions nécessaires ou suffisantes à l'existence de « racines carrées » d'un endomorphisme f et de décrire dans certains cas l'ensemble $\mathcal{R}(f)$.

Partie I

A) On désigne par f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est donnée par :

$$A = \begin{pmatrix} 8 & 4 & -7 \\ -8 & -4 & 8 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1. Montrer que f est diagonalisable.
- 2. Déterminer une base (v_1, v_2, v_3) de \mathbb{R}^3 formée de vecteurs propres de f et donner la matrice D de f dans cette nouvelle base. On choisira des vecteurs propres dont la première coordonnée vaut 1.
- 3. Soit P la matrice de passage de la base canonique à la base (v_1, v_2, v_3) . Soit un entier $m \ge 1$. Sans calculer l'inverse de P, exprimer A^m en fonction de D, P et P^{-1} (aucune justification n'est attendue).
- **4.** Déterminer toutes les matrices de $\mathcal{M}_3(\mathbb{R})$ qui commutent avec la matrice D trouvée à la question **2**.
- **5.** Montrer que si $H \in \mathcal{M}_3(\mathbb{R})$ vérifie $H^2 = D$, alors H et D commutent.
- 6. Déduire de ce qui précède toutes les matrices H de $\mathcal{M}_3(\mathbb{R})$ vérifiant $H^2=D$, puis déterminer tous les endomorphismes h de \mathbb{R}^3 vérifiant $h^2 = f$ en donnant leur matrice dans la base canonique, en fonction de P et P^{-1} .
- **7.** Justifier que $\mathcal{R}(f) \subset \mathbb{R}[f]$.

B) Soient f et j les endomorphismes de \mathbb{R}^3 dont les matrices respectives A et J dans la base canonique sont données par:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \text{ et } J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

- **1.** Calculer J^m pour tout entier $m \ge 1$.
- **2.** En déduire que pour tout $m \in \mathbb{N}^*$, $f^m = id + \frac{1}{3}(4^m 1)j$. Cette relation est-elle encore valable pour m = 0?
- 3. Montrer que f admet deux valeurs propres distinctes λ et μ telles que $\lambda < \mu$.
- **4.** Montrer qu'il existe un unique couple (p,q) d'endomorphismes de \mathbb{R}^3 tel que pour tout entier $m \geqslant 0$, on ait $f^m = \lambda^m p + \mu^m q$ et montrer que ces endomorphismes p et q sont linéairement indépendants.

- **5.** Après avoir calculé p^2 , q^2 , $p \circ q$ et $q \circ p$, trouver tous les endomorphismes h, combinaisons linéaires de p et q qui vérifient $h^2 = f$.
- 6. Montrer que f est diagonalisable et trouver une base de vecteurs propres de f. Ecrire la matrice D de f, puis la matrice de p et de q dans cette nouvelle base.
- 7. Déterminer une matrice K de $\mathcal{M}_2(\mathbb{R})$ non diagonale telle que $K^2 = I_2$, puis une matrice Y de $\mathcal{M}_3(\mathbb{R})$ non diagonale telle que $Y^2 = D$.
- 8. En déduire qu'il existe un endomorphisme h de \mathbb{R}^3 vérifiant $h^2 = f$ qui n'est pas combinaison linéaire de p et q.
- 9. Montrer que tous les endomorphismes h de \mathbb{R}^3 vérifiant $h^2 = f$ sont diagonalisables.
- **10.** A-t-on $\mathcal{R}(f) \subset \mathbb{R}[f]$?

Partie II

Soient p_1, \ldots, p_m, m endomorphismes non nuls de E et $\lambda_1, \ldots, \lambda_m, m$ nombres réels distincts. Soit f un endomorphisme de E vérifiant pour tout entier $k \in \mathbb{N}$:

$$f^k = \sum_{i=1}^m \lambda_i^k p_i.$$

1. Montrer que pour tout $P \in \mathbb{R}[X]$, on a :

$$P(f) = \sum_{i=1}^{m} P(\lambda_i) p_i.$$

- 2. En déduire que $\prod_{i=1}^{m} (f \lambda_i id) = 0$, puis que f est diagonalisable.
- **3.** Pour tout entier ℓ tel que $1 \leq \ell \leq m$, on considère le polynôme :

$$L_{\ell}(X) = \prod_{\substack{1 \le i \le m \\ i \ne \ell}} \frac{(X - \lambda_i)}{(\lambda_{\ell} - \lambda_i)}.$$

Montrer que pour tout entier ℓ , tel que $1 \leq \ell \leq m$, on a $p_{\ell} = L_{\ell}(f)$. En déduire que $\operatorname{Im}(p_{\ell}) \subset \ker(f - \lambda_{\ell}id)$, puis que le spectre de f est :

$$\operatorname{Sp}(f) = \{\lambda_1, \dots, \lambda_m\}.$$

4. Vérifier que pour tout couple d'entiers (i, j) tels que $1 \le i, j \le m$, on a :

$$p_i \circ p_j = \begin{cases} 0 & \text{si } i \neq j \\ p_i & \text{si } i = j. \end{cases}$$

- **5.** Soit F le sous-espace vectoriel de $\mathcal{L}(E)$ engendré par $\{p_1,\ldots,p_m\}$. Déterminer la dimension de F.
- **6.** Déterminer $\mathcal{R}(f) \cap F$ dans le cas où $\lambda_1, \ldots, \lambda_m$ sont des réels positifs ou nuls.
- 7. Dans cette question, on suppose de plus que m = n.
 - a) Préciser alors la dimension des sous-espaces propres de f.
 - b) Montrer que si $h \in \mathcal{R}(f)$, tout vecteur propre de f est également vecteur propre de h.
 - c) En déduire que $\mathcal{R}(f) \subset F$ et donner une condition nécessaire et suffisante sur les λ_i pour que $\mathcal{R}(f)$ soit non vide.
- **8.** Montrer que si m < n et si tous les λ_i sont positifs ou nuls, alors $\mathcal{R}(f) \not\subset F$.
- **9.** Montrer que si m = n, alors $\mathcal{R}(f) \subset \mathbb{R}[f]$.

