DM10

(Extrait de CCP PC 2013 maths 1)

Définition: Soient $(A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$ et $e \in \mathcal{M}_{n,1}(\mathbb{K})$; on dit que e est un vecteur propre commun à A et B si :

- i) $e \neq 0$;
- ii) il existe $\lambda \in \mathbb{K}$ tel que $Ae = \lambda e$;
- iii) il existe $\mu \in \mathbb{K}$ tel que $Be = \mu e$;

On définit $[A, B] \in \mathcal{M}_n(\mathbb{K})$ par la formule : [A, B] = AB - BA. Enfin, on note $\mathrm{Im}_{\lambda}(M) = \mathrm{Im}(M - \lambda I_n)$

Partie I : ÉTUDE DANS UN CAS PARTICULIER

On considère les matrices suivantes :

$$A = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 3 & -3 & -1 \\ 0 & 2 & 0 \\ 1 & -3 & 1 \end{pmatrix}, \ C = \begin{pmatrix} -5 & 3 & -1 \\ -2 & 6 & 2 \\ -5 & 3 & -1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & -6 \end{pmatrix}.$$
On note $\mathcal{F} = (u_1, u_2, u_3)$ où $u_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ u_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \text{ et } u_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$ On note aussi $u_4 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \text{ et } u_5 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}.$

- 1. a) Déterminer le spectre de A.
 - b) Vérifier que la famille \mathcal{F} est une base de $\mathcal{M}_{3,1}(\mathbb{R})$ constituée de vecteurs propres de A.
 - c) A est-elle diagonalisable?
 - d) Montrer qu'aucun des éléments de \mathcal{F} n'est un vecteur propre commun à A et B.
- **2.** a) Déterminer le spectre de B.
 - b) Montrer que $\operatorname{Im}_2(B) = \operatorname{Vect}(u_4)$ et que $\dim(E_2(B)) = 2$.
 - c) B est-elle diagonalisable?
- **3.** a) Montrer que $E_1(A) \cap E_2(B) = \text{Vect}(u_5)$.
 - b) Déterminer tous les vecteurs propres communs à A et B.
- **4.** a) Vérifier que [A, B] = C.
 - b) Montrer que C est semblable à la matrice D et déterminer le rang de C.

Partie II: CONDITION NÉCESSAIRE ET SUFFISANTE

Soit $n \in \mathbb{N}^*$ et soit $(A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$.

- 1. Dans cette question, on suppose que e est un vecteur propre commun à A et B.
 - a) Montrer que $e \in \ker([A, B])$.
 - b) Vérifier que rg([A, B]) < n.

Dans toute la suite de cette partie II, on suppose que $\mathbb{K} = \mathbb{C}$.

On dit que A et B vérifient la **propriété** \mathcal{H} s'il existe $\lambda \in \operatorname{Sp}(A)$ tel que : $E_{\lambda}(A) \subset \ker([A, B])$.

- **3.** Montrer que si $[A, B] = 0_n$, alors A et B vérifient la propriété \mathcal{H} .
- 4. Dans cette question, on suppose que A et B vérifient la propriété \mathcal{H} .
 - a) Pour tout $X \in E_{\lambda}(A)$, on pose $\psi(X) = BX$. Montrer que ψ définit un endomorphisme de $E_{\lambda}(A)$.
 - b) En déduire l'existence d'un vecteur propre commun à A et B.

Pour $k \in \mathbb{N}^*$, on note \mathcal{P}_k la propriété suivante :

pour tout \mathbb{C} -espace vectoriel E de dimension k et pour tout couple d'endomorphismes (φ, ψ) de E tels que $\operatorname{rg}([\varphi, \psi]) \leq 1$, il existe un vecteur propre commun à φ et ψ .

- **5.** Vérifier la propriété \mathcal{P}_1 .
- 6. Dans cette question, on suppose que \mathcal{P}_k est vérifiée pour tout entier $k \in [1, n-1]$ et que A et B ne vérifient pas la propriété \mathcal{H} .

On note C = [A, B], on suppose que rg(C) = 1 et on considère $\lambda \in \mathbb{C}$ une valeur propre de A.

a) Justifier l'existence de $u \in \mathcal{M}_{n,1}(\mathbb{C})$ tel que $Au = \lambda u$ et $Cu \neq 0$.

- b) Vérifier que Im(C) = Vect(v) où v = Cu.
- c) Montrer que $\operatorname{Im}(C) \subset \operatorname{Im}_{\lambda}(A)$.
- d) Établir les inégalités suivantes : $1 \leq \dim(\operatorname{Im}_{\lambda}(A)) \leq n 1$.

Pour tout $X \in \text{Im}_{\lambda}(A)$, on pose $\varphi(X) = AX$ et $\psi(X) = BX$.

- e) Montrer que $[A, A \lambda I_n] = 0_n$ et $[B, A \lambda I_n] = -C$. En déduire que φ et ψ définissent des endomorphismes de $\mathrm{Im}_{\lambda}(A)$.
- f) Montrer l'existence d'un vecteur propre commun à φ et ψ ; en déduire qu'il en est de même pour A et B.
- 7. Montrer que pour tout $n \in \mathbb{N}^*$, \mathcal{P}_n est vraie.

Partie III: FORME NORMALE POUR UN VECTEUR PROPRE

Soit
$$n \in \mathbb{N}$$
 avec $n \ge 2$. On note $\mathcal{N} = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C}) \middle| \exists i \in [\![1,n]\!] \text{ tel que } x_i = 0 \right\}$.

Soit $A \in \mathcal{M}_n(\mathbb{C})$ et X un vecteur propre de A.

On dit que X est sous forme normale si : $X \in \mathcal{N}$ ou il existe $\lambda' \in \operatorname{Sp}(A)$ et il existe $U \in \mathcal{N}$ tel que $X = (A - \lambda' I_n)U$.

1. Dans cette question, on suppose que A possède une valeur propre λ telle que $\dim(E_{\lambda}(A)) \geqslant 2$.

Montrer que A admet un vecteur propre sous forme normale associé à la valeur propre λ .

On note $\mathcal{A}_n(\mathbb{C})$ le \mathbb{C} -espace vectoriel des **matrices** $M \in \mathcal{M}_n(\mathbb{C})$ **antisymétriques**, ie telles que $M^T = -M$. Pour tout $M \in \mathcal{A}_n(\mathbb{C})$, on pose : $\varphi(M) = AM + MA^T$ et $\psi(M) = AMA^T$.

- **2.** a) Montrer que $A_n(\mathbb{C}) \neq \{0_n\}$.
 - b) Montrer que les colonnes d'une matrice $M \in \mathcal{A}_n(\mathbb{C})$ sont des éléments de \mathcal{N} .
 - c) Montrer que φ et ψ définissent des endomorphismes de $\mathcal{A}_n(\mathbb{C})$.
 - d) Vérifier que $\varphi \circ \psi = \psi \circ \varphi$.
- 3. Dans cette question, on suppose que A possède au moins deux valeurs propres distinctes, notées λ_1 et λ_2 .

On considère X_1 un vecteur propre de A associé à la valeur propre λ_1 et X_2 un vecteur propre de A associé à la valeur propre λ_2 .

On note $B = X_1 X_2^T - X_2 X_1^T$.

- a) Montrer que B vérifie chacune des propriétés suivantes :
 - i) $B \in \mathcal{A}_n(\mathbb{C})$;
 - **ii)** $B \neq 0_n$;
 - iii) $AB + BA^T = (\lambda_1 + \lambda_2)B$;
 - iv) $ABA^T = (\lambda_1 \lambda_2)B$.
- b) En déduire que $(A \lambda_1 I_n)(A \lambda_2 I_n)B = 0_n$.
- c) Dans cette question, on suppose que $(A \lambda_2 I_n)B = 0_n$. Montrer qu'au moins l'une des colonnes de B est un vecteur propre de A sous forme normale.
- d) Dans cette question, on suppose que $(A \lambda_2 I_n)B \neq 0_n$. Montrer que A possède un vecteur propre sous forme normale.
- 4. Dans cette question, on suppose que A ne possède qu'une seule valeur propre λ .
 - a) Montrer l'existence d'une matrice $B \in \mathcal{A}_n(\mathbb{C})$ non nulle vérifiant chacune des propriétés suivantes :
 - i) il existe $\alpha \in \mathbb{C}$ tel que : $AB + BA^T = \alpha B$;
 - ii) il existe $\beta \in \mathbb{C}$ tel que : $ABA^T = \beta B$.
 - b) Vérifier que $(A^2 \alpha A + \beta I_n)B = 0_n$.
 - c) Montrer qu'il existe $(\gamma, \delta) \in \mathbb{C}^2$ tel que $(A \gamma I_n)(A \delta I_n)B = 0_n$.
 - d) Dans cette question, on suppose que $(A \delta I_n)B = 0_n$. Montrer que A possède un vecteur propre sous forme normale.
 - e) Dans cette question, on suppose que $(A \delta I_n)B \neq 0_n$ et $\delta = \lambda$. Montrer que A possède un vecteur propre sous forme normale.
 - f) Dans cette question, on suppose que $(A \delta I_n)B \neq 0_n$ et $\delta \neq \lambda$. Montrer que $A \delta I_n$ est une matrice inversible et en déduire que $(A \gamma I_n)B = 0$.
 - g) Que conclure?