Correction DM15

(extrait de E3A MP 2018 maths 1)

Exercice 3

- 1. a) Soit X_1 et X_2 prennent la même valeur et $U_1 = 1$, soit X_1 et X_2 prennent deux valeurs différentes et $U_2 = 2$.
 - b) $(U_2=1)=(X_1=X_2)=\bigcup_{1\leqslant k\leqslant \ell}(X_1=k,X_2=k)$ puis par incompatibilité 2 à 2 des événements, on a

$$P(U_2 = 1) = \sum_{k=1}^{\ell} P(X_1 = k, X_2 = k) \stackrel{\text{indep}}{=} \sum_{k=1}^{\ell} P(X_1 = k) P(X_2 = k) = \sum_{k=1}^{\ell} \frac{1}{\ell^2} \text{ et } \boxed{P(U_2 = 1) = \frac{1}{\ell}} \text{ puis } P(U_2 = 2) = 1 - P(U_2 = 1) \text{ et } \boxed{P(U_2 = 2) = 1 - \frac{1}{\ell}}$$

On peut aussi le trouver directement : $(X_1 = k)_{1 \le k \le \ell}$ est un SCE donc

$$P(U_2=2) = P(X_1 \neq X_2) = \sum_{k=1}^{\ell} P(X_1 \neq X_2 | X_1 = k) \\ P(X_1 = k) = \sum_{k=1}^{\ell} P(X_2 \neq k) \\ P(X_1 = k) = \sum_{k=1}^{\ell} \frac{\ell - 1}{\ell} \times \frac{1}{\ell}$$

donc
$$P(U_2 = 2) = \frac{\ell - 1}{\ell}$$
.

- c) $E(U_2) = 1P(U_2 = 1) + 2P(U_2 = 2)$ donc $E(U_2) = 2 \frac{1}{\ell}$
- 2. a) On fait 10 tirages dans [[1,25]] et on rajoute les résultats successifs dans une liste L, après avoir vérifié s'ils sont distincts des précédents, le nombre de tirages différents est alors la longueur de L:

b) On approxime l'espérance par la moyenne d'un grand nombre de tirages, grâce à la loi faible des grands nombres (à citer ici!) :

$$\begin{array}{c} \textbf{def} \ \, \text{espU} \ \, : \\ N = 1000 \ \# \ \, \textit{nombre} \ \, \textit{de} \ \, \textit{simulations} \\ S = 0 \\ \textbf{for} \ \, \underline{\quad } \ \, \textbf{in} \ \, \textbf{range}(N) \ \, : \\ S \ \, + = \ \, \text{simulU} \\ \textbf{return} \ \, S/N \end{array}$$

- **3.** Les X_k prennent au plus n valeurs différentes dans $[\![1,\ell]\!]$ donc $U_n(\Omega) = [\![1,\min(n,\ell)]\!]$
- **4.** Loi uniforme donc $P(X_i \in S) = \frac{|S|}{\ell}$
- 5. Par indépendance des variables $X_1, ..., X_{n-1}$, on a $P(X_1 \neq a, ..., X_{n-1} \neq a) = \prod_{i=1}^{n-1} P(X_i \neq a) = \prod_{i=1}^{n-1} \frac{\ell 1}{\ell}$ donc $P(X_1 \neq a, ..., X_{n-1} \neq a) = \left(1 \frac{1}{\ell}\right)^{n-1}$
- 6. $(X_n = a)_{1 \leqslant a \leqslant \ell}$ est un SCE donc, par probabilités totales,

$$P(X_1 \neq X_n, \dots, X_{n-1} \neq X_n) = \sum_{a=1}^{\ell} P(X_1 \neq X_n, \dots, X_{n-1} \neq X_n | X_n = a) P(X_n = a)$$
$$= \sum_{a=1}^{\ell} P(X_1 \neq a, \dots, X_{n-1} \neq a) P(X_n = a)$$

donc
$$P(X_1 \neq X_n, ..., X_{n-1} \neq X_n) = \left(1 - \frac{1}{\ell}\right)^{n-1}$$

7. Cette fois on utilise le SCE $(\{X_1,\ldots,X_{n-1}\}=S)_{S\in\mathcal{P}_\ell}$ (SCE fini avec $2^\ell-1$ éléments) et on obtient

$$P(X_1 \neq X_n, \dots, X_{n-1} \neq X_n) = \sum_{S \in \mathcal{P}_{\ell}} P(X_1 \neq X_n, \dots, X_{n-1} \neq X_n | \{X_1, \dots, X_{n-1}\} = S) P(\{X_1, \dots, X_{n-1}\} = S),$$

ce qui donne les résultat puisque si $(\{X_1,\ldots,X_{n-1}\}=S)$ est réalisé, on aura $(X_1\neq X_n,\ldots,X_{n-1}\neq X_n)$ si et seulement si $X_n \notin S$ qui est de probabilité $1 - P(X_n \in S) = 1 - \frac{|S|}{\ell}$

8. $E(U_{n-1}) = \sum_{k=0}^{\ell} kP(U_{n-1} = k)$ (les termes en trop dans le cas où $\ell > n-1$ sont nuls) puis on a l'égalité d'événements $(U_{n-1}=k)=\bigcup_{S\in\mathcal{P}_\ell,|S|=k}(\{X_1,\ldots,X_{n-1}\}=S)$ et par incompatibilité 2 à 2 des événements de cette réunion, on a $P(U_{n-1}=k)=\sum_{S\in\mathcal{P}_\ell,|S|=k}P(\{X_1,\ldots,X_{n-1}\}=S)$. On en déduit

$$P(U_{n-1} = k) = \sum_{S \in \mathcal{P}_{\ell}, |S| = k} P(\{X_1, \dots, X_{n-1}\} = S)$$
. On en déduit

$$E(U_{n-1}) = \sum_{k=1}^{\ell} k \sum_{S \in \mathcal{P}_{\ell}, |S| = k} P(\{X_1, \dots, X_{n-1}\} = S) = \sum_{k=1}^{\ell} k \sum_{S \in \mathcal{P}_{\ell}} P(\{X_1, \dots, X_{n-1}\} = S) \delta_{k, |S|}$$

et en intervertissant les 2 sommes (finies)

$$= \sum_{S \in \mathcal{P}_{\ell}} \sum_{k=1}^{\ell} k P(\{X_1, \dots, X_{n-1}\} = S) \delta_{k,|S|} = \sum_{S \in \mathcal{P}_{\ell}} |S| P(\{X_1, \dots, X_{n-1}\} = S)$$

La question précédente donne alors

$$P(X_1 \neq X_n, \dots, X_{n-1} \neq X_n) = \sum_{S \in \mathcal{P}_{\ell}} P(\{X_1, \dots, X_{n-1}\} = S) - \frac{1}{\ell} \sum_{S \in \mathcal{P}_{\ell}} |S| P(\{X_1, \dots, X_{n-1}\} = S)$$

$$= 1 - \frac{1}{\ell} \sum_{S \in \mathcal{P}_{\ell}} |S| P(\{X_1, \dots, X_{n-1}\} = S)$$

ce qui donne bien $E(U_{n-1}) = \ell[1 - P(X_1 \neq X_n, \dots, X_{n-1} \neq X_n)]$

- **9.** Avec **6**, on en déduit $\left| E(U_n) = \ell \left[1 \left(1 \frac{1}{\ell} \right)^n \right] \right|$
- **10.** Pour ℓ fixé, on a $\lim_{n \to +\infty} \left(1 \frac{1}{\ell}\right)^n = 0$ donc $\lim_{n \to +\infty} E(U_n) = \ell$

Le nombre de tirage étant très grand devant le nombre de valeurs possibles, la probabilité de tirer tous les entiers de $[1, \ell]$ devient très grande.

11. Pour n fixé, $\left(1-\frac{1}{\ell}\right)^n = 1-\frac{n}{\ell} + o\left(\frac{1}{\ell}\right)$ donc $\lim_{\ell \to +\infty} E(U_n) = n$

Cette fois le nombre de tirage est petit devant le nombre de valeurs possibles donc la probabilité d'obtenir n tirages distincts est très grande.

On note X_k le jour de naissance de l'individu k et $\ell = 365$. On a donc $\left| E(D_n) = 365 \left| 1 - \left(\frac{364}{365} \right)^n \right|$

b)
$$\lim_{n \to +\infty} E(D_n) = 365$$