Études de convergence

Exercice 1 | Solution |

Déterminer la nature des séries $\sum u_n$, a > 0.

$$u_n = \left(n \sin \frac{1}{n}\right)^{n^2} - e^{-\frac{1}{6}} \quad ; \quad u_n = \left(\cos \frac{1}{\sqrt{n}}\right)^n - \frac{1}{\sqrt{e}} \quad ; \quad u_n = \left(1 - \frac{1}{\ln n}\right)^{\sqrt{n}}$$

$$u_n = \cos\left(n^2\pi \ln\left(\frac{n}{n-1}\right)\right)$$
 ; $u_n = \frac{(-1)^n}{\sqrt{n^a + (-1)^n}}$; $u_n = \int_{n\pi}^{(n+1)\pi} e^{-x^2} \sin x \, dx$

Exercice 2 (Navale PSI 2019) [Solution] Nature de $\sum u_n = \frac{(-1)^n}{n^{\alpha} + (-1)^n n^{\beta}}$ en fonction de $\alpha \neq \beta$?

Exercice 3 (CCP PSI 2011) [Solution]

Nature de $\sum (1 - \operatorname{th} n)$?

Exercice 4 (CCINP PSI 2018) [Solution]

Donner la nature des séries de termes généraux $\frac{(\ln n)^{2018}}{n^{\alpha}}$ et $\frac{1}{n \ln n}$.

Exercice 5 (CCP PSI 2016) [Solution]

Montrer que la série de terme général $u_n = \ln(2n + (-1)^n) - \ln(2n)$ converge mais ne converge pas absolument.

Exercice 6 (Mines-Ponts PSI 2013) [Solution]

Etudier la convergence de la suite $u_n = \int_1^{+\infty} \exp(-x^n) dx$ puis la convergence de la série de terme général u_n . indication: chercher un équivalent en posant $t = x^n$.

Exercice 7 (CCP PSI 2013) [Solution]

On pose
$$I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(\operatorname{ch} x)^n}$$
. Convergence de (I_n) puis de $\sum (-1)^n I_n$ et $\sum I_n$?

Exercice 8 (Centrale PSI 2008) [Solution]

Etudier la nature des séries de termes généraux
$$u_n = \left(\frac{n+1}{n-2}\right)^n - a\left(1+\frac{b}{n}\right)$$
 et $v_n = \frac{(-1)^n}{n+(-1)^n\frac{\ln n}{n}}$

Exercice 9 (ENSAM PSI 2012) [Solution]

- 1. Montrer que la série de terme général $u_n = \left(\frac{n}{n+1}\right)^{n^2}$ converge.
- **2.** Majorer $R_n = \sum_{k=n+1}^{+\infty} u_k$ et donner une valeur approchée à 10^{-3} près de $\sum_{n=1}^{+\infty} u_n$.

indication: comparer $\ln(1+x)$ et $x-\frac{x^2}{2}$ pour $x \ge 0$.

Exercice 10 (Mines-Ponts PSI 2013) [Solution

Nature de la série de terme général $u_n = \arccos\left(\frac{\sqrt{3}}{2} - \frac{(-1)^n}{n^{\alpha}}\right) - \frac{\pi}{6}$; $(\alpha > 0)$

Exercice 11 (Mines-Télécom PSI 2021) [Solution]

- 1. Montrer que $\arccos(1-h) \underset{h\to 0^+}{\sim} \sqrt{2h}$; on pourra poser $\theta = \arccos(1-h)$
- 2. Déterminer la nature de $\sum \arccos\left(\frac{1+n^3}{2 + n^3}\right)$

Exercice 12 (CCP PSI 2008) [Solution]

Nature de la série de terme général $u_n = \frac{1}{1 + \sqrt{2} + \sqrt[3]{3} + \cdots + \sqrt[n]{n}}$ indication : montrer que $x \mapsto \ln(x)/x$ est majorée sur $[1, +\infty[$.

Exercice 13 |Solution|

Étudier, en fonction de $\alpha \in \mathbb{R}$, la nature de la série $\sum_{n=1}^{\infty} \left(\frac{1}{n!}\right)^{\frac{n}{n}}$

indication: réécrire la formule de Stirling avec un signe = pour pouvoir la composer par ln.

Exercice 14 | Solution |

Étudier la convergence de la série $\sum \frac{(-1)^n}{(n!)^{\frac{1}{n}}}$.

indication: on pourra étudier la monotonie de $v_n = \frac{1}{n} \ln(n!)$.

Exercice 15 | Solution |

On pose $u_n = \sqrt{n} + a\sqrt{n+1} + b\sqrt{n+2}$, où $(a,b) \in \mathbb{R}^2$. Déterminer (a,b) pour que $\sum u_n$ converge et calculer la somme.

Exercice 16 (Centrale PC 2008) [Solution]

Soient a, b et c dans \mathbb{R}^{+*} et $u_n = 2\ln(n+a) - \ln(n+b) - \ln(n+c)$. Etudier la convergence de $\sum u_n$ puis de $\sum (-1)^n u_n$.

Exercice 17 (CCP PSI 2016) [Solution]

Soient
$$\alpha > 1$$
, $S_n = \sum_{k=1}^n \frac{1}{k^{\alpha}}$ et $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}$.

- 1. Montrer que $R_n \sim \frac{1}{(\alpha 1)n^{\alpha 1}}$.
- 2. Étudier la convergence de $\sum \frac{R_n}{S_n}$ en fonction de α .

Exercice 18 (Mines-Télécom PSI 2022) [Solution]

Soient $\alpha > 0$, $(u_n)_{n \in \mathbb{N}}$ une suite de réels strictement positifs, $S_n = \sum_{k=1}^n u_k$ et $w_n = \frac{u_n}{S_n^{\alpha}}$.

- 1. On suppose que $\sum u_n$ converge. Quelle est la nature de $\sum w_n$?
- **2.** On suppose $u_n = n$. Nature de $\sum w_n$?
- **3.** On suppose $u_n = \frac{1}{n}$. Nature de $\sum w_n$?

Exercice 19 (Mines-Télécom PSI 2023) [Solution]

Soient $(\rho_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs telle que $\sum \rho_n$ diverge et $S_n = \sum \rho_k$.

1. Montrer que $\sum \frac{\rho_n}{S_n}$ diverge.

indication: Dans le cas où lim $\frac{\rho_n}{S_n} = 0$, prouver $\frac{\rho_n}{S_n} \sim \ln\left(\frac{S_n}{S_{n-1}}\right)$

2. Montrer que $\sum \frac{\rho_n}{S_-^2}$ converge.

indication: Comparer $\frac{\rho_n}{S_n^2}$ et $\frac{1}{S_{n-1}} - \frac{1}{S_n}$

Exercice 20 (Mines-Télécom PSI 2021) [Solution]

Soient $\alpha > 0$ et $S_n = \sum_{k=1}^n k^{\alpha}$. Pour quelles valeurs de α , la série $\sum_{k=1}^n \frac{1}{S_n}$ est-elle convergente?

Exercice 21 |Solution|

Nature en fonction de $(x, \alpha) \in \mathbb{R}^* \times \mathbb{R}$ de $\sum \left(\sqrt{1 + \frac{x^n}{n^{\alpha}}} - 1 \right)$?

Exercice 22 (Mines-Ponts PSI 2017) [Solution]

Etudier la convergence de $\sum \frac{1}{n^a} \sin\left(\frac{n\pi}{5}\right)$ pour a > 0. indication : faire des paquets selon le reste de la division euclidienne de n par 5.

Exercice 23 (Mines-Télécom PSI 2017) [Solution]

Pour $n \in \mathbb{N}$, on pose $u_n = \int_0^1 \ln(1+t^n) dt$.

1. Calculer u_0 et u_1 .

2. Montrer que
$$\frac{x}{1+x} \leqslant \ln(1+x) \leqslant x$$
 si $x > -1$.

3. Etudier la nature de $\sum u_n$ et $\sum (-1)^n u_n$.

Exercice 24 [Solution]

On pose
$$a_n = \sum_{k=1}^{n} (-1)^{k+1} \sqrt{k}$$
.

1. Montrer que la suite $\left(a_n + (-1)^n \frac{\sqrt{n}}{2}\right)_{n \ge 1}$ a une limite l > 0 finie.

2. Quelle est la nature de $\sum \frac{1}{a_n}$?

Exercice 25 (CCP PSI 2019) [Solution]

1. Montrer que $x^n + x\sqrt{n} - 1 = 0$ admet une unique solution dans [0,1]; on la note x_n .

2. Montrer que (x_n) tend vers 0.

3. Étudier la nature de la série de terme général x_n puis $(-1)^n x_n$.

Exercice 26 (Mines-Ponts PSI 2017) [Solution]

Soit
$$f(x) = \frac{(\ln x)^{\alpha}}{x} e^{i \ln x}, \ \alpha \in \mathbb{R}.$$

Soit $f(x) = \frac{(\ln x)^{\alpha}}{x} e^{i \ln x}$, $\alpha \in \mathbb{R}$. **1.** Étudier la convergence de $\int_{1}^{+\infty} f(x) dx$. indication : $u = \ln(x)$ puis IPP.

2. Puis celle de $\sum_{n\geq 2} f(n)$. indication : Taylor

Exercice 27 (Mines-Ponts PSI 2019) [Solution]

Soit $I_n = \frac{1}{n^a} \int_0^n \frac{\arctan t}{t^b} dt$. Étudier la nature de $\sum u_n$ dans les cas

1.
$$b > 0, b \neq 1$$

3.
$$b = 1$$

Exercice 28 | Solution |

Soit
$$u_n = \frac{(-1)^{n+1}}{n} \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$$
. Étudier la convergence de $\sum u_n$.

indication: introduire les restes de la série $\sum \frac{(-1)^{n+1}}{n}$.

Exercice 29 (CCINP PSI 2023) [Solution]
Soit
$$u_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^{k+1}}{\sqrt{k}}$$
, pour $n \geqslant 1$

1. Montrer que u_n existe et tend vers 0

2. On pose
$$v_n = \frac{(-1)^n}{n} u_n$$
. Montrer que $\sum v_n$ converge

3. On pose
$$w_n = \frac{(-1)^n}{n} \sum_{k=1}^n \frac{(-1)^{k+1}}{\sqrt{k}}$$
. Quelle est la nature de $\sum w_n$?

4. On pose
$$x_n = \frac{1}{n} \sum_{k=1}^n \frac{(-1)^{k+1}}{\sqrt{k}}$$
. Quelle est la nature de $\sum x_n$?

Exercice 30 (CCINP PSI 2021) [Solution]

Déterminer la nature des séries suivantes :

1.
$$\sum_{n\geqslant 1} \frac{(-1)^n}{n} \int_{n^2}^{+\infty} e^{-x^2} dx$$

2.
$$\sum_{n>0} (-1)^n \int_0^n e^{-t^2 n^2} dt$$
.

 $indication: poser\ x = nt\ puis\ faire\ intervenir\ la\ première\ suite.$

Exercice 31 (Mines-Ponts PSI 2018) [Solution]

Soit f de \mathbb{R}^{+*} dans lui même.

- 1. Donner une condition nécessaire pour que $\sum \frac{(-1)^n}{f(n)}$ converge. Est-elle suffisante?
- 2. On suppose jusqu'à la fin que cette condition nécessaire est réalisée. On suppose f croissante à partir de $n \in \mathbb{N}$. $u_n = \sum_{k \in \mathbb{N}} \frac{(-1)^k}{f(k)}$ existe-t-elle? Quelle est sa limite quand n tend vers $+\infty$? Son signe?
- **3.** On suppose cette fois $\frac{1}{f(k+2)} + \frac{1}{f(k)} \ge \frac{2}{f(k+1)}$. Montrer que $\sum \frac{(-1)^k}{f(k)}$ converge

Exercice 32 (CCINP PSI 2019) [Solution]

Pour $p \in \mathbb{N}$, on pose $S_p = \sum_{n \ge 0} \frac{n^p}{2^n}$

- 1. Justifier l'existence de S_p
- **2.** En développant $(n+1)^p$, exprimer S_p en fonction de S_0, \ldots, S_{p-1}
- **3.** En déduire que $S_p \in \mathbb{N}$.

Exercice 33 (CCINP PSI 2022) [Solution]

- 1. Justifier l'existence de $R_n = \sum_{k>n+1} \frac{1}{k!}$.
- **2.** On admet $\lim_{n\to+\infty}(n+1)!R_n=1$; déterminer la nature de $\sum\sin(2n!\pi e)$. $indication: \acute{E}crire\ e\ avec\ une\ s\acute{e}rie\ dont\ R_n\ est\ le\ reste\ et\ comparer\ \sin(2n!\pi e)\ et\ \sin(2\pi n!R_n)$
- 3. Montrer $\lim_{n\to+\infty}(n+1)!R_n=1$. indication: Réécrire $(n+1)!R_n$ en isolant les deux premiers termes de R_n

\mathbf{II} Calcul de sommes

Exercice 34 | Solution |

Convergence et somme des séries :
$$\sum_{n\geqslant 2} \frac{2n+3}{(n-1)n(n+2)}$$
 ; $\sum_{n\geqslant 0} 3^{n-1} \sin^3 \frac{\alpha}{3^n}$; $\sum_{n\geqslant 0} \frac{2n^3-3n^2+1}{(n+3)!}$

Exercice 35 | Solution |

Sachant que
$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
, calculer $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$ et $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^2}$.

Exercice 36 (CCP PSI 2015) [Solution] On admet
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} = \ln(2)$$
. Justifier la convergence et calculer la somme de $\sum_{n\geqslant 1} \left(\frac{1}{2k-1} - \frac{1}{2k}\right)$ puis de $\sum_{n\geqslant 1} \frac{1}{4n^3-n}$.

Exercice 37 (Mines-Ponts PSI 2021) [Solution]

On admet
$$\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{=} \ln(n) + \gamma + o(1)$$
 avec γ une constante. Soit $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 = 1$ et $u_{n+1} = \frac{2n+2}{2n+5}u_n$

- 1. Montrer qu'il existe une suite (w_n) convergente telle que $\ln(u_n) = w_n \frac{3}{2}\ln(n)$.
- **2.** En déduire que $\sum_{n=0}^{\infty} u_n$ converge.
- **3.** Montrer, pour $n \ge 1$, $2\sum_{k=0}^{n+1}ku_k + 3\sum_{k=0}^{n+1}u_k = 2\sum_{k=0}^{n}ku_k + 2\sum_{k=0}^{n}u_k$ et en déduire la valeur de $\sum_{n=0}^{+\infty}u_n$.

Exercice 38 (Mines-Ponts PSI 2016) [Solution]

- 1. Par une comparaison série/intégrale, trouver un équivalent de $u_n = \sum_{k=1}^{\infty} \frac{\ln k}{k}$.
- **2.** Étudier la monotonie et la convergence de (v_n) avec $v_n = u_n \frac{1}{2}(\ln n)^2$

3. On admet que
$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$$
; Montrer que $\sum_{k=1}^{+\infty} \frac{(-1)^k \ln k}{k} = \left(\gamma - \frac{\ln 2}{2}\right) \ln 2$.

- Exercice 39 (ENTPE-EIVP PSI 2009) [Solution]

 1. Convergence de la série $\sum_{n\geq 1} \frac{R(n)}{n(n+1)}$, où R_n est le reste de la division euclidienne de n par 5.
 - **2.** Exprimer $S_{5n} = \sum_{k=1}^{5n} \frac{R(k)}{k(k+1)}$ à l'aide de $H_n = \sum_{k=1}^{n} \frac{1}{k}$ et en déduire la somme de $\sum_{n\geqslant 1} \frac{R(n)}{n(n+1)}$. indication: on pourra utiliser ou démontrer qu'il existe $\gamma \in \mathbb{R}$ tel que $H_n = \ln n + \gamma + o(1)$.

Exercice 40 (ENSEA PSI 2008) [Solution]

Convergence et somme de $\sum_{n\geq 1} \frac{s(n)}{n(n+1)}$, où s(n) est le nombre de décimales de n. (Utiliser une décomposition bien choisie)

Exercice 41 (Mines-Ponts PSI 2009) [Solution]

Montrer que $\sum_{n=0}^{\infty} (-1)^{n+1} \ln \left(1 + \frac{1}{n}\right)$ converge et calculer la somme.

indication: introduire $u_n = \sum_{k=1}^{n} \ln(k)$, exprimer $\sum_{k=1}^{2n} (-1)^{k+1} \ln\left(1 + \frac{1}{k}\right)$ en fonction de u_{2n} et u_n puis utiliser la formule de Stirling.

IIISuites récurrentes

Exercice 42 (CCINP PSI 2022) [Solution] Soit $(u_n)_{n\in\mathbb{N}}$ définie par $0 < u_0 \leqslant \frac{\pi}{2}$ et $u_{n+1} = \sin(u_n)$.

- 1. Étudier la suite $(u_n)_{n\in\mathbb{N}}$ et déterminer sa limite.
- **2.** En calculant $u_{n+1} u_n$, montrer que $\sum u_n^3$ converge.
- **3.** Étudier la série de terme général u_n^2 . indication: utiliser $\sum (\ln(u_{n+1}) - \ln(u_n))$

Exercice 43 (CCP PSI 2016) [Solution]

Soit (u_n) définie par $u_0 \in [0, \pi]$ et $u_{n+1} = 1 - \cos(u_n)$.

- **1.** Montrer que (u_n) converge vers 0.
- **2.** Déterminer la nature de $\sum u_n$. indication : vérifier que $1 - \cos x \leqslant \frac{1}{2}x^2$

Exercice 44 (CCINP PSI 2018) [Solution]

Soit (u_n) définie par $u_0 > 0$ et $u_{n+1} = \frac{e^{-u_n}}{n+1}$

- **1.** Quelle est la limite de la suite (nu_n) ?
- **2.** Donner la nature des séries de termes généraux u_n et $(-1)^n u_n$.

Exercice 45 (Mines-Ponts PSI 2019) [Solution]

Étudier la suite (x_n) définie par $x_0 = 0$ et $x_{n+1} = \sqrt{\frac{x_n + 1}{2}}$ puis la série de terme général $u_n = 1 - x_n$.

Exercice 46 (Centrale PSI 2016) [Solution]

Soit (x_n) définie par $x_0 > 0$ et $x_{n+1} = x_n + \frac{1}{x_n}$

- 1. Donner la nature de $\sum \frac{1}{x_n}$.
- **2.** Quel lien y-a-t-il entre x_{n+1}^2 et $\sum_{k=1}^{\infty} \frac{1}{x_k^2}$?
- 3. Déterminer un équivalent de x_n $indication: justifier \; que \; \sum_{\iota=0}^{n} \frac{1}{x_k^2} = o(n).$

IV Comparaison de séries

Exercice 47 [Solution]

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels positifs et $(v_n)_{n\in\mathbb{N}}$ définie par : $v_0 > 0$ et $2v_{n+1} = v_n + \sqrt{u_n + v_n^2}$. Montrer que $(v_n)_{n\in\mathbb{N}}$ converge si et seulement si $\sum u_n$ converge.

Exercice 48 (CCINP PSI 2021) [Solution]

Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle positive. On définit $(u_n)_{n\in\mathbb{N}}$ par $u_0\in\mathbb{R}^+$ et $u_{n+1}=\frac{u_n+\sqrt{u_n^2+a_n^2}}{2}$ pour $n\geqslant 0$

- 1. Montrer que $u_{n+1} u_n \leqslant \frac{a_n}{2}$.
- **2.** En déduire que si $\sum a_n$ converge alors $(u_n)_{n\in\mathbb{N}}$ converge.
- **3.** La réciproque est-elle vraie? On pourra utiliser $u_n = \frac{n}{n+1}$

Exercice 49 (ICNA PSI 2009) [Solution]

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite décroissante tendant vers 0.

- 1. Comparer la nature des séries $\sum_{n\geqslant 1} u_n$ et $\sum_{n\geqslant 1} n(u_n-u_{n+1})$.

 indication: si (u_n) tend vers 0 alors $u_n = \sum_{k=-}^{+\infty} (u_k-u_{k+1})$
- 2. Montrer que si les séries convergent alors (nu_n) tend vers 0 et que les sommes des séries sont égales.

Exercice 50 (Centrale PSI 2013) [Solution]

Soient (a_n) une suite de réels positifs et σ une bijection de \mathbb{N} sur \mathbb{N} . Montrer que $\sum a_n$ converge si et seulement si $\sum a_{\sigma(n)}$ converge. Montrer qu'en cas de convergence, les sommes sont égales.

V Produits infinis

Exercice 51 (Produit infini) [Solution]

Soit $\sum_{n\geqslant 1}u_n$ une série à termes complexes absolument convergente telle que : $\forall n\in\mathbb{N}^*, |u_n|<1$. On pose $P_n=\prod_{k=1}^n(1+u_k)$.

- **1.** On suppose que $\forall n \in \mathbb{N}^*$, $u_n \in \mathbb{R}$. Montrer que $(P_n)_{n \geqslant 1}$ converge. indication: étudier $\ln(P_n)$.
- **2.** En utilisant la série $\sum P_{n+1} P_n$, montrer que le résultat est encore valable si $(u_n) \in \mathbb{C}^{\mathbb{N}}$.

Exercice 52 (Centrale PSI 2017) [Solution]

Pour
$$\alpha \in \mathbb{R}$$
, on pose $u_n = \prod_{k=1}^n \left(1 + \frac{k^{\alpha}}{n^2}\right)$.

- 1. Pour $\alpha = 2$, étudier la convergence et la limite de (u_n) . indication : $\ln(u_n)$ et reconnaître une somme de Riemann.
- **2.** Pour $\alpha \in [0,1]$, convergence et limite éventuelle de la suite (a_n) avec $a_n = \sum_{k=1}^n \frac{k^{\alpha}}{n^2}$
- **3.** Même question pour u_n . indication: vérifier $\ln(1+x) \leq x \text{ sur }]-1, +\infty[$.

Exercice 53 (Centrale PSI 2013) [Solution]

Soient (u_n) une suite réelle positive et $S_n = \sum_{k=0}^n u_k$. On suppose $S_{2n} \leqslant \left(1 + \frac{1}{n}\right) S_n$. Montrer que $\sum u_n$ converge. indication: majorer S_{2n} .

Exercice 54 (Mines-Ponts PC 2012) [Solution]

- 1. Que dire de la limite en $+\infty$ de $u_n = \prod_{k=2}^{n'} \left(1 \frac{1}{\sqrt{k}}\right)$?
- 2. Montrer que la série de terme général u_n est convergente.

Exercice 55 (Centrale PSI 2023) [Solution]

Soient $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ deux suites de réels strictement positifs. On pose $a_n=u_nv_n$ et on définit le déterminant Δ_n

Soient
$$(u_n)_{n \in \mathbb{N}^*}$$
 et $(v_n)_{n \in \mathbb{N}^*}$ deux suites
$$\operatorname{par} : \Delta_n = \begin{vmatrix} 1 & -v_1 \\ u_1 & 1 & -v_2 & (0) \\ 0 & u_2 & \ddots & \ddots \\ & (0) & \ddots & 1 & -v_n \\ & & u_n & 1 \end{vmatrix}$$

- 1. Trouver une relation entre Δ_n , Δ_{n-1} et Δ_{n-2}
- **2.** Montrer que $\Delta_n \leqslant \prod_{k=1}^n (1+a_k)$
- 3. Montrer que la suite (Δ_n) converge si et seulement si $\sum a_n$ converge

VI Exercices théoriques

Exercice 56 (Centrale PSI 2011) [Solution]

Soient (a_n) et (b_n) deux suites réelles positives.

- 1. Montrer que si $\lim b_n = +\infty$ alors $\sum \frac{1}{n^{b_n}}$ converge.
- **2.** Si $\lim a_n = \lim b_n = +\infty$, la série $\sum \frac{1}{a_n^{b_n}}$ converge-t-elle?

Exercice 57 (Règle de Raabe-Duhamel) [Solution]

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{R}^{+*} telle que :

$$\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right).$$
 En étudiant la série de la série
$$\sum \ln(v_{n+1}) - \ln(v_n)$$
 où $v_n = n^{\alpha}u_n$, déterminer un équivalent de u_n et en déduire, en fonction de α , la nature de la série
$$\sum u_n$$
.

Exercice 58 (Transformation d'Abel) [Solution]

- 1. Soient $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ deux suites réelles ; on pose $V_n=\sum_{k=1}^n v_k$, pour $n\geqslant 1$ et $V_0=0$. Montrer que, si $n\in\mathbb{N}$, $n\geqslant 2$, on a : $\sum_{k=1}^n u_k v_k=\sum_{k=1}^{n-1} (u_k-u_{k+1})V_k+u_nV_n$
- **2.** On suppose que (u_n) tend vers 0 en décroissant et que la suite (V_n) est bornée. Montrer que $\sum u_n v_n$ converge.
- 3. Déterminer, en fonction de $(x, \alpha) \in \mathbb{R}^2$, la nature de $\sum \frac{\cos n\theta}{n^{\alpha}}$

Exercice 59 (Sommation des relations de comparaison) [Solution]

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles positives équivalentes.

- 1. Montrer que si $\sum u_n$ diverge, alors $U_n = \sum_{k=0}^n u_k$ et $V_n = \sum_{k=0}^n$ sont équivalents.
- **2.** Montrer que si $\sum u_n$ converge alors $R_n = \sum_{k=n+1}^{+\infty} u_k$ et $R'_n = \sum_{k=n+1}^{+\infty} v_k$ sont équivalents.

Solutions

Exercice 1 [sujet] **1.** En partant d'un DL du sin en $O(1/n^5)$ avec $u_n = \exp\left[n^2 \ln\left(n \sin\frac{1}{n}\right)\right]$, on trouve $u_n = O\left(\frac{1}{n^2}\right)$ donc $\sum u_n$ est ACV.

- **2.** Par DL, on trouve $u_n \sim \frac{-e^{-1/2}}{12n}$, négatif donc $\sum u_n$ DV.
- **3.** Comme $u_n = \exp\left(-\frac{\sqrt{n}}{\ln n}(1+o(1))\right)$, on vérifie $u_n = o\left(\frac{1}{n^2}\right)$ donc $\sum u_n$ est ACV.
- **4.** Par DL, $u_n = \frac{(-1)\pi}{3n} + O\left(\frac{1}{n^2}\right)$ donc $\sum u_n$ CV.
- 5. On trouve $u_n \frac{(-1)^n}{n^{a/2}} \sim \frac{1}{2n^{3a/2}}$ positif; comme a/2 > 0, $\sum \frac{(-1)^n}{n^{a/2}}$ CV donc $\sum u_n$ et $\sum \left(u_n \sum \frac{(-1)^n}{n^{a/2}}\right)$ sont de même nature; par équivalent de signe fixe, de même nature que $\sum \frac{1}{n^{3a/2}}$. En conclusion, $\sum u_n$ CV si et seulement si a > 2/3.
- **6.** On a $|u_n| \leqslant \pi e^{-(n\pi)^2} = o\left(\frac{1}{n^2}\right) \operatorname{donc} \sum u_n \text{ est ACV}.$

Exercice 2 [sujet] Si $\beta > \alpha$ alors $u_n \sim \frac{1}{n^{\beta}}$, positif donc $\sum u_n$ CV si et seulement si $\beta > 1$. Par contre, si $\alpha > \beta$ alors $u_n - \frac{(-1)^n}{n^{\alpha}} \sim \frac{-1}{n^{2\alpha-\beta}}$; on en déduit la DVG si $\alpha \leqslant 0$. Si $\alpha > 0$, $\sum \frac{(-1)^n}{n^{\alpha}}$ converge donc $\sum u_n$ et $\sum \left(u_n - \frac{(-1)^n}{n^{\alpha}}\right)$ sont de même nature, puis par équivalent de signe fixe, $\sum u_n$ CV si et seulement si $2\alpha - \beta > 1$.

Exercice 3 [sujet] $1 - \operatorname{th} n = \frac{2e^{-n}}{e^n + e^{-n}} \sim 2e^{-2n}$ positif donc $\sum u_n$ CV.

Exercice 4 [sujet] Bertrand

Exercice 5 [sujet] $u_n = \frac{(-1)^n}{2n} + O\left(\frac{1}{n^2}\right)$ donc $|u_n| \sim \frac{1}{2n}$ positif et $\sum |u_n|$ DV; avec le DL, $\sum u_n$ CV.

Exercice 6 [sujet] **1.** $\lim u_n = 0$ par TCD avec $0 \le \exp(-x^n) \le e^{-x}$ (pour $n \ge 1$)

2. $nu_n \stackrel{t=x^n}{=} \int_1^{+\infty} \frac{e^{-t}}{t} t^{1/n} dt \xrightarrow[n \to +\infty]{} \int_1^{+\infty} \frac{e^{-t}}{t} dt = C > 0 \text{ par TCD avec } 0 \leqslant \frac{e^{-t}}{t} t^{1/n} \leqslant e^{-t} \text{ donc } u_n \sim \frac{C}{n} \text{ (positif)}$ et $\sum u_n$ DV

Exercice 7 [sujet] $\lim I_n = 0$ par TCD avec $0 \leqslant \frac{1}{\operatorname{ch}^n x} \leqslant \frac{1}{\operatorname{ch} x} \underset{x \to +\infty}{\sim} 2e^{-x}$

 $\sum (-1)^n I_n \text{ CV par CSSA car } \frac{1}{\text{ch}} \leqslant 1 \text{ mais comme ch}(x) \leqslant e^x, \text{ on a } I_n \geqslant \int_0^{+\infty} e^{-nx} \, \mathrm{d}x = \frac{1}{n} \text{ donc } \sum I_n \text{ DV}.$

Exercice 8 [sujet] 1. On a $u_n = (e^3 - a) + \left(\frac{3e^3}{2} - ab\right)\frac{1}{n} + O\left(\frac{1}{n^2}\right)$. Si $a \neq e^3$ DVG; si $a = e^3$ et $b \neq \frac{3}{2}$, $u_n \sim \left(\frac{3e^3}{2} - ab\right)\frac{1}{n}$ de signe fixe donc DV; si $a = e^3$ et $b = \frac{3}{2}$, $u_n = O\left(\frac{1}{n^2}\right)$ donc ACV.

2. $v_n = \frac{(-1)^n}{n} + O\left(\frac{\ln n}{n^3}\right) = \frac{(-1)^n}{n} + o\left(\frac{1}{n^2}\right) \operatorname{donc} \sum v_n \text{ CV.}$

Exercice 9 [sujet] **1.** $u_n = \exp(-n + 1/2 + o(1))$ donc $u_n \sim \sqrt{e}e^{-n}$ positif donc $\sum u_n$ CV.

2. Etudier $x \mapsto \ln(1+x) - x + \frac{x^2}{2}$ sur \mathbb{R}^+ , elle est positive; on en déduit $0 \leqslant u_n \leqslant \sqrt{e}e^{-n}$ donc $0 \leqslant R_n \leqslant \sqrt{e}\sum_{k=n+1}^{+\infty}e^{-k} = \frac{e^{-n-1/2}}{1-e^{-1}}$. Il <u>suffit</u> donc que $\frac{e^{-n-1/2}}{1-e^{-1}} \leqslant 10^{-3}$ (qui peut donner une valeur de n en prenant le logarithme) pour que la somme partielle de la série soit une approximation convenable de la somme totale.

Exercice 10 [sujet] On cherche un DL en 0 de $f(x) = \arccos\left(\frac{\sqrt{\pi}}{3} + x\right)$ (dérivable au voisinage de 0); on trouve $f'(x) = -2 - 8x\sqrt{3} + o(x)$ donc $f(x) = f(0) - 2x - 4x^2\sqrt{3} + o(x^2)$ puis $u_n = 2\frac{(-1)^n}{n^{\alpha}} - 4\sqrt{3}\frac{1}{n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right)$. Comme $\sum \frac{(-1)^n}{n^{\alpha}}$ CV, $\sum u_n$ et $\sum \left(u_n - \frac{(-1)^n}{n^{\alpha}}\right)$, puis par équivalent de signe fixe, $\sum \frac{1}{n^{2\alpha}}$ sont de même nature. On en déduit $\sum u_n$ CV si et seulement si $2\alpha > 1$.

Exercise 11 [sujet] 1. $\theta = \arccos(1-h) \Leftrightarrow h = 1 - \cos(\theta)$ et $h \to 0^+$ si et seulement si $\theta \to 0^+$; $1 - \cos\theta \underset{\theta \to 0^+}{\sim} \frac{\theta^2}{2}$ donc (composition des limites) $\lim_{h \to 0^+} \frac{h}{f(h)^2} = \frac{1}{2}$ et comme $f(h) \geqslant 0$, on a bien $f(h) \underset{h \to 0^+}{\sim} \sqrt{2h}$

2.
$$u_n = \arccos\left(1 - \frac{1}{2+n^3}\right) \underset{n \to +\infty}{\sim} \sqrt{\frac{2}{2+n^3}} \sim \frac{\sqrt{2}}{n^{3/2}}$$
 (positif) donc la série CV

Exercice 12 [sujet] Par une étude de fonction $\frac{\ln x}{x} \in \left[0, \frac{1}{e}\right]$ sur $[1, +\infty[$ donc $u_n = \left(\sum_{k=1}^n \exp\frac{\ln k}{k}\right)^{-1} \geqslant \frac{e^{1/e}}{n}$ donc $\sum u_n$ DV.

Exercice 13 [sujet] $n! = \left(\frac{n}{e}\right)^n \sqrt{2\pi n} (1+o(1)) \operatorname{donc} \ln(n!) = n \ln n - n + \frac{1}{2} \ln(n) + \frac{1}{2} \ln(2\pi) + o(1) \operatorname{et} u_n = \exp\left[-\frac{\alpha}{n} \ln(n!)\right] = \exp\left(-\alpha \ln(n) + \alpha + o(1)\right) \sim \frac{e^{\alpha}}{n^{\alpha}} \operatorname{positif donc} \sum u_n \operatorname{CV} \operatorname{si} \operatorname{et} \operatorname{seulement} \operatorname{si} \alpha > 1.$

Exercice 14 [sujet] On vérifie le CSSA : $|u_n|$ tend vers 0 avec la formule de Stirling (cf calcul dans l'ex précédent) et $|u_n| = \exp(-v_n)$, il suffit donc de prouver que (v_n) croît : $v_{n+1} - v_n = \frac{1}{n(n+1)} \sum_{k=1}^{n} (\ln(n+1) - \ln(k)) \geqslant 0$.

Exercise 15 [sujet] On a $u_n = (1+a+b)\sqrt{n} + \left(\frac{a}{2}+b\right)\frac{1}{\sqrt{n}} + O\left(\frac{1}{n\sqrt{n}}\right)$. Si $1+a+b \neq 0$ DVG; si 1+a+b=0 et $a+2b \neq 0$, $u_n \sim \left(\frac{a}{2}+b\right)\frac{1}{\sqrt{n}}$ de signe fixe donc $\sum u_n$ DV; si a=-2 et b=1 $u_n=O\left(\frac{1}{n^{3/2}}\right)$ donc $\sum u_n$ est ACV.

Si a = -2 et b = 1, (en changeant les indices) $\sum_{k=1}^{n} u_k = 1 + \sqrt{2} - 2\sqrt{2} - 2\sqrt{n+1} + \sqrt{n+1} + \sqrt{n+3}$ donc $\sum_{n=1}^{+\infty} u_n = 1 - \sqrt{2}$.

Exercice 16 [sujet] $u_n = \frac{2a-b-c}{n} + O\left(\frac{1}{n^2}\right)$ donc si $2a \neq b+c$, $u_n \sim \frac{2a-b-c}{n}$ de signe fixe et $\sum u_n$ DV; si 2a = b+c alors $u_n = O\left(\frac{1}{n^2}\right)$ donc $\sum u_n$ est ACV.

Comme $(-1)^n u_n = (2a - b - c) \frac{(-1)^n}{n} + O\left(\frac{1}{n^2}\right), \sum_{n=0}^{\infty} (-1)^n u_n$ CV pour tout (a, b, c).

Exercice 17 [sujet] 1. Par comparaison avec une intégrale (cf cours)

2. On a $\lim S_n = \sum_{n=1}^{+\infty} \frac{1}{k^{\alpha}} = l \geqslant 1$ (donc $\neq 0$); on a donc $u_n = \frac{R_n}{S_n} \sim \frac{1}{l(\alpha - 1)n^{\alpha - 1}}$ positif donc $\sum u_n$ CV si et seulement si $\alpha > 2$.

Exercice 18 [sujet] **1.** Si on pose $S = \sum_{k=0}^{+\infty} u_k > 0$ (car $u_n > 0$), on a $w_n \sim S^{-\alpha} u_n$ (SATP) donc $\sum w_n$ CV

- **2.** $S_n = \frac{n(n+1)}{2}$ donc $w_n \sim \frac{2^{\alpha}}{n^{2\alpha-1}}$ (SATP) donc $\sum w_n$ CV ssi $\alpha > 1$
- **3.** $S_n \sim \ln(n)$ donc $w_n \sim \frac{1}{n \ln(n)^{\alpha}}$ (SATP) donc $\sum w_n$ CV ssi $\alpha > 1$ (Bertrand; comp série/int)

Exercise 19 [sujet] 1. si $\lim \frac{\rho_n}{S_n} = 0$, $\ln \left(\frac{S_n}{S_{n-1}} \right) = -\ln \left(1 - \frac{\rho_n}{S_n} \right) \sim \frac{\rho_n}{S_n}$ (SATP) et $\ln \left(\frac{S_n}{S_{n-1}} \right) = \ln(S_n) - \ln(S_{n-1})$ donc $\sum \ln \left(\frac{S_n}{S_{n-1}} \right)$ DV car $\lim \ln(S_n) = +\infty$. Sinon $\sum \frac{\rho_n}{S_n}$ est GDV

2. $\frac{1}{S_{n-1}} - \frac{1}{S_n} = \frac{\rho_n}{S_n S_{n-1}} \geqslant \frac{\rho_n}{S_n^2}$ (SATP) et $\sum \left(\frac{1}{S_{n-1}} - \frac{1}{S_n}\right)$ CV car $\lim \frac{1}{S_n} = 0$

Exercice 20 [sujet] $t \mapsto t^{\alpha}$ est croissante donc $\int_0^n t^{\alpha} dt \leqslant S_n \leqslant \int_1^{n+1} t^{\alpha} dt$ puis $S_n \sim \frac{n^{\alpha+1}}{\alpha+1}$ donc par équivalent de SATP, $\sum \frac{1}{S_n} CV$ pour tout $\alpha > 0$

Exercice 21 [sujet] Si x > 1 DVG; si x < -1, la suite n'est pas définie. Si |x| < 1, $|u_n| \sim \frac{|x|^n}{n^{\alpha}} = o\left(\frac{1}{n^2}\right)$ donc $\sum u_n$ est ACV. Si x = 1 et $\alpha \le 0$, DVG; si x = 1 et $\alpha > 1$, $u_n \sim \frac{1}{2n^{\alpha}}$ positif donc $\sum u_n$ CV si et seulement si $\alpha > 1$. Enfin,

si x = -1 et $\alpha \le 0$, la suite n'est pas définie, alors que si $\alpha > 0$, $u_n = \frac{(-1)^n}{2n^{\alpha}} - \frac{1}{8n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right)$ donc $\sum u_n$ CV si et seulement si $\sum \left(u_n - \frac{1}{2n^{\alpha}}\right)$ CV (car $\sum \frac{(-1)^n}{n^{\alpha}}$ CV) et par équivalent de signe fixe, $\sum u_n$ CV si et seulement si $2\alpha > 1$.

Exercice 22 [sujet] On a, avec $\sin \frac{\pi}{5} = C \neq 0$ et $\sin \frac{2\pi}{5} = D \neq 0$, $u_{5k} = 0$, $u_{5k+1} = \frac{(-1)^k C}{(5k+1)^a}$, $u_{5k+2} = \frac{(-1)^k D}{(5k+2)^a}$, $u_{5k+3} = \frac{(-1)^k D}{(5k+3)^a}$ et $u_{5k+4} = \frac{(-1)^k C}{(5k+4)^a}$. On a alors, avec $S_n = \sum_{k=1}^n u_k$, $S_{5n} = \sum_{k=0}^{n-1} (u_{5k+1} + u_{5k+2} + u_{5k+3} + u_{5k+4})$ donc est la somme de 4 sommes partielles de séries CV donc CV. Comme $S_{5n+1} = S_{5n} + u_{5n+1}$ et $\lim u_{5n+1} = 0$, (S_{5n+1}) CV vers la même limite. De même avec $\lim u_{5n+2} = \lim u_{5n+3} = \lim u_{5n+4} = 0$, on trouve que (S_{5n+2}) , (S_{5n+3}) et (S_{5n+4}) CV aussi vers la même limite donc $\sum u_n$ CV.

Exercice 23 [sujet] **1.** $u_0 = \ln 2$ et $u_1 = 2 \ln 2 - 1$

- 2. Par étude de fonction $\ln(1+x) \leqslant x$ si x > -1 puis $\ln(1+x) = -\ln\frac{1}{1+x} = -\ln\left(1-\frac{x}{1+x}\right) \geqslant \frac{x}{1+x}$.
- 3. On en déduit $\int_0^1 \frac{t^n}{1+t^n} dt \leqslant u_n \leqslant \int_0^1 t^n dt = \frac{1}{n+1}$. De plus $\int_0^1 \frac{t^n}{1+t^n} dt \geqslant \frac{1}{2} \int_0^1 t^n dt = \frac{1}{2(n+1)}$. On a $u_n \geqslant \frac{1}{2(n+1)} \operatorname{donc} \sum u_n$ DV. Mais par encadrement (u_n) tend vers 0 et $u_{n+1} u_n = \int_0^1 [\ln(1+t^{n+1}) \ln(1+t^n)] dt \leqslant 0$ donc par CSSA, $\sum (-1)^n u_n$ CV.

Exercise 24 [sujet] 1. Si $u_n = \left(a_n + (-1)^n \frac{\sqrt{n}}{2}\right)$ alors $u_{n+1} - u_n = \frac{(-1)^n}{2}(\sqrt{n+1} - \sqrt{n}) = \frac{(-1)^n}{2(\sqrt{n+1} + \sqrt{n})}$ donc (CSSA) $\sum (u_{n+1} - u_n)$ CV, ie la suite (u_n) CV vers $l = \sum_{n \geqslant 1} (u_{n+1} - u_n) + u_1$; par CSSA, on a $\left|\sum_{n \geqslant 1} (u_{n+1} - u_n)\right| \le |u_2 - u_1| = \frac{1}{2(1 + \sqrt{2})} < u_1 = \frac{1}{2}$ donc l > 0.

2. On a $a_n = (-1)^n \frac{\sqrt{n}}{2} + l + o(1)$ donc $\frac{1}{a_n} = \frac{2(-1)^n}{\sqrt{n}} - \frac{4l}{n} + o\left(\frac{1}{n}\right)$. Comme $\sum \frac{(-1)^n}{\sqrt{n}}$ CV, $\sum \frac{1}{a_n}$ et $\sum \left(\frac{1}{a_n} - \frac{2(-1)^n}{\sqrt{n}}\right)$ sont de même nature et par équivalent de signe fixe, de même nature que $\sum \frac{1}{n}$. On en déduit que $\sum \frac{1}{a_n}$ DV.

Exercice 25 [sujet] **1.** Par une étude de fonction, on vérifie que $P_n = X^n + X\sqrt{n} - 1$ s'annule une seule fois sur [0,1], que $P_n \leq 0$ sur $[0,x_n]$ et que $P_n \geq 0$ sur $[x_n,1]$.

- **2.** Comme $P_n\left(\frac{1}{\sqrt{n}}\right) \geqslant 0$, on a $\frac{1}{\sqrt{n}} \in [x_n, 1]$ donc $0 \leqslant x_n \leqslant \frac{1}{\sqrt{n}}$ donc (x_n) tend vers 0.
- **3.** On a $x_n = \frac{1}{\sqrt{n}}(1 x_n^n)$ et comme $0 \le x_n \le \frac{1}{\sqrt{n}}$, on a $0 \le x_n^n \le \frac{1}{n^{n/2}}$ donc $\lim x_n^n = 0$ et $x_n \sim \frac{1}{\sqrt{n}}$ positif donc $\sum x_n$ DV. De plus $(-1)^n x_n = \frac{(-1)^n}{\sqrt{n}} + O\left(\frac{1}{n^{(n+1)/2}}\right)$ donc $\sum (-1)^n x_n$ CV.

Exercice 26 [sujet] 1. f est \mathcal{CM}^0 sur $[1, +\infty[$; par changement de variable (à justifier), $\int_1^{+\infty} f(x) \, \mathrm{d}x$ est de même nature que $\int_0^{+\infty} u^{\alpha} e^{iu} \, \mathrm{d}u$; $u^{\alpha} e^{iu} \sim \frac{1}{u^{-\alpha}}$ est intégrable sur]0,1] si et seulement si $-1 < \alpha$; par IPP (cf cours) $\int_1^{+\infty} \frac{e^{iu}}{u^{-\alpha}} \, \mathrm{CV}$ si et seulement si $\alpha < 0$.

 $\begin{aligned} \mathbf{2.} \ \ & \text{On a} \int_{n}^{n+1} f(x) \, \mathrm{d}x = f(n) + \int_{n}^{n+1} (n+1-t) f'(t) \, \mathrm{d}t \, \mathrm{et} \, |f'(t)| \leqslant \frac{\alpha (\ln t)^{\alpha-1} + (\ln t)^{\alpha} + 1}{t^2} \, \mathrm{donc} \left| \int_{n}^{n+1} (n+1-t) f'(t) \, \mathrm{d}t \right| \leqslant \frac{\alpha (\ln n)^{\alpha-1} + (\ln n) \alpha + 1}{((n+1))^2} = o\left(\frac{1}{n^{3/2}}\right) \, \mathrm{on} \, \, \mathrm{en} \, \, \mathrm{d}\acute{\mathrm{e}}\mathrm{d}u\mathrm{it} \, \, \mathrm{que} \, \sum f(n) \, \, \mathrm{CV} \, \, \mathrm{si} \, \, \mathrm{et} \, \, \mathrm{seulement} \, \, \mathrm{si} \, \left(\int_{2}^{n} f(t) \, \mathrm{d}t\right)_{n \in \mathbb{N}} \, \mathrm{CV} \, \, \mathrm{donc} \, \\ & \mathrm{si} \, \, \mathrm{et} \, \, \mathrm{seulement} \, \, \mathrm{si} \, \left(\int_{1}^{\ln n} u^{\alpha} e^{iu} \, \mathrm{d}u\right)_{n \in \mathbb{N}} \, \mathrm{CV} \, \, \mathrm{donc} \, \, \mathrm{la} \, \, \, \mathrm{s\acute{e}rie} \, \, \mathrm{CV} \, \, \mathrm{si} \, \, \mathrm{et} \, \, \mathrm{seulement} \, \, \mathrm{si} \, \left(\int_{1}^{\ln n} u^{\alpha} e^{iu} \, \mathrm{d}u\right)_{n \in \mathbb{N}} \, \mathrm{CV} \, \, \mathrm{donc} \, \, \mathrm{la} \, \, \, \mathrm{s\acute{e}rie} \, \, \mathrm{CV} \, \, \mathrm{si} \, \, \mathrm{et} \, \, \mathrm{seulement} \, \, \mathrm{si} \, \left(\int_{1}^{\ln n} u^{\alpha} e^{iu} \, \mathrm{d}u\right)_{n \in \mathbb{N}} \, \mathrm{CV} \, \, \mathrm{donc} \, \, \mathrm{la} \, \, \, \mathrm{s\acute{e}rie} \, \, \mathrm{CV} \, \, \mathrm{si} \, \, \mathrm{et} \, \, \mathrm{seulement} \, \, \mathrm{s\acute{e}rie} \, \, \mathrm{DV} \, \, \mathrm{pour} \, \, \alpha \geqslant 0, \, \, \mathrm{apr\dot{e}s} \, \, 2 \, \, \mathrm{IPP} \, \, \mathrm{successives}, \, \mathrm{on} \, \, \mathrm{trouve} \, \int_{1}^{\ln n} u^{\alpha} e^{iu} \, \, \mathrm{d}u = (\ln n)^{\alpha} + O((\ln n)^{\alpha-1}) \sim (\ln n)^{\alpha} \, \, \mathrm{donc} \, \, \mathrm{la} \, \, \mathrm{s\acute{e}rie} \, \, \mathrm{DV} \, \, \mathrm{pour} \, \, \alpha \geqslant 0. \, \, \mathrm{la} \, \, \mathrm{e}t \, \, \mathrm{la} \,$

Exercice 27 [sujet] 1. On peut d'abord vérifier que $t\mapsto \frac{\arctan t}{t^b}$ est intégrable sur]0,1] si et seulement si b<2.

De plus
$$\frac{\arctan t}{t^b} \underset{t \to +\infty}{\sim} \frac{\pi}{2t^b}$$
 donc $I_n \sim \frac{C}{n^a}$ (positif) si $1 < b < 2$ avec $C = \int_0^{+\infty} \frac{\arctan t}{t^b} dt > 0$ donc $\sum I_n$ CV ssi $a > 1$.

Si
$$0 < b < 1$$
 alors $\int_0^n \frac{\arctan t - \pi/2}{t^b} dt = -\int_0^n \frac{\arctan(1/t)}{t^b} dt \xrightarrow[t \to +\infty]{} -\int_0^{+\infty} \frac{\arctan(1/t)}{t^b} dt \cot \frac{\arctan(1/t)}{t^b} dt \cot \frac{\arctan(1/t)}{t^b} \xrightarrow[t \to +\infty]{} \frac{1}{t^{b+1}}$ et $1 + b > 1$. On en déduit $I_n \sim \frac{1}{n^a} \frac{\pi}{2} \int_0^n \frac{dt}{t^b} = \frac{\pi(1-b)}{2n^{a+1-b}}$ (positif) donc $\sum I_n$ CV ssi $a + b - 1 > 1$.

2. A nouveau, $0 \leqslant \frac{\pi(1-b)}{2n^{b+a-1}} = \frac{1}{n^a} \int_0^n \frac{\arctan(1/t)}{t^b} dt \leqslant \frac{1}{n^a} \int_0^n t^{-(1+b)} dt = \frac{-b}{n^{a+b}} \text{ donc } I_n \sim \frac{\pi(1-b)}{2n^{b+a-1}} \text{ (positif) et } I_n = \frac{1}{n^a} \int_0^n \frac{\arctan(1/t)}{t^b} dt = \frac{1}{n^a} \int_0^n t^{-(1+b)} dt = \frac{-b}{n^{a+b}} dt$

3.
$$\int_{1}^{n} \frac{\arctan t}{t} dt - \frac{\pi}{2} \ln(n) = \int_{1}^{n} \frac{\arctan t - \pi/2}{t} dt \xrightarrow[t \to +\infty]{} \int_{1}^{+\infty} \frac{\arctan(1/t)}{t} dt \text{ car intégrable sur } [1, +\infty[; \text{ comme}] \int_{0}^{1} \frac{\arctan t}{t} dt = o(\ln(n)), \text{ on en déduit } I_{n} \sim \frac{\pi \ln(n)}{2n^{a}} \text{ (positif) et (Bertrand) } \sum I_{n} \text{ CV ssi } a > 1.$$

Exercice 28 [sujet] On pose $R_n = \sum_{k=-1}^{+\infty} \frac{(-1)^{k+1}}{k}$ et S la somme de cette série alternée CV; par CSSA, on a $|R_n| \le$ $\frac{1}{n+1} \text{ donc } u_n = \frac{(-1)^{n+1}}{n} (S - R_n) = \frac{(-1)^{n+1} S}{n} + O\left(\frac{1}{n^2}\right) \text{ donc } \sum u_n \text{ CV}.$

2. par CSSA,
$$|v_n| \leqslant \frac{1}{n\sqrt{n+1}} = O\left(\frac{1}{n^{3/2}}\right)$$

3. Si
$$\ell = \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{\sqrt{k}}$$
 alors $w_n = \frac{(-1)^n \ell}{n} - v_n$ donc $\sum w_n$ CV

4.
$$x_n \sim \frac{\ell}{n} \text{ car } \ell = 1 + \sum_{n \geq 2} \frac{(-1)^{k+1}}{\sqrt{k}} \geqslant 1 - \frac{1}{\sqrt{2}} > 0 \text{ donc SATP et } \sum x_n \text{ DV}$$

Exercice 30 [sujet] **1.** CV par CSSA : $\int_{-2}^{+\infty} e^{-x^2} dx$ est le reste de l'intégrale $I = \int_{-2}^{+\infty} e^{-x^2} dx$ qui CV

2.
$$v_n = \frac{(-1)^n}{n} \int_0^{n^2} e^{-x^2} dx = \frac{(-1)^n}{n} I - u_n \text{ donc } \sum v_n \text{ CV aussi.}$$

Exercice 31 [sujet] 1. f doit tendre vers $+\infty$ en $+\infty$ mais ce n'est pas suffisant : si f est telle que $f(n) = \ln(n) + (-1)^n$ alors $x_n = \frac{(-1)^n}{\ln(n) + (-1)^n} = \frac{(-1)^n}{\ln n} - \frac{1}{(\ln n)^2} + o\left(\frac{1}{(\ln n)^2}\right)$ donc $\sum \frac{(-1)^n}{\ln n + (-1)^n}$ DV car $\sum \frac{(-1)^n}{\ln n}$ CV et $x_n - \frac{(-1)^n}{\ln n} \sim -\frac{1}{(\ln n)^2}$ (négatif) donc $\sum \left(x_n - \frac{(-1)^n}{\ln n}\right)$ DV

2. CSSA donc u_n existe, tend vers 0 (reste) et est du signe de $(-1)^n$ 3. On a $v_k = \frac{1}{f(k+2)} - \frac{1}{f(k+1)} \geqslant \frac{1}{f(k+1)} - \frac{1}{f(k)} = v_{k-1}$ donc (v_k) croît et tend vers 0 donc $v_k \leqslant 0$, ce qui donne $\left(\frac{1}{f(k)}\right)$ décroissante et tend vers 0, le CSSA s'applique

Exercice 32 [sujet] 1. $\frac{n^p}{2^n} = o\left(\frac{1}{n^2}\right)$

2.
$$(n+1)^p = n^p + \sum_{k=0}^{p-1} \binom{p}{k} n^k \text{ donc } \frac{(n+1)^p}{2^{n+1}} = \frac{1}{2} \left(\frac{n^p}{2^n} + \sum_{k=0}^{p-1} \binom{p}{k} \frac{n^k}{2^n} \right) \text{ donc, en sommant, } S_p - 1 = \frac{1}{2} \left(S_p + \sum_{k=0}^{p-1} \binom{p}{k} S_k \right) \text{ et } S_p = 2 + \sum_{k=0}^{p-1} \binom{p}{k} S_k$$

3. Par récurrence (forte) avec
$$S_0 = \sum_{n \geq 0} \frac{1}{2^n} = 2$$
 et $\binom{p}{k} \in \mathbb{N}$

Exercice 33 [sujet] 1. $\sum \frac{1}{k!}$ CV

2. On a
$$e = \sum_{k=0}^{n} \frac{1}{k!} + R_n$$
 donc $2n!\pi e = 2\pi \sum_{k=0}^{n} \frac{n!}{k!} + 2n!\pi R_n$ et $\sum_{k=0}^{n} \frac{n!}{k!} \in \mathbb{N}$ donc $\sin(2n!\pi e) = \sin(2n!\pi R_n) \sim \frac{2\pi}{n+1}$ (positif) donc $\sum \sin(2n!\pi e)$ DV

3.
$$(n+1)!R_n = 1 + \frac{1}{n+2} + \sum_{k \geqslant n+3} \frac{(n+1)!}{k!}$$
 et $\sum_{k \geqslant n+3} \frac{(n+1)!}{k!} \leqslant \sum_{k \geqslant n+3} \frac{1}{k(k-1)} \xrightarrow[n \to +\infty]{} 0$ (reste de série CV).

Exercise 34 [sujet] 1. On a $\frac{2n+3}{(n-1)n(n+2)} = \frac{5/3}{n-1} - \frac{3/2}{n} - \frac{1/6}{n+2}$; après changement d'indices sur les sommes partielles, on trouve $\sum_{n=2}^{+\infty} \frac{2n+3}{(n-1)n(n+2)} = \frac{5}{3} \left(1 + \frac{1}{2} + \frac{1}{3}\right) - \frac{3}{2} \left(\frac{1}{2} + \frac{1}{3}\right)$.

2. On a
$$3^{n-1}\sin^3\frac{\alpha}{3^n}=\frac{1}{4}\left(3^n\sin\frac{\alpha}{3^n}-3^{n-1}\sin\frac{\alpha}{3^{n-1}}\right)$$
 donc par télescopage $\sum_{n=0}^{+\infty}3^{n-1}\sin^3\frac{\alpha}{3^n}=\frac{1}{4}\left(\alpha-\frac{1}{3}\sin3\alpha\right)$ car $\lim 3^n\sin\frac{\alpha}{3^n}=\alpha$.

3. On a
$$\frac{2n^3 - 3n^2 + 1}{(n+3)!} = \frac{-80}{(n+3)!} + \frac{53}{(n+2)!} - \frac{15}{(n+1)!} + \frac{2}{n!} \operatorname{donc} \sum_{n=0}^{+\infty} \frac{2n^3 - 3n^2 + 1}{(n+3)!} = -80\left(e - 1 - 1 - \frac{1}{2}\right) + \frac{53}{(e-1)!} + \frac{2}{n!} \operatorname{donc} \left(\frac{2n^3 - 3n^2 + 1}{(n+3)!}\right) = -80\left(e - 1 - 1 - \frac{1}{2}\right) + \frac{2}{n!} \operatorname{donc} \left(\frac{2n^3 - 3n^2 + 1}{(n+3)!}\right) = -80\left(e - 1 - 1 - \frac{1}{2}\right) + \frac{2}{n!} \operatorname{donc} \left(\frac{2n^3 - 3n^2 + 1}{(n+3)!}\right) = -80\left(e - 1 - 1 - \frac{1}{2}\right) + \frac{2}{n!} \operatorname{donc} \left(\frac{2n^3 - 3n^2 + 1}{(n+3)!}\right) = -80\left(e - 1 - 1 - \frac{1}{2}\right) + \frac{2}{n!} \operatorname{donc} \left(\frac{2n^3 - 3n^2 + 1}{(n+3)!}\right) = -80\left(e - 1 - 1 - \frac{1}{2}\right) + \frac{2}{n!} \operatorname{donc} \left(\frac{2n^3 - 3n^2 + 1}{(n+3)!}\right) = -80\left(e - 1 - 1 - \frac{1}{2}\right) + \frac{2}{n!} \operatorname{donc} \left(\frac{2n^3 - 3n^2 + 1}{(n+3)!}\right) = -80\left(e - 1 - 1 - \frac{1}{2}\right) + \frac{2}{n!} \operatorname{donc} \left(\frac{2n^3 - 3n^2 + 1}{(n+3)!}\right) = -80\left(e - 1 - 1 - \frac{1}{2}\right) + \frac{2}{n!} \operatorname{donc} \left(\frac{2n^3 - 3n^2 + 1}{(n+3)!}\right) = -80\left(e - 1 - 1 - \frac{1}{2}\right) + \frac{2}{n!} \operatorname{donc} \left(\frac{2n^3 - 3n^2 + 1}{(n+3)!}\right) = -80\left(e - 1 - 1 - \frac{1}{2}\right) + \frac{2}{n!} \operatorname{donc} \left(\frac{2n^3 - 3n^2 + 1}{(n+3)!}\right) = -80\left(e - 1 - 1 - \frac{1}{2}\right) + \frac{2}{n!} \operatorname{donc} \left(\frac{2n^3 - 3n^2 + 1}{(n+3)!}\right) = -80\left(e - 1 - 1 - \frac{1}{2}\right) + \frac{2}{n!} \operatorname{donc} \left(\frac{2n^3 - 3n^2 + 1}{(n+3)!}\right) = -80\left(e - 1 - 1 - \frac{1}{2}\right) + \frac{2}{n!} \operatorname{donc} \left(\frac{2n^3 - 3n^2 + 1}{(n+3)!}\right) = -80\left(e - 1 - 1 - \frac{1}{2}\right)$$

Exercice 35 [sujet] Si $H_n = \sum_{k=1}^n \frac{1}{k^2}$ alors $H_{2n} = \frac{1}{4}H_n + \sum_{k=0}^{n-1} \frac{1}{(2k+1)^2}$ donc $\sum_{n=1}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$. $\sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k^2} = -\frac{1}{4}H_n + \sum_{k=0}^{n-1} \frac{1}{(2k+1)^2}$ donc (la série est ACV) $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$.

Exercice 36 [sujet] $\left(\frac{1}{2k-1} - \frac{1}{2k}\right) \sim \frac{1}{4k^2}$ positif donc la série CV; $\sum_{k=1}^{n} \left(\frac{1}{2k-1} - \frac{1}{2k}\right) = \sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k}$ donc on obtient

$$\sum_{k=1}^{+\infty} \left(\frac{1}{2k-1} - \frac{1}{2k} \right) = \ln 2.$$

$$\frac{1}{4n^3 - n} = \frac{-1}{n} + \frac{1}{2n - 1} + \frac{1}{2n + 1} \operatorname{donc} \sum_{k=1}^{n} \frac{1}{4k^3 - k} = -\sum_{k=1}^{n} \frac{1}{k} + 2\sum_{k=1}^{n} \frac{1}{2k - 1} + \frac{1}{2n + 1} - 1 = 2\sum_{k=1}^{n} \left(\frac{1}{2k - 1} - \frac{1}{2k}\right) + \frac{1}{2n + 1} - 1 \operatorname{donc} \sum_{n=1}^{+\infty} \frac{1}{4n^3 - n} = 2\ln 2 - 1$$

Exercice 37 [sujet] 1. $\ln(u_{n+1}) + \frac{3}{2}\ln(n+1) - \ln(u_n) - \frac{3}{2}\ln(n) = \ln\left(1 + \frac{1}{n}\right) - \ln\left(1 + \frac{5}{2n}\right) + \frac{3}{2}\ln\left(1 + \frac{1}{n}\right) = O\left(\frac{1}{n^2}\right)$ donc, si $w_n = \ln(u_n) + \frac{3}{2}\ln(n)$, on a bien (w_n) CV (lien suite/série)

2. Si on note
$$\ell = \lim w_n$$
, on a $\ln(u_n) = -\frac{3}{2}\ln(n) + \ell + o(1)$ donc $u_n \sim \frac{e^{\ell}}{n^{3/2}}$ (positif) donc $\sum u_n$ CV

3. Sommer la relation $2(k+1)u_{k+1} + 3u_{k+1} = 2ku_k + 2u_k$

4. On pose
$$S_n = \sum_{k=0}^n u_k$$
 et $T_n = \sum_{k=0}^n ku_k$; on a $S_{n+1} = 3 + 2(T_n - T_{n+1}) + 2(S_{n+1} - S_n) = 3 - 2(n+1)u_{n+1} + 2u_{n+1} \xrightarrow[n \to +\infty]{} 3$

Exercice 38 [sujet] **1.** On trouve $u_n \sim \frac{(\ln n)^2}{2}$.

- 2. On trouve $v_{n+1} v_n \sim -\frac{\ln n}{2n^2}$ négatif donc (v_n) décroît à partir d'un certain rang et $\sum (v_{n+1} v_n)$ CV donc (v_n) CV.
- 3. En séparant les termes pairs et impairs, on trouve $\sum_{k=1}^{2n} \frac{(-1)^k \ln k}{k} = (\ln 2)H_n + u_n u_{2n} \text{ et comme } u_n = \frac{(\ln n)^2}{2} + l + o(1), \text{ on obtient le résultat annoncé (la série CV par CSSA qui est vérifié à partir d'un certain rang).}$

Exercice 39 [sujet] 1.
$$\left| \frac{R(n)}{n(n+1)} \right| \leq \frac{4}{n(n+1)}$$
 donc la série est ACV.

2. En séparant les termes selon que
$$n = 5k$$
, $5k + 1$, $5k + 2$, $5k + 3$ ou $5k + 4$, on trouve, avec $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$, $S_{5n} = \sum_{k=0}^{n-1} \left(\frac{1}{5k+1} + \frac{1}{5k+2} + \frac{1}{5k+3} + \frac{1}{5k+4} \right) = H_{5n} - H_n = \ln(5n) - \ln(n) + o(1) \text{ donc } \sum_{k=0}^{+\infty} \frac{R(k)}{k(k+1)} = \ln(5).$

Exercice 40 [sujet] La CV peut être justifié par
$$s(n) = \lfloor \log_{10}(n) \rfloor$$
 donc $\frac{s(n)}{n(n+1)} = o\left(\frac{1}{n^{3/2}}\right)$ donc la série est ACV.

On a
$$s(n) = p$$
 pour $10^p \le n \le 10^{p+1} - 1$ donc $\sum_{n=10^p}^{10^{p+1}-1} \frac{s(n)}{n(n+1)} = p \sum_{n=10^p}^{10^{p+1}-1} \left(\frac{1}{n} - \frac{1}{n+1}\right) = p \left(\frac{1}{10^p} - \frac{1}{10^{p+1}}\right) = p \left(\frac{1}{10^p} - \frac{1}{10^p}\right) = p$

$$\left(\frac{p}{10^p} - \frac{p+1}{10^{p+1}}\right) + \frac{1}{10^{p+1}}. \text{ On a alors } \sum_{n=1}^{10^{N+1}-1} \frac{s(n)}{n(n+1)} = \sum_{p=0}^{N} \left(\sum_{n=10^p}^{10^{p+1}-1} \frac{s(n)}{n(n+1)}\right) = -\frac{N+1}{10^{N+1}} + \sum_{p=1}^{N+1} \frac{1}{10^p} \operatorname{donc} \sum_{n=1}^{+\infty} \frac{s(n)}{n(n+1)} = 1$$

Exercice 41 [sujet] Tout d'abord la série CV par CSSA. Puis on a
$$\sum_{k=1}^{2n} (-1)^{n+1} \ln \left(1 + \frac{1}{n}\right) = \sum_{k=1}^{n} (\ln(2k) - \ln(2k+1)) + \frac{n}{n}$$

$$\sum_{k=0}^{n-1} (\ln(2k+2) - \ln(2k+1)) = 2\sum_{k=1}^{n} \ln(2k) - 2\sum_{k=0}^{n-1} \ln(2k+1) - \ln(2n+1) = 4n\ln 2 + 4u_n - 2u_{2n} - \ln(2n+1)$$
 puis avec

$$u_n = \ln(n!) = n \ln(n) - n + \frac{1}{2} \ln(n) + \frac{1}{2} \ln(2\pi) + o(1)$$
, on trouve $\sum_{n=1}^{+\infty} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right) = \ln(2\pi) - 2\ln(2)$

Exercice 42 [sujet] **1.** Sur $\left[0, \frac{\pi}{2}\right]$, on a $0 \le \sin x \le x$ donc $0 \le u_{n+1} \le u_n$; la suite (u_n) est donc CV vers l tel que $l = \sin(l)$ (car sin est \mathcal{C}^0) donc l = 0 (étudier $x \mapsto x - \sin x$).

- **2.** $\sum u_{n+1} u_n$ CV (télescopique) et comme u_n tend vers 0, on a $u_{n+1} u_n \sim -\frac{1}{6}u_n^3$ (négatif) donc $\sum u_n^3$ CV.
- 3. $\ln \frac{u_{n+1}}{u_n} = \ln(u_{n+1}) \ln(u_n)$ est une série télescopique DV puisque $(\ln(u_n))$ DV vers $-\infty$. Comme (u_n) tend vers $0, \frac{u_{n+1}}{u_n} = 1 \frac{u_n^2}{6} + o(u_n^2)$ donc $\ln \frac{u_{n+1}}{u_n} \sim -\frac{1}{6}u_n^2$ négatif donc $\sum u_n^2$ DV aussi.

Exercice 43 [sujet] **1.** $u_{n+1} = 2\sin^2\frac{u_n}{2}$ donc avec $0 \le \sin x \le x \text{ sur } \left[0, \frac{\pi}{2}\right]$, on a $0 \le u_{n+1} \le \frac{1}{2}u_n^2 \le 12u_n$ puisque $u_n \in [0,1]$ pour $n \ge 1$. La suite (u_n) CV donc vers l tel que $l = 1 - \cos(l)$ (car cos est \mathcal{C}^0) et l = 0 (étude de fonction).

2. On a $0 \leqslant u_{n+1} \leqslant \frac{1}{2}u_n^2$ donc par encadrement $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} 0$ et $\sum u_n$ CV (d'Alembert).

Exercice 44 [sujet] 1. On vérifie successivement que $u_n \ge 0$ donc $0 \le u_n \le \frac{1}{n}$ pour $n \ge 1$ donc (u_n) tend vers 0. On en déduit $nu_n \to 1$

2. On en déduit $u_n \sim \frac{1}{n}$ positif et $\sum u_n$ DV. Enfin avec $u_n = \frac{1}{n} + o\left(\frac{1}{n}\right)$, on trouve $u_{n+1} = \frac{1}{n}\left(1 - \frac{1}{n} + o\left(\frac{1}{n}\right)\right)$ donc $(-1)^n u_n = \frac{(-1)^n}{n} + O\left(\frac{1}{n^2}\right)$ et $\sum (-1)^n u_n$ CV.

Exercice 45 [sujet] Sur [0,1], stable, $f: x \mapsto \sqrt{\frac{x+1}{2}}$ est croissante donc (x_n) est monotone, bornée donc CV vers ℓ tel que $\ell = f(\ell)$ donc $\ell = 1$.

On a
$$u_{n+1} = 1 - \sqrt{1 - \frac{u_n}{2}} = \frac{u_n/2}{1 + \sqrt{1 + u_n/2}}$$
 donc $\lim \frac{u_{n+1}}{u_n} = \frac{1}{4} < 1$ et $\sum u_n$ CV

Exercice 46 [sujet] 1. $x_{n+1} - x_n = \frac{1}{x_n} > 0$ donc (x_n) croît et ne peut pas CV vers l car $l = l + \frac{1}{l}$ n'a pas de solution positive; (u_n) tend donc vers $+\infty$. Comme $\frac{1}{x_n} = x_{n+1} - x_n$, la série $\sum \frac{1}{x_n}$ DV.

- **2.** On a $x_{n+1}^2 x_n^2 = 2 + \frac{1}{x_n^2}$ donc en sommant, $x_{n+1}^2 = 2(n+1) + x_0^2 + \sum_{k=0}^n \frac{1}{x_k^2}$.
- **3.** On a donc (pour $n \ge 1$) $x_n^2 \ge 2n$ puis $0 \le \frac{1}{x_n^2} \le \frac{1}{2n}$ et $0 \le \sum_{k=1}^n \frac{1}{x_k^2} \le \frac{1}{2} H_n \sim \frac{1}{2} \ln(n)$. On a donc $x_{n+1} = 2(n+1) + x_0^2 + O(\ln(n))$ et $x_n \sim 2n$.

Exercice 47 [sujet] Si $\sum u_n$ CV, $v_{n+1} - v_n = \frac{\sqrt{u_n + v_n^2} - v_n}{2} = \frac{u_n}{2(\sqrt{u_n + v_n^2} + v_n)}$ donc (v_n) croît et $0 \le v_{n+1} - v_n \le \frac{u_n}{2v_0}$ donc $\sum (v_{n+1} - v_n)$ CV, ie (v_n) CV.

Si (v_n) CV vers l, elle reste croissante et $u_n = 4v_{n+1}(v_{n+1} - v_n) \leqslant 4l(v_{n+1} - v_n)$; $\sum (v_{n+1} - v_n)$ CV donc par majoration de SATP, $\sum u_n$ CV.

Exercice 48 [sujet] 1. $u_{n+1} - u_n = \frac{\sqrt{u_n^2 + a_n^2} - u_n}{2}$ puis $\sqrt{u_n^2 + a_n^2} \leqslant a_n + u_n$ car $a_n u_n \geqslant 0$ (élever au carré)

- **2.** On a aussi $u_{n+1} u_n \ge 0$ donc le th
 de comp pour les séries à termes positifs donne $\sum (u_{n+1} u_n)$ CV
- **3.** (u_n) CV (vers 1) et on a $a_n^2 = (2u_{n+1} u_n)^2 u_n^2 = 4u_{n+1}(u_{n+1} u_n)$ ce qui donne $a_n \sim \frac{2}{n}$ (positif) donc $\sum a_n$ DV

Exercice 49 [sujet] On a $\sum_{k=1}^{n} k(u_k - u_{k+1}) = \sum_{k=1}^{n} u_k - nu_{n+1} \leqslant \sum_{k=1}^{n} u_k$ donc si $\sum u_n$ CV, on a $\sum_{k=1}^{n} k(u_k - u_{k+1}) \leqslant \sum_{k=1}^{+\infty} u_k$ donc les sommes partielles de la SATP $\sum n(u_n - u_{n+1})$ sont majorées donc elle CV.

Si on suppose que $\sum n(u_n - u_{n+1})$ CV alors $0 \le nu_n = n \sum_{k=n}^{+\infty} (u_k - u_{k+1}) \le \sum_{k=n}^{+\infty} k(u_k - u_{k+1}) \to 0$ donc (nu_n) tend vers 0, ce qui donne la CV de $\sum un$ et aussi l'égalité des sommes en même temps.

Exercice 50 [sujet] Soit $n \in \mathbb{N}$, il existe N tel que $\sigma(\llbracket 0, n \rrbracket) \subset \llbracket 0, N \rrbracket$; comme $u_k \geqslant 0$, on a $\sum_{k=0}^n a_{\sigma(k)} \leqslant \sum_{k=1}^N a_k$ donc si on suppose que $\sum a_n$ CV, on a $\sum_{k=0}^n a_{\sigma(k)} \leqslant \sum_{n=0}^{+\infty} a_n$; par majoration des sommes partielles d'une SATP, $\sum a_{\sigma(n)}$ CV et $\sum_{n=0}^{+\infty} a_{\sigma(n)} \leqslant \sum_{n=0}^{+\infty} a_n$. En utilisant σ^{-1} , on trouve l'implication inverse et l'inégalité inverse.

Exercice 51 [sujet] 1. $\ln(P_n) = \sum_{k=1}^n \ln(1+u_k)$ et comme (u_n) tend vers 0, $\ln(1+u_n) \sim u_n$ donc $\sum \ln(1+u_n)$ est ACV; toute série ACV étant CV, $(\ln P_n)$ est une suite CV donc (P_n) CV.

- 2. $|P_{n+1} P_n| \le |u_{n+1}| \prod_{k=1}^n (1 + |u_k|)$. En appliquant la première question à la suite $(|u_n|)$, on trouve que $\prod_{k=1}^n (1 + |u_k|)$ est le terme général d'une suite CV donc bornée (par M). On en déduit $|P_{n+1} P_n| \le M|u_{n+1}|$ donc $\sum_{k=1}^n (1 + |u_k|)$ est ACV donc CV et (P_n) CV.
- Exercice 52 [sujet] 1. $\frac{1}{n}\ln(u_n) = \frac{1}{n}\sum_{k=1}^n\ln\left(1+\left(\frac{k}{n}\right)^2\right) \xrightarrow[n\to+\infty]{} \int_0^1\ln(1+x^2)\,\mathrm{d}x > 0 \text{ car } x\mapsto\ln(1+x^2) \text{ est } \mathcal{C}^0$ sur [0,1] (somme de Riemann), on en déduit $\lim u_n = +\infty$.
 - **2.** Par comparaison série/intégrale, $\sum_{k=1}^{n} k^{\alpha} \sim \frac{n^{\alpha+1}}{\alpha+1}$ donc $a_n \sim \frac{1}{(\alpha+1)n^{1-\alpha}}$.
 - 3. On a $0 \leqslant \ln(u_n) = a_n$ donc si $\alpha \in [0,1[$, $(\ln u_n)$ tend vers 0 donc (u_n) tend vers 1. Reste le cas $\alpha = 1$: on vérifie que $|\ln(1+x) x| \leqslant x^2$ si $x \in [0,r]$ donc pour $\frac{1}{n} \leqslant r$, on a $\left|\ln\left(1 + \frac{k}{n^2}\right) \frac{k}{n^2}\right| \leqslant \frac{k^2}{n^4} \leqslant \frac{1}{n^2}$ puis en sommant (par inégalité triangulaire) $|\ln u_n a_n| \leqslant n \frac{1}{n^2}$ ce qui donne $\lim \ln u_n = \lim a_n = \frac{1}{2}$ donc $\lim u_n = \sqrt{e}$.

Exercice 53 [sujet] On a une SATP donc il suffit de majorer les sommes partielles : $S_n \leqslant S_{2^n} \stackrel{\text{rec}}{\leqslant} \prod_{k=0}^{n-1} \left(1 + \frac{1}{2^k}\right) S_1 = P_n S_1$; comme $\ln P_n = \sum_{k=0}^{n-1} \ln\left(1 + \frac{1}{2^k}\right)$ et $\ln\left(1 + \frac{1}{2^k}\right) \sim \frac{1}{2^k}$, $(\ln P_n)$ CV donc est bornée puis $\sum u_n$ CV.

Exercice 54 [sujet] 1. $\ln u_n = \sum_{k=2}^n \ln \left(1 - \frac{1}{\sqrt{k}}\right)$ et $\ln \left(1 - \frac{1}{\sqrt{k}}\right) \sim -\frac{1}{\sqrt{k}}$ négatif donc $\ln u_n$ est la somme partielle d'une série à termes négatifs DV donc $\lim \ln u_n = -\infty$ puis $\lim u_n = 0$.

2. On a $\ln(n^2u_n) = 2\ln(n) + \sum_{k=2}^n \ln\left(1 - \frac{1}{\sqrt{k}}\right) \leqslant 2\ln(n) - \sum_{k=2}^n \frac{1}{\sqrt{k}}$ et comme (comparaison série/intégrale) $\sum_{k=2}^n \frac{1}{\sqrt{k}} \sim 2\sqrt{n}$, on a $\lim \ln(n^2u_n) = -\infty$, ie $u_n = o\left(\frac{1}{n^2}\right)$ donc $\sum u_n$ est ACV.

Exercice 55 [sujet] 1. En développant par la dernière colonne, puis en développant le deuxième déterminant qui apparaît par la dernière ligne, on trouve $\Delta_n = \Delta_{n+1} + a_n \Delta_{n-2}$

2. par récurrence (double)

3. (Δ_n) est croissante; si $\sum a_n$ CV alors $\ln \Delta_n \leqslant \sum_{k=1}^n \ln(1+a_k)$ puis (a_n) tend vers 0 donc $\ln(1+a_k) \sim a_k$ (positif) donc $\sum \ln(1+a_k)$ CV et $\ln \Delta_n \leqslant \sum_{n=1}^{+\infty} \ln(1+a_n)$ donc (Δ_n) est majorée donc CV. Si (Δ_n) CV vers ℓ alors $\ell > 0$ (car croissante) et $\sum (\Delta_n - \Delta_{n-1})$ CV; or $\Delta_n - \Delta_{n-1} = a_n \Delta_{n-2} \sim \ell a_n$ (positif) donc $\sum a_n$ CV

Exercice 56 [sujet] **1.** On a $b_n \ge 2$ pour $n \ge n_0$ donc $0 \le \frac{1}{n^{b_n}} \le \frac{1}{n^2}$.

$$\textbf{2.} \text{ Si } a_n = \ln n \text{ et } b_n = \ln(\ln n) \text{ alors } \frac{n}{a_n^{b_n}} = \exp[\ln n \left(1 - \frac{(\ln(\ln n))^2}{\ln n}\right] \xrightarrow[n \to +\infty]{} + \infty \text{ donc } \frac{1}{n} = o\left(\frac{1}{a_n^{b_n}}\right) \text{ et } \sum \frac{1}{a_n^{b_n}} \text{ DV.}$$

Exercice 57 [sujet] Par un DL, on trouve $\ln(v_{n+1}) - \ln(v_n) = O\left(\frac{1}{n^2}\right)$ donc $\sum (\ln(v_{n+1}) - \ln(v_n))$ est ACV et la suite $(\ln v_n)$ CV vers $l \in \mathbb{R}$ et $\lim v_n = e^l > 0$ donc $u_n \sim \frac{e^l}{n^{\alpha}}$ positif donc $\sum u_n$ CV si et seulement si $\alpha > 1$.

Exercice 58 [sujet] 1. Partir de $v_n = V_n - V_{n-1}$ ou par récurrence.

- 2. Si $|V_n| \leq M$ alors $|(u_k u_{k+1})V_k| \leq M(u_k u_{k+1})$ puisque (u_n) décroît; comme (u_n) CV, la série $\sum (u_n u_{n+1})$ CV et par majoration $\sum (u_n u_{n+1})V_n$ est ACV. De plus $\lim u_n V_n = 0$ puisque (u_n) tend vers 0 et (V_n) est bornée; on a donc la CV de $\sum u_n v_n$ et $\sum_{n=1}^{+\infty} u_n v_n = \sum_{n=1}^{+\infty} (u_n u_{n+1})V_n$.
- 3. Si $\alpha \leq 0$, on a DVG; par contre si $\alpha > 0$, $\left(\frac{1}{n^{\alpha}}\right)$ tend vers 0 en décroissant et $V_n = \sum_{k=1}^n \cos(n\theta) = \frac{\cos\frac{n+1}{2}\theta\sin\frac{n\theta}{2}}{\sin\frac{\theta}{2}}$ si $\theta \notin 2\pi\mathbb{Z}$ donc $|V_n| \leq \frac{2}{|\sin\frac{\theta}{2}|}$, ie (V_n) est bornée et $\sum \frac{\cos(n\theta)}{n^{\alpha}}$ CV. Enfin, si $\theta \in 2\pi\mathbb{Z}$ alors $\frac{\cos(n\theta)}{n^{\alpha}} = \frac{1}{n^{\alpha}}$ donc la série CV si et seulement si $\alpha > 1$.

Exercice 59 [sujet] Pour $\varepsilon > 0$, on a $|u_n - v_n| \leq \varepsilon v_n$ pour $n \geq n_0$.

- 1. Pour $n \geqslant n_0$, on a $|U_n V_n| \leqslant |U_{n_0} V_{n_0}| + \varepsilon \sum_{k=n_0+1}^n v_k \leqslant |U_{n_0} V_{n_0}| + \varepsilon V_n$; comme $\lim V_n = +\infty$ (somme partielle d'une SATP DV), il existe $n_1 \geqslant n_0$ tel que pour $n \geqslant n_1$, $\frac{|U_{n_0} V_{n_0}|}{V_n} \leqslant \varepsilon$ (le numérateur est une constante). Pour $n \geqslant n_1$, on a $\frac{|U_n V_n|}{V_n} \leqslant 2\varepsilon$ donc $\lim \frac{|U_n V_n|}{V_n} = 0$ ce qui donne $U_n \sim V_n$.
- **2.** Pour $n \ge n_0$, on a $|R_n R'_n| \le \varepsilon R'_n$ donc $R_n \sim R'_n$.